Galactic dynamics

- Stars in galaxies subject (only) the force of gravity.
- Knowledge of the mass distribution of a galaxy allows to predict how the positions and velocities of stars will change over time.
- Conversely, we can also use the stellar motions to derive where the mass distribution.
- Discovery of dark-matter
- Observed motions do not only tell us about mass distribution at present position of a star but along their orbit
- e.g. measurement of the escape velocity
- We can consider the stars as point masses
- their sizes are small compared to their separations
- The gravitational potential of a galaxy is the sum of:
- a smooth component (the average over a region containing many stars)
- the very deep potential well around each individual star

- The motion of stars within a galaxy is determined almost entirely by the smooth part of the force.
- Two-body encounters are only important within dense star clusters

Motion under gravity

- Newton's law of gravity: $d\left(m_{1} v\right) / d t=-G m_{1} m_{2} r_{12} / r_{12}{ }^{3}$
- In a cluster of N stars with masses m_{a} at positions x_{a}
$d\left(m_{b} v_{b}\right) / d t=-\sum_{a} G m_{a} m_{b}\left(x_{b}-x_{a}\right) /\left|x_{b}-x_{a}\right|^{3}$
(Note heavy and light stars suffer the same acceleration)
- In terms of the gradient of the gravitational potential $\Phi(x)$:

$$
d(m v) / d t=-m \nabla \Phi(x), \text { with } \Phi(x)=-\Sigma_{a} G m_{a} /\left|x-x_{a}\right|
$$

- The potential at point x produced by a continuous mass distribution represented by density $\rho(\mathbf{x})$

$$
\Phi(x)=-G \int \rho\left(x^{\prime}\right) /\left|x-x^{\prime}\right| d^{3} x^{\prime}
$$

Essentially replaced the discrete summation by an integral, and the masses by $\rho(x) d^{3} x$

- If the potential is known, rather than the density, we obtain Poisson's equation:

$$
\nabla^{2} \Phi(x)=4 \pi G \rho(x)
$$

- Not all $\Phi(x)$ are physically meaningful: only those for which $\rho(\mathbf{x})>0$ everywhere (mass is always positive).
- Note similarity to the electromagnetism and electric field: $\left(\nabla \Phi_{e}=-E\right)$ and the charge distribution $\rho_{e}: \nabla^{2} \Phi_{e}=-4 \pi k \rho_{e}$, where k is Coulomb's constant. ρ_{e} may be positive or negative: electric force can be repulsive or attractive.

Spherical systems: Newton's theorems

Theorem 1: A body that is inside a spherical shell of matter experiences no net gravitational force from that shell.
$\delta \mathrm{m}_{1}=\rho \mathrm{r}_{1}{ }^{2} \mathrm{dr}_{1} \mathrm{~d} \Omega_{1}$ and $\delta \mathrm{m}_{2}=\rho \mathrm{r}_{2}^{2} \mathrm{dr}_{2} \mathrm{~d} \Omega_{2}$
But $\mathrm{dr}_{1}=\mathrm{dr}_{2}=\mathrm{dr}$ and $\mathrm{d} \Omega_{1}=\mathrm{d} \Omega_{2}=\mathrm{d} \Omega$. Then $\delta \mathrm{m}_{1} / \mathrm{rr}_{1}{ }^{2}=\delta \mathrm{m}_{2} / \mathrm{r}_{2}{ }^{2}$.

A particle M located at \mathbf{r} experiences a force $\mathbf{F}=\mathbf{f}_{1}+\mathbf{f}_{\mathbf{2}}$ where
$\mathbf{f}_{1}=-\mathrm{GM} \delta \mathrm{m}_{1} / \mathrm{r}_{1}^{2} \varepsilon_{1}$ and $\mathbf{f}_{2}=-\mathrm{GM} \delta \mathrm{m}_{2} / \mathrm{r}_{2}^{2} \varepsilon_{2}$
Since $\varepsilon_{1}=-\varepsilon_{2}$, then

$$
\mathrm{F}=-\mathrm{GM}\left(\delta \mathrm{~m}_{1} / \mathrm{r}_{1}^{2}-\delta \mathrm{m}_{2} / \mathrm{r}_{2}^{2}\right)=0
$$

Theorem 2: The gravitational force on a body that lies outside a closed spherical shell of matter is the same as it would be if all the shells' mass was concentrated in a point at its centre.
_The gravitational force within a spherical system that a particle feels at a radius R is only due to the mass inside that radius.

- Therefore if a star moves on a circular orbit, its acceleration is given by

$$
v_{c}{ }^{2} / r=G M\left(\langle r) / r^{2}\right.
$$

- For a point mass, the circular velocity $v_{c}{ }^{2}=G M / r$, and so $v_{c} / r^{-1 / 2}$
- Since M generally increases with radius this implies that for a spherical galaxy, the circular velocity never falls off more rapidly than the Kepler case $\mathrm{r}^{-1 / 2}$.

Are collisions important in gravitational systems?

- The gravitational force is long-range
- In galaxies, close encounters are not important.
- The average (smoother) mass distribution determines the motion of stars
- Molecules of air or dust particles reach equilibrium through collisions, where they exchange energy and momentum.
- The forces between molecules only strong when they are very close to each other; they experience violent and short-lived accelerations, in between long periods when they move at nearly constant speeds.
- The net gravitational force acting on a star in a galaxy is determined by the gross structure of the galaxy, and not by its nearest stars.
- Example:

- The force on a star located at the apex of the cone of constant density: $\mathrm{dF}_{1}=-\mathrm{G} \mathrm{m}_{*} \mathrm{dm}_{1} / \mathrm{r}_{1}^{2}=-\mathrm{G} \mathrm{m}_{*} \mathrm{r}_{1}^{2} \rho \mathrm{dr} \mathrm{d} \Omega / \mathrm{r}_{1}{ }^{2}=-\mathrm{G} \mathrm{m}_{*} \rho \mathrm{dr} \mathrm{d} \Omega$,
while the force from the more distant shell is $\mathrm{dF}_{2}=-\mathrm{Gm}_{*} \mathrm{dm}_{2} / \mathrm{r}_{2}{ }^{2}=-\mathrm{G} \mathrm{m}_{*} \rho \mathrm{dr} \mathrm{d} \Omega$.

The force produced by shells at different distances is the same

- makes explicit the long-range nature of gravity

Encounters

Two types of encounters:

- Strong (near): the trajectory of the star changes significantly
- Weak (distant): perturbation on the initial trajectory

The timescales/frequency of these encounters tell how important they are in the dynamics of galaxies

Strong encounters

- Strong encounter: one star comes so close another that the collision completely changes its speed and direction of motion
- A strong encounter has happened when the change in potential energy is at least as large as the initial kinetic energy.
- (equivalent to saying that the final kinetic energy has doubled)

$$
\mathrm{Gm}^{2} / \mathrm{r}>\mathrm{m} \mathrm{v}^{2} / 2 \text {, or } \mathrm{r}<\mathrm{r}_{\mathrm{s}}=2 \mathrm{Gm} / \mathrm{v}^{2}
$$

- The distance r_{s} is the strong encounter radius.
- Near the Sun, stars have random speeds $v \sim 30 \mathrm{~km} / \mathrm{s}$, and for $m=0.5 M_{\odot}$ $r_{s} \sim 1 \mathrm{AU}$

Figure 3.4 During time t, this star will have it strong enconnter with any other star tying
within the cylinder of radius r_{s}.

- Any star within a distance r_{s} from another star will have a strong encounter
- As the star moves, it defines a cylinder of radius r_{s} centered on its path. The volume of this cylinder is $\pi r_{s}{ }^{2} v \dagger$
- If there are n stars per unit volume, this star will on average have one close encounter in a time $\dagger_{\text {coll }}$ such that $n \pi r_{s}{ }^{2} v \dagger_{\text {coll }}=1$
- The characteristic time between collisions is

$$
\dagger_{\text {coll }} \sim 1 /\left(n \pi r_{s}^{2} v\right) \text {, or } \dagger_{\text {coll }}=v^{3} /\left(4 \pi G^{2} m^{2} n\right)
$$

- Normalizing to some characteristic values

$$
\mathrm{t}_{\text {coll }} \sim 4 \times 10^{12} \mathrm{yr}(\mathrm{v} / 10 \mathrm{~km} / \mathrm{s})^{3}\left(\mathrm{~m} / \mathrm{M}_{\odot}\right)^{-2}\left(\mathrm{n} / 1 \mathrm{pc}^{-3}\right)^{-1}
$$

- Since $n \sim 0.1 \mathrm{pc}^{-3}$ near the Sun, $\dagger_{\text {coll }} \sim 10^{15}$ years (>> the age of the Universe)
- Strong encounters are only important in the dense cores of globular clusters.

Distant weak encounters

- In a distant encounter, the force of one star on another is so weak that the stars hardly deviate from their original paths after the encounter.
- We will consider the case of a star moving through a system of N identical stars of mass m.
- We assume that
- the change in velocity is very small: $\delta v / v \ll 1$,
- the perturbing star is stationary
- This is known as the impulse approximation.

m
- The pull by m induces a motion $\delta \mathrm{v}_{\perp}$ perpendicular to the original trajectory. The force is $\mathbf{F}=-\mathrm{GmM} / \mathrm{r}^{2} \varepsilon_{\mathrm{r}}$, and
$\mathrm{F}_{\perp}=\mathrm{GmM} / \mathrm{r}^{2} \cos \theta$, where $\mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{b}^{2}, \cos \theta=\mathrm{b} / \mathrm{r}$ and $\mathrm{x}=\mathrm{vt}$.

Therefore $\mathrm{F}_{\perp}=\mathrm{GmM} / \mathrm{b}^{2}\left(1+(\mathrm{vt} / \mathrm{b})^{2}\right)^{-3 / 2}$

- Since $\mathrm{M} \mathrm{dv}_{\perp} / \mathrm{dt}^{=} \mathrm{F}_{\perp}$, the change in velocity is obtained by integrating over time.
- Finally

$$
\delta \mathrm{v}_{\perp}=2 \mathrm{Gm} /(\mathrm{bv}) .
$$

- Therefore the faster the star M, the smaller the perturbation is.
- Now we compute the cumulative effect of the individual encounters.
- If the surface density of stars in the system is $N /\left(\pi R^{2}\right)$, where R is some characteristic radius, the number of encounters dn_{e} with impact parameter b that a star suffers when crossing the system is

$$
\mathrm{dn} \mathrm{n}_{\mathrm{e}}=\mathrm{N} /\left(\pi \mathrm{R}^{2}\right) 2 \pi \mathrm{~b} \mathrm{db}=2 \mathrm{~N} / \mathrm{R}^{2} \mathrm{~b} \mathrm{db} .
$$

- Each of these encounters will produce a change in $\delta \mathrm{v}_{\perp}$, but because the perturbations are randomly oriented, the mean vector change is zero: :

$$
-\mathbf{d v}_{\perp}=\Sigma_{i} \delta v_{\perp} \varepsilon_{1}=0
$$

- But there is a change in modulus

$$
\mathrm{dv}_{\perp}^{2}=\Sigma_{\mathrm{i}}\left(\delta \mathrm{v}_{\perp}\right)^{2} \varepsilon_{\mathrm{i}} \cdot \varepsilon_{\mathrm{i}}=\Sigma_{\mathrm{i}}\left(\delta \mathrm{v}_{\perp}\right)^{2}=\mathrm{dn}_{\mathrm{e}}\left(\delta \mathrm{v}_{\perp}\right)^{2}
$$

$$
\mathrm{dv}_{\perp}^{2}=(2 \mathrm{Gm} / \mathrm{bv})^{2} 2 \mathrm{~N} / \mathrm{R}^{2} \mathrm{~b} \mathrm{db}
$$

- Integrating this equation:

$$
\Delta \mathrm{v}_{\perp}{ }^{2}=8 \mathrm{~N}(\mathrm{Gm} / \mathrm{vR})^{2} \ln \Lambda, \quad \text { where } \Lambda=\mathrm{b}_{\max } / \mathrm{b}_{\min } .
$$

- Define $n_{\text {relax }}$ as the number of weak encounters that a star has to experience to change its velocity by the same order as its incoming velocity

$$
\mathrm{n}_{\text {relax }} \Delta \mathrm{v}_{\perp}^{2}=\mathrm{v}^{2,} \quad \text { or } \mathrm{n}_{\text {relax }}=\mathrm{v}^{4} \mathrm{R}^{2} /\left(8 \mathrm{G}^{2} \mathrm{~m}^{2} \mathrm{~N} \ln \Lambda\right)
$$

$$
\mathrm{t}_{\text {relax }}=\mathrm{n}_{\text {relax }} \mathrm{R} / \mathrm{v}=\mathrm{v}^{3} \mathrm{R}^{3} /\left(8 \mathrm{G}^{2} \mathrm{~m}^{2} \mathrm{~N} \ln \Lambda\right)
$$

- This is the relaxation timescale: it estimates the timescale required for a star to change its velocity by the same order, due to weak encounters with a "sea" of stars.
- We can compare the relaxation timescale to the collision timescale derived previously: $\mathrm{t}_{\text {coll }}=\mathrm{v}^{3} /\left(4 \pi \mathrm{G}^{2} \mathrm{~m}^{2} \mathrm{n}\right)$. If we use that $\mathrm{n} \sim \mathrm{N} /\left(\pi \mathrm{R}^{3}\right)$, then

$$
\mathrm{t}_{\text {relax }}=\mathrm{t}_{\text {coll }} /(2 \ln \Lambda)
$$

The relaxation timescale is always shorter than the timescale for 2-body encounters.

- Typically $\ln \Lambda \sim 20$.
- The exact values of $b_{\text {min }}$ and $b_{\text {max }}$ are not very important (logarithmic dependence)
- $b_{\text {max }}=$ system size, and $b_{\text {min }}=r_{s}$,
- for example for $300 \mathrm{pc}<\mathrm{b}_{\text {max }}<30 \mathrm{kpc}$, and $\mathrm{r}_{\mathrm{s}}=1 \mathrm{AU}$ (near the Sun), $\ln \Lambda \sim 18-22$.
-For example, for an elliptical galaxy, $N \sim 10^{11}$ stars, $R \sim 10 \mathrm{kpc}$, and the average relative velocity of stars is $v \sim 200 \mathrm{~km} / \mathrm{s}$, then $\dagger_{\text {relax }} \sim 10^{8} \mathrm{Gyr}$!
-This implies that when calculating the motions of stars like the Sun, we can ignore the pulls of the individual stars, and consider them to move in the smoothed-out potential of the entire Galaxy.
- For stars in a globular cluster like Ω Cen, $t_{\text {relax }} \sim 0.4$ Gyr, so relaxation will be important over a Hubble time.

The orbits of stars in spherical systems

- In a time-independent gravitational potential: energy is conserved
- In a spherical potential: angular momentum is conserved.
- The motion of a star is restricted to the orbita/plane
- Only two coordinates are needed to describe the location of a star. Typically: polar coordinates in the plane (r, ϕ) to describe the motion.

Orbits of stars in an axisymmetric galaxy

- We use a cylindrical coordinate system ($\mathrm{R}, \phi, \mathrm{z}$), where $z=0$ corresponds to the symmetry plane (in the case of a disk: it is its mid-plane)
- Preferred because of the symmetries of the mass distribution.
- The disk is axisymmetric: it is independent of the angular coordinate ϕ.
- We neglect non-axisymmetric features such as the bar, the spiral arms...
- For an axisymmetric system, the gravitational potential Φ is independent of ϕ. Therefore, $\partial \Phi / \partial \phi=0$, and the force in the ϕ-direction is zero.
- Stars in a disk conserve angular momentum about the z-axis
- The equations of motion for a star in the disk are

$\mathrm{d}^{2} \mathbf{r} / \mathrm{dt}^{2}=-\nabla \Phi$,

or, in each direction, and using that $\mathbf{r}=\mathrm{R} \varepsilon_{\mathrm{R}}+\mathrm{z} \varepsilon_{\boldsymbol{z}}$,

$$
\begin{align*}
& \mathrm{d}^{2} \mathrm{R} / \mathrm{dt}^{2}-\mathrm{R}(\mathrm{~d} \phi / \mathrm{dt})^{2}=-\partial \Phi / \partial \mathrm{R} \tag{1}\\
& \mathrm{~d}^{2} \mathrm{z} / \mathrm{dt}^{2}=-\partial \Phi / \partial \mathrm{z} \tag{2}\\
& \mathrm{~d}\left(\mathrm{R}^{2} \mathrm{~d} \phi / \mathrm{dt}\right) / \mathrm{dt}=-\partial \Phi / \partial \phi=0 \tag{3}
\end{align*}
$$

- Eq. (3)

$$
\mathrm{L}_{\mathrm{z}}=\mathrm{R}^{2} \mathrm{~d} \phi / \mathrm{dt}=\mathrm{cst} .
$$

reflects the conservation of angular momentum about z-axis

- Eq.(1) can also be written as $\mathrm{d}^{2} \mathrm{R} / \mathrm{dt}^{2}=-\partial \Phi_{\text {eff }} / \partial \mathrm{R}$ where

$$
\begin{equation*}
\Phi_{\mathrm{eff}}=\Phi(\mathrm{R}, \mathrm{z})+\mathrm{L}_{\mathrm{z}}^{2} /\left(2 \mathrm{R}^{2}\right) \tag{4}
\end{equation*}
$$

- If we multiply Eq. (4) by dR/dt, and integrate wrt t, then

$$
1 / 2(\mathrm{dR} / \mathrm{dt})^{2}+\Phi_{\text {eff }}\left(\mathrm{R}, \mathrm{z} ; \mathrm{L}_{\mathrm{z}}\right)=\mathrm{cst} .
$$

which is like an energy-conservation law.

- The effective potential $\Phi_{\text {eff }}\left(=\Phi(\mathrm{R}, \mathrm{z})+\mathrm{L}_{\mathrm{z}}{ }^{2} /\left(2 \mathrm{R}^{2}\right)\right)$ behaves like a potential energy for the star's motion in R and z .
- The effective potential is constant if:
$* \partial \Phi_{\text {eff }} / \partial \mathrm{R}=0$ thus $\partial \Phi / \partial \mathrm{R}-\mathrm{L}_{\mathrm{z}}^{2} / \mathrm{R}^{3}=0$, and
* $\partial \Phi_{\text {eff }} / \partial \mathrm{z}=\partial \Phi / \partial \mathrm{z}=0$
- The second eq. is satisfied for $\mathrm{z}=0$ (since the disk is symmetric with respect to its mid-plane $\Phi(\mathrm{R}, \mathrm{z})=\Phi(\mathrm{R},-\mathrm{z})$).
- In combination with $\mathrm{dR} / \mathrm{dt}=0$, this implies a circular orbit in the disk-plane
- The radius of this circular orbit is R_{g}. where:

$$
\partial \Phi /\left.\partial \mathrm{R}\right|_{\mathrm{R}_{\mathrm{g}}}=\mathrm{L}_{\mathrm{z}}{ }^{2} / \mathrm{R}_{\mathrm{g}}{ }^{3}=\mathrm{R}_{\mathrm{g}}(\mathrm{~d} \phi / \mathrm{dt})^{2}
$$

- This circular orbit is the orbit with least energy for a given angular momentum L_{z}.

Epicycles

- We will now derive approximate solutions to the eq. of motion for stars on nearly circular orbits in the symmetry plane (e.g. the disk).
- Define: $\mathrm{x}=\mathrm{R}-\mathrm{R}_{\mathrm{g}}$, and expand the effective potential around the point $\left(\mathrm{R}_{\mathrm{g}}, 0\right)$:

$$
\Phi_{\mathrm{eff}}(\mathrm{R}, \mathrm{z}) \sim \Phi_{\mathrm{eff}}\left(\mathrm{R}_{\mathrm{g}}, 0\right)+1 / 2 \partial^{2} \Phi_{\mathrm{eff}} /\left.\partial \mathrm{R}^{2}\right|_{\mathrm{R}_{\mathrm{g}}, 0} \mathrm{x}^{2}+1 / 2 \partial^{2} \Phi_{\mathrm{eff}} /\left.\partial \mathrm{z}^{2}\right|_{\mathrm{R}_{\mathrm{g}}, 0} \mathrm{z}^{2}+\ldots
$$

(the linear terms disappear because this expansion is performed around a stationary point of the potential).

- Let us define
$\kappa^{2}=\partial^{2} \Phi_{\mathrm{eff}} /\left.\partial \mathrm{R}^{2}\right|_{\mathrm{R}_{\mathrm{g}}, 0}$
and
$v^{2}=\partial^{2} \Phi_{\text {eff }} /\left.\partial z^{2}\right|_{R_{g}, 0}$

The eq. of motion become

- $\mathrm{d}^{2} \mathrm{R} / \mathrm{dt}^{2}=-\partial \Phi_{\text {eff }} / \partial \mathrm{R}$, or $\mathrm{d}^{2} \mathrm{x} / \mathrm{dt}^{2}=-\partial^{2} \Phi_{\text {eff }} /\left.\partial \mathrm{R}^{2}\right|_{\mathrm{R}_{\mathrm{g}, 0}} \mathrm{x}$

$$
\mathrm{d}^{2} \mathrm{x} / \mathrm{dt}^{2}=-\kappa^{2} \mathrm{x}
$$

- $\mathrm{d}^{2} \mathrm{z} / \mathrm{dt}^{2}=-\partial \Phi_{\text {eff }} / \partial \mathrm{z}$, or $\mathrm{d}^{2} \mathrm{z} / \mathrm{dt} t^{2}=-\partial^{2} \Phi_{\text {eff }} /\left.\partial \mathrm{z}^{2}\right|_{\mathrm{Rg}_{\mathrm{g}}, 0} \mathrm{z}$

$$
\mathrm{d}^{2} \mathrm{z} / \mathrm{dt}^{2}=-v^{2} \mathrm{z}
$$

- These are the equations of motion of two decoupled harmonic oscillators with frequencies k and v.
κ is the epicyclic frequency and v as the vertical frequency:

$$
\begin{aligned}
& \kappa^{2}\left(\mathrm{R}_{\mathrm{g}}\right)=\partial^{2} \Phi /\left.\partial \mathrm{R}^{2}\right|_{\mathrm{R}_{\mathrm{g}}, 0}+3 \mathrm{~L}_{\mathrm{z}}^{2} / \mathrm{R}_{\mathrm{g}}^{4} \\
& v^{2}\left(\mathrm{R}_{\mathrm{g}}\right)=\partial^{2} \Phi /\left.\partial \mathrm{z}^{2}\right|_{\mathrm{R}_{\mathrm{g}}, 0}
\end{aligned}
$$

- The solution to the eq. of motion is

$$
x=X_{0} \cos (\kappa t+\Psi) \quad \text { and } z=Z_{0} \cos (v t+\theta) \quad \text { for } \kappa^{2}>0 .
$$

The motion of a star in the disk can be described as an oscillation about a guiding center that is moving on a circular orbit.

- Note as well that

$$
\mathrm{d} \phi / \mathrm{dt}=\mathrm{L}_{\mathrm{z}} / \mathrm{R}^{2}=\Omega\left(\mathrm{R}_{\mathrm{g}}\right) \mathrm{R}_{\mathrm{g}}^{2} /\left(\mathrm{R}_{\mathrm{g}}+\mathrm{x}\right)^{2} \sim \Omega_{\mathrm{g}}\left(1-2 \mathrm{x} / \mathrm{R}_{\mathrm{g}}\right)
$$

which can be integrated to obtain

$$
\phi(\mathrm{t})=\phi_{0}+\Omega_{\mathrm{g}} \mathrm{t}-2 \Omega_{\mathrm{g}} / \kappa \mathrm{X}_{\mathrm{o}} / \mathrm{R}_{\mathrm{g}} \sin (\kappa \mathrm{t}+\Psi)
$$

- The first two terms give the guiding center motion.
- The third represents harmonic motion with the same frequency as the x-oscillation, but 90 deg out of phase, and with a different amplitude.
- This motion is known as the epicyclic motion. It is retrograde because it is in the opposite sense of the guiding centre.
- The approximation to $2^{\text {nd }}$ order in z in the effective potential ($\Phi_{\text {eff }} \propto \mathrm{z}^{2}$) is only valid if $\rho(\mathrm{z}) \sim$ cst (since $\nabla^{2} \Phi \sim \rho$). However, the disk density decreases exponentially. This means that the approximation can at most be valid for 1 scale-height ($\mathrm{z}<300 \mathrm{pc}$). Since a good fraction of the disk stars move to higher heights, the motion in the z-direction is not well-described as an harmonic oscillation.
- There is a relation between the epicyclic frequency κ and the angular frequency Ω :

$$
\kappa^{2}=\left[\mathrm{R} \mathrm{~d} \Omega^{2} / \mathrm{dR}+4 \Omega^{2}\right]_{\mathrm{R}_{\mathrm{g}}} .
$$

This relation derives from
$-\mathrm{R} \Omega^{2}=\mathrm{d} \Phi / \mathrm{dR}$ (centrifugal force $=$ gravitational pull)

- and $\Omega^{2}=\mathrm{L}_{\mathrm{z}}{ }^{2} / \mathrm{R}^{4}$
- These equations can be replaced in the definition of κ
- In general $\Omega \leq \kappa \leq 2 \Omega$. For example:
- for a sphere of uniform density $\Omega(\mathrm{R})=\mathrm{cst}$, and $\kappa=2 \Omega$
- for the Kepler problem (point mass), $\Omega \propto r^{-3 / 2}$, and $\kappa=\Omega$
- The epicyclic frequency is related to the Oort constants:
- Recall that
$-A=-1 / 2 R d \Omega /\left.d R\right|_{R_{0}}$ and $B=-(1 / 2 R d \Omega / d R+\Omega)_{R}$, where R_{0} is the location of the Sun, and Ω the angular frequency of the LSR motion.
- Therefore, at the Sun $\kappa_{0}{ }^{2}=-4 B(A-B)=-4 B \Omega_{0}$
- Using the measured value of B, we find that

$$
\kappa_{\mathrm{o}} / \Omega_{\mathrm{o}} \sim 1.3 \pm 0.2
$$

Therefore the Sun makes 1.3 radial oscillations in the time it takes to complete one revolution around the Galactic centre.

