Exercises for Dynamics of Galaxies, 14/05/2014

Exercise 1

In a spherical potential

$$
\frac{\mathrm{d}^{2} u}{\mathrm{~d} \psi^{2}}+u=\frac{1}{L^{2} u^{2}} \frac{\mathrm{~d} \Phi}{\mathrm{~d} r}(1 / u)
$$

where $u \equiv 1 / r, \Phi$ is the potential, L the magnitude of the angular momentum and (r, ψ) the polar coordinates in the plane of the orbit.
Consider the Kepler potential

$$
\Phi=-\frac{G M}{r} .
$$

Show that, for this potential, the form of the orbit is

$$
r(\psi)=\frac{a\left(1-e^{2}\right)}{1+e \cos \left(\psi-\psi_{0}\right)},
$$

where the eccentricity e is defined:

$$
e \equiv \frac{C L^{2}}{G M},
$$

a is the semi-major axis

$$
a \equiv \frac{L^{2}}{G M\left(1-e^{2}\right)},
$$

and C and ψ_{0} are constants of motion. Show also that, in the case $e<1$, the radii of pericenter and apocenter, r_{1} and r_{2}, are

$$
r_{1}=a(1-e) \quad \text { and } \quad r_{2}=a(1+e),
$$

and that the periods of the orbit are

$$
T_{r}=T_{\psi} .
$$

What does it mean that the radial and azimuthal periods are always equal?
Given that

$$
2 \frac{\mathrm{~d} A}{\mathrm{~d} t}=L,
$$

(where $\mathrm{d} A / \mathrm{d} t$ is the "areolar velocity"), that the semi-minor axis is

$$
b=a \sqrt{1-e^{2}},
$$

and that the area of an ellipse of axis a and b is

$$
A=\pi a b
$$

demonstrate that the periods of the orbit are

$$
T_{r}=T_{\psi}=2 \pi \frac{a^{2}}{L} \sqrt{1-e^{2}}=2 \pi \sqrt{\frac{a^{3}}{G M}} .
$$

Exercise 2 (Problem 3.6 from Binney \& Tremaine)

A star orbiting in a spherical potential suffers an arbitrary instantaneous velocity change while it is at pericenter. Show that the pericenter distance of the ensuing orbit cannot be larger than the initial pericenter distance.

