Third set of problems for the course on Galaxies, 2005-2006

1. <u>Chemical evolution</u>

In this problem, we will investigate a more elaborate version of the accretion model discussed in class. We assume that initially all of the disk mass is in metal-free gas, and that a constant fraction (1 - q) of each infalling gas parcel δM_t is locked up by star formation. Thus the corresponding change in gas mass is $\delta M_q = q \delta M_t$.

(a) Using that

$$\frac{dZ}{dM_t} = \frac{1}{M_g} \left[p - Z - p \frac{dM_g}{dM_t} \right] \tag{1}$$

show that a parametric solution for $Z(M_g)$ is $Z = p(1-q)(1-e^{-u})$, and $M_g = M_g(0)e^{qu}$, where $M_g(0)$ is the initial gas mass.

(b) Show that the ratio of the stellar mass at t_1 to the mass in gas at the present time t_0 is

$$\frac{M_s(u_1)}{M_g(u_0)} = \frac{1-q}{q} (e^{qu_1} - 1)e^{-qu_0}$$
(2)

where u_i is the value of the parameter u at time t_i .

(c) Now consider the case $u_0 >> 1/q$, and let u_1 be an epoch at which the metallicity Z_1 was substantially lower than Z_0 . Show that (i) the present metallicity is $Z_0 \sim p(1-q)$; (ii) that $u_1 \sim -\ln(1-Z_1/Z_0) << 1$; (iii) that

$$\frac{M_s(u_1)}{M_g(u_0)} \sim -\ln\left(1 - \frac{Z_1}{Z_0}\right)e^{-qu_0} \tag{3}$$

This formula differs from that obtained for the simple accretion model only by the presence of the factor e^{-qu_0} . Since this factor can take any value between 0 and 1 depending on q and u_0 , it follows that in this modified accretion model, the fraction of low metallicity stars can be made arbitrarily small.

2. Dynamics.

(a) In a spherical galaxy, the gravitational potential $\Phi(r)$ is

$$\Phi(r) = -\frac{GM(< r)}{r} - 4\pi G \int_{r}^{\infty} \rho(r') r' dr'$$
(4)

Check that by differentiating this expression with respect to r you recover Newton's second theorem.

(b) Show that at radius r inside a uniform sphere of density ρ , the radial force $F_r = -4\pi G\rho r/3$. If the density is zero for r > a, show that

$$\Phi(r) = -2\pi G\rho(a^2 - \frac{r^2}{3}),$$
(5)

(c) The collision-timescale is

$$t_{coll} \sim \frac{V^3}{4\pi G^2 m^2 n} \tag{6}$$

where n is the number density of particles in a system, m is their mass, and V is their typical (relative) speed, i.e $V^2 = GNm/R$ where R is a characteristic scale of the system, and N the total number of particles (for a spherical object $N = 4\pi nR^3/3$). The relaxation timescale is

$$t_{relax} \sim \frac{N}{8\log\Lambda} t_{cross} \tag{7}$$

where $\Lambda = R/R_i$ with R_i the characteristic size of the particles, and $t_{cross} = R/V$ the crossing time. Compute t_{coll} and t_{relax} for a globular cluster, an elliptical galaxy and for a cluster of galaxies using the parameters below. What do you conclude from the comparison? Which process are important for stars in a cluster? Which for galaxies in a cluster?

object	N	R_i	m	R
globular cluster	10^{5}	$7 \times 10^5 \text{ km}$	$1 M_{sun}$	4 pc
elliptical galaxy	10^{11}	$7 \times 10^5 { m \ km}$	$1 M_{sun}$	$10 \ \rm kpc$
galaxy cluster	10^{3}	$100 \ \rm kpc$	$10^{12}M_{sun}$	$3 { m Mpc}$