
Exercises of Dynamics of Galaxies 22/05/2014

Exercise 1 (Problem 3.15 from Binney & Tremaine)

Using Poisson’s equation for an axisymmetric system
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prove that at any point in an axisymmetric system at which the local density is negligible, the
epicycle, vertical and circular frequencies are related by κ2 + ν2 = 2Ω2.

Exercise 2 (Problem 3.18 from Binney & Tremaine)

Let Φ(R, z) be the Galactic potential. At the solar location, (R, z) = (R0, 0), prove that
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where ρ0 = ρ(R0, 0) and Oort’s constants A(R) and B(R) are defined
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Hint: use equation 1.

Exercise 3

For a distribution function of the form

f(E) =

{
FEn−3/2 (E > 0)
0 (E ≤ 0),

the density depends on the potential as

ρ = cnΨn (Ψ > 0),

with cn a constant, and is 0 otherwise. Imposing that the problem is self-consistent, Poisson’s
equation becomes
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)
+ 4πGcnΨn = 0.

Show that

• ρ ∝ r−α is a solution of this Poisson’s equation, with α = 2n/(n− 1),

• that the correspondent potential goes with the radius as Ψ ∝ r−α/n,

• that the mass contained within radius r goes as M(r) ∝ r1−α/n,

• that the circular velocity goes as vc(r) ∝ r−α/n.
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Exercise 4 (Problem 4.11 from Binney & Tremaine)

Prove that the following DF generates a stellar system in which the density distribution is that
of a homogeneous sphere of density ρ and radius a:

f(E,L) =
9

16π4Gρa5

1√
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3
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3
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)
.

Here it is understood that f = 0 when the argument of the square root is not positive, the DF
is normalized so that

∫
d3xd3vf = 1, the potential Φ = 0 at r = 0, and the system is isolated

(Polyachenko & Shukhman 1973).

Hint: Let vr and ~vt (for tangential) be the components of ~v parallel and perpendicular to
the radial direction, so v2

t = v2
θ + v2

φ in spherical coordinates (r, θ, φ). Then L = rvt and

E = 1
2
(v2
r + v2

t ) + Φ(r). An integral over all possible velocities then becomes:∫
d3v =

∫ vr,max

vr,min

dvr

∫ vt,max

0

2πvt ,

where the integration bounds can be found from the aforemention conditions where f = 0.
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