Exercises for Dynamics of Galaxies, 30/4/2014

Exercise 1

The relaxation time for stellar systems may be defined as

$$
t_{\text {relax }}=n_{\text {relax }} t_{\text {cross }}
$$

where

$$
n_{\text {relax }} \simeq \frac{N}{8 \ln \Lambda},
$$

with N the number of particles of the system. The crossing time is

$$
t_{\mathrm{cross}}=R / v .
$$

In the Coulomb logarithm, Λ is

$$
\Lambda \approx \frac{R v^{2}}{G m}
$$

where m represents the typical mass of a star of the system.
Question: The speed v represents a typical speed in the system. What can you use as a rough estimate of it?

Question: Taking $m=M_{\odot}$, calculate the relaxation time of a galaxy like the Milky Way, a typical globular cluster and a typical open cluster using:

1. for the galaxy: $N \approx 10^{11}, R \approx 10 \mathrm{kpc}$,
2. for the globular cluster: $N \approx 10^{5}, R \approx 5 \mathrm{pc}$,
3. for the open cluster: $N \approx 100, R \approx 5 \mathrm{pc}$.

Given a lifetime for the galaxy, the globular cluster and open cluster of respectively $\approx 10 \mathrm{Gyr}$, 10 Gyr and 100 Myr , which one of these systems is collisionless?

Exercise 2 (Problem 2.1 from Binney \& Tremaine)

Question: Show that the gravitational potential energy of a spherical system of finite mass in which the density satisfies

$$
\lim _{r \rightarrow 0} \rho(r) r^{5 / 2}=0
$$

can be written

$$
W=-\frac{G}{2} \int_{0}^{\infty} d r \frac{M^{2}(r)}{r^{2}}
$$

where

$$
M(r) \equiv \int_{0}^{r} d r^{\prime} 4 \pi \rho\left(r^{\prime}\right) r^{\prime 2}
$$

is the mass interior to radius r.
Hint: start from the expression for the potential energy of a spherical body and integrate by parts.

$$
W=-4 \pi G \int_{0}^{\infty} d r r \rho(r) M(r) .
$$

Exercise 3

Many galaxies have luminosity profiles that approximate a power law over a large range in radius. Consider the structure of a system in which the mass density drops off as some power of the radius:

$$
\rho(r)=\rho_{0}\left(\frac{r_{0}}{r}\right)^{\alpha} .
$$

Question: Show that:

1. The mass interior to $r, M(r)$ is

$$
M(r) \equiv \int_{0}^{r} d r^{\prime} 4 \pi \rho\left(r^{\prime}\right) r^{\prime 2}=\frac{4 \pi \rho_{0} r_{0}^{\alpha}}{3-\alpha} r^{3-\alpha},
$$

2. The circular speed is

$$
v_{c}^{2}(r)=\frac{G M(r)}{r}=\frac{4 \pi G \rho_{0} r_{0}^{\alpha}}{3-\alpha} r^{2-\alpha},
$$

3. The potential difference between radius r and the reference radius r_{0} is

$$
\Phi(r)-\Phi\left(r_{0}\right)=G \int_{r_{0}}^{r} d r^{\prime} \frac{M\left(r^{\prime}\right)}{r^{\prime 2}}= \begin{cases}\frac{v_{c}^{2}\left(r_{0}\right)-v_{c}^{2}(r)}{\alpha-2} & \text { for } \alpha \neq 2 \\ v_{c}^{2} \ln \left(r / r_{0}\right) & \text { for } \alpha=2\end{cases}
$$

4. The escape speed $v_{e}(r)$ from radius r, for $\alpha>2$, is given by

$$
v_{e}^{2}(r) \equiv 2[\Phi(\infty)-\Phi(r)]=2 \frac{v_{c}^{2}(r)}{\alpha-2}
$$

Question: What happens to these quantities changing the value of the parameter α ? Which expressions still "make sense"?

Exercise 4

Logarithmic potentials provide a simple model for a flat rotation curve at large radii. Consider the axisymmetric Logarithmic potential defined by:

$$
\Phi_{L}(R, z)=\frac{1}{2} v_{0}^{2} \ln \left(R_{c}^{2}+R^{2}+\frac{z^{2}}{q_{\Phi}^{2}}\right)+\text { constant }
$$

where R_{c} and v_{0} are constants, and q_{Φ} is the axis ratio of the equipotential surfaces. The density distribution to which Φ_{L} corresponds is

$$
\rho_{L}(R, z)=\frac{v_{0}^{2}}{4 \pi G q_{\Phi}^{2}} \frac{\left(2 q_{\Phi}^{2}+1\right) R_{c}^{2}+R^{2}+\left(2-q_{\Phi}^{-2}\right) z^{2}}{\left(R_{c}^{2}+R^{2}+q_{\Phi}^{-2} z^{2}\right)^{2}} .
$$

The flattening of the potential is represented by $1-q_{\Phi}$.
Question: If we define the axial ratio q_{ρ} of the isodensity surfaces by the ratio z_{m} / R_{m} of the distances down the z and R axes at which a given isodensity surface cuts the z axis and the $x-y$ plane respectively, show that, in the limit $r \gg R_{c}$ we find

$$
q_{\rho}^{2} \simeq q_{\Phi}^{4}\left(2-\frac{1}{q_{\Phi}^{2}}\right) \quad\left(r \gg R_{c}\right) .
$$

Question: What happens in these regions to the density for $q_{\Phi}<1 / \sqrt{2}$?
Hint: Express the density as a function of R / R_{c} and z / R_{c}.

