Fourth set of problems for the course on Galaxies, 2005-2006

1. Elliptical galaxies

(a) If the luminosity density of stars in a galaxy is $j(r) = j_0(r_0/r)^{\alpha}$, show that the surface brightness at distance R from the center is

$$I(R) = I_0 (r_0/R)^{\alpha - 1}$$
(1)

as long as $\alpha > 1$. What happens if $\alpha < 1$? Compute the total luminosity of the system.

(b) The fraction of galaxies with apparent axis ratios $(q_0, q_0 + dq_0)$ observed from a random direction θ and true axis ratios $q = \beta/\alpha$, is given by

$$f(q_0)dq_0 = \frac{q_0 dq_0}{\sqrt{(1-q^2)(q_0^2-q^2)}}.$$
(2)

Show that if we view these galaxies from random directions, the fraction of oblate elliptical galaxies with true axis ratio q that appear more flattened than q_0 is

$$F(\langle q_0) = \int_q^{q_0} f(q'_0) dq'_0 = \sqrt{\frac{q_0^2 - q^2}{1 - q^2}}$$
(3)

If these galaxies have q = 0.8, show that the number seen in the range $0.95 < q_0 < 1$ should be about one-third of those with $0.8 < q_0 < 0.85$. Show that for smaller values of q, an even higher proportion of the images are nearly circular, with $0.95 < q_0 < 1$. You can do the same exercise for q = 0.6, and compare your results to the figure shown in class, and explain why it is unlikely that all these galaxies have oblate shapes.

- (c) The virial theorem relates the internal potential energy W and the kinetic energy K of a system in equilibrium through: 2K + W = 0. Assuming that both the velocity dispersion σ and the mass-to-light ratio M/L are constant throughout a galaxy, and that no dark matter is present, use the virial theorem to show that
 - Since the potential energy $W \propto -GM^2/R_e$, where M is the total mass of the galaxy and R_e its effective radius, and the kinetic energy $K \sim M\sigma^2/2$, so the mass of the galaxy should be $M \propto \sigma^2 R_e$.
 - If the surface brightness I(R) of all elliptical galaxies could be described by Sersic's law $I(R) = I_e \exp[-b(R/R_e)^{1/n} 1]$ with the same value of n, explain why their total luminosity L should follow $L \propto I_e R_e^2$.
 - If all elliptical galaxies had the same mass-to-light ratio M/L and surface brightness at the effective radius I_e , the Faber-Jackson relation is expected.

2. Disk galaxies

In a galaxy where the potential follows the Plummer model

$$\Phi(r) = \frac{-GM}{\sqrt{r^2 + a^2}} \tag{4}$$

find the rotation curve V(r). Show that $V_{max}^2 = 2GM/(3\sqrt{3}a)$. Sketch V(r) for $r \leq 4a$. For inclination $i = 30^{\circ}$, draw a spider diagram with contours at 0.2, 0.4, 0.6, and 0.8 of V_{max} .