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Chapter 1

Introduction and outline

And what is this unknown island you
want to go in search of, If I could tell
you that, it wouldn’t be unknown ...
J. Saramago: “The tale of the unknown island”

“GALAXY formation is simple in principle. One starts with a mass distribution and an
associated velocity field at some time in the early Universe, and evolves it. The system

will collapse around local over-dense regions, will cool, mix, form stars and evolve” (Gilmore
1993). Every now and then, an astronomy professor will tell his or her graduate student that
this is the right time to embark into the seemingly simple but yet ambitious task of trying to
unveil how our own Galaxy, the Milky Way, formed. With similar words, this is what Simon
White told me during a meeting in Munich in March 1997. Three years later I present this thesis
which is the result of one such attempt, certainly not the first and most likely not the last one.

Over the last twenty years a standard paradigm has emerged for the formation and evolu-
tion of structure in the Universe (Peebles 1974; White & Rees 1978). Fundamental cornerstones
in this paradigm are the discovery of the (Hubble) expansion of the Universe in the early twen-
ties, and of the cosmic microwave background radiation in the sixties (Penzias & Wilson 1965;
Dicke et al. 1965), which along with observations of large-scale structure show that the Uni-
verse is fairly homogeneous and isotropic on very large scales. Put together, these ingredients
lead to a standard cosmological model: an isotropic and homogeneous Universe that evolved
from an initially hot and dense state. We may understand the homogeneity on very large scales
if the entire observable Universe was causally connected at some early epoch. This would be
possible, for example if the Universe went through an inflationary phase in its early expansion
(Guth 1981; Linde 1982). Inflation models through quantum fluctuations provide a Gaussian
field of density fluctuations: the seeds from which all the structure we observe today formed.
Indeed, such small fluctuations are imprinted on the cosmic microwave background radiation
(CMB), as demonstrated by the COBE satellite (Smoot et al. 1992). COBE not only confirmed the
high degree of homogeneity of the CMB, it also detected temperature fluctuations ∆ ������� 10 � 5

on a scale of 10  consistent with a power law spectrum of Gaussian initial density fluctuations.
However, at the moment the different CMB experiments are not yet able to determine, for ex-
ample, whether the density inhomogeneities had their origin in quantum fluctuations during
inflation or in topological defects, such as cosmic strings. We may have to wait for new satellite
missions such as MAP and Planck, to measure the precise values of all cosmological parameters
and the spectrum of fluctuations that gave rise to the present day structure.

Another key ingredient of the standard paradigm is that most of the mass in the Universe
is dark. This is based on the fact that the luminous (baryonic) matter in the Universe alone
cannot account for its Hubble expansion rate, nor for the motions of stars and gas in the outer
parts of galaxies, or of galactic systems in clusters. Probably favoured by the particle physics
Standard Model, most likely candidates are, yet to be detected, nonbaryonic weakly interacting
elementary particles.

The paradigm described sets the framework to tackle the problem of how galaxies form from

1



2 CHAPTER 1. Introduction and outline

very definite initial conditions: one only needs to specify the shape of the power spectrum, the
cosmological parameters and the dominant form of dark matter. Currently preferred are the
“hierarchical” models. These assume that the spectrum of density fluctuations, as produced
during inflation, is close to scale invariant, and that the dominant matter component in the
Universe is in the form of massive weakly interacting particles (Peebles 1982). Because of their
mass, these particles had non-relativistic motions at the time they decoupled from the expansion
of the Universe, which is why they are known as cold dark matter particles (CDM). The actual
shape of the CDM power spectrum is such that structures on the small scales collapse first.
Therefore, in hierarchical models structure is built bottom-up, as dark matter aggregates into
larger and larger clumps (halos) when the gravitational forces amplify the initially small density
fluctuations. Galaxies then arise as the gas associated with these dark halos cools and collects in
their cores, where it can form stars, which heat and enrich the remaining gas present in a disk
or halo (White & Frenk 1991).

The dynamics and evolution of the dark matter halos can be studied in these models in
a fairly straightforward fashion, either through analytic approximations or numerical simula-
tions. These now have very high resolution, and the structure of halos can be determined in
great detail (Navarro, Frenk & White 1996), as can be their substructure (Klypin et al. 1999;
Moore et al. 1999) and internal dynamics (Ghigna et al. 1998; Tormen, Diaferio & Syer 1998).
The nonlinear growth of structure on scales greater than or of the order of a kiloparsec is thus
well-studied, and reasonably well understood being simply dominated by gravitational dy-
namics. Below these scales it is clear that other nonlinear processes such as star formation and
feedback are dominant. Understanding these processes, which affect the behaviour of the bary-
onic components, is thus extremely important for making a sensible comparison of the outcome
of the hierarchical models with the observational data. Unfortunately, this is not the case and
thus such processes are modelled only crudely. Numerically it is very difficult to simulate the
formation of a galactic system in the proper cosmological context because of the large dynamic
range on which the different relevant processes are acting at the same time (but see some at-
tempts by Steinmetz & Navarro 1999; and Pearce et al. 1999). In recent years considerable
progress has been made through a phenomenological approach, which combines simple, phys-
ically motivated prescriptions for the behaviour of the baryonic components, with analytic or
numerical methods that describe the dark matter evolution (e.g. Kauffmann, White & Guider-
doni 1993; Baugh, Cole & Frenk 1996). In what follows we shall discuss the basic ingredients
and relevant processes in the build-up of galactic systems in hierarchical models, thus setting
the scene for tackling the problem of how our own Galaxy formed.

1.1 Galaxy formation in a hierarchical Universe

When an overdense region decouples from the expanding Universe, turns around and collapses
onto itself it forms a bound structure: a halo. To a great extent the evolution of galaxies is
dominated by the dark halos dynamics and histories. Therefore we need to know, for example,
the rates of halo merging and how these rates evolve in time and depend on environment.
Assuming an initial random Gaussian field of fluctuations, Press & Schechter (1974) derived an
analytic approximation for the mass distribution of nonlinear objects at a given time. Starting
from the Press–Schechter formalism (or any of its extensions e.g. Bond et al. 1991; Bower 1991),
one may derive merger histories, the distribution of objects of mass

�
at time ! , the survival

times, etc. (Lacey & Cole 1993). All this information is contained in what are called “merger
trees”, such as the one shown in Figure 1.1.

Once we specify the cosmological parameters: the density of the Universe (in units of the
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FIGURE 1.1— Schematic representation of a “merger tree” showing the growth of a halo in time. Time increases
from top to bottom, and the widths of the branches are proportional to the masses of the progenitor halos (based on
Lacey & Cole, 1993).

critical density) Ω0, the Hubble constant " 0, the cosmological constant Λ, the baryon content of
the Universe Ω # , and the initial fluctuation power spectrum (shape and normalization), we may
use the Press & Schechter theory (or some of its extensions) to make realizations of the merging
histories of dark matter halos. Within each dark matter halo present at any time we may follow
the evolution of the baryonic components: hot gas, cold gas and stars.

In the phenomenological approach mentioned previously (also known as semi-analytic mod-
elling) one assumes that when a halo forms, its gas (a certain fraction of the total mass of the
halo, which is mostly fixed by Ω # ) will relax to a distribution identical to that of the dark halo, at
a temperature related to the circular velocity of the halo. Some fraction of this gas may be able
to cool, and will thus collapse to form a rotationally supported disk at the centre of the halo.

In this rotationally supported disk star formation will take place, and as observations of
nearby spirals seem to indicate (Kennicutt 1989), at a rate determined by the local surface den-
sity and the dynamical timescale of the disk. Some of the stars formed will later explode as
supernova and blow material back into the hot halo. Winds from very massive stars may also
be important in reheating cold gas and driving it back to the hot halo, or even beyond, espe-
cially in very active star forming regions. These mechanisms, which transform cold gas into
hot gas, are known as feedback, and are currently some of the most poorly known processes
affecting the formation and evolution of a galactic system.

Another process affecting the evolution of a galaxy is the chemical enrichment of its inter-
stellar medium. As stars evolve they enrich their surrounding medium, and in a closed box
model, all the metals remain in the galaxy halo. In the case of strong feedback one can imagine
that some fraction of the processed material could be mixed with gas at very large radii, even
outside the virial radius of the halo.

In semi-analytic models one also needs to specify what happens to the baryonic components
once two halos merge. For example, in a newly formed halo one can imagine that the hot gas
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present before the merger will remain in the hot phase, but with a virial temperature now given
by the circular velocity of the new halo. If one of the halos is much smaller than the other, it
may be considered a “satellite”. One can imagine that after the satellite has crossed the virial
radius of the main galaxy halo it will cease accreting gas, and thus as soon as its cold gas supply
present at the time of infall is exhausted, it will stop forming stars. This satellite will be accreted
by the main galaxy on a certain timescale, which in these models is generally assumed to be a
dynamical friction timescale (e.g. Navarro, Frenk & White 1995).

In the case of large mass ratios (“galaxy + satellite”) the morphology of the main galaxy will
not change appreciably, and will thus maintain its disk-like configuration. If on the other hand,
the masses of the halos are similar, then in these equal mass mergers the disks will be destroyed,
and an elliptical system will be formed (e.g. Barnes 1999). Any cold gas present will be turned
into stars on a very short timescale, so that new ellipticals formed through a merger with a large
gas content will be starburst systems. And if the reservoir of gas in the hot halo is sufficiently
large, a disk may grow later on, thus turning an elliptical galaxy into a spiral galaxy bulge.

Each of the processes mentioned here depends on a series of parameters whose values may
be fixed, for example, from observations of galaxies in the local Universe. After this has been
done, one can make realizations of the formation of a galaxy for different merger trees. For
plausible choices of these free parameters, semi-analytic models can reproduce many of the
observed characteristics of the galaxy population, such as luminosity functions, trends of galaxy
colour with morphology and environment, the Tully–Fisher relation for spirals, etc. (van den
Bosch 1998; Somerville & Primack 1999; Kauffmann et al. 1999). Examples of some early work
trying to fit the luminosity function of the Milky Way and its satellites are shown in Figure 1.2.

1.2 The Milky Way galaxy

From the work described above we know, at least to some extent, how a typical galaxy forms
and evolves in the hierarchical paradigm, starting almost from first principles. Naturally, we
want to determine if the Milky Way was formed in this way. For our Galaxy, not only can
we test this scenario by constructing the evolutionary history of a typical spiral and making a
rough, global comparison between the predictions and the observations, but we can and should
go farther. The very detailed knowledge of the kinematics, distances, ages and chemical com-
positions of individual stars should be useful to unravel how our Galaxy formed, and in this
way to put constraints on the hierarchical structure formation scenario. The simplest example
of this idea is the estimation of the age of the Universe from the ages of globular clusters (e.g.
Sandage 1961; Carretta et al. 2000).

1.2.1 The Galactic components

The Milky Way is a large disk galaxy. Its main components are the thin disk, the thick disk, the
bulge, the stellar halo and the dark matter halo. We describe here the first three components in
some detail, and leave the Galactic halo (dark and stellar) for a separate section.

The thin disk

The thin disk contains most of the stars in the Solar neighbourhood. The stars, gas and dust
in the thin disk follow an approximately exponential distribution, both in the radial and $ -
direction, with scale heights %'&�� 3 � 5 kpc and % � � 0 � 3 kpc respectively. The thin disk rotates
rapidly with a circular velocity at the Solar radius of 215 ( 20 km s � 1 (where the quoted un-
certainty is largely due to modelling uncertainties, e.g. Dehnen & Binney 1998). The thin disk
contains stars of a wide range of ages, and there is also evidence for bursts in its star formation
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FIGURE 1.2— An early example of the Milky Way luminosity function in a SCDM cosmology with Ω )+* 0 , 1 result-
ing from the semi-analytic modelling by Kauffmann et al. (1993). The different panels correspond to different values
of one of the free parameters involved in the modelling, which in this case is the timescale on which the merging of
two halos takes place. In (a) this timescale is infinite; for (b) it is the dynamical friction timescale as derived from the
Chandrasekhar formula and for (c) it is 100 times shorter. In these first attempts it is already clear, as shown in panel
(b), that there is an excess of faint galaxies in comparison to the observations (recall that the Milky Way has no more
than about thirteen satellite galaxies). Even a reduction of a factor of 100 in the merging timescale is unsatisfactory,
as it eliminates almost all satellites similar to the SMC and LMC. Inhibiting the formation of dwarf galaxies seems,
however, to do much better. This can be achieved by invoking, for example, a strong UV background reionising field
which would inhibit the cooling of gas in very small halos. The resulting luminosity function is shown in panel (d).
In this way, the comparison to the observed luminosity function helps fixing the values of the free parameters for
later modelling.

history (cf Rocha-Pinto et al. 2000; Hernández, Valls-Gabaud & Gilmore 2000). The oldest stars
have ages of 8 ( 1 � 5 Gyr (e.g. Leggett, Ruiz & Bergeron 1998). Most of the stars in the Sun’s
vicinity have Solar metallicities, with [Fe � H] -/. 0 � 2 dex (Edvardsson et al. 1993).

The thick disk

The thick disk has a larger vertical scale length, of � 1 . 1 � 5 kpc, a vertical velocity dispersion of
45 km s � 1, a typical stellar metal abundance of 1 � 4 of the Solar metallicity, and a mean asymmet-
ric drift (i.e. the lag with respect to the thin disk) of 30 . 50 km s � 1 (Gilmore, Wyse & Kuijken
1989). Being older (it is about 12 Gyr old) and more metal-poor than the thin disk, the thick disk
must contain useful information on the early stages of the evolution of the Galaxy. Possible
formation mechanisms for the thick disk include (cf Majewski 1993 for a good discussion):

– A slow, pressure-supported collapse phase after the formation of the stellar halo;
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– The dynamical heating of the early thin disk by satellite accretion (e.g. Quinn, Hernquist
& Fullagar 1993);

– A mixture of satellite debris and a heated early thin disk (Wyse 2000);
– Stochastic heating from a rapid increase in the star formation rate due to enhanced cooling

(of halo gas) once the metallicity reached . 1 dex (Wyse & Gilmore 1988).

The bulge

The bulge has about 1/3 of the mass of the disk, and there is considerable evidence that it
contains a bar, though its precise orientation and structure are still somewhat uncertain (Bin-
ney, Gerhard & Spergel 1997). The bulge is a component which remains a bit of a “mystery”,
since much of what we know is based on the properties of stars in Baade’s window, a small
area in the sky which is almost free of obscuring dust. Nevertheless, considerable progress on
the determination of its structural properties has been achieved through observations in the in-
frared, in particular with IRAS, COBE and ISO observations. The bulge abundance distribution
is rather broad, with a mean of [Fe � H] � . 0 � 25, and a spread that goes from . 1 � 25 to 0 0 � 5 dex
(McWilliam & Rich 1994, but see also Minniti et al. 1995). There is no general agreement on
the age and the spread in ages for bulge stars; and while most determinations agree than the
bulge ought to be older than 5 . 8 Gyr, it is yet unclear whether it might be as old as 15 Gyr
(cf Gilmore, Wyse & Franx 1997). The bulge has a scale height of about 0.4 kpc, a velocity dis-
persion of about 100 km s � 1 in the radial direction, with little indication that the bar plays a
major dynamical role. The bulge may have been formed before the old thin disk in an inside-
out fashion (Larson 1990), through mergers of disks (as proposed in the semi-analytic models
described previously), simultaneously with the disk from the accretion of satellite galaxies, or
after the formation of the disk, due to bar-like instabilities (Norman, Sellwood & Hasan 1995;
see also Wyse & Gilmore 1992; and Bouwens, Cayón & Silk 1999 for interesting discussions of
possible formation mechanisms).

1.2.2 The Galactic halo

The Galactic halo may be thought of as a two-component system. The dark halo, whose ex-
istence may be derived, for example, from the motions of the satellites of the Milky Way (e.g.
Leo I, Zaritsky et al. 1989) or from timing arguments of the binary system M31 – Milky Way
(Kahn & Woltjer 1959; Einasto & Lynden-Bell 1982; Peebles 1995), extends to over 200 kpc and
has a total mass of the order of 1012 M 1 (Zaritsky 1999; Wilkinson & Evans 1999). The stellar
halo is much less important dynamically, but because it contains the most metal-poor stars in
the Galaxy and possibly some of the oldest ones, it provides us with a picture of the Milky Way
in its early stages of evolution. The very metal-poor halo stars are thus fossils, whose chemical
abundance and motions contain information of their sites of origin. As Eggen, Lynden-Bell &
Sandage (1962) nicely put it: “... a study of these subsystems allows us partially to reconstruct
the Galactic past because the time required for stars in the Galactic system to exchange their
energies and momenta is very long compared with the age of the Galaxy. Hence knowledge of
the present energy and momenta of individual objects tells us something of the initial dynamic
conditions under which they were formed”.

Some observational characteristics of halo field stars

The stellar halo has a total luminosity in the range 8 � 108 . 109 L 1 (e.g. Freeman 1995). Its
luminosity profile may be fit with an � � 3 2 5 law (e.g. Kinman, Suntzeff & Kraft 1994), thus being
very centrally concentrated, considerably more than the disk. Its half-light radius lies probably
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around 3 kpc from the Galactic centre. It is difficult to determine whether this steep profile
continues all the way to the Galactic centre, or whether it has a break. It is also unclear whether
the stellar halo is the extension of the bulge (Morrison & Harding 1993; Minniti 1996). It should
be kept in mind, however, that their chemical properties are rather different: the bulge is metal-
rich whereas, as we shall see, the stellar halo is metal-poor.

The stellar halo shows no systemic rotation, with 3�45� 3 ( 21 km s � 1, 36&7� 16 ( 18 km s � 1 and3 � � . 10 ( 12 km s � 1 (Chiba & Yoshii 1998), but there is some evidence that it may have a net
retrograde motion in the outer parts (e.g. Majewski 1992; Carney et al. 1996). The velocity ellip-
soid in the Solar neighbourhood is radially elongated with 3+4�� 115 ( 7 km s � 1, 3689� 161 ( 18
km s � 1, and 3 � � 108 ( 7 km s � 1 (see Figure 1.3). There are some indications that this velocity
ellipsoid becomes tangentially elongated farther away from the Galactic centre. This duality
(radial vs tangential anisotropy) has been taken as evidence that the inner halo formed dur-
ing a dissipative collapse, whereas the outer halo formed through the accretion and merging
of satellites (e.g. Sommer-Larsen et al. 1997). Over the years, several groups have detected
moving groups in the stellar halo, further indication that accretion and merging have played an
important role in shaping the Galaxy (e.g. Majewski, Munn & Hawley 1994; see also references
in Chapter 2). Some of these detections have not survived further tests nor have they been
confirmed by later work. In general such claims have not been convincingly associated with
accreted satellites, in part due to the lack of detailed theoretical modelling of the characteristics
of satellite debris, which has only become available recently (e.g. Johnston, Hernquist & Bolte
1996; Helmi & White 1999).

The stellar halo contains stars as metal-poor as [Fe � H] � . 3 � 5 dex (Ryan, Norris & Beers
1996), and extends to [Fe � H] � . 1 dex in the metal-rich end (Nissen & Schuster 1997). Its char-
acteristic metallicity range is [Fe � H] : . 1 � 6 dex. Halo stars typically show ; -element enhance-
ment [ ;<� Fe] = 0 0 � 3 dex when compared to the Sun or other thin disk stars. This enhancement
is indicative of metal enrichment by Type II supernovae only, which are the result of the evolu-
tion of very massive stars that explode on rather short timescales, only about 0.5 Gyr after their
formation. On timescales longer than 1 Gyr, supernova Type I explosions will contribute with
iron-peak elements, thereby decreasing [ ;>� Fe] towards Solar values. The chemical properties of
the stellar halo thus imply that star formation occurred on timescales shorter than 1 Gyr, after
which it stopped (Gilmore & Wyse 1998). However, there is also evidence that some metal-rich
halo stars with [Fe � H] � . 1 dex have low ; -values, probably indicating enrichment by Type
Ia SN. These stars have been interpreted as having been accreted from dwarf galaxies (for an
alternative explanation see Gilmore & Wyse, 1998). Another important property of the halo is
the absence of a metallicity gradient in the halo field population.

Halo stars are amongst the oldest stars in the Galaxy (VandenBerg 1999). It is also interesting
to note here that there have been detections of a few metal-rich A stars in the halo (Rodgers,
Harding & Sadler 1981), and some metal-poor A and F main sequence stars with halo kinematics
(Preston, Beers & Schectman 1994). These stars, being of intermediate age, may have originated
from a satellite galaxy that was accreted in the past 10 Gyr.

Globular clusters

The globular clusters of the Milky Way are amongst the oldest objects in the Universe. They
have metallicities in the range . 2 � 4 ? [Fe � H] ? 0 � 2, absolute magnitudes . 10 ? �A@ ? . 3, and
Galactocentric distances that range from 1 kpc up to 100 kpc. Their radial density distribution
follows an � � 3 2 5 profile, as do halo field stars, all the way from 3 kpc to 100 kpc (Zinn 1985).

The metallicity distribution appears to be bimodal, with peaks located around [Fe � H] �. 1 � 6 and [Fe � H] � . 0 � 6 dex (Zinn & West 1984; see however Sarajedini 1999). The metal-



8 CHAPTER 1. Introduction and outline

FIGURE 1.3— The left panel shows the kinematics of a sample of metal-poor red giants (filled symbols) and RR
Lyrae (open symbols) in the Solar neighbourhood, with proper motions measured by the HIPPARCOS satellite.
Circles denote stars with small relative errors in the proper motion, while triangles correspond to stars with large
errors. In the right panel the rotational properties vs [Fe B H] for the same sample are shown. The transition from the
halo (low metallicities, zero mean rotational velocity) to the disk is very evident in the two top panels. Noticeable as
well in the bottom panel is the transition from pressure supported to rotationally supported kinematics which takes
place at a metallicity [Fe B H] CED 1 dex. (From Chiba & Yoshii 1998.)

poor population is distributed in a roughly spherical halo around the Galactic centre with high
velocity dispersion and no rotation. The metal-rich population appears to be in a flattened
disk-like distribution with significant rotation, and may be associated with the thick disk or the
bulge, instead of the stellar halo (Zinn 1985).

Whereas there is a general consensus that the globular clusters are very old objects, an in-
teresting issue is whether there is an age range among them, or equivalently, what was their
formation timescale. Other relevant questions are whether there is a correlation between age
and metallicity, and what is the relation between age and Galactocentric distance (cf Stetson,
VandenBerg & Bolte 1996; Sarajedini, Chaboyer & Demarque 1997). There are some indications
that there is indeed an age range of about 2 Gyr among all globular clusters (Sarajedini 1999).
The range is practically zero for the metal-poor population, and seems to increase as the metal
abundance increases (VandenBerg, Bolte & Stetson 1990; Salaris & Weiss 1997; Saviane, Rosen-
berg & Piotto 1999). No correlations of age and Galactocentric distance have yet been found.

Key observables and formation scenarios

The difficulty in deriving a formation scenario for the Milky Way does not lie in the lack of
observational data, as is the case for the majority of the galactic systems in the Universe, but on
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the contrary, in the large amounts of detailed data that are available. Trying to put it all together
may seem an impossible task if we attempt to use everything we know about our Galaxy! It is
thus useful to define a list of key observables to start sketching possible formation scenarios for
our Galaxy. Following Majewski (1993) we define the following set:

1. The Galactic halo and thick disk appear to be coeval and old.

2. The globular clusters formed over a few Gyr.

3. The old thin disk is discrete in age from the thick disk and halo, and several Gyr younger.

4. The halo lacks a metallicity gradient.

5. The thick disk may have a mild metallicity gradient (0 to . 0 � 1 dex kpc � 1), and a large
metallicity spread, reaching [Fe � H] ? . 1 � 6.

6. There is circumstantial evidence suggesting that at least part of the halo has been accreted.

In the early sixties, the first model for the formation of our Galaxy was put together by
Eggen, Lynden-Bell & Sandage (1962, hereafter ELS), who analysed the kinematics and abun-
dances of dwarf stars in the Solar neighbourhood. They found that “correlations exist between
the chemical composition of the individual stars, the eccentricity of their orbits, their angular
momenta, and the height they reach above the Galactic plane. These correlations are interpreted
by a sequence of events staring with the protogalaxy condensing out of a pregalactic medium,
collapsing toward the fundamental plane, and shrinking in diameter until the present equi-
librium state is reached where the gravitational attraction is just balanced by the centrifugal
acceleration”. The timescale they proposed was a few times 108 years, and they also concluded
that “the Galaxy had not settled down ... at the time of its first star formation but was in its
initial gravitational contraction from a larger protogalaxy”.

It is unclear whether the ELS original picture implied a metallicity gradient in the stellar
halo, because the proposed collapse timescale would be too short for this to happen. The a
posteriori discovered age spread in the globular cluster population led to the idea that either ( F )
the ELS collapse lasted about 1 Gyr (Sandage & Fouts 1987); or ( FGF ) the ELS scenario was not
correct. But if ( F ) were true, then one would expect a metallicity gradient, because this timescale
is longer than that required for SN Type II enrichment, and such a metallicity gradient has not
been observed as already mentioned. Moreover, even though ELS do not discuss whether the
collapse was homogeneous, the “protogalaxy condensing out of a pregalactic medium” seems
to imply that any type of substructure (if not erased during the very short timescale of the
collapse), would have been on the scales of molecular clouds or star forming regions, and thus
inconsistent with the observational evidence of moving groups in the outer halo.

The age spread amongst globular clusters and the absence of a metallicity gradient in their
distribution, led Searle & Zinn (1978, hereafter SZ) to “think of the process of halo formation
as the merging of a number of distinct subsystems. Such subsystems, which we shall call frag-
ments, may perhaps be thought of as having the character of small gas-rich irregular galaxies”.
Support for this picture comes also from the outer halo moving groups, although this may only
be circumstantial, as it is difficult to link such groups to disrupted “fragments”. The smooth
kinematic distribution of halo stars in the inner Galaxy was taken as evidence that the SZ pic-
ture was, at most, correct in the outer Milky Way, and many would agree that the Galaxy is the
result of an ELS collapse + later SZ accretion (e.g. Norris 1994; but see new evidence of moving
groups also in the Solar neighbourhood by Helmi et al. 1999).
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In parallel to the development of models for the formation of the Milky Way in the late sev-
enties and early eighties, cosmologists were starting to put together the hierarchical paradigm
described in the beginning of this chapter. In the past few years both ends of the galaxy forma-
tion research community have come together, and we may now be able to envisage a scenario
of the formation of our Galaxy in its proper cosmological framework.

We will start our journey of unraveling the formation history of the Milky Way in this cos-
mological context by focusing on its stellar halo, since, as we already stated, this contains most
metal-poor and possibly oldest stars in the Galaxy. In the context of hierarchical structure for-
mation, the stars of the structures that assembled to form the Milky Way should now make up
much or all of the Galactic bulge and halo. Galaxies that merged to form our Milky Way would
have left trails of stars along their orbits, so that an ensemble of such would give rise to the
spheroidal components we observe today.

1.3 Outline of this thesis

The goal of the work presented in Chapter 2 is to assess whether a merger origin for the stel-
lar halo would leave observable fossil structure in the phase-space distribution of nearby stars.
With this in mind, we perform numerical simulations of satellite galaxy disruption in a potential
resembling that of the Milky Way. We find that after 10 Gyr of evolution few obvious asymme-
tries remain in the distribution of particles in configuration space, but that strong correlations
are still present in velocity space. Based on a linearised treatment in action-angle variables, we
develop a simple analytic description of these effects which shows how the kinematic and den-
sity structure of debris streams changes with time. By applying this description we find that a
single dwarf elliptical-like satellite of current luminosity 108 L 1 disrupted 10 Gyr ago from an
orbit circulating in the inner halo, would contribute about � 30 streams with internal velocity
dispersions below 5 km s � 1 to the local stellar halo. If the whole stellar halo were built by such
disrupted satellites, it should consist locally of 300 . 500 such streams. Clear detection of all
these structures would require a sample of a few thousand stars with 3-D velocities accurate
to better than 5 km s � 1. Even with velocity errors several times worse than this, the expected
clumpiness should be quite evident.

Thus, if hierarchical models are correct, we may infer that the stars of the structures that
assembled to form the Milky Way, should be visible as “fossil” streams. However direct evidence
that the bulk of the Milky Way’s population of old stars was built up from mergers has so far
been lacking. In Chapter 3 we use kinematic data from the HIPPARCOS satellite to demonstrate
that about ten per cent of the metal-poor stellar halo outside the Solar radius comes from a
single coherent object which was disrupted during or soon after the Milky Way’s formation.
This object had a highly inclined orbit with an apogalacticon of about 16 kpc, and probably
resembled the Fornax and Sagittarius dwarf spheroidal galaxies.

In Chapter 4 we investigate what the next generation of astrometric satellites will reveal by
observing the halo of the Milky Way, under the assumption that this was built exclusively from
disrupted galaxies. Starting from numerical simulations of the infall of satellite galaxies onto a
fixed potential, we generate artificial DIVA, FAME and GAIA halo catalogues, in which we look
for the signatures left by the accreted satellites. We find that a method based on the standard
Friends-of-Friends algorithm applied to the space of integrals of motion can recover about 50%
of the different accretion events, when the observational uncertainties expected for GAIA are
taken into account, and even when the exact form of the Galactic potential is unknown. The
recovery rate for DIVA and FAME is much smaller, but these missions, like GAIA, should be
able to test the hierarchical formation paradigm on our Galaxy by measuring the amount of
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halo substructure in the form of nearby kinematically cold streams with for example, a two-
point correlation function in velocity space.

Accretion and merging are still continuing in our Galaxy, as evidenced by the Sagittarius
dwarf galaxy (Ibata, Gilmore & Irwin 1994), which is currently being torn apart by the Milky
Way. With the aim of understanding the survival and characteristics of Sagittarius, we per-
formed N-body simulations of the progressive disruption of a satellite galaxy orbiting for 12.5
Gyr within a realistic Galactic potential. In Chapter 5 we present two simple dynamical models
for Sagittarius, both having observable properties similar to those of current outlying dwarfs;
in one case it is purely stellar while in the other it is embedded in an extended massive halo.
We find that a possible progenitor of Sagittarius could be a satellite with a core radius of 0.56
kpc and a total stellar velocity dispersion of about 18 km s � 1. Both these models are consistent
with all published data on the current Sagittarius system: they match not only the observed
properties of the main body of Sagittarius, but also those reported for unbound debris at larger
distances. At present, the data available can only weakly constrain the total initial extent either
of the light or of the mass. Further work on the debris streams of Sagittarius is needed to con-
strain better its initial total luminosity, and to distinguish between purely stellar or dark matter
dominated progenitors. Sagittarius will most likely have disappeared in the next pericentric
passage: Its stars will have spread out in the Galaxy and become part of the Galactic halo, much
like, as the accumulated evidence seems to indicate, has happened to many other systems in
the past.

Our first attempt to determine whether the merging history of the Milky Way may be im-
printed in the phase-space structure of its stellar halo (Chapter 2) was worked out under the
assumption of a fixed Galactic potential, onto which small galaxies fall in. Clearly, this assump-
tion is not correct for the hierarchical build up of structure, which is ultimately the scenario that
we want to test here. In the fully hierarchical regime, the concept of a background galaxy is
meaningless, in the case of a spiral galaxy probably until $9� 2 . 3. Moreover, the potential may
be varying very violently, with large numbers of clumps orbiting the centre of what will become
a virialised halo. Thus one of the goals of Chapter 6 is to determine to what extent our previous
analysis may have been correct (or not), and also understand why this may be the case. We
tackle these issues by analysing a high-resolution simulation of the formation of a cluster in a
ΛCDM cosmology (Springel et al. 2000). As in Chapter 2, we measure how much phase-space
substructure is left over from the halos that merged to build up the cluster we observe at the
present day. We study debris streams originating in such halos and find that their evolution
can be explained simply in terms of the conservation of phase-space density. We also find that
the properties of these streams are consistent with having a phase-mixing origin. This result
suggests that the merging process is not fully chaotic, and even though the coarse-grained dis-
tribution function may be the same for all halos, as the universality of the Navarro, Frenk &
White (1996) profile seems to imply, the memory of their history is still preserved in the fine-
grained distribution function, even after a Hubble time. By scaling the cluster to a galactic size
halo, we find that the dark matter velocity ellipsoid in the equivalent of the “Solar vicinity” is
formed by roughly a thousand streams, with internal velocity dispersions less than a few tens
of km s � 1. These results indicate that current and future experiments designed to determine the
properties of dark matter particles in our immediate neighbourhood need not take into account
the “graininess” of the velocity distribution. It is unlikely that the statistics would be domi-
nated by the presence of just one stream of particles. By appropriately scaling the number of
dark streams to derive the number of star streams, we find that the stellar velocity ellipsoid in
the Solar neighbourhood should consist of roughly five hundred streams, thus confirming our
earlier analytic estimates.
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1.4 A possible scenario for the formation of our Galaxy

The hierarchical paradigm for the formation of structure in the Universe is quite different con-
ceptually from either the ELS or the SZ models, even though all of these aim at reproducing, for
example, the observational characteristics of the Milky Way, and they do so, at least to some ex-
tent, quite successfully. It is remarkable that the pioneering simple model set forward by Eggen,
Lynden-Bell & Sandage has survived almost forty years, without being completely ruled out.
The main difference between the ELS and the hierarchical models lies in the monolithic forma-
tion against a gradual assembly from smaller systems. The hierarchical scenario is also quite
different from the proposed SZ model. A large galaxy like the Milky Way does not come about
from the merging of a thousand or more small fragments of 108 M 1 as in SZ case, but more
likely from no more than ten to twenty quite large systems each having their own identity.

The combination of semi-analytic modelling of galaxy assembly with high-resolution simu-
lations of the formation of a cluster scaled down to a galactic size halo (the same as that used in
Chapter 6), shows that the oldest stars in the Milky Way should lie in the central bulge, which is
expected to be metal-rich (Springel et al. 2000), as illustrated in the bottom left panel in Figure
1.4. This result is closely linked to the build up of structure in hierarchical models.

The earliest stars formed in the first collapsed halos at $7� 20 should clearly be metal-
poor. The gas in these small halos should have been easily expelled in winds – because of
the shallow potential wells – and so star formation halted. Thus, on average stars formed more
quickly in the more massive halos that collapsed slightly later than in the small ones (Miralda-
Escudé 2000). The interstellar medium of these comparatively large halos should then have
been rapidly enriched (Cen & Ostriker 1999). In most small halos, in turn, the gas may have not
been able to cool until fairly low redshift because of the UV reionising background produced
by quasars. Thus small systems may have kept their original (almost) metal-free gas and may
form stars of extremely low metallicity even at the present day (an example of which is the
Milky Way satellite galaxy Leo I, e.g. Gallart et al. 1999).

In a merger large systems decay by dynamical friction against their mutual halos. The stars
already present thus end up in the very centre of the newly formed galaxy, which therefore will
generally be metal-rich. While such galaxies are still falling against each other, some of their
stars are released. These stars should have less tight orbits, and thus may contribute to a stellar
halo. On the other hand, some fraction of halo stars will come from smaller objects which
did not directly sink towards the centre, and were in general more metal-poor. A metallicity
gradient in the ELS sense would not be expected in the hierarchical formation of a galaxy like
the Milky Way. Age and metallicity are not necessarily correlated for the bulk of the stellar
population.

During these mergers a globular cluster population may be formed. Because of the fairly
high redshift in which these mergers take place – somewhere between $H� 5 and $H� 3 for a
spiral galaxy like our own, i.e. 12.6 and 11.6 Gyr ago, respectively, in a ΛCDM cosmology – each
system will have a large (cold and hot) gas content, but which is already polluted by the first
population of stars. The more metal-rich and slightly younger component of the globular cluster
system of the Milky Way could well have formed in such mergers (e.g. Ashman & Zepf 1992).
This system should be rapidly rotating, reflecting the total orbital angular momentum of the
merged galaxies, a “prediction” consistent with the observational data. The rest of the globular
clusters of the Milky Way may have come with smaller galaxies that merged at different times
(Côté et al. 2000), and so be associated with the stellar halo rather than with the bulge. Their
distribution would then reflect the orbits of their parent galaxies, and thus naturally be more
extended. No signature of a net rotation would be expected and the velocity dispersion of the
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FIGURE 1.4— Projections of the galaxy distribution in a cube of comoving side 1 , 4 IKJ 1 Mpc around a “Milky Way”
halo from a high-resolution simulation of a cluster combined with semi-analytic modelling of galaxy formation.
The upper right image is at L5* 6 , 9 (which should be shifted to L C 10 because of the later assembly of a cluster
halo). At this redshift 1% of the final stars have formed. Note that the initial distribution of these “first” stars
is very inhomogeneous, in a handful of progenitor galaxies (here the symbol area is proportional to stellar mass).
The other three panels correspond to LM* 0. The top left panel shows the present-day stellar distribution, which
is dominated by the disk where 80% of all stars in the “Milky Way” reside. The 1% “first” stars are even more
centrally concentrated as shown in the lower left panel. Finally, the lower right panel corresponds to the 1% “lowest
metallicity” stars. In these bottom panels symbol size is proportional to the mass of the relevant stellar population.
(From White & Springel, 2000.)

whole system should be quite large, as indeed seems to be the case (e.g. Dinescu, Girard & van
Altena 1999).

The 1-Gyr timescale quoted for the formation of the whole Galactic stellar halo based on
the chemical enrichment by Type I supernovae, can also be explained in this context. The first
galaxies from which the Milky Way was assembled did only have a small amount of time to
retain their identity (very likely no more than 1 Gyr, i.e. until $N� 7), after which they were
strongly affected by the tidal forces of the rest of the clumps orbiting what would become a viri-
alised halo. Thus star formation in such systems probably stopped quite quickly, and almost
immediately after these systems coalesced and contributed to the stellar population in the halo
with old stars. These stars would then be both metal-poor and show an ; -element enhancement
as observed. Note for example, that by $9� 10, White & Springel (2000) find that their simulated
Milky Way had formed 1% of its stars, i.e., of the order of 60% of the stellar halo. Therefore the
kind of argumentation often used against the hierarchical formation of the Milky Way by com-
paring present-day satellite galaxies with the inner Galactic stellar halo is not valid (Unavane,
Wyse & Gilmore 1996). Stars in systems like the Carina dwarf spheroidal were probably formed
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about the same time or may be even much later than the stars that were already in place in the
Galaxy 10 Gyr ago. Clearly, if Carina had fallen in roughly 10 Gyr ago it would have looked
quite different from how it does today!

The stars already present in the systems that merged to build up the Milky Way contributed
both to the bulge and stellar halo, and we should expect to observe these stars to be distributed
in kinematically cold streams, as shown in Chapter 2 of this thesis. The smooth distribution
generally claimed to support the ELS scenario is also expected in hierarchical models, if the
samples are small and the velocity uncertainties are very large, as usually has been the case thus
far. Therefore the properties of the bulge and stellar halo are consistent with the hierarchical
build-up of the Milky Way. Some fraction (or even most) of the Milky Way’s bulge may have
formed through instabilities of the central disk (Norman, Sellwood & Hasan 1996). Such a
mechanism would also enhance the metal-rich character of the bulge against that of the metal-
poor halo.

What about the disk components of the Milky Way? The thick disk appears to be only 1
Gyr younger than the stellar halo, meaning that its stars must have formed only slightly later,
though not necessarily in the same place. A possible scenario for the formation of the disk
components would imagine that, after the formation of a good fraction of the bulge, the (thin
disk) precursor of the thick disk could have been formed by the cooling of some of the hot
gas in the halo (around 12 Gyr ago, i.e. $N� 3 � 5). In the meantime some fraction of the stellar
halo was being accreted through smaller mergers, objects that may have fallen in earlier but,
due to their smaller mass did not sink to the inner regions very quickly. In one of these minor
mergers, an object probably having about 20% of the mass of the (proto)Milky Way, heated up
precursor disk material and gave rise to the thick disk as we know it today. The thick disk,
therefore, should also contain debris from the disrupted satellite. There is some observational
evidence (based on data obtained using the 2-degree-field spectrograph) that this may be the
case, but at this stage this evidence is still weak (Wyse 2000), and detailed modelling is required
to determine the clear signatures, for example in the kinematics, of such a population. The thin
disk formed later, from more gas cooling from the halo, and from material that at this stage had
already been completely polluted by supernovae Type I, which thus explains the dichotomy
between the halo and the disk populations.

1.5 Next steps

It seems from the previous discussion that the best way to test the hierarchical formation our
Galaxy would be by obtaining large samples of halo and bulge stars with good kinematics. This
will be possible in the next years, both with astrometric satellite missions such as FAME and
GAIA (see Chapter 4 for references), and also with large, complete, ground-based samples of
halo stars with good proper motions and radial velocities, some of which are being currently
constructed (e.g. Beers et al. 2000). Detailed estimates of the ages of individual stars may
also be useful, although more difficult to obtain reliably. Element abundances for bulge stars
are required to understand how and on what timescale the central component of the Milky
Way formed. Also important will be further theoretical modelling on subgalactic scales. In
particular a good understanding of star formation and feedback is required to constrain better
any formation scenario for the build up of galactic systems. A more robust phenomenological
description of the behaviour of the baryonic components of small galaxies combined with an
analytic modelling of the phase-space evolution of satellite debris (such as that developed in
Chapter 2) may be useful for understanding the outcome of large surveys like 2dF and the Sloan
Digital Sky Survey. For example, the Sloan commissioning data has shown that a large number
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of the RR Lyrae stars in the outer parts of the halo are distributed in substructures (Ivezic et al.
2000), which can be linked almost entirely to the streams of material stripped off the Sagittarius
dwarf (Ibata et al. 2000). In fact, their positions in the sky and their magnitudes are in fairly good
agreement with the model shown in Chapter 5 of this thesis. Another interesting constraint that
may be derived from these data sets is the number and properties of the satellites that have
merged with the Milky Way to form the outer stellar halo. Their debris should be visible as
coherent structures in the sky, although may not be as obvious as the Sagittarius streams. These
structures would be useful, for example, to determine more accurately the potential of the Milky
Way, and its total extent (e.g. Johnston et al. 1999).

In 1962, Oort wrote that “...the subject of structure and evolution of galaxies is in the un-
satisfactory stage where we have observed many intriguing phenomena, but have no good
theories to explain them...”. Forty years later, we may confidently say that we have made the
first steps towards such an understanding. And the wealth of data that will become available in
the coming ten to fifteen years, and theoretical progress that will surely be made in modelling
the formation of galactic systems, promise a very exciting next decade for cosmology, galaxy
evolution and, in particular, for unraveling the formation history of our Galaxy.
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Côté P., Marzke R.O., West M.J., Minniti D., 2000, ApJ, 533, 869
Dehnen W., Binney J., 1998, MNRAS, 294, 429
Dicke R.H., Peebles P.J.E., Roll P.G., Wilkinson D.T., 1965, ApJ, 142, L415
Dinescu D. I., Girard T.M., van Altena W.F., 1999, AJ, 117, 1972
Edvardsson B., Andersen J., Gustafsson B., Lambert D.L., Nissen P.E., Tomkin J., 1993, A&A,

275, 101
Eggen O.J., Lynden-Bell D., Sandage A.R., 1962, ApJ, 136, 748 (ELS)
Einasto J., Lynden-Bell D., 1982, MNRAS, 199, 67
Freeman K.C., 1995, in “New light on galaxy evolution”, Proc. IAU Symp. 171, eds. Bender R.

& Davies R.L., Kluwer (The Netherlands), p. 3
Gallart C., Freedman W.L., Aparicio A., Bertelli G., Chiosi C., 1999, AJ, 118, 2245
Ghigna S., Moore B., Governato F., Lake G., Quinn T., Stadel J., 1998, MNRAS, 300, 146
Gilmore G., Wyse R.F.G., Kuijken K., 1989, ARA&A, 27, 555
Gilmore G., 1993, in “The Minnesota lectures on the structure and dynamics of the Milky Way”,

ed. Humphreys R., ASP Conf. Series 39, p. 66
Gilmore G., Wyse R.F.G., Franx M., 1997, ARA&A, 35, 637
Gilmore G., Wyse R.F.G., 1998, AJ, 116, 748



16 CHAPTER 1. Introduction and outline

Guth A.H., 1981, Phys. Rev. D, 23, 347
Helmi A., White S.D.M, 1999, MNRAS, 307, 495 (Chapter 2)
Helmi A., White S.D.M, de Zeeuw P.T., Zhao H.S., 1999, Nature, 402, 53 (Chapter 3)
Hernández X., Valls-Gabaud D., Gilmore G., 2000, MNRAS, in press (astro-ph/0003113)
Ibata R., Gilmore G., Irwin M., 1994, Nature, 370, 194
Ibata R., Irwin M., Lewis G., Stolte A., 2000, submitted to ApJL (astro-ph/0004255)
Ivezic Z., Goldston J., Finlator K., et al. (for the SDSS), 2000, submitted to AJ (astro-ph/0004130)
Johnston K.V., Hernquist L., Bolte M., 1996, ApJ, 465, 278
Johnston K.V., Zhao H.S., Spergel D.N., Hernquist L., 1999, ApJ, 512, L109
Kahn F.D., Woltjer L., 1959, ApJ, 130, 705
Kauffmann G., White S.D.M, Guiderdoni B., 1993, MNRAS, 264, 201
Kauffmann G., Colberg J.M., Diaferio A., White S.D.M., 1999, MNRAS, 303, 188
Kennicutt R.C., 1989, ApJ, 344, 685
Kinman T.D., Suntzeff N.B., Kraft R.P., 1994, AJ, 108, 1722
Klypin A., Kravtsov A., Valenzuela O., Prada F., 1999, ApJ, 522, 82
Lacey C., Cole S., 1993, MNRAS, 262, 627
Larson R.B., 1990, PASP, 102, 790
Leggett S.K., Ruiz M.T., Bergeron P., 1998, ApJ, 497, 294
Linde A., 1982, Phys. Lett. B, 108, 389
Majewski S.R., 1992, ApJS, 78, 87
Majewski S.R., 1993, ARA&A, 31, 575
Majewski S.R., Munn J.A., Hawley S.L., 1994, ApJ, 427, L37
McWilliam A., Rich R.M., 1994, ApJS, 91, 749
Minniti D., Olszewski E., Liebert J., White S.D.M., Irwin M., 1995, MNRAS, 277, 1293
Minniti D., 1996, in “Formation of the Galactic Halo...Inside and Out”, eds. Morrison H. &

Sarajedini A., ASP Conf. Series 92, p. 92
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Chapter 2

Building up the stellar halo of the Galaxy O

Physics is simple only when analysed locally.
C. Misner, K. Thorne & J. A. Wheeler: “Gravitation”

ABSTRACT

We study numerical simulations of satellite galaxy disruption in a potential re-
sembling that of the Milky Way. Our goal is to assess whether a merger origin
for the stellar halo would leave observable fossil structure in the phase-space
distribution of nearby stars. We show how mixing of disrupted satellites can
be quantified using a coarse-grained entropy. Although after 10 Gyr few obvi-
ous asymmetries remain in the distribution of particles in configuration space,
strong correlations are still present in velocity space. We give a simple ana-
lytic description of these effects, based on a linearised treatment in action-angle
variables, which shows how the kinematic and density structure of the debris
stream changes with time. By applying this description we find that a single
dwarf elliptical-like satellite of current luminosity 108 L 1 disrupted 10 Gyr ago
from an orbit circulating in the inner halo (mean apocentre � 12 kpc) would
contribute about � 30 kinematically cold streams with internal velocity disper-
sions below 5 km s � 1 to the local stellar halo. If the whole stellar halo were
built by such disrupted satellites, it should consist locally of 300 . 500 such
streams. Clear detection of all these structures would require a sample of a few
thousand stars with 3-D velocities accurate to better than 5 km s � 1. Even with
velocity errors several times worse than this, the expected clumpiness should
be quite evident. We apply our formalism to a group of stars detected near the
North Galactic Pole, and derive an order of magnitude estimate for the initial
properties of the progenitor system.

P
Based on: Amina Helmi and Simon D.M. White, MNRAS, 307, 495 (1999)
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2.1 Introduction

There have been two different traditional views on the formation history of the Milky Way. The
first model was introduced by Eggen, Lynden-Bell & Sandage (1962) to explain the kinematics
of metal poor halo field stars in the Solar neighbourhood. According to their view the Galaxy
formed in a monolithic way, by the free fall collapse of a relatively uniform, star-forming cloud.
After the system became rotationally supported, further star formation took place in a metal-
enriched disk, thereby producing a correlation between kinematics and metallicity: the well-
known disk–halo transition. In later studies Searle & Zinn (1978) noted the lack of an abundance
gradient and a substantial spread in ages in the outer halo globular cluster system. This led
them to propose an alternative picture in which our Galaxy’s stellar halo formed in a more
chaotic way through merging of several protogalactic clouds. (See Freeman 1987 for a complete
review).

This second model resembles more closely the view of the current cosmological theories of
structure formation in the Universe. These theories postulate that structure grows through the
amplification by the gravitational forces of initially small density fluctuations (Peebles 1970;
White 1976; Peebles 1980, 1993). In all currently popular versions small objects are the first to
collapse; they then merge forming progressively larger systems giving rise to the complex struc-
ture of galaxies and galaxy clusters we observe today. This hierarchical scenario is currently the
only well-studied model which places galaxy formation in its proper cosmological context (see
White 1996 for a comprehensive review). Numerical simulations of large-scale structure for-
mation show a remarkable similarity to observational surveys (e.g. Jenkins et al. 1997, and
references therein; and Efstathiou 1996 for a review). For galaxy formation, the combination of
numerical and semi-analytic modelling has proved to be very powerful, despite the necessar-
ily schematic representation of a number of processes affecting the formation of a galaxy (Katz
1992; Kauffmann, White & Guiderdoni 1993; Cole et al. 1994; Navarro & White 1994; Steinmetz
& Muller 1995; Kauffmann 1996; Mo, Mao & White 1998; Somerville & Primack 1999; Stein-
metz & Navarro 1999). This general framework, where structure forms bottom-up, provides
the background for our work.

We are motivated, however, not only by this theoretical modelling, but also by the increas-
ing number of observations which suggest substructure in the halo of the Galaxy (Eggen 1965;
Rodgers, Harding & Sadler 1981; Rodgers & Paltoglou 1984; Ratnatunga & Freeman 1985;
Sommer-Larsen & Christensen 1987; Doinidis & Beers 1989; Arnold & Gilmore 1992; Preston,
Beers & Shectman 1994; Majewski, Munn & Hawley 1994, 1996). Detections of lumpiness in the
velocity distribution of halo stars are becoming increasingly convincing, and the recent discov-
ery of the Sagittarius dwarf satellite galaxy (Ibata, Gilmore & Irwin 1994) is a dramatic confir-
mation that accretion and merging continue to affect the Galaxy.

There have been a number of recent studies of the accretion and disruption of satellite galax-
ies (Quinn, Hernquist & Fullagar 1993; Oh, Lin & Aarseth 1995; Johnston, Spergel & Hernquist
1995; Velázquez & White 1995, 1999; Sellwood, Nelson & Tremaine 1998). Much of this work
has been limited to objects which remain mostly in the outer parts of the Galaxy, which may be
well represented by a spherical potential plus a small perturbation due to the disk (Johnston,
Hernquist & Bolte 1996; Kroupa 1997; Klessen & Kroupa 1998). In this situation simple analytic
descriptions of the disruption process, of the properties of the debris, etc. are possible (John-
ston 1998). However, it is questionable whether such descriptions can be applied to most of
the regions probed by past or current surveys of the halo, which are quite local: in this case the
influence of the disk cannot be disregarded or treated as a small perturbation.

Since formation models for the Galaxy should address the broader cosmological setting, we
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are naturally led to ask what should be the signatures of the different accretion events that our
Galaxy may have suffered through its lifetime. Should this merging history be observable in
star counts, kinematic or abundance surveys of the Galaxy? How prominent should such sub-
structures be? How long do they survive, or equivalently, how well-mixed today are the stars
which made up these progenitors? What can we say about the properties of the accreted satel-
lites from observations of the present stellar distribution? Our own Galaxy has a very important
role in constraining galaxy formation models, because we have access to 6-D information which
is available for no other system. Observable structure which could strongly constrain the his-
tory of the formation of galaxies is just at hand.

In this chapter we will try to answer some of the questions just posed. We focus on the
growth of the stellar halo of the Galaxy by disruption of satellite galaxies. We have run numer-
ical simulations of this process, and have studied the properties of the debris after many orbits,
long after the disruption has taken place. We analyse how the debris phase-mixes by following
the growth of its entropy and the variations of the volume it fills in coordinate space. We also
study the evolution of its kinematical properties. In order to model the characteristic properties
of the disrupted system, such as its size, density and velocity dispersion, we develop a simple
analytic prescription based on a linearised Lagrangian treatment of its evolution in action-angle
variables. We apply our results to derive the observable properties of an accreted halo in the
Solar neighbourhood. We also analyse the clump of halo stars detected near the North Galactic
Pole (NGP) by Majewski et al. (1994), and obtain an order of magnitude estimate for the initial
properties of the progenitor system.

This chapter is organized as follows. Section 2.2 presents our numerical simulations. In
Section 2.3 we analyse the characteristics of the debris in these models, and in Section 2.4 we
develop an analytic formalism to understand their properties. We apply this formalism to de-
scribe the characteristics of an accreted halo in this same section. In Section 2.5 we compare
our modelling with the observations of Majewski et al. (1994). We leave for the last section the
discussion of the results, their validity, and the potential of our approach for understanding the
formation of our Galaxy.

2.2 The simulations

To study the disruption of a satellite galaxy of the Milky Way, we carry out N-body simulations
in which the Galaxy is represented by a fixed, rigid potential and the satellite by a collection
of particles. The self-gravity of the satellite is modelled by a monopole term as in White (1983)
and Zaritsky & White (1988).

2.2.1 Model

The Galactic potential is represented by two components: a disk described by a Miyamoto–
Nagai (1975) potential,

Φdisk � . ���
diskQ R

2 0 ( ST0VU $ 2 0VW 2)2 X (2.1)

where
�

disk � 1011 M 1 , S�� 6 � 5 kpc, WY� 0 � 26 kpc, and a dark halo with a logarithmic potential,

Φhalo �Z3 2
halo ln( � 2 0A[ 2) X (2.2)

with [�� 12 kpc and 3 halo � 131 � 5 km s � 1. This choice of the parameters gives a circular velocity
at the Solar radius of 210 km s � 1, and of 200 km s � 1 at � 100 kpc.
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TABLE 2.1— Orbital parameters for the different experiments of our six principal simulations.
Experiment pericentre apocentre $ max period

(kpc) (kpc) (kpc) (Gyr)
1 10.9 51.5 25.0 0.69
2 13.5 93.1 69.1 1.23
3 5.0 51.5 5.1 0.64
4 9.2 96.5 12.0 1.24
5 0.5 45.5 30.1 0.56
6 6.0 37.0 24.8 0.48

We have taken two different initial phase-space density distributions for our satellites: F )
two spherically symmetric Gaussian distributions in configuration and velocity space of 1 kpc
(5 kpc) width and 5 . 25 km s � 1 (20 km s � 1) velocity dispersion, corresponding to masses of� 5 � 9 � 107 . 1 � 5 � 109 M 1 (4 � 7 � 109 M 1 ); and FGF ) a Plummer profile (1911)� ( � ) � �

0

( � 2 0\� 2
0)5 ] 2 X (2.3)

with � 0 � 3
� � 4 ^_� 3

0,
�

being the initial mass of the satellite and � 0 its scale length. In this second
case, the distribution of initial velocities is generated in a self-consistent way with the density
profile. For the characteristic parameters we chose

� � 107 . 109 M 1 and � 0 � 0 � 53 . 3 � 0 kpc,
giving a one-dimensional internal velocity dispersion ` 1 a � 2 � 9 . 11 � 3 km s � 1.

The force on particle F due to the self-gravity of the satellite is represented byb
( c_d ) � . ���

in

( � 2d 0Ae 2)3 ] 2 f d X (2.4)

where
�

in is the mass of the satellite inside �6d'�hg cid . c>�jg , c>� being the position of the expansion
centre defined by a test particle with the same orbital properties as those of the satellite. The
value for the softening e is 0 � 25 � 0. The approximation for the self-gravity of the satellite may not
be very accurate during the disruption process, where tidal forces are strong and elongations
in the bound parts of the satellite are expected. However, because we are interested in what
happens after many perigalactic passages, well after the satellite has been tidally destroyed,
our conclusions on the whole process are unaffected by details of the disruption process.

In total we ran sixteen different simulations, six of which we analyse and describe in full
detail in Section 2.3. Some of the remaining simulations are used in Section 2.4 for comparison
with the analytic predictions and the rest are briefly mentioned in the discussion. The charac-
teristic properties of our six principal simulations are summarised in Table 2.1. They differ only
in their orbital parameters and all initially have a Plummer profile and a mass of 107 M 1 . We
have imposed the restriction that the orbits pass close to the Solar circle in order to be able to
compare the results of the experiments with the known properties of the local stellar halo. In all
cases the satellite was represented by 105 particles of equal mass.

In Figure 2.1 we show projections of orbits 1–6 in three orthogonal planes, where XY always
coincides with the plane of the Galaxy. Notice that the plane of motion of a test particle on these
orbits changes orientation substantially showing that the non-sphericity induced by the disk
significantly affects the motion of the satellite.

While orbiting the Galaxy, the satellite loses all of its mass. As expected, the most dramatic
effects take place during pericentric passages. The satellites do not survive very long, being



2.2. The simulations 23

FIGURE 2.1— Projections of the orbits of our six principal simulations on different orthogonal planes, where XY
coincides with the plane of the Galaxy. All distances are in kpc.
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FIGURE 2.2— Evolution of the entropy of the system for the different experiments, as a function of time in (a), and
scaled with the mixing timescale in (b). The dispersion in the scaled entropy is of the order of 0.06.

disrupted completely after 3 passages. This means that for our experiments, for any relatively
low density satellite on an orbit which plunges deeply into the Galaxy with a period of 1 Gyr or
less, the disruption itself occupies only a relatively small part of the available evolution time.

2.3 Properties of the debris: Simulations

2.3.1 Entropy as a measure of the phase-mixing

The state of a collisionless system is completely specified by its distribution function k ( c XmlMX ! ).In making actual measurements, it is often more useful to work with the coarse-grained distri-
bution function nGkpo , which is the average of k over small cells in phase-space. An interesting
property of the coarse-grained distribution function is that it can yield information about the
degree of mixing of the system (Tremaine, Hénon & Lynden-Bell 1986; Binney & Tremaine 1987).

In statistical mechanics the entropy is defined asq � .sr [ 3 t [ 3 3�k ( c XGl5X ! ) ln k ( c Xml5X ! ) � (2.5)

Since the coarse-grained distribution function decreases as the system evolves towards a well-
mixed state, an entropy calculated using nmkuo will increase, whereas one calculated using k will
remain constant, a consequence of the collisionless Boltzmann equation: vskp��vH!w� 0. We there-
fore quantify the mixing state of the debris by calculating its coarse-grained entropy as a func-
tion of time. We represent the coarse-grained distribution function by taking a partition in the
6-dimensional phase-space and counting how many particles fall in each 6-D box. Naturally the
size chosen for the partition and the discreteness of the simulations will affect the result. We can
quantify the expected discreteness noise in the following way. The uncertainty in the entropy



2.3. Properties of the debris: Simulations 25

can be attributed to fluctuations in the number counts, which we can estimate as Poissonian,x U 
�d in each occupied cell. Therefore, the uncertainty in the entropy in each cell is

∆
q d'y ∆ 
�d
 z 1 0 ln


�d
|{ y U 
�d
 ln 

for 
~} 1. The total uncertainty is thus

∆
q y ln 
U 
 X (2.6)

which, for experiments with 105 particles is 0 � 04. In order to have a normalized measure of the
mixing properties of the debris, we also computed the entropy of points equidistant in time
along the corresponding orbit. After a very long integration, the orbit will fill the available
region in phase-space, whose shape and size are determined by its integrals of motion. In this
way, by comparing the entropy calculated for the debris with the “entropy of the orbit”, we have
a measure of how well mixed the debris is. We plot this “normalized” entropy in Figure 2.2(a) as
a function of time. Note that the orbits which have the shortest periods show the most advanced
state of mixing, but that this is not complete after a Hubble time.

The degree of mixing basically depends on the range of orbital frequencies in the satellite,
essentially as (∆ � ) � 1 (Merritt 1999). This means, for example, that a small satellite will disperse
much more slowly than a larger one on the same orbit. On the other hand a satellite set close
to a resonance will mix on a much longer time scale. One can also imagine that if there are
fewer isolating integrals than degrees of freedom so that chaos might develop, a satellite located
initially in a chaotic region will have a large spread ∆ � because of the extreme sensitivity to the
initial conditions. Therefore the mixing timescale (no longer a phase-mixing timescale) will be
very short, since the neighbouring orbits diverge exponentially, instead of like power laws.
If indeed the mixing rate is set by the spread in the orbital frequencies � of the satellite, by
normalizing the time variable with this timescale we should be able to derive a unique curve
for the entropy evolution

q � q max k ( !���� mix).
In what follows we shall assume that the behaviour of the system is regular as seems to

be the case for our experiments. Let us recall that any regular motion can be expressed as a
Fourier series in three basic frequencies (Binney & Spergel 1984; Carpintero & Aguilar 1998).
The motion is therefore a linear superposition of waves of the basic frequencies with different
amplitudes. Terms in this expansion which have the largest amplitude will be the dominant
terms and may be used to define three independent (basic) frequencies. By performing a spec-
tral dynamics analysis as outlined by Carpintero & Aguilar (1998) for ten randomly selected
particles in our satellites in each experiment, we compute the frequencies associated with the
largest amplitude terms in the t - (or � , since the problem is axisymmetric) and $ -motions, and
their dispersion around the mean. We then define� � 1

mix �Z��Fm�_��` ( � (1)� ) X ` ( � (2)� ) X ` ( � (1)� ) X ` ( � (2)� ) � X (2.7)

where, for example, ` ( � (1)� ) denotes the dispersion in the frequency corresponding to the largest
amplitude term in expansion describing the t -motion. The curves obtained by scaling time with� mix are shown in Figure 2.2(b) and they can be well fitted with the functionqq

max
� 0 � 78 . 0 � 69 exp( . 27 � 03

!� mix
) � (2.8)

The good fit and small dispersion confirms that mixing is governed primarily by the spread in
frequency.
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FIGURE 2.3— Isodensity surface of 10 J 6 �
0 after 14 Gyr, seen from the Galactic plane (left) and from the Galactic

pole (right), for the different experiments. These surfaces encompass most of the satellite’s mass.

2.3.2 Configuration space properties

To analyse the spatial properties of the debris several Gyr after disruption, we have plotted
smoothed isodensity surfaces and calculated different characteristic densities. In Figure 2.3 we
show the density surface at approximately 10 � 6 times the initial density of the satellite. This
encompasses most of the satellite’s mass.

This density surface practically does not change over the last 2 Gyr for experiments 3, 5, 6,
showing that the system has reached a stage where it fills most of its available 3-D coordinate
space. The shape of this isodensity surface also gives a measure of how advanced the disruption
is. The form of the accessible 3-D configuration volume is basically a torus, defined by the
apocentre, pericentre and the maximum height the orbit reaches above the Galactic plane. In
Figure 2.3 we clearly see that shape for experiment 6. Experiments 3 and 5 are in an intermediate
state and still need to fill part of their tori. In the opposite limit, experiment 2 has filled only
a small fraction of its available volume. All this is consistent with what was found using the
entropy in the previous subsection. The characteristic extent of the debris is much larger than
the initial size of the satellite. Moreover, debris with these properties may well span a very
large solid angle on the sky as shown in Figure 2.4, and so be poorly described as a stream in
coordinate space. This is the principal difference between our own experiments and those in
which the Galaxy is represented by a spherical potential. In the latter the plane of motion of the
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FIGURE 2.4— Sky projection of the debris from a satellite on orbit 6, 14 Gyr after infall.

satellite has a fixed orientation, and therefore all the particles have to remain fairly close to this
plane, naturally giving a stream-like configuration. Late accretion events in the outer halo of the
Galaxy will plausibly have this characteristic, as shown in Johnston et al. (1996) and Johnston
(1998). However, similar behaviour should not be expected in the Solar neighbourhood, or even
as far as 10 . 15 kpc from the Galactic centre since at such radii no strong correlations are left in
the spatial distribution of satellite particles. Any method which attempts to find moving groups
purely by counting stars will probably fail in this regime.

In Table 2.2, we present a summary of characteristic densities at different times which were
calculated by counting particles within spheres of 0 � 5 kpc radii. The maximum density is
achieved at the pericentre of the orbit, though most of the mass is distributed closer to the
apocentre. In all cases the maximum density is between three and four orders of magnitude
lower than the initial density of the satellite, and the mean density of the debris is between
four and five orders of magnitude lower. These values give another estimate of the degree of
mixing of the debris. Note that, in accordance with the entropy computation, experiment 6 has
the smallest characteristic densities, meaning that it has reached a rather evolved state, whereas
experiment 2 has high densities in comparison to the rest. The maximum density in all of the
experiments is roughly comparable (similar or an order of magnitude lower) to the local den-
sity of the Milky Way’s stellar halo, though the sizes of regions where this density is reached
get fairly small, a few kpc3, as the evolution proceeds.

2.3.3 Velocity space properties

Let us now focus on the characteristics of the debris in velocity space. We divided the 3-D coor-
dinate space into boxes and analysed the kinematical properties of the particles inside each box.
Figure 2.5 shows an example. The scatter diagrams indicate that there is a strong correlation
between the different components of the velocity vector inside any given box. Notice also the
large velocity range in each component when close to the Galactic centre. This shows that the
debris can appear kinematically hot. As we shall see this results from a combination of multi-
ple streams within a given box (clearly visible in Figure 2.5) and of strong gradients along each
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TABLE 2.2— Characteristic densities of the debris of our principal experiments at different times.
Experiment time �

mean
�

max
Gyr 102M 1 kpc � 3 102M 1 kpc � 3

1 5.0 67.0 886.2
10.0 14.6 223.5
12.5 7.0 152.8
15.0 6.8 181.4

2 5.0 84.7 857.5
10.0 26.5 376.2
12.5 11.5 202.4
15.0 9.7 288.4

3 5.0 41.5 437.4
10.0 8.9 72.6
12.5 8.7 181.4
15.0 6.9 177.6

4 5.0 40.8 446.9
10.0 5.9 99.3
12.5 5.7 171.9
15.0 5.1 156.6

5 5.0 36.4 996.9
10.0 10.9 210.1
12.5 6.1 183.3
15.0 5.7 213.9

6 5.0 13.8 403.0
10.0 4.3 82.1
12.5 4.3 95.5
15.0 3.4 63.0

stream. At a given point on a particular stream the dispersions are usually very small.

2.4 Properties of the debris: Analytical approach

In this section we will develop an analytic formalism to understand and describe the spatial and
kinematical properties of the stream. Let us recall that because the disruption of the satellite
occurs very early in its history, the stars that were once part of it behave as test particles in a
rigid potential for most of the evolution. One of the distinguishing properties of this ensemble
of particles is that it initially had a very high density in phase-space, and by virtue of Liouville’s
theorem, this is true at all times. At late times, however, this is no longer reflected by a strong
concentration in configuration space. This evolution can be understood in terms of a mapping
from the initial configuration to the final configuration, which we will describe by using the
adiabatic invariants, namely the actions.

2.4.1 Action-Angle variables and Liouville’s theorem

Let "��A" ( � X�� ) be the (time-independent) Hamiltonian of the problem and ( � X�� ) a set of canon-
ical coordinates. We wish to transform the initial set ( � X�� ) to one in which the evolution of the
system is simpler, for example, where all the momenta �<d are constant. To meet this last condi-
tion, it is sufficient to require that the new Hamiltonian be independent of the new coordinates
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FIGURE 2.5— Scatter plots of the different velocity components (in km s J 1) for stars in boxes of C 3 kpc on a side
at different locations in the Galaxy for experiment 6, 14 Gyr after infall. Similar characteristics are observed in all
our experiments.� d : "���" ( � ) �Z� . The equations of motion then become

˙� dp���6d X ˙�_di� 0 X
with solutions � dp� � 0d 0V�6d�! X �_di�Z� 0d �
The generating function that produces this transformation is known as Hamilton’s Characteris-
tic function � ( � X � ), and satisfies the Hamilton–Jacobi partial differential equation:" ( � X�� �� � ) ��� �
The solution to this equation involves 
 constants of integration ; d (including � ) for a system
with 2 
 degrees of freedom. Therefore, the new momenta P may be chosen as functions of these
 constants of integration. A particularly simple situation occurs if the potential is separable
in the original coordinate set ( � X�� ). The characteristic function may then be expressed as ���� d ��d ( ��d X ; 1 ����� ;i� ), and the Hamilton–Jacobi equation breaks up into a system of 
 independent
equations of the form: " d z � d X � ��d� ��d X ; 1 ����� ; � { � ; d X
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each of which involves only one coordinate and the partial derivative of �¡d with respect to that
coordinate. The transformation relations between the original and new sets of variables are¢ d � � �� ��d X � d � � �� �id Xand each component of the characteristic function is given by��d ( ��d X ; 1 ��� ;i� ) � r [+�6£d ¢ d ( �6£d X ; 1 ��� ;_� ) � (2.9)

(For more details, e.g. Goldstein 1953).
The actions and angle variables are a set of coordinates that describe simply the evolution

of a system of particles. They are particularly useful in problems where the motion is periodic.
The actions are functions of the constants ;<d and are defined for a set of coordinates ( � X�� ) as� di� 1

2 ^s¤ [���d ¢ d X (2.10)

and their conjugate coordinates, the angles, are¥ d � � �� � d � (2.11)

The evolution of the dynamical system thus becomes:¥ ds� ¥ 0d 0 Ω d ( ¦ ) ! X� d � � 0d � §j¨©�pª«!�S��'! � (2.12)

The evolution of the distribution function

Let us assume that the initial distribution function of the ensemble of particles is a multivariate
Gaussian in configuration and velocity spacek ( c Xml5X ! 0) � k 0 exp ¬ . 3­ d�® 1

( t d . ¯t 0d )2

2 ` 2� ¯ exp °± . 3­ ² ® 1

( 3 ² . ¯3 0

²
)2

2 ` 2³ ´µ X
which we can also express using matrices ask ( c XmlMX ! 0) �Zk 0 exp ¶ . 1

2 · 0̧�¹ ` 0¸ · 0̧Yº � (2.13)

Here ! 0 denotes the initial time. · 0̧ is a 6-dimensional vector, with three spatial and three
velocity components, and · 0̧ ¹ is obtained by transposing · 0̧ . Explicitly ∆0̧ d � t d . ¯t 0d forF�� 1 ��� 3 and ∆0̧ d �
3 ² . ¯3 0

²
for Fp��»90 3 � 4 ��� 6 in a Cartesian coordinate system. The matrix ` 0¸ is

diagonal with ` 0¸ d¼d � 1 ��` 2� for F<� 1 ��� 3, and ` 0¸ d¼d � 1 ��` 2³ for F_� 4 ��� 6. As we shall see the matrix
formulation is particularly useful to study the evolution of the distribution of particles of the
system.

At the initial time, we perform a coordinate change from Cartesian to action-angle variables.
Since the particles are initially strongly clustered in phase-space, a linearised transformation
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can be used to obtain the distribution function of the whole system in the (
¥ X ¦ ) variables. We

express this coordinate transformation as

· 0̧ �Z½ 0 · 0¾ X with � 0d ² � �u¿ d�uÀ ²>ÁÁÁÁ ¯Â 0 Ã ¯Ä 0 X (2.14)

where ¿ � ( c X�l ), À � (
¥ X ¦ ) and the elements of matrix ½ 0 are evaluated at the central point of

the system, around which the expansion is performed. By substituting this in Eq.(2.13), and by
defining ` 0¾ �Z½ 0 ¹ ` 0¸ ½ 0 the distribution function in action-angle coordinates becomesk (

¥ X ¦ X ! 0) �Zk 0 exp ¶ . 1
2 · 0¾ ¹ ` 0¾ · 0¾�º X (2.15)

that is, it is also a multivariate Gaussian, but with dispersions now given by ` 0¾ .
The deviation of any individual orbit from the mean orbit, defined by the centre of mass

or the central particle of the system, ∆ ¾'Å � À d . ¯À d ( ! ) may in turn be expressed in terms of the
initial action-angle variables as � d . ¯� dp� � 0d . ¯� 0d X (2.16)

and ¥ d . ¯¥ d ( ! ) � ¥ 0d . ¯¥ 0d 0 � Ω d� �ÇÆ ÁÁÁÁ ¯È ( � Æ . ¯� Æ ) ! X (2.17)

where we expanded the difference in the frequencies to first order in
�uÆ . ¯�ÇÆ . Eqs.(2.16) and

(2.17) can also be written as · ¾ ( ! ) � É � 1( ! ) · 0¾ X (2.18)

where É ( ! ) is the blockmatrix: É ( ! ) � ¶�Ê_Ë .�Ì £ !Í Ê Ë º � (2.19)Ê_Ë here is the identity matrix in 3-D, and Ì £ represents a 3 � 3 matrix whose elements are� Ω dÎ� � � ² . The distribution function in action-angle space in the neighbourhood of the central
particle at any point of its orbit ( ¯¥ ( ! ) X ¯¦ ) is thenk (

¥ X ¦ X ! ) �Zk 0 exp ¶ . 1
2 · ¹¾ ( ! ) ` ¾ ( ! ) · ¾ ( ! ) º X (2.20)

with · ¾ ( ! ) � (
¥ . ¯¥ ( ! ) X ¦ . ¯¦ ) and ` ¾ ( ! ) �hÉ ( ! ) ¹ ` 0¾ É ( ! ) X (2.21)

or in terms of the original coordinates ` ¾ ( ! ) � ( ½ 0 É ( ! )) ¹ ` 0¸ ( ½ 0 É ( ! )) �
Example: 1-D Case. To understand more clearly what the distribution function in Eq.(2.20)

tells us with respect to the evolution of the system, we consider the 1-D case. The initial distri-
bution function becomes:k (

¥ X � X ! 0) �Zk 0 exp ¬ . (
¥ . ¯¥ 0)2

2 ` 24 . (
� . ¯� )2

2 ` 2Ï . (
¥ . ¯¥ 0)(

� . ¯� ) Ð94 Ï ¯ X
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FIGURE 2.6— 1-D graphical interpretation of Liouville’s theorem and the evolution of the system in phase-space.
The system is initially a Gaussian in action-angle space, with no correlations between Ñ and Ò . As time passes by,
the system evolves into an ellipsoidal configuration, with principal axes that are no longer aligned with the action
or the angle directions. After a some time, the system wraps around in the angles, giving rise to phase-mixing: at
the same phase we observe more than one stream, each with a small variance in the action due to the conservation
of the area in phase-space.

where ÐÓ4 Ï denotes the initial correlation ¹ between
¥

and
�

. After considering the time evolution
of the system (as in Eq.(2.17)) we findk (
¥ X � X ! ) �Zk 0 exp ¬ . (

¥ . ¯¥ ( ! ))2

2 ` 24 . (
� . ¯� )2 Ô 1

2 ` 2Ï 0 Ω £ 2 ! 2
2 ` 24ÖÕ . (

¥ . ¯¥ ( ! ))( � . ¯� ) Ô Ð94 Ã Ï 0 Ω £ !` 24�Õ ¯ X
where Ω £ �h[ Ω ��[ � . This means that the dispersion in the

�
-direction effectively decreases in

time and the covariance between
¥

and
�

increases with time. The system becomes an elongated
ellipsoid in phase-space as time passes by as a consequence of the conservation of the local
phase-space density. This evolution is illustrated in Figure 2.6.

The distribution function in observable coordinates

To compute the characteristic scales of a system that evolved from an initial clumpy configu-
ration, such as satellite debris, we have to relate the dispersions in action-angle variables to
dispersions in a set of observable coordinates. The transformation from the action-angle coor-
dinate system to the observable ( c Xml ) has to be performed locally since we generally cannot
express in a simple way the global relation between the two sets of variables. Because the sys-
tem has expanded so much along some directions in phase-space, the transformation from (

¥
,¦ ) to ( c XGl ) has to be done point to point along the orbit. This transformation is given by the

inverse of ½ at time ! : � � 1d ² � �pÀ d�p¿ ²>ÁÁÁÁ Â Ã Ä X (2.22)×ÎØpÙjÚ
is not the correlation coefficient, usually denoted as � . They are related through � * J�Û�Ü�ÝßÞ 2Ü Þ 2Ý

1 J+Û�Ü�ÝßÞ 2Ü Þ 2Ý .
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where the derivatives are now evaluated at the particular point of the orbit around which we
wish to describe the system in ( c Xml ) coordinates. In particular, if the expansion is performed
around ( ¯¥ ( ! ) X ¯¦ ) then · ¾ ( ! ) �Z½ � 1 · ¸ ( ! ) X (2.23)

and the distribution function may be expressed in the region around ¯¿ � ( ¯c X ¯l ) ask ( c XmlMX ! ) �Zk 0 exp ¶ . 1
2 · ¸ ( ! ) ¹ ` ¸ ( ! ) · ¸ ( ! )º X (2.24)

with · ¸ d ( ! ) �áà t d . ¯t d ( ! ) X Fi� 1 ��� 3 X3 ² . ¯3 ² ( ! ) X Fi�V»90 3 � 4 ��� 6 X (2.25)

and ` ¸ ( ! ) � ( ½ 0 É ( ! ) ½ � 1) ¹ ` 0¸ ( ½ 0 É ( ! ) ½ � 1) � (2.26)

We find once more that, locally, the distribution function is a multivariate Gaussian, where the
variances and covariances depend on their initial values, on the time evolution of the system
and on the position along the orbit where the system centre is located at time ! .

If we wish to describe the properties of a group of particles that are located at a different
point âã than the central particle (i.e. the expansion centre does not coincide with the satellite
centre at time ! ) a slightly different approach must be followed. The region of interest is then· ¾ ( ! ) � À £ . ¯À ( ! ) � ( À £ . ˜À ) 0 ( . ¯À ( ! ) 0 ˜À ) � · £¾ 0 âä ( ! ). We replace this in Eq.(2.20) and writek (

¥ X ¦ X ! ) �Zk 0 exp ¶ . 1
2 å · £¾ . ˜ä ( ! ) æ ¹ ` ¾ ( ! ) å · £¾ . ˜ä ( ! ) æ º X (2.27)

or equivalentlyk (
¥ X ¦ X ! ) �Zk	£0( ! ) exp ¶ . 1

2 · £¾ ¹ ` ¾ ( ! ) · £¾ . 1
2 · £¾ ¹ ` ¾ ( ! ) ˜ä ( ! ) . 1

2
˜ä ( ! ) ¹ ` ¾ ( ! ) · £¾_º X (2.28)

where k £0( ! ) �Ak 0 exp [ . 1 � 2 ˜ä ( ! ) ¹ ` ¾ ( ! ) ˜ä ( ! )]. We may now express · £¾ �Z½ £ � 1 · £¸ , since the trans-
formation is local again. The distribution function becomesk ( c £ XGl £ X ! ) � ˜k 0( ! ) exp ¶ . 1

2
( · £¸ .�ç ( ! )) ¹ ` ¸éè ( ! )( · £¸ .êç ( ! ))º X (2.29)

with ç ( ! ) ��½ £ ˜ä ( ! ) X ` ¸éè ( ! ) � ( ½ £ � 1) ¹ ` ¾ ( ! ) ½ £ � 1 X (2.30)

and ˜k 0( ! ) � k £0( ! ) exp [ . 1 � 2 ( ½ � 1 ç ( ! )) ¹ ` ¾ ( ! ) ½ � 1 ç ( ! )]. This means that the local distribution func-
tion is Gaussian centred around cìëí�|âcH0 ç ( ! ), which in general will not be very different fromâc , with variances given by the elements of ` ¸éè ( ! ). Thus the same type of behaviour as derived
for the region around the system centre holds also if far from it.

The formalism here developed is completely general, but the actions will not always be easy
to compute. As we mentioned briefly in the beginning of this section, this depends mainly on
whether the potential is separable in some set of coordinates. We focus on the spherical case and
a simple axisymmetric potential in the next section to show how this procedure can be used to
describe the characteristic scales of the debris. We refer the reader to the Appendix for details
of the computation.
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2.4.2 Spherical potential

Analytic predictions

For a spherical potential Φ( � ), the Hamiltonian is separable in spherical coordinates and de-
pends on the actions

�Kî
and

�Çï
only through the combination

�	î 0 �Çï �Z� . This means that the
problem can be reduced to 2-D, and so we may choose a system of coordinates which coincides
with the plane of motion of the satellite centre. The position of a particle is given by its angular
( ð ) and radial ( � ) coordinates on that plane. Thus�ñ� ��ò � ¢ ò X� 8¡� 1^ r 8 28 1 [+� 1� � 2( � . Φ( � )) � 2 . � 2 X (2.31)

where � is the total angular momentum of the particle, � its energy and � 1 and � 2 are the turning
points in the radial direction of motion. The frequencies of motion and their derivatives needed
to compute the matrix É ( ! ) and to obtain the time evolution of the distribution function, can be
obtained by differentiating the implicit function óô�\ó ( � X � X � 8 ) õ 0 defined by Eq.(2.31).

Let us assume that the variance matrix ö in action-angle variables is diagonal at !Ç� 0. This
simplifies the algebraic computations and, since we are only trying to calculate late-time be-
haviour, this assumption does not have a major influence on our results. As shown in the previ-
ous section, the evolution of the system in action-angles is obtained from ` ¾ ( ! ) ��É ( ! ) ¹ `�÷ ¾ É ( ! ).
We find the properties of the debris in configuration and velocity space by transforming the
action-angle coordinates À � (

¥ X ¦ ) locally to the separable ø�� ( c X�� ), and then by transforming
from øV� ( c X�� ) to ¿ � ( c XGl ). That is ` ¸ ( ! ) �Z½ £ ¹ ` ¾ ( ! ) ½ £ , with the � £ �
� ¾uù9ú �	û ù ³ .

The diagonalization of the variance matrix ` ¸ ( ! ) yields the values of the dispersions along
the principal axes and their orientation. It can be shown that two of the eigenvalues increase with
time, whereas the other two decrease with time. This is directly related to what happens in action-
angle variables: as we have shown for the 1-D case, the system becomes considerably elongated
along an axis which, after a very long time, is parallel to the angle direction. For 2-D (3-D), the
evolution in action-angles can also be divided into two (three) independent motions (whether
or not the Hamiltonian is separable), so that along each of these directions this same effect can
be observed. The directions of expansion and contraction are linear combinations of the four
axes (˘e ò X ˘e�8 X ˘e ³ýü X ˘e ³ýþ ) and, generally, none is purely spatial or a pure velocity direction.

To understand the properties of the debris in observable coordinates, we will examine what
happens around a particular point in configuration space. This is equivalent to studying the
velocity part of the variance matrix: ` ¸ ( 3 ). For example, by diagonalizing the matrix ` ¸ ( 3 ) we
obtain the principal axes of the velocity ellipsoid at the point ¯c . Its eigenvalues are the roots of
det[ ` ¸ ( 3 ) .�ÿ Ê ] � 0. For !�} ! orbÿ 1 ÿ 2 � ! 4 �

Ω £11Ω £33 . Ω £13
2 � 2 � 2

¢ 28
Ω28 ` 11 ` 33 Xÿ 1 0 ÿ 2 � ! 2 � 2 ¬ ` 11 z Ω £11 . Ω £13

Ω 8 z Ω
ò . �� 2 {9{ 2 0V` 33 z Ω £13 . Ω £33

Ω 8 z Ω
ò . �� 2 {Ó{ 2 ¯0 ! 2 � ` 11Ω £13

2 0V` 33Ω £33
2 � ¢ 28

Ω28 X�
Strictly speaking � is the inverse of the covariance matrix. However we will loosely refer to � as the variance

matrix.
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where the subindices 1 and 3 represent ð and � respectively, and `ud dp� 1 � ` 24 Å , the initial variance
in the angles. Since ` ( 3©d ) � � 1 � ÿ d both directions in velocity space have decreasing dispersions
on the average.

So far we did not describe how the debris is spread along the transverse direction to the
plane of motion: ˘e�� and ˘e ³�	 . This is because we reduced the problem to 2-D in configuration
space. However, the problem is not really 2-dimensional since the system has a finite width in
the direction transverse to the plane of motion. Now that we have understood the dynamics of
the reduced problem, the generalisation to 3-D is straightforward. If the variance matrix initially
is diagonal in action-angle variables, then the dispersions along

¥ � and
� � do not change be-

cause the frequency of motion in the transverse direction is zero. Thus the velocity dispersion
and width of the stream also remain unchanged in the direction perpendicular to the orbital
plane.

By integrating Eq.(2.24) with respect to the velocities, we compute the density at the point ¯c� ( 
c X ! ) � r ∆ ³ þ r ∆ ³�� r ∆ ³�� [+3 ï [�3 î [�3�8'k ( 
c Xml5X ! ) � (2.32)

For !�} ! orb,� ( 
c X ! ) � (2 ^ )3 ] 2 k 0 `'4 3gΩ £11Ω £33 . Ω £13
2 g °±�
��� Ô 1` 24 1

0 1` 24 2 Õ Ô 1` 2Ï
1

0 1` 2Ï
2 Õ ´µ � 1

Ω 8j�� 2 sin �Çg ¢ 8 ¢ ï g 1! 2 X (2.33)

where `�� is the initial dispersion in the quantity � . This equation shows that the density at
the central point of the system decreases, on the average, as 1 ��! 2. It tends to be larger near
pericentre since it depends on radius as 1 � � 2; moreover it diverges at the turning points of the
orbit. Even though the system evolves smoothly in action-angle variables, when this behaviour
is projected onto observable space, singularities arise associated with the coordinate transfor-
mation. In action-angle variables the motion is unbounded, whereas in configuration space the
particle finds itself at a “wall” near the turning points. This divergence shows up in the ele-
ments of the transformation matrix � ¾pù9¸ (Eq.(A3)), some of which tend to zero, while others
diverge keeping the matrix non-singular. Because of the secular evolution of the dispersions,
the intensity of the spikes will decrease with time. They are generally stronger at the pericentre
of the orbit than at the apocentre, because of the 1 ��� 2 dependence of the density.

A direct consequence of the secular evolution is that the characteristic sizes of the system,
the width and length of the stream, will increase linearly with time, reflecting the conservation
of the full 6-D phase-space density. At the turning points one of these scales becomes extremely
small. In Figure 2.7 we plot the predicted behaviour of the dispersions along the principal
axes of the velocity ellipsoid as a function of time. We have chosen for the initial conditions a
spherically symmetric Gaussian in configuration and velocity space. We follow the evolution
of the variance matrix and, in particular, of the velocity dispersions along the three principal
axes at the positions of the central particle. In all panels we can clearly see the periodic be-
haviour associated with the orbital phase of the central particle, superimposed on the secular
behaviour related to the general expansion of the system along the two directions in the orbital
plane. The dispersion in the third panel is on average constant: it is in the direction perpen-
dicular to the plane of motion. Its periodic behaviour is due to the fact that we did not start
with a diagonal matrix in action-angles. The initial transformation from ( c XGl ) to (

¥ X ¦ ) pro-
duces cross terms between all three directions. As the system evolves, and we project again
onto configuration space, our 6-D ellipsoid rotates continually, producing a contribution in the
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FIGURE 2.7— Time evolution of the velocity dispersions (in km s J 1) along the principal axes, computed as outlined
in Section 2.4.2, for the logarithmic spherical potential of Eq.(2.2). Two of the dispersions decrease with time as
1 B (1 ��� B�� 0) (dotted curve), whereas the third one is constant on the average. The periodic variations are due to the
combination of the radial and angular oscillations, as described in the text. The last panel shows the product of the
three dispersions which is proportional to the density (full curve). The radial oscillation is shown (dotted curve) so
that the occurrence of density spikes can be compared with the location of the turning points of the orbit.

direction perpendicular to the orbital plane which varies with the frequencies Ω 8 and Ω
ï
. By

fitting ` ( 3 ) ��` 0( 3 ) � S�� (1 0�!���! 0), we find for the velocity dispersion in the first panel S�� 1 � 5 and! 0 � 0 � 6 Gyr, whereas for the dispersion in the second panel S�� 2 � 6 and ! 0 � 0 � 1 Gyr.
In the last panel we show the behaviour of the product of the three dispersions, which is

proportional to the density (see Eq.(A10)). Note that, since two of the velocity dispersions have
decreased approximately a factor of ten, the density has done so by a factor of hundred. Note
also the decrease in the amplitude of the spikes and the good correlation of these with the
turning points of the orbit.

Comparison to the simulations

In order to assess the limitations of our approach, we will compare our predictions with sim-
ulations of satellites with and without self-gravity. We first consider what happens to a satel-
lite with no self-gravity moving in a spherical logarithmic potential. We take two different
sets of initial properties for the satellites: 1 kpc width and ` 1 a � 5 km s � 1, corresponding to
an initial mass of � 5 � 9 � 107 M 1 ; and 5 kpc width and ` 1 a � 20 km s � 1, corresponding to
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FIGURE 2.8— Time evolution of the density for a satellite moving in a spherical potential (Eq.(2.2)), with similar
orbital parameters as those of Experiment 6 in Table 2.1. The full line represents our prediction, normalized to the
initial density. In the upper panel we plot the density behaviour for the C 5 , 9 � 107 M � satellite (see main text),
whereas the lower panel corresponds to the C 4 , 7 � 109 M � satellite. The stars indicate the number of particles that
fall in a volume of 1 kpc on a side around the central particle of the system, and the triangles represent the number
of particles in a cubic volume of twice the side, both normalized to the initial value. The spike-like behaviour occurs
at the turning points of the orbit (see main text – Eq.(2.33)).� � 4 � 7 � 109 M 1 for the larger satellite. Both begin as spherically symmetric Gaussians in co-
ordinate and velocity space. We launch them on the same orbit so that we can directly study
the effects of the change in size.

What observers measure are not the velocity dispersions or densities of a stream at a particu-
lar point, but mean values given by a set of stars in a finite region. We can estimate the effects of
this smoothing by comparing our analytic predictions with the simulations. In the upper panel
of Figure 2.8 we show the time evolution of the density (normalized to its initial value) for the
small satellite. The full line represents our prediction and the stars correspond to the simula-
tion. We simply follow the central particle of the system as a function of time, and count the
number of particles contained in a cube of 1 kpc on a side surrounding it. Triangles represent
the number density from an 8 times larger volume (2 kpc on a side). The agreement between the
predictions and the estimated values from the simulations is very good. The representation of
a continuous field with a finite number of particles introduces some noise which, together with
the smoothing, is responsible for the disagreement. Note, however, how well the simulated
density spikes agree with those predicted at the orbital turning points. The overall agreement
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is slightly better for the small cube than for the large one. This is due to the smoothing which
inflates some of the dispersions as a result of velocity gradients along the stream.

In the lower panel of Figure 2.8 we show a similar comparison for the large satellite. In
general the prediction does very well here too. Note for the small boxes and at late times, we
only have simulation points at the spikes (i.e. when the density is strongly enhanced). This
is because the satellite initially has a larger velocity dispersion and therefore spreads out more
rapidly along its orbit.

We tested the effect of including self-gravity in the small satellite simulation, and found no
significant qualitative or quantitative difference in the behaviour.

2.4.3 Axisymmetric case

As an illustrative example of the main characteristics of the axisymmetric problem, let us con-
sider the class of Eddington potentials Φ( � X � ) � Φ1( � ) 0�� ( � cos � ) ��� 2 (Lynden-Bell 1962, 1994)
which are separable in spherical coordinates. The third integral for this type of potentials is�

3 � 1
2 � 2 0�� ( � cos � ). The actions are computed from:�Çî � � � X (2.34)�Çï � 1

2 ^ ¤ [ � 2(
�

3 . � ( � )) . � 2î
sin2 � X (2.35)� 8¡� 1

2 ^ ¤ [��"! 2( � . Φ1( � )) . 2
�

3� 2
� (2.36)

Since the frequencies of motion are all different and non-zero, the system has the freedom to
spread along three directions in phase-space. The conservation of the local phase-space density
will force the dispersions along the remaining three directions to decrease in time.

Following a similar analysis as for the spherical case we derive for the density at the central
point 
c ( ! ) of the system at time !� ( 
c X ! ) � (2 ^ )3 ] 2 k 0Q

det ` 04 1g det Ì £ g � � 3� �Çï Ω 8� 2 sin �Çg ¢ 8 ¢ ï g 1! 3 X (2.37)

where ` 04 is the angle submatrix of the initial variance matrix in action-angle variables. There-
fore the density at the central point of the system decreases as ! � 3, because of the extra degree of
freedom that the rupture of the spherical symmetry introduces (see Appendix B), and so after a
Hubble time, the density decreases by approximately a factor of a thousand.

In Figure 2.9 we plot the time evolution of the components of the velocity ellipsoid for a
system on an orbit with the same initial conditions as for the spherical case, in the potential

Φ( � X � ) �Z3 2
h log ( � 2 0V[ 2) 0 � 2 cos2 �� 2 X (2.38)

where 3 h � 123 km s � 1, [ � 12 kpc and ��� 950 kpc km s � 1. This choice of parameters produces
a reasonably flat potential which is physical (giving a positive density field) outside 7 kpc. All
velocity dispersions now decrease as 1 ��! .

The analytic formalism developed here can be applied to any separable potential in a straight-
forward manner, using the definitions and results of Sec. 2.4.1. This includes, of course, the set
of Stäckel potentials which may be useful in representing the Milky Way (Batsleer & Dejonghe
1994), or any axisymmetric elliptical galaxy (de Zeeuw 1985; Dejonghe & de Zeeuw 1987). The
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FIGURE 2.9— Time evolution of the velocity dispersions (in km s J 1) along the principal axes, computed as out-
lined in Section 2.4.2 and 2.4.3, for the simple axisymmetric potential of Eq.(2.38). Now all the dispersions decrease
with time as 1 B�� (dotted curve). The periodic time behaviour is due to the combination of the radial and angular
oscillations, as described in the text. The last panel shows the product of the three dispersions which is proportional
to the density. The radial and # -oscillations are also plotted to indicate the position of the turning points.

only difference is that the matrix ½ of the transformation from the usual coordinates ( c , l ) to
the action-angle variables should be first multiplied by the matrix of the mapping from ( c , l )
to the ellipsoidal coordinates ( ÿ X%$wX'&5X ¢)( X ¢+* X ¢ î ), since this is the system in which the problem
is separable. We discuss some of the properties Stäckel potentials and derive, for a particular
model for our Galaxy, the explicit form for the density in Appendix C. Even if the potential is
not separable our general results on the evolution of the system remain valid provided most
orbits remain regular. In the general case the frequencies and their derivatives with respect to
the actions will have to be computed through a spectral dynamics analysis similar to that used
in Section 2.3.1 (Carpintero & Aguilar 1998).

2.4.4 What happens if there is phase-mixing

The procedure outlined above assumes that only one stream of debris from the satellite is
present in any volume which is analysed. When phase-mixing becomes important we may
find more than one kinematically cold stream near a given point. The velocity dispersions of
the debris in such a region would then appear much larger than predicted naively using our
formalism. We can make a rough estimate for the velocity dispersions also in this case by using
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the following simple argument.
If the system is (close to) completely phase-mixed, then the coarse-grained distribution func-

tion that describes it will be uniform in the angles and therefore will only depend on the adia-
batic invariants, i.e. k ( c XGl ) � k ( ¦ ( c Xml )). Since these are conserved, the moments of the coarse-
grained distribution function will be given by the moments of the initial distribution function.
Therefore k ( ¦ ) is completely determined by the initial properties of the system in the adiabatic
invariants space. If the initial distribution function is Gaussian in action-angles then k ( ¦ ) will
be Gaussian with mean and dispersion given by their values at !w�
! 0.

As an example, let us analyse the velocity dispersion in the & -direction in a particular region
in which there is a multistream structure:

` 2( 3 î ) �-, [ 3 t [ 3 3 ( 3 î . ¯3 î )2 k ( ¦ ( c XGl )), [ 3 t [ 3 3�k ( ¦ ( c Xml ))
� r [ 3 t [ 3 � z �ÇîR . ¯�Çî̄R { 2 k ( ¦ ), [ 3 t [ 3 � k ( ¦ ) X

where we used that 3 î � � î � R . By expanding to first order we find` 2( 3©4 ) ��` 2(
�Çî

) � ¯
R

2 0 ∆2� ¯� 2î � ¯
R

4 � (2.39)

Here we replaced ` (
R

) by ∆ � (the size of the region in question) which is justified by our previ-
ous result that the spatial dimensions of streams grow with time, and neglected the correlation
between

�Çî
and

R
. The first term in Eq.(2.39) estimates the dispersion between streams, while

the second estimates the contribution from the velocity gradient along an individual stream.
For the experiments of Table 2.1 the values of the dispersions range from 50 to 150 km s � 1.
These dispersions increase in proportion to those of the initial satellite.

The filling factor

We can use the results of our previous section to quantify the probability of finding more than
one stream at a given position in space. This probability is measured by the filling factor. We
define this by comparing the mass-weighted spatial density of individual streams with a mean
density estimated by dividing the mass of the satellite by the total volume occupied by its orbit.
The first density can be calculated formally through an integral over the initial satellite:n � ( ! ) o � 1� r [�� ( c Xml ) � ( c XGl )( ! ) � 1� r [ 3 t [ 3 3�k ( c XmléX ! 0) � ( c XGl )( ! ) X
where � ( c XGl )( ! ) is the density at time ! of the individual stream in the neighbourhood of the
particle which was initially at ( c XGl ). The filling factor is then.

( ! ) � � �0/ 1n � ( ! ) o X
where �0/ is the volume filled by the satellite’s orbit. An estimate of the filling factor can be
obtained by approximating n � ( ! ) o by � ( ¯c X ! ) � (2 U 2) taken from Eqs.(2.33), (2.37) or (C12) for
spherical, axisymmetric Eddington or Stäckel potentials, respectively. The factor 1 � 2 U 2 is the
ratio of the central to mass-weighted mean density for a Gaussian satellite. We approximate�0/<� 4 ^9� 3

apo cos � f � 3, where � apo and � f are the maximum distance and maximum angular height
above the plane reached by the satellite centre in its orbit. Since we are interested in deriving
an estimate for the filling factor for the Solar neighbourhood, we focus on the Stäckel potential
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described in Appendix C, which produces a flat rotation curve resembling that of the Milky
Way. Thus .

( ! ) � 6 U 2
� Q

det ` ÷4
2(2 ^ )5 ] 2 k 0

n R ojnÇg � . ÿ g 3 ( 321io� 3
apo cos � f

g det Ì £ gÁÁÁÁΩ 1 � � 3� � ( . Ω ( � � 3� � 1 ÁÁÁÁ !
3 X (2.40)

where ÿ , � are spheroidal coordinates (for which the potential is separable),
� ( and

� 1 are the
corresponding actions, and Ω ( and Ω 1 the frequencies; and

�
3 is the third integral of motion. If

we approximate n�3 ( 3 1 o>� 3 2
circ � 4 and replace k 0 � � � (2 ^_` ( t ) ` ( 3 ))3 then.

( ! ) � Ð orbit Ð IC z ` ( t )� apo { 2 ` ( 3 )3 circ
(Ω ( ! )3 X (2.41)

where Ð orbit � 3 U ^Ön g � . ÿ gGoYn R o_3 5
circ g det Ì £ g

2 cos � f

ÁÁÁÁΩ 1 � � 3� � ( . Ω ( � � 3� � 1 ÁÁÁÁ Ω3( X (2.42)

depends on the orbital parameters of the satellite, andÐ IC � % ( % 1ÁÁÁÁΩ 1 � � 3� � ( . Ω ( � � 3� � 1
ÁÁÁÁ ÿN. �� 3 � 3

R� apo 3 2
circ 354Â76 Ã 4Ä86 X (2.43)

with %:9�� 2¢ 9 � ¢ 9�0; X ; � ÿ X � X
is a function of its initial position on the orbit. (See Appendix C for further details and defini-
tions). This last expression holds if the satellite is initially close to a turning point of its orbit.

For example, a satellite of 10 km s � 1 velocity dispersion and 0.4 kpc size on an orbit with an
apocentric distance of 13 kpc, a maximum height above the plane of 5 kpc and an orbital period
of � 0.2 Gyr, gives an average of 0.4 streams of stars at each point in the inner halo after 10 Gyr.
A satellite of 25 km s � 1 dispersion and 1 kpc size on the same orbit would produce 5.9 streams
on the average after the same time. Let us compare this last prediction with a simulation for the
same satellite and the same initial conditions in the Galactic potential described in Section 2.2.
In Figure 2.10 we plot the behaviour of the filling factor from the simulation, computed as.

( ! ) � 
�0/ 1� ( ! ) X
where 
 is the total number of particles, � ( ! ) �|
 � 1 � d � d with � d the density of the stream
where particle F is, which we calculate by dividing space up into 2 kpc boxes and counting the
number of particles of each stream in each box. Note that the filling factor increases as ! 3 at late
times as we expect for any axisymmetric potential. Our prediction is in good agreement with
the simulations, showing also that it is robust against small changes in the form of the Galactic
potential.
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FIGURE 2.10— Time evolution of the filling factor for a satellite with an initial velocity dispersion of 25 km s J 1 and
size of 1 kpc, moving in the Galactic potential described in Section 2.2. Its orbital parameters resemble those of halo
stars in the Solar neighbourhood. The dashed-curve indicates a < 0 ��< 1 � 3 fit for late times.

Properties of an accreted halo in the Solar neighbourhood

To compare with the stellar halo it is more useful to derive the dependence of the filling factor
on the initial luminosity of a satellite. We shall assume that the progenitor satellites are similar
to present-day dwarf ellipticals, and satisfy both a Faber–Jackson relation:

log
�

L 1 . 3 � 53 log
` ( 3 )

km s � 1 � 2 � 35 X (2.44)

for " 0 � 50 km s � 1Mpc � 1, and a scaling relation between the effective radius (
R>= � ` ( t )) and

the velocity dispersion ` ( 3 ):
log

` ( 3 )
km s � 1 . 1 � 15 log

R?=
kpc

� 1 � 64 X (2.45)

both as given by Guzmán, Lucey & Bower (1993) for the Coma cluster. Expressed in terms of
the luminosity of the progenitor, the filling factor then becomes.

( ! ) � Ð orbit Ð IC z ��A@ { 0 2 776

(Ω ( ! )3 X (2.46)

where �A@ is a normalization constant that depends on the orbit and on the properties of the
parent galaxy as: �A@N� 3 � 75 � 1011L 1 z � apo

10 kpc { 2 2 58 � 3 circ

200 km s � 1
� 1 2 29 � (2.47)

If the whole stellar halo had been built from disrupted satellites, we can derive the number
of streams expected in the Solar neighbourhood by adding their filling factors using the ap-
propriate orbital parameters in Eq.(2.41) or Eq.(2.46):

. 1 ( ! ) � 
 sat
.

( ! ). For a sample of giant
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stars located within 1 kpc from the Sun with photometric distances and radial velocities mea-
sured from the ground (Carney & Latham 1986; Beers & Sommer-Larsen 1995; Chiba & Yoshii
1998), and proper motions measured by HIPPARCOS, we estimate Ð orbit ��Ð IC � 1 � 29 � 10 � 3.
The median pericentric (apocentric) distance is 3 � 7 (11 � 6) kpc, and the median Ω ( is 26.6 Gyr � 1

(equivalent to a period of � 0 � 24 Gyr). Thus using Eq.(2.41). 1 ( ! ) � 0 � 9 
 sat z ` ( t )
kpc { 2 ` ( 3 )

km s � 1 z !
10 Gyr { 3 �

If now we assume that the progenitor systems are similar to present-day dwarf ellipticals, then
using Eq.(2.46) we find for the whole 109 L 1 stellar halo. 1 ( ! ) � z !

10 Gyr { 3 �¡à 5 � 1 � 102 X 100 � 107 L 1 satellites X3 � 0 � 102 X 10 � 108 L 1 satellites � (2.48)

For !é� 10 Gyr, the number of streams expected in the Solar neighbourhood is therefore in the
range . 1 � 300 . 500 � (2.49)

Fuchs & Jahreiß (1998) have obtained a lower limit for the local mass density of spheroid
dwarfs of 1 � 105 M 1 kpc � 3. We may use this estimate to derive the mass content in subdwarfs
of an individual stream in a volume of 1 kpc3 centred on the Sun:.CB

( ! ) � �
local halo (in 1 kpc3).

( ! ) � (2.50)

Thus with our previous estimate for the filling factor. B
( ! ) � z 10 Gyr! { 3 �¡à 1 � 9 � 102 M 1 X for 107 L 1 satellites X3 � 3 � 102 M 1 X for 108 L 1 satellites � (2.51)

Therefore, after 10 Gyr, each stream contains
.DB � (200 . 350) M 1 in subdwarf stars, depending

on the orbital parameters of the progenitors and their initial masses.
Since the halo stars in the Solar neighbourhood have one-dimensional dispersions ` obs( 3 ) �

100 . 150 km s � 1, in order to distinguish kinematically whether their distribution is really the
superposition of � 300 . 500 individual streams of velocity dispersion ` st( 3 ) we might require
that ` 3

st( 3 ) E 1
27
` 3

obs( 3 ). 1 X (2.52)

where the factor 1 � 27 would ensure a � 3 ` distinction between streams. Using our previous es-
timate of

. 1 this condition becomes ` st( 3 ) E\` obs( 3 ) � (20 . 24), and thus ` st( 3 ) E 5 km s � 1. Cur-
rently the observational errors in the measured velocities of halo stars are of order 20 km s � 1,
and thus there is little hope to distinguish at the present day all the individual streams which
may make up the stellar halo of our Galaxy. Since intrinsic velocity dispersions for streams
originating from 107 . 108L 1 objects are of the order of 3 . 5 km s � 1 after 10 Gyr, it should
be possible to distinguish such streams with the astrometric missions SIM and GAIA, if they
reach their planned accuracy of a few km s � 1. Even with an accuracy of 15 km s � 1per velocity
component, streams are predicted to be marginally separated. The clumpy nature of the dis-
tribution should thus be easily distinguishable in samples of a few thousand stars. One way
of identifying streams which are debris from the same original object, is through clustering in
action or integrals of motion space (Helmi, Zhao & de Zeeuw 1998).
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2.5 An observational application

Majewski et al. (1994) discovered a clump of nine halo stars in a proper motion survey near the
NGP (Majewski 1992), which appeared separated from the main distribution of stars in the field.
They measured proper motions, photometric parallaxes,

.
magnitudes and (

� . .
) colours for

all nine stars and radial velocities for six of them. For these six stars we find for the mean
velocity ¯3 î � . 152 ( 23 km s � 1, ¯3 & � . 260 ( 18 km s � 1 and ¯3 � � . 76 ( 18 km s � 1, and for the
velocity dispersions ` ( 3 î ) � 99 ( 33 km s � 1, ` ( 36& ) � 100 ( 24 km s � 1 and ` ( 3 � ) � 35 ( 24 km s � 1.
If the dispersions are computed along the principal axes, we find ` ( 3 1) � 29 ( 20 km s � 1 , ` ( 3 2) �
68 ( 94 km s � 1, ` ( 3 3) � 125 ( 5 km s � 1 .

Since the mean velocities are significantly different from zero, the group of stars can not
be close to any turning point of their orbit. The only way to understand the large observed
dispersions, in particular of ` ( 3 3), if the stars come from a single disrupted satellite, is for the
group to consist of more than one stream of stars. We believe that this may actually be the
case. By computing the angular momenta of the stars we find they cluster into two clearly
distinguishable subgroups: ¯� (1)� � . 784 and ` (1)( � � ) � 299, and ¯� (2)� � . 2180 and ` (2)( � � ) � 313
in kpc km s � 1. If we accept the existence of two streams as a premise, we may compute the
velocity dispersions in each of them. We find for the stream with 4 stars` (1)( 3 1) � 25 ( 25 X ` (1)( 3 2) � 43 ( 62 X ` (1)( 3 3) � 100 ( 45 X
while for the stream with 2 stars` (2)( 3 1) � 3 ( 4 X ` (2)( 3 2) � 25 ( 21 X ` (2)( 3 3) � 89 ( 64 X
all in km s � 1. These results are consistent at a 2 ` level with very small 3-D velocity dispersions,
as expected, if indeed these are streams from a disrupted satellite.

With this interpretation of the kinematics of this group, we can estimate the mass of the
progenitor and its initial size and velocity dispersion. Galaxies today obey scaling laws of
the Faber–Jackson or Tully–Fisher type. If we assume that the original satellite was similar
to present-day dwarf ellipticals, then we may use Eq.(2.45) to derive a relation between the ini-
tial dispersion in the $ -component of the angular momentum and initial velocity dispersion of
the progenitor ` 2d ( � � ) �Z` 2d ( 3 ) R 2

apo 0 0 � 03752 � 2�R
2
apo
` 1 2 74d ( 3 ) X (2.53)

where
R

apo is the apocentric distance of its orbit. Under the assumption that � � is conserved,
we can derive ` d ( 3 ) by replacing in the previous equation the observed values of � � , ` ( � � ) and
an estimate of

R
apo. We obtain the latter by orbit integration in a Galaxy model, which includes

a disk, bulge and halo and find
R

apo � 12 kpc. Our estimate for the initial velocity dispersion
of the progenitor is then ` d ( 3 ) � 48 km s

� 1 X (2.54)

which in Eqs.(2.44) and (2.45) yields for its initial luminosity and size��� 2 � 108 L 1 X R � 1 kpc � (2.55)

We estimate that the relative error-bars in these quantities are of order 50%, if measurement
errors and a 50% uncertainty in the apocentric distance are included.

In summary, if indeed these stars come from a single disrupted object, we must accept that
the first six stars that were detected (Majewski et al. 1994) are part of at least two indepen-
dent streams. This seems reasonable, since two streams can be indeed be distinguished, and
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the velocity dispersions, in each stream are very small. Moreover, a disrupted object with the
properties just derived (luminosity, initial size and velocity dispersion), would fill its available
volume rapidly, producing a large number of streams. In view of our explanation, a number of
stars from the same disrupted object but with positive $ -velocities should also be present in the
same region, since phase-mixing allows streams to be observed with opposite motion in the

R
and/or $ directions. Candidates for such additional debris should have similar 3 î , since � � is
conserved during phase-mixing. By simple inspection of Figure 1(a) in Majewski et al. (1994),
other stars can be indeed found, with similar 3 î but opposite 3 & and 3 � .
2.6 Discussion and conclusions

We have studied the disruption of satellite galaxies in a disk + halo potential and character-
ized the signatures left by such events in a galaxy like our own. We developed an analytic
description based on Liouville’s theorem and on the very simple evolution of the system in
action-angle variables. This is applicable to any accretion event if self-gravity is not very im-
portant and as long as the overall potential is static or only adiabatically changing. Satellites
with masses up to several times 109 M 1 are likely to satisfy this adiabatic condition if the mass
of the Galaxy is larger than several times 1010 M 1 at the time of infall and if there are no other
strong perturbations. Even though we have not studied how the system gets to its starting
point, it seems quite plausible that in this regime dynamical friction will bring the satellites to
the inner regions of the Galaxy in a few Gyr, where they will be disrupted very rapidly. Their
orbital properties may be similar to those found in CDM simulations of the infall structure onto
clusters, where objects are mostly on fairly radial orbits (Tormen, Diaferio & Syer 1998); this is
consistent with the dynamics of Solar neighbourhood halo stars. Their masses range from the
low values estimated observationally for dwarf spheroidals to the much larger values expected
for the building blocks in hierarchical theories of galaxy formation.

We summarise our conclusions as follows. After 10 Gyr we find no strong correlations in
the spatial distribution of a satellite’s stars, since for orbits relevant to the bulk of the stellar halo
this is sufficient time for the stars to fill most of their available configuration volume. This is
consistent with the fact that no stream-like density structures have so far been observed in the
Solar neighbourhood. On the contrary, strong correlations are present in velocity space. The
conservation of phase-space density results in velocity dispersions at each point along a stream
that decrease as 1 ��! . On top of the secular behaviour, periodic oscillations are also expected: at
the turning points of the orbit the velocity dispersions, and thus the mean density of the stream,
can be considerably enhanced. Some applications of this density enhancement deserve further
study. For example, the present properties of the Sagittarius dwarf galaxy seem difficult to
explain, since numerical simulations show that it could have been disrupted very rapidly given
its current orbit (Johnston, Spergel & Hernquist 1995; Velázquez & White 1995). This puzzle has
led to some unconventional suggestions to explain its survival, like a massive and very dense
dark matter halo (Ibata & Lewis 1998) or a recent collision with the Magellanic Clouds (Zhao
1998). However, since the densest part of Sagittarius seems to be near its pericentre, it could be
located sufficiently close to a “caustic” to be interpreted as a transient enhancement. Sagittarius
could simply be a galaxy disrupted several Gyr ago (c.f. Kroupa 1997).

If the whole stellar halo of our Galaxy was built by merging of 
 sat similar smaller systems
of characteristic size ` ( t ) and velocity dispersion ` ( 3 ), then after 10 billion years we expect the
stellar distribution in the Solar neighbourhood to be made up of

. 1 streams, where. 1 � 0 � 9 
 sat z ` ( t )
kpc { 2 ` ( 3 )

km s � 1
�



46 CHAPTER 2. Building up the stellar halo

For satellites which obey the same scaling relations as the dwarf elliptical galaxies, this means
300 to 500 streams. Individually, these streams should have extremely small velocity disper-
sions, and inside a 1 kpc3 volume centred on the Sun, each should contain a few hundred stars.
Since the local halo velocity ellipsoid has dispersions of the order of 100 km s � 1, 3-D veloci-
ties with errors smaller than 5 km s � 1 are needed to separate unambiguously the individual
streams. This is better by a factor of four than most current measurements, which would, how-
ever, be good enough to give a clear detection of the expected clumpiness in samples of a few
thousand stars. The combination of a strongly mixed population with relatively large velocity
errors yields an apparently smooth and Gaussian distribution in smaller samples. Since the in-
trinsic dispersion for a stream from an LMC-type progenitor is of the order of 3 . 5 km s � 1 after
a Hubble time, one should aim for velocity uncertainties below 3 km s � 1. With the next gener-
ation of astrometric satellites (in particular GAIA, e.g. Gilmore et al. 1998) we should be able to
distinguish almost all streams in the Solar neighbourhood originating from disrupted satellites.

Our analytic approach is based on Liouville’s Theorem and the very simple evolution of the
system in action-angle variables. Although the latter is likely to fail in the full merging regime,
the conservation of local phase-space density will still hold. It will be interesting to see how this
conservation law influences the final phase-space distribution in the merger of more massive
disk-like systems. These are plausible progenitors for the bulge of our Galaxy in hierarchical
models.
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F., Röser S., de Zeeuw P.T., 1998, SPIE, 3350, 541

Goldstein H., 1953, Classical Mechanics, Addison-Wesley (Cambridge, Mass.)
Guzmán R., Lucey J.R., Bower R.G., 1993, MNRAS, 265, 731
Helmi A., Zhao H.S., de Zeeuw P.T., 1998, in “The Galactic Halo”, Proc. of the 3rd. Stromlo

Symposium, ed. Gibson B. et al., ASP Conf. Series 165, p. 125 (see also Chapter 4)
Ibata R., Gilmore G., Irwin M., 1994, Nature, 370, 194
Ibata R., Lewis G.F., 1998, ApJ, 500, 575
Jenkins A., Frenk C.S., Thomas P.A., Colberg J.M., White S.D.M., Couchman H.M.P., Peacock

J.A., Efstathiou G., Nelson A.H., 1997, ApJ, 499, 20
Johnston K.V., Spergel D.N., Hernquist L., 1995, ApJ, 451, 598
Johnston K.V., Hernquist L., Bolte M., 1996, ApJ, 465, 278
Johnston K.V., 1998, ApJ, 495, 297
Katz N., 1992, ApJ, 391, 502
Kauffmann G., White S.D.M, Guiderdoni B., 1993, MNRAS, 264, 201
Kauffmann G., 1996, MNRAS, 281, 487
Klessen R., Kroupa P., 1998, ApJ, 498, 143
Kroupa P., 1997, NewA, 2, 77
Lynden-Bell D., 1962, MNRAS, 124, 9
Lynden-Bell D., 1994 in “The Formation and Evolution of Galaxies, V Canary Islands Win-
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Appendix A Spherical potential

2-D case

For a spherical potential Φ( � ), the Hamiltonian is separable in spherical coordinates and de-
pends on the actions

� 4 and
�Çï

only through the combination
� 490 �Çï � � . We therefore may

choose a system of coordinates which coincides with the plane of motion of the system, reducing
the problem to 2-D. The position of a particle is given by its angular ð and radial � coordinates
on that plane. In that case, we have� � ��ò � ¢ ò X � 8 � 1^ r 8 28 1 [�� 1� � 2( � . Φ( � )) � 2 . � 2 (A1)

where � is the total angular momentum of the particle, � its energy and � 1 and � 2 are the turning
points in the radial direction of motion. The action

� 8 cannot be computed analytically in gen-
eral for an arbitrary potential. However, Eq.(A1) defines an implicit function óN��ó ( � X � X � 8 ) õ 0,
which we can differentiate to find the frequencies of motion and their derivatives. These are
needed to compute the elements of the matrix É ( ! ) (Eq.(2.19)) and to obtain the time evolution
of the distribution function.

To simplify the computations, we assume that the variance matrix F in action-angle variables
is diagonal at ! � 0: ` 0 ¾'Å G � `Kd¼d ç d ² . The evolution of the system in phase-space is obtained
through the product É ( ! ) ¹ `�÷ ¾ É ( ! ), which yields the following variance matrix ` ¾ ( ! ) d ² �h��F X »'�at time !

` ¾ ( ! ) � °HH± ` 11 0 . ` 11Ω £11 ! . ` 11Ω £12 !� 1 X 2 � ` 22 . ` 22Ω £12 ! . ` 22Ω £22 !� 1 X 3 � � 2 X 3 � ` 11Ω £11
2 ! 2 0A` 22Ω £12

2 ! 2 0V` 33 Ω £11 ` 11Ω £12 ! 2 0 Ω £12 ` 22Ω £22 ! 2� 1 X 4 � � 2 X 4 � � 3 X 4 � ` 11Ω £12
2 ! 2 0A` 22Ω £22

2 ! 2 0A` 44

´JIIµ
in action-angle variables, with Ω £d ² � � Ω d � � � ² . Subindices � 1 � and � 3 � refer to directions asso-
ciated to ð , such as for example

¥ ò
and

��ò
, whereas � 2 � and � 4 � are related to � .

We find the properties of the debris in configuration and momenta space by transforming
the action-angle coordinates locally around 
c with the matrix ½ � 1. Its elements are the second
derivatives of the characteristic function � ( � X ¦ ):½ � 1 � ¶?K Ï©Ï ¦MLi0 K Ï L K Ï�Ï ¦'û¦ L ¦ û º (A2)N

As we mentioned in Section 2.4.2, � is in fact the inverse of the covariance matrix. However we refer to � as the
variance matrix.
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with ¦MLT� . K � 1L Ï K L'L and ¦	û�� K � 1L Ï , and has the following form for a spherical potential in
2-D ½ � 1 � °HH± 1 ! 12 ! 13 ! 14

0 ! 22 ! 23 ! 24
0 0 1 0
0 ! 42 ! 43 ! 44

´JIIµ (A3)

with ! 12 � . % ( � )
Ω 8 � 2 �� � � � 8 0 1¢ 87z Ω

ò . �� 2 { X ! 13 � � 2 �� � 2 0 � 2 �� � � � 8 ! 43 X ! 14 � � 2 �� � � � 8 ¢ 8Ω 8 X! 22 � . % ( � )
Ω 8 � 2 �� � 28 0 Ω 8¢ 8 X ! 23 � � 2 �� � � � 8 0 � 2 �� � 28 ! 43 X ! 24 � � 2 �� � 28 ¢ 8Ω 8 X! 42 � . % ( � )
Ω 8 X ! 43 � . 1

Ω 8 z Ω
ò . �� 2 { X ! 44 � ¢ 8

Ω 8
and % ( � ) � . Φ £ ( � ) 0 � 2� 3 X ¢ 8 � ! 2( � . Φ( � )) . � 2� 2 X
where all functions are evaluated at 
c . Therefore the variance matrix in ( c X�� ) is` ú � ( É ( ! ) ½ � 1) ¹ ` ÷ ¾ ( É ( ! ) ½ � 1) X (A4)

so that, by substituting

` ú � °HH± ` 11 ` 11 O ` 11 P ` 11 Ð� 1 X 2 � ` 11 O 2 07` 22 v 2 07` 44 ! 242 O ` 11 P 07v7` 22 ��0ô! 42 ` 44 ! 43 O ` 11 ÐÖ07v7` 22
. 0ô! 42 ` 44 ! 44� 1 X 3 � � 2 X 3 � ` 11 P 2 07` 22 � 2 07` 33 07` 44 ! 243 P ` 11 ÐÖ07��` 22
. 0ô! 43 ` 44 ! 44� 1 X 4 � � 2 X 4 � � 3 X 4 � ` 11 Ð 2 07` 22
. 2 07` 44 ! 244

´JIIµ
and where O � ! 12 . Ω £12 ! 42 ! X P � ! 13 . Ω £11 ! . Ω £12 ! 43 ! X Ð/�
! 14 . Ω £12 ! 44 ! Xv � ! 22 . Ω £22 ! 42 ! X �í�
! 23 . Ω £12 ! . Ω £22 ! 43 ! X . �
! 24 . Ω £22 ! 44 ! �
In general, one is more interested in the characteristics of the debris in velocity space, rather than
in momenta space. Thus we transform the variance matrix according to ` ¸ �¡� ¹û ù ³ ` ú �	û ù ³ , with

½9û ù ³ � °HH± 1 0 0 0
0 1 0 0
0 3 ò � 0
0 0 0 1

´JIIµ � (A5)

The diagonalization of the variance matrix ` ¸ yields the values of the dispersions along
the principal axes and their orientation: two of its eigenvalues increase with time, whereas the
other two decrease with time. To understand the directly observable properties of the debris
we examine what happens around a particular point ¯c ( ! ) in configuration space located on the
mean orbit of the system. This is equivalent to studying the velocity submatrix` ¸ ( 3 ) � ¶ � 2( ` 11 P 2 0\` 22 � 2 0V` 33 0A` 44 ! 243) � ( P ` 11 Ð 0A�N` 22

. 0�! 43 ` 44 ! 44)� 1 X 2 � ` 11 Ð 2 0A` 22
. 2 0V` 44 ! 244

º �
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For example, by diagonalizing the matrix ` ¸ ( 3 ) we obtain the directions of the principal
axes of the velocity ellipsoid at the point ¯c ( ! ), and their dispersions. Its eigenvalues are the
roots of det[ ` ¸ ( 3 ) .�ÿ Ê ] � 0. For !>} ! orbÿ d � ! 2

2 Q � 2 ¬G` 11 z Ω £11 . Ω £12
Ω 8�z Ω

ò . �� 2 {�{ 2 0A` 22 z Ω £12 . Ω £22
Ω 8Zz Ω

ò . �� 2 {�{ 2 ¯ 0z ¢ 8Ω 8+{ 2 � ` 11Ω £12
2 0\` 22Ω £22

2 � ( U RSR X (A6)

for Fi� 1 X 2, and whereR � Q � 2 ¬ ` 11 z Ω £11 . Ω £12
Ω 8 z Ω

ò . �� 2 {9{ 2 0V` 22 z Ω £12 . Ω £22
Ω 8 z Ω

ò . �� 2 {Ó{ 2 ¯ .z ¢ 8Ω 8�{ 2 � ` 11Ω £12
2 0\` 22Ω £22

2 � R 2 0
4 � 2 z ¢ 8Ω 8�{ 2 ¶ ` 11Ω £12 z Ω £11 . Ω £12

Ω 8�z Ω
ò . �� 2 {�{ 0V` 22Ω £22 z Ω £12 . Ω £22

Ω 8
z Ω
ò . �� 2 {9{ º 2 � (A7)

Thereforeÿ 1 ÿ 2 � � ! 2(Ω £11Ω £22 . Ω £12
2) ! 44

� 2 ` 11 ` 22 � 2 Xÿ 1 0 ÿ 2 � ! 2 � 2 � ` 11(Ω £11 0 Ω £12 ! 43)2 0V` 22(Ω £12 0 Ω £22 ! 43)2 � 0V! 2 � ` 11Ω £12
2 0\` 22Ω £22

2 � ! 244 �
Since ` ( 36d ) � � 1 � ÿ d both velocity dispersions decrease on the average as 1 ��! . The principal axes
of the ellipsoid rotate as time passes by, not being coincident with any particular direction.

3-D treatment

As we discussed in Section 2.4.2, the problem of the disruption of the system and its evolution in
phase-space is really a 3-D problem, since our initial satellite had a finite width in all directions.
Since we just discussed in great detail what happens in the 2-D case and the way of proceeding
once more dimensions are added is the same, we will simply outline our main results, focusing
on what happens to the velocity submatrix.

If we assume that the system had initially a diagonal variance matrix in action-angle vari-
ables, the velocity submatrix at time ! is` ¸ ( 3 ) �Z½ ¹û ù ³UT ( ! ) ½ û ù ³ X (A8)

with T ( ! ) � ( K Ï�Ï K � 1L Ï . ! Ì £ K � 1L Ï ) ¹ ` 04 ( K Ï�Ï K � 1L Ï . ! Ì £ K � 1L Ï ) 0 K � 1L Ï ¹ ` 0Ï K � 1L Ï X (A9)

where K Ï�Ï is the matrix whose elements are the second derivatives of the characteristic func-
tion with respect to the actions, K L Ï the matrix that contains the second derivatives of � with
respect to the coordinates � and the actions ¦ , and Ω £d ² � � Ω d � � � ² . Note that, since the potential
is spherical Ì £ and K Ï�Ï have two equal rows. The initial variance matrix in action-angle space` ÷ ¾ � ¶ ` 04 ÍÍ ` 0Ï º �
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We can compute the density at a later time at the point ¯c ( ! ) located on the mean orbit of the
system by integrating k ( 
c XGl5X ! ) �Zk 0 exp ¶ . 1

2 · ¹¸ ( ! ) ` ¸ ( ! ) · ¸ ( ! ) º X
with respect to the velocities using the submatrix ` ¸ ( 3 )� ( 
c X ! ) � r ∆ ³ýþ r ∆ ³ � r ∆ ³ � [+3 î [+3 ï [�3�8'k ( 
c Xml5X ! ) �
In the principal axes frame� ( 
c X ! ) �Zk 0(2 ^ )3 ] 2 ` ³ 1 ( ! ) ` ³ 2 ( ! ) ` ³ 3 ( ! )Erf ¬ S 1U 2 ` ³ 1 ( ! ) ¯ Erf ¬ S 2U 2 ` ³ 2 ( ! ) ¯ Erf ¬ S 3U 2 ` ³ 3 ( ! ) ¯ X (A10)

with S 1 X S 2 X S 3 the boundaries of the integration volume. For !>} ! orb the error function tends to
1, and therefore � ( ¯c X ! ) � (2 ^ )3 ] 2 k 0 ` ³ 1( ! ) ` ³ 2 ( ! ) ` ³ 3 ( ! ) X (A11)

that is equivalent to � ( ¯c X ! ) � (2 ^ )3 ] 2 k 0 � � ÿ 1 ÿ 2 ÿ 3 X (A12)

where the ÿ ’s are the eigenvalues of ` ¸ ( 3 ). With simple algebra it can be shown thatÿ 1 ÿ 2 ÿ 3 � det ` ¸ ( 3 ) X (A13)

which is readily computable from Eqs.(A8) and (A9)

det ` ¸ ( 3 ) � (det ½Tû ù ³ )2(det K � 1L Ï )2 det[( K Ï©Ï . ! Ì £ ) ¹ ` 04 ( K Ï�Ï . ! Ì £ ) 0V` 0Ï ] X (A14)

where

det ½Tû ù ³ �Z� 2 sin � (A15)

and

det K � 1L Ï � ¢ 8
Ω 8 ¢ ï� � (A16)

The remaining determinant in Eq.(A14) for !>} ! orb is` 33( ` 11 0A` 22)( ` 44 0A` 55)(Ω £11Ω £33 . Ω £13
2)2 ! 4 X

so that finally � ( 
c X ! ) � (2 ^ )3 ] 2 k 0gΩ £11Ω £33 . Ω £13
2 g Ω 8 �� ` 33( ` 11 0V` 22)( ` 44 0V` 55)

1� 2 sin �Çg ¢ 8 ¢ ï g 1! 2 � (A17)

Let us recall that `'d¼dp� 1 ��` 24 Å for Fi� 1 ��� 3 and `Kd¼d_� 1 � ` 2Ï G for F<�V»90 3 � 4 ��� 6.
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Appendix B Axisymmetric Eddington potential

To exemplify and understand how the rupture of the spherical symmetry affects the characteris-
tic scales of the system, we take a very simple Eddington potential Φ( � X � ) � Φ1( � ) 0V� ( � cos � ) ��� 2

(Lynden-Bell 1962; 1994) which is separable in spherical coordinates. The third integral for this
class of potentials is

�
3 � 1

2 � 2 0�� ( � cos � ). The actions are computed from:� î � � � X (B1)�Çï � 1
2 ^ ¤ [ � 2(

�
3 . � ( � )) . � 2î

sin2 � X (B2)� 8 � 1
2 ^ ¤ [��"! 2( � . Φ1( � )) . 2

�
3� 2
� (B3)

The procedure outlined in Section 2.4.1 and Appendix A can also be applied to a system
moving in this type of potentials. In particular we are interested in the behaviour of the density.
By virtue of the previous discussion we only need to find the determinant of the variance matrix
as in Eq.(A14), for this potential. Since Eqs.(A15) and (A16) remain unchanged, we only focus
on det[( K Ï�Ï K � 1L Ï . ! Ì £ K � 1L Ï ) ¹ ` 04 ( K Ï�Ï K � 1L Ï . ! Ì £ K � 1L Ï ) 0�` 0Ï ]. For !_}�! orb the term with Ì £ will
dominate with respect to K Ï�Ï , and the product ! 2( Ì £ K � 1L Ï ) ¹ ` 04 Ì £ K � 1L Ï will dominate over ` ÷ Ï�W .
Therefore

det ` ¸ ( 3 ) � (det ½Tû ù ³ )2(det K � 1L Ï )2(det Ì £ ! )2 det ` 04 X (B4)

and so the density at the point 
c at time ! is� ( 
c X ! ) � (2 ^ )3 ] 2 k 0Q
det ` 04 1g det Ì £ g � � 3� �Çï Ω 8� 2 sin �Çg ¢ 8 ¢ ï g 1! 3 � (B5)

This expression is valid for a satellite described initially by a Gaussian distribution. The
variance matrix at !>��! 0 may be

1. diagonal in action-angle variables:

det ` 04 � 1 � ( `'4 1 `	4 2 `'4 3 )2 X
2. diagonal in configuration-velocity space:

det ` 04 � ¢ 2ï ¢ 28
Ω28 ( � � 3 � � �Çï )2

1` 2î ` 2³ à 1` 2ï ¶ � 28�8 0 3 î 2 0\3 ï 2� 2
º0 1` 2³ ¬ � 28�8 � 2ï�ï� 2 0\3 2î Ô cos2 �

sin2 � � 28�8 0 z 3 ï� cos �
sin � . � ï�ï� 2 { 2 Õ ¯ R X

where all functions are evaluated at ( 
c>÷ X 
l ÷ ), and� ï�ï � % ï¢ ï X % ï � . � £ ( � ) 0 � 2î cos �
sin3 � X

and ��8�85� %K8¢ 8 X %K8�� . Φ £1( � ) 0 2
�

3� 3
�X

This does not hold for the spherical case because det[(Ω
èZY J 1[ Ú ) × � 0Ù Ω è\Y J 1[ Ú ] ] det Ω

è_^
0
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The expression for the determinant of the angle submatrix at !5� 0 may be simplified if
the satellite is initially close to a turning point of the orbit. In this case the term � 2ï�ï � 28�8
will be dominant and

det ` 04 � ¬ % ï ( � 0) %Ç8 ( � 0)
Ω 8'� 0 z � � 3� �Çï {

� 1 1` î ` 2³�¯ 2 �
Note that the main differences with the spherical case are` the time dependence: ! 3 instead of ! 2 because of the increase in the dimensionality of the

problem;` the dependence on the derivatives of the basic frequencies of motion: the same functional
dependence det Ì £ , but now with three independent frequencies and derivatives;` the inclusion of the term � � 3 � � �Çï , which for the spherical case is simply � ;` the form of ¢ ï � Q

2(
�

3 . � ( � )) . � 2î � sin2 � , which also includes the angular dependence
of the potential.

Appendix C Axisymmetric Stäckel potential

In this section we collect some basic properties of Stäckel potentials and derive the density
behaviour as a function of time, as in previous sections, from Liouville’s Theorem and the evo-
lution of the system in action-angle variables. Further details on Stäckel potentials can be found
in de Zeeuw (1985).

Let us first introduce spheroidal coordinates ( ÿ X � Xa& ), where & is the azimuthal angle in the
usual cylindrical coordinates (

R X $ Xa& ), and ÿ and � are the two roots for ; ofR
2; . S 2 0 $ 2; . § 2 � 1 X (C1)

where § 2 ?\�s?\S 2 ? ÿ . A potential is of Stäckel form if it can be expressed as�/� . ( ÿN. § 2)
�

( ÿ ) . ( � . § 2)
�

( � )ÿ�. � X (C2)

where
�

( ; ) is an arbitrary function ( ; � ÿ X � ). In this case, the Hamiltonian becomes"�� ¢ 2(
2 � 2 0 ¢ 21

2
� 2 0 ¢ 2î

2
R

2 0\� ( ÿ X � ) (C3)

where the functions � and
�

are� 2 � ÿ�. �
4( ÿ�. S 2)( ÿN. § 2) X � 2 � � .�ÿ

4( � . S 2)( � . § 2)
� (C4)

Three isolating integrals of motion can be found ( � ,
�

2,
�

3), and the system is separable since
the equations of motion can be written as¢ 29 � 1

2( ; . S 2)
¶ � ( ; ) . �

2; . S 2 . �
3; . § 2 º X ; � ÿ X � X (C5)
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and ¢ î ��� � � � 2
�

2 � (C6)

To represent the Galaxy we may choose a superposition of two Stäckel potentials: a disk
plus a halo component �/�cbÇ� disk 0 (1 . b ) � halo X (C7)

where b represents the mass fraction of the disk with respect to the total mass of the Galaxy.
Since the coordinates used for the halo and the disk have to be the same, this introduces a
relation between the characteristic parameters ( S d X § d) and ( S h X § h) of the Stäckel potentials. It
can be shown that the potential� ( ÿ X � X � ) � . ��� ¶ bU ÿ 0 U � 0 1 . bU ÿ 0V�50 U ��0V� º (C8)

where � is related to the flattening of the halo component, provides a good description yielding
a flat rotation curve with similar properties to that of our Galaxy (Batsleer & Dejonghe 1994).
The function

�
( ; ) in Eq.(C2) is�

( ; ) � ��� ¶ bU ; 0V§ 0 1 . bU ; 0\�50V§ º (C9)

For the characteristic parameters we choose S d � 2, § d � 1, S h � § h � 1 � 01 (giving a rather spher-
ical halo), b � 0 � 12 and

� � 5 � 1011 M 1 .
In order to obtain the evolution of the mean density of debris as a function of time in a

Stäckel potential we use the results of Section 2.4 and of Appendices A and B. From Eqs.(A12)
and (A13) the density is proportional to the determinant of the velocity submatrix. Since the
Hamiltonian is separable in spheroidal coordinates, to obtain the density in cylindrical (or
spherical) coordinates we need to multiply Eq.(B4) by the determinant of the matrix that per-
forms the transformation between the two sets of coordinates. Thus

det ` ¸ ( 3 ) � � det ½9û ù ³ det ½9ûed ù ûgfihaj det K � 1L Ï det Ì £ ! � 2
det ` 04 X (C10)

where

det ½9û ù ³ � R X det ½Tû d ù ûefkhaj det K � 1L Ï � ( � . ÿ ) 3 ( 3 1
Ω 1 � � 3� � ( . Ω ( � � 3� � 1

� (C11)

The mean density at time ! at the point ¯c on the mean orbit of the system becomes

� ( 
c X ! ) � (2 ^ )3 ] 2 k 0Q
det ` ÷4 1g 3 ( 3 1 g�g ÿ�. �_g R ÁÁÁÁΩ 1 � � 3� � ( . Ω ( � � 3� � 1 ÁÁÁÁg det Ì £ g 1! 3 � (C12)

This expression is valid for a satellite described initially by a Gaussian distribution. The vari-
ance matrix at !w�
! 0 may be

1. diagonal in action-angle variables:

det ` 04 � 1 � ( `'4 1 `	4 2 `'4 3 )2 X
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2. diagonal in configuration-velocity space. If the satellite is initially close to a turning point
of the orbit then

det ` 04 � °HH± % ( %+1ÁÁÁÁΩ 1 � � 3� � ( . Ω ( � � 3� � 1 ÁÁÁÁ
ÿ�. �� 3 � 3

1` î ` 2³ ´JIIµ 2 X (C13)

where all functions are evaluated at ( 
c ÷ X 
l ÷ ), and%�9�� 2¢ 9 � ¢ 9�); X ; � ÿ X � �





Chapter 3

Debris streams in the Solar neighbourhood as
relicts from the formation of the Milky Way O

Uno busca lleno de esperanzas,
el camino que los sueños,
prometieron a sus ansias,
Sabe que la lucha es cruel y es mucha,
pero lucha y se desangra,
por la fe que lo empecina.

E. S. Discépolo: “Uno”

ABSTRACT

It is now generally believed that galaxies were built up through gravitational
amplification of primordial fluctuations and the subsequent merging of smaller
precursor structures. The stars of the structures that assembled to form the
Milky Way should now make up much or all of its bulge and halo, in which
case one hopes to find “fossil” evidence for those precursor structures in the
present distribution of halo stars. Confirmation that this process is continuing
came with the discovery of the Sagittarius dwarf galaxy (Ibata, Gilmore & Ir-
win 1994), which is being disrupted by the Milky Way, but direct evidence that
this process provided the bulk of the Milky Way’s population of old stars has
so far been lacking. Here we show that about ten per cent of the metal-poor
stars in the halo of the Milky Way, outside the radius of the Sun’s orbit, come
from a single coherent structure that was disrupted during or soon after the
Galaxy’s formation. This object had a highly inclined orbit about the Milky
Way at a maximum distance of � 16 kpc, and it probably resembled the Fornax
and Sagittarius dwarf spheroidal galaxies.

P
Based on: Amina Helmi, Simon D.M. White, P. Tim de Zeeuw and HongSheng Zhao, Nature, 402, 53 (1999)



58 CHAPTER 3. Debris streams in the Solar neighbourhood

Early studies treated the formation of the Milky Way’s spheroid as an isolated collapse,
argued to have been either rapid and “monolithic” (Eggen, Lynden-Bell & Sandage 1962), or
inhomogeneous and slow compared to the motions of typical halo stars (Searle & Zinn 1978).
A second dichotomy distinguished “dissipationless” galaxy formation, in which stars formed
before collapse (Gott 1977), from “dissipative” models in which the collapsing material was
mainly gaseous (Larson 1975). Aspects of these dichotomies remain as significant issues in cur-
rent theories (White & Frenk 1991), but they are typically rephrased as questions about whether
small units equilibrate and form stars before they are incorporated into larger systems, and
about whether they are completely disrupted after such incorporation. Stars from Galactic pre-
cursors should be visible today either as “satellite” galaxies, if disruption was inefficient, or as
part of the stellar halo and bulge, if it was complete.

Recent work examined the present-day distribution expected for the debris of a precursor
which was disrupted during or soon after the formation of the Milky Way (Helmi & White
1999). Objects which could contribute substantially to the stellar halo near the Sun must have
had relatively short orbital periods. Ten Gyr after disruption their stars should be spread evenly
through a large volume, showing none of the trails characteristic of currently disrupting systems
like Sagittarius (Johnston, Hernquist & Bolte 1996). In any relatively small region, such as the
Solar neighbourhood, their stars should be concentrated into a number of coherent “streams”
in velocity space, each showing an internal velocity dispersion of only a few km s � 1. Objects
initially similar to the Fornax or Sagittarius dwarf galaxies should give rise to a few streams in
the vicinity of the Sun.

The high quality proper motions provided by the HIPPARCOS satellite allow us to construct
accurate three-dimensional velocity distributions for almost complete samples of nearby halo
stars. Drawing on two recent observational studies (Beers & Sommer-Larsen 1995; Chiba &
Yoshii 1998), we define a sample containing 97 metal deficient ([Fe/H] ? . 1 � 6 dex) red giants
and RR Lyrae within 1 kpc of the Sun and with the following properties:

1. HIPPARCOS proper motions are available for 88 of them (ESA 1997); for the remaining
stars there are ground-based measurements (Röser & Bastian 1988); in all cases accuracies of a
few mas yr � 1 are achieved.

2. Radial velocities have been measured from the ground, with accuracies of the order of
10 km s � 1. Metal abundances have been determined either spectroscopically or from suitable
photometric calibrations (Norris, Bessell & Pickles 1985; Beers et al. 1990; Anthony-Twarog &
Twarog 1994).

3. Calibrations of absolute magnitude
�\@

against [Fe/H] for red giants (Norris, Bessell &
Pickles 1985; Beers et al. 1990; Anthony-Twarog & Twarog 1994) and RR Lyrae (Layden 1994),
allow photometric parallaxes to be derived to an accuracy of roughly 20%. These are more accu-
rate than the corresponding HIPPARCOS trigonometric parallaxes, but still remain the largest
source of uncertainty in the derived tangential velocities.

4. We estimate the completeness to be of the order of � 92%, based on the fact that there
are eight known giants which satisfy our selection criteria but do not have measured proper
motions.

We look for substructure in our set of halo stars by studying the entropy
q

of the sample,
defined as: q � . ­ d 
�d
 log


�d Oml
 X (3.1)

where the sum is over the Onl elements of the partition, the F -th element contains 
Nd stars, and
 is the total number of stars. In the presence of substructure the measured entropy will be
smaller than that of a smooth distribution, and will depend on the details of the partition; some
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partitions will enhance the signal, whereas others will smear it out. If there is no substructure
then all partitions will yield similar

q
values, and no significant minimum value will be found.

We implement this entropy test initially by partitioning velocity space into cubic cells 70
km s � 1 on a side. This choice is a compromise. It leaves a large number of cells in the high
velocity range empty, but in the regions containing most of the stars, there are at least a few
stars per cell.

It is necessary to quantify the significance of any observed low entropy value relative to
the distribution expected in the absence of substructure. Here we do this by generating Monte
Carlo realizations which test whether the kinematics of the sample are consistent with a mul-
tivariate Gaussian distribution (Sommer-Larsen et al. 1997). Our synthetic data sets have the
same number of stars and the same spatial distribution as the observed sample. The character-
istic parameters of the multivariate Gaussian used to describe the kinematics are obtained by
fitting to the observed mean values and variances after appropriate convolution with the ob-
servational errors. We then generate 10000 “observed” samples as follows. A velocity is drawn
from the underlying multivariate Gaussian; it is transformed to a proper motion and radial
velocity (assuming the observed parallax and position on the sky); observational “errors” are
added to the parallax, the radial velocity and the proper motion; these “observed” quantities are
then transformed back to an “observed” velocity. Finally we calculate entropies for these 10000
Monte Carlo samples on the same partition as the real data; only for 5.6% do we find values ofq

smaller than observed. We have repeated this test for many partitions, finding a large number
with probabilities as low or lower than this. In particular, for a partition with a 250 km s � 1 bin
in 3�4 , and 25 km s � 1 bins in 36& and 3 � , ( 36& , 3�4 and 3 � are the velocity components in the ra-
dial, azimuthal and $ -directions respectively), only 0.06% of Monte Carlo simulations have

q
smaller than observed. In general cubic cells yield lower significance levels, suggesting that the
detected structure may be elongated along 3 4 . We conclude that a multivariate Gaussian does
not properly describe the distribution of halo star velocities in the Solar neighbourhood.

At this point the main problem is to identify the structure which makes the observed data in-
compatible with a smooth velocity distribution. A comparison of the three principal projections
of the observed distribution to similar plots for our Monte Carlo samples reveals no obvious
differences, as shown in Figure 3.1. To better identify streams we turn to the space of adiabatic
invariants. Here clumping should be stronger, as all stars originating from the same progen-
itor have very similar integrals of motion, resulting in a superposition of the corresponding
streams. We focus on the plane defined by two components of the angular momentum:

�	�
and� � � Q � 2� 0 � 2o , although

� �
is not fully conserved in an axisymmetric potential. In Fig. 3.2(a)

we plot
� �

versus
� �

for our sample. For comparison, Fig. 3.2(b) gives a similar plot for one of
our Monte Carlo samples. For

� � ? 1000 kpc km s � 1 and g � � g�? 1000 kpc km s � 1, the observed
distribution appears fairly smooth. In this region we find stars with relatively low angular mo-
mentum and at all inclinations. In contrast, for

� �qp
1000 kpc km s � 1, there are a few stars

moving on retrograde low inclination orbits, an absence of stars on polar orbits, and an appar-
ent “clump” on a prograde high inclination orbit.

To determine the significance of this clumping, and to confirm it as the source of the sig-
nal detected by our entropy test, we compare the observed star counts in this plane to those
for our Monte Carlo data sets. We count how many stars fall in each cell of a given partition
of this angular momentum plane and compare it to the expected number in the Monte Carlo
simulations. We say that the F -th cell has a significant overdensity if there is less than 1% prob-
ability of obtaining a count as large as the observed 
 d from a Poisson distribution with mean
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FIGURE 3.1— Scatter plots of the different velocity components. The left column corresponds to the stars in our
sample, the right column represents one realization of the Monte Carlo set of simulations. Velocities are referred to
the Galactic Centre; we adopt 8 kpc as the distance to the Galactic Centre and 220 km s J 1 towards Galactic longituder * 0 and Galactic latitude sp* 0 as the velocity of the Local Standard of Rest.

nm
 d oY�Z
 � 1
sim

� sim­ ² ® 1


 d² , where 
 d² is the count in the F -th cell in the » -th simulation, and 
 sim is the

number of simulations. We repeat this test is for a series of regular partitions of ¢ ��� elements,
with ¢ , � ranging from 3 to 20, thus allowing a clear identification of the deviant regions. We
find a very significant deviation in most partitions for cells with

�_� � 2000 kpc km s � 1 and
500 E � � E 1500 kpc km s � 1; the probabilities of the observed occupation numbers range from
0.03% to 0.98%, depending on the partition, and in some partitions more than one cell is signif-
icantly overdense.

Given this apparently significant evidence for substructure in the local halo, we study what
happens if we relax our metallicity and distance selection criteria. We proceed by including in
our sample all red giants and RR Lyrae stars studied by Chiba and Yoshii (1998) with metal-
licities less than . 1 dex and distances to the Sun of less than 2.5 kpc. This new sample con-
tains 275 giant stars and adds 5 new stars to the most significant clump in our complete sam-
ple. Of the 13 members of the clump, 9 have [Fe � H] ? . 1 � 6, whereas the remaining 4 have
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FIGURE 3.2— The distribution of nearby halo stars in the plane of angular momentum components, Ò_t vs. Ò8u�*v Ò 2w �ôÒ 2h , for our near complete sample (a) and for one Monte Carlo realization (b).n [Fe � H] o5� . 1 � 53 ( 0 � 12, indicating that they are also very metal-poor. These stars are dis-
tributed all over the sky with no obvious spatial structure.

In Figure 3.3 we highlight the kinematic structure of the clump in the extended sample. The
clump stars are distributed in two streams moving in opposite directions perpendicular to the
Galactic Plane, with one possible outlier. This star has 3 &¡� 285 ( 21 km s � 1, and we exclude
it because its energy is too large to be consistent with the energies of the other members of
the clump. The velocity dispersions for the stream with negative 3 � (9 stars) are ` 4 � 30 ( 17,`Ç&Ö� 105 ( 16, ` � � 24 ( 28 in km s � 1, whereas for the stream with positive 3 � (3 stars) these are`'49� 49 ( 22, `Ç&Ö� 13 ( 33, ` � � 31 ( 28 in km s � 1. An elongation in the 3©& -direction is expected
for streams close to their orbital pericentre (compare with other plots of simulated streams, cf.
Helmi & White 1999).

The orbit of the progenitor system is constrained by the observed positions and velocities
of the stars. The orbital radii at apocentre and pericentre are � apo � 16 kpc and � peri � 7 kpc,
the maximum height above the plane is $ max � 13 kpc, and the radial period is ��� 0 � 4 Gyr, for
a Galactic potential including a disk, bulge and dark halo (as in Johnston, Hernquist & Bolte
1996). We run numerical simulations of satellite disruption in this potential to estimate the ini-
tial properties of the progenitor. After 10 Gyr of evolution, we find that the observed properties
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FIGURE 3.3— The distribution of nearby halo stars in velocity space and in the Ò7t – Ò2u plane. Data are shown for
our original sample (filled circles) and for the extended sample of more metal-rich and more distant giants (Chiba &
Yoshii 1998) (open circles). Candidates for our detected substructure are highlighted in grey: triangles indicate more
metal-rich giant stars at distances x 1 kpc, diamonds more metal-rich giants at y 1 kpc, squares metal-poor giants
at x 1 kpc, and circles metal-poor giants at y 1 kpc.

of the streams detected can be matched by stellar systems similar to dwarf spheroidals with
initial velocity dispersions ` in the range 12 . 18 km s � 1 and core radii

R
of 0 � 5 . 0 � 65 kpc. An

example is shown in Figure 3.4. We also analysed whether the inclusion of an extended dark
halo around the initial object would affect the structures observed and found very little effect.
We derive the initial luminosity � from �\�h�{z�� ( k giant � Ð?z�� k sim), where �|z�� 350 L 1 is the
total luminosity of the giants in the clump in our near-complete sample, k giant � 0 � 13 is the ratio
of the luminosity in giants with

� @
and ( P . � ) in the range observed to the total luminosity of

the system for an old metal-poor stellar population (Bergbusch & VandenBerg 1992), Ð z � 0 � 92
is our estimated completeness, and k sim � 1 � 9 � 10 � 4 is the fraction of the initial satellite con-
tained in a sphere of 1 kpc radius around the Sun as determined from our simulations. This
gives �V� 1 � 5 � 107 L 1 , from which we can derive, using our previous estimates of the initial
velocity dispersion and core radii, an average initial core mass-to-light ratio

� ���¡� 3 . 10 } 1 ,
where } 1 is the mass-to-light ratio of the Sun. A progenitor system with these characteristics
would be similar to Fornax. Moreover, the mean metal abundance of the stars is consistent with
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FIGURE 3.4— The distribution of particles in the vicinity of the Sun from one of our simulations of a disrupted
satellite, 12 Gyr after infall, in velocity space and in the Ò~t – Ò8u plane. In this case, the initial core radius of the
progenitor system is 0 , 5 kpc and its initial velocity dispersion is 16.5 km s J 1 . The candidate stars for our detected
substructure are highlighted in grey for comparison.

the derived luminosity, if the progenitor follows the known metallicity-luminosity relation of
dwarf satellites in the Local Group (Mateo 1998).

The precursor object was apparently on an eccentric orbit with relatively large apocentre.
Given that it contributes 7/97 of the local halo population, our simulations suggest that it
should account for 12% of all metal-poor halo stars outside the Solar circle. Figure 3.3 shows that
there are few other halo stars on high angular momentum polar orbits in the Solar neighbour-
hood, just the opposite of the observed kinematics of satellites of the Milky Way (Lynden-Bell
& Lynden-Bell 1995). The absence of satellite galaxies on eccentric non-polar orbits argues that
some dynamical process preferentially destroys such systems; their stars should then end up
populating the stellar halo. As we have shown, the halo does indeed contain fossil streams
with properties consistent with such disruption.
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Chapter 4

Mapping the substructure in the Galactic halo
with the next generation of astrometric satellites O

Things are the way they are, because
they were the way they were.

F. Hoyle

ABSTRACT

We run numerical simulations of the disruption of satellite galaxies in a Galac-
tic potential to produce a stellar halo, in order to investigate what the next gen-
eration of astrometric satellites will reveal by observing the halo of the Milky
Way. We generate artificial DIVA, FAME and GAIA halo catalogues, in which
we look for the signatures left by the accreted satellites. We develop a method
based on the standard Friends-of-Friends algorithm applied to the space of in-
tegrals of motion. We find this simple method can recover about 50% of the
different accretion events, when the observational uncertainties expected for
GAIA are taken into account, even when the exact form of the Galactic po-
tential is unknown. The recovery rate for DIVA and FAME is much smaller,
but these missions, like GAIA, should be able to test the hierarchical forma-
tion paradigm on our Galaxy by measuring the amount of halo substructure in
the form of nearby kinematically cold streams with for example, a two-point
correlation function in velocity space.

P
Based on: Amina Helmi and P. Tim de Zeeuw, submitted to MNRAS
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4.1 Introduction

Hierarchical theories of structure formation in the Universe propose that galaxies are the result
of mergers and accretion of smaller building blocks (White & Rees 1978). Detailed studies of
the properties of a galaxy built in this way have shown that such events leave fossil signatures
in the present day components, which for a galaxy like our own would be clearly detectable
with future astrometric missions (Helmi & White 1999). In particular the stellar halo would
be the natural place to look for such substructures, since a spheroidal component is formed by
the trails of stars left by disrupted satellite galaxies. Moreover, recent observations have shown
that indeed considerable structure is still present in Milky Way’s halo, indicating that accretion
events have had some role in its formation history (e.g. Ibata, Gilmore & Irwin 1994; Majewski,
Munn & Hawley 1996; Helmi et al. 1999).

In the next ten years, several satellite missions will be devoted to measure with very high
accuracy the motions of thousands to many millions of stars in our Galaxy. NASA’s Space Inter-
ferometry Mission (SIM) is a targeted mission which will obtain parallaxes and proper motions
for about 10000 stars. With somewhat different goals, and more similar to the HIPPARCOS
satellite, the Full-sky Astrometric Mapping Explorer (FAME, Horner et al. 1999) promises to
measure positions and parallaxes for stars brighter than � � 5 to better than 50 $ as and proper
motions to 50 $ as yr � 1. At � � 15 these accuracies will be degraded by an order of magnitude.
The resulting astrometric database will have 4 � 107 stars, and may be combined with the radial
velocities from the Sloan Digital Sky Survey or from other ground based catalogues to obtain
full phase-space information. Less ambitious but still an improvement over HIPPARCOS is the
German DIVA mission (Röser 1998). If launched it will observe of the order of 3 � 5 � 107 stars,
at four times the precision of HIPPARCOS ( `+�s� 0 � 25 mas and ` * � 0 � 4 mas yr � 1 at � � 10),
thereby completing the knowledge of nearby stars. Like FAME, DIVA will not measure radial
velocities. On the other hand, the proposed ESA astrometric satellite GAIA (Gilmore et al. 1998)
will provide very precise astrometry ( E 10 $ as in parallax and E 10 $ as yr � 1 in proper motion
at �/� 15, increasing to 0.2 mas yr � 1 at � � 20) and multicolour photometry, for all 1.3 billion
objects to �h� 20, and radial velocities with accuracies of a few km s � 1 for most stars brighter
than �á� 17, so that full and homogeneous six-dimensional phase-space information will be
available. These satellite missions will thereby provide a very large and statistically reliable
sample of stars, from which the fundamental questions concerning the origin and evolution of
the Galaxy may finally be answered.

In this paper we shall focus on what GAIA will tell us about the history and formation of
the stellar halo of the Milky Way. We will also discuss the impact of DIVA and FAME, and leave
aside SIM as this mission will not provide a survey but a hand-picked catalogue of stars. Even
though we focus on the stellar halo, the method that we shall propose for finding substructures
in phase-space may also be extended to find, for example, disk moving groups (e.g. de Zeeuw
et al. 1999; Chereul, Crézé & Bienaymé 1999).

There are several methods for detecting moving groups. The Great Circle Counts method
(G3C) proposed by Johnston, Hernquist & Bolte (1996) uses the position on the sky, and em-
ploys the fact that satellite galaxies in orbits that probe only the outer (spherical) halo conserve
the orientation of their plane of motion, thereby leaving their debris along great circles on the
sky, if observed from the Galactic centre. The methods used in the Solar neighbourhood for
detection of disk moving groups and open clusters use also proper motions (and sometimes
parallax), and assume that all the stars belonging to the same system have the same velocity
vector (e.g. Hoogerwerf & Aguilar 1998; de Bruijne 1998). Lynden-Bell & Lynden-Bell’s method
(1995) needs the position on the sky and the radial velocity, and has been used, for example, to
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link globular clusters which lie in the same plane to some of the (disrupted) dwarf companions
of our Galaxy (see also Lynden-Bell, 1999). The applicability of the above mentioned methods is
questionable in the inner parts of the halo. In this regime, the Galactic potential is significantly
flattened so that the debris does not remain on a fixed plane, the situation where G3C works.
As noted by Helmi & White (1999) no spatial correlations should be expected for satellites dis-
rupted several Gyr ago. On the other hand, even though the velocity dispersions in a stellar
stream do decrease with time, and therefore, very strong correlations are to be expected, in the
inner halo strong phase-mixing takes place. For example in the Solar neighbourhood several
hundred (mainly) cold streams originating in disrupted satellites may be present, but it may
in practice be difficult to resolve each one of such moving groups completely. Clearly, before
exploring the full capabilities of the next generation of astrometric satellite missions, we first
need to identify where the clustering that is characteristic of a satellite manifests itself in the
debris that we observe after many galactic orbits. As shown in Helmi et al. (1999) a method
based on the lumpiness in integrals of motion space seems to be a promising tool for unveiling
the merger history of our Galaxy.

4.2 Building up a stellar halo

Our main goal is to test whether with the next generation of astrometric satellites, we would be
able to find the signatures left by merger events in the Galactic stellar halo. We will assume that
the whole stellar halo is the result of the superposition of several disrupted satellite galaxies
which fell onto the Milky Way about 10 Gyr ago. We shall here discuss the initial conditions
and the numerical methods used to generate this version of the stellar halo.

4.2.1 Initial conditions for the satellites

Orbital properties

The stellar halo has a density profile (Kinman, Suntzeff & Kraft 1994)� z ( � ) � � 0 z �� 0 { � 3 2 5 X (4.1)

a total luminosity of about 109 L 1 , and a half light radius which probably lies around 3 kpc
from the Galactic centre. For ��� � 0 � 8 kpc (the distance to the Galactic Centre from the Sun),�

0 corresponds to the local stellar halo density, for which we take � 0 � 1 � 5 � 104 M 1 kpc � 3 (Fuchs
& Jahreiß 1998).

The initial orbital conditions of our satellites should be drawn from the Galactic halo distri-
bution function (DF), which we assume to be a function of energy � and angular momentum � :k ( � X � ). For simplicity here we shall assume that the stellar halo is a power-law tracer popula-
tion embedded in a singular isothermal sphere, representing the dark matter halo of the Milky
Way. Following van den Bosch et al. (1999), we assume thatk ( � X � ) � ó ( � ) %+� ( � ) X where ���Z�é� �é� ( � ) X
and � � ( � ) is the angular momentum of a circular orbit with energy � : � � ( � ) � � � ( � ) � � , where��� ( � ) � e � 1 ] 2 exp �¼�N��� 2��� . The function %+� ( � ) is known as the circularity, and determines the
degree of anisotropy of the DF. We choose a simple parametrization of %�� ( � ) (Gerhard 1991):%�� ( � ) ����� ��

tanh å8�� æp� tanh å 1� æ ; = 0
1 ;�� 0

tanh
�

1 � �� � � tanh å 1� æ�;�E 0
(4.2)



68 CHAPTER 4. Mapping the substructure in the Galactic halo

so that for ; � 0, the DF is isotropic, for ;VE 0 it is radially anisotropic and for ; = 0 is is tan-
gentially anisotropic. We shall take ;�� . 0 � 5, since the halo appears to be radially anisotropic.

For a singular isothermal sphere� ( � ) � � 2�
4 ^ � � 2 X ¥

( � ) ��� 2� ln
��7� � (4.3)

The corresponding DF is ó ( � ) � e
16 ^ 2

� � �'� exp ¶ . 2 �� 2� º X (4.4)

(Gerhard 1991) where � � r��
0
[ � e

��� r � max

0
% � ( � )

�w[��� � 2
max . � 2

� (4.5)

Here � max � U 2e U � e ��� , with ��� ( � . ¥ ) ��� 2� . Since the density profile may be derived from
the initial distribution function as� ( � ) � 4 ^� r��4 ( 8 ) [+�Eó ( � ) �Y� ( � ) r � max

0
%�� ( � )

�w[��� � 2
max . � 2 X (4.6)

the joint probability distribution of � and � at a given radius ��û is� ( � X � ) � 4 ^��û � ( � û ) ó ( � ) �Y� ( � )
�Ç% ( � )� � 2
max . � 2 X

(van der Marel, Sigurdsson & Hernquist 1997). Using Eq.(4.4), we find that the normalized
cumulative probability distribution of � is

ˆ� ( EV� ) � 1 . exp ¶ . � . ¥� 2� º � (4.7)

We may derive the initial positions of the satellites by assuming the profile given in Eq.(4.1),
and using, from Eq.(4.7), the energy as � � ¥

( �«û ) . � 2� ln(1 .�� ), with � a uniform random
variable. With the energy (or � ) we can compute � max � U 2e U � (1 .V� ) � � . ln(1 .�� ), for� � 1 � 2 � 5 to mimic the stellar halo power law. Using � max and the probability distribution for �
we may derive the non-circularity of the orbits, and in this way fully determine the phase-space
initial position of a satellite.

Internal properties of the satellites

For the satellites we assume they initially have King profiles, as do most of the satellites in the
Local Group. Their present day total luminosity is fixed to be that of the stellar halo, and we
assume the initial number of satellites to be 33. The luminosity of each satellite is drawn from
a Gaussian distribution with mean 2 � 5 � 107 L 1 and dispersion 107 L 1 . We assume that the
satellites follow the scaling relations (Burstein et al. 1997)

log � � 5 � 35 0 1 � 80 log ` ³ Xlog
R � . 0 � 82 0 0 � 51 log ` ³ �

These relations allow us to derive from the luminosity � , the core radius
R

, and the central
velocity dispersion ` ³ . Our King models have a concentration parameter §�� log �2�Î���~�Z� 0 � 72,
where � � and � � are the tidal and King radii respectively. The initial mass of the satellite is now
also fully determined.
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4.2.2 Galactic potentials

We will consider two different Galactic potentials. In both cases, our Galaxy has three compo-
nents: a dark halo, a disk and a bulge, but we take different functional forms for the potential.
In Model I, we take a dark logarithmic halo

Φhalo �Z3 2
halo ln( � 2 0A[ 2) X (4.8)

a Miyamoto–Nagai disk

Φdisk � . ���
diskQ R

2 0 ( ST0 U $ 2 0VW 2)2 X (4.9)

and a spherical Hernquist bulge

Φbulge � . �N� bulge�Y0\§ X (4.10)

where [s� 12 kpc and 3 halo � 131 � 5 km s � 1;
�

disk � 1011 M 1 , S � 6 � 5 kpc and W � 0 � 26 kpc;�
bulge � 3 � 4 � 1010 M 1 and §T� 0 � 7 kpc. This choice of parameters gives a flat rotation curve

with an asymptotic circular velocity of 186 km s � 1.
In Model II, we represent the disk density profile with a double exponential (Quinn & Good-

man 1986) � a (
R X $ ) � � a

4 ^ R 2a $ / e � & ] &�� e ����� � � X
where

R a � 3 � 5 kpc is the disk scale length, $ / is its scale height, ��� 1 ��$ / and
� a � 5 � 5 � 1010

M 1 the total disk mass. The associated potential is

Φ a (
R X $ ) � . �N� aR

3a � r��
0

[ b�b � 0( b R )b 2 0 1 � R 2a � 2� 2 . b 2 Q e � Æ � � �b . e ����� � �� R � (4.11)

For the halo we choose (Hernquist 1993)��  ( � ) � �  
2 ^ 3 ] 2 ;�L� � e � 8 2 ] 8 2f� 2 0 � 2L X

where
�   � 1 � 5 � 1012 M 1 , ;�LY� �

1 . U ^9� e L 2
(1 . Erf[ � ]) � � 1

with �9� � Lý���6� and ���<� 200 kpc is
the cutoff radius. The corresponding potential is

Φ   ( � ) � . ���   ( � )� 0 ���  U ^p��� Ei ¬ . z ��6�6{ 2 . � 2 ¯ X (4.12)

where �   ( � ) � 2
�   ;�LU ^ r 8 ] 8 f

0
[ t t 2e � � 2t 2 0V� 2 (4.13)

and Ei( t ) is the exponential integral (e.g. Gradshteyn & Ryzhik 1965). For the bulge we use
Eq.(4.10) but we take

� # � 1 � 1 � 1010 M 1 and §�� 0 � 525 kpc (following Velázquez & White
1995). Figure 4.1 shows the circular velocity curves produced by each of the two potentials.
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FIGURE 4.1— The circular velocity profile as a function of distance from the Galactic centre. The solid curve
represents the potential used in the simulations. The dashed curve corresponds to the alternative potential.

4.2.3 Numerical methods

In our numerical simulations, we use the potential of Model I for our Galaxy. We represent
the satellite galaxy by a collection of 105 particles and model their self-gravity by a multipole
expansion of the internal potential to fourth order (White 1983; Zaritsky & White 1988). This
type of code has the advantage that a large number of particles can be followed in a relatively
small amount of computer time. In this quadrupole expansion, higher than monopole terms are
softened more strongly. We choose e 1 � 0 � 2 . 0 � 25

R
for the monopole term (

R
is the core radius

of the system) and e 2 � 2 e 1 for dipole and higher terms and for the centre of expansion. The
centre of expansion is a particle which, in practice, follows the density maximum of the satellite
closely at all times.

After letting our satellite relax in isolation, we integrate each simulation for � 12 Gyr. In
Figure 4.2 we show the final particle counts in radial bins 
 ( � ) � � 2 � ( � ) as a function of distance
from the Galactic centre resulting from the superposition of all our experiments. For guidance,
we also plot the expected � � 1 2 5, arbitrarily shifted. We see that within the range of 3 to 30 kpc,
our simulations follow relatively well the profile. Outside this range we see a sharp drop, due
to the fact that we are (intentionally) not populating the outer halo. Since the properties of the
inner stellar halo are not so well constrained, we do not worry about the fact that we find a
shallower slope in the inner few kiloparsecs (this is also the result of our initial conditions).
More important is the fact that our simulations can reproduce very well the regime where the
astrometric missions promise to give accurate six dimensional phase-space information.

4.2.4 Generating catalogues of halo stars

To generate an artificial catalogue for the Galaxy we assume that each particle in our simulations
represents a giant star of absolute magnitude

�\@ � 1. The total number of particles in our
simulations corresponds well to the expected number of giant stars in the Galactic halo (based
on the luminosity function, derived for the age and metallicity characteristic of halo stars). We
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FIGURE 4.2— Number counts profile ¡ ( ¢ ) *S¢ 2 � ( ¢ ) for the simulated stellar halo resulting from the superposition
of 33 disrupted satellite galaxies, after 12 Gyr of evolution. The straight line represents the expected ¢ J 1 £ 5 law,
arbitrarily shifted.

prefer to take only giant stars at this stage because they are bright enough to be easily observable
from the Sun. We need to determine a limiting magnitude � lim for our “artificial” catalogue,
which we define so that all giant stars brighter than � lim have accurate full 6-dimensional phase-
space information. In the case of GAIA, we take � lim � 15, a limit set by the accuracy in the
radial velocity. For FAME, � lim � 12 � 5 as all stars brighter than this magnitude will have relative
parallax errors ` � ��^ smaller than (or of the order of) 25%. For DIVA, we take � lim � 11 for which`��Ç��^s� 0 � 3. Our GAIA, FAME and DIVA catalogues have 386144, 12497 and 1742 “stars” with�V@ � 1 respectively.

The positions and velocities of each particle are first transformed into the observables ( ; , ç ,^ ) and ( $ � , $M¤ , 3�8 ); the expected observational “errors” are then added to the parallax, the radial
velocity and the proper motion, according to Table 4.1. For GAIA the precision in the radial
velocity is taken to be 5 km s � 1 for �¥E 14, and to vary like ` ³ � 10( � . 14) 0 10 km s � 1 up
to � � 15. Since FAME and DIVA will not measure radial velocities on board, for these we
estimate the error ` ³ � 15 km s � 1, as achievable from the ground for such large samples. These
“observed” quantities are then transformed back to “observed” positions and velocities. We
repeat this procedure 5 times to obtain 5 different realizations of the data.

4.3 Finding disrupted galaxies

4.3.1 Integrals of motion space

Our satellites disrupt relatively quickly, in only a few pericentric passages. Therefore we may
consider each of the 33 satellites as an ensemble of particles with very similar integrals of motion
(energy, angular momentum). As we show in Figure 4.3, initially satellites are both clumps
in configuration and velocity space, as they are in ( � , � , � � ) space. If these are conserved
quantities, or evolve only slightly, this initial clumping should be present even after the system
has phase-mixed completely. Thus the space of integrals or adiabatic invariants seems to be the



72 CHAPTER 4. Mapping the substructure in the Galactic halo

TABLE 4.1— Estimated precision in parallax ( �U¦ , in § as) and proper motion ( �©¨ , in § as yr J 1) as a function of ª
magnitude. For FAME and DIVA we assume � ¦ *«� ¨ (based on Horner (1999) and Röser (1998), respectively). In
the case of GAIA, the estimated precisions correspond to a K3 III star with no reddening, and increase to 0.2 mas atª C 20 (Gilmore et al. 1998).

9 10 11 12 13 14 15
GAIA `:� 3.65 3.65 3.65 3.65 4.83 7.05 10.8` * 2.74 2.74 2.74 2.74 3.62 5.28 8.10
FAME `:� 24 36 56 90 146
DIVA `:� 200 250 300

natural space to look for the substructure produced by an accreted satellite.
There are a few issues we should address here before fully discussing a method based on

clumping in the integrals of motion space. To compute the energy of the particles (or stars that
will be observed by GAIA for example) we need to assume a Galactic potential. To determine
the success of such a method we need to understand how our lack of knowledge on the precise
form of the Galactic potential influences our results. We shall therefore proceed in two steps. In
the first step, we take the same potential as that used in the simulations, Model I. In the final
step we use the alternative potential introduced in Sec. 4.2.2, our Model II. This last step, in
which we do not know the exact form of the Galactic potential but we make a reasonable guess,
is most likely to represent the real situation.

Secondly, even though the total angular momentum is not fully conserved for an axisym-
metric potential (only � � is), it evolves preserving a certain degree of coherence. The advantage
of using the integrals of motion space is that the number of clumps detected in this way will
represent well the total number of accretion/merging events, since unlike other methods which
are only local, it singles out all the stars from a given accreted object, independently of how
different their phases and velocities might be. We choose to make use of all three integrals to
reduce the chances of overlap amongst different lumps, since this probability clearly depends
on the dimensionality of the space.

The analogue of Figure 4.3 for particles “brighter than 15th magnitude” (roughly within 6
kpc from the Sun) in the simulations, after 12 Gyr of evolution and for the original potential,
shows that, even though there is some degree of evolution, clumping remains in the integrals of
motion space. In Figure 4.4 we plot the integrals of motion space for one realization of the GAIA
catalogue, i.e. after error convolution. A number of substructures are clearly visible, many
of which can be directly related to the initial distribution, even with the GAIA observational
uncertainties taken into account. This shows that the expected observational errors for GAIA
will not affect the chances of detecting such substructures. In the case of FAME the situation
is not as good, as illustrated in the left panel of Figure 4.5, where the different lumps are less
populated (because of the magnitude limit) and considerably more smeared out (because of
the larger observational errors). For DIVA the clumping has disappeared almost completely, as
shown in the right panel of the same figure.

Figure 4.6 corresponds to the same realization of the GAIA catalogue as used before, but
with the energies calculated using the case of the potential of Model II. Clearly, even though the
two considered potentials are different, the substructure remains. The uncertainty in the precise
form of the Galactic potential therefore does not affect the chances of finding disrupted satellites.
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FIGURE 4.3— Initial distribution of particles in the integrals of motion space. The different colours represent
different satellites.

FIGURE 4.4— Final distribution of particles in the integrals of motion space after 12 Gyr, after convolution with the
errors expected for GAIA for the original potential. Here we include all particles brighter than ª * 15 (i.e. within
roughly 6 kpc from the Sun).

FIGURE 4.5— Final distribution of particles in the¬ t – ­ space after error convolution for FAME (left
panel) and for DIVA (right panel), with energies com-
puted using the original potential. A comparison to
the left panel of Figs. 4.3 and 4.4 shows that the ex-
pected errors for these missions tend to erase much of
the substructure left in the integrals of motion space.

FIGURE 4.6— Final distribution of particles in the¬ t – ­ space after GAIA error convolution for the al-
ternative potential. Compare to left panel of Fig.4.4.
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4.3.2 Method: FOF in integrals of motion space

We use a Friends-of-Friends (FOF) algorithm to find clumps in the integrals of motion space.
This method has been used frequently to find bound halos in cosmological N-body simulations.
The basic idea is that all particle pairs separated by less than a fraction ® of the mean interparticle
distance are linked. Disjoint sets of connected particles are then identified as halos (Efstathiou et
al. 1988). These halos correspond approximately to the regions interior to isodensity contours at
an overdensity of 2/ ® 3. This FOF procedure allows a rapid identification of halos, and moreover,
all members of a given halo found for a particular value of ® are members of the same halo in
any list generated for a larger value of ® . In the case of cosmological simulations, the linking
distance is defined so that the mean density of a halo is about 200 times the density of the
Universe at the time of identification.

In our case, it is less clear how we should define the interparticle distance, or the linking
length. Because the energy and angular momentum have, by definition, different scales, it
seems natural to try to reduce everything to the same scale, or equivalently, to use instead of
spheres an ellipsoidal configuration. Even though the angular momentum and its $ -component
have the same scale, lumps are generally elongated in the � -direction with a 2:1 ratio, as can be
seen from Figure 4.3. We therefore search for lumps whose characteristic size would be defined
as:

∆ ��� 2∆ � � X ∆ ��� 20∆ � � X
where now ∆ � � would be related to the linking length. This implies that we re-scale the vari-
ables according to ��¯ ��� 20 X �V¯ �Y� 2 X � � ¯ � � �
The factor 20 in the energy scaling may be derived (heuristically) from the fact that the typical
energy range in the Solar neighbourhood is 1 � 6 � 105(km s � 1)2, whereas the range of � � is 8000
kpc km s � 1(from . 4000 to 4000 kpc km s � 1).

We will apply the FOF algorithm for two different linking lengths, to allow for different
characteristic sizes of the halos and resolutions in the algorithm. Note that there are particular
regions in this space which are occupied by more than one satellite, even in this 3-dimensional
space (this is even worse if only the � � . � plane is used), so that not each of the lumps found
may correspond to only one satellite, but may have contributions of a few.

4.3.3 Results

We apply the FOF algorithm to our GAIA catalogue, including error convolution for all particles
brighter than 15th magnitude, and using the original potential. We take two different values for
the FOF linking length: ®M� 16 and ®5� 30, where ∆ � � � 5 ® . We consider groups with at least 500
“stars”. We combine the two group catalogues to obtain a new group catalogue which contains
all lumps detected. If some particles are found to belong to two different clumps (one from
each catalogue) we keep the lump which has the smallest size. We now iterate one more time
on the catalogue defined by the particles that do not belong to any of the lumps found by our
FOF, again for the two values of ® and with a minimum of 250 “stars”. Some of the newly found
lumps can be related to those previously detected, and some others are found to resolve some
of the largest lumps in our initial group catalogue. In the left panel of Figure 4.7 we show the
distribution of energy � and � � for our final group catalogue.

We find 17 different groups with this method. Not all the groups may be associated exclu-
sively with one of our original satellites. As can be seen from Fig.4.3, there is quite a bit of
superposition in this three-dimensional space, and so not all the original satellites can be recov-
ered, or equivalently, not all lumps can be resolved with just two iterations. If we analyse how
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the particles in the different lumps can be related to particles in the initial satellites we find that,
out of the 17 groups discovered, 14 can be associated almost uniquely to one satellite ¹ . This
means that our simple method is capable of finding more than 40% of all the satellites that were
accreted by our “Galaxy”.

Similarly, we apply the FOF algorithm to the same GAIA catalogue but now compute the
energy � of the particles with the alternative potential. In this case we again find 17 different
lumps (after two iterations, and combining the results of the two different values of the linking
length). Of these 17 groups, 14 can be uniquely associated to one satellite. This is shown in the
central panel of Figure 4.7. Our method is thus quite successful in identifying disrupted satellite
galaxies in integrals of motion space, even when we only have a guess for the Galactic potential
and when the observational uncertainties are taken into account.

When we apply the same method for the original potential on the FAME catalogue we are
able to find 6 different groups. For 5 of these a unique correspondence with an accreted satel-
lite exists, as shown in the rightmost panel of Figure 4.7. In the case of DIVA we find only 1
group (with at least 20 particles), which can be easily identified visually from the right panel
in Figure 4.5. In the cases of DIVA and FAME we used slightly larger linking lengths to take
into account the smearing out of the lumps caused by the larger observational uncertainties.
Because the samples are also smaller (because of the limiting magnitude), we consider groups
with at least 50 particles in the case of FAME, and 20 particles for DIVA.

4.4 Clumpiness in the kinematics of halo stars

In Figure 4.8 we show the velocities of all the particles contained in a volume of 2 kpc on a
side for one realization of the GAIA catalogue. There is considerable substructure, which is
visible thanks to the great precision that GAIA will achieve. From the upper panels it is clear
that, as discussed in the introduction, distinguishing the satellites that gave rise to each one
of the different moving groups is a non-trivial task in this space. In the lower panels we have
coloured the different contributions from the 14 groups detected by our FOF algorithm in the
case of the alternative potential. A comparison between upper and lower panels also shows
how successful our method is.

The kinematically cold streams visible in Figure 4.8 remain as coherent structures for longer
than a Hubble time. This is true even when mergers, rather than simple satellite accretion,
are dominant (Helmi, White & Springel 2000). The clumpiness in the kinematics of halo stars
should thus be a distinct feature of the hierarchical formation of our Galaxy. It is therefore
also interesting to determine the degree of the clumpiness and whether it will be measurable
with future astrometric missions. We determine this clumpiness using the two-point correlation
function ° in velocity space for a sphere of 1 kpc radius around the Sun. We estimate ° from°�� nGvsv7o«n R�R onmv R o 2 . 1 (4.14)

(e.g. Hamilton 1993) where nGvsvso is the normalized number of pairs of particles with velocities
in a given velocity range (or bin), i.e.nGvsvsow� �

pairs of particles ±³²µ´ with 3¶E g l d . l ² gUE¡390 ∆
 a ( 
 a . 1)
(4.15)

and 
 a is the number of particles in the sphere. n R�R o is defined analogously but for 
ô& random
points. The random variates are drawn from a trivariate Gaussian distribution determined from×

We say that a group is almost uniquely associated to one satellite if more than 70% of the particles in the group
belong to only that satellite.
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FIGURE 4.7— Lumps detected with our FOF algorithm. In panel (a) we show the final group catalogue for the
original potential used in the simulations after convolving with the observational errors expected for GAIA. Panel
(b) corresponds to our alternative potential and also to the GAIA catalogue. In both cases the recovery rate is about
50%. Panel (c) shows the lumps recovered by our FOF applied to the FAME catalogue generated as described in the
text and for energies computed with the original potential. Compare to Fig. 4.4 in the case of GAIA and to the left
panel in Fig.4.5 for FAME.

FIGURE 4.8— The velocity space distribution for particles in a cubic volume of 2 kpc on a side centred on the Sun
for one realization of the GAIA catalogue. In the upper panels different colours indicate particles associated with
different satellites (using the same colour coding as in Figure 4.3). In the lower panels, the colours are used to show
particles associated to the lumps recovered by our FOF algorithm applied to the GAIA catalogue in the case of the
alternative Galactic potential. (Here the colour coding corresponds to that used in panel (b) of Figure 4.7.)
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FIGURE 4.9— The two-point correlation function for “giant stars” inside spheres of 1 kpc radius around the Sun
(defined as 8 kpc from the Galactic centre on the Galactic disk) computed as the weighted average over five realiza-
tions of the DIVA, FAME and GAIA catalogues. The different symbols correspond to · measured inside spheres at
different locations of the “Sun” on the Solar circle.

the “data” in the principal axes velocity frame. Here we take 
 &�� 10 
 a . Finally nGv R o are the
normalized counts for “data”–random pairs. We estimate the uncertainty from

∆ ¸5� (1 0�° )
2
 a ( 
 a . 1) nGvsv7o � (4.16)

If the sample contains kinematically cold streams, we should find an excess of pairs in
the bins corresponding to small velocity differences, i.e. the correlation function should be
significantly different from zero (which corresponds to the absence of correlations). We pro-
ceed by measuring ° for our GAIA, FAME and DIVA catalogues including error convolution
as described in Sec. 4.2.4 . We also vary the position of the 1 kpc sphere around the “Sun”,
keeping the same distance from the “Galactic centre”. That is, we place the Sun at ( t X � ) �� (8 X 0) X (0 X . 8) X ( . 8 X 0) X (0 X 8)kpc � and $N� 0. This allows us to account for the natural variations
one may have from volume to volume. We then make five realizations for each “Sun” position
for each catalogue. In Figure 4.9 we show the correlation function obtained by averaging over
all the realizations, for each 1 kpc sphere and for each catalogue. The average ° for each vol-
ume is the weighted mean, where the weights are given by 1 � ∆2¸ , and the error bars indicate
the (weighted) dispersion around the (weighted) mean. We find an excess of pairs of stars with
similar motions, the signature indicating the presence of cold streams as expected for a stellar
halo built by disrupted satellites. Note that it will even be possible to determine that the halo is
not a smooth distribution in the Solar neighbourhood even with velocity errors of the order of
20 km s � 1 such as those expected for DIVA for a star with

� @ � 1 at 500 pc from the Sun.
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4.5 Discussion

We simulated the stellar halo of the Galaxy starting from disrupted satellite galaxies, and “ob-
served” it with the next generation of astrometric satellites (DIVA, FAME and GAIA). We anal-
ysed the observations with the aim of recovering the different accretion events our “Galaxy”
experienced over its lifetime. We used a FOF algorithm to find clumps in the integrals of mo-
tion space, which we expected would correspond to the disrupted satellites. Our integrals of
motion space is defined by energy � , total angular momentum � and its $ -component � � , even
though strictly speaking these are not fully conserved quantities (because of interaction of the
stars while still bound to the satellite, and because of the axisymmetry of our Galaxy). We have
shown that the initial clumping in this space is maintained to a great extent even after 12 Gyr of
evolution.

After using our FOF algorithm we find that we can only recover a couple of accreted satel-
lites (in our analysis just one) for the DIVA catalogue, whereas for FAME we recover about 15%
of all satellites. In both cases we assume that the astrometry is complemented by ground based
radial velocity measurements. The situation is significantly different in the case of the GAIA
catalogue, for which we recover almost half of all disrupted satellites with this simple algo-
rithm. The improvement generally lies in the larger volume for which full 6-D information is
available, in particular when comparing FAME and GAIA. The use of 6-D information appears
to be essential to recover all the events, as there is a large fraction of phase-space where these
are superposed. This is particularly clear from Figure 4.4 (rightmost panel), where angular mo-
mentum alone cannot be used to distinguish the different satellites. Whereas by eye inspection
in the ( � , � , � � ) space we may recover five or six events, for the space ( � , � � ) this is reduced to
one or two events.

The evolution of the Galactic potential may be the most crucial simplification in our analy-
sis. In hierarchical cosmologies the number of objects that form a galaxy like our own is in the
range of 5 . 20, with comparable masses. The process of formation is likely to be very violent
and the potential is surely not static, quite probably not axisymmetric, and therefore the initial
clumping of the system may not be reflected in clumping in our defined integrals of motion
space. However, if this happened during the first few Gyr, any object infalling later ought to
have perceived a fairly static (or adiabatically changing) Galaxy, and then our method would
still be useful. Indeed, some preliminary analysis of the formation of a halo in a ΛCDM cos-
mology indicates that particles from different satellites may be recovered as lumps in this space
(Helmi et al. 2000), though the structure is less evident than in the plots shown here, where
even by simple eye inspection one may recover about 1/5 of all satellites.

What will anyway remain as signatures of the merger history of our Galaxy will be the
kinematically cold streams originating in disrupted halos. An interesting observational test is
the comparison of the kinematics of a smooth, possibly Gaussian, distribution (which may be
expected in the case of a monolithic collapse) to the kinematics observed in the stellar halo built
by disrupted satellites. Our analysis of the correlation function in velocity space indicates the
presence of a larger number of streams with very small velocity dispersions in a sphere of 1 kpc
radius around the Sun. This test will be feasible even for DIVA. The key to the success of this
test lies in the complete and large sample of stars with 3-D velocities which will be available.

In this paper we have focused on determining the merger history of the Milky Way, rather
than the precise form of the Galactic potential or to what extent it may have varied. However,
these are key questions that will be solved very likely by SIM and GAIA (e.g. Johnston et al.
1999). We may add here that after finding the different satellites we will be able to determine
the conditions and characteristics of objects that fell onto the Milky Way more than 10 Gyr ago.



4.5. Discussion 81

Acknowledgments

We wish to thank Volker Springel for his FOF algorithm, Simon White for many useful discus-
sions, and Anthony Brown for comments on an earlier version of this manuscript.

References
Burstein D., Bender R., Faber S.M., Nolthenius R., 1997 , AJ, 114, 1365
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Chapter 5

Simple dynamical models of the
Sagittarius dwarf galaxy O

Thus, the task is, not so much to see what no one
has yet seen; but to think what nobody has yet
thought, about that which everybody sees.

E. Schrödinger

ABSTRACT

We present two simple dynamical models for Sagittarius based on N-body sim-
ulations of the progressive disruption of a satellite galaxy orbiting for 12.5 Gyr
within a realistic Galactic potential. In both models the satellite initially has
observable properties similar to those of current outlying dwarfs; in one case it
is purely stellar while in the other it is embedded in an extended massive halo.
The purely stellar progenitor is a King model with a total velocity dispersion
of 18.1 km s � 1, a core radius of 0.56 kpc and a tidal radius of 3.8 kpc. The ini-
tial stellar distribution in the other case follows a King profile with the same
core radius, a similar total velocity dispersion and a smaller extent. Both these
models are consistent with all published data on the current Sagittarius system,
they match not only the observed properties of the main body of Sagittarius,
but also those reported for unbound debris at larger distances.

P
Based on: Amina Helmi and Simon D.M. White, submitted to MNRAS
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5.1 Introduction

The Sagittarius dwarf galaxy is the closest satellite of the Milky Way (Ibata, Gilmore & Irwin
1994, 1995, hereafter IGI95). Soon after its discovery, several groups carried out simulations to
see if its properties are consistent with the disruption of an object similar to the other dwarf
companions of the Milky Way, but none produced a model in full agreement with both the age
and the structure of the observed system (Johnston, Spergel & Hernquist 1995; Velázquez &
White 1995; Edelsohn & Elmegreen 1997; Ibata et al. 1997, hereafter I97). All groups assumed
light to trace mass and an initial system similar to observed dwarf spheroidals. All found the
simulated galaxy to disrupt after one or two orbits whereas the observed system has apparently
completed ten or more. Most considered this to be a problem (but cf Velázquez & White 1995).
As a result, several unconventional models were proposed to explain the survival and structure
of Sagittarius. In an extensive numerical study, Ibata & Lewis (1998) concluded that Sagittarius
must have a stiff and extended dark matter halo if it is to survive with 25% of its initial mass still
bound today. Since an extended halo cannot remain undistorted in the Galaxy’s tidal field for
any conventional form of dark matter, it is unclear how this idea should be interpreted. Further-
more, it produces an uncomfortably large mass-to-light ratio ( � 100), it cannot reproduce the
observed elongation, and it suggests that little tidal debris will be liberated, in apparent conflict
with the observations of Mateo, Olszewski & Morrison (1998), and Majewski et al. (1999) (see
also Johnston et al. 1999). A somewhat less unorthodox model was proposed by Zhao (1998),
where Sagittarius was scattered onto its current tightly bound orbit by an encounter with the
Magellanic Clouds about 2 Gyr ago. This appears physically possible but requires careful tun-
ing of the orbits of the two systems (see Ibata & Lewis 1998; and Jiang & Binney 2000).

Driven by this apparent puzzle, we decided to search more thoroughly for a self-consistent
model of the disruption of Sagittarius, which, after a Hubble time, has similar characteristics to
those observed. (See Table 5.1 for a summary of the observed properties of the system.) Below
we present two models which meet these requirements.

TABLE 5.1— Properties of Sagittarius (IGI95, I97)
Orbital properties
distance from the Sun [ 25 ( 2 kpc
heliocentric radial velocity 3 sun8 140 ( 2 km s � 1

proper motion in W $ # 250 ( 90 km s � 1

gradient along the orbit d 3 8 � db E 3 km s � 1/deg
angular position in the sky ( ¹ X W ) (5 � 6  X . 14  )
Internal properties
luminosity - 107 L 1
velocity dispersion ` ( 3©8 ) 11 � 4 ( 1 km s � 1

angular extent in ( ¹ , W ) 8  � 3  
half-mass radius 0.55 kpc
mean metallicity n [Fe/H] o � . 1 � dex

5.2 Method

In our numerical simulations, we represent the Galaxy by a fixed potential with three compo-
nents: a dark logarithmic halo

Φhalo �Z3 2
halo ln( � 2 0\[ 2) X (5.1)
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a Miyamoto–Nagai disk

Φdisk � . ���
diskQ R

2 0 ( ST0 U $ 2 0VW 2)2 X (5.2)

and a spherical Hernquist bulge

Φbulge � . �N� bulge�Y0\§ X (5.3)

where [s� 12 kpc and 3 halo � 131 � 5 km s � 1;
�

disk � 1011 M 1 , S � 6 � 5 kpc and W � 0 � 26 kpc;�
bulge � 3 � 4 � 1010 M 1 and §T� 0 � 7 kpc. This choice of parameters gives a flat rotation curve

with an asymptotic circular velocity of 186 km s � 1.
We represent the satellite galaxy by a collection of 105 particles and model their self-gravity

by a multipole expansion of the internal potential to fourth order (White 1983; Zaritsky & White
1988). This type of code has the advantage that a large number of particles can be followed in a
relatively small amount of computer time. Hence a substantial parameter space can be explored
while retaining considerable detail on the structure of the disrupted system. In this quadrupole
expansion, higher than monopole terms are softened more strongly. We choose e 1 � 0 � 2 . 0 � 25 ���
for the monopole term ( � � is the core radius of the system) and e 2 � 2 e 1 for dipole and higher
terms and for the centre of expansion. The centre of expansion is a particle which, in practice,
follows the density maximum of the satellite closely at all times.

For the stellar distribution of the pre-disruption dwarf we choose a King model (King 1966),
since this is a good representation of the distant dwarf spheroidals. King models are defined
by a combination of three parameters: Ψ( �5� 0) (depth of the potential well of the system),` 2 (measure of the central velocity dispersion), and �

0 (central density) or � 0 (King radius).
The ratio Ψ( � � 0) ��` 2 defines how centrally concentrated the system is, and for any value of
this parameter, a set of homologous models with different central densities and core (or King)
radii may be found. We assume that the progenitor of Sagittarius obeys the known metallicity–
luminosity relation for the Local Group dSph (Mateo 1998). The metallicity determinations
for Sagittarius (I97) indicate n [Fe � H] o5� . 1, corresponding to a total luminosity in the range
3 � 5 � 107 . 3 � 5 � 108 L 1 . To obtain an initial guess for the mass of the system, we transform
this luminosity into a mass assuming a mass-to-light ratio � 2. The relevant initial stellar mass
interval is then 7 � 107 . 7 � 108 M 1 .

Note that our choice of a fixed potential to represent our Galaxy means that we neglect any
exchange of energy between the satellite and the Galactic halo. This is an excellent approxima-
tion for the range of orbits and satellite masses that we consider, since these imply dynamical
friction decay times substantially in excess of the Hubble time. The orbits are also sufficiently
large that impulsive heating during disk passages can be neglected.

The orbit of Sagittarius is relatively well constrained (I97). The heliocentric distance [N�
25 ( 2 kpc and position ( ¹ X W ) � (5 � 6  X . 14  ) of the galaxy core are well-determined; the helio-
centric radial velocity 3 sun8 � 140 ( 2 km s � 1, and its variation across the satellite are also accu-
rately measured. Outside the main body ( WnE . 20  ) the radial velocity shows a small gradient
d 3 8 � d W : 3 km s � 1deg

� 1, but no gradient is detected across the main body itself. The proper
motion measurements are not very accurate; $ #w� 2 � 1 ( 0 � 7 mas yr � 1, and no measurement is
available in the ¹ -direction. On the other hand the strong North-South elongation of the system
suggests that it has little motion in the ¹ -direction. We generate a range of possible orbits satisfy-
ing these constraints and concentrate on those with relatively long periods in order to maximise
the survival chances of our satellite. We begin all our simulations half a radial period after the
Big Bang to allow for the initial expansion. We place the initial satellite at apocentre, then we
integrate forward until � 13 Gyr. The orbits are chosen so at this time the position and velocity
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FIGURE 5.1— Projections of a possible orbit of Sagittarius on different orthogonal planes, where ºU» coincides with
the plane of the Galaxy.

of the satellite core correspond to those observed. We allow ourselves some slight freedom in
choosing the final time in order to fit the observed data as well as possible.

5.3 Results

Figure 5.1 gives an example of an orbit which is consistent with all the current data on Sagittar-
ius. It has a pericentre of 16 � 3 kpc, an apocentre of 68 � 3 kpc, and a radial period of � 0 � 85 Gyr.

After letting our satellite relax in isolation, we integrate each simulation for � 13 Gyr. In
practice we needed to run a large number of simulations, and test each to see if it satisfies
the observational constraints at the present time. Since it remains uncertain whether dwarf
spheroidals have extended dark halos (e.g Klessen & Kroupa 1998), we have considered both
purely stellar models and models in which the initial stellar system is embedded in a more
massive and more extended dark halo.

5.3.1 Constant mass-to-light ratio: A purely stellar model

Our preferred purely stellar model (Model I) initially has a core radius of ���<� 0 � 56 kpc, a total
velocity dispersion of 18 � 1 km s � 1, and a concentration parameter § � log10( � � � ��� ) � 0 � 83. This
implies a total mass of

� � 5 � 74 � 108 M 1 . For a satellite to survive for about 10 Gyr on an orbit
with pericentre � 15 kpc, apocentre � 70 kpc, and period � 1 Gyr (for which the observational
constraints are satisfied) its initial central density has to be � 0

p
0 � 25 . 0 � 3 M 1 pc � 3. Satellites

with significantly smaller initial densities do not survive long enough.
In Figure 5.2 we plot heliocentric distance as a function of galactic latitude for particles

projected near the main remnant 12 � 5 Gyr after infall. Streams of particles are visible at all
latitudes over a broad range in distance. Sagittarius has been orbiting long enough for its debris
streams to be wrapped several times around the Galaxy. (See also Figure 5.6.)
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FIGURE 5.2— Distribution of particles in distance from the Sun as a function of latitude. For direct comparison see
Figure 4 of I97.

The remnant galaxy, i.e. the central region of the satellite’s debris, is similar to the real sys-
tem. In Figure 5.3 we plot its mass surface density. The transformation from observed surface
brightness to mass surface density (which is what the simulations give us) can be done as fol-
lows. The observed mass surface density Σ for an assumed mass-to-light ratio } is

Σ � 
>�Ó�{�k_� } ¬ M 1
deg2 ¯ X (5.4)

where 
>� is the number of observed stars of type � per square degree, �"� is their luminosity,
and k_� is the fraction of the total luminosity in stars of type � . In IGI95 the spatial structure of
Sagittarius was determined from the excess of counts at apparent magnitude of the horizontal
branch. Uncertainties in the result are due primarily to contamination by sources in the Galac-
tic bulge. Their lowest isodensity contour is at Σmin � 5 � 105 M 1 deg

� 2, assuming } � 2 � 25
and [Fe/H] � . 1 (Bergbusch & VandenBerg 1992), and has an extent of 7 � 5  � 3  . This same
isodensity contour is shown in Figure 5.3 as a thick line. It has an extent of � 8  � 4  , in reason-
able agreement with the observations given the uncertainties. In I97 isodensity contours were
derived from counts of main sequence stars close to the turn-off, roughly one magnitude above
their plate limit. The minimum contour in this case corresponds to Σmin � 105 M 1 deg

� 2, and
has an extent of roughly 15  � 7  . In Figure 5.3 this contour is shown as a dashed-line, and has
an extent of 15  � 5 � 5  , also in good agreement with the observations. Note that the isophotes
(or isodensity contours) become rounder towards the centre of the satellite. Its angular core ra-
dius is

R �<� 1 � 24  , which for a distance of 25 � 6 kpc (derived from the simulations) corresponds
to 0 � 55 kpc, again in good agreement with the observations.

The kinematic properties of the remnant galaxy are more difficult to compare with observa-
tions because a substantial amount of mass from debris streams is projected on top of the main
body. Like I97, we measure the radial velocity across the system considering only particles for
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FIGURE 5.3— Surface isodensity contours for the remnant system. The thick and dashed lines indicate the contours
that, for ¼sB ¬ * 2 , 25, would correspond to the minimum contours plotted in 1994 and in 1997 respectively by Ibata
and collaborators. Each succeeding contour has half the mass surface density of the previous one.

which 100 km s � 1 ?¡3 sun8 ? 180 km s � 1. In the left panel of Figure 5.4 we plot the heliocentric ra-
dial velocity, and in the right panel we plot its dispersion as a function of Galactic latitude. For
comparison, we analysed the observations of I97 at Cerro Tololo in the same way (their Table
2b); these data have a precision of a few km s � 1 (triangles in Figure 5.4). Our model is consis-
tent with the observed kinematics; we obtain a heliocentric radial velocity of 138 km s � 1 and an
internal velocity dispersion in the radial direction of 10 � 3 km s � 1 for the main body. However,
when the radial velocity restrictions for inclusion in this calculation are relaxed, we find much
larger velocity dispersions because of the contribution of stars from other streams. It is impor-
tant to consider this problem when determining which stars should be considered members of
Sagittarius.

5.3.2 Varying mass-to-light ratio: A model with a dark halo

The observational data for Sagittarius mainly refer to the current remnant system, which corre-
sponds to the innermost regions of the progenitor satellite. As a consequence, models that are
initially dark matter dominated in their outskirts are relatively poorly constrained.

As an example we focus on a progenitor with a mass distribution which is similar to that of
Model I in its inner regions but is more extended. We choose the mass-to-light ratio of satellite
material to be a decreasing function of binding energy, so that the most bound particles have
near “stellar” mass-to-light ratios, whereas weakly bound particles are almost entirely “dark”.
We take the initial mass distribution to be a King model with � �Y� 0 � 7 kpc and � � � 13 � 2 kpc.
For an orbit like that of Model I this produces a suitable remnant after 12 Gyr for an initial
total velocity dispersion of 17 � 5 km s � 1, giving a total initial mass of

� � 1 � 26 � 109 M 1 . The
mass distribution of this remnant satisfies many of the observational constraints of Table 5.1.
Its angular core radius is slightly larger

R �é� 1 � 24  , and the radial velocity dispersion in the
main body is 12 � 5 km s � 1. We construct a two-component satellite with this mass distribution



5.3. Results 89

FIGURE 5.4— In the left panel we plot mean heliocentric radial velocity as a function of Galactic latitude, for bins
of C 2 , 5 ½M� 2 , 5 ½ across the remnant system. The right panel shows the heliocentric radial velocity dispersion in the
same bins. To determine variations across the main body of the galaxy, we have taken bins centered on the same
Galactic latitude but offset in Galactic longitude. The triangles correspond to data from I97, error bars indicate 2
km s J 1 uncertainty.

by solving for the dependence of mass-to-light ratio on initial binding energy that produces an
initial light profile which is approximately a King model with ���i� 0 � 56 kpc and � � � 2 � 44 kpc. If
we identify the central mass-to-light ratio of this system as the “stellar” value, its total to stellar
mass ratio is 6. In fact this is a lower limit, since there must be some dark matter also at the
centre of the system.

The actual value of the central mass-to-light ratio is chosen so that the central surface bright-
ness of the remnant agrees with that of Sagittarius. This requires } � 3 � 25. The total luminosity
of the initial model is then 6 � 87 � 107 L 1 , implying a total mass-to-light ratio of 18 � 3. We shall
refer to this model as Model II. We can calculate its “observable” properties by weighting each
simulation particle by (

� ��� ) � 1. Thus we find its initial velocity dispersion to be 17 � 5 km s � 1,
and the velocity dispersion of the remnant to be 12 � 8 km s � 1. The visible extent of the remnant is
also slightly smaller than the extent of its mass leading to properties which are almost identical
to those of Model I and in good agreement with the observations.

Figure 5.5 compares the initial mass distribution of Model II with the distribution of its light,
and with the mass distribution of Model I. Light has been converted to mass using the central
mass-to-light ratio; the result thus overestimates the “actual” stellar mass as noted above. The
two initial models clearly have very similar mass distributions in their inner regions, a conse-
quence of the requirement that these regions should remain (just) bound after 12 � 5 Gyr. Al-
though, by construction, the main body of the remnants is very similar in the two cases, there
is a significant difference in the properties of their debris streams. In Model I the unbound
debris streams are predicted to contain 7 � 9 times the light in the main body of the remnant
(
�V@ � . 13 � 8), as defined by the dotted contour in Figure 5.3, whereas in Model II (

�
@ � . 14 � 5)
this ratio is 0 � 24. If we had chosen Model II to be a constant mass-to-light ratio model with the
same central value as before, we would have got an almost equally good fit to the main body
of Sagittarius, but would have predicted this ratio to be 8 � 2. In this last case, Sgr would have
contributed 5 � 108 L 1 to the Galactic stellar halo in the form of debris stars (for } � 2 � 25). Thus
we see that the observed properties of the main remnant do not usefully constrain the number
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FIGURE 5.5— Mass profile for Model II (solid curve) and for its “luminous” component (dashed curve). Also
shown is the mass profile for Model I (dotted curve).

of stars that may be present in the debris streams, but that the different models can be better
constrained from the properties of their debris streams.

5.4 Discussion

In this section we focus for simplicity on Model I. We can use it to predict where streams orig-
inating in different mass-loss events should be found. This is illustrated in Figure 5.6 where
different colours indicate material lost at different pericentric passages. Note that since the sur-
face brightness of the unbound material decreases with time, material lost in early passages is
considerably more difficult to detect than recent mass-loss (for an axisymmetric potential the
time dependence is 1 ��! 2, but if the potential may be considered as nearly spherical the surface
density will effectively decrease as 1 � ! ; see Helmi & White 1999). The central panel (latitude vs.
heliocentric distance) explains why Sagittarius streams have been detected below the Galactic
plane but never above it. From the left panel, . 90  ?�¹w? 90  , we see that the stream of stars
lost in the previous pericentric passage (shown in blue) becomes more distant as we go north.
For example, at W � 40  , the stream is located approximately 50 kpc from the Sun. The red gi-
ant clump visual magnitude at this distance would be roughly 19 � 3 ¾ , compared to the 17 � 85 ¾
observed in the main body of Sagittarius. Unfortunately, the observations reported in the lit-
erature at this Galactic latitude, either do not reach this magnitude limit, or are offset by a few
degrees from the expected location. Thus, for example, Majewski et al. (1999) have a limiting
magnitude of 21 at W � 41  and ¹i� . 6  , but the actual stream in our model is predicted to go
through ¹	� 2  and to be about 2  wide. Note that the width prediction is more secure than the
location since the motion of Sagittarius in the ¹ -direction is poorly constrained at present. It is
also interesting to note that Majewski and collaborators claimed to detect a Sagittarius stream
at W � . 40  and ¹<� 11  , at a slightly smaller heliocentric distance of 23 kpc and with a radial
velocity of the order of 30 km s � 1. As they discuss, this velocity may be strongly affected by con-
tamination by other Galactic components. We note, however, that we would predict a stream
of stars (shown in blue) going through this latitude and longitude with roughly the observed
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FIGURE 5.6— Top panel: Distribution in the sky (
ri¿ s ) of the particles for our constant mass-to-light ratio model

of Sagittarius after 12.5 Gyr. Different colours indicate material stripped off in different passages. Central panel:
Heliocentric distance as a function of Galactic latitude, at the same time as the top panel, and with the same colour
coding. Note that “streams” formed early on are wider than the more recent ones. Bottom panel: Heliocentric radial
velocity as a function of Galactic latitude, at the same time and using the same colour coding as before.





5.4. Discussion 93

distance, and with a radial velocity of 54 km s � 1. (See the central and bottom left panels of
Figure 5.6, . 90  ?�¹p? 90  .) This agreement is encouraging. As mentioned above, this stream is
formed by material lost in the previous pericentric passage and not three passages ago, as in the
model of Johnston et al. (1999). This difference reflects the different orbital timescales in the two
models. The surface density of stars may be able to distinguish between them; it is predicted to
be higher in our case.

FIGURE 5.7— Number counts in 5 � 5 deg2 along various lines of sight normalized to the main body of Sagittarius,
which is shown in the top row. Distance bins are 5 kpc, and radial velocity bins are 25 km s J 1 . All quantities are
heliocentric.
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Our model can also be used to predict star counts as a function of distance and radial velocity
at different points on the sky. This is illustrated in Figure 5.7, where the number counts are
normalized to their values on the main body of our simulated Sagittarius, as shown in the first
row. We assume fields which are 5  � 5  . For the distance, we use 5 kpc bins, whereas for the
radial velocity we take 25 km s � 1 bins. Note that the contrast of structures in the radial velocity
counts are generally larger than in the distance counts, indicating that it should be easier to
detect streams in velocity space rather than as density inhomogeneities (see also Helmi & White
1999). This is particularly true considering the much greater relative precision of the velocity
measurements. Space density enhancements often occur near the orbital turning points; several
are seen as sharp features in the central panel of Figure 5.6.

A possible progenitor of Sagittarius could thus be a satellite with a core radius of about 0 � 56
kpc, a central

� ��� ratio of 2 � 25 and a total stellar velocity dispersion of about 18 km s � 1. We
have found viable models with a wide range of total luminosities and masses, and both with
and without extended dark halos. The data available at present only weakly constrain the total
initial extent either of the light or of the mass. The observed metallicity data, for example, are
consistent with an initial galaxy similar to either of our detailed models, both of which would lie
within the scatter of the luminosity–size–velocity dispersion–metallicity distribution for more
distant dwarf spheroidal galaxies in the Local Group. Thus we see no indication that Sagittarius
is in any way anomalous. Further work on the debris streams of Sagittarius is needed to con-
strain better its initial total luminosity, and to distinguish between purely stellar or dark matter
dominated progenitors.
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Chapter 6

The phase-space structure of a cluster halo:
Insights into our Galactic halo O

If you can look into the seeds of time,
and say which grain will grow
and which will not,
speak then to me...

W. Shakespeare: “Macbeth”

ABSTRACT

We analyse high resolution simulations of the formation of a cluster in a ΛCDM
cosmology. Our goal is to determine how much phase-space substructure is
left over from the halos that merged to build up the cluster we observe at the
present day. We study debris streams originating in such halos and find that
their evolution can be explained simply in terms of the conservation of phase-
space density. The properties of these streams are consistent with having a
phase-mixing origin. After scaling the cluster to a galactic size halo, we find
that the velocity ellipsoid in the equivalent of the “Solar vicinity” is formed by
roughly a thousand dark matter streams with velocity dispersions smaller than
a few tens of km s � 1. These results imply that the small scale structure present
in the dark halo velocity ellipsoid will not strongly affect the signal expected
by current and future experiments designed to determine the nature of dark
matter in our immediate neighbourhood.

P
Based on: Amina Helmi, Simon D.M. White and Volker Springel, in preparation
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6.1 Introduction

Over the last twenty years, a paradigm has emerged for the formation of structure in the Uni-
verse, which may be summarised as follows.` All structures observed today grew by gravitational amplification of very small initial

density fluctuations thought to have been produced during the inflationary expansion of
the Universe (Peebles 1974).` The dominant mass component in the Universe is dark, and in the form of non-baryonic,
weakly interacting particles. If at the time of decoupling from the general expansion of
the Universe these particles had non-relativistic motions, the dark matter is termed “cold”
(CDM). If, on the contrary, they were relativistic at decoupling, they represent “hot dark
matter” (HDM). The natural candidate for HDM are massive neutrinos, whereas the CDM
particles may be axions, neutralinos, or some variety of more massive particles left over
from the early Universe.` In the case of HDM, structure formation takes place top-down, starting from superclusters
onto galaxy scales. The relativistic motions of the particles at decoupling are sufficient to
erase the smallest scales fluctuations present right after the inflationary era. In the case of
CDM, the first objects to collapse are galaxies, these then merge and form the larger scale
structures we observe today. Thus structure formation occurs in a hierarchical fashion
(White & Rees 1978).` This hierarchical formation of structure is the scenario currently favoured, as a remarkable
agreement is found when detailed comparisons of models and observations, ranging from
galaxy scales onto clusters and superclusters scales are made.` Galaxies are known to have two components: a baryonic (gas and stars) and a non-
baryonic (or dark) component. Most of the mass in a galaxy is contributed by the dark
component (90% or more) distributed in a halo leaving only a few percent for the visi-
ble mass which, in turn, is concentrated towards the centre of this dark halo. On large
scales, the physics is dominated by the dark matter dynamical evolution. On scales of
a kiloparsec or so, the dominant processes are star formation, gas cooling, feedback, etc.
These processes are not yet fully understood, making the modelling of the formation of a
galaxy a very difficult enterprise. Currently numerical simulations cannot address simul-
taneously both the gravitational dynamics affecting the dark halos and the behaviour of
the collisional components because of the large dynamic range in the processes affecting
each component at the same time, even though substantial progress has been made along
these lines (e.g. Steinmetz & Navarro 1999, Pearce et al. 1999).` Because of this difficulty, a phenomenological description of the evolution of the bary-
onic components has been put forward in the past few years (White & Frenk 1991). This
prescription may either be combined with analytic approximations for the evolution of
the dark matter component (Baugh, Cole & Frenk 1996; Kauffmann 1996) or with high-
resolution simulations of the dark matter evolution in the Universe (Kauffmann et al.
1999). The prescription is based on a set of simple yet physically motivated equations
describing the cooling of gas, transformation of gas in stars, etc.

An interesting question that may be formulated and answered in this general hierarchical
scenario is what it predicts for a typical galaxy like our Milky Way. With this idea in mind,
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several groups (Moore et al. 1999; Klypin et al. 1999) have performed high resolution simu-
lations of a galactic size halo in CDM cosmologies. They found that the dark matter satellites
outnumber the known population of satellite galaxies in the Local Group by a factor of ten. It
is still unclear how to interpret this result, in particular in view of the uncertainties involved
in transforming mass into light. Some attempts have been made to reconcile the disagreement,
both by changing the initial power spectrum of density fluctuations (Kamionkowski & Liddle
2000) and by taking into account the effects of a reionising background which may inhibit star
formation in the smallest mass halos (Bullock, Kravtsov & Weinberg 2000).

Broadly speaking, the hierarchical paradigm would predict that the Milky Way formed
through mergers of smaller galaxies. These galaxies would contribute to the dark halo, the
spheroid (bulge and stellar halo) and to the Galactic gas reservoir. It may be very difficult to
determine the relative gas contribution of these progenitor galaxies, since gas “easily forgets”
its site of origin. However, if the dynamical mixing timescales are sufficiently long (i.e. longer
than the age of the Universe) it may be possible to “break-up” the Galactic spheroid (stars and
may be even dark matter particles) into coherent structures in phase-space directly related to
the galaxies that merged to form the Milky Way we observe today.

A first attempt at determining whether the merging history of the Milky Way may be im-
printed in the phase-space structure of halo stars, and thus be recovered, was made by Helmi
& White (1999; hereafter HW and Chapter 2). They studied the infall of satellites onto a fixed
Galactic potential, and the evolution of their debris in phase-space. They found that after 10
Gyr stars having a common origin are distributed smoothly in space, and appear very clumped
in velocity space, where they define streams with very small velocity dispersions. The expected
number of such streams scales with the initial size � , velocity dispersion ` and orbital period � ,
of the disrupted object:
 stream � 10 z �

1 kpc { 2 z `
15 km s � 1 {Zz �

0 � 23 Gyr { � 3 � (6.1)

The total number of stars associated with the object is 
ÁÀ x ��` 2 (from the virial theorem) while
the volume � over which they are spread scales with the cube of the size of the orbit, and so
approximately as � 3. Hence the number of stars per stream in the Solar neighbourhood scales
as 
¶Àß� ��
 stream �
`i��� ; objects with large initial velocity dispersion and small initial size should
produce the most easily detectable streams with little dependence on initial period. This implies
that the Solar neighbourhood velocity ellipsoid should be formed by 300 . 500 kinematically
coherent structures, originated in past merger and accretion events. Furthermore, very recently
the first set of halo streams that could be directly linked to a disrupted satellite (Helmi et al.
1999) were detected in the Solar neighbourhood. The progenitor of the two streams found was
probably similar to the dwarf galaxy Fornax, a present satellite of the Milky Way.

One of the weak points of the HW analysis which deserves further investigation, is the as-
sumption of a fixed, smooth potential onto which galaxies are accreted. In the fully hierarchical
regime, the concept of a background galaxy is meaningless, in the case of a spiral galaxy prob-
ably until $Ó� 2 . 3. Moreover, the potential may be varying very violently, with large numbers
of clumps orbiting the centre of what will become a virialised Galactic halo.

One of the goals of the present paper is to determine to what extent the previous analysis
may have been correct or not, and also understand why this may be the case. We also wish to
address here how the phase-space substructure present in the dark matter halo, which may be
expected in view of the previous discussion, will affect on-going and future experiments which
try to find out the nature of dark matter, and measure the mass of its constituent particles (e.g.
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TABLE 6.1— Parameters of the simulations for the high-resolution region. The gravitational softening Â was kept
fixed at the given values for redshift below L * 9 in physical coordinates, and above that redshift in comoving
coordinates (Springel, 2000).

simulation S1 S2 S3 S4
particle mass � p [ % � 1 M 1 ] 6 � 87 � 109 1 � 36 � 109 2 � 38 � 108 4 � 68 � 107

initial redshift $ start 30 50 80 140
gravitational softening e [ % � 1 kpc] 6.0 3.0 1.4 0.7
number of particles 
 p 450088 1999978 12999878 66000725

HEAT collaboration: Barwick et al. 1998). We will tackle these problems by analysing a high-
resolution simulation of the formation of a cluster in a ΛCDM cosmology scaled down to a
galactic size halo (Springel, White & Tormen 2000).

6.2 Methodology

6.2.1 The simulations

The simulations we analyse here were carried out using a parallel tree-code (Springel, Yoshida
& White 2000) on the Cray T3E at the Garching Computing Centre of the Max Planck Society.
These simulations were generated by zooming in and resimulating with higher resolution a par-
ticular cluster and its surroundings formed in a cosmological simulation (as in Tormen, Bouchet
& White 1997). The ΛCDM cosmological simulation has parameters Ω0 � 0 � 3, ΩΛ � 0 � 7, %s� 0 � 7
and ` 8 � 0 � 9. The cluster selected is the second most massive cluster in the simulation and has a
virial mass of 8 � 4 � 1014 % � 1 M 1 . The particles that end up in the final cluster of the cosmological
simulation and in its immediate surroundings (defined by a comoving sphere of 70 % � 1 Mpc ra-
dius) were traced back to their Lagrangian region in the initial conditions for resimulation. The
initial mass distribution between 21 and 70 % � 1 Mpc was represented by 3 � 106 particles. In the
inner region, where the original simulation had 2 � 2 � 105 particles, new initial conditions were
created for 4 � 5 � 105, 2 � 106, 1 � 3 � 107 and 6 � 6 � 107 particles, and small scale power was also
added onto this volume. The original force softening was also decreased to obtain better spatial
resolution. All four simulations were run from very high redshift until $N� 0. A summary of
their properties is given in Table 6.1.

6.2.2 The cosmology

In a ΛCDM cosmology the scale factor of the Universe in the matter dominated era evolves asS ( ! )S 0
� z Ω0

ΩΛ { 1 ] 3 ¶ sinh z 3 U ΩΛ " 0 !
2 { º 2 ] 3 X (6.2)

where Ω0 (ΩΛ) is the present-day matter (vacuum) density of the Universe in units of the critical
density today, " 0 is the Hubble constant which we take to be 70 km s � 1Mpc � 1, and S 0 is the
scale factor today (generally set to unity). We may invert the previous equation to determine
the age of the Universe at redshift $!w� 2

3 " 0 U ΩΛ
ln ¬ ΩΛ

Ω0

1
(1 0\$ )3 0 1 0 ΩΛ

Ω0

1
(1 0A$ )3 ¯ � (6.3)

The Hubble parameter " is also a function of time" ( ! ) �Z" 0

�
ΩΛ 0 Ω0(1 0\$ )3 � (6.4)
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FIGURE 6.1— The circular velocity ª f ( ¢ ) * v Ã ¼ ( ¢ ) BÄ¢ of the cluster for our simulation S3.

The position of a particle may be expressed in physical coordinates in terms of its value in the
comoving frame as f �ZS ( ! ) c X (6.5)

and the velocity in terms of the peculiar velocity Å asl �Z" ( ! ) f 0�Å � (6.6)

6.2.3 Scaling to a Milky Way halo

The simulation described above is currently the only one with such high resolution and is thus
(almost) perfect to study the phase-space evolution of debris from disrupted halos that end up
forming the cluster dark halo at the present time. Because we are not only interested in phase-
space evolution but we would also like to know particular properties of a galactic halo, such
as the number of streams one might expect in the Solar neighbourhood, we scale the cluster
simulation to a galactic size halo.

In Figure 6.1 we show the circular velocity profile of the cluster at $�� 0. We determine the
cluster centre by successively refining a mesh located on the cluster, and determining the cell
containing the largest number of particles. This process is repeated until the largest number
of particles in a given (now small size) cell is sufficiently small to determine by simple counts
which particle has the largest number of neighbours. Its position is defined as the cluster centre.
This determination is robust against changes in the mesh shape and size, and we estimate the
error in the final position of the centre of the cluster to be of the order of 2 kpc for our simulation
S3. The circular velocity is then determined after spherically averaging the mass distribution
around the centre of the cluster and is derived from �i� ( � ) � � ��� ( � ) ��� .

We scale the cluster to represent a “Milky Way” halo by scaling the circular velocity so that
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at its maximum it is equal to 220 km s � 1. The scaling factor� cl�� MW� � � cl
vir� MW

vir
� 12 � (6.7)

The virial radius of our Milky Way dark matter halo is about 260 kpc. The validity of this scaling
relies both on theoretical and numerical results (Lacey & Cole 1993; Moore et al. 1999; see also
Jing & Suto 2000). This should be a good approximation to the dark matter evolution of a typical
galactic halo, except possibly for the fact that assembly is shifted towards later times.

6.3 Results

6.3.1 Phase-space evolution of halo debris

To study the phase-space evolution of disrupted halos during the formation of the cluster, we
proceed by identifying halos at high-redshift which are directly accreted onto the most massive
halo at the time of identification.

We identify halos at each output time using a Friends-of-Friends (FOF) algorithm, which
links particles within spheres of radius 0.2 in units of the mean interparticle separation. In this
way we can construct a fairly detailed merger history of the formation of the cluster. At each
redshift we identify the most massive halo, which may be considered to be the cluster main
progenitor at that redshift. We say that a halo identified at redshift $ will be directly accreted
onto the cluster main progenitor at $ £ (the redshift of the next simulation output) if at least one
of its particles has become part of the cluster main progenitor at $ £ .
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FIGURE 6.2— A schematic representation of the merger history of the cluster. The dark trunk at any given time
represents the cluster main progenitor, and the branches linked to this trunk correspond to the halos we analyse in
the text (based on Lacey & Cole, 1993).

This is like following the (thickest) trunk of the merger tree, which would correspond to the
cluster main progenitor, and studying what happens to halos which fall along the tree branches
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FIGURE 6.3— We show here the mass fraction of the halos directly accreted with respect to the mass of the cluster
main progenitor at the time of identification. Note that in some cases this mass ratio approaches one, meaning that
the cluster is experiencing a major merger. These cases may be considered to be dramatically different from the static
infall of satellites discussed by HW.

at the given output time. This idea is illustrated in Figure 6.2. We have selected halos in this
way since a direct merging onto the cluster main progenitor resembles more closely the HW
static case: i.e. a halo falling directly onto a given potential. We should keep in mind that the
results derived for the evolution of halos directly merging with the cluster are likely to be valid
for all halos that end up forming the cluster, since halo–halo mergings inside the cluster virial
radius are not very common (Springel 2000).

For the intermediate resolution simulation S3 we have identified 66 halos with at least 1000
particles, which fall onto the cluster main progenitor in the redshift range $N� 4 � 5 . 0 � 84. The
halos have a large spread in sizes as shown in Figure 6.3.

To determine the phase-space evolution of streams leftover from disrupted halos, we pro-
ceed by defining, for each halo identified before, a “reference” particle. We follow this particle
in time to study the properties of the velocity ellipsoid and density in its immediate neighbour-
hood. This is equivalent to following the evolution of the properties of the stream in which this
particle resides.

The choice of the reference particle is only subject to the condition that it should be located
initially in a region of the halo with a large density. At the time of identification of the halo,
we measure the space density and velocity ellipsoid in a cubic volume of 1 kpc on a side (83 pc
for the Milky Way halo) around the reference particle. Then, for each output, we derive a local
density and velocity ellipsoid from the halo particles in the same orbital phase as the reference
centre. When the density has decreased by more than a factor of 3 in a ten times larger volume
(i.e. 10 kpc, or 830 pc in scaled units), we proceed to follow the reference centre in this larger
volume. This particular time, which we call ! i, can be interpreted as the “time of the formation
of the stream”, that is, when the dynamics begin to be dictated by the cluster field rather than
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FIGURE 6.4— The phase-space behaviour of a debris stream in our S3 simulation. The top three panels show the
time evolution of the velocity dispersions in the principal axes frame starting from the time the halo falls onto the
main progenitor of the cluster at redshift 1.2. In the bottom panel we plot the evolution of the density along the
stream. All quantities are derived from particles located inside a cubic volume of 10 kpc on a side and with the same
orbital phase as the halo reference particle. The dashed curves correspond to the fits indicated in each of the panels.
For comparison with the behaviour in a static potential see Figure 6.5.

by that of the halo. The enlargement in the size of the volume allows us to study, for a fraction
of our halos, the properties of streams until the present day.

In Figure 6.4 we show the evolution of the principal axes of the velocity ellipsoid and the lo-
cal space density in the neighbourhood of the reference particle, for a halo identified at redshift
1.2. This halo had an initial mass of 1 � 65 � 1013 M 1 (18% of the mass of the cluster progenitor
at the identification time) and directly merged with the cluster main progenitor at that redshift.
Note that the halo is completely disrupted immediately and the local density decreases dramat-
ically. The velocity dispersions along the principal axes are also found to decrease very rapidly.
The dashed curve in each of the three top panels represents a fit to the velocity dispersion of the
form: `_� ` 0 � O � (1 0 ∆ !���! 0), where ∆ !i�A! . ! i, and ! i is the “time of the formation of the stream”.
In the bottom panel, the solid curve corresponds to the density, determined from number counts
at each output. The dashed curve is the product of the fits to the velocity dispersions described
above. As expected from the conservation of phase-space density, this dashed curve traces very
well the behaviour of the local space density of the stream.

We are thus finding that the phase-space behaviour of halo debris appears to be fairly sim-
ilar to the static case. A halo with a given initial velocity dispersion gives rise to streams with
velocity dispersions ten times smaller after 10 Gyr of evolution in the cluster potential. This is
the same type of scaling HW had found for the case of infall of satellites onto a fixed static po-
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FIGURE 6.5— The phase-space behaviour of a debris stream in a static NFW potential consistent with the present
day properties of the S3 cluster. The top three panels show the time evolution of the velocity dispersions in the
principal axes frame. In the bottom panel we plot the evolution of the density along the stream.

tential, even though in the regime that we are probing here the potential changes very violently.
We can make this comparison more direct in the following way.

As for many halos in CDM simulations, the cluster halo at the final time can be well fit by a
Navarro, Frenk & White (NFW) profile (Navarro, Frenk & White 1996):� ( � ) � � 0

ç � � 3�� ( �50A�_� )2 X (6.8)

where � 0 � 3 " 2
0 � (8 ^ � ) and ç � is a function of the concentration of the halo § �Z� vir ���_� :ç � � 200

3
§ 3

log(1 0V§ ) . §j� (1 0\§ ) � (6.9)

The potential associated with this density can be obtained by integrating Poisson’s equation,
and is found to be:

Φ( � ) � . Φ0
�7�� log(1 0 ��_� ) � (6.10)

Here Φ0 � 3 � 2 " 2
0 ç ���7� . In this (spherically averaged) potential we can integrate the orbit of the

reference particle backwards in time, starting from its current position and velocity until the
time of infall of the halo (or the “time of formation of the stream”). At this time, we may ap-
proximate the phase-space density around this particle by a multivariate Gaussian distribution.
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This is possible because the multivariate Gaussian is determined from the properties of particles
in a volume much smaller than the size of the halo.

We can follow the evolution of streams produced in the spherical and static NFW potential
of the cluster using the approach developed by HW. The basic idea here is to map the initial
system onto action-angle space, then follow the much simpler evolution in this space, and fi-
nally transform back locally onto observable coordinates (all these being linear transformations;
for details see HW). In Figure 6.5 we show the evolution of the velocity ellipsoid and space den-
sity along a stream that moves in this spherical static NFW potential. When comparing with
the actual behaviour of the stream, shown in Figure 6.4, we find that the true potential is not
spherical, since none of the principal axes velocity dispersions remains constant. But because
the final orbit is so much confined to the inner halo, the decrease in the density in the spherical
case is of the same order of magnitude as that observed in the simulations. This is to say that
the particle (or the stream) has made many more revolutions in the spherical halo than in the
simulations, so as to produce the same decrease in the space density, or equivalently the same
number of streams.

We may understand our results in view of the conservation of phase-space density which
holds even when the potential varies violently with time, and depends only on the assump-
tion that the system is collisionless, which clearly is a reasonably good approximation to the
formation and evolution of a cluster (Springel 2000).

This characteristic behaviour is observed for all halos which are directly accreted onto the
main cluster progenitor and which are completely disrupted at some point while orbiting the
cluster. This also appears to be the case for the evolution of streams originating in the second
most massive halo of the simulation that merges with the cluster main progenitor at redshift
1.34. However, because the halo rapidly sinks to the centre by dynamical friction, the deter-
mination of the orbital phases of the particles is more uncertain. Streams are thus harder to
follow, as the phase-mixing timescales become extremely short. On the other hand, some of the
halos identified manage to keep a bound core, and thus their phase-space evolution is not so
dramatic: they do lose a fair amount of mass because of the cluster tidal field but their velocity
ellipsoids do not vary much with time. This is particularly so when the reference particle is
located right at the centre of the satellite halo.

6.3.2 The Solar neighbourhood

In Figure 6.6 we plot the velocities of particles inside a cubic volume of 2 kpc on a side, located
at 8 kpc from the Milky Way centre (all in units of the scaled halo). Note that we did not
determine the principal planes of the simulated dark halo, so that the only criterion we have for
determining the “Sun’s” position in the halo is its distance to the “Galactic” centre.

In Figure 6.7 we show the velocities of the particles in the same volume as before, but now
we identify with different colours particles that belonged to the same halo at redshift 2.38. At
this redshift, which corresponds to 11 Gyr ago, our FOF algorithm finds 460 halos with at least
1000 particles for S3. In the box shown in this figure, there are 248 particles. Fifteen different
halos contribute to this volume, but only seven with more than one particle. We generally expect
particles of the same colour to be clustered in streams. Some such substructures are observable,
but it is also apparent that the number of particles inside this box may be too small to populate
each expected stream, thus making it difficult to distinguish streams by simple eye inspection.
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FIGURE 6.6— Principal axes projections of the velocity of particles located in a box of 2 kpc on a side at the Solar
radius, where all quantities have been scaled to the “Milky Way halo” as described in the text. The distribution looks
slightly clumped.

FIGURE 6.7— Same as Figure 6.6 but colours here indicate particles originating in the same halo 11 Gyr ago. Blue
dots correspond to field particles (i.e. not belonging to a halo with at least 1000 particles 11 Gyr ago), and black dots
to particles from halos which do not contribute substantially to this volume.
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6.3.3 The filling factor

A relevant quantity is the number of streams we should expect to find in the Solar neighbour-
hood. This is important not only to characterize the kinematic distribution of halo stars, but in
particular and probably more appropriate in this context, to understand the effect of velocity
substructure on the different experiments which attempt to determine the nature of dark matter
particles.

We compute the number of streams inside cubic volumes located in the inner ([ . 20 X 20])3

kpc3 in the scaled Milky Way halo for our highest resolution simulation S4 as follows.
A stream is defined by particles with the same orbital phase and coming from the same halo

at some initial (high) redshift. The orbital phase of a particle may be determined, in principle,
by counting how many times it has crossed the planes t � 0 X �ô� 0 X $ � 0. However, because
of the limited number of outputs which are logarithmically spaced in the expansion factor,
this determination does not yield completely correct answers. The logarithmic spacing of the
outputs means, for example, that the time intervals range from ∆ !<� 0 � 14 Gyr at $9� 4, ∆ !<� 0 � 52
Gyr at $9� 1 to ∆ !>� 0 � 86 Gyr at $T� 0. It is therefore difficult to determine correctly whether two
particles are at the same phase in an automated way, in particular towards low redshifts since
the orbital timescales for stars in the Solar neighbourhood are of the order of 0.25 Gyr only. This
is why we also keep track, not just of the crossing of the planes t � 0 X � � 0 X $ � 0, but also of3 � � 0 X 3 o � 0 X 3 � � 0. We define the phase of a particle in the t -direction at time !p0 ∆ ! as:

& � ( !i0 ∆ ! ) � & � ( ! ) 0 �� � 1 if 3 � has changed sign but not t ,
2 if t and 3 � have changed sign ,
3 if t has changed sign but not 3 � , (6.11)

and similarly for the � and $ -directions. In this way we keep all the information about the
orbital phase of a particle. This is like breaking up the orbit in 4 pieces: from the principal plane
to a turning point, back from the turning point to the principal plane, to a second turning point
and back to the principal plane. Clearly for the first few outputs such a scheme would break up
true streams into components. We thus map back all this phase information by, at the final time! 0, defining the final phase of a particle as¥

f � int ¶ & ( ! 0)
4
º 0 1 (6.12)

Thus now we may say that particles with the same phase
¥

f and coming from the same halo
at some high redshift, which we fix here to be $ � 2 � 38, are on the same stream. If we find �
separate streams in a given box, each containing 
 Æ particles ( b � 1 X ��� � ) then the mass-weighted
mean number of particles per stream is nG
�o � ��ë Æ 
 2Æ�ìë Æ 
 Æ � (6.13)

The mass-weighted number of streams, or the filling factor in the box is then. � ��ë Æ 
 Ænm
êo � (6.14)

In Figure 6.8 we plot the filling factor as a function of distance from the Galactic centre for each
one of the boxes considered. The thick grey line is the median filling factor, derived from boxes
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FIGURE 6.8— The mass-weighted number of streams in boxes of 2.72 kpc on a side for our simulation S4 as a func-
tion of distance from the centre of the Galactic halo. The thick grey line going through the data points corresponds to
the median mass-weighted number of streams, derived for boxes at the same distance from the Galactic centre. The
dark thick line corresponds to the average number of particles inside the same volumes. In such, relatively large,
boxes, and only for the highest resolution simulation do we find enough particles to populate all streams with at
least two particles. The average number of dark matter streams in the Solar neighbourhood is thus of the order of a
thousand.

located at the same distance from the Galactic centre. At the position of the Sun we find of the
order of a thousand streams.

Another interesting quantity which we can calculate for each box is the characteristic mass-
weighted dispersion within a stream in units of the underlying 3-D velocity dispersion:` stream � 1U 
 a ` 
��� ë­ Æ � d ² g l d . l ² g 2
 Æ . 1

(6.15)

where the F�» run over all particle pairs in the b -th stream in a given box, 
 Æ is the number of
particles in this stream in this box, and ` is the 3-D velocity dispersion for all the individual
particles in the box. This fraction is expected to be relatively small in view of our results of the
phase-space evolution of halo debris. We plot this quantity in the left panel of Figure 6.9 as a
function of distance from the Galactic centre for each one of the boxes considered. The velocity
dispersions inside a stream are small, but still appear to be between 10% and 30% of the overall
velocity dispersion inside the box. In the right panel of Figure 6.9, we give the characteristic
mass-weighted velocity dispersion in km s � 1. The values of 20 – 30 km s � 1 are partly due
to gradients inside the box for particles on the same stream. This effect is likely to be even
stronger for the boxes located very close to the centre of the Galaxy, as observed. But we should
also bear in mind that here the orbital timescales are so short that our scheme for determining
the particles phases may not give the correct answer. A hint that this may be happening is the
turn over at roughly 7 kpc in the mass-weighted filling factor, as shown in Figure 6.8.
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FIGURE 6.9— Mass-weighted velocity dispersions of streams inside cubic volumes of 2.72 kpc on a side, located
in the inner ([-20,+20])3 kpc3 of the Galactic halo. In the left panel, the velocity dispersion is expressed in units of the
3D velocity dispersion in each particular cubic volume. In the right panel it is given in km s J 1.

If instead of taking boxes of 2.72 kpc on a side, we take boxes 8 times smaller (thus 1.36 kpc
on a side), we will not be able to populate all streams, as the average number of particles inside
such boxes is slightly less than a thousand. We thus only focus on boxes having at least ten times
more particles than streams. The streams observed will be well-populated and thus enable us to
obtain a fair estimate of the velocity dispersion of a stream. In Figure 6.10 we show the number
of particles in boxes of 1.36 kpc on a side, containing a ten times smaller mass-weighted number
of streams (left panel); in the central panel the mass-weighted velocity dispersion of streams in
units of the 3D velocity dispersion in each particular volume is plotted. Finally the right panel
corresponds to the mass-weighted velocity dispersions of streams in km s � 1.

6.4 Discussion

We have studied the phase-space evolution of different halos that merged to build up a cluster
in a ΛCDM cosmology. Our analysis has shown that the debris streams originating in halos of
different sizes and orbital characteristics all behave in a similar way: with velocity dispersions
decreasing in time, and with local space density decreasing as 1 ��! 3. The debris streams that we
were able to follow until the present time, are consistent with having a phase-mixing origin. For
halos that we could not follow for a very long time, because of their smaller initial number of
particles or their shorter orbital timescales – which make mixing take place more quickly– we
also find the same behaviour. On the small scales of the fine-grained distribution function we
find that the dominant mixing mechanism is phase-mixing as opposed to chaotic mixing. The
phase-space evolution appears to be very ordered and quite simple.

The simple behaviour of the debris streams can be understood in terms of the conservation
of phase-space density. The system is collisionless and therefore, independently of how violent
the potential changes in time, the streams will behave only guided by this conservation law.
If chaos had been important, the behaviour of the streams would still have been dictated by
Liouville’s theorem, but the mixing would have taken place on a much shorter timescale, so
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FIGURE 6.10— The number of particles in boxes of 1.36 kpc on a side, containing a ten times smaller mass-
weighted number of streams (left panel). In the central panel the mass-weighted velocity dispersion of streams in
units of the 3D velocity dispersion in each particular volume is plotted. Finally in the right panel, the mass-weighted
velocity dispersion of streams in km s J 1is shown. The streams have a range of velocity dispersions that go from a
few km s J 1 to a few tens of km s J 1, and there is also an indication that there is a dependence on Galactocentric
distance.

that all streams observed (independently of the number of particles available in the volume, i.e.
of the resolution) would have been one-particle streams. The probably surprising result is that
we have a finite number of massive streams, and as we explicitly show in Section 6.3.1, whose
properties are not very different from those observed in static idealised potentials.

While violent relaxation takes place on the large scales, and is so effective as to produce a
universal density profile for dark matter halos (Navarro, Frenk & White 1996), independent of
their merger history and only weakly dependent on the cosmological initial conditions, on the
small scales the halo retains memory of its origin and formation history, even after a Hubble
time. It will be an interesting exercise to understand the link between the small (fine-grained)
and the large (coarse-grained) scales.

Thus a cluster halo formed in a ΛCDM cosmology is not a smooth entity. Not only do dark
matter halos contain a large number of dark satellites, dark matter halos have large amounts of
substructure in the forms of streams. If we accept that we may scale a cluster halo down to a
Galactic halo simply by the ratio of their maximum circular velocities (equivalent to a scaling
their mass ratio to the cube), we find that the Galactic dark matter halo in the Solar neighbour-
hood appears to be clumped in roughly a thousand streams. These streams have their origin
in the different halos that merged to form to our dark matter halo. The scaling used above
is independent of the formation time of the halo, which thus means that one may expect a
slightly larger number of streams since a galactic halo will have had more time to relax, and
the streams to spread out in space. We estimate that this number cannot be more than a fac-
tor (∆ ! MW

i )3 � (∆ ! cl
i )3 � 2 � 35 larger, if the time elapsed since the formation of the Milky Way is

∆ ! MW
i � 10 � 5 Gyr ( $�� 2), and since the formation of the cluster is ∆ ! cl

i � 7 � 9 Gyr ( $�� 1).
Determining the characteristics of these roughly thousand streams is difficult from these

high-resolution simulations, because of the number of particles and the small number of out-
puts available. In a box with a thousand particles, such as some of the ones shown in Figure
6.10, for example, we find on average just ten streams with more than one particle, and typically
with only two particles! Even in boxes of 1.36 kpc on a side, the velocity gradient along the orbit
of each stream may be of the order of 400 km s � 1/20 kpc � 1.36 kpc � 27 km s � 1. The dispersion
that we will measure will be of this order unless we reach higher resolution, so that boxes can be
reduced in size and therefore the gradient can be suppressed to a minimum contribution. Using
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our fitting formulae from Figure 6.4, we may estimate that a halo with an initial 1-D velocity
dispersion of 70 km s � 1 should contribute to the Solar neighbourhood streams with internal
velocity dispersions of the order of 8 km s � 1, after 8 Gyr of evolution. If we now correct for the
earlier assembly of a galactic halo, the expected 1-D velocity dispersion is about 6 km s � 1.

Our results indicate that dark matter experimentalists may quite safely assume that the dis-
tribution of dark matter particles is Gaussian. The large number of streams observed, none of
which appears to be largely dominant in any of the volumes located around the Solar sphere
(or circle), means that this is a very good approximation to reality. The important effect may
only appear in the spatial distribution of the cores that may be left over even in an otherwise
smooth sea of dark matter particles. In the analysis of the simulation S2 and S3, of small and
intermediate resolution (at least in comparison to S4!) we did not find any prominent spatial
substructures. This may change if we go to higher resolutions. An important property of these
cores is that, if there at all, they have a negligible mass, and thus will not affect the thinness of
the disk of the Milky Way, or other spiral galaxies.

How do these results affect our estimates derived for the stellar halo in Chapter 2 of this
thesis? How many star streams should we observe in the Solar neighbourhood? The number
of streams observed in the simulations corresponds to dark matter streams. Each dark matter
halo will contribute by about a factor of ten more dark streams than stellar ones, since the
baryons are clustered in the inner roughly one-tenth of their host halo. Thus, if we break the
2350 dark streams (now scaled to take into account the earlier assembly of a galactic halo) into
ten contributors, each one of these will give rise to 23 stellar streams with orbital properties
similar to those of the dark halo. However, because the baryons were initially clustered in
the centre of their host halo, their orbital properties will not exactly follow those of their dark
matter counterparts. A typical star in the Solar neighbourhood has a period of 0.25 Gyr, with
an apocentre of about 11 kpc. A typical dark matter particle will have an apocentre of the
order of 20 kpc, corresponding to an orbital timescale of the order of 0.3 Gyr. Because the time
for dispersal scales as 1 � ! 3, this implies that the number of star streams is actually a factor of 2
larger, i.e. each associated galaxy that merged to build up our Milky Way would have given rise
to approximately 45 streams, assuming our scalings are roughly right. This estimate brings us
close to the result derived in the beginning of this thesis: we should expect about five hundred
stellar streams in the Solar neighbourhood.
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Summary O
JUST like the Earth does not travel through space alone, but with eight other planets, our Sun

does not live on its own but inhabits a conglomerate of a hundred billion stars (other suns)
which we call our Galaxy, the Milky Way.

The Milky Way is visible on a clear night as a band of silvery light across the sky, from which
it derives its name. This light originates in millions of stars that are too distant to be visible with
the naked eye. Even though it looks as though we are outside this milky path, we are in fact
situated in a spiral arm close to the edge of this disk. The “milky way” is what one observes
looking edge on into the disk.

Panoramic view of the sky showing the Milky Way. Individual stars are shown as white dots. The ”Milky Way”
clouds, actually the combined light of dim, unresolved stars in the densely populated galactic plane, are interrupted
by dramatic dark dust lanes. (Lund Observatory, Sweden)

There are hundreds of millions of galaxies like our own throughout the Universe. Not all of
them have a spiral pattern, some are elliptical (similar to a rugby ball) and some are very irreg-
ular. Galaxies come in different colours and sizes, and a fundamental question astrophysicists
try to answer is how did such systems form? What produces this large variety of shapes and
colours? How do galaxies evolve?

Going back in time by observing the distant Universe

Let us for a moment return to the Earth and its immediate neighbourhood. Our Sun is about
150,000,000 kilometers away from us. Because light travels through space at 300,000 kilometers
per second, it takes eight minutes for the light of the Sun to reach the Earth. One may rephrase
this by saying that when we look at the Sun we do not see it as it is now, but as how it was eight
minutes ago. One can thus imagine that if you put the Sun very far from the Earth, its light willP

This is a semi-popular summary. It provides a general introduction and an outline of the topics addressed in
this thesis. For a more technical summary please refer to Chapter 1.
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The left figure shows the galaxy M101, also a spiral system which probably would resemble our Milky Way seen
face on. The corresponding location of the Sun is indicated with an arrow. The picture on the right was taken by the
COBE satellite and shows the plane of our Galaxy in infrared light. The thin disk of our home spiral galaxy is clearly
visible, as are some stars belonging to the halo.

take a very long time to reach us. For example, the closest star to our Sun is about 4 light–years
away: its light travels for four years before it reaches the Earth! Similarly, if a galaxy is very
distant we will observe it not as it is now, but as it was billions of years ago! This means that by
looking at very distant objects, and progressively coming closer and closer, we actually have a
sequence in time of how galaxies form and evolve to become what we see in our local Universe.
Thus the history of the formation of galactic systems is actually written in the skies.

This idea has been extensively explored observationally. For example, from very deep ob-
servations of small regions of the sky taken by the Hubble Space Telescope, we have learned
that the more distant galaxies are smaller and that they are often found to be interacting with
other galaxies.

Can we understand this observational result? Yes, indeed. Over the last twenty years as-
trophysicists have been putting together a paradigm of how galaxies form starting from very
small matter fluctuations in the early Universe (as early as when the Universe was only three
minutes of age!). This standard scenario proposes that small galaxies are the first to form. They
then merge given rise to larger and larger systems, like for example our own Milky Way.

This thesis: The Galactic halo

Another way of addressing the problem of how galaxies form is by taking our Milky Way as a
landmark. If the Milky Way is a typical galaxy (as we believe) then we can use what we know
about it to test the model described above, determine where this model fails and why, or rule it
out completely. After all no theory can ever be proven right, all one can try is to prove it wrong
(that is the theorist’s nightmare and the observer’s dream!).

The advantage of using the Milky Way to tackle this problem is that the stars in our Galaxy
are close enough that we can actually distinguish them one from the other and determine their
individual properties, like how far they are, how quickly they move, in what direction and
so on. This is yet unachievable for other galaxies, except may be for a few of the Milky Way
satellites. If stars retain memory of where they came from, we may then be able to tell if our
Galaxy was built hierarchically, that is, from smaller bits and pieces.

Surrounding the Milky Way is a diffuse roughly spherical cloud of stars known as the Galac-
tic halo. The disk of the Galaxy, in which the Sun orbits, is thought to have formed from the
cooling of gas. Its stars have always been part of it: they were born in the disk and that is where
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they will also die. But stars in the halo are generally very old and metal-poor. Because the
very early Universe was free of heavy elements (these were only later produced inside stars),
metal–poor stars may be considered to be more pristine. These are the stars thought to have
been formed in galaxies that merged to form our Milky Way. This is why tackling the question
of how the Galaxy formed may be equivalent to addressing how its halo formed.

What are the signatures of the Milky Way merging history?

This is the main issue addressed in Chapter 2 of this thesis. By means of computer simulations
and analytic calculations (yes! the good old “pen and piece of paper” science!) we found that
galaxies destroyed during the Milky Way infancy should still be detectable as ghostly sheets of
stars moving on near-parallel orbits. Thus debris from a dwarf galaxy destroyed by a collision
with our own Galaxy can survive as relic streams of stars wrapping around the Milky Way. We
predict in Chapter 2 that, as a result of the hierarchical build-up of the Milky Way, halo stars in
the vicinity of the Sun should be distributed in a few hundred streams, stars in the same stream
moving with practically the same speed through space.

Finding fossils: the relic streams

Just like paleontologists hunting for fossils to reconstruct the evolution of species on the Earth,
in Chapter 3 we looked for “relic streams” amongst nearby halo stars to understand how our
own Galaxy formed and evolved into what we see today.

Between 1989 and 1993 the European Space Agency’s HIPPARCOS satellite measured the
positions, distances and motions of 120,000 stars. The resulting catalogue, published in 1997,
provides a unique opportunity to search for stellar streams. By sifting carefully through this
catalogue, we were able to make a nearly complete census of old giant stars within a few thou-
sand light years of the Sun. Earlier observations by other astronomers had used mountain-top
telescopes to show that these stars contain less than a thirtieth as much iron and magnesium as
the Sun, a sure sign that they are among the oldest stars in the Milky Way. These observations
also measured how fast each star moves away from the Sun. HIPPARCOS, on the other hand,
measured changes in the apparent direction of each star, thus establishing how fast it moves
across the line-of-sight. Combining these data we determined the direction of motion and the
speed of a few hundred nearby giant stars.

Analysing these observations, we were struck by the fact that while most stars move in
apparently random directions, two small sets of stars seem to be moving together. One set
of nine stars pursue near-parallel orbits which cross the Milky Way’s disk at high speed from
North to South; a second set of three stars pursue orbits which cross the disk at the same speed
and angle, but from South to North. In both cases the direction and speed of the motion is
well separated from those of the other nearby giants. Comparing with our previous computer
simulations, we concluded that each set of stars is part of a debris stream, and that both streams
come from a single dwarf galaxy which was torn apart by the Milky Way’s gravity during or
very soon after the Milky Way’s own formation. The characteristics implied for this dwarf
make it very similar to other small galaxies which still survive in the outskirts of the Milky Way
system. The stars in each set are distributed all over the sky, even though they move in parallel,
showing that the Sun is actually sitting inside the two streams of debris. These ghostly streams
are the first fossil evidence showing directly that our own Galaxy was put together from smaller
building blocks.
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Can we find more fossils?

With a larger sample of old stars we expect to find many more such streams, fossils of canni-
balised galaxies. We need, however, to know the motions of a about five thousand halo stars
very precisely to be able to constrain the evolutionary history of our Milky Way. This will be
possible with future satellite missions, like the American FAME or the European GAIA.

In Chapter 4 we show that these future satellites will measure the motions of stars so accu-
rately that we will finally be able to confirm or rule out the hierarchical model for the formation
of our Galaxy. The predicted several hundred streams of stars should be easily detected if they
are really there! We can do even better and, for example with GAIA we could identify 50% of
all the different galaxies that we think merged to build up the Milky Way.

A living fossil: the Sagittarius dwarf galaxy

Mergers are not a thing of the past. For evidence of the contrary, one only needs to look at the
closest satellite galaxy of the Milky Way: the Sagittarius dwarf. Sagittarius was only discovered
in 1994, and shows clear signs of being torn apart by the Milky Way tidal forces just now. It
is very elongated and not very bright, and it will probably have disappeared the next time it
comes close to the centre of the Milky Way. As it is torn apart, its stars form streams which can
be visible as a band of light across the sky. The curious and somewhat puzzling property of
Sagittarius is that it has managed to survive for many billions of years, even though it comes
extremely close to the Galactic centre. In Chapter 5 we describe models which help understand
why it has not been fully destroyed yet. We find that Sagittarius was probably very different in
the past, probably many times more massive than what it is today.

The dark-matter halo of our Galaxy

The Milky Way has both a “visible” stellar and a “dark” halo, which extends much farther out
than the disk or the stellar halo we have been discussing so far. We derive its existence from
the motions of the Milky Way satellite galaxies. These satellites have orbits that take them very
far from our Galaxy, but still remain bound to it (i.e. they always come back). By measuring
the mass in stars and gas in our Galaxy, one finds that this “visible” mass is about a factor of
ten smaller than what is required to keep the satellite galaxies orbiting around the Milky Way.
Because we cannot see the mass that is responsible for this gravitational pull, we call it “dark
matter”. Dark matter is also found to be present in other galaxies, in aggregates of galaxies
which are called clusters, and in aggregates of clusters of galaxies. The dark matter is present
everywhere in the Universe, and like in our Galaxy, it is about ten times more abundant than
the gas and stars we can observe directly. One of the key problems in astrophysics and particle
physics is to determine what kind of matter makes up 90% of the mass budget in the Universe.

In Chapter 6 we address what should be the properties of the dark halo of the Milky Way,
if the Galaxy was indeed built hierarchically. A key ingredient of the hierarchical paradigm is
that it assumes that the dark matter is formed by some kind of elementary particles that interact
very weakly, and are thus difficult to detect. Understanding the properties of our dark halo is
particularly important because it is impractical to build experiments to detect every possible
elementary particle candidate. Moreover, it is also important to understand if a signal is found,
what is its origin and whether these experiments may have finally detected and determined the
nature of the evading and dark component of the Universe.



Nederlandse samenvatting

ZOALS de Aarde niet alleen, maar samen met acht andere planeten door het heelal beweegt,
zo leeft ook onze Zon niet alleen, maar woont zij samen met honderd miljard andere sterren

(zonnen) in ons sterrenstelsel, de Melkweg genoemd.
Wanneer men op heldere avonden de hemel bekijkt, ontdekt men meteen de Melkweg: een

zwak glanzende wolkachtige lichtband, vandaar zijn naam. Dit licht is afkomstig van miljoenen
sterren, die te ver weg staan om met het blote oog te zien. Al hoewel het lijkt alsof wij buiten
de “lichtstrook” zitten, behoren we tot een spiraalarm aan de rand van de melkwegschijf. De
“melkweg” is in werkelijkheid een band van sterlicht, die men ziet, wanneer men een dunne
schijf op zijn kant bekijkt.

Panorama van de Melkweg aan de hemel. Sterren zijn te zien als witte puntjes. De melkwegwolken, eigenlijk het
gecombineerde licht van duizenden sterren in de dunne schijf, worden onderbroken door banen van donker stof
(Lund Observatory, Zweden).

Er zijn honderden miljoenen sterrenstelsels net als onze Melkweg verspreid door het heelal.
Niet allemaal hebben zij spiraalarmen, sommige zijn elliptisch (ze lijken op een rugby-bal) en
anderen zijn heel onregelmatig. Sterrenstelsels komen voor in verschillende kleuren en maten.
Een belangrijke vraag in de sterrenkunde is hoe sterrenstelsels zijn onstaan. Waarom zijn er
verschillende soorten stelsels, en waarom hebben ze hun specifieke vorm?

Terug in de tijd door te kijken naar het diepe heelal

Laten wij even terugkeren naar de omgeving van de Aarde. Onze Zon ligt 150,000,000 kilometer
ver van ons weg. Omdat de snelheid van het licht 300,000 kilometer per seconde is, duurt het
voor het licht acht minuten om van de Zon naar de Aarde te reizen. Met andere woorden:
het waargenomen beeld van de Zon is dat van acht minuten geleden. Zou de Zon op grotere
afstand van de Aarde liggen, dan zou haar licht er langer over moeten reizen. Bijvoorbeeld, de
dichtstbijzijnde ster is ongeveer 4 lichtjaar van ons verwijderd: haar licht moet vier jaar door
de ruimte reizen voordat het op de Aarde schijnt! Voor sterrenstelsels, die nog veel verder
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In het linker figuur is het sterrenstelsel M101 te zien, ook een spiraalstelsel dat op de Melkweg zou kunnen lijken
gezien van boven. De positie van de Zon is aangegeven met een pijl. De rechter foto werd gemaakt door de COBE
satelliet, en laat de melkwegschijf zien in het infrarood. Ook zijn een paar halo-sterren te zien buiten de schijf.

weg staan, kan deze tijd oplopen tot enkele miljarden jaren! Verweg gelegen sterrenstelsels
worden dus waargenomen zoals ze er miljarden jaren geleden uitzagen, vlak na hun ontstaan.
Dit betekent dat als we waarnemingen nemen van ver weggelegen stelsels en stap voor stap
steeds dichterbij komen, we een tijdreeks krijgen van hoe sterrenstelsels zijn onstaan en hoe
ze zich ontwikkelden, tot wat we nu zien in onze eigen omgeving. Dus de geschiedenis van
sterrenstelsels staat aan de hemel geschreven.

Dit idee wordt heel veel en vaak gebruikt door sterrenkundigen. Bijvoorbeeld, door de
hele diepe waarnemingen met de Hubble Space Telescope van een klein gedeelte van de hemel
weten we nu dat de meest verweg gelegen sterrenstelsels veel kleiner en onregelmatiger zijn,
en dat ze elkaar vaak sterk beı̈nvloeden, zoals botsende sterrenstelsels.

Kunnen wij deze observationele ontdekking begrijpen? Jazeker. In de laatste twintig jaar
hebben sterrenkundigen een theorie ontwikkeld, waarin sterrenstelsels onstaan door zwaar-
tekrachtsversterking van de oorspronkelijk in het heelal aanwezige massafluctuaties. In het
vroege heelal zijn eerst de kleine sterrenstelseltjes gevormd, die botsen vervolgens met andere
kleine sterrenstelsels en smelten zo samen tot grotere stelsels, zoals onze eigen Melkweg.

Dit proefschrift: De galactische halo

Een andere manier om te leren hoe sterrenstelsels zijn onstaan is door het bestuderen van ons
eigen Melkweg. Indien de Melkweg een typisch sterrenstelsel is (en dat denken we wel) kun-
nen we gebruik maken van de gedetailleerde informatie die we over de Melkweg hebben om te
testen of het “hiërarchische” model klopt, wat er misschien fout aan is en waarom. Men kan niet
bewijzen of een theorie, danwel een model helemaal klopt, men kan alleen proberen om de the-
orie op de proef te stellen door nieuwe gegevens te vinden die de modellen lek kunnen schieten
(het is de nachtmerrie van de theoretische sterrenkundige en de droom van de observationele
sterrenkundige!).

Het voordeel van het bestuderen van de Melkweg ligt in het feit dat de sterren in ons stelsel
zo dichtbij zijn dat hun individuele kenmerken waargenomen kunnen worden, zoals hoe ver
weg ze staan, hoe snel zij bewegen en in welke richting, enzovoort. Dit is nog onmogelijk
voor andere sterrenstelsels, met de mogelijke uitzondering van een paar satellietstelsels van de
Melkweg. Indien sterren onthouden waar ze vandaan komen, dan kunnen wij die informatie
gebruiken om te bepalen of onze Melkweg door een hiërarchisch proces is onstaan of niet.

De Melkweg heeft een dunbevolkte, bijna bolvormige halo om zich heen: de galactische
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halo. De dunne Melkwegschijf, waar onze Zon heel regelmatig rondom het centrum beweegt, is
onstaan door afkoeling van gas. De sterren die zich in de schijf bevinden zijn in de schijf geboren
en zullen hierin ook dood gaan. De sterren, die tot de halo behoren, zijn meestal heel oud en
zeer metaalarm. Omdat er in het vroege heelal geen zware elementen bestonden (deze zijn later
gevormd in het binnenste van sterren) kunnen we zeggen dat zeer metaalarm sterren lijken
meer oorspronkelijke sterren. Het zijn deze sterren, waarvan men denkt dat ze zijn onstaan
in sterrenstelsels, die samengesmolten zijn tot de Melkweg. Daarom is de vraag van hoe ons
melkwegstelsel is gevormd gelijkwaardig aan de vraag hoe de galactische halo is onstaan.

Wat zijn de kenmerken van de samensmeltingsgeschiedenis van de Melkweg?

Dat is de centrale vraag van hoofdstuk 2 dit proefschrift. Met behulp van computersimulaties
en analytische berekeningen (ja! de klassieke “potlood en papier” wetenschap!) hebben we
ontdekt dat sterrenstelsels, die in botsing gekomen zijn met onze vroege Melkweg terug te vin-
den zijn als groepen sterren. Deze groepen sterren bewegen in onderling evenwijdige banen, en
daarbij als het ware in hun beweging de herinnering aan hun gemeenschappelijke oorsprong
bewaren. In dat hoofdstuk voorspellen we dat tengevolge van de hiërarchisch vorming van
onze Melkweg, de halo–sterren in de Zonsomgeving zijn verdeeld in zo’n paar honderd groep-
jes, en dat sterren die tot dezelfde groep behoren met bijna dezelfde snelheid door het heelal
bewegen.

Fossielen ontdekken: de restanten van een dwergstelsel

Zoals paleontologen naar fossielen zoeken om de evolutie van levende soorten op Aarde te kun-
nen bepalen, zo zoeken wij in hoofdstuk 3 naar de specifieke eigenschappen van de beweging
van nabije, oude sterren om daaruit te kunnen afleiden hoe ooit ons Melkwegstelsel is gevormd,
en hoe het zich ontwikkelde tot het stelsel dat we nu kennen.

Tussen 1989 en 1993 heeft de Europese HIPPARCOS satelliet heel precies de plaats en de be-
weging gemeten van 120,000 sterren in de nabije omgeving de Zon. Dit was een unieke kans om
sterrengroepjes op te zoeken. De catalogus verschafte ons de precieze posities en bewegingen
langs de hemel, die uit andere bestaande catalogi voor dezelfde sterren konden worden aange-
vuld met de bewegingen in de gezichtslijn, dus loodrecht op de beweging langs de hemel. Op
deze wijze slaagden we erin om voor een groot aantal heldere, metaalarme reuzensterren in de
buurt van de Zon de drie-dimensionale ruimtelijke beweging te bepalen. Deze sterren bestaan
net als de Zon voornamelijk uit waterstof en helium, maar hebben minder dan een dertigste
van het ijzergehalte van de Zon. Aangezien het ijzergehalte een goede maat is voor het tijdstip
waarop een ster gevormd is, behoren zulke zeer metaalarme sterren dus tot de oudste sterren
van ons Melkwegstelsel.

De analyse van deze waarnemingen liet zien dat van de uitgekozen zeer oude sterren veruit
de meeste, zoals verwacht, een willekeurige beweging ten opzichte van de Zon hebben, maar
dat sommige echter een gezamenlijke afwijkende beweging hebben. In het bijzonder vonden
we twee groepjes van oude sterren: één van drie sterren die uit de Melkwegschijf omhoog be-
weegt, en één van negen sterren die met vrijwel dezelfde snelheid uit de schijf naar beneden
beweegt. Vergelijking met computermodellen bracht ons tot de conclusie dat de twee groepjes
een gemeenschappelijke oorsprong hebben en deel uitmaken van het restant van een satelliet-
melkwegstelsel, dat al heel lang geleden uiteen is gevallen. De eigenschappen, afgeleid voor
dat stelsel, maken het tot het evenbeeld van de dwergmelkwegstelsels die ook nu nog op grote
afstand om ons Melkwegstelsel bewegen. De nu ontdekte stergroepjes lijken dus het eerste fos-
siele bewijs te zijn dat onze eigen Melkweg eveneens is samengesteld uit de restanten van vele
en kleinere bouwstenen.
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Kunnen we nog andere fossielen vinden?

Met een grotere catalogus van oude sterren verwachten we veel meer zulke stergroepjes te
ontdekken, fossielen van samengesmolten sterrenstelsels. Om te bepalen hoe onze Melkweg
zich heeft ontwikkeld hebben we dan rond vijf duizend halo-sterren nodig met zeer precies
gemeten bewegingen. Dit zal mogelijk worden met nieuwe satellieten, zoals de Amerikaanse
FAME of de Europese GAIA.

In hoofdstuk 4 laten we zien dat de nieuwe satellieten zo nauwkeurig zullen zijn, dat we
eindelijk zullen kunnen zeggen of de hiërarchische theorie wel of niet klopt voor onze Melkweg.
De voorspelde honderden sterrengroepjes moeten erg duidelijk te vinden zijn, als ze bestaan!
Met GAIA zal het ook mogelijk zijn om 50% van alle sterrenstelsels die samengesmolten zijn tot
de Melkweg, terug te vinden.

Een levend fossiel: het Sagittarius dwergstelsel

De samensmelting van stelsels is niet iets van het verleden. Men hoeft alleen maar te kijken naar
het meest dichtstbijzijnde satellietstelsel van de Melkweg: het Sagittarius dwergstelsel. Sagitta-
rius werd pas ontdekt in 1994, en is sterk vervormd door de getijdenkrachten van de Melkweg.
Het is zeer uitgerekt en niet meer zo helder. Het is zo goed als zeker dat dit stelsel over een
paar miljard jaar volledig door het Melkwegstelsel zal worden opgeslokt. De sterren die niet
langer deel maken van Sagittarius zijn te zien als een lichtstrook aan de hemel. Wat opvallend is
aan Sagittarius is dat het de sterke zwaartekracht van onze Melkweg heeft overleefd, ondanks
het feit dat al miljarden jaren lang het stelsel keer op keer heel dicht bij het galactische centrum
komt. In hoofdstuk 5 hebben we modellen ontwikkeld die kunnen verklaren waarom het stelsel
nog niet helemaal verdwenen is. We denken dat Sagittarius in het verleden heel anders was;
waarschijnlijk had het een tienmaal grotere massa dan nu.

De galactische donkere halo

De Melkweg heeft een zichtbare stellaire en een donkere halo, die veel groter is dan de schijf of
de stellaire halo, waar we het tot nu toe over gehad hebben. De snelheden van de satellietstel-
sels van de Melkweg zijn te groot om veroorzaakt te kunnen worden door de zichtbare massa.
Deze is slechts tien procent van de massa die vereist is om de bewegingen te kunnen verklaren.
Omdat de rest van de massa niet zichtbaar is wordt het “donkere materie” genoemd. Donkere
materie is ook te vinden in andere sterrenstelsels, in groepen sterrenstelsels die clusters wor-
den genoemd, en in groepen van clusters. De donkere materie is te vinden op elke plek in het
heelal, en schattingen tonen aan dat er misschien wel tienmaal zoveel donkere materie als zicht-
bare materie is. Waaruit deze donkere materie bestaat is een van de grootste vraagstukken in
de hedendaagse sterren- en natuurkunde.

In hoofdstuk 6 bepalen we wat de karakteristieken van de donkere halo van onze Melkweg
zijn, of de Melkweg werkelijk op een hiërarchische manier is onstaan. Een belangrijk ingrediënt
van de hiërarchische modellen is dat de donkere materie bestaat uit elementaire deeltjes die
bijna geen wisselwerking met elkaar hebben, en dus moeilijk te meten zijn. Het begrijpen van
de karakteristieken van onze donkere halo is zeer belangrijk, omdat het onpraktisch is experi-
menten te ontwikkelen voor iedere mogelijke kandidaat van de elementaire deeltjes. Men moet
vantevoren ongeveer weten wat men zoekt. Indien men een signaal ontdekt, is het belangrijk
om zijn oorsprong te bepalen en dan ook of zulke experimenten eindelijk de ware aard van de
onzichtbare massa in het heelal kunnen achterhalen.
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‘Would you tell me, please, which way I ought to go from here?’
‘That depends a good deal on where you want to get to’, said
the Cat. ‘I don’t much care where...’, said Alice. ‘Then it
doesn’t matter which way you go’, said the Cat. ‘So long as I
get somewhere’, Alice added as an explanation. ‘Oh, you’re
sure to do that’, said the Cat, ‘If you only walk long enough’.

L. Carroll: “Alice’s Adventures in Wonderland”




