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A method is described which uses the second derivative to esti-
mate the parameters of components of an observed function. The
method is programmed for a computer and the results can be
used either directly, giving a rough description of the function,

1. Introduction

Several authors (see e.g. LINDBLAD 1967; TAKAKUBO
and VAN WOERDEN, 1966; TAKAKUBO 1967; VAN
WOERDEN, 1967) have shown that the decomposition
of 21-cm profiles into Gaussian components can be a
powerful method in the study of the kinematics of
neutral hydrogen. This decomposition, however, en-
counters some difficulties in that (i) the computer ana-
lysis starts from an initial estimate which has so far
been made by hand and (ii) its intrinsic ambiguity
requires a careful judging of the results (see KAPER ef
al., 1966, section 5). Both difficulties tend to make
the decomposition very time consuming, even when
one neglects the time actually needed on the com-
puter.

The method to be described here allows automation
of the initial estimates, which removes difficulty (i).
Besides, the results of the method can be used directly
in a discussion of observations, if one is only interested
in the main features of the profiles.

The method can be summarized by the flow-diagram
in figure 1. The observed profile is represented by in-
tensities, y,, expressed as a function of the independent
variable, x, at equal intervals Ax = h. A second-order
polynomial is fitted at each x; by the method of least
squares, using ¢g; points distributed symmetrically
around x;. The coefficient of the second-order term
is an approximation of the second derivative of the
observed profile. Assuming that the observed profile
can be approximated by the sum of a few Gaussian

or they may be taken as an initial estimate for a least-squares fit.
The method has been applied to the analysis of 21-cm profiles
into Gaussian components.

functions:
M f) = Pexp[—(n—X)Y26%],  (1.1)

the parameters X, o are calculated from the main mini-
ma of the second derivative, whereas the P are esti-
mated from the observed profile. Tests using different
threshold values, make it possible to discriminate
against spurious components; the threshold values
depend, among other things, on ¢; and on the r.m.s.
noise of the observed profile. The Gaussian compo-
nents are then subtracted from the observed profile,
and the residual profile, mainly the sum of a few re-
maining broader components, is handled in the same
way as the original. The method is, therefore, applied
in iteration, always using a larger number of points for
the next least-squares fit of a polynomial, in order to
reduce the statistical fluctuations of the second deriva-
tive. An example is shown in figure 3.

This method could also be easily used for functions
f(x) other than Gaussians.

The method reveals the main features of a profile
even if it has a complex structure with various compo-
nents of different dispersions. The method does not
claim to be effective in detecting weak components;
these must be found by other techniques. A possible
procedure would be to improve the fit of the estimated
set of components by means of a least-squares analysis
and to estimate the additional components on the basis
of the distribution of the residuals; the quantity, K,
proposed by KAPER et al. (1966, section 5) could serve
as an indicator. o -
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read observed profile
v = ¥(x) i o0

|
K

calculate second derivative

cz'k of ¥)» using q; points

select relative maxima

calculate P,X, ¢, I from Vi

and ¢ between 2 maxima
2,k

discriminate against spurious
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Figure 1. Schematic flow-diagram. For details of the procedure,
see sections 1 and 2.

2. Description of the method

2.1. Calculation of the second derivative

For each x; a second-order polynomial

e(x) = cO,k+cl,k(x_xk)+%cz,k(x_xk)2 2.1

is fitted to the observed profile, according to the method
of least squares. For this fitting process g; points are
used, distributed symmetrically around x;, and all re-
ceiving equal weight. One then finds that

¢ = —Ah™* ; [ya1—Bi)], 2.2)

with the summation extending from A = k—(q;—1)/2
to k+(gq;—1)/2, and

A = 30/[q:(q7 - 4],
B = 12/(¢?-1).

2.2. Reconstruction of the parameters, X, o from the
second derivative

A Gaussian function f of the form (1. 1) has a second
derivative f” which is shown in figure 2. The points a

Figure 2. Gaussian function (full line) and its second derivative
(dashed line). Arbitrary scale.

and b are the maxima of f” at x = X + /3. The
ratio of the ordinate of the minimum to the ordinate f;,,
of the maxima is —% e¥ = —2.241. The depth of the
minimum is P/c?.

If several Gaussians are superimposed, then the
second derivatives are also superimposed. In general,
the narrow components will give rise to the most pro-
nounced minima; these may be superimposed on the
second derivatives of several broad components, there-
by being lifted or lowered. Therefore, if one wishes to
calculate ¢ from the depth and width of the minima,
it is best to consider the minima only with respect to
the neighbouring maxima. The two integrals

M, = f = f) dx = -2.32€
- (2.3)
M, = f (f"~fdx dx

give
X = M,|M,. 2.4
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Figure 3. Example of an analysis. The observed function is a 21-cm line profile of neutral hydrogen in the Orion region; the ordinates
are optical depths. Two iterations (i = 1, 2) are illustrated, in figures 3a, 3b and 3c, 3d respectively. For each, yx (dots in a and ¢)
and the second derivative (cs,; dots in b and d) are given. The dashed lines in b and d link consecutive relative maxima of c;,, cf.
section 2.3. From the original function, plotted in a, three estimated components (drawn as crosses) are subtracted, resulting 'in c.
From this a broader component is estimated.
The first run (i = 0) gave no component. This is exceptional; it is due to the fact that the bandwidth of observations was quite small
compared to the width of profile details. The last one (i = 3) gave a component which is represented in d by a dashed cross. The
superposition of all five components is represented in a by a full line.
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And using the second moment

M, = f (f"—f.) (x—X)* dx = — 0.81 Po, (2.5)

one finds:
o = 1.69 (M,/M,)*. (2.6)

P, too, could be deduced from M, and M,; however,
to minimize the effects of statistical fluctuations, it is
preferable to derive P from the observed profile as
described in the following paragraph.

2.3. Analysis of the second-order curve

The coefficients ¢, ; of the second-order term of the
polynomial [eq. (2.1)], which are an approximation to
the second derivative of the observed function, are
analyzed as follows. Each point with

Cop—1 <Cop>Cyper and ¢, ;>0 (2.7)

is considered as a relative maximum of c, ;. Through
adjacent relative maxima straight lines are drawn and
¢y, calculated, that is the difference between the ¢,
and the straight lines (see figure 3). Then the function
c2 . is treated separately in each interval between two
maxima. The ¢} ; are considered as approximations of
the terms (f” —f,,) in egs. (2.3) and (2.5). The integrals
M,, M, M, are calculated with the integration being
approximated by summation. From these integrals X
and o are derived according to egs. (2.4) and (2.6).

P is estimated from the observed profile*. The rela-

tion
Y(X)—y(X £ 0./3) = P{1—exp (—30°/20%)} (2.8a)
is approximated by

P = {yc=3(cset Ye-D} {1 —exp (—1*h*[267)} (2.8b)
where c is the index of the point x; closest to X, and ¢

the integer closest to o \/ 3/h. If P > y., one assumes
that P = y..

In order to discriminate against spurious or highly
uncertain components, a series of tests is applied using
the following threshold values: My, I, Gpnins Omax and
Mgy,. Only those components are used which fulfil the
following criteria:

* The use of a smoothed version of the observed profile y,
namely ¢, ; [eq. (2.1)], gave less satisfactory results.

@) | Mo | > Moy,
(i) I(= Po~2rn) > I,

(111) Omin <0< O max >

@iv) | My | > Mg, with My equal to the integral of
the ¢, < 0.

The threshold values may depend on g;, f and on
the r.m.s. fluctuations of the observed intensities, y;.
For a discussion of the purpose of these tests and for
a suitable choice of the threshold values see section 3. 2.

2.4. Correction against smoothing

In general the ¢ derived from the ¢, are overesti-
mated, depending on (g;— 1), as if the profile had been
smoothed. This effect has been studied numerically by
applying the method with different g; to Gaussians of
different dispersions. It turns out that the important
parameter is

s = (¢;—Dh/o,, 2.9

where o, is the true dispersion of the Gaussian. In
figure 4 o/0, is plotted against s. The deviations from
the horizontal o/o, = 1 are small in the range of s
from O to 4; from the straight line drawn through the
points the following correction formula is deduced:

Ooore = 0[1—0.05(g;— Dh/o]. (2.10)

In the range s > 4, 6/o, = 0.35s = 0.3(g;— )h/o, or,
in other words, ¢ is independent of ¢,. The smallest

3 T I — I

Ala

S | ] I |
0 2 4 5§ o 8

Figure 4. Effect of “‘smoothing”, see section 2.4. o, is the true,

o the estimated dispersion; s is defined by eq. (2.9). Dots show

the results of numerical calculations; the full line [eq. (2.10)] is
used to correct estimated dispersions.
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true dispersion which gives a meaningful result is there-
fore (from s = 4):

Omin = (q;—1h/4. (2.11)

Components with true dispersions smaller than this
receive the constant estimate .., & Opin-

2.5. Iterations

As mentioned in section 1, the narrowest components
are picked out first. After subtracting these components,
the same method is applied again to the remaining
profile, but now using ¢;., = f(g;—1)+1 points to
calculate c, ;; a suitable choice of the parameter f is
discussed in section 3.2. At the same time the threshold
values are altered according to egs. (3.4) to (3.8). The
iteration process may be stopped if the number of
points used to derive c, ; surpasses, say, half the num-
ber of observed points, or if 6,,,, exceeds a given upper
limit of the dispersions to be expected in the profile.

The calculations can be simplified by replacing
h (=A4x) by B - h in successive iterations.

3. Error estimates

3.1. The statistical errors of the estimated component
parameters

It is obvious that in cases where components are
close together, systematic errors will occur which may
be considerably greater than the statistical errors. On
the other hand, if components are well separated, the
errors are statistical in nature and determine the size
of the weakest components detectable with this method.

Theoretical estimates of the errors of X and I lead
to the following results:

pA(X)0® = 50(g;—1)">*(a/h)’ (u/P)?, 31
WO ~ [2+200(g,~1)>*(a/hy1 wpy, OV
where u is the r.m.s. deviation of an observational
point y,. The method is more sensitive to narrow com-
ponents than to broad ones. The smallest errors are
attained for those components which have an estimated
dispersion o,,;, [eq. (2.10)]. Using eq. (2.11) one finds
then:
(X0 )min R 0.4Cmial )™ (1/P)?,
(”'Z(I)/Iz)min ~ [2+ 1'6(a'min/h)_0.5] (I‘t/P)2 .

These theoretical estimates of the errors have been

(3.2)

roughly checked by means of Monte Carlo calculations
(n = 50).

The errors found from eqgs. (3.1) and (3.2) may be
compared with the mean errors attainable in Gaussian
analysis by least-square methods [KAPER ef al. (1966),
egs. (5.8) and (5.9)]:

(W X)[0")1sq. = 1.1(a/m) ™" (/P)*,
(D150, = 0.84(a/) ™" (u/P)*.

As the comparison shows, the minimum error attain-
able in X [eq. (3.2)] is of the same order as in the least-
squares fit. The mean relative error for I, on the other
hand, is considerably larger than in the least-squares
method.

3.3)

3.2. The threshold values

a) 0.y and o,

Omax discriminates against too large dispersions and
is related to B in the following way. If in successive
iterations gq;, respectively f(g;—1)+1 points, are used
to calculate c, ;, then the minimum dispersions [eq.
(2.11)] are: (g;—1)h/4, resp. B(g;— 1)h/4. In order to
cover the whole range in o, 0,,,, must be chosen so that

Omax = BOmin = B(ql—l)h/4' (34)

Occasionally thedispersion of a component is estimated
larger than o,,,, in one iteration and smaller than o,
in the next. To avoid rejection of a component in a
situation like this, the test ¢ > o, is done only for
components for which I < 5I. In the last iteration the
test ¢ < 0,4 18 dropped.

b) I,

This is the minimum of the area I = Po /2 27, its
relation to g; and to the r.m.s. fluctuation of y, is
derived by using eq. (3.1), which gives the mean error
of I. Define a quantity I(c), which is the value of I of
a component for which the relative error u(I)/I equals
T. Putting the left-hand side of the second one of
egs. (3.1) equal to T2, introducing o,,;, [eq. (2.11)],
and solving for I, one finds

I(0) = 2\ uoT ™ [1+1.6(q;— 1)"-' (6/0min)’TE
(3.5)

I, could be made equal to I(¢); but then components
with o slightly greater than o, (of each iteration)
would be in a favourable position. To avoid this, I, is
taken as o times the average of I(c)/o, which gives:
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I, ~ Tuo|T. (3.6) (i) g0, the number of points used to calculate c, ; in
the first run
If defines P,;, b =P .02 i i
one defines Prj by I = Puin0 V2 it follows that (ii) B, the factor by which ¢;—1 is multiplied for suc-
Prin = 3p/T. 3.7 cessive iterations,

This value can in some cases be lowered for broad
components, cf. section 4.2.
C) M, Om

The test involving M, is done before M; and M,
are calculated and is of a more formal nature. From
eq.(2.3)and fromeq. (3.7)one gets My, = 2.32P,;./0.
Since o is not known at the stage of the program where
M, is used, we use ¢ = o,,, to calculate a lower limit
of M,,, which gives, with an extra factor 4 in order not
to discriminate too strongly:

Mo = 14p/[B(q;— DRT]. (3.9
d) Mon
My, is used to discriminate against “satellite” com-
ponents, which can appear on both sides of high,
narrow components. These are a consequence of the
adopted method of connecting maxima by straight
lines and considering c, instead of c¢,. Experience has
shown, that M, should be a small positive quantity;
in other words, only components causing negative cur-
vature in the profile are allowed.

4. Practical experience

4.1. The basic constants

In the preceding section some constants were intro-
duced which are basic to the performance of the
method. These constants are:

(iii) 7, the maximum allowable relative error in I, the
area of the component.

(1) In order to reduce statistical fluctuations, one
should make g, as large as possible (it must also be
uneven). However, the value of g, should still allow
the estimation of the narrowest components present in
the profile. This depends on the resolution of the ob-
serving method. If the instrumental profile can be ap-
proximated by a Gaussian of dispersion o;.,, then
Cinstr = Omin = (90— 1)h/4, which gives

do < 14+40;,4,/h. 4.1

Normally, 6;,,, & h which gives as the highest possible
value g, = 5.

(ii), (iii). The influence of the other constants has
been investigated by applying the method to artificial
profiles, see section 4.2.

4.2. Tests of the method with artificial profiles

Applications of the method to artificial profiles have
served to test its performance and to determine experi-
mentally the two basic constants B and T, which could
not be fixed a priori. The profiles used for this purpose
are the sum of several Gaussians (parameters Py, X,
0,), each chosen at random in a given interval, with
noise superimposed. Several series of profiles, rep-
resenting a variety of profile structure, with and with-

TABLE 1
Types of profiles analyzed (see section 4.2)
Series Number of Number of Specification
profiles components
A 100 0 pure noise, length of interval 20 4
B 20 1 one S or one M or one L (Py ~ P_;., see table 2)
C 30 2 one S, and one M or one L (5 < Py/u < 20)
D 20 3 three M (5 < Pofu < 30)
E 20 4 two S (Po/u < 10), one M (P,/u < 30), one L (Py/u < 20),
all blend-free and with Py/u > 5
F 22 4 two S, blend-free (10 < Py/u < 30), one M (P,/u = 60),
one L (3 < Py/u < 20)
G 10 4 three S (5 < Py/u < 15), one L (0.5 < Pyju < 15)

Symbols: S : narrow component, 1 < oo/h < 2.
M: medium component, 3 < 0o/h < 6.

L : broad component,

8 < ay/h < 20.
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Figure 5. Examples of artificial profiles, discussed in section 4.2.

The solid crosses are the given components, the dashed crosses

are the estimated components. Not the full interval in x is illus-

trated. The profiles a to e are taken from the series: C, E, E, G
and F, cf. table 1.

out blends*, have been analyzed; the characteristics of
these are summarized in table 1. Examples are illustrat-

* A blend is defined as a set of two or more components with
small differences in X, and o,.
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ed in figure 5. Each profile has been analyzed with one
or more of the following sets of constants:

a) f=2,T=4%;
b)p=2,T=1%;
C)ﬁ=3’T=%;
d)p=3T=1

For broad components in series B the value T = 2 has
been used.

(i) The series A, B, C, E have been used to determine
the detection probability for weak components, de-
pending on P, and o (see table 1).

Series A (no component): The analysis has resulted
in no spurious components. The discrimination against
these is very effective, because P is derived from the
observed profile, and is required to be greater than
P,;,, Which is in the present cases at least 4.5 p.

Series B (one component): The results are summar-
ized in table 2. f = 2 is slightly more effective in
detecting weak components.

TABLE 2

Results of profile analysis; series B (cf. table 1)

’ p=2 B=3
Type of T

component m 223 172 2 23 12
S 4 — 30 — — 20 —
4.5 _— 60 — — 40 —

5 — 15 — — 75 —

6 — — 60 | — — 60

6.5 — — 60 | — — 60

M 4.5 —_ — — —

5 — 35 — — 35 —

6 — — 4 — — 30

6.5 — — 45| — — 4

L 2 5 — — [ (15 — —

3 70 — — 60 -

The numbers given are percentages of detected components. The

symbols S, M, L are explained in table 1.

TABLE 3

Results of profile analysis; series C and E (cf. table 1)

Series C E
parameter set a b c d a b c d
percentage of detected S 95 95 100 90 80 70 90 85
percentage of detected M, L 90 80 95 80 90 80 85 80
number of failures 2 0 1 2 2 3 1 2

Parameter sets: a, f =2, T=%;b, =2, T=4%;c, =3

,IT=4%d,f=3T=4%
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TABLE 4
Results of profile analysis; series D, F, G (cf. table 1)

Series D F G

parameter set a b c d a b c d a b c d

class

\" 0 0 0 0 2 2 0 0 0 0 0 0

G 11 12 10 11 5 5 9 9 4 5 3 4

F 6 6 2 2 4 6 4 5 2 2 1 2

Mg — — — — 3 3 1 1 1 1 1 1

My 0 0 5 5 3 4 4 4 1 1 1 1
3 2 3 2 5 2 4 3 2 1 4 2

0, <5 18 16 11 10 11 9 8 8 7 7 6 7

Q<2 10 8 7 6 1 1 1 1 2 2 5 4

The symbols for the classes are explained in the text (section 4.2); those for the parameter set in table 3.

Series C and E (two respectively four blend-free
components): The tests contained in these two series
are less complete than those in series A and B. The
detection limit of weak, narrow components super-
imposed on broader components depends on their rela-
tive position. In table 3 the percentage of the detected
components is given, together with the number of fail-
ures of the analysis (spurious components or very poor
estimates).

(ii) The series D, F and G may contain blends of
components. Depending on the amount of blending
and on the noise, it may not be possible to separate the
components by any method. After inspection of the
profiles by eye, the results of the analysis have been
put into the following classes: very good (better than
would have been expected) (V), good (G), fair (F), bad
—at least one narrow component missing (M), bad—
a medium or broad component missing (M), very
bad (spurious component, wrong structure or unex-
pected blend) (X). The quantity Q,, derived from the
sum of squares of residuals as follows:

Qo = -5 ¥, [res(x)1. @.2)

u AP

also gives an indication of the quality of the estimate

of the components. In the ideal case Q, should be

about unity. The statistics of the results are summarized

in table 4.

From these experiments it follows that two different
cases may be distinguished:

a) For profiles containing no blends, the values T = %

and f = 2 or 3 give the best results. A special case is

that of profiles (or parts of profiles) with isolated broad

components (¢/h > 10); the discrimination against spu-
rious broad components by the tests (i), (ii) and (iv)
(cf. section 2.3) is already very effective; the value
T = 2 can be tolerated. Components with P/u > 3 are
then detectable in the majority of cases.

b) For profiles containing blends, the values T = %
and f = 2 give the best results.

It must be stressed that the experiments presented
here are not sufficient in number (and in variety of
profile structure) to allow absolute and general con-
clusions.

Figure 5 illustrates some results obtained with the
method. The profiles are taken from the artificial pro-
files discussed above. Although a few unfavourable
cases were purposely included, the figure already shows
that the results of the method are quite satisfactory.

4.3. Application to analysis of 21-cm profiles

I have used the method on a large scale in a pre-
liminary, unpublished discussion of a 21-cm survey of
neutral hydrogen in the Camelopardalis region. The
results proved to be a very useful description of the
profile structure. More recently, I have also used the
method to obtain initial estimates for a subsequent
least-squares fit.

4.4. Modifications of the method

There is a rich variety of possibilities to adapt the
method to special problems.

(i) To avoid components of similar ¢ and X in an
initial estimate for a least-squares fit, tests may be
applied at the end of the analysis.

(ii) If the presence of one weak, broad component is
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highly probable, it is more reliable to derive its para-
meters from the values Zy;, 2y, Zy;x;> of the residual
profile. The necessity of such a component may be
based on a test of Qy; very high values of Q, are
mostly due to the lack of broad components among the
estimated ones.

(iii) For a further automation of a program for
Gaussian analysis, different sets of f and T may be
used, resulting in possibly different initial estimates.

The method is programmed in the algorithmic lan-
guage ALGOL; a copy of the program is available on
request.
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