Exercises for the course on Galaxies

- <u>Generalities</u>
 - 1. Show that if two stars of the same luminosity form a close binary pair, the apparent magnitude of the pair measured together is \sim 0.75 mag brighter than each star individually.
 - 2. Show that an error or uncertainty of 0.1 magnitudes in the distance modulus is equivalent to ~ 5 % error in distance.
- Stellar populations and photometric evolution
 - 3. Integrate the Salpeter mass function between a lower mass limit M_l and upper limit $M_u \gg M_l$ to find (a) the number of stars formed in the population; (b) their total mass; (c) their total luminosity. Show that the number and mass of stars depends mainly on the mass M_l of the smallest stars, while the luminosity depends on M_u , the mass of the largest stars. Taking $M_l = 0.3M_{\odot}$ and $M_u \gg 5M_{\odot}$, what fraction of all stars have $M > 5M_{\odot}$? What fraction have $M > 1M_{\odot}$?
 - 4. The star formation rate measures the number of solar masses in stars formed per unit time.
 - (a) In the Solar neighborhood the SFR has been found to be close to constant: $\Psi(t) = A$. Show that in this case, the initial luminosity function $\Phi_0(M_V)$ is equal to the observed luminosity function for main sequence stars alone $\Phi_{MS}(M_V)$ for $t < T_{MS}(M_V)$, while for $t > T_{MS}(M_V)$ it is given by $\Phi_0(M_V) = \Phi_{MS}(M_V) \times t/T_{MS}$.
 - (b) Suppose that the star formation rate in a population has decayed exponentially in time $\Psi(t) = e^{-\alpha t}$, and let the oldest star in the population have formed at t = 0. Show that the initial luminosity function $\Phi_0(M_V)$ is related to the luminosity function for main sequence stars only that is observed today $\Phi_{MS}(M_V)$ as

$$\Phi_0(M_V) = \frac{e^{\alpha t} (1 - e^{-\alpha t})}{e^{\alpha T_{MS}} - 1} \Phi_{MS}(M_V) \quad \text{for } t > T_{MS}(M_V)$$
(1)

- 5. Use the (in-class) derived evolution of the luminosity of a single stellar population L(t) to:
 - (a) Show that single stellar populations become fainter in time
 - (b) Compute the color evolution of a single stellar population as a function of time: (U-B) and (B-V). Use that $U_{\odot} = 5.40$, $B_{\odot} = 5.25$, $V_{\odot} = 4.70$. Compute the colors at t=0.1, 1 and 5 Gyr.