Exercises for Dynamics of Galaxies, 30/4/2014

Exercise 1

The relaxation time for stellar systems may be defined as

trelax = Mrelaxtcross ;

where
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with N the number of particles of the system. The crossing time is

teross = R/v .

In the Coulomb logarithm, A is
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where m represents the typical mass of a star of the system.

Question: The speed v represents a typical speed in the system. What can you use as a rough
estimate of it?

Question: Taking m = M, calculate the relaxation time of a galaxy like the Milky Way, a
typical globular cluster and a typical open cluster using:

1. for the galaxy: N ~ 10, R ~ 10 kpc,
2. for the globular cluster: N ~ 10°, R =~ 5 pc,
3. for the open cluster: N =~ 100, R ~ 5 pc.

Given a lifetime for the galaxy, the globular cluster and open cluster of respectively ~ 10Gyr,
10Gyr and 100Myr, which one of these systems is collisionless?

Exercise 2 (Problem 2.1 from Binney & Tremaine)

Question: Show that the gravitational potential energy of a spherical system of finite mass in
which the density satisfies
lim p(r) r*/? = 0,
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can be written

where .
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is the mass interior to radius r.
Hint: start from the expression for the potential energy of a spherical body and integrate by
parts.

W = —4nG /OOO drrp(r)M(r).



Exercise 3

Many galaxies have luminosity profiles that approximate a power law over a large range in
radius. Consider the structure of a system in which the mass density drops off as some power

of the radius: N
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Question: Show that:

1. The mass interior to r, M(r) is
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2. The circular speed is
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3. The potential difference between radius r and the reference radius r¢ is
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4. The escape speed v,(r) from radius r, for o > 2, is given by

Question: What happens to these quantities changing the value of the parameter a? Which
expressions still “make sense”?

Exercise 4

Logarithmic potentials provide a simple model for a flat rotation curve at large radii. Consider
the axisymmetric Logarithmic potential defined by:
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where R. and vy are constants, and g¢ is the axis ratio of the equipotential surfaces. The
density distribution to which ® corresponds is
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The flattening of the potential is represented by 1 — ¢s.

Question: If we define the axial ratio g, of the isodensity surfaces by the ratio z,,/R,, of the
distances down the z and R axes at which a given isodensity surface cuts the z axis and the
x — y plane respectively, show that, in the limit » > R, we find
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Question: What happens in these regions to the density for gp < 1/4/27
Hint: Express the density as a function of R/R. and z/R..



