Exercises of Dynamics of Galaxies 22/05/2014

Exercise 1 (Problem 3.15 from Binney \& Tremaine)

Using Poisson's equation for an axisymmetric system

$$
\begin{equation*}
\frac{\partial^{2} \Phi}{\partial z^{2}}(R, z)=4 \pi G \rho(R, z)-\frac{1}{R} \frac{\partial}{\partial R}\left(R \frac{\partial \Phi}{\partial R}(R, z)\right) \tag{1}
\end{equation*}
$$

prove that at any point in an axisymmetric system at which the local density is negligible, the epicycle, vertical and circular frequencies are related by $\kappa^{2}+\nu^{2}=2 \Omega^{2}$.

Exercise 2 (Problem 3.18 from Binney \& Tremaine)

Let $\Phi(R, z)$ be the Galactic potential. At the solar location, $(R, z)=\left(R_{0}, 0\right)$, prove that

$$
\frac{\partial^{2} \Phi}{\partial z^{2}}\left(R_{0}, 0\right)=4 \pi G \rho_{0}+2\left(A^{2}\left(R_{0}\right)-B^{2}\left(R_{0}\right)\right)
$$

where $\rho_{0}=\rho\left(R_{0}, 0\right)$ and Oort's constants $A(R)$ and $B(R)$ are defined

$$
A(R)=\frac{1}{2}\left(\frac{v_{c}}{R}-\frac{\mathrm{d} v_{c}}{\mathrm{~d} R}\right), \quad B(R)=-\frac{1}{2}\left(\frac{v_{c}}{R}+\frac{\mathrm{d} v_{c}}{\mathrm{~d} R}\right) .
$$

Hint: use equation 1.

Exercise 3

For a distribution function of the form

$$
f(\mathcal{E})= \begin{cases}F \mathcal{E}^{n-3 / 2} & (\mathcal{E}>0) \\ 0 & (\mathcal{E} \leq 0)\end{cases}
$$

the density depends on the potential as

$$
\rho=c_{n} \Psi^{n} \quad(\Psi>0),
$$

with c_{n} a constant, and is 0 otherwise. Imposing that the problem is self-consistent, Poisson's equation becomes

$$
\frac{1}{r^{2}} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r^{2} \frac{\mathrm{~d} \Psi}{\mathrm{~d} r}\right)+4 \pi G c_{n} \Psi^{n}=0
$$

Show that

- $\rho \propto r^{-\alpha}$ is a solution of this Poisson's equation, with $\alpha=2 n /(n-1)$,
- that the correspondent potential goes with the radius as $\Psi \propto r^{-\alpha / n}$,
- that the mass contained within radius r goes as $M(r) \propto r^{1-\alpha / n}$,
- that the circular velocity goes as $v_{c}(r) \propto r^{-\alpha / n}$.

Exercise 4 (Problem 4.11 from Binney \& Tremaine)

Prove that the following DF generates a stellar system in which the density distribution is that of a homogeneous sphere of density ρ and radius a :

$$
f(E, L)=\frac{9}{16 \pi^{4} G \rho a^{5}} \frac{1}{\sqrt{L^{2} / a^{2}+\frac{4}{3} \pi G \rho a^{2}-2 E}} \quad\left(L^{2}<\frac{4}{3} \pi G \rho a^{4}\right) .
$$

Here it is understood that $f=0$ when the argument of the square root is not positive, the DF is normalized so that $\int d^{3} x d^{3} v f=1$, the potential $\Phi=0$ at $r=0$, and the system is isolated (Polyachenko \& Shukhman 1973).

Hint: Let v_{r} and \vec{v}_{t} (for tangential) be the components of \vec{v} parallel and perpendicular to the radial direction, so $v_{t}^{2}=v_{\theta}^{2}+v_{\phi}^{2}$ in spherical coordinates (r, θ, ϕ). Then $L=r v_{t}$ and $E=\frac{1}{2}\left(v_{r}^{2}+v_{t}^{2}\right)+\Phi(r)$. An integral over all possible velocities then becomes:

$$
\int d^{3} v=\int_{v_{r, \min }}^{v_{r, \max }} d v_{r} \int_{0}^{v_{t, \max }} 2 \pi v_{t}
$$

where the integration bounds can be found from the aforemention conditions where $f=0$.

