Exercises for the course on Physics of Galaxies.I

- Stellar populations and photometric evolution
 - 1. Integrate the Salpeter mass function between a lower mass limit M_l and upper limit $M_u \gg M_l$ to find (a) the number of stars formed in the population; (b) their total mass; (c) their total luminosity. Show that the number and mass of stars depends mainly on the mass M_l of the smallest stars, while the luminosity depends on M_u , the mass of the largest stars. Taking $M_l = 0.3M_{\odot}$ and $M_u \gg 5M_{\odot}$, what fraction of all stars have $M > 5M_{\odot}$? What fraction have $M > 1M_{\odot}$?
 - 2. Use the (in-class) derived evolution of the luminosity of a single stellar population L(t) to show that single stellar populations become fainter in time
- Elliptical galaxies
 - 1. If the luminosity density of stars in a galaxy is $j(r) = j_0(r_0/r)^{\alpha}$, show that the surface brightness at distance R from the center is

$$I(R) = I_0 (r_0/R)^{\alpha - 1}$$
(1)

as long as $\alpha > 1$. What happens if $\alpha < 1$? Compute the total luminosity of the system.

- 2. The virial theorem relates the internal potential energy W and the kinetic energy K of a system in equilibrium through: 2K + W = 0. Assuming that both the velocity dispersion σ and the mass-to-light ratio M/L are constant throughout a galaxy, and that no dark matter is present, use the virial theorem to show that
 - Since the potential energy $W \propto -GM^2/R_e$, where M is the total mass of the galaxy and R_e its effective radius, and the kinetic energy $K \sim M\sigma^2/2$, so the mass of the galaxy should be $M \propto \sigma^2 R_e$.
 - If the surface brightness I(R) of all elliptical galaxies could be described by Sersic's law $I(R) = I_e \exp[-b(R/R_e)^{1/n} 1]$ with the same value of n, explain why their total luminosity L should follow $L \propto I_e R_e^2$.
 - If all elliptical galaxies had the same mass-to-light ratio M/L and surface brightness at the effective radius I_e , the Faber-Jackson relation is expected.