
Exercises for Dynamics of Galaxies, 30/4/2014

Exercise 1

The relaxation time for stellar systems may be defined as

trelax = nrelaxtcross ,

where

nrelax '
N

8 ln Λ
,

with N the number of particles of the system. The crossing time is

tcross = R/v .

In the Coulomb logarithm, Λ is

Λ ≈ Rv2

Gm
,

where m represents the typical mass of a star of the system.

Question: The speed v represents a typical speed in the system. What can you use as a rough
estimate of it?

Question: Taking m = M�, calculate the relaxation time of a galaxy like the Milky Way, a
typical globular cluster and a typical open cluster using:

1. for the galaxy: N ≈ 1011, R ≈ 10 kpc,

2. for the globular cluster: N ≈ 105, R ≈ 5 pc,

3. for the open cluster: N ≈ 100, R ≈ 5 pc.

Given a lifetime for the galaxy, the globular cluster and open cluster of respectively ≈ 10Gyr,
10Gyr and 100Myr, which one of these systems is collisionless?

Exercise 2 (Problem 2.1 from Binney & Tremaine)

Question: Show that the gravitational potential energy of a spherical system of finite mass in
which the density satisfies

lim
r→0

ρ(r) r5/2 = 0,

can be written

W = −G
2

∫ ∞
0

dr
M2(r)

r2
,

where

M(r) ≡
∫ r

0

dr′4πρ(r′)r′2,

is the mass interior to radius r.
Hint: start from the expression for the potential energy of a spherical body and integrate by
parts.

W = −4πG

∫ ∞
0

drrρ(r)M(r).
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Exercise 3

Many galaxies have luminosity profiles that approximate a power law over a large range in
radius. Consider the structure of a system in which the mass density drops off as some power
of the radius:

ρ(r) = ρ0

(r0

r

)α
.

Question: Show that:

1. The mass interior to r, M(r) is

M(r) ≡
∫ r

0

dr′4πρ(r′)r′2 =
4πρ0r

α
0

3− α
r3−α,

2. The circular speed is

v2
c (r) =

GM(r)

r
=

4πGρ0r
α
0

3− α
r2−α,

3. The potential difference between radius r and the reference radius r0 is

Φ(r)− Φ(r0) = G

∫ r

r0

dr′
M(r′)

r′2
=


v2
c (r0)− v2

c (r)

α− 2
for α 6= 2

v2
c ln(r/r0) for α = 2,

4. The escape speed ve(r) from radius r, for α > 2, is given by

v2
e(r) ≡ 2[Φ(∞)− Φ(r)] = 2

v2
c (r)

α− 2
.

Question: What happens to these quantities changing the value of the parameter α? Which
expressions still “make sense”?

Exercise 4

Logarithmic potentials provide a simple model for a flat rotation curve at large radii. Consider
the axisymmetric Logarithmic potential defined by:

ΦL(R, z) =
1

2
v2

0 ln

(
R2
c +R2 +

z2

q2
Φ

)
+ constant,

where Rc and v0 are constants, and qΦ is the axis ratio of the equipotential surfaces. The
density distribution to which ΦL corresponds is

ρL(R, z) =
v2

0

4πGq2
Φ

(2q2
Φ + 1)R2

c +R2 + (2− q−2
Φ )z2

(R2
c +R2 + q−2

Φ z2)2
.

The flattening of the potential is represented by 1− qΦ.

Question: If we define the axial ratio qρ of the isodensity surfaces by the ratio zm/Rm of the
distances down the z and R axes at which a given isodensity surface cuts the z axis and the
x− y plane respectively, show that, in the limit r � Rc we find

q2
ρ ' q4

Φ

(
2− 1

q2
Φ

)
(r � Rc).

Question: What happens in these regions to the density for qΦ < 1/
√

2?
Hint: Express the density as a function of R/Rc and z/Rc.
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