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Abstract

We present the three main mathematical constructs used to represent the attitude of a rigid body in three-
dimensional space. These are (1) the rotation matrix, (2) a triple of Euler angles, and (3) the unit quaternion. To
these we add a fourth, the rotation vector, which has many of the benefits of both Euler angles and quaternions, but
neither the singularities of the former, nor the quadratic constraint of the latter. There are several other subsidiary
representations, such as Cayley-Klein parameters and the axis-angle representation, whose relations to the three main
representations are also described. Our exposition is catered to those who seek a thorough and unified reference on
the whole subject; detailed derivations of some results are not presented.

Keywords—FEuler angles, quaternion, Euler-Rodrigues parameters, Cayley-Klein parameters, rotation matrix, di-
rection cosine matrix, transformation matrix, Cardan angles, Tait-Bryan angles, nautical angles, rotation vector,
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1 Introduction

This document is intended as a unified reference on the
subject of parameterizing the attitude of an object in three-
dimensional space. It has been written to fill a perceived
gap in the existing on-line literature. In particular, while
there are many web pages and technical reports dedicated
to the subject of Euler angles and quaternions, we were un-
able to find any single reference that covers all the topics
with a consistent, detailed, and unified treatment. This
problem is exacerbated by the numerous conventions in
current use, and the tendency among authors to assume a
particular convention without explicitly stating their choice,
and without commenting on the alternatives. Further-
more, the existing on-line literature has a particularly large
gap in the area of the various possible choices of Euler an-
gle triples.

The most common way to represent the attitude of a
rigid body is a set of three Euler angles. These are popular
because they are easy to understand and easy to use. Some
sets of Euler angles are so widely used that they have names
that have become part of the common parlance, such as the
roll, pitch, and yaw of an airplane. The main disadvantages
of Euler angles are: (1) that certain important functions
of Euler angles have singularities, and (2) that they are
less accurate than unit quaternions when used to integrate
incremental changes in attitude over time.

These deficiencies in the Euler angle representation have
led researchers to use unit quaternions as a parametriza-
tion of the attitude of a rigid body. The relevant functions
of unit quaternions have no singularities and the represen-
tation is well-suited to integrating the angular velocity of
a body over time. The main disadvantages of using unit
quaternions are: (1) that the four quaternion parameters
do not have intuitive physical meanings, and (2) that a
quaternion must have unity norm to be a pure rotation.
The unity norm constraint, which is quadratic in form, is
particularly problematic if the attitude parameters are to
be included in an optimization, as most standard optimiza-
tion algorithms cannot encode such constraints.

As an alternative to Euler angles and the unit quater-
nion, we offer the rotation vector. The rotation vector
lacks both the singularities of the Euler angles and the
quadratic constraint of the unit quaternion. This is not a
new parametrization, but we have found the existing refer-
ences on this subject to be lacking in detail. The rotation
vector is particularly useful when seeking to optimize over
the attitude parameters in cases in which the Euler angle
singularities cannot be avoided by careful design. It may
not be the best choice in other circumstances.

1.1 Overview of Contents

In Sec. 1.3 we define the coordinate systems that are used
throughout this report. Sec. 2 introduces the idea of rota-
tion matrices and describes several of their key properties.
Rigid-body kinematics are introduced in Sec. 3. Euler an-
gles are discussed in all their diversity in Sec. 5, including
detailed discussions of the three most commonly-used con-

ventions. Quaternions, especially unit quaternions and the
axis-angle representation, are discussed in Sec. 6. The ro-
tation vector is developed in Sec. 7 as a three-dimensional
parametrization of a quaternion. Finally, a catalog of the
twelve different Euler angle parameterizations is presented
in Sec. 8. Throughout this report, conversions between
the various representations, and explanatory notes regard-
ing usage and naming conventions are included where ap-
propriate.

1.2 Sources

The mathematical results in this report have been derived
from basic definitions and first principles. Several sources
have been used to confirm our results and to provide infor-
mation on the usage of the various conventions. On Euler
angles, we cite [1] and [4]. On Caley-Klein parameters, we
cite [3]. On quaternions and Euler-Rodrigues parameters,
we cite [5] and [2], especially the latter. On Kinematics,
we cite [1].

1.3 Coordinate Systems

We consider the relationships between data expressed in
two different coordinate systems:

e The world coordinate system is fixed in inertial space.
The origin of this coordinate system is denotedx,,,.

e The body-fixed coordinate system is rigidly attached
to the object whose attitude we would like to de-
scribe. The origin of this coordinate system is de-
noted xp.

Points and vectors expressed in the body-fixed coordi-
nates are distinguished from those expressed in the world
coordinates by a prime symbol. For example, if x is a
point is the world coordinates, then x’ is the same point
expressed in the body-fixed coordinates. Needless to say,
X, and x; are both zero, but x/, and x; are generally not.
Here, x|, is the origin of the world coordinates expressed
in the body-fixed coordinates, and x; is the origin of the
body-fixed coordinates expressed in the world coordinates.

Some of the mathematics described in this document
only apply when the world coordinate system is rotation-
ally fixed. For many purposes, however, it is perfectly ac-
ceptable to consider a slowly-rotating coordinate system,
such as one attached to Earth, to be a valid world coordi-
nate system, despite its non-zero angular velocity.

2 Rotation Matrix

A rotation matrix is a matrix whose multiplication with a
vector rotates the vector while preserving its length. The
special orthogonal group of all 3 x 3 rotation matrices is
denoted by SO(3). Thus, if R € SO(3), then
and R™'=RT.

det R = +1 (1)



Rotation matrices for which det R = 1 are called proper
and those for which det R = —1 are called improper. Im-
proper rotations are also known as rotoinversions, and con-
sist of a rotation followed by an inversion operation. We
restrict our analysis to proper rotations, as improper rota-
tions are not rigid-body transformations.

We reference the elements of a rotation matrix as fol-
lows:

(2)

11 Ti2 Ti13
= | ro1 T2 T23 (3)
T3l T32 T33

There are two possible conventions for defining the ro-
tation matrix that encodes the attitude of a rigid body
and both are in current use. Some authors prefer to write
the matrix that maps from the body-fixed coordinates to
the world coordinates; others prefer the matrix that maps
from the world coordinates to the body-fixed coordinates.

Though converting between the two conventions is as
trivial as performing the transpose of a matrix, it is nec-
essary to be sure that two different sources are using the
same convention before using results from both sources to-
gether. Indeed, one of the motivations of this report is to
provide a single coherent reference that covers the entire
subject.

2.1 Coordinate Transformations

We define the rotation matriz that encodes the attitude of
a rigid body to be the matrix that when pre-multiplied by
a vector expressed in the world coordinates yields the same
vector expressed in the body-fixed coordinates. That is, if
z € R? is a vector in the world coordinates and z’ € R3 is
the same vector expressed in the body-fixed coordinates,
then the following relations hold:

7z =Rz

z=R"7.

(4)
(®)

These expression apply to vectors, relative quantities lack-
ing a position in space. To transform a point from one
coordinate system to the other we must subtract the offset
to the origin of the target coordinate system before apply-
ing the rotation matrix. Thus, if x € R? is a point in the
world coordinates and x’ € R? is the same point expressed
in the body-fixed coordinates, then we may write

Rx + x'
RTx' + x.

/
x =

(6)
(7)

Substituting x = 0 into Eq. 6 and x’ = 0 into Eq. 7 yields

(®)
9)

R (x—xp) =
X BT (x' ) —

Xy = =—Rxp
_ T/
= —-R'x,.

2.2 Transformation Matrix

It is quite common in the computer graphics community
to write Egs. 6 and 7 as matrix-vector products:

A-[8 )] e
JER S
H-[Ey]Y) e
IERICE

The substantial popularity of this convention is probably
due to its adoption by the manufacturers of 3D-accelerated
graphics hardware.

2.3 Pose of a Rigid Body

The pose of a rigid body is the position and attitude of
that body. The bulk of this report deals with parameteri-
zations of attitude. The position is most naturally encoded
by xp, the position of the origin of the body-fixed coordi-
nates as expressed in world coordinates. It is, however,
equally valid to store x/,, the position of the origin of the
world coordinates as expressed in the body-fixed coordi-
nates. The two are related to one another through the
attitude of the body, according to Egs. 8 and 9.

2.4 Coordinate Rotations

A coordinate rotation is a rotation about a single coordi-
nate axis. Enumerating the z-, y-, and z-axes with 1,2,
and 3, the coordinate rotations, R; : R — SO(3), for
i€{1,2,3}, are

1 0 0
Ri(a)=1] 0 cos(a) sin(a) (14)
0 —sin(a) cos(a) |
cos(a) 0 —sin(a) |
Ro()=| 0 1 0 (15)
| sin(a) 0 cos(a) |
[ cos(a) sin(a) 0]
R3(a) = | —sin(a) cos(a) O (16)
0 0 1|

A sample rotation of this form is illustrated in Fig. 1,
which shows a rotation about the z-axis by an angle a.

2.5 Direction Cosine Matrix

A rotation matrix may also be referred to as a direction
cosine matriz, because the elements of this matrix are the
cosines of the unsigned angles between the body-fixed axes
and the world axes. Denoting the world axes by (z,v, z)
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Figure 1: A sample coordinate rotation about the z-axis
by an angle a.

and the body-fixed axes by (z/,v’,2’), let 6y, be, for ex-
ample, the unsigned angle between the z’-axis and the y-
axis. In terms of these angles, the rotation matrix may be
written

cos(8y ) cos(By ) cos(Oy )
R = cos(fy ) cos(By ) cos(fy ) (17)
cos(8,r z) cos(By,) cos(. )

To illustrate this with a concrete example, consider the case
s

shown in Fig. 1. Here, 0,/ = 0y y = o, 0y = 5 —
ay/’x = % + a, 0,2/’2 = 0, and 92/’{x7y} = e{m/,y/},z — g
Expanding Eq. 17,
_ cos(fy z) cos(Byy) O
R=| cos(fy o) cos(By ,) O
I 0 0 1
- cos(a) COS(% — a) 0
= | cos(§5 +a) cos(a) 0
L 0 0 1
[ cos(a) sin(a) 0
— | —sin(a) cos(a) 0 (1s)
0 0 1

This is the same result that is presented in Eq. 16 in Sec.
2.4.

2.6 Basis Vectors

The rotation matrix may also be thought of as the ma-
trix of basis vectors that define the world and body-fixed
coordinate systems. The rows of the rotation matrix are
the basis vectors of the body-fixed coordinates expressed
in world coordinates, and the columns are the basis vec-
tors of the world coordinates expressed in the body-fixed
coordinates.

2.7 Rotation Matrix Multiplication

The multiplication of two rotation matrices yields another
rotation matrix whose application to a point effects the
same rotation as the sequential application of the two orig-
inal rotation matrices. For example, let

z' = R,z (19)
2" = Ryo2 = Ry Raz = Ryz, (20)

where
Ry = Rb/aRa- (21)

Note that the rotations are applied in the reverse order.
That is, here we apply R, first, followed by Ry /q4-

3 Kinematics

Kinematics is the study of the motion of particles and rigid
bodies, irrespective of the forces and moments involved.
As such, it is the study of the nature of three-dimensional
space, and falls at least partially into the scope of this
report. In this section, we present, without derivation,
several key results.

3.1

We consider the motion of a body, b, and a particle, p,
in the world coordinate system, w. We present expressions
for the velocity and acceleration of p in terms of the motion
of b with respect to w, and the motion of p with respect to
b. We define the relevant terms here.

All of these quantities may be expressed in either the
world coordinates or the body-fixed coordinates, whichever
is more convenient. Body-fixed quantities are noted with
a prime symbol. Conversions of vectors between the two
coordinate systems are carried out according to Egs. 4 and
5, and conversions of points are performed with Eqs. 6 and
7. All the quantities defined here are vector quantities,
except x, and x;, which are points.

Notation

® X3, Xp, and X; are the position, velocity, and acceler-
ation of b.

® X,, Xp, and X, are the position, velocity, and accel-
eration of p.

® X,/b, Xp/p, and X, are the position, velocity, and
acceleration of p relative to b (i.e., as seen by an ob-
server rigidly attached to b).

e w and w are the angular velocity and angular accel-
eration of b.

e R is the rotation matrix of b, whose application is
illustrated in Eqs. 4-7.

Given these definitions, we consider two main cases.
The first deals with a point rigidly attached to the body,
and the second deals with a particle moving with respect
to it.



3.2 Motion of a Fixed Point on a Rigid
Body

Let p be rigidly attached to the body, b, such that x,/, =
X,/ = 0. The velocity of the point, p, is then

Xp = Xp + W X Xp/p

:berC(w) Xp/bs (22)

where the skew-symmetric cross product matriz function
C : R3 — R3*3 is defined by

0 —Wws3 w2
C((,U) = w3 0 —Ww1 (23)
—W9 w1 0

Alternatively, we may express the velocity in more conve-
nient terms by using a combination of world and body-fixed
terms:

%, =% + RT (w’ X X;/z))

=%+ RTC(w') ;. (24)
The acceleration of p is
j&p:j'cb+(i)xxp/b+w X (w XXp/b)
=%, + [C() + C(w)?] x5, (25)

or, using a combination of world and body-fixed terms:

%, = %, + RT [d)’ X X, + W' X (w’ xx;/b)}

=%, + RT [C(d) + C(0')?] %, 3, (26)
where
—ws? —wp?  wowy w3wy
C((U)2 = wWa1 7&)32 — w12 W3w?2 . (27)
w3wq w3wso —w22 — (4)12

3.3 Motion of a Particle in a Moving Frame

Next, we consider the case in which the point is not rigidly
attached to the body, but is a particle moving relative to
it. The velocity of the particle in the world frame is

Xp :Xb+>'<p/b+w X Xp/b

=5+ BT (X} + C()) X ) (28)
and the acceleration is
angular centripetal
Xp =Xp + 0 X X+ W X (WX X,)
(29)

+>"<p/b+2w X Xp/b-
————

Coriolis

Again, we may reconfigure this to yield a more useful final
expression:

%, =%, + RT |[C(d) + C(w)?] X,

From these results, it can be seen that Eqs. 28-30 are strict
generalizations of Egs. 22 and 24 and Egs. 25 and 26.

4 Finite Difference Approximations

At several points in this paper the angular velocity of a
rigid body is related to the time derivative of the the atti-
tude parameters. In many applications, it is necessary to
approximate these time derivatives using finite difference
approximations. In this section, the most common and
useful finite difference approximations are presented and
discussed.

We will discuss a general time-varying vector quantity,
z (t) € R™. Finite difference approximations are denoted
with the operator A%, , where n is the order of the deriva-
tive, S is the stencil over which the finite difference ap-
proximation is computed, and h is the size of the time in-
crement between samples. Finite difference operators are
linear combinations of function evaluations in the neigh-
borhood of the evaluation point. A general finite difference
approximation is written

1
AS 2 (to) = o E ay z (to + kh)
keS

> bz (to + kh),

kes

1
= — 31
T (31)
where {a, € Q|k € S} is the set finite difference coefficients
for which ¢ € Z and {b;, € Z|k € S} are a convenient ratio-
nal decomposition. The actual derivative of the function
is

2™ (to) = A%z (o) + dh™2" "™ (), (32)

where m is called the order of accuracy, and 7 € [to—h, to+
h] is some unknown evaluation point for the truncation
error term.

The error is not typically calculated, but m indicates
how the error depends on the step size, h. For exam-
ple, halving the step size produces a fourfold improvement
in accuracy for second-order accurate methods but only a
twofold improvement for first-order accurate methods.

Tables 1 and 2 show the finite difference coefficients for
various stencils and orders.

5 Euler Angles

5.1 Rotation Sequence

Three coordinate rotations in sequence can describe any
rotation. Let us consider triple rotations in which the first



Table 1: Finite difference coefficients over a symmetric

seven-point stencil.
k

m|c |32 1|01 23 d

First Derivative (bg)
1|1 11 1/2
1] 1 11 -1/2
2 | 2 1 4] 3 1/3
2 | 2 1] 0 |1 -1/6
2 | 2 3| 4 1/3
316 |2 9 -18] 11 1/4
g g 1 _g ?é g 1 _11 //1122 Table 2: Finite difference coefficients over a one-sided

) ) ) seven-point stencil.
3] 6 11|18 -9 2| -1/4
k
1121 6 -18] 10 | 3 -1/20
1 2 4

4| 12 1 8| 0 |8 -1 1/30 mlel 0 1 3 5 6 d
4 | 12 31018 6 1| -1/20 First Derivative (by)
5160 |2 15 60 | 20 | 30 -3 1/60 I . -1/2
5 | 60 3 30| 20 | 60 -15 2 | -1/60 2|2 '31 14 -1 , 11/?:1
6160 |1 9 45| 0 | 45 9 1 |-1/140 i 162 ‘;5 42 '396 Lo '1//5

Second Derivative (by) 5 | 60 | -137 300 -300 200 -75 12 1/6
g N I L 6 | 60 | -147 360 -450 400 -225 72 -10 | 1/7
5 T 11 4 5 D) - 11_/12 Second Derivative (by)
5 | 1 Ll 5] 112 2 (1] 2 5 4 -1 11/12
5 | 1 2 | 5 4 a1 3 12| 35 -104 114 -56 11 -5/6
T T T 6 T30 0 BYID 4|12 | 45 -154 214 -156 61 -10 137/180
3| 12 11 | -20 6 4 -1] 1/12 Third Derivative (by)
4] 12 -1 16 | -30 | 16 -1 1/90 L1y -3 3 1 -3/2
6 | 180 | 2 -27 270 | -490 | 270 27 2 | -1/560 g i -157 ;515 -12148 El);l fl - 175{48

Third Derivative (by) 4| 8 | 49 232 -461 496 -307 104 -15 | 29 /15
1|1 ]-13 3] 1 3/2 - _ _ - /
1 1 1 3 -3 1 1/2 Fourth Derivative (by)
111 -1 3 301 -1/2 11 1 4 6 4 1 2
11 a3 31| 32 2 | 1 1426 -24 11 -2 17/6
s T 5 T1T % 1 a0 3 /1 3| 6 | 35 -186 411 -484 321 -114 17 | -7/2
2 | 2 120 |2 1 -1/4 Fifth Derivative (bg)
2 | 2 3| 10 |-12 6 -1| 1/4 11| -1 5 -10 10 5 1 -5/2
3 4 |1 7 14| -0 1 1 /8 2| 2| -7 40 -95 120 -85 32 -5 | 25/6
3 4 -1 10 | -14 7 -1 1/8 Sixth Derivative (by)
4] 8 |1 8 13| 0 |-13 8 -1] 7/120 11| 1 -6 15 20 15 -6 1 -3

Fourth Derivative (by)
1] 1 [1 -4 6] 411 1
1] 1 1| 4|6 41| -1
2 | 1 1 4] 6 | 4 1 176
4] 6 | -1 12 39| 56 | -39 12 -1 | 7/240

Fifth Derivative (by)
1] 1|15 -10]10]-5 1 1/2
1] 1 15 | 10 | 10 -5 1| -1/2
2 2 [-1 4 5] 0 | 5 -4 1] -1/3

Sixth Derivative (by)
2| 1 |1 -6 15]-20]15 -6 1| -1/4



rotation is an angle 1 about the k-axis, the second rotation

is an angle 6 about the j-axis, and the third rotation is an

angle ¢ about the i-axis. For notational brevity, let us

arrange these angles in a three-dimensional vector called
the Fuler angle vector, defined by

T

u:= 1[4, 0, Y| . (33)

The function that maps an Euler angle vector to its

corresponding rotation matrix, R;jx : R — SO(3), is

As in the general case, if z € R is a vector in the world

coordinates and z’ € R3 is the same vector expressed in the
body-fixed coordinates, then the following relations hold:

Z/ = Rijk(u) VA

VARS Rijk(u)Tz/.

5.2 Euler Angle Rates and Angular Veloc-
ity

The time-derivative of the Euler angle vector is the vector
of Fuler angle rates. The relationship between the Euler
angle rates and the angular velocity of the body is encoded
in the Fuler angle rates matriz. Multiplying this matrix
by the vector of Euler angle rates gives the angular veloc-
ity in the global coordinates. Letting &; be the i*" unit
vector, the function that maps an Euler angle vector to its
corresponding Euler angle rates matrix, F : R? — R3%3 is

Eiji(0,0,9) = [Re(¥)" R;(0)" &, Re(v)"e;, &), (37)

and the related conjugate FEuler angle rates matriz func-
tion, B’ : R? — R3*3_ whose multiplication with the vector
of Euler angle rates yields the body-fixed angular velocity
is

Lik(0,0,0) = [&;, Ri(¢)é;, Ri(¢)R;(0)éx]. (38)
Hence,
w' = B (u)a (40)

Noting also that the angular velocity in the body-fixed
coordinates may be related to the angular velocity in the
global coordinates by

w/ = Rl—jk(u) w (41)
w = Rijr(u)Tw’, (42)
we may eliminate w, w’, and 1 to yield
Riji(w) = Ejjp.(w) [Eijr ()]~ (43)
-1
Rije(w)" = Eiji(u) [Efj(u)] (44)

Juny
[¢]

—(u‘— sin(a)ﬁ/sin(a) | /
---(1 - cos(a))/cos(a

[
D
~

I

-
N
T
~

I

=
o
T
N
[N
I

Relative Error [%)]
®

0 5 10 15 20 25 30
Angle, a [degrees]

Figure 2: Error in the linearized approximations to the
sine and cosine as a function of the input angle.

5.3 Linearization

Many applications require linear equations. Functions of
Euler angles depend on trigonometric primitives such as
the sine and cosine. As a consequence, it is useful to con-
sider the linearized versions of these functions.

We consider the case of linearizing about zero. In this
context, linearization involves substituting:

cos(ar) — 1 (45)

sin(a) — a. (46)

Higher order terms are then set to zero. These substitu-
tions are valid for small values of a. Fig. 2 shows the
relative error in these approximations as a function of the
input angle. A relative error of 1% is reached in the ap-
proximation to the sine at an angle of 14°; for the cosine,
the same error is reached at an angle of 8.2°. Typically,
these approximations are considered valid for angles less
than 10°.

We denote the linearization operation by L. For ex-
ample, the linearized version of the function R;jx(u) is
L{R;jr(u)}. In Sec. 8 we include the linearized versions
of several key functions in the exposition of each valid ro-
tation sequence.

Linearizing about an attitude other than zero is most
easily accomplished by considering small perturbations about
a fixed attitude. Let uy be the set of Euler angles about
which we would like to linearize and let u be the vector of
perturbation angles. We write

Ry, (u) = L{R;jx(0)} Rijr(uo).

Here, we are considering ug to be constant, such that the
product of the two rotation matrices is still linear in the
parameters of u.

(47)

5.4 Valid Rotation Sequences

Thus far, we have not specified what sequences of coordi-
nate rotations are able to span the space of all three di-



Table 3: Corresponding quantities between the three most
common Euler angle conventions.

Rotation Sequence
(1?273) (37133) (33273)
(0 —t —1
0 50 5 -
¢ ¢ ¢
x —y x
Y -z -y
z —z z
x’ Z Z
y/ —g! _y/
o _y/ 2!

mensional rotations. In fact, of the 27 possible sequences
of three integers in {1, 2, 3}, there are only 12 that satisfy
the constraint that no two consecutive numbers in a valid
sequence may be equal. These are

(i,5,k) € {(1,2,1),(1,2,3),(1,3,1),(1,3,2),
(2,1,2),(2,1,3),(2,3,1),(2,3,2),
(3,1,2),(3,1,3),(3,2, 1),(3,2,3)}. (48)

The three in bold, (1,2,3), (3,1,3), and (3,2,3), are the

most common choices. These three conventions are con-
trasted in Table 3 and the first two are discussed presently.

5.5 FEuler Angle Sequence (3,1,3)
5.5.1 Usage

The most common sequence associated with the name Fu-
ler angles is (3,1,3), named for Leonhard Euler, an 18th-
century Swiss mathematician and physicist. To disam-
biguate it from the other conventions that share the same
name, it is also known as the x-convention.

In the study of the gyroscopic motion of a spinning rigid
body, the Euler angles, ¢, 8, and v, are known respectively
as spin, nutation, and precession.

A commonplace example of gyroscopic motion is a spin-
ning top. In this case, the body-fixed z-axis is aligned
with the spin-axis of the top, and the body-fixed x- and
y-axes point out the sides of the top. The tilt of the top
away from the world z-axis is the nutation angle, and the
moment arising from this tilt produces the familiar slow
orbiting motion, called precession.

5.5.2 Euler Angles = Rotation Matrix

For compact notation in this and subsequent sections, we
write cp := cos(f), sy := sin(¢), etc. The function that
maps a vector of Euler angles to its rotation matrix, and
that same function linearized, are

R313(9,0,v¢) = R3(¢)R1(0)R3(2)) =

CHCop — S$CHSy CopSy T SpCoCy  SpSo
—85¢Ch — ChCoSy —5¢5y + ChCaCy  CpSo (49)
S0Sqp —S59Cy Co

1 v+¢ 0
L{Rs13(¢,0,¢)} = | =0 =9 19 0 (50)
0 — 1

The derivatives of the rotation matrix with respect to the
Euler angles are

OR313
¢
—S¢pCyp — CyCSyy  —SpSy T CpCoCy  CySo
—CpCyp T SpCoSy  —CpSy — SpCoCy  —SpSe (51)
0 0 0
8R313 SpSOSyy  —SpSeCy  S¢Ch
50 = | Cosesy  —Cesecy  CoCo (52)
CoSq —CoCy —Sp
ORz13 _
o
—CpSyy — SHCOCY  CyCy — S¢CoSy, 0
SpSqp — CpCHCyp —SpCyhp — CHCHSq) 0 (53)

S9Cq) 59Sq) 0

5.5.3 [Euler Angles < Rotation Matrix

The inverse mapping, which gives the Fuler angles as a
function of the rotation matrix, and the composition of
that function with the rotation matrix as a function of the
unit quaternion, are

¢)313 (R) atan2 (’I"137 7"23)
uz13(R) = | 0313(R) | = | acos (r33) (54)
P313(R) atan2 (731, —732) |
atan2(2¢1q3 — 2qoq2,
24243 + 2q0q1)
us13(Re(q)) = aCOS(Q32 - CI22 - Q12 + CI02) (55)
atan2(2q1qs + 240,
—242q3 + 2q0q1)

5.5.4 [Euler Angles = Euler Angle Rates Matrices

The Euler angle rates matrices as a function of the Euler
angles, their linearized equivalents, and their inverses, are

S50 Sq) Cofy 0
E313(0,0,9) = | —secy sy 0 (56)
Co 0 1
0 1 0
L{E335(0,0,9)} = | =0 v 0 (57)
1 0 1
1 1 Sqp —Cy 0
[E313(¢797¢)}_ = 56Cy 565y 0 (58)
S0 —S¢Co  CyCo Sg
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y
X
0 cg s¢53_
E315(0,0,9) = | 0 —sy  cg50 (59)
1 0 Co
0 1 0]
L{E35(0,0,0)} = | 0 —¢ 0 (60)
1 0 1_
1 1 —S¢pCe  —CpCy  Sg
[E315(0,0,9)] = — | cgso  —s¢sp 0 (61)
S0 S¢ C¢ 0

The derivatives of the Euler angle rates matrices with re-
spect to the Euler angles are

E cosy 0 0
9 3213 =| —cocpy 0 0 (62)
—Sp 0 0
OFs1s sgcy —sy O
il I 0 (63)
» 0 0 0
0 —s CoS
E! 1) »90
% =10 —cp —5450 (64)
¢ 0 0 0
0 0 syc
E! »Co
% =10 0 cpco (65)
0 0 —Sp

5.5.5 Euler Angles = Unit Quaternion

The function that maps Euler angles to their corresponding
unit quaternion is

Co/2C0/2Cp/2 — S¢/2C0/25y /2
Cp/2Cp/280/2 + S¢/250/25¢/2
Co/250/25y /2 — S¢/2Cy /2502
Co/2C0/28y/2 T Co/2Cy/25¢/2

q313(9,0,v) = (66)

5.5.6 Singularities

This parametrization has singularities at nutation values
of 6 = nm for n € Z. At these points, changes in spin and
precession constitute the same motion. This can be most
readily seen in Eq. 56, in which the leading coefficient is
1/ sin(6).

It is a notable characteristic of this parametrization,
and all parameterizations of the form (z, 7, ), that there ex-
ists a singularity at the home position, [¢, 6, ¥] = [0,0,0].
This and other singularities are discussed further in Sec.
5.8.

5.6 Euler Angle Sequence (1,2,3)
5.6.1 Usage

The angles associated with the sequence (1,2, 3) are some-
times called Cardan angles, for Gerolamo Cardano, an
Italian Renaissance mathematician; Tait-Bryan angles, for
Peter Guthrie Tait, a 19th-century Scottish mathematical
physicist; or nautical angles. They are commonly used in
aerospace engineering and computer graphics.

Despite the lack of consensus on the issue, these an-
gles are also commonly referred to simply as Fuler angles
in the aeronautics field, in which ¢, 6, and ¢ are known
respectively as roll, pitch, and yaw, or, equivalently, bank,
attitude, and heading.

Respecting the common and technical usage of these
terms, these angles describe a vehicle whose forward di-
rection is along the positive body-fixed z-axis, with the
body-fixed y-axis to starboard, and the body-fixed z-axis
downward. In such a configuration, the home position,
[0, 6, ¥] = [0,0,0], is flat and level, pointing forward
along the world z-axis.

The non-intuitive downward-pointing z-axis is chosen
in order to make a positive change in 6 correspond to pitch-
ing upward. A less common standard using the same se-
quence is to have the y-axis point to port and the z-axis
point upward. In this case, a positive change in 6 corre-
sponds to pitching downward.

5.6.2 Euler Angles = Rotation Matrix

The function that maps a vector of Euler angles to its
rotation matrix, and that same function linearized, are

R123(¢797¢) = Rl (¢)R2(0)R3(w) =

CoCyp CoSqy —S8p
S450Cy — CpSyy 56505y + CoCy  CoSep (67)
CpSOCyY T S¢Sy ChpSeSy — SpCyp  CoCo
1 ¢ -6
L{R123(¢797¢)} = -y 1 ¢ (68)
06 —¢ 1



e

Figure 4: Euler Angle Sequence (1,2,3)

The derivatives of the rotation matrix with respect to the
Euler angles are

OR123
o
0 0 0
CHpSOCy + S¢Sy CpSeSy — S¢Cy  ChCh (69)
—S8480Cy T CpSyy  —SpSeSy — CypCyy  —SpCo
6R123 —Cy S0 —SySh —Cp
20 = SpCHCy  SpCHSy  —S¢Se (70)
CHpCHCyp  CHCHSy) —CpSe
ORi3 _
o
—CySy CoCy 0
—SpS0Sy — CpCoyp  SpSHCyp — CopSap 0 (71)

—CySeSy + SpCy  CpSeCy + SgSy 0

5.6.3 Euler Angles < Rotation Matrix

The inverse mapping, which gives the Euler angles as a
function of the rotation matrix, and the composition of
that function with the rotation matrix as a function of the
unit quaternion, are

¢123 (R) atan2 (’1“237 7“33)
11123(R) = 0123(R) = —asin (7“13) (72)
’(/)123 (R) atan2 (7’12, ’I"H)
atan2(2¢2q3 + 2qoq1
43" — a2 — 1 + q0°)
u123(Re(q)) = | —asin(2q193 — 2q0g2) (73)

atan2(2q1q2 + 2qogs,
@’ +q0® —qs® — Q22)

5.6.4 [Euler Angles = Euler Angle Rates Matrices

The Euler angle rates matrices as a function of the Euler
angles, their linearized equivalents, and their inverses, are

cocy —Sy O
Er23(¢,0,9) = | cosy ¢y 0 (74)
—Sp 0 1
1 =Y 0
L{Es(,0, )} = | v 1 0 (75)
-6 0 1
L 1 Cill Sw 0
[E123(9,0,9)] " = — | —cosy cocy O (76)
Co Cy)pSH SySe  Co
1 0 —Sp
123(0:0,9) = | 0 ¢y cosy (77)
0 —s¢ cocy
1 0 -0
L{Ej(6,00)}=| 0 1 ¢ (78)
0 —p 1
1 1 Co  SpSe CypSe
[Elag(d,0,9)] " = — | 0 coco —spco (79)
Co 0 S¢ C¢

The derivatives of the Euler angle rates matrices with re-
spect to the Euler angles are

E —cysg 0 0
9 8;23: —sys9 0 0 (80)
—Cp 0 0
8E123 i —CPSy  —Cy 0 )
p) = CoCyy —Sy 0 (81)
vl o 0 o
[0 0 0 ]
El/
%: 0 —S¢ CypCo (82)
¢ i 0 —cy —sg¢co }
0 0 —c¢
El 0
%: 0 0 —s480 (83)
0 0 —cgs0

5.6.5 Euler Angles = Unit Quaternion

The function that maps Euler angles to their corresponding
unit quaternion is

Cp/2C0/2Cy 2 + S¢/250/25¢ /2
—Cp/259/25¢ /2 T Cg/2Cy/25¢/2
Cp/2Cp/250/2 T S¢/2C0/25¢ /2
Ce/2C0/28y/2 — S¢/2Cy/250/2

Q123(¢a9,¢) = (84)
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5.6.6 Singularities

This parametrization has singularities at pitch values of
0 = 5 +nm, for n € Z. It is thus only suitable for de-
scribing vehicles that do not perform vertical or inverted
maneuvers, such as land vehicles, boats and ships, and
transport aircraft.

All Euler angle sequences that do not have a repeated
axis of rotation have this singularity. See Sec. 5.8 for
further details on this and other singularities.

5.7 Derivatives of Selected Trigonometric
Functions

Throughout this report we use various trigonometric func-
tions. The derivatives of most of these will be familiar to
the reader, but three of them warrant mention. The four-
quadrant inverse tangent, atan2 : R x R — [—7, 7], and its
derivatives are

atan(y/x) if >0
atan2(y,x) = { atan(y/z) — 7 if <0 A y<0 (85)
atan(y/x) +m if <0 A y>0
Odatan2(y, x) _ Y (86)
Ox 2 4+ 32
Odatan2(y, x) __ T (87)
dy x2 4 92
The derivatives of the inverse sine and inverse cosine are
dasin(z) _ 1 (8)
dx V1—22
dacos(z) _ -1 . (89)
dx V1—a2

5.8 Singularities

The singularities found in the various Euler angle represen-
tations are said to arise from gimbal lock. Two examples
of this phenomenon are presented in Sec’s. 5.5.6 and 5.6.6.

Gimbal lock may be understood in several different
ways. Intuitively, it arises from the indistinguishability of
changes in the first and third Euler angles when the second
Euler angle is at some critical value. Take, for example,
the (1,2,3) sequence. When the pitch angle is 90 degrees,
the vehicle is pointing straight up, and roll and yaw are in-
distinguishable. In the case of the (3,1, 3) sequence, when
the nutation angle is zero, changes in the spin angle are
the same as changes in the precession angle.

The phenomenon may also be seen in the mathematics,
where it manifests itself as singularities. Again, consider
the (1,2, 3) sequence. In this case, when cos(f) = 0, then
T93 =T33 = T12 =711 = 0, and the expressions for ¢123(R)
and t123(R) in Eq. 73 are undefined. A similar conse-
quence may be observed in the case of the (3, 1, 3) sequence
when sin(f) = 0. This effect is even more obvious in Egs.
56 and 74, where the singularity may be seen directly in
the leading coefficient.

13

A common strategy for dealing with this problem is to
change representations whenever an object nears a singu-
larity. Even more popular is the use of unit quaternions to
represent an object’s attitude. Using unit quaternions to
represent the attitude of an object completely avoids the
problem of gimbal lock. Unit quaternions also have several
other notable advantages that will be discussed in Sec. 6.

The main disadvantage of unit quaternions, however, is
that they are constrained to have unit length, a constraint,
that while inconsequential in many cases, can lead to com-
plications when attempting to optimize over the quater-
nion parameters. This is due to the fact that a unity norm
constraint is quadratic in form and thus impossible to in-
clude in most standard optimization techniques.

5.9 Intra-Euler-Angle Conversion

Converting between representations is sometimes necessary
to avoid gimbal lock. In this section, the conversions be-
tween (3,1, 3) sequence and the (1,2,3) sequence are pro-
vided, along with Jacobians required for filtering applica-
tions.

5.9.1 Sequence (3,1,3) < Sequence (1,2,3)

A set of (3,1, 3) Euler angles may be written as a function
of a set of (1,2,3) Euler angles according to

(0,0,9¢) = uz13 (Ri23 (4,0, 9))
atan2 (—sg, S¢Co)
acos (cycg)
atan2 (CyseCy + S¢Sy, —CpSeSy + S¢Cy)

123
Usi3

(90)

The Jacobian of this function with respect to the (1,2, 3)
Euler angles is

au123

S [ows outt ouly
ou L 9¢ 20 a9
1 CpSeCo —S¢ 0
= p \/aS¢CQ \/aC¢89 0 (91)
—Sg SpCpCoh a
where
a:=1- cicg (92)

is a repeating term that has been factored for notational
and computational ease.

5.9.2 Sequence (1,2,3) < Sequence (3,1,3)

A set of (1,2, 3) Euler angles may be written as a function
of a set of (3,1,3) Euler angles according to

313
Ujo3

(¢7 97 1/’) = Ui23 (R313 (¢a 97 1/’))
atan2 (cesg, co)
—asin (s¢sp)
atan2 (cgsy + S¢CoCy, CHCy — SpCoSy)

(93)



The Jacobian of this function with respect to the (3,1, 3)
Euler angles is

Ouisi [ owld oulld  oulls
Ju | 9¢ a6 o
—Lsgs0c0 %Cqs (c3+s2) 0
_ — 75 Co56 =75 56C0 0 (94)
%09 (S?b + ci) —%cd)sq;s‘g 1
where
a:= cg + 03)55
b:=1- 33553 (95)
(BES sicg + ci
(96)

are repeating terms that have been factored for notational
and computational ease.

6 Quaternions

Quaternions were first devised by William Rowan Hamil-
ton, a 19th-century Irish mathematician. There is a sub-
stantial body of quaternion mathematics that are beyond
the scope of this report. Consequently, we focus on the
essential definitions required to use the quaternion as a
representation of the attitude of an object.

6.1 General Quaternions

A quaternion, q € H, may be represented as a vector,

q = [qu q1, 42, Q3]T = |: a0 :| 5 (97)

q1:3
along with a set of additional definitions and operations
that may be applied to it. The adjoint, norm, and inverse
of the quaternion, q, are

= d0
- 98
4 |: —q1:3 :| ( )
lall = \/Q3+Qf+qg+q§ (99)
-1 q
ql=—. (100)
lall

6.2 Quaternion Multiplication

Quaternion multiplication is not commutative. Quaternion
multiplication between quaternions q and p is defined by

q'p=dmn(q,p) (101)
| oP1:3 +Podi:3 — q1:3 X P1:3
r T
| @13 qolzs — Clais) ] [ P13 ] (103)
r T
— pO _p1:3 q0 104
| P13 pols + C(pi3) ] [ qi:3 ] ’ (104)

where the skew-symmetric cross product matriz function
C : R? — R3*3 is defined by

0 —x3 X9
Cx)=| 23 0 —x (105)
—X2 X1 0

6.3 Quaternion = Quaternion Matrices

More compactly, quaternion multiplication may be written
as the second quaternion pre-multiplied by a matrix-valued
function of the first quaternion. That is,

(106)
(107)

q-P=dam(q,p)=Q(q)p =Q(p)q
P-q=an(p,q) = Q(p)a=Q(q)p,

where the quaternion matriz function, Q : H — R**?* is
defined by

[ q0 *Oth
= : 108
Q(a) L 413 qolz +C(aqis) (108)
g0 —¢@1 —q2 —q3
— q1 qo q3 —q2 (109)
@2 —q93 Qo q ’
L 43 q2 —q1 q0

and the the closely related conjugate quaternion matriz
function, Q : H — R*** is defined by

A [ q0 _Q1T3
= 1 110
Q(a) | 413 qols — Clais) (110)
[ ¢ —¢1 —G2 —g3
_ | v 49 93 G2 (111)
@2 4 Qo —¢ |
L 43 —q2 1 qo0
Substituting Eq. 98 into Egs. 108 and 110 yields
Q(a) = Q(a)" (112)
Q(a) = Q(a)". (113)

The derivatives of the quaternion multiplication function
are

6qm(qa p) _ Q(p)

9q (114)
9qm(a,p)
T = Q(q). (115)

The derivatives of the quaternion matrix functions with
respect to the parameters of the quaternion are

71000 0-10 0
9Q _ {0100} 0Q |10 00| 0
940 0010 | dg 00 01

L0001 00 —-10

00 -1 0 00 0—1
9Q _ 100 0 —1| 5Q _10 0 10 (117
dgs (10 0 0 |’8gs [0-10 0

01 0 0 100 0
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2Q
dqo

2Q
0q2

1000
0100
0010
0001
0 0 —-10
0 0 01
1.0 00
0-1 0 0

0Q

’ 87(]1

2Q
' 0q3

oo = O

-10 0
0 0 O
0 0 —
01 0
00 O
00 -1
01 0
100

[y

0
0
0

1

(118)

(119)

6.4 Unit Quaternion = Rotation Matrix

Unit quaternions are quaternions with unity norm. Through-

out this section, we assume that

lall = 1. (120)

A unit quaternion can be used to represent the attitude
of a rigid body. Consider a vector z € R? in the global
coordinates. If z’ € R? is the same vector in the body-
fixed coordinates, then the following relations hold:

DR nEE—
_q.{g].q (122)
~ Q@ Q@] | | (123)
“|o mw]lz] o

where
Ry(a) = (125)

2q193 — 2q0q2
2¢2q3 + 2q0q1
@W—-G-B+a6

2q192 + 2qoqs
@ —ad+a-a
2g2q3 — 2qoq1

@+ —a—a
2¢1G2 — 2qoqs3
24193 + 2q0q-2

That is,

z' = R,(q)z
z=Ry(q)'2".

(126)
(127)
Just as with rotation matrices, sequences of rotations are

represented by products of quaternions. That is, for unit
quaternions q and p, it hods that

Ry(q-p) = Ry(a)Ry(p)- (128)

The derivatives of the rotation matrix function with re-
spect to the quaternion parameters are

OR qo 43 —Qq2 OR qg1 42 g3

8—(‘:2 - @ ¢ |,——=2|¢2—-q1 q |, (129)
0 L 42 —491 Qo « 93 —qo —q1

OR —q2 91 —qo OR —q43 4o q1

8—‘1 =2 qg1q¢ ¢ ,Tq =2|—qo —q3 q2 (130)
? L do 43 —q2 43 a1 9293

6.5 Unit Quaternion < Rotation Matrix

The reverse mapping, from a rotation matrix to a quater-
nion, is slightly more complicated. Inspection of Eq. 125
yields the following relations:

Ag5 = 1+ 7411(q) + r422(a) + 7433(q) (131)
AG; = 1+ rq11(q) — rg22(Q) — 7433(q) (132)
A5 = 1= rqu1(q) + rg22(Q) — r433(q) (133)
4G5 = 1= rg11(q) — rg22(a) + r433(q) (134)
49293 = rg23(a) + 1¢32(q) (135)
4q193 = rgz1(a) + rq13(q) (136)
4q1q2 = 1rq12(q) + re21(q) (137)
4qoqr = rq23(q) — re32(q) (138)
4q0q2 = 7¢31(q) — 7q13(q) (139)
4qogqs = rq12(q) — re21(q). (140)

From these we arrive at four different inverse mappings.
These are ¢%, : SO(3) — H for i € {0,1,2,3}, defined by

(14711 + 790 +733)2 ]
1
0 (rog —132)/(1 + 111 + 199 + 133)2
q.(R) = = 1 141
w(R) 2 (T31*7‘13)/(1+T11+T22+7’33)% (141)
(112 — ro1)/(1 4+ r11 + 722 + 733) 2 ]
[(ro3 — r32)/(1 4+ r11 — a2 - 7“33)%_
1 (14711 — 199 —1733)2
1 11 — T22 — 733
QL (R) = = L (142
w(B) 2 [(rig+7r21)/(1+ 711 —7“22—T33)f (142)
(731 +r13) /(1 +ri1 — a2 — 1r33) 2]
[(r31 — r13)/(1 — r1i1 + o2 — 7’33)%_
2 (rig +721)/(1 — 711 + 1o — 733)2
R) == 143
an(R) 2 (1 =711 + 720 —733)3 (143)
1
L(r25 + 732)/(1 — 711 + 22 — 733) 2
(ri2 —ra1)/(1 —rin —rog + Tss)%
1 — — AT
Qh(R) = 5 |(ror ) (i T ) )

(rog +1732)/(1 — 111 — oo -11-7”33)
(1 =111 —rog +133)2

Depending on the values of R, some of these functions
will produce complex results. To avoid such an event, we
define the following composite function, which selects the
best of these four, depending on the parameters of R. The
function, qz : SO(3) — H, is

ar(R) :=
Q%(R) if rog > —r33, 711 > —Ta2, T11 > —T33
aL(R) if 7oy < =733, 711 > T2, 11 > T33 (145)
Q%(R) if rog >33, T <7T22, T < —T33
q?fa(R) if rop <133, 711 < =T, Ti1 < T33.
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6.6 Quaternion Rates = Angular Velocity

The time derivative of the unit quaternion is the vector of
quaternion rates. The quaternion rates, g, are related to
the angular velocity. The functions that map a unit quater-
nion and its temporal derivative to the angular velocity in
world and body-fixed coordinates are w, : H x R* — R3
and W), : H x R* — R3, defined by

[ wnla ] =2q-4=20(a)"q (14
[ ‘%(21, q) ] =24-q=20Q(a)"q (147)
More compactly:
wq(a, ) :==2W(a)q (148)
wy(q,q) :=2W'(q)q, (149)

where the quaternion rates matrices, W : H — R3*4 and
W' :H — R3*4 are defined by

—q1 go —43 Q2

W(@:= |- ¢ @ -« (150)
—q3 —q2 q1 q0
—q1 4o q3 —q2

W)= |-¢ —¢ w « (151)
—q3 Q42 —q1 4o

The derivatives of the quaternion rates matrices with re-
spect to the parameters of the quaternion are

0100 -100 0
oW G104
8—:0010,8—000—1, (152)
“© Jooo1l “9n 0010
[0 0 01 0 0-10
10% oW
©2 1o -100] 9B [-10 0 0
(0100 -10 0 0
oW’ oW’
8:0010’820001’ (154)
9 0001 ¢ 0 0-10
[0 00 —1 0 010
w’ w’
88 =|-100 0 ,387 0 —100[, (155)
©2 1o 100 “|-1000

6.7 Quaternion Rates < Angular Velocity

The inverse mapping, from the angular velocity and the
unit quaternion to the quaternion rates, is closely related.
The functions ¢, : H x R?> — R* and ¢, : H x R? — R*

[ " } (156)
)|

} . (157)
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More compactly:

4u(q,w) = S W(Q) w (158)
s (a,0) = S (@) (159)

6.8 Quaternion Rates = Angular Acceler-
ation

The angular acceleration, expressed in the global and body-
fixed coordinates may also be related to time derivatives
of the quaternion parameters by

{g,]=2c‘1~d+2[”%”2} (160)
—QQ(Q)T('J'[-FQ{ ”%”2 } (161)
{£/}=2d-q+2{|q0|2] (162)
=2Q(a)"g+2 [ ”%”2 } : (163)

More compactly:
Wq(q, q) :==2W(q)q (164)
Wy (q, q) =2 (q@)q. (165)

6.9 Quaternion Rates <= Angular Acceler-
ation

The inverse mappings, from the angular acceleration rates
to the second derivative of the quaternion, are
1 N
§W(Q)Tw

du(q, @) := (166)

. iy 1., .y

Gur (@, ') 1= 5 W' (@) @' (167)

6.10 Unit Quaternion < Cayley-Klein Pa-
rameters

The Cayley-Klein parameters are closely related to the unit
quaternion. Consequently we will give it only brief mention
here. The Cayley-Klein parameters are «, 3, v, and § € C.
These parameters are often arranged as a 2 X 2 matrix,

_|la B
K._{,y 5}, (168)
and satisfy the constraints
aa+yy=1, aa+pB8=1, (169)
af+70=0, ad+[By=1, (170)
ﬁ = _:Ya and § = 6(7 (171)

where & is the complex conjugate of «.



The function that maps the Cayley-Klein parameters
to their corresponding unit quaternion, q, : C2*? — H, is

o)
_ | —z(B+n
D= %2(6*7)

—5(a—9)

a (55 (172)

The function that maps the Cayley-Klein parameters to
their corresponding rotation matrix, R, : C**2? — SO(3),
is

R ([53]) = (173)
%(az_ﬁz_,yz_‘_éz) %(—a2—[32+72+62) (75_043)
(23472 =62) % (a? 482447 +62) —i (ap+r0)

(ﬁ5—a'y) 7 (oz'y+65) (a6+ﬁ'y)

6.11 Unit Quaternion = Cayley-Klein Pa-
rameters

The inverse mapping is K, : H — C?*2, defined by

K,(q) = [%(q) Bq(q)] _ [QO Yigs g + g

: . . 174
’Yq(OI) 6q(Q) 241 — 42 qo — 193 ( )

Other relationships involving Cayley-Klein parameters,
such as those between the Cayley-Klein parameters and
the Euler angles may be derived from Eq. 172 through
composition with the appropriate functions in Sec. 6 or
Sec. 8.

6.12

Any finite rotation may be achieved by a single rotation
about an appropriately chosen axis. It is therefore possi-
ble to parameterize the attitude of a rigid body with an
angle o € R and a unit vector n € S?, where §? := {v €
R3| ||v|| = 1}. The quaternion that arises from a rotation
«a about an axis n is given by the azis-angle quaternion
function, qq : R x S? — H, define by

Unit Quaternion < Axis-Angle

(175)

o= [ 200 |

<1
nsin 504)
Here, we emphasize that we are constrained to consider
only vectors n that satisfy the quadratic norm constraint,
|In|| = 1. Differentiating with respect to o and n yields

11
%Cla _ [ lzsm %ag ] (176)
e} sncos (o
qq o7
on | I3sin (%a) } (177)
[0 0 0
Sa O 0
= 02 5 0 (178)
L 0 0 S%

The corresponding quaternion matrices are given by the
functions @, : R x S — R*** and Q, : R x §2 — R**4,
where

Qa(av n) - Q(Qa(a7n)) (179)
C% 7%18% 7?128% 7TL38%
= | ad xR T (s0)
TLQS% 77135% C% n1$%
n35% TLQS% 7’/7,15% C%
Qa(;n) = Q(qa(a, m)) (181)
C% 77115% 77128% 777,38%
— | M3 ¢G5 TMeSg Masg (182)
7128% n35% C% *7115%
n3sg —MN2sSg N1sSg Ca
2 2 2 2

The corresponding rotation matrix is given by the function
R, : R x §? — SO(3), define by

Ra(a,n) = Re(qa(a,n)) (183)
= [ ra(a,n) re(a,n) res(a,n) |, (184)
the columns of which read
r (n12 —ng? — n22) 8%2 +c%2 7
rei(a,n) = 2n1ngss® — 2nzca sa (185)
i 2n1n33%2 + QnQC%S% |
[ 2n1n25%2 +2nzcasa i
roo(a,mn) = | (n2® —n3® —ny?)sa® +ca? (186)
i 2n2n35%2 — 2n10%5% |
[ 2n1n3s%2 — 2nycasa 1
ro3(a,n) = 2n2n33%2 +2nicesg (187)
| (e e ) sy ey

This representation, while perhaps more intuitive than
the quaternion, is functionally equivalent to it: both re-
quire four parameters and a single quadratic constraint.
In order to overcome this problem, and produce a quater-
nion representation that requires only three parameters,
we will continue this development in Sec. 7.

Before moving on from the axis-angle representation,
we present some derivatives of key results. Differentiating
Eqgs. 181-187 with respect to a and n yields

ory, | 3% (1= m® +no® +n5%) ]
aa = N1N9Se — N3Ca (188)
« i N1N3Sqa + NacCy i
O g i N1N2Sq + N3Cq i
8; = —%sa (1—|—n12 —n22—|—n32) (189)
L naNn3Sq — N1Cq |
i N1N3gSq — N2Cy i
8(;,13 = N9aN3Sa + N1Ca (190)
« i —%sa (1+n12+n22—n32) ]
OR ni(l—co) no(l—co) mn3(l—cq)
L= Ina(1—co) —n1(l—cq) Sa (191)
m n3(1 —cq) —5¢4 —n1(1 —cq)
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OR [—no(1 — o) n1(1 —ca) —Sa
= (1 —ca) n2(l—cq) n3(l—ca) (192)
2 i Sa n3(l —ca) —na(l—ca)|
OR [—n3(1 — cq) Sa n1(1 — cq)|
2 — —5q —n3(l —co) n2(l—co)| (193)
n3 | ni(l—ca) na(l—ca) n3(l—ca)|
[ —tajp —nm1 —na  —nz |
8Qa _ Ca /2 ni —ta/g ns —N9
da 2 Ny —ng —tape M (194)
| n3 m2 —my —tay |
_ [ —~tajp —m1 —my  —nz |
8@& _ Cay2 ny _ta/Z —ng ng
da 2 ng  ng  —tlap —m (195)
| n3 —n2 n1 —tago |
0Q. . jon 0Q
o, sin (5) 9 and (196)
0Qa . (o 0Q .
on, sin (5) 90" for i € {1,2,3}. (197)

Here, we have employed the shorthand ¢/, := tan(a/2)
in addition to the familiar s,/ := sin(a/2) and cy/2 =
cos(a/2). Expression for Q/dq; and dQ/dq; may be found
in Egs. 116-118.

6.13 Unit Quaternion = Axis-Angle

The inverse mappings, from a unit quaternion to the cor-
responding axis and angle of rotation, are o : H — R and
n, : H — S?, defined by

(198)
(199)

aq(q) = 2acos(qo)
q1:3 q1:3

ny(q) = - .
! sl /1T—¢?

6.14 Unit Quaternion < Euler Angles

The unit quaternion arising from a particular Euler angle
sequence may be written as the product of three axis-angle
unit quaternions. That is, for an Euler angle sequence,
(i,7,k), with rotation angles [¢,8,], the corresponding
unit quaternion is

Qijk(0,0,7) = qa(9, €:) - 4a(0, €;) - qa(,€x).  (200)

Differentiating with respect to the Euler angles yields

a 1] 797 a a ~ N
L) - T a8) i a) Qo)
aql 'k(¢7971/)) _ a0 . aqa . o
TG —w(00) G| ) (20
aqi ‘k(¢79a¢) _ A AL 8qa
]W = da(¢,€) - qa(0, &) - - e (203)

6.15 Unit Quaternion = Euler Angles

The inverse mapping, from a unit quaternion to a set of
Euler angles, is u;j (Rq(q)). These results are presented
with each Euler angle set in Sec. 8.

6.16 Optimization with Quaternions

Because of their simplicity, mathematical elegance, and
lack of any singularities, quaternions are a very popular
representation for encoding the attitude of a rigid body.
This includes applications in which quaternions are in-
cluded as state variables in an optimization. In these cases,
the difficult problem of how to impose the unity norm con-
straint arises. Various techniques are used to solve this
problem, though none of them are completely satisfactory.

For iterative optimization algorithms, such as the con-

jugate gradient algorithm, it is possible to simply re-normalize

the quaternions after each iteration. When using a direct

method, however, this strategy is usually insufficient. In
2 .

such cases, terms of the form ¢ (1 — ||q||)” are also included

in the objective function to prevent large violations of the

constraint. Renormalization after each iteration is usually

still necessary.

7 Rotation Vector Representation

One of the major drawbacks of quaternions is that they re-
quire a quadratic norm constraint in order to be valid rota-
tions. This problem can be overcome by folding the unity
norm constraint into the parametrization. There are sev-
eral ways in which to do this, but we present what appears
to be the most natural three-dimensional parametrization
of the quaternion representation of an object’s attitude.

7.1 Rotation Vector < Axis-Angle

We define the rotation vector as a function of the axis and
angle of a rotation, v, : R x §2 — R3, by

vo(a,n) := an. (204)

7.2 Rotation Vector = Axis-Angle

Noting that ||n|| = 1, we may invert this definition to yield
the functions a, : R® — R and n, : R3 — S2, defined by

(V) = IV = v (205)
v v
n,(v) = — = —. (206)
vl v
Here we have used the shorthand,
v = ||v]. (207)

This will be used throughout this article.
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7.3 Rotation Vector = Unit Quaternion

We define the function that maps a rotation vector to a
unit quaternion, q, : R?* — H, by

0,9 = auen (v = | SRIN | o)
tma, )= tim | 1, |. (209)

The derivatives of q, with respect to the parameters of
v are presented in this section. In order to provide com-
pact expressions, we have factored them in terms of the
following two quantities:

a:=czv—2s2 (210)
2 2
b:= —S%UQ —6eczv+ 1253, (211)
We differentiate Eq. 208 to yield
G(v)=[gi(v), g2(v), g3(v) ]
B 8qv B 3qv 5(11; aqv
T ov | Ouy’ Ouy’ Oug
_ Sy [V e O
20 | 203 T vt (212)
_7’121 —UV2 —U3 0 0 0
_% 12 0 0 a v1? vy vivs
2|0 2 0| Tam vivy V2 vovg (213)
L O 0 2 v1v3 Vav3 32
i —vlv25v —1)2’[]28% —U3v23§
1 20?2 Sz +v12a V1V2a V103G
DWE) 1}1'02@ 21}25% + vy2a VaU30 (214)
VU360 VoU3a 21125% + v32a
—vV1 —VUg —Us
1 2 0 0
gll% G(v)= 1 0 9 0 (215)
0 0 2

oG  —sy [ el 4o
ov;  2v |Osx3z| = 403

*’L)zVT
|:2 (éiVT =+ Véz1 + Uifg):|

v;b [ 0T
+ E [VVT] (216)
oG —17]eT
li = — v 217
020 By ov; 4 |:03><3:| (217)
100 —v% —V1Vy —V1VU3
% —Sz 000 + i 6v1 209 2v3
vy 20 000 493 | 2v9  2v; 0
000 203 0 201
0 0 0
vib | v} v vivs (218)
405 |vive V3 vavs

V1V3 VU3 U?Q)

010 —U1V2 fvg —VoU3
OG =53 1000 | a | 20, 20 0
vy T 000 493 2u1 6vs 2v3
000 0 2’1}3 21]2
0 0 0
U2b U% V1V2 V1V3
471]5 V1V2 U% VoUs (219)
V1V3 VU3 ’U%
001 —V1V3 —U203 —vg
% 7_*9% 000 + i 2v3 0 2v1
dvs 20 |000 493 0 23 2v9
000 2’1)1 21)2 6’1)3
0 0 0
USb U% V1V2 V1U3
45 |vive V3 vaus (220)
V1V3 VU3 ’U%

7.4 Rotation Vector <= Unit Quaternion

The inverse mapping, v, : H — R3, which maps a unit
quaternion to a rotation vector, is defined by

Vq(q) = aq(Q)nq(Q) (221)
= 2acos(q0) ” ” (222)
2
acos(qo l) (223)
(1 - qO) 2
lim vy(q) = 2qu3 (224)
lla1:s[—0
1
=1 (225)
o 208 (q0) (226)
V1—qo?
v 2¢q1 (dgp—1) 2d 0 O
H(q):= 5t =| 2 (dgo—1) 0 2d 0 | (227)
q 2cq3 (dgo—1) 0 0 2d
0 2 0 0
lim H(q=|0 0 2 0 (228)
llai:3][—0 00 0 2

7.5 Rotation Vector = Quaternion Matri-
ces

The quaternion matrices may be written as a function of
the rotation vector by composition of Eqs. 108 and 110,



and Eq. 208:
Qu(v) : Q(QU )
71)18% 7028% 71}35%
1}151/ ’UC% 71}38% 'UQS%
11281} 1138% UC% —1113%
1}33v —'UQSLZ’ ’015% UC%
Qu(v) = Q(qu(v))
v
vey *Ulf% fvgs% *1}38%
_ 1 1}15% 'UC§ UgS% 71}25%
- — v
v ’UQS% UgS% 1}62 ’Ulsv%
UzSy U2Sy —U1Sy UCy
2 —v1 —vy —u3
11 v, 2 —v3 w
. 1 2
lim Qv(v) =5 ¥
v—0 2 Vg Vs 2 -
V3 —V2 U1 2
2 —V1 —V2 —7U3
= 1l v 2 w3 —w
: 1 3 2
lim Qv(v) =5
v-0 2| v2 —vz 2 0
V3 V2 —U1 2

(229)

(230)

(231)

(232)

The derivatives of the quaternion matrices with respect to
the rotation vector parameters are

5Qv Q) Oqui
Z dq; v, Z g, 07
= Q (gj (v))
0. 10Q,
v—0 avj 2 (’9qj
an 9Q 9qui
Z 0q; Ov; Z Jg; TR
= Q (gj v))
o 9Qu _ 100,
v—0 8vj 2 8(]j '

(233)

(234)

(235)

(236)

7.6 Rotation Vector = Quaternion Rates

Matrices

The quaternion rates matrices may be written as a function
of the rotation vector by composition of Egs. 150 and 151,

Wi (v) := W (qu(v))
7’015% ’UC% 1)35% 71)25%
=— | —vpsy —uzsz wcy sy (238)
—’UgS% UQS% —vls% UC%
1 —U1 2 —Us3 Vg
lim W,U(V) = = —V2 U3 2 —V1 (239)
v—0 2
—V3 —V2 U1 2
1 —U1 2 V3 —UV2
lim W)(v)==| —ve —v3 2 1 (240)
v—0 2
—V3 V2 —U1 2

The derivatives of the quaternion rates matrices with re-
spect to the rotation vector parameters are

Z ¢ g’J

Z ow aQU’L
J0q; Ovj

= W (gj(V)) (241)

8W’

Z 8W a%)z
pard 0q; Ovj

W)

Z ow’
< aq glj
(242)

7.7 Rotation Vector = Rotation Matrix

The rotation matrix may be written as a function of the
rotation vector by composition of Egs. 125 and 208:

Ry(v) = Rq(qu(v))
= [rvl(v) ry2(v) ry3(v) ] , (243)
the columns of which read
1 [ (v — v} —vg)s% —I—U?C% i
r,1(v) = 2 25y (vivasy — vvzcy) (244)
2512,1 (’()11138% + vvgc%) ]
1 28y (1111)28% + vvgc%) 1
rye(v) = = (v3 —vf — i) s +0vcd (245)
25% (1)21)38% — vvlc%) ]
1 2s3 (’01’038% — vvgc%) 1
ry3(v) = — 25y (UQ’U?,SE + vvlcg) (246)
v _(v%—v%—%)s%—i—v cé |
For very small v, we have:
1 V3 —V2
lim Ry(v) = | —vs 1 vy (247)
v=0 (%] —U1 1

The derivatives of the rotation matrix with respect to the
parameters of the rotation vector are

and Eq. 208:
Wo(v) = W(au(v))
v
|| Tvisy ves —ussy wvasy
= | ety wssy vey —uisy (237)
—U3Sy —U2Sy U1Sy  UCH

20

aRv o or,1 Oryo Ory3
an - 6vj B’L)j a’vj
3
OR, 0 v
=5 aq . (248)
izo 9% la.(v) @Y




where
6rvi
S~ R4 &) (219)
[ @0 @1 —¢2 —gs]
Fild)= |- @ a —q@ (250)
| 92 43 4o 41
i q3 Qg2 q1 QO_
Fd)=| 90-a ¢ —g¢ (251)
|—41 =40 43 g2
-—Q2 g3 —4o (h_
Fsq)=| &1 a0 @ ¢ (252)
| 40 —q1 —q2 43
OR,
li =-C(¢ 253
ti S — (e (253
0 0 0 00 —1
Jim 280 00 1|, tim2R 00 0 |,
v=0 dvy 0-10| v00Ov 10 0
010
Of, | Z1 00 (254)
v=0 Ovs 000

7.8 Rotation Vector Multiplication

The multiplication of two rotation vectors u and v € R3 is
defined in terms of the product of quaternions:

vau=vy(v,u) = v (an (qu(v),qu(u))) . (255)

This product is best computed as written, by converting
each rotation vector to a unit quaternion, performing the
quaternion product, and then converting back to a rotation
vector.

The derivatives of the rotation vector multiplication
function are

W = H(qm (qu(v), qv(0)) Q (qu(u)) G(v) (256)
w = H(am (9(v), qv(0)) Q (qu(v)) G(u). (257)

Here, H(q), Q(q), and G(v) are given in Egs. 227 , 110,
and 212.

7.9 Rotation Vector Rates = Quaternion
Rates

The quaternion rates as a function of the rotation vector
rates are given in the function ¢, : H x R? — R*, defined
by

_ 0q, 0v

- Ov Ot = GV

Here, G(v) is given in Eq. 212.

qv(9, V) (258)
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7.10 Rotation Vector Rates = Angular Ve-
locity

The time derivative of the rotation vector is the vector
of rotation vector rates. The rotation vector rates, v, are
related to the angular velocity. The functions that map a
rotation vector and its temporal derivative to the angular
velocity in world and body-fixed coordinates are w, : R? x
R? — R3 and w), : R? x R? — R3, defined by

Wy (v, V) :=2W,(v)q,(v)

=2W,(v)G(v)v

—2V(v)v (259)
Wy (v, ¥) = 2W (V)4 (V)

=2W/!(v)G(v)v

=2V (v)Tv, (260)

where the rotation vector rates matrix, V : R3 — R3*3 i
defined by
V(v) = W,(v)G(v), (261)

where W, (v) and G(v) are defined in Eqs. 237 and 212.
As it also holds that w’ = R,(v)w, we have that

Ry(v) =V(¥)V(v)™!
R,(V) =v(v)V(v) T

(262)
(263)

7.11 Rotation Vector Rates < Angular Ve-

locity
The functions that map the angular velocity in the body-

fixed and world coordinates to the rotation vector rates,
Ve : R® X R3 — R? and v, : R® x R3 — R3, are defined
by

v (v, w) = %V(v)’l w (264)

Vw/ (V, (.U/) =

1 T
2V(v) Tw'. (265)

7.12 Integration of Angular Velocity

Quaternions are very well suited to tracking the attitude
of an object by integrating the body-fixed angular velocity
over time.

Consider an object with a body-fixed angular velocity
of w'(t). Let us consider the change in attitude from time
to to time t;. We define the rotation vector over this in-
terval to be

Verlto 11) = / o) dt (266)

0

If the body-fixed angular velocity is provided as discrete
samples, as, for example, from a set of rate gyros, the inte-
gration will have to be carried out numerically. The sim-
plest such numerical integration is to compute the product
of the time interval and the average of all the samples taken
during that time interval.



If at time ¢ the body has a quaternion attitude of qo,
then the attitude at time ¢y is

q1 = [qv o Vo (to, t1)] - do
=qy (Vawr(to,t1)) - qo- (267)

This equation may be easily generalized to read
Qit1 = Ay (Var (tis tiv1)) - di, (268)

giving us a simple update rule for tracking the attitude of
an object over time, given some measure of the body-fixed
angular velocity. This method is much more accurate than
integrating the Euler angle rates.

8 A Catalog of Euler Angle Param-
eterizations

In this section we present an exhaustive catalog of the
twelve different Euler angle parameterizations, including
conversions to and from rotation matrices and quaternions,
the relationship between the Euler angle rates and the an-
gular velocity, and various derivatives of the fundamental
results with respect to the Euler angles.
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8.1 Euler Angle Sequence (1,2,1)

R121(9,0,%) = Ri1(¢)Ra(0) Ry (v) =
Co 505y —S59Cy
S¢S CpCy — SpChSy CpSep T SpCoCy
CpSH  —S@pCyp — CpChSy  —SpSy T CHCoCy

1 0 -0
L{R121(¢567w)} = 0 1 w—’—(b
0 —¢—1 1
0121(R) atan2 (ro1, r31)
ui21(R) = | 6121(R) | = | acos (r11)
¢121(R> atan2 (7”12, —7“13) ]

atan2(2q1q2 — 2qogs,
24143 + 2q0q2)
ui21(Ry(q)) = acos(q12 + qo* — q3% — QQQ)
atan2(2q1q2 + 2qogs,
—2q143 + 2q0q2)

Co O 1
E121(0,0,¢) = | sesy ¢y 0O
—sgcy, Sy 0
1 0 1]
L{E21(¢,0,4)} =] 0 1 0
-0 ¥ 0 |
1 0 co |

E121(¢»9ﬂ/’) = 0 Co S¢S0

1
L{Eim(ff), 0, 1/)>} = 8

0 s —c
B 1 P P
[E121(6,0,9)] ' == | 0 spcy  sosy
S0 Sp  —CpSy  CeCy

(Bl (,0,9)] " =

1 S§p  —S¢Ch —CpCoh
— 0 CySe  —S4Se
S
0 S¢ C¢
Cg/2C0/2Cy /2 — 5¢/2C0/254 /2
C4/2C0 /28 + Co/2Cy /284 /2
0,) = | Cor2Ce/2Su/2 Tt Cojacyasyy
B0V =1 ) reysasers + spasorasise
Cy/250/25¢ /2 — S¢/2Cy/250/2
ORio1 _
o
0 0 0
CpSH  —SpCyh — CpCYSyy —S¢pSy + CpCHCy
—S¢pSo  —CHCyh T SpCoSy  —ChSy — SpCoCy

(269)

(270)

(271)

(272)

(273)

(274)

(275)

(276)

(277)

(278)

(279)

(280)

Figure 5: Euler Angle Sequence (1,2,1)

OR121 S_¢8000
o0 CoCo
OR121
o
0 89Cy
0 —CpSyhp T SpCHCy)

0

SpSap — CpCHCy)

0F121

00

ChSq)
SpSeSy
CpSoSy

T
CH Sy
—CHCy)

0
S9Cy)y
S0Sy

—CHCy)
—S5¢S0Cy
—CpSHCy

S0Sqp

CpCop — SpCHSy
—SpCoyp — CHCHSy)

0
0
0

o OO

0 O
— Sy 0
Cw 0

(281)

(282)

(283)

(284)

(285)

(286)



8.2 Euler Angle Sequence (1,2,3)

Ri23(¢,0,7) = Ri(¢)Ra(0)R3 () =

CoCy
SpSeCyp — CpSep
CHpSPCy + S¢Sy

L{R123(¢,0,7)} =

P123(R)
0123(R)
V123(R)

uig3(R) =

CoSqy
S80Sy + CpCy
CpSHSyy — SpCop

1

-

0

(8
1

—¢

—Sp
CoSgp
CpCy

—0

¢
1

atan2 (ra3, r33)
—asin (7’13)
atan2 (r12,711)

atan2(2q¢2q3 + 2qoq1,

ui23(Ry(q)) =

—asin

atan2(2q1q2 + 2qogs,

E123 (d)a 07 ¢) =

L{E123(,0,v)} =

EiQS (¢a 05 11[}) =

CoCy)
ChSq)
—Sy

1

1
L{E123(¢707¢)} = 8

[E123(¢797¢)]71 = i

[E123(¢7 0, T/))]_l = i

Cy

— Sy 0
Cy) 0

G

—ChSy

Cy)Sp

Cp S

Y

0 1

Sqp

CoCy)y

Sy SO

¢S50

0 cyco

0

S¢

CopS

—_ o O

0
0

Co

0

—S¢Co

Co

a?— @ —a’+ QOQ)
2¢143 — 2q0g2)

a® + g0 — q3% — ¢2?)

Cp/2C0/2Cy 2 t S¢/250/28y /2

—Cp/289/25p /2 T Cg/2Cy /254 /2
Cp/2Cy/250/2 T S¢/2C0/28y /2

Co/2C0/25¢/2 — S¢/2Cy/256/2

qi23(¢,0,9) =
OR123
2o
0

CySHCy + S¢Sy
—8¢S9Cy + CySy

0

CpSHSeyy — SpCop
—S¢898¢ — C¢C¢

0

CypCo
—S¢Co

(287)

(288)

(289)

(290)

(291)

(292)

(293)

(294)

(295)

(296)

(297)

(298)

24

i

Figure 6: Euler Angle Sequence (1,2,3)

8R123 B —Cy S0 —SySe —Cp
20 = SHpCHCyY  SpCHSy  —SpSh
CpCHCyp  CHCHSy) —CpSe
OR123
o
—CySy CoCy

—S8¢S9Sy — CpCy
—CpS9Sy T SpCy

0F123 _
00

—CyS9
—SySe
—cp
_ —CySy
CoCyp
0

0 0
O—S¢

_O —C¢.

=100

0 0

S¢890w — C¢Sw
CySHCy + S¢Sy

0 0
0 0
0 0

—Cw 0
78w 0
0 O

0
CypCo

—S¢Co

—cy
—S5¢S6
—Cp S

o O O

(299)

(300)

(301)

(302)

(303)

(304)



8.3 Euler Angle Sequence (1,3,1)

Ri31(¢,0,7) = Ri(9)R3(0) Ry (¥) =

Co Cyp S0 Sy S0

—CpSe  CpCHCy — S¢Sy CHCoSy + SpCyp
SS9 —SpCHCYy — CpSyy  —SpChSy Tt CyCy
1 0 0
L{R131(9,0,¢)} = | —0 1 Y+
0 —o— 1
0131(R) atan2 (131, —721) |
ulgl(R) = 0131(R) = acos (Tll)
131(R) atan2 (r13,712)
atan2(2q1qs + 2qogz, |
—2¢1¢2 + 2q0q3)
ui31(Ry(q)) = aCOS(Q12 + qo* — q3% — QQQ)
atan2(2q1gs — 2qoqz,
24192 + 240g3)
Co 0 1
E131(0,0,9) = | cysg —sy 0
spsg ¢y 0
1 0 1]
L{E1(0,0,9)= | 0 —¢ 0
0 1 0]
1 0 co |
Ei51(6,0,4) = | 0 55 —ces
0 cy 5456
1 0 1 ]
L{E131(¢,97¢)} =10 ¢ -0
01 0 |
. 1 0 07/’ Sw
[Er31(0,0,9)] "= — | 0 —sgsy  secy
50 | sp  —cgcy  —cCosy
. 1 Sg  CpCh —S¢Co
[Ei51(0.0,0)] "= — | 0 450 coso
S0 0 70(1, S¢

Cp/2C0/2Cy /2 = S¢/2C0 /25y /2
Cp/2Co/25y /2 T Co/2Cy /254 /2

) 97 =
Vst 00D =L o202+ o2y asss
Co/2Cp/250/2 + Sp/280/25y /2
IRz _
ol
0 0 0
$pS9  —SpCHCY — CpSyy  —SpCHSy + CyCy
CpSH  —CpCHCy T+ S¢Sy —CpCoSyy — SpCy

(305)

(306)

(307)

(308)

(309)

(310)

(311)

(312)

(313)

(314)

(315)

(316)

25

Figure 7: Euler Angle Sequence (1,3,1)

—S CgC CyS
ORi31 0 0% i
20 = —CpChp  —CpSHCy  —CpSHSy
SpCh SpSeCq) SpSHSy
ORiz1 _
o
0 —50 5y, 50Cy

0 —CHCHSyy — SPHCqp
0 s4Cesy — CoCy

CHCHCep — SpSap
—SpCHCyp — CopSyp

E —Sg 0 0
88;31 = CoCy) 0 0
cgsy 0 0
0 0 O
E
68131 = | —sgsy —cy O
L sgcy  —58y 0
, 0 O 0
65‘131 = 0 Cop S¢pSo
¢ 0 —s4 cgps6
’ 0 0 —S89
85;31 = 0 0 —CpCoh
0 0 sgco

(317)

(318)

(319)

(320)

(321)

(322)



8.4 Euler Angle Sequence (1,3,2)

Ri32(¢,0,7) = Ri(¢)R3(0)R2(¢v)) =

CoCyp S —CPSyp

—CpSeCy T S¢Sy CeCo CpS9Sy + SpCy
S$pSeCy T CpSy  —SpCo  —SpSeSy T CoHCy
1 0 —
L{R132(¢767¢)} = -0 1 ¢
Y —¢ 1
$132(R) atan2 (—rsz, 722)
L ERD) (R) = 0132 (R) = asin (Tlg)
¢132(R> atan2 (—7“13, 7”11)
atan2(—2¢2qs + 2qoq1,
@ — @3* 4+ q® — ¢1?)
ui32(Re(q)) = | asin(2q1¢2 + 2qogs)
atan2(—2¢1q3 + 2qoqe,
a® + g0 — q3% — ¢2%)
CoCo Sqp 0 T
E132 (d)a 07 ¢) = Sp 0 1
—cpsy cy 0 ]
1 ¢ 0]
L{E32(¢,0,9)} = o 0 1
- 1 0 ]
1 0 s |
Ei32(6,0,4) = | 0 55 ceco
0 cyp —sg¢co
1 0 6 ]
L{Ei3(¢,0,)} = | 0 ¢ 1
01 —¢ ]
1 1 [ Cw 0 _81/1 i
[E132(¢7 97 ¢)]7 = - CoSqp 0 CoCy
o | —secy  co syse |
) 1 1 [ Cop  —CpSe  S¢pSh T
[E132(¢7 97 ’(/))] = 0 S¢Co CeCo
o L 0 C¢ 78¢ ]

Cg/2€0/2Cp/2 — S¢/250/25¢ /2
Cp/280/28y /2 + C/2Cy /250 /2
Cp/2Co/25yp /2 T S¢/2Cy/2560/2
Co/2Cy/250/2 — S¢/2C0/25y /2

qi32(¢,0,9) =

OR132

99

0 0 0
S$pSeCy T CpSy  —SpCo  —SpSeSy + CyCy
CpSeCyh — SpSep  —CpCH  —CpSeSyy — SpCop

(323)

(324)

(325)

(326)

(327)

(328)

(329)

(330)

(331)

(332)

(333)

(334)

26

7”7 ’”
7",z

y
¢ ’”
y
0
X
y, y///
Figure 8: Euler Angle Sequence (1,3,2)
(9R —SpCy Cop S¢S0
3;32 = | —cgCoCy —CpSo  CpCoSy (335)
SpCHCy S¢pSo —S¢pCHSy
OR132 _
o
—CpSy 0 —cpCy
CpS0Sy + 8¢y 0 CpSeCy — SpSy (336)
—8$80Sy T CyCy 0 —8¢$59Cyp — CopSyp
OF —sgcy, 0 0
8;32 = co 0 0 (337)
S SO 0 0
OF s i —Ccpsy cy 0 )
0 0 0 0 (338)
¥ | —cocy —syp 0|
[0 0 0
OF]
% = 0 Cop —S¢Co (339)
¢ | 0 —sp  —cpco |
0 0 c
OF 0
8232 0 0 —cpsp (340)
0 0 8¢89



8.5 Euler Angle Sequence (2,1,2)

R212(9,0,v¢) = Ra(¢)R1(0)Ro(v)) =

CpCoh — SpCHSy 50S¢ —CpSyp — SpCHCy
505y Co $6Cy

SpCyp T CpCYSyy  —SCyp  —SpSyy T CHCYCy
1 0 —v—2¢
L{R212(¢705¢)} = 0 1 9
o+v —0 1
¢212(R) atan2 (ri2, —732) |
ug12(R) = | 0212(R) | = | acos (r22)
¢212 (R) atan2 (7”21, 7“23)
atan2(2q1¢2 + 2qogs, |
—2¢2q3 + 2q0q1)
w212(Ry(q)) = aCOS(Q22 —q3>+ qo® — Q12)
atan2(2q1q2 — 2qogs,
20243 + 2q0q1)
S9Sqy Cofy 0
E212(¢;0,¢) = Co 0 1
sgcy —58y 0
0 1 0]
L{Exn2(¢,0,4) =11 0 1
0 —y 0 ]
, 0 Cop S0S¢ i
E212(¢a 0, 7/1) = 10 Co
0 s4 —sece
01 0 ]
L{E§12(¢,97¢)} = Lo 1
0 ¢ —0 ]

R T I
[E212(¢703,l/})] ! - — SGC¢ O —Saslp
5 —C9Syy  S§  —CyCo
y 1 1 —S¢pCe SS9  CpCh
[E912(¢,0,9)] = — sgcy 0 3984
56 S¢ 0 —Cgp

Cp/2C0/2Cy /2 = S¢/2C0 /25y /2
Cp/2Cy/250/2 T Sp/250/25¢ /2

) 97 =
2(, 8, 9) Co/2C0/25y/2 F CojaCy 25/
—Cp/250/25¢/2 T Sp/2Cp/250/2
Ry
99
—SpCyp — CpCeSyy  SeCy SpSehp — CpCHCy
0 0 0

CpCop — SpCHSy S0S¢p  —CpSyp — S¢pCHCy

(341)

(342)

(343)

(344)

(345)

(346)

(347)

(348)

(349)

(350)

(351)

(352)

o

Figure 9: Euler Angle Sequence (2,1,2)

(3'R212 S$pSOSy SpCo SpSeCq
20 = CoSqp —Sp CoCy
—CpSeSyy  —CHCH  —CpSeCy
OR212
o
—CpSy — SpCaCy 0 —cCyCy + SpCoSy
89Cy 0 —8¢5y

—SpSy + CpCoCy 0 —8¢pCyhp — CpCoSy)

ey [ 00
90 CoCy) 0 0
0F312 _ 890% 75“’ 8
oY —5¢8y —cy O
3E' 0 —S¢  S6Cop
—22 =10 0 0
9¢ 0 ¢y s08¢
0 0
% =10 0 S_¢§Z
89 0 0 —CpCph

v,y

(353)

(354)

(355)

(356)

(357)

(358)



8.6 Euler Angle Sequence (2,1,3) e

R13(9,0,v¢) = Ra(¢)R1(0)R3(2)) =

CyCyp — S¢S0Sy  CpSyp T 85¢SeCy —CoS¢
—CPSyp CoCy S (359)

SpCh + CH56Sy S¢Sy — CySeCy  CyhCh .y
1w o .
L{Ro13(¢,0, )} = | —v 1 0 (360)
o -0 1
\lj y
$213(R) atan2 (—r13,733) X y
u13(R) = | 0213(R) | = | asin (ro3) (361)
¢213 (R) atan2 (—7“21, 7“22)
atan2(—2q1q3 + 2qoq2, iy
a3 — @ — g’ + QOQ)
u213(Ry(q)) = | asin(2¢2q3 + 290q1) (362) .
_ igure 10: Euler Angle Sequence (2,1,
atan2( 2¢1¢2 + 2405, F 10: Euler Angle S (213)
32 —qs® + g0 —¢1?)
—cpsy cy 0 i OR213 _ 7Ziiejw SjCCZZZ: Sije (371)
E213(9,0,9) = COSZw 561) (1) (363) 00 CHpCoSy — —CpCoCy —CySp
: OR213
— 1 0 99 =
L{Exns(¢,0,9) =1 1 ¢ 0 (364)
0 0 1 —CpSyp — 5S9Cy  CHCy — 54505y 0
- —cpCy —CoSy 0 (372)
0 Co 7695¢_ —S¢Syp T CpSeCy  SpCy T CpSeSy 0
Ey3(,0,40) = 1 0 s (365) .
0 54 ceco OF 5450
- 82132 —cysg 0 0 (373)
01 —¢ | cg 00
L{Eys(¢,0.4)}=|1 0 0 (366) _ .
0 d) 1 OF —CeCy —Sy
- 8;13 = | —cosy ¢y O (374)
L 1 [ —81/, Cw 0 | L 0 0 0 _
[E213(¢797¢)]7 :;9 CoCy CYSyp 0 (367) ~ .
| SySe  —cySe Co | OF! 0 —s4 —ceco
ﬁ: 0 0 0 (375)
, . 1 i SpSe  Co  —CpSe T L 0 Cop —S¢Ch ]
[E513(¢,0,)] =g, | ceco O sece (368)
| =S¢ O Cop | oE! 0 0 s4s0
ﬁ: 0 0 ¢ (376)
C¢/209/20¢/278(75/289/281#/2 0 0 —CpSg

C C S — S C S
,0,7) = $/2C4/250/2 $/2C0/25¢ /2 369
q213(0,0,7) CojaS0/255)2 -+ Coyaty/aSess (369)
Co/2C0/25yp /2 T Sp/2Cy/250/2

OR213
¢
—S¢pCyp — CpSSy  —SpSy T CpSeCy  —CeCh
0 0 0 (370)
CHCop — S$pSOSy CopSyp T SpSoCy  —SpCo

28



8.7 Euler Angle Sequence (2,3,1) "7 2

Rys1(¢,0,1) = Ra(¢d)R3(0) Ry (¥) =

CyCo  CpSeCy + 5SSy CpSeSy — S¢Cy
—Sp CoCy) CHSap (377)

84CO  SpSeCy — CySy  S4SeSy T+ CHCy vy
)
1 0 —¢
L{Roz1 (4,0, )} = | =0 1 @ (378)
¢ - 1 v
$231(R) atan2 (rs1,711) Y
31 (R) = | 0231(R) | = | —asin(r21) (379) Y
231 (R) atan2 (rqg, rog)
atan2(2q1q3 + 2qoq2, Figure 11: Euler Angle Sequence (2,3,1)
@1+ qo® —q3® — QZQ)
uz31(Ry(q)) = | —asin(2q1¢2 — 2qogs) (380) S
atan2(2q2q3 + 29091, OR331 $56  CoCOCY  CHpCoSy
2 2 + q 2 q 2) 20 = —Cp —SpCy —S50Sq (389)
q2 a3 0 1 —S¢S0o  SpCoCy  SpCoSy
—Sp 0 1 OR
Eas1(4,0,1) = | cocy —sp 0 (381) 8231 =
cgsy ¢y O Y
0 —c¢seSy +54Cy  CpSeCy + 84Sy
0 0 1 0 —CpSy cocy (390)
L{Eys1($,0,0)}=| 1 —¢ 0 (382) 0 =8485y — CoCy  8459Cy — CpSy
v 1 0
OF —Cp 0 0
0 —s4 coco 8231 = | —spcy 0 0 (391)
Eyi(0,0,9) =11 0 —sg (383) —sosy 0 0
0 cy s¢co ) )
0 0 0
OF
0 —¢ 1 8;31 = | —cosy —cy O (392)
L{Ey (9, 0,0)} =11 0 -0 (384) | cocy  —sy O]
0o 1 ¢ i i
0 —cy —ssC
_ . OF! ¢ $Co
([0 e 84 ﬁ =10 0 0 (393)
[Bag(6,0.9)] " = — | 0 —cosy coey | (385) [0 =5y coco
o | co secy  sesy |
0 0 —cgs
- - OF} ¢°0
) 1 CpSo  Co S¢So % =10 0 —c (394)
[E31(6,0,0)] " = — | —secs 0 cyco (386) 0 0 —sgs0
o L C¢ 0 S¢ ]

Cp/2C0/2Cy 2 t S¢/250/28y /2
C C S — S C S
0.4) = $/2C0/25¢/2 — S¢/2Cy /2502 387
Q231(¢ w) —Cy /2502532 + Co/2Cp /252 ( )
Cg/2Cy/280/2 T S¢/2C0/28y/2

Ry
¢
—S¢pCo  —S8pSeCy T CpSyy  —SpSeSy — CHCyp
0 0 0 (388)

CyCo CpSOCy + S¢Sy CpSOSyp — SpCyp

29



8.8 Euler Angle Sequence (2,3,2)

Ra32(¢,0,7) = Ra(¢)R3(0)Ra(¢v0) =

CpCHCyy — S¢Sy CpSo
—S9Cy Co

—CHCYSyy — SpCyp
S50Sq)

SpCOCy T CpSyp  SpSe  —SpChSy T+ CyCy
1 0 ——2¢
L{R232(¢567w)} = -0 1 0
+v 0 1
$232(R) atan2 (r32,712)
U232 (R) = 9232 (R) = acos (1"22)
¢232 (R) atan2 (7”23, —7“21) ]
atan2(2g2qs — 2qoq1,
2q142 + 2q0gs3)
u232(Ry(q)) = aCOS(Q22 —q32+ qo® — Q12)
atan2(2¢2q3 + 2qoq1,
—2q1q2 + 2qoq3)
—SpCy  Sqp 0
E232 (d)a 07 ¢) = Co 0 1
895y Cy O
—6 ¢ 0]
L{Ea32(,0, )} =| 1 0 1
0 1 0 ]
0 —S¢ CepSe i
E§32(¢»9ﬂ/’) = 1 0 Co
0 cp sp50 ]
0 —¢ 0]
L{E§32(¢,97¢>} = 1 0 1
0 1 0 ]
. 1 —C¢ 0 8111
[E232(0,0,0)] " = — | sesy 0 socy
50 | cocy S8 —syce
) 1 1 —CpChp S —SpCh
[Eg0(0,0,9)] = — | —ses9 0 cpsp

S0 045 0 S¢

Cp/2C0/2Cy /2 = S¢/2C0 /25y /2
Cp/250/25¢ /2 — S¢/2Cyp/250/2

) 97 =
WG 0H) = | copasise + copacuaser
Co/2Cy/250/2 T S¢/250/25¢/2
ORgza _
o
TSHCHCy — CpSyy T SpSH SpCeSy — CopCyp
0 0 0
CpCHCyp — SpSyp CopSh —CpCPSyy — SpCoyp

(395)

(396)

(397)

(398)

(399)

(400)

(401)

(402)

(403)

(404)

(405)

(406)

Z’”, Z”

¥ y;//

Figure 12: Euler Angle Sequence (2,3,2)

—CpSpC. CyC CpSpS
ORa30 B $50Cy ¢Co $S50°
89 = —CHCy) —Sp CoSqp
—SpSCy  SpCH  SpSHSy
ORgza _
oY
—CpCYSyy — SpCyp 0 —CHCHCy + S¢Sy

S9Cy)y
—8pCHCY — CopSyp

S9Sqy
—5¢4CeSy + CpCy 0

e [ 08
80 Cgsd, 0 0
OF. s9sy ¢y O
232 _ 0 0 0
31/1 S9Cyy TSy 0
0 — _
OB,y |0 le Them
0¢ 0 —sgp ces9
0 0
%: 0 0 C_¢Scaa
90 0 0 sgco

(407)

(408)

(409)

(410)

(411)

(412)



8.9 Euler Angle Sequence (3,1,2)

R312(¢,0,7) = R3(¢)R1(0)Ra2(¥) =

CyCyp + 8¢S0Sy
—S¢Cyp + CpSeSy
CoSqp

L{R312(9,0,%)} =

uzi2(R) =

u312(Rq(q))

E313(¢,0,1) =
L{Ez12(¢,0,¢)} =
E315(6,0,9) =
L{ Bl (6, 0,0)} =
(Bsia(e, 0,0)] L = ~

[E:/’>12(¢7 0, 1/))]_1 = i

q312(¢,0,9) =

OR312

9¢

—S¢Cy T CySeSy
—CHCop — SpSHSy
0

S¢pCo
CoCy
—Sp

CoCyp
—S¢Ch
0

—CySy T SpSeCy

S¢Sy + CpSeCy

1
—¢
G

atan2 (112, r22)
A*aShl(ng)
atan2 (r3q, r33)

CHSq)
—Sp

0
0
1

0
0
1

Sy
CoCy)

508y

SpSe
CpCy
S¢

Co
—54
0

atan2(2q1q2 + 2qoqs,
@® —q3* +q® — Q12)
24243 — 240q1)
atan2(2q1q3 + 2qoqe,

a3® — 2® — 1% + @?)

Cyp

CoCy)
¢ —v
1 0
-0 1

S¢Co
CoCy

—Sg

1
—¢
0

0

¢
1

—0

Cy

0 —CySy
Co CypSH

CpSh
—S¢Co
Co

0

co
0
0

S¢Sy T CySeCy
CopSep — SpSHCy

Cp/2C0/2Cy 2 t S¢/280/25/2
Cp/2Cp/280/2  Sp/2C0/25¢ /2
Co/2C0/25p/2 — S¢/2Cy /256 /2
—Cp/280/25p /2 T Cg/2Cy /254 /2

(413)

(414)

(415)

(416)

(417)

(418)

(419)

(420)

(421)

(422)

(423)

(424)

X”,, X’

Figure 13: Euler Angle Sequence (3,1,2)

OR312
00

SpCh Sy
= CpChSq)
—S50Sy

ORz12

o

—C¢Sy + 5¢s9cy 0

S¢Sy T CpSeCy

CHCqyp

—S4S0
—CpSe
—cp

SpCHCy)
CpCHCq)
—S50Cy

—CpCop — SpSHSY
0 s¢cy — CpSeSy

—CoSy

17

Y.y

(425)

(426)

(427)

(428)

(429)

(430)



8.10 Euler Angle Sequence (3,1,3) 2.7

R313(¢»9»1/J) = R3(¢)R1 (Q)RS(w) =
CpCyp — SpCOSy CpSyp T 8¢CoCy S¢S0

—SpCyp — CHCOSy —SpSy T+ CpCoCy  CpSo (431)
565y —S0Cy Co
1 v+9 0
0 —0 1 Vv
#313(R) atan2 (ri3,ra3) | «
uz3(R) = | 0313(R) | = | acos(r33) (433)
Y313(R) atan2 (r31, —732) | X7, X"
atan2(2q19s — 2qo¢z, ] Figure 14: Euler Angle Sequence (3,1,3)

24243 + 2q0q1)
uz13(Ry(q)) = aCOS(Q32 -t @+ %2) (434)

atan2(2q1q3+2qoq2, OR 845868y  —S¢pSeCy  S¢Co
313
—2g2g3 + 290q1) | 50— | Ces0Su  —CoSecy  CoCo (443)
SqypCh —CyCh —Sp
S95y ¢y O
Es15(¢,0,0) = | —sgcy sy 0 (435) ORz13 _
Co 0 1 8¢
_ —CpSyp — SpCHCy) CpCop — SpCHSy) 0
0 10 SpSy — CopCeCy  —SpCy — CpCoSy 0 (444)
L{E313(¢,0,¢)} = | =0 ¢ 0 (436) SCy 505y 0
1 0 1
_ 8E S,/,Cg 0 0
, 0 Cop S¢S0 8213 = —CyCo 0 0 (445)
E3i5(6,0,1) = | 0 —sg cpso (437) —s¢ 0 O
1 0 Co
- B sgcy —5y 0
, 0 1 0 4 313 _ 595y cyp O (446)
L{E53(¢,0,9)} = | 0 —¢ 0 (438) o 0 o 0
1 0 1]
0 —s CeS
El 1) »50
T I Osis _ | o _cy —sys0 (447)
[B313(0,0,9)] " = — | socy  sosy O (439) o¢ 0 0 0
o —SyCo  CyCh S
0 0 sec
_ _ OFE! ¢*0
S¢Co CopCo SO 313 __
-1 1 =10 0 cgcp (448)
[Es(@.0.0) " = — | coso —sesp 0 | (440) a6 0 0 —o
o 845 C¢ 0

Cp/2C0/2Cp/2 — S¢/2C0/254/2
Cy/2C S + S4/289/28
313(0, 0,) = ¢/2C9/256/2 $/250/25¢ /2 441
q313(¢ dj) C¢/289/23»¢;/2 - S¢/2Cw/259/2 ( )
Ce/2C0/28p/2 T Co/2Cy/28¢/2

OR313
o
—SpCyp — CHCeSyy —SpSy T+ CpCoCy CySo

—CyCyp T SpCeSyy —CpSy — SpCHCy —S$Se (442)
0 0 0
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8.11 Euler Angle Sequence (3,2,1)

R321(¢,0,7) = R3(¢)Ra(0) Ry (¥) =

CyCo SpCop T CpSeSy S¢Sy — CpSeCy
—SpCH  CHCyp — SpSeSy ChpSy + S¢SeCy
S0 —SyCo CqyyCo
1 ¢ —0
L{R321(¢767¢)} = _(b 1 w
06 -y 1
$321(R) atan2 (—ra1,711)
ug21 (R) = | 321(R) | = | asin(r31)
321 (R) atan2 (—rs2, 733)
atan2(—2q1¢2 + 2qogs,
o+ q® —q3® — QZQ)
us21(Ry(q)) = | asin(2q1gs + 2q0g2)
atan2(—2q2¢3 + 2qoq1
st — @ —a’+ CIOQ)
S0 0 1 ]
E321(¢,0,9) = | —sypco ¢y 0
cypcs Sy 0 ]
6 0 1]
L{Esn(¢,0, )} = | = 1 0
I
0 5¢ C¢Cg i
51 (6,0,4) = | 0 cp  —spco
1 0 So ]
0 ¢ 1 ]
L{E§21(¢,97¢>} =101 —¢
10 60 |
. 1 [ 0 —81/, Cw i
[E321(6,0,0)] " =— | 0 cocy cosy
o L Co  SpSy —SeCy ]
) . 1 [ —CpSe  S¢pSe  Co T
[E391(0,0,0)] = — spco  Cpco 0
o L C¢ 78(;5 0 ]

qs21(¢,0

OR321
¢
—S¢Co

—CpCoh
0

) =

Cg/2€0/2Cyp/2 — S¢/250/25¢ /2
Cp/2C0/25¢ /2 T Sp/2Cy/250/2
Co/2Cp/256/2 — S¢/2C0/25¢ /2
Cp/280/28y /2 + Co/2Cy /2502

CpSep T SpSeCy
—S¢Sy + CpSaCy
0

CHpCop — SpSOSy
—SpCyp — CpSHSy
0

(449)

(450)

(451)

(452)

(453)

(454)

(455)

(456)

(457)

(458)

(459)

(460)
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Figure 15: Euler Angle Sequence (3,2,1)

8R321 —CpSe CpCY Sy —CpCHCy)
20 = S¢S0 —S5¢$CoSy SpCHCy
Co S50Sq) —S0Cy
ORsn _
o

0 =548y + cysgcy
0 —CpSep — SpSHCy

SpCyp F CpS9Sy
CpCopy — SpSeSe)

0 —CHCy —CySy
E Co 0 0
86221 = sgsy 0 0
—sgcy, 0 0
0 0 0]
E
68321 S
1’ZJ L —CHSy Cofy 0 ]
[0 ¢ —S4Co |
E! 10) »Co
% = 0 —S¢ —CpCh
¢ 1o o 0 |
0 0 —
O _ | o sfj;‘i"
09 00 ¢

(461)

(462)

(463)

(464)

(465)

(466)



8.12 Euler Angle Sequence (3,2,3) 22"

R323(¢,0,1) = R3(¢)Ra(0)R3(v0) =
CHCYCyp — SpSyp CyCoSy + SpCy —CpSp

—SpCHCY — CpSyy  —SpChSy T CypCy  S¢Se (467)
S6Cy 565y Co
v
1 v+o¢ —0
0 0 1 )
X L' yy
¢323(R) atan2 (ro3, —713) | y
usz3(R) = | O323(R) | = | acos(r33) (469)
¢323 (R) atan2 (7”32, 7“31)
atan2(2q2qs + 2qoq1, | NG ¥
( —22¢I1Q32+ 2(]02112) 2
uza3(Re(q)) = | acos(q3” — ¢ — q1° + qo (470) . )
atand (26]2(]3 200, Figure 16: Euler Angle Sequence (3,2,3)
24193 + 240g2)
—CpSeCy  —CpSHeSyy  —CpCoh
sgcy —Sy 0 ORs2; = SpSeC S$$S9S SeCo 479
90 9o0Cy ¢o0°Y [
E323(¢,9,¢) = 565 Cy 0 (471) CoCy CoSy —Sg
Co 0 1
i OR323
0 —y 0 ob
L{E323<¢>07’(/})} = (1) (1) (1) (472) —CpCoSy — SpCyp CHCOCY — S¢Sy 0
- SpCeSy — CopCyp —SHCHCY — CopSyp 0 (480)
0 Sy —CoSo T —S59Sy S9Cq)
Ep3(0,0,9) = | 0 ¢y spso (473) ey 0 0
Lo e 35223 = | cpsy 0 O (481)
0 (b 9 T —Sp 0 0
L{Blus(6,0,0)} = | 0 1 0 (474) s s 0
1 0 1
- 85323 = | sgcy —syp O (482)
0 2 0 0 0
. 1 Cyp Sy
[E323(0,0,9)] " = 5 —505¢y  S6Cy 0 (475) 0 ¢ S50
—CyC —8yC S ! (4 [
v v e % =10 —s4 cpso (483)
_ ¢ 0 0 0
. . 1 CpCo SpCH  Sp
[E323(0,0,9)] = ; S¢S0 CoSo 0 (476) 0 0 e
—c S 0 / —CoCo
v 3?223 — 10 0 sy (484)
0 0 —Sp

Cp/2C0/2Cy /2 = S¢/2C0 /25y /2
—cC, Sp /28 + s C S
o(6,0.1) = $/2560/25¢/2 T 5¢/2Cy /2502 477
w(6:6:9) Cofacuppsops + sopsopsuys | 1)
Cp/2Co/28y /2 T Co/2Cy /254 /2

OR323
o
—SpCHCy — CpSyy  —S$CeSy T CypCy  SpSe
—CyCOCY + S¢S  —ChCHSy — S¢Cy  CySh (478)

0 0 0
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