v university of faculty of mathematics kapteyn astronomical
ﬂiﬁ@ o and natural sciences institute
i groningen

Kapteyn Package Documentation
Release 2.2.1b16

Hans Terlouw
Martin Vogelaar

September 12, 2013

]

1 Introduction

1.1
1.2
1.3
1.4
L5

Overview . . .
Prerequisites .
Download . . .
Installing . . .
Contact

2 How to start

Contents

Obtaining and using the package

2.1 Introduction e e e e e e e e
2.2 Which module and documents to Use? v v v it e e e e e e e e e e e
2.3 Functionality of the modules in the Kapteyn Package
3 License
3.1 KapteynPackage e e
3.2 SciPymodules e e e e e e e e e
33 WCSLIB . . . o e e e e e e e
34 MPFIT . . . e e e e e e
4 Release notes
4.1 Version 2.2.1 (being developed) e e
42 Version 2.2 (Apr 19,2012) o L e e e
43 Version 2.1 (Feb 14,2011) e e e e e
4.4 Version 2.0.2 (Sep 16,2010) o e e e
4.5 Version 2.0.1 (Aug 11,2010) o . i i e e e e e e e e e e
4.6 Version 2.0 (Jul 16,2010) e e e e
47 Version 1.9.2 (Jul 12,2010) e e e e e e e e e e e e e e e
4.8 Version 1.9.1 (Feb 25,2010) 0 i e e e e e
49 Version 1.9 Jan 16,2010) e e e e e e e e e

II' Module reference

5 Module wcs

5.1
52
53
54
5.5
5.6
5.7

Introduction .
Coordinates . .
Class Projection

Class Transformation 0 i e e e e e e e

Functions . . .
Constants . . .
Error handling

11
11
12
12
13

15
15
15
16
17
17
17
18
18
18

19

21
21
21
21
27
27
29
29

6

9

Module Celestial

6.1 Skydefinitions e e e e e e e e e e
6.2 Moduleleveldata e e e e
6.3 ClasSes . . . v o i i e e e e e e e e
6.4 Core FUNCtions 0 e e
6.5 Utility functions L e e e e e
6.6 RoOtation MatriCes v v vt i e e e e e e e e e e e e e e e e e e
6.7 Functionsrelatedto E-terms

Module wcsgrat

7.1 Modulelevel data e e e e e e e e e
7.2 Functions i e e e e e e e e e e e
7.3 ClassGraticule e e e e e e
7.4 ClassInsidelabels e e e

Module maputils

8.1 Introduction e e e e e e e e e e e e e e
8.2 Moduleleveldata e e e e e e e
8.3 Promptfunctions e e e e e e e e e e e e e e
8.4 Utility functions i e e e e e e e e e e e e e e e e e
8.5 Class FITSIMage o v i it e et e e e e e e e e e e e e e e e e e
8.6 Class Annotatedimage i e e
87 ClassImage e e e
8.8 Class Contours v v i v i i e e e e e e e e e e e e e e e e e
8.9 ClassColorbar e e
8.10 ClassBeam L . e e
8.11 Class Skypolygon o e e e e e e e
8.12 Class Marker e e e e e e e e e
8.13 Class Pixellabels e e e e e e e e e
8.14 Class Colmaplist i i e e e e e e e e e e e e e e e e e
8.15 Class FITSaxis o o i i i e e e e e e e e e e e e e e
8.16 Class Positionmessage i i e e
8.17 Class MovieContainer i v i vt e e e e e e e e e e e e e e e e e e

Module positions

9.1 Introduction e e e e e e
9.2 Howtousethismodule e e
0.3 PoSItion SYNtaX o v v i e e e e e e e e e e e e e e
0.4 FunctionsS i i e e e

10 Module rulers

11 Module shapes

11.1 Utility functions L o e e

12 Module tabarray

12.1 Classtabarray o i i e e e e e e e e e
122 Functions o e e e
123 Example o e e e e

13 Module mplutil

13.1 Class AxesCallback e e
13.2 Class CanvasCallback e
13.3 Class TimeCallback e
13.4 Class VariableColormap v v i i i et e e e e e e e e e e e e e
13.5 Keypressfilter o L e e e e e e
13.6 GIPSY keyword event connection e
13.7 Matplotlib backends work-aroundso o

31
31
34
34
36
40
45
50

53
53
54
55
69

123
124
125
126
136

139

143
145

147
147
149
149

14 Module kmpfit
14.1 Introductio

0

142 ClassFitter o e e e
143 Functionsimplefit e

15 Module profiles
15.1 Function
15.2 Reference

16 SciPy modules

III Tutorials

17 Tutorial wes module

17.1 Introductio
17.2 Coordinate
17.3 NumPy arr
17.4 Attributes

17.5 Invalid coo

3 PP
TEPreSeNtationS v v v v v v e e e e e e e e e e e e e e e e e e e
ays and MAtriCes v v v e e e e e e e e e e e e e e e e

FAINALES v o e e e e e e e e e e e e e e e e e e

17.6 Readingdatafroma FITSfile
17.7 Celestial transformations wWith Wes e
17.8 Spectral transformations e e e e e e e e

17.9 References

18 Tutorial maputil
18.1 Introductio

s module
Y

182 Maputilsbasics oL e

18.3 FITS files

18.4 Promptfunctions e e e e e e
18.5 Tmage objects v v i i i e e e e e e e e e e e e e e e e

18.6 Graticules
18.7 Rulers . .
18.8 Contours
18.9 Colorbar

18.10 Adding pixel coordinate labels L

18.11 Adding a b
18.12 Markers .

{2 0

18.13 Sky polygons o e
18.14 Combining different plotobjects L e
18.15 External headers and/ordata

18.16 Re-projecti

onsandimageoverlays. e e e

18.17 Plotting markers from file e e e
18.18 Mosaics of plots e e e

18.19 Interaction
18.20 Glossary

withthedisplay e

19 Least squares fitting with kmpfit

19.1 Introductio

0

19.2 ABasicexampleo e e e e

19.3 Function s

implefit () . o o o i i e e e e e

19.4 Standard errors of best-fitvalues
195 Goodnessof fit L e
19.6 Profile fitting e
19.7 Fitting data when both variables have uncertainties
19.8 Confidence- and predictionintervals e e
19.9 Special toPICS .« v v v v v o e e e e e e e e e e e e e e e e e

19.10 Glossary
19.11 References

157
157
157
162

163
163
163

165

167

169
169
169
177
179
181
182
184
191
199

201
201
202
202
206
207
211
243
248
251
256
257
258
260
267
269
275
285
288
292
303

305
305
312
316
317
331
336
347
357
360
372
372

20 Tutorial tabarray module
20.1 Introduction
20.2 Simple interface functions

20.3 Tabarray objectsand methods oL oL

204 Glossary

IV Examples

21 All sky plots and graticules
21.1 AllSkyplots
21.2 All sky plot gallery

21.3 Source code of the servicemodule

V Background information

22 Background information module celestial

22.1 Rotation matrices
222 FK4

22.3 FK4 and the elliptic terms of aberrationo
22.4 Transformations between the reference systems FK4and FKS

22.5 Radiomaps
22.6 Galactic Coordinates . . .
22.7 Supergalactic coordinates
22.8 Ecliptic coordinates . . .

22.9 ICRS, Dynamical J2000 and FK5 e
22.10 Composing other transformations v v v i i it e e e e e e e

22.11 Defaults in relation to FITS
22.12 Glossary
22.13 References

23 Background information spectral translations

23.1 Introduction

23.2 Alternate headers for a spectral line example

23.3 Alternative conversions .
23.4 Legacy headers
23.5 WCSLIB in a GIPSY task

Bibliography

Index

373
373
373
375
376

377

379
379
381
440

443

445
445
446
446
450
452
454
455
456
456
458
460
460
461

463
463
463
477
478
499

501

505

Part I

Obtaining and using the package

CHAPTER 1

Introduction

The Kapteyn Package is a collection of Python modules and applications developed by the computer group of
the Kapteyn Astronomical Institute, University of Groningen, The Netherlands. The purpose of the package is to
provide tools for the development of astronomical applications with Python.

The package is suitable for both inexperienced and experienced users and developers and documentation is pro-
vided for both groups. The documentation also provides in-depth chapters about celestial transformations and
spectral translations.

Some of the package’s features:

¢ The handling of spatial and spectral coordinates, WCS projections and transformations between different
sky systems. Spectral translations (e.g., between frequencies and velocities) are supported and also mixed
coordinates. (Modules wcs and celestial)

* Versatile tools for writing small and dedicated applications for the inspection of FITS headers, the extraction
and display of (FITS) data, interactive inspection of this data (color editing) and for the creation of plots with
world coordinate information. (Module maputils) As one example, a gallery of all-sky plots is provided.

* A class for the efficient reading, writing and manipulating simple table-like structures in text files. (Module
tabarray)

» Utilities for use with matplotlib such as obtaining coordinate information from plots, interactively modifi-
able colormaps and timer events (module mplutil); tools for parsing and interpreting coordinate information
entered by the user (module positions).

1.1 Overview

The following modules are included:

* wcs, a binary module which handles spatial and spectral coordinates and provides WCS projections and
transformations between different sky systems. Spectral translations (e.g., between frequencies and veloci-
ties) are supported and also mixed coordinates.

e celestial, containing NumPy-based functions for creating matrices for transformation between different
celestial systems. Also a number of other utility functions are included.

* wcsgrat, for calculating parameters for WCS graticules. It does not require a plot package.

* maputils. Provides methods for reading FITS files. It can extract 2-dim image data from data sets with
three or more axes. A class is added which prepares FITS data to plot itself as an image with Matplotlib.

* positions, enabling a user/programmer to specify positions in either pixel- or world coordinates.
* rulers, defining a class for drawing rulers.

e shapes, defining a class for interactively drawing shapes that define an area in an image. For each area a
number of properties of the data is calculated. This module can duplicate a shape in different images using
transformations to world coordinates. This enables one for instance to compare flux in two images with
different WCS systems.

http://www.astro.rug.nl

Kapteyn Package Documentation, Release 2.2.1b16

e mplutil, utilities for use with matplotlib. Classes AxesCallback, providing a more powerful mechanism
for handling events from LocationEvent and derived classes than matplotlib provides itself; TimeCallback
for handling timer events and VariableColormap which implements a matplotlib Colormap subclass with
special methods that allow the colormap to be modified.

e kmpfit, providing a class and a function for non-linear least-squares fitting, using the Levenberg-
Marquardt technique. It is based on the implementation in C of Craig Markwardt’s MPFIT.

e tabarray, providing a class for the efficient reading, writing and manipulating simple table-like structures
in text files.

1.2 Prerequisites

To install the Kapteyn Package, at least Python ' 2.4 and NumPy ? (both with header files) are required. For using
it, the availability of PyFITS * and matplotlib # is recommended. Windows users may also need to install Readline
3 or an equivalent package.

Mark Calabretta’s WCSLIB © does not need to be installed separately anymore. Its code is now included in the
Kapteyn Package under the GNU Lesser General Public License.

1.3 Download

The Kapteyn Package and the example scripts can be downloaded via links on the package’s homepage:
http://www.astro.rug.nl/software/kapteyn/

1.4 Installing

First unpack the downloaded .tar.gz or .zip file and go to the resulting directory. Then one of the following options
can be chosen:

1. Install into your Python system (you usually need root permission for this):

python setup.py install

2. If you prefer not to modify your Python installation, you can create a directory under which to install the
module e.g., mydir. Then install as follows:

python setup.py install —--install-lib mydir

To use the package you then need to include mydir in your PYTHONPATH.
3. If you want to use this package only for GIPSY, you can install it as follows:

python setup.py install --install-1lib $gip_exe

The GIPSY installation procedure normally does this automatically, so usually this will not be necessary.

! http://www.python.org/

2 http:/numpy.scipy.org/

3 http://www.stsci.edu/resources/software_hardware/pyfits
4 http://matplotlib.sourceforge.net/

5 http://newcenturycomputers.net/projects/readline. html

6 http://www.atnf.csiro.au/people/mcalabre/WCS/

4 Chapter 1. Introduction

http://www.python.org/
http://numpy.scipy.org/
http://www.stsci.edu/resources/software_hardware/pyfits
http://matplotlib.sourceforge.net/
http://newcenturycomputers.net/projects/readline.html
http://www.atnf.csiro.au/people/mcalabre/WCS/
http://www.astro.rug.nl/software/kapteyn/
http://www.python.org/
http://numpy.scipy.org/
http://www.stsci.edu/resources/software_hardware/pyfits
http://matplotlib.sourceforge.net/
http://newcenturycomputers.net/projects/readline.html
http://www.atnf.csiro.au/people/mcalabre/WCS/

Kapteyn Package Documentation, Release 2.2.1b16

1.4.1 Windows installer

An experimental installer for Microsoft Windows (together with other packages that the Kapteyn
Package depends on) is also available. Currently only for Python 2.6 on 32-bit systems.
http://www.astro.rug.nl/software/kapteyn_windows/

1.4.2 Scisoft problem

If you have Scisoft installed on your computer, it may interfere with the installation of the Kapteyn Package. To
install it properly, disable the setup of Scisoft in your startup file (e.g. ~/.cshrc, .profile) by commenting it out.

1.4.3 Mac OS X Compiler problem

There is a known problem with Apple’s llvm-gcc-4.2 compiler. This compiler is known to crash with an internal
compiler error (Segmentation fault: 11) when WCSLIB routine wcserr.c is compiled. For this reason, setup.py
tries to detect this compiler and use the clang compiler instead. If compilation still fails, one could try to prefix a
shell variable definition to the install command like this:

export CC=CLANG; python setup.py install ...

1.5 Contact

The authors can be reached at:

Kapteyn Astronomical Institute
Postbus 800

NL-9700 AV Groningen

The Netherlands

Telephone: +31 50 363 4073
E-mail: gipsy @astro.rug.nl

1.5. Contact 5

http://www.astro.rug.nl/software/kapteyn_windows/
mailto:gipsy@astro.rug.nl

Kapteyn Package Documentation, Release 2.2.1b16

6 Chapter 1. Introduction

CHAPTER 2

How to start

2.1 Introduction

This chapter is intended to be a guide on how to use the modules from the Kapteyn Package for your own astro-
nomical software. The Kapteyn Package provides building blocks for software that has a focus on the use of world
coordinates and/or plotting image data.

To get an overview of what is possible, have a look at Turorial maputils module which contains many examples of
world coordinate annotations and plots of astronomical data. It can be a good starting point to use the source code
in the example scripts to process your own data by making only small changes to the code.

If you are only interested in coordinate transformations, then the Tuforial wes module is a good starting point.

Kapteyn Package Documentation, Release 2.2.1b16

2.2 Which module and documents to use?

You want:

You need:

For a set of world coordinates, I want to transform these to another
projection system. I have a FITS header.

wcs, Tutorial wes module

I want to transform world coordinates between sky- and reference sys-
tems

wcs, Tutorial wes module

I want a parser to convert a string with position information to pixel-
and/or world coordinates.

positions

I want to transform image data in a FITS file from one projection system
to another

maputils, Tutorial maputils
module

I want to build a utility that converts a header with a PC or CD matrix
to a ‘classic’ header with CRPIX, CRVAL, CDELT and CROTA

maputils, Tutorial maputils
module

I want to create a utility that can display a mosaic of image data

maputils, Tutorial maputils
module

I want to plot an all sky map with graticules

maputils, Tutorial maputils
module

I want to calculate flux in a set of images

maputils, shapes, Tutorial
maputils module

I want to create a simple FITS file viewer with user interaction for the
colors etc.

maputils, Tutorial maputils
module

I want to read a large data file very fast

tabarray, Tutorial tabarray
module

Given a year, month and day number, I want the corresponding Julian
date

celestial, Tutorial wes module

I want to know the obliquity of the ecliptic at a Julian date?

celestial, Tutorial wes mod-
ule, Background information mod-
ule celestial

I want to convert my spectral axis from frequency to relativistic velocity

wcs, Tutorial maputils module,
Background information spectral
translations

2.3 Functionality of the modules in the Kapteyn Package

2.3.1 Wcs

* Given a FITS header or a Python dictionary with header information about a World Coordinate System

(WCS), transform between pixel- and world coordinates.

« Different coordinate representations are possible (tuple of scalars, NumPy array etc.)

* Transformations between sky and reference systems.

* Epoch transformations

 Support for ‘alternate’ headers (a header can have more than one description of a WCS)

* Support for mixed coordinate transformations (i.e. pixel- and world coordinates at input are mixed).

 Spectral coordinate translations, e.g. convert a frequency axis to an optical velocity axis.

2.3.2 Celestial

» Coordinate transformations between sky and reference systems. Also available via module wcs

* Epoch transformations. Also available via module wcs

Chapter 2. How to start

Kapteyn Package Documentation, Release 2.2.1b16

* Many utility functions e.g. to convert epochs, to parse strings that define sky- and reference systems,
calculate Julian dates, precession angles etc.

2.3.3 Wcsgrat

* Most of the functionality in this module is provided via user friendly methods in module maputils.
¢ Calculate grid lines showing constant latitude as function of varying longitude or vice versa.
* Methods to set the properties of various plot elements like tick marks, tick labels and axis labels.

* Methods to calculate positions of labels inside a plot (e.g. for all sky plots).

2.3.4 Maputils

 Easy to combine with Matplotlib
¢ Convenience methods for methods of modules wcs, celestial, wecsgrat
* Overlays of different graticules (each representing a different sky system),

¢ Plots of data slices from a data set with more than two axes (e.g. a FITS file with channel maps from a radio
interferometer observation)

* Plots with a spectral axis with a ‘spectral translation’ (e.g. Frequency to Radio velocity)
* Rulers with distances in world coordinates, corrected for projections.

* Plots for data that cover the entire sky (allsky plot)

* Mosaics of multiple images (e.g. HI channel maps)

* A simple movie loop program to view ‘channel’ maps.

* Interactive colormap selection and modification.

2.3.5 Positions

» Convert strings to positions in pixel- and world coordinates

2.3.6 Rulers

* Plot a straight line with markers at constant distance in world coordinates. Its functionality is available in
module maputils

2.3.7 Shapes

* Advanced plotting with user interaction. A user defines a shape (polygon, ellipse, circle, rectangle, spline)
in an image and the shape propagates (in world coordinates) to other images. A shape object keeps track of
its area (in pixels) and the sum of the pixels within the shape. From these a flux can be calculated.

2.3.8 Tabarray

¢ Fast I/O for data in ASCII files on disk.

2.3. Functionality of the modules in the Kapteyn Package 9

Kapteyn Package Documentation, Release 2.2.1b16

2.3.9 Mplutil

* Various advanced utilities for event handling in Matplotlib. Most of its functionality is used in module
maputils.

10 Chapter 2. How to start

CHAPTER 3

License

3.1 Kapteyn Package

The Kapteyn Package is provided under the following license:

Copyright (c) 2010-2013, Kapteyn Astronomical Institute, University
of Groningen. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met :

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the Kapteyn Astronomical Institute nor the names
of its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

3.1.1 How to cite the package

If you have used the Kapteyn Package in the preparation of a publication, you may cite it as follows (BibTeX
format):

@MANUAL{KapteynPackage,

organization = "{Kapteyn Astronomical Institute}",

author = {{Terlouw}, J.~P. and {Vogelaar}, M.~G.~R.},
title = "{Kapteyn Package, version 2.2.1blé6}",

year = 2013,

month = sep,

11

Kapteyn Package Documentation, Release 2.2.1b16

address
note

"Groningen",
"Available from \url{http://www.astro.rug.nl/software/kapteyn/}"

3.2 SciPy modules

To the modules included from the SciPy package, the following license applies:

Copyright (c) 2001, 2002 Enthought, Inc.
All rights reserved.

Copyright (c) 2003-2009 SciPy Developers.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

a. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

b. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

c. Neither the name of the Enthought nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

3.3 WCSLIB

WCSLIB, which is included in the Kapteyn Package’s distribution, is provided under the following license:

WCSLIB 4.18 - an implementation of the FITS WCS standard.
Copyright (C) 1995-2013, Mark Calabretta

This file is part of WCSLIB.

WCSLIB is free software: you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.

WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details.

12 Chapter 3. License

Kapteyn Package Documentation, Release 2.2.1b16

You should have received a copy of the GNU Lesser General Public License
along with WCSLIB. If not, see http://www.gnu.org/licenses.

Direct correspondence concerning WCSLIB to mark@calabretta.id.au

Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.
http://www.atnf.csiro.au/people/Mark.Calabretta

3.4 MPFIT

MPFIT’s implementation in C, of which a modified version is included, is provided under the following license:
MPFIT: A MINPACK-1 Least Squares Fitting Library in C

Original public domain version by B. Garbow, K. Hillstrom, J. More’
(Argonne National Laboratory, MINPACK project, March 1980)
Copyright (1999) University of Chicago

(see below)

Tranlation to C Language by S. Moshier (moshier.net)
(no restrictions placed on distribution)

Enhancements and packaging by C. Markwardt
(comparable to IDL fitting routine MPFIT
see http://cow.physics.wisc.edu/~craigm/idl/idl.html)
Copyright (C) 2003, 2004, 2006, 2007 Craig B. Markwardt

This software is provided as is without any warranty whatsoever.
Permission to use, copy, modify, and distribute modified or
unmodified copies is granted, provided this copyright and disclaimer
are included unchanged.

Source code derived from MINPACK must have the following disclaimer
text provided.

Minpack Copyright Notice (1999) University of Chicago. All rights reserved

Redistribution and use in source and binary forms, with or
without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above
copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials
provided with the distribution.

3. The end-user documentation included with the
redistribution, if any, must include the following
acknowledgment:

"This product includes software developed by the
University of Chicago, as Operator of Argonne National
Laboratory.

3.4. MPFIT 13

Kapteyn Package Documentation, Release 2.2.1b16

Alternately, this acknowledgment may appear in the software
itself, if and wherever such third-party acknowledgments
normally appear.

4. WARRANTY DISCLAIMER. THE SOFTWARE IS SUPPLIED "AS IS"
WITHOUT WARRANTY OF ANY KIND. THE COPYRIGHT HOLDER, THE
UNITED STATES, THE UNITED STATES DEPARTMENT OF ENERGY, AND
THEIR EMPLOYEES: (1) DISCLAIM ANY WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE
OR NON-INFRINGEMENT, (2) DO NOT ASSUME ANY LEGAL LIABILITY
OR RESPONSIBILITY FOR THE ACCURACY, COMPLETENESS, OR
USEFULNESS OF THE SOFTWARE, (3) DO NOT REPRESENT THAT USE OF
THE SOFTWARE WOULD NOT INFRINGE PRIVATELY OWNED RIGHTS, (4)
DO NOT WARRANT THAT THE SOFTWARE WILL FUNCTION
UNINTERRUPTED, THAT IT IS ERROR-FREE OR THAT ANY ERRORS WILL
BE CORRECTED.

5. LIMITATION OF LIABILITY. IN NO EVENT WILL THE COPYRIGHT
HOLDER, THE UNITED STATES, THE UNITED STATES DEPARTMENT OF
ENERGY, OR THEIR EMPLOYEES: BE LIABLE FOR ANY INDIRECT,
INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF
ANY KIND OR NATURE, INCLUDING BUT NOT LIMITED TO LOSS OF
PROFITS OR LOSS OF DATA, FOR ANY REASON WHATSOEVER, WHETHER
SUCH LIABILITY IS ASSERTED ON THE BASIS OF CONTRACT, TORT
(INCLUDING NEGLIGENCE OR STRICT LIABILITY), OR OTHERWISE,
EVEN IF ANY OF SAID PARTIES HAS BEEN WARNED OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGES.

14

Chapter 3. License

CHAPTER 4

4.1

4.2

Release notes

Version 2.2.1 (being developed)

WCSLIB:
— changed to version 4.18

Module wcs:

— added option to create a ‘minimal’ Projection object when a full object cannot be created due to errors

in the FITS header.
Module maputils:
— various improvements and extensions.
Module mplutil:
— added sunbow color maps.
— in class AxesCallback use weak references to Axes objects.

Bug fixes.

Version 2.2 (Apr 19, 2012)

Class maputils.FITSimage:

— Method header2classic() returns a tuple with three elements. The last one used to be a boolean but it

is now a list with FITS keywords that have been changed.
Class rulers.Ruler:
— now supports rulers specified by a start position, a size and an angle w.r.t. the North.
— new method set_title() for labeling a ruler.
Module mplutil:
— new class CanvasCallback.
— work-around to add support for resize events to matplotlib’s Qt4Agg backend.
— work-around for matplotlib’s (>=1.1.0) changed callback registry.
WCSLIB:
— changed to version 4.13.4
— use WCSLIB’s new error diagnostics system

New module kmpfit:

15

Kapteyn Package Documentation, Release 2.2.1b16

provides new class Fitter for solving least-squares problem using the Levenberg-Marquardt technique.
It is based on the implementation in C of Craig Markwardt’s MPFIT routines.

e Documentation:

several improvements.

4.3 Version 2.1 (Feb 14, 2011)

¢ Class wcs.Projection:

added attribute category
fixed ZPN projection related problem in method mixed()
minimal FITS headers are now accepted

added support for grid coordinates, i.e., CRPIX-relative pixel coordinates. Methods pixel2grid() and
grid2pixel().

added method str2pos() for converting positions represented as strings to world- and pixel coordinates.

e Module maputils:

added new class Skypolygon for plotting shapes like ellipses, rectangles and regular polygons. For
these shapes angles and distances along a great circle are preserved. This class can be used for example
to draw footprints on all-sky plots or a beam to show the resolution of an instrument.

improved position information in toolbar. Message format can be changed by user/programmer.
support for RGB images. RGB values are displayed in message toolbar.

class FITSimage: improved versions of header2classic() and reproject_to() methods; new
slice2world() method prints information about slice positions (annotate 2d maps from a 3d data cube).

catch error if event.key is None for Caps Lock keys
get rid of ‘new’ keyword in histogram
blur defaults improved

str_header() method was unable to print dictionary (external) headers. Fixed.

¢ Module mplutil:

work-around for special keys which are defined in matplotlib’s GTKAgg backend but ‘missing’ from
the Qt4Agg backend. The following keys are made available: ‘pageup’, ‘pagedown’, ‘left’, ‘right’,
‘up’, ‘down’, ‘home’, ‘end’.

¢ Module positions:

units 1/... and /... also recognized. Can be used for spectral translations that transform to e.g. AWAV.
introduced ‘7’ character as wildcard for units.
introduced case insensitive minimal match for ‘UNITS’ as a replacement for header units.

all column, row and line numbers now start with 1.

* Module shapes:

messages for toolbar improved.

changed conversion routine to support shapes on maps with only one spatial axis (e.g. position-velocity
maps).

GUI improved.
improved writing shape data to file.

catch error if event.key is None for Caps Lock keys

16

Chapter 4. Release notes

Kapteyn Package Documentation, Release 2.2.1b16

— improved moving objects (from within any point within the ellipse)
— improved rotation ellipse

— improved sampling on ellipse

— added rotation to rectangles

— changed writing position to terminal with left mouse button to combination of left mouse button and
shift key. This prevents interference with module shapes where one drags a shape with the left mouse
button.

* Module wesgrat:
— fixed bug with precision in seconds.
— use positions module to evaluate expressions for startx and starty parameter in Graticule class.
— use positions module to evaluate expressions for deltax and deltay parameter in Graticule class.
— introduced a syntax to set labels in LaTeX in exponential format.
— sexagesimal labeling with h, m, s characters or with superscripts with Boolean parameter texsexa.

— allow Graticule parameter unitsx and unitsy also to be applied to non-offset axes. (Examples in ma-
putils tutorial).

— minutes and seconds labeling for negative declinations get ‘- sign
— center of offset axis can be changed with parameter startx, starty and a string as argument.
— Right Ascension labels in TeX (hms) now have better alignment.

¢ New module profiles:

— added function gauest() for estimating gaussian components in a profile. These estimates can e.g.
subsequently be used as initial estimates for a least squares fit.

* WCSLIB: changed to version 4.7 (from 4.5)

4.4 Version 2.0.2 (Sep 16, 2010)

¢ Class wcs.Projection:
— allow for FITS headers that incorrectly represent EQUINOX as a string
— added support for AIPS keyword VELREF
* Function mplutil.gipsy_connect() connects GIPSY keyword events to Matplotlib event loop.

¢ Added Microsoft Windows support.

4.5 Version 2.0.1 (Aug 11, 2010)

* WCSLIB 4.5 included in distribution so it does not need to be separately installed anymore.

4.6 Version 2.0 (Jul 16, 2010)

* Class wcs.Projection:

— added method inside().

4.4. Version 2.0.2 (Sep 16, 2010) 17

Kapteyn Package Documentation, Release 2.2.1b16

4.7 Version 1.9.2 (Jul 12, 2010)

* Function wcs.coordmap(): added arguments dst_shape, dst_offset and src_offset.
¢ Class wcs.Projection:
— fixed bug in class WrappedHeader.
— allow for WSRT files with topocentric frequencies (via class WrappedHeader)

— added attribute altspecarg.

Added modules rulers and shapes.

Included SciPy modules filters and interpolation. The latter was slightly modified.

4.8 Version 1.9.1 (Feb 25, 2010)

* Class wcs.Projection:
— added attribute euler.
— fixed bug in method mixed()
¢ Class mplutil. VariableColormap:
— added NumPy array as possible source.

— added method set_length()

4.9 Version 1.9 (Jan 16, 2010)

* First public release.

18 Chapter 4. Release notes

Part 11

Module reference

19

CHAPTER 5

Module wcs

Author: Hans Terlouw <gipsy @astro.rug.nl>

5.1 Introduction

This Python module interfaces to Mark Calabretta’s WCSLIB and also provides a self-contained suite of celestial
transformations. The WCSLIB routines “implement the FITS World Coordinate System (WCS) standard which
defines methods to be used for computing world coordinates from image pixel coordinates, and vice versa.” The
celestial transformations have been implemented in Python, using NumPy, and support equatorial and ecliptic
coordinates of any epoch and reference systems FK4, FK4-NO-E, FKS5, ICRS and dynamic J2000, and galactic
and supergalactic coordinates.

5.2 Coordinates

Coordinates can be represented in a number of different ways:
* as a tuple of scalars, e.g. (ra, dec).
* as a tuple of lists or NumPy arrays, e.g. ([ra_1,ra_2, ...], [dec_1, dec_2, ...], [vel_1, vel_2, ...]).

* as a NumPy matrix. The standard representation is a matrix with column vectors, but row vectors are also
supported.

e as a NumPy array. This array can have any shape. The individual coordinate components are stored con-
tiguously along the last axis.

* as a list of tuples. Every tuple represents one position, e.g. [(ra_1, dec_1), (ra_2, dec_2), ...].

Results delivered by the transformations done by the classes described below will have the same representation as
their inputs. NumPy arrays and matrices will always be returned as type ‘f8” (64 bit).

5.3 Class Projection

class wcs.Projection (source[, rowvec=False, skyout=None, usedate=False, gridmode=False, al-
ter="", minimal=False])

Parameters

* source — a Python dictionary or dictionary-like object containing FITS-style keys and
values, e.g. a header object from PyFITS.

* rowvec — indicates whether input and output coordinates, when given as NumPy matri-
ces, will be row vectors instead of the standard column vectors. True or False.

21

mailto:gipsy@astro.rug.nl
http://www.atnf.csiro.au/people/mcalabre/WCS/

Kapteyn Package Documentation, Release 2.2.1b16

* skyout — can be used to specify a system different from the sky system specified
by the projection. This can be given as a string e.g., "equatorial fk4_no_e
B1950.0" or as a tuple: (equatorial fk4_no_e ’'B1950.0’). For a com-
plete description see: Sky definitions.

 usedate — indicates whether the date of observation is to be used for the appropriate
celestial transformations. True or False.

* gridmode — True or False. If True, the object will use grid coordinates instead of pixel
coordinates. Grid coordinates are CRPIX-relative pixel coordinates, e.g. used in GIPSY.
If CRPIX is not integer, the nearest integer is used as reference.

* alter — an optional letter from ‘A’ through ‘Z’, indicating an alternative WCS axis de-
scription.

* minimal — True or False. If True, the object will be constructed from only the NAXIS
and NAXISi items in the source. All other items are ignored. In this way world- and
pixel coordinates will have the same values. This can be useful when it is impossible
to build an object from all items in the source, e.g., when there is an error in a FITS
header.

Methods:

toworld (pixel)
Pixel-to-world transformation. pixel is an object containing one or more pixel coordinates and a similar
object with the corresponding world coordinates will be returned. Note that FITS images are indexed
from (1,1), not from (0,0) like Python arrays. Coordinates can be specified in a number of different
ways. See section Coordinates. When an exception due to invalid coordinates has occurred, this
method can be called again without arguments to retrieve the result in which the invalid positions will
have the value numpy . NaN (“not a number”).

topixel (world)
World-to-pixel transformation. Similar to towor1d (), this method can also be called without argu-
ments.

toworldld (pixel)
Simplified method for one-dimensional projection objects. Its argument can be a list, a tuple, an array
or a scalar. An object of the same class will be returned.

topixelld (world)
Simplified method for one-dimensional projection objects. Its argument can be a list, a tuple, an array
or a scalar. An object of the same class will be returned.

mixed (world, pixel[, span=None, step=0.0, iter=7])
Hybrid transformation.

When either the celestial longitude or latitude plus an element of the pixel coordinate is given, the
remaining elements are solved by iteration on the unknown celestial coordinate. Which elements are
to be solved, is indicated by assigning NaN to those elements. In case of multiple coordinates, the same
elements must be indicated for every coordinate. This operation is only possible for the projection’s
“native” sky system. When a different sky system has been specified, an exception will be raised.
When either both celestial coordinates or both pixel coordinates are given, an operation equivalent to
topixel () ortoworld () is performed. For non-celestial coordinate elements any NaN value will
be replaced by a value derived from the corresponding element in the other coordinate.

espan — a sequence containing the solution interval for the celestial coordinate, in degrees. The

ordering of the two limits is irrelevant. Longitude ranges may be specified with any convenient
normalization, for example [-120,+120] is the same as [240,480], except that the solution will
be returned with the same normalization, i.e. lie within the interval specified. The default is the
appropriate CRVAL value +15°.

estep — step size for solution search, in degrees. If zero, a sensible, although perhaps non-optimal
default will be used.

22

Chapter 5. Module wcs

Kapteyn Package Documentation, Release 2.2.1b16

eiter — if a solution is not found then the step size will be halved and the search recommenced. iter
controls how many times the step size is halved. The allowed range is 5 - 10.

Returns a tuple (world, pixel) containing the resulting coordinates.

sub ([axes:None, nsub:None])
Extract a new Projection object for a subimage from an existing one.

eaxes is a sequence of image axis numbers to extract. Order is significant; axes/0] is the axis
number of the input image that corresponds to the first axis in the subimage, etc. If not specified,
the first nsub axes are extracted.

*nsub is the number of axes to extract when axes is not specified.
Returns a new Projection object.

spectra (ctype[, axindex:None])
Create a new Projection object in which the spectral axis is translated. For example, a ‘FREQ’ axis
may be translated into “ZOPT-F2W’ and vice versa. For non-standard frequency types, e.g. FREQ-
OHEL as used by GIPSY, corrections are applied first to obtain barycentric frequencies. For more
information, see chapter Background information spectral translations.

ectype — Required spectral CTYPEi. Wildcarding may be used, i.e. if the final three characters

are specified as ‘7?7, or if just the eighth character is specified as ‘?’, the correct algorithm code
will be substituted and returned. The attribute a1t spec provides a list of acceptable spectral
types. For later reference, the value of ctype is stored in the attribute a1t specarg of the new
Projection object.

saxindex — Index of the spectral axis (O-relative). If not specified, the first spectral axis identified
by the CTYPE values of the object is assumed.

Returns a new Projection object.

inside (coords, mode)
Test whether one or more coordinates are inside the area defined by the attribute naxis. This is a
convenience method not directly related to WCS. coords is an object containing one or more coordi-
nates which depending on mode can be either world- or pixel coordinates. The argument mode must
be ‘world’ or ‘pixel’. The method returns a value True or False or, in the case of multiple coordinates,
a list with these values.

pixel2grid (pixel)
Pixel-to-grid conversion. pixel is an object containing one or more pixel coordinates and a similar
object with the corresponding grid coordinates will be returned. Grid coordinates are CRPIX-relative
pixel coordinates, e.g. used in GIPSY. If CRPIX is not integer, the nearest integer is used as reference.

grid2pixel (grid)
Grid-to-pixel conversion. grid is an object containing one or more grid coordinates and a similar object
with the corresponding pixel coordinates will be returned. Grid coordinates are CRPIX-relative pixel
coordinates, e.g. used in GIPSY. If CRPIX is not integer, the nearest integer is used as reference.

str2pos (postxt[, mixpix:None])
This method accepts a string that represents one or more positions in the projection object’s coordinate
system. If the string contains a valid position, the method returns the arrays with the corresponding
world- and pixel coordinates. If a position could not be converted, then an error message is returned.

Parameters
* postxt (string) — one or more positions to be parsed.

* mixpix (integer or None) —for a world coordinate system with one spatial axis, a pixel
coordinate for the missing spatial axis is required to be able to convert between world-
and pixel coordinates.

Returns

5.3. Class Projection 23

Kapteyn Package Documentation, Release 2.2.1b16

This method returns a tuple with four elements:
*a NumPy array with the parsed positions in world coordinates
*a NumPy array with the parsed positions in pixel coordinates
*A tuple with the units that correspond to the axes in your world coordinate system.
*An error message when a position could not be parsed

Each position in the input string is returned in the output as an element of a numpy array with parsed
positions. A position has the same number of coordinates as there are axes in the data defined by the
projection object.

For its implementation, this method uses the function positions.str2pos () from module
positions. Please refer to that module’s documentation for a detailed explanation.

WCSLIB-related attributes:

The following attributes contain values which are parameters to WCSLIB, after interpretation. So they can
differ from the values in the source object. These attributes should not be modified.

category
The projection category: one of the strings undefined, zenithal, cylindrical,
pseudocylindrical, conventional, conic, polyconic, quadcube, HEALPix.

ctype
A tuple with the axes’ types in the axis order of the object.

cunit
A tuple with the axes’ physical units in the axis order of the object.

crval
A tuple with the axes’ reference values in the axis order of the object.

cdelt
A tuple with the axes’ coordinate increments in the axis order of the object.

crpix
A tuple with the axes’ reference points in the axis order of the object.

crota
A tuple with the axes’ coordinate rotations, or None if no rotations have been specified.

pc
A NumPy matrix for the linear transformation between pixel axes and intermediate coordinate axes,
or None if not specified.

cd
A NumPy matrix for the linear transformation (with scale) between pixel axes and intermediate coor-
dinate axes, or None if not specified.

PV
A list with numeric coordinate parameters. Each list element is a tuple consisting of the world coordi-
nate axis number i, the parameter number m and the parameter value.

pPs
A list with character-valued coordinate parameters. Each list element is a tuple consisting of the world
coordinate axis number i, the parameter number m and the parameter value.

lonpole
The native longitude of the celestial pole.

latpole
The native latitude of the celestial pole.

euler

A five-element list: Euler angles and associated intermediaries derived from the coordinate reference

24

Chapter 5. Module wcs

Kapteyn Package Documentation, Release 2.2.1b16

values. The first three values are the Z-, X-, and Z’-Euler angles, and the remaining two are the cosine
and sine of the X-Euler angle.

equinox
The equinox (formerly ‘epoch’) of the projection.

restfrq
Rest frequency in Hz.

restwav
Vacuum rest wavelength in m.

Other Attributes:

The attributes skyout, allow_invalid, rowvec, epobs, gridmode and usedate can be modified at any time. The
others are read-only.

skysys
The projection’s ‘native’ sky system. E.g., (equatorial, £fk5, "J2000.0").

skyout
Alternative sky system. Can be specified according to the rules of the module celestial. See:
Sky definitions. For pixel-to-world transformations, the result in the projection’s ‘native’ system is
transformed to the specified one and for world-to-pixel transformations, the given coordinates are first
transformed to the native system, then to pixels.

radesys
Reference frame of equatorial or ecliptic coordinates: one of the (symbolic) values as defined in
module celestial. E.g. icrs, £k5 or £k4.

epoch
The projection’s epoch string as derived from the attributes equinox and radesys. E.g., “B1950.0”
or “J2000.0”.

dateobs
The date of observation (string) as specified by the ‘DATE-OBS’ key in the source object or None if
not present.

mjdobs
The date of observation (floating point number) as specified by the ‘MJD-OBS’ key in the source
object or None if not present.

epobs
The date of observation as specified by either the ‘MJD-OBS’ or the ‘DATE-OBS’ key in the source
object or None if both are absent. This attribute is a string with the prefix ‘MJD’ or ‘F’ which can be
parsed by the function epochs() in the module ‘celestial’ and consequently be part of the arguments
sky_in and sky_out when creating a Transformation object.

gridmode
True or False. If True, the object will use grid coordinates instead of pixel coordinates. Grid coordi-
nates are CRPIX-relative pixel coordinates, e.g. used in GIPSY. If CRPIX is not integer, the nearest
integer is used as reference.

allow _invalid
If set to True, no exception will be raised for invalid coordinates. Invalid coordinates will be indicated
by numpy . NaN (‘not a number’) values.

invalid
True or False, indicating whether invalid coordinates were detected in the last transformation. In the
output, invalid coordinates are indicated by numpy . NaN (‘not a number’) values.

rowvec
If set to True, input and output coordinates, when given as NumPy matrices, will be row vectors instead
of the standard column vectors.

5.3. Class Projection 25

Kapteyn Package Documentation, Release 2.2.1b16

20

21

22

23

usedate
Indicates whether the date of observation is to be used for the appropriate celestial transformations.
True or False.

types
A tuple with the axes’ coordinate types (‘longitude’, ‘latitude’, ‘spectral’ or None) in the axis order of
the object.

naxis
A tuple with the axes’ lengths in the axis order of the object. (Convenience attribute not directly related
to WCS.)

lonaxnum
Longitude axis number (1-relative). None if not defined.

lataxnum
Latitude axis number (1-relative). None if not defined.

specaxnum
Spectral axis number (1-relative). None if not defined.

source
Convenience attribute. The object from which the Projection object was created.

altspec
A list of tuples with alternative spectral types and units. The first element of such a tuple is a string
with an allowed alternative spectral type which can be used as the argument of method spectra ()
and the second element is a string with the corresponding units. Example: [(' FREQ’, ’'Hz'),
("ENER’, ’J'), ('VOPT-F2W’, ’'m/s’), ..., ('BETA-F2V’, ”)]. If there is no
spectral axis, the attribute will have the value None.

altspecarg
If the object was created with a call to spectra (), the argument ctype as specified in that call.
Otherwise None.

minimal
The object was created with the argument minimal=True, using only the NAXIS and NAXISi
items.

Example:

#!/bin/env python

from kapteyn import wcs

import pyfits

hdulist = pyfits.open(’aurora.fits’) # open 3-dimensional FITS file

proj3 = wcs.Projection (hdulist[0].header) # create Projection object

pixel = ([51, 32], [17, 60], [11, 12]) # two 3-dimensional pixel coordinates
world = proj3.toworld(pixel) # transform pixel to world coordinates
print world

print proj3.topixel (world) # back from world to pixel coordinates
proj2 = proj3.sub([2,1]) # subimage projection, axes 2 and 1
pixel = ([1, 2, 4, 31, [7, 6, 8, 21) # four 2-dimensional pixel coordinates
world = proj2.toworld(pixel) # transform pixel to world coordinates

print world

proj2.skyout = (wcs.equatorial, wcs.fk5,
7J2008") # specify alternative sky system
world = proj2.toworld(pixel) # transform to that sky system

26

Chapter 5. Module wcs

Kapteyn Package Documentation, Release 2.2.1b16

24

25

print world
print proj2.topixel (world) # back to pixel coordinates

5.4 Class Transformation

Celestial transformations are handled by objects of the class Transformation. These objects are callable. Currently

supported sky systems are equatorial and ecliptic of any epoch and galactic and supergalactic.

class wcs . Transformation (sky_in, sky_out[, rowvec:False])

Parameters

* sky_out (sky_in,) — the input- and output sky system. Can be specified as e.g., “(equa-
torial, fk4, ‘B1950.0’)” or “galactic”.

* rowvec — if set to True, input and output coordinates, when given as NumPy matrices,
will be row vectors instead of the standard column vectors.

Method:
transform (in[, reverse=Fualse])

Parameters

* in — an object containing one or more coordinates to be transformed and out will
receive a similar object with the transformed coordinates. Coordinates can be specified
in a number of different ways. See section Coordinates.

* reverse — if True, the inverse transformation will be performed.
Instead of calling this method, the object itself can also be called in the same way.
Attribute:

rowvec

If set to True, input and output coordinates, when given as NumPy matrices, will be row vectors instead

of the standard column vectors.
Example:

#!/bin/env python
from kapteyn import wcs
import numpy

tran = wcs.Transformation((wcs.equatorial, wcs.fk4, "B1950.0"), wcs.galactic)

radec = numpy.matrix (([33.3, 177.2, 230.17,
[66.2, —-11.5, 13.0]))

lbgal = tran(radec)
print lbgal
print tran(lbgal, reverse=True)

5.5 Functions

5.5.1 Function coordmap

wcs . coordmap (proj_src, proj_dst[, dst_shape=None, dst_offset=None, src_offset=None])

*proj_src, proj_dst — the source- and destination projection objects.

5.4. Class Transformation

Kapteyn Package Documentation, Release 2.2.1b16

*dst_shape — the destination image’s shape. Must be compatible with the projections’ dimensionality.
The elements are in Python order, i.e., the first element corresponds to the last FITS axis. If dst_shape
is None (the default), the shape is derived from the proj_dst.naxis attribute.

edst_offset — the destination image’s offset. If None, the offset for all axes will be zero. Otherwise it
must be compatible with the projections’ dimensionality. The elements are in Python order, i.e., the
first element corresponds to the last FITS axis.

esrc_offset — the source image’s offset. If None, the offset for all axes will be zero. Otherwise it must
be compatible with the projections’ dimensionality. The elements are in Python order, i.e., the first
element corresponds to the last FITS axis.

This function returns a coordinate map which can be used as the argument coordinates in calls to the func-
tion map_coordinates () from the scipy.ndimage.interpolation module. ' The resulting
coordinate map can be used for reprojecting an image into another image with a different coordinate system.

Example:

1 #!/bin/env python

2 from kapteyn import wcs

3 import numpy, pyfits

4 from kapteyn.interpolation import map_coordinates

¢ hdulist = pyfits.open('ngc6946.fits”)
7 header = hdulist[0].header

9 projl = wcs.Projection (header) # source projection
10 trans = wcs.Transformation (projl.skysys, skyout=wcs.galactic)

12 header[’'CTYPE1l’], header[’'CTYPE2’] = ’'GLON-TAN’, ’'GLAT-TAN’

13 # new axis types

14 header[’CRVAL1’], header[’CRVAL2’] = trans((header[’CRVALLl’],header[’CRVAL2']))
15 # new reference point

16

17 proj2 = wcs.Projection (header) # destination projection
18

19 coords = wcs.coordmap (projl, proj2)

20

21 image_in = hdulist[0].data

» image_out = map_coordinates (image_in, coords, order=1, cval=numpy.NaN)
23

2 hdulist[0].data = image_out

»5 hdulist.writeto(’ngc6946-gal.fits’)

This example is a complete program and illustrates how a FITS file containing an image with arbitrary
coordinates can be reprojected into an image with galactic coordinates. The image can have two or more
dimensions.

5.5.2 Utility functions

The following are functions from the module ce lest ial which have been made available within the namespace
of this wcs module: For detailed information, refer to celestial’s documentation.

wcs .epochs (spec)
Flexible epoch parser.

wcs.lat2dms (a[, prec=1])
Convert an angle in degrees into the degrees, minutes, seconds format assuming it was a latitude of which

the value should be in the range -90 to 90 degrees.

! For convenience, a slightly modified version of this module is also available in the Kapteyn Package as kapteyn.interpolation.
The modification replaces NaN values in the array to a finite value in case order>1, preventing the result becoming all NaN.

28 Chapter 5. Module wcs

Kapteyn Package Documentation, Release 2.2.1b16

wcs.lon2dms(aLpnm:]])
Convert an angle in degrees to degrees, minutes, seconds.

wcs.lon2hms(aLpnx=l])
Convert an angle in degrees to hours, minutes, seconds format.

5.6 Constants

Sky systems (imported from celestial)
wCs.equatorial

wCs.eq

wcs.ecliptic

wcs.ecl

wcs.galactic

wcs.gal

wcs.supergalactic

wcs.sgal

Reference systems (imported from celestial)
wcs.fk4

wcs.fk4_no_e

wcs . fk5

wcs.icrs

wcs.dynj2000

wcs.j2000

Physical

wCs.C

Velocity of light

5.7 Error handling

Errors are reported through the exception mechanism. Two exception classes have been defined: WCSerror for
unrecoverable errors and WCSinvalid for situations where a partial result may be available.

5.6. Constants 29

Kapteyn Package Documentation, Release 2.2.1b16

30

Chapter 5. Module wcs

CHAPTER 6

Module Celestial

This document describes functions from the Python module celestial (celestial.py) which provides a programmer
with a basic set of routines to transform a world coordinate in a given sky system into a world coordinate of
another system assuming zero proper motion, parallax, and recessional velocity.

The most important function builds a matrix for conversions of positions between sky systems, celestial reference
systems and epochs of the equinox. This function is called skymatrix () and it can be used in the following
contexts:

* Implicit, in module wcs, using the Transformation class as in:

world_eq = (192.25, 27.4) # FK4 coordinates of galactic pole
tran = wcs.Transformation ("equatorial fk4_no_e B1950.0", "galactic")
print tran(world_eq)

* As stand alone utility in scripts or in an interactive Python session. Usually one uses function sky2sky ()
to transform longitudes and latitudes:

M = celestial.sky2sky((celestial.eq, celestial.fk5), celestial.gal,
(0,0,1.0), (10,20,20))

* Hidden in the ropixel() and toworld() methods in module wcs. There the sky system is read from a (FITS)
header and the sky system for which we want the transformed coordinates is set with attribute skyout of the
projection object.

See Also:
Tutorial material:

* Background information module celestial which contains many examples with source code.

6.1 Sky definitions

A sky definition can consist of a sky system, a reference system, an equinox and an epoch of observation. It is
either a string or it is a tuple with one or more elements. It can also be a single element. The elements in a tuple
representing a sky- or reference system are symbols from the table below. For a string, the parts of the string
representing a sky- or reference system are minimal matched against the strings in the table below. The match is
case insensitive.

6.1.1 Sky systems

Symbol String Description

eq, equatorial EQUATORIAL Equatorial coordinates («, §), See also next table with reference systems
ecl, ecliptic ECLIPTIC Ecliptic coordinates (), 3) referred to the ecliptic and mean equinox
gal, galactic GALACTIC Galactic coordinates (111, bII)

sgal, supergalactic | SUPERGALACTIC | De Vaucouleurs Supergalactic coordinates (sgl, sgb)

31

Kapteyn Package Documentation, Release 2.2.1b16

6.1.2 Reference systems

Symbol String Description

k4 FK4 Mean place pre-IAU 1976 system. FK4 is the old barycentric (i.e. w.r.t. the
common center of mass) equatorial coordinate system, which should be qual-
ified by an Equinox value. For accurate work FK4 coordinate systems should
also be qualified by an Epoch value. This is the epoch of observation.

fk4_no_e FK4_NO _E, The old FK4 (barycentric) equatorial system but without the E-terms of aber-
FK4-NO-E ration. This coordinate system should also be qualified by both an Equinox
and an Epoch value.

fk5 FK5 Mean place post IAU 1976 system. Also a barycentric equatorial coordinate
system. This should be qualified by an Equinox value (only).
icrs ICRS The International Celestial Reference System, for optical data realized through

the Hipparcos catalog. By definition, ICRS is not an equatorial system, but it
is very close to the FK5 (J2000) system. No Equinox value is required.

j2000, DYNJ2000 This is an equatorial coordinate system based on the mean dynamical equator
dynj2000 and equinox at epoch J2000. The dynamical equator and equinox differ slightly
compared to the equator and equinox of FK5 at J2000 and the ICRS system.
This system need not be qualified by an Equinox value

Note: Reference systems are stored in FITS headers under keyword RADESYS=.

Note: Standard in FITS: RADESYS defaults to IRCS unless EQUINOX is given alone, in which case it defaults
to FK4 prior to 1984 and FKS5 after 1984.

EQUINOX defaults to 2000 unless RADESYS is FK4, in which case it defaults to 1950.

Note: In routines dealing with sky definitions tne names are minimal matched against a list with full names.

6.1.3 Epochs for the equinox and epoch of observation

An epoch can be set in various ways. The options are distinguished by a prefix. Only the ‘B’ and ‘J* epochs can
be negative.

Prefix Epoch

B Besselian epoch. Example: 'B 1950’,’b1950’,/B1983.5",’-B1100"

J Julian epoch. Example: * 32000.7",7J 2000’,"-3100.0"

D Julian date. This number of days (with decimals) that have elapsed since the initial epoch defined

as noon Universal Time (UT) Monday, January 1, 4713 BC in the proleptic Julian calendar

Example: JD2450123.7"

MID The Modified Julian Day (MJD) is the number of days that have elapsed since midnight at the

beginning of Wednesday November 17, 1858. In terms of the Julian day: MJD = JD - 2400000.5

Example: 'mJD 24034’,'MJD50123.2"

RID The Reduced Julian Day (RJD): Julian date counted from nearly the same day as the MJD, but

lacks the additional offset of 12 hours that MJD has. It therefore starts from the previous noon

UT or TT, on Tuesday November 16, 1858. It is defined as: RJD = JD - 2400000 Example:

"rJdD50123.27,"Rjd 23433’

F Various FITS formats:

* DD/MM/YY Old FITS format. Example: '¥29/11/57'

* YYYY-MM-DD FITS format. Example: ' F2000-01-01"

* YYYY-MM-DDTHH:MM:SS FITS format with date and time. Example:
"F2002-04-04T09:42:42.1"

Epoch of observation.

32 Chapter 6. Module Celestial

Kapteyn Package Documentation, Release 2.2.1b16

Reference system FK4 is not an inertial system. It is slowly rotating and positions are further away from the true
mean places if the date of observation is greater than B1950. FKS is an inertial system. If we convert coordinates
from FK4 to FKS, the accuracy of the FKS5 position can be improved if we know the date of the observation. So
in all transformations where a conversion between FK4 and FKS5 is involved, an epoch of observation can be part
of the sky definition. Note that this also involves a conversion between galactic coordinates and equatorial, FK5
coordinates because that conversion is done in steps and one step involves FK4.

To be able to distinguish an equinox from an epoch of observation, an epoch of observation is followed by an
underscore character and some arbitrary characters to indicate that it is a special epoch (e.q. “B1960_OBS”).
Only the underscore is obligatory.

Note: If a sky definition is entered as a string, there cannot be a space between the prefix and the epoch, because
a space is a separator for the parser in celestial.skyparser ().

Note: An epoch of observation is either the second epoch in your input or or the epoch string has a suffix °_’
which may be followed by arbitrary characters (e.g. “B1963.5_OBS”).

6.1.4 Input Examples

Input string Description Remarks

“eq” Equatorial, ICRS | ICRS because no reference system and no equinox is given.

“Eclip” Ecliptic, ICRS Ecliptic coordinates

“ecl tk5” Ecliptic, FK5 Ecliptic coordinates with a non default reference system

“GALACtic” Galactic I Minimal match is case insensitive

“s” Supergalactic Shortest string to identify system.

“tk4” Equatorial, FK4 Only a reference system is entered. Sky system is assumed to be
equatorial

“B1960” Equatorial, FK4 Only an equinox is given. This is a date before 1984 so FK4 is

assumed. Therefore the sky system is equatorial

“EQ, fk4_no_e, B1960” | Equatorial, FK4 | Sky system, reference system, and an equinox
no e-terms

“EQ, fk4-no-e, B1960” Equatorial, FK4 | Same as above but underscores replaced by hyphens.
no e-terms

“fk4,J1983.5_OBS” Equatorial, FK4 | FK4 with an epoch of observation. Note that only the underscore
+ epobs is important.

“J1983.5_OBS” Equatorial, FK4 | Only a date of observation. Then reference system FK4 is as-
+ epobs sumed.

“EQ,fk4,B1960, Equatorial, FK4 | A complete description of an equatorial system.

B1983.5_0” + epobs

“B1983.5_0O fk4 | Equatorial, FK4 | The same as above, showing that the order of the elements are

B1960,eq” + epobs unimportant.

6.1.5 Code examples
To show that one can use both the tuple and the string representation of a system, we use both for the same system
and compare a transformed position. The result should be O for both coordinates.

>>> world_eqg = numpy.array ([192.25, 27.4])
>>> tranl = wcs.Transformation ("equatorial fk4_no_e B1950.0",

FK4 coordinates of galactic pole
"galactic™")

>>> tran2 = wcs.Transformation((wcs.equatorial, wcs.fk4_no_e, "B1950.0"), wcs.galactic)
>>> print tranl (world_eq)-tran2 (world_eq)
[0. 0.]

6.1. Sky definitions 33

Kapteyn Package Documentation, Release 2.2.1b16

6.2 Module level data

skyrefsystems An object from class skyrefset which is a container with a list with systems and two
dictionaries with systems.

>>> for s in skyrefsystems.skyrefs_list:
>>> print s.fullname, s.description, s.idnum

For programmers who need to access the id’s of the sky and reference systems: External modules can set their
own variables. Here are some examples how one can do this.

Example with copy of celestial’s variables:

* eq = celestial.eq

* ecC celestial.ecl

* ga celestial.gal etc.

Example with minimal match:

s eq celestial.skyrefsystems.minmatch2skyref (EQUA’) [0] .idnum
* ec = celestial.skyrefsystems.minmatch2skyref (‘ecli’) [0].idnum

Read this as: get the object for which a minimal match is found. Item [0] is the object (the other is the number of
times a match is found). The ‘idnum’ is the integer for which we can identify a system.

Or use the equivalent with method skyrefset .minmatch2id ():

* eq celestial.skyrefsystems.minmatch2id (' EQUA’)

* ec celestial.skyrefsystems.minmatch2id(’ecli’)
Example with full name (case sensitive!):
* eq = celestial.skyrefsystems.fullname2id (' EQUATORIAL’)

e ec = celestial.skyrefsystems.fullname2id ('ECLIPTIC’)

6.3 Classes

class celestial.skyrefsys (fullname, idnum, description, refsystem)
Class creates an object that describes a sky- or reference system. This module initializes a set of systems.
They are accessible through methods in class celestial.skyrefset

Parameters
* fullname (String) — Complete name to identify the system, e.g. “EQUATORIAL”
* idnum (Infeger) — A unique integer to identify the system
* description (String) — A short description of the system
* refsystem (Boolean) — Is this system a reference system?
Attributes:

fullname
A string to identify a system, e.g. “EQUATORIAL”.

idnum
A unique integer to identify the system.

description
A string to describe the system.

34 Chapter 6. Module Celestial

Kapteyn Package Documentation, Release 2.2.1b16

refsystem
If True then this system is a reference system. Else it is a sky system.

class celestial.skyrefset
A container with sky- and reference system objects from class celestial.skyrefsys. It is used to
initialize variables that can be used as identifiers for sky- or reference systems. Applications can use its
methods to retrieve information given an integer identifier or (part of) a string.

For example when we want a list with all the supported systems then type:
>>> for s in skyrefsystems.skyrefs_list:
>>> print s.fullname, s.description, s.idnum
append (skyrefsys)
Parameters skyrefsys (Instance of class skyrefsys)— Append this system to the list with
supported systems

Returns A unique integer id which can be used to identify a system.

minmatch2skyref (s)

Return the relevant skyrefsys object with the number of times it is matched or return None if nothing
was found.

Parameters s (String) — Part of the string name of a system

Returns Instance of class skyrefsys and the number of times that the input string gives
a match.

minmatch2id (s)
From the found skyrefsys object corresponding to string s, return the idnum attribute. Case insensitive
minimal match is used to find the sky- or reference system. Return None if there was no match or
more than one match.

Parameters s (String) — Part of the string name of a system

Returns Instance of class skyrefsys or None if there was not a match or more than one
match.

fullname2id (fullname)
This is the fastest method to get an integer id from a string which represents a sky system or a reference
system. Note that the routine is case sensitive because it uses the full names as keys in a dictionary.
The parameter fullname therefore must be in in capitals!

Parameters fullname (String) — The full descriptive name of a system e.g. “EQUATO-
RIAL”

Returns Integer id of the found system or None if nothing was found.

id2skyref (idnum)
Given an integer id of a system, return the corresponding system as an instance of class skyrefsys.
Usually the calling environment will deal with the attributes of this object, for instance to write a short
description of the system.

Parameters idnum (/nfeger) — Integer id of a system
Returns Instance of class skyrefsys or None if there was not a corresponding system.

id2fullname (idnum)
Given an integer id of a system, return the full name of the corresponding system.

Parameters idnum (/nteger) — Integer id of a system

Returns Full name (e.g. “EQUATORIAL”) of the corresponding system or an empty string
if nothing was found.

id2description (idnum)
Given an integer id of a system, return the description of the corresponding system.

6.3. Classes 35

Kapteyn Package Documentation, Release 2.2.1b16

Parameters idnum (/nteger) — Integer id of a system

Returns A short description of the corresponding system or an empty string if nothing was
found.

Attributes:

skyrefs_1list
The list with systems

skyrefs_id
A dictionary with the systems and with id’s as keys

skyrefs_fullname
A dictionary with the systems and with full names as keys

Examples Next short script shows how to get a list with sky systems and how to use methods
of this class to get data for a system if an (integer) id is found:

from kapteyn.celestial import skyrefsystems

for s in skyrefsystems.skyrefs_list:
print s.fullname, s.description, s.idnum
i = s.idnum
print "Full name using id2fullname:", skyrefsystems.id2fullname (i)

print "Description using id2description:", skyrefsystems.id2description (i)

print "id of with minimal match: "\
(s.fullname[:3], skyrefsystems.minmatch2skyref(s.fullname[:3]) [0]
print "id of with minimal match, alternative: SN\

(s.fullname[:3], skyrefsystems.minmatch2id(s.fullname[:3]))
print "id of with full name: s\
(s.fullname[:3], skyrefsystems.fullname2id(s.fullname))

6.4 Core Functions

celestial.skyparser (skyin)
Parse a string, tuple or single integer that represents a sky definition. A sky definition can consist of a
sky system, a reference system, an equinox and an epoch of observation. See also the description at Sky
definitions. The elements in the string are separated by a comma or a space. The order of the elements is
not important. The string is converted to a tuple by celestial.parseskydefs ().

The parser is used in function celestial.skymatrix () and celestial.sky2sky (). External
applications can use this function to check whether user input is valid.

Definitions in strings are usually used to define output sky definitions in prompts or on command lines.
Applications can use integer id’s for the sky- and reference systems. These integer id’s are global constants
See also Sky systems and Reference systems.

The sky system and reference system strings are minimal matched (case INsensitive) with the strings in the
table in the documentation at Sky systems and Reference systems.

For the epoch syntax read the documentation at Epochs for the equinox and epoch of observation. Note that
an epoch of observation is either a second epoch in the string (the first is always the equinox) or the epoch
string has a suffix ‘_’ which may be follwed by arbitrary characters.

Parameters skyin (String, tuple or integer) — Represents a sky definition. See examples.

Returns A tuple with the ‘coded’ system where strings for sky- and reference systems are
replaced by integer id’s. Missing values are filled in with defaults.

If an error occurred then an exception will be raised.

Raises

36 Chapter 6. Module Celestial

. idnum)

Kapteyn Package Documentation, Release 2.2.1b16

ValueError From celestial.parseskydefs():
o Empty string!
* Too many items for sky definition!
e ... is ambiguous sky or reference system!
e ... is not a valid epoch or sky/ref system!
From this function:
» Sky definition is not a string nor a tuple!
e Too many elements in sky definition (max. 4)!
* Two sky systems given!
* Two reference systems given!
¢ Invalid number for sky- or reference system!
e Cannot determine the sky system!
* Input contains an element that is not an integer or a string!
Examples

>>> print celestial.skyparser ("B1983.5_0 fk4 B1960,eq")
(0, 4, 1960.0, 1983.5)

>>> print celestial.skyparser ("su")
(3, None, None, None)

>>> print celestial.skyparser ("supergal')
(3, None, None, None)

Notes This is the parser for a sky definition. In this definition one can specify the sky system,
the reference system, an equinox and an epoch of observation if the reference system is tk4.
The order of these elements is not important.

The rules for the defaults are:

* What if the sky system is not defined? If there is a reference system then we assume it
is equatorial (could have been ecliptic).

o If there no sky system and no reference system but there is an equinox, assume sky
system is equatorial (could have been ecliptic).

* If there no sky system and no reference system and no equinox but there is an epoch of
observation, assume sky system is equatorial.

» Assume we have a sky system. What if there is no reference system? Standard in FITS:
RADESYS (i.e our reference system) defaults to IRCS unless EQUINOX is given alone,
in which case it defaults to FK4 prior to 1984 and FK5 after 1984.

* Assume we have a sky system and a reference system and the sky system was ecliptic or
equatorial. What if we don’t have an equinox? Standard in FITS: EQUINOX defaults
to 2000 unless RADESYS is FK4, in which case it defaults to 1950.

* We have one item to address and that is the epoch of observation. This epoch of observa-
tion only applies to the reference systems FK4 and FK4_NO_E. In ‘Representations of
celestial coordinates in FITS’ (Calabretta & Greisen) we read that all reference systems
are allowed for both equatorial- and ecliptic coordinates, except FK4-NO-E, which is
only allowed for equatorial coordinates. If FK4-NO-E is given in combination with an
ecliptic sky system then silently FK4 is assumed.

6.4. Core Functions 37

Kapteyn Package Documentation, Release 2.2.1b16

celestial.skymatrix (skyin, skyout)
Create a transformation matrix to be used to transform a position from one sky system to another (including
epoch transformations). For a description of the sky definitions see Sky definitions.

Parameters

* skyin (Integer or tuple with one to four elements) — One of the supported sky systems or
a tuple for equatorial systems which are identified with an equinox an reference system.
This is the sky system from which you want to transform to another sky system (skyout).

* skyout — The destination sky system
Returns Three elements:

* The transformation matrix M for the transformation of positions in (x,y,z) as in XYZsky-
out = M * XYZskyin

* followed by ‘None’ or a tuple with the e-term vector belonging input epoch.
* followed by None or a tuple with the e-term vector belonging to the output epoch.
See also notes below.

Notes The reference systems FK4 and FK4_NO_E are special. We consider FK4 as a catalog
position where the e-terms are included. So besides a transformation matrix, this function
should also return a flag for the addition or removal of e-terms. This flag is either None or
the e-term vector which depends on the epoch.

The structure of the output then is as follows: M, (Al,A2,A3), (A4,A5,A6) where:
e M: The 3x3 transformation matrix

* (Al,A2,A3) or None: for adding or removing e-terms in the input sky system using this
e-term vector (Al,A2,A3).

* (A4,A5,A6) or None: for adding or removing e-terms in the output sky system using this
e-term vector (A4,A5,A6).

This function is the main function of this module. It calls function skyparser() for the pars-
ing of the input and rotmatrix() to get the rotation matrix. There utility function sky2sky()
transforms a sequence of longitudes and latitudes from one sky system to another. It is a
valuable tool for experiments in an interactive Python session.

Examples Some examples of transformations between sky systems using either strings or tu-
ples. We advise to use strings which is more safe then using variables from celestial (which
can be accidentally replaced by other values). Note that for transformations where FK4 is
involved, the matrix is followed by a vector with e-terms.

>>> from kapteyn import celestial
>>> print skymatrix(celestial.gal, (celestial.eq,"j2000",celestial.fkb))

(matrix ([[-0.05487554, 0.49410945, -0.86766614],
[-0.8734371 , -0.44482959, -0.19807639],
[-0.48383499, 0.74698225, 0.4559837911),

None,
None)

>>> print skymatrix(celestial.fk4, celestial.fk))
(matrix ([[9.99925679e-01, -1.11814832e-02, -4.85900382e-037,
[1.11814832e-02, 9.99937485e-01, -2.71625947e-05],
[4.85900377e-03, -2.71702937e-05, 9.99988195e-0111),
(-1.6255503575995309e-06,
-3.1918587795578522e-07,
-1.3842701121066153e-07), None)

38 Chapter 6. Module Celestial

Kapteyn Package Documentation, Release 2.2.1b16

>>> print skymatrix("eq,B1950.0,fk4_no_e","eq,B1950.0, fk4d")

(matrix ([[1., 0., 0.1,
(0., 1., 0.1,
[0., 0., 1.11),
None,

(-1.6255503575995309e-06,
-3.1918587795578522e-07,
-1.3842701121066153e-07))

>>> print skymatrix("eq b1950 fk4 31983.5", "eqg J2000 fk5")
(matrix ([[9.99925679e-01, -1.11818698e-02, -4.85829658e-03],
[1.11818699%e-02, 9.99937481e-01, -2.71546879e-05],
[4.85829648e-03, -2.71721706e-05, 9.99988198e-0111),
(-1.6255503575995309e-06,
-3.1918587795578522e-07,
-1.3842701121066153e-07),
None)

>>> print skymatrix("eqg J2000 fk4 F1984-1-1T0:30", "eqg J2000 fk5")
(matrix ([[1.00000000e+00, -5.45185721e-06, —-3.39404820e-07],
[5.45185723e-06, 1.00000000e+00, 2.24950276e-08],
[3.39404701e-07, -2.24971595e-08, 1.00000000e+0011),
(-1.6181121582090453e-06,
—-3.4112123324131958e-07,
-1.4789407828956555e-07),
None)

See Epochs for the equinox and epoch of observation for the possible epoch formats.

celestial.sky2sky (skyin, skyout, lons, lats)
Utility function to facilitate command line use of skymatrix.

Parameters
* skyin (See function skymatrix ())— The input sky definition
* skyout (See function skymatrix ())— The output sky definition
* lons (Floating point number(s), scalar, list or tuple) — Input longitude(s)
* lats (Floating point number(s), scalar, list or tuple) — Input latitude(s)

Returns Matrix. One position per row. See example below how to extract rows, columns and
elements from this matrix.

Example Interactive Python session:

>>> from kapteyn import celestial
>>> M = celestial.sky2sky((celestial.eq, celestial.fk5), celestial.gal,
(0,0,1.0), (10,20,20))
>>> M
matrix ([[102.6262244 , -50.83256452],
[106.78021643, -41.25289649],
[107.9914125 , -41.49143448]11])
>>> M[2,0]
107.99141249678289

>>> M[0] # Extract first transformed long, lat
matrix ([[102.6262244 , -50.83256452]1])
>>> M[:, 1] # Extract second column with latitudes

matrix ([[-50.83256452],
[-41.25289649],
[-41.49143448]1)

6.4. Core Functions 39

Kapteyn Package Documentation, Release 2.2.1b16

Notes This function illustrates the core use of module celestial. First it converts the input of
world coordinates into a matrix. This matrix is converted to spatial positions (X,Y,Z) with
function longlat2xyz(). The function dotrans() transforms these positions (X,Y,Z) to posi-
tions (X2,Y2,72) in the output sky system. Then the function xyz2longlat() converts these
positions into longitudes and latitudes and finally a matrix with these values is returned:

lonlat = n.array([(lons,lats)])
xyz = longlat2xyz (lonlat)
xyz2 = dotrans (skymatrix(skyin, skyout), xyz)

newlonlats = xyz2longlat (xyz2)
return newlonlats

celestial.epochs (spec)
Flexible epoch parser. The functions in this module have different input parameters (Julian epoch, Besselian
epochs, Julian dates) because the algorithms came from different sources. What we needed was a routine
that could convert a string which represents a date in various formats, to values for a Julian epoch, Besselian
epochs and a Julian date. This function returns these value for any valid input date.

For the epoch syntax read the documentation at Epochs for the equinox and epoch of observation. Note that
an epoch of observation is either a second epoch in the string (the first is always the equinox) or the epoch
string has a suffix ‘_’ which may be follwed by arbitrary characters.

Parameters spec (String) — An epoch specification (see below)

Returns Calculated corresponding Besselian epoch, Julian epoch and Julian date. Return in
order: B, J, JD

Reference Various sources listing Julian dates.
Notes
Examples Some checks:
>>> celestial.epochs ('F2008-03-31T8:09") # should return:
(2008.2474210134737, 2008.2459673739454, 2454556.8395833336)
>>> celestial.epochs ('F2007-01-14T13:18:59.9")
(2007.0378545262108, 2007.0364267212976, 2454115.0548599539)
>>> celestial.epochs ("32007.0364267212976")
(2007.0378545262108, 2007.0364267212976, 2454115.0548599539)

>>> celestial.epochs ("b2007.0378545262108")
(2007.0378545262108, 2007.0364267212976, 2454115.0548599539)

6.5 Utility functions

celestial.JdD (year, month, day)
Calculate Julian day number (Julian date)

Parameters
* year (Integer) — Year (nnnn)
* month (Integer) — Month (nn)
* day (Floating point number) — Day (nn.n...)
Returns Julian day number jd.
Reference Meeus, Astronomical formula for Calculators, 2nd ed, 1982

Notes Months start at 1. Days start at 1. The Julian day begins at Greenwich mean noon, i.e.
at 12h. So Jan 1, 1984 at Oh is entered as JD(1984,1,1) and Jan 1, 1984 at 12h is entered as
JD(1984,1,1.5)

40 Chapter 6. Module Celestial

Kapteyn Package Documentation, Release 2.2.1b16

There is a jump at JD(1582,10,15) caused by a change of calendars. For dates after 1582-
10-15 one enters a date from the Julian calendar and before this date you enter a date from
the Gregorian calendar.

Examples
e Julian date of JD reference: print celestial.JD(-4712,1,1.5) ==> 0.0

* The first day of 1 B.C.: print celestial.JD(0,1,1) ==> 1721057.5

* Last day before Gregorian reform: print celestial.JD(1582,10,4) ==>
2299159.5

* First day of Gregorian reform: print celestial.JD(1582,10,15) ==>
2299170.5

* Half a day later: print celestial.JD(1582,10,15.5) ==> 2299161.0
e Unix reference: print celestial.JD(1970,1,1) ==> 2440587.5

celestial.lon2hms (a, prec=1, delta=None, tex=False)
Convert an angle in degrees to hours, minutes, seconds format.

Parameters

* a (Floating point number) — Angle (in degrees) for which we want to create a formatted
text label.

* prec (Integer) — The required number of decimals in the seconds part of output. If a
value is omitted, then the default is 1.

* delta (None or a floating point number) — If one labels world coordinates along an axis
then the default labels are in hours, minutes and seconds with some decimal number.
This is probably not want you want if the step size between subsequent positions is for
example an integer number of degrees or minutes. Then you want labels showing only
hours or hours and minutes. This function tries to find out whether this is the case (given
a value for delta) or not. If so, a minimum length label is returned.

* tex (Boolean) — The default is False. If set to True, the string is formatted in LaTeX.
Such labels can be plotted in, for example, Matplotlib.

Returns Formatted string representing the input angle.

Notes Longitudes are forced into the range, 360 deg. and then converted to hours, minutes and
seconds.

Examples Format a position in hms and dms:

>>> ra = 359.9999

>>> dec = 0.0000123

>>> print celestial.lonZ2hms(ra), celestial.lat2dms (dec)
00h 00Om 0.0s +00d 00m 0.0s

>>> print celestial.lon2hms(ra, 2), celestial.lat2dms(dec, 2)
23h 59m 59.98s +00d 00m 0.04s

>>> print celestial.lon2hms(ra, 4), celestial.lat2dms (dec, 4)
23h 59m 59.9760s +00d 00m 0.0443s

celestial.lat2dms (a, prec=1, delta=None, tex=False)
Convert an angle in degrees into the degrees, minutes, seconds format assuming it was a latitude. Its value
should be in the range -90 to 90 degrees

Parameters

* a (Floating point number) — Angle (in degrees) for which we want to create a formatted
text label.

* prec (Integer) — The required number of decimals in the seconds part of output. If a
value is omitted, then the default is 1.

6.5. Utility functions 41

Kapteyn Package Documentation, Release 2.2.1b16

* delta (None or a floating point number) — If one labels world coordinates along an axis
then the default labels are in degrees, minutes and seconds with some decimal number.
This is probably not want you want if the step size between subsequent positions is for
example an integer number of degrees or minutes. Then you want labels showing only
degrees or degrees and minutes. This function tries to find out whether this is the case
(given a value for delta) or not. If so, a minimum length label is returned.

* tex (Boolean) — The default is False. If set to True, the string is formatted in LaTeX.
Such labels can be plotted in, for example, Matplotlib.

Returns Formatted string representing the input angle or a string with ‘#” characters indicating
that the input was out of range.

Notes The HMS and DMS format should be treated differently because their ranges in world
coordinates are different. Longitudes should be in range of (0,360) degrees. So -10 deg is
in fact 350 deg. and 370 deg is in fact 10 deg. Latitudes range from -90 to 90 degrees. Then
91 degrees is in fact 89 degrees but at a longitude that is separated 180 deg. from the stated
longitude. But we don’t have control over the longitudes here so the only thing we can do is
reject the value and return a dummy string.

celestial.lon2dms (a, prec=1, delta=None, tex=False)
Convert an angle in degrees to degrees, minutes, seconds format, assuming the input is a longitude but not
associated with an equatorial system.

Parameters

* a (Floating point number) — Angle (in degrees) for which we want to create a formatted
text label

* prec (Integer) — The required number of decimals in the seconds part of output If a
value is omitted, then the default is 1.

¢ delta (None or a floating point number) — If one labels world coordinates along an axis
then the default labels are in hours, minutes and seconds with some decimal number.
This is probably not want you want if the step size between subsequent positions is for
example an integer number of degrees or minutes. Then you want labels showing only
degrees or degrees and minutes. This function tries to find out whether this is the case
(given a value for delta) or not. If so, a minimum length label is returned.

* tex (Boolean) — The default is False. If set to True, the string is formatted in LaTeX.
Such labels can be plotted in, for example, Matplotlib.

Returns Formatted string representing the input angle.

Notes Longitudes are forced into the range 0, 360 deg. and then converted to hours, minutes
and seconds.

Examples Format a longitude to dms:
>>> print celestial.lon2dms (167.342, 4)
167d 20m 31.2000s

>>> print celestial.lon2dms(-10, 4)
350d Om 0.0000s

celestial.JdJD2epochBessel (/D)
Convert a Julian date to a Besselian epoch.

Parameters JD (Floating point number) — Julian date (e.g. 2445700.5)

Returns Besselian epoch (e.g. 1983.9)

Reference Standards Of Fundamental Astronomy,
http://www.iau-sofa.rl.ac.uk/2003_0429/sofa/epb.html

Notes e.g. 2445700.5 -> 1983.99956681

42 Chapter 6. Module Celestial

http://www.iau-sofa.rl.ac.uk/2003_0429/sofa/epb.html

Kapteyn Package Documentation, Release 2.2.1b16

One Tropical Year is 365.242198781 days and JD(1900) = 2415020.31352
If we know the JD then the Besselian epoch can be calculated with:
BE = B[1900 + (JD - 2415020.31352)/365.242198781]

Expression corresponds to the IAU SOFA expression in the reference with:
2451545-36524.68648 = 2415020.31352

celestial.epochBessel2JD (Bepoch)
Convert a Besselian epoch to a Julian date

Parameters Bepoch (Floating point number) — Besselian epoch in format nnnn.nn

Returns Julian date

Reference See: JD2epochBessel ()

Notes e.g. 1983.99956681 converts into 2445700.5 It’s the inverse of JD2epochBessel ()

celestial.JdD2epochdulian (JD)
Convert a Julian date to a Julian epoch

Parameters JD (Floating point number) — Julian date

Returns Julian epoch

Reference Standards Of Fundamental Astronomy,
http://www.iau-sofa.rl.ac.uk/2003_0429/sofa/epj.html

Notes e.g. 2445700.5 converts into 1983.99863107 Assuming years of exactly

365.25 days, we can calculate a Julian epoch from a Julian date. Expression corresponds to
IAU SOFA routine ‘epj’

celestial.epochdJulian2JD (Jepoch)
Convert a Julian epoch to a Julian date

Parameters Jepoch (Floating point number) — Julian epoch (in format nnnn.nn)
Returns Julian date
Reference See JD2epochJulian ()

Notes e.g. 1983.99863107 converts into 2445700.5 It’s the inverse of function
JD2epochJulian

celestial.obliquity1980 (jd)
What is the obliquity of the ecliptic at this Julian date? (IAU 1980 model)

Parameters jd (Floating point number) — Julian date
Returns Mean obliquity in degrees

Reference Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed),
University Science Books (1992), Expression 3.222-1 (p114).

Notes The epoch is entered in Julian date and the time is calculated w.r.t. J2000.

The obliquity is the angle between the mean equator and ecliptic, or, between the ecliptic
pole and mean celestial pole of date

celestial.obliquity2000 (jd)
What is the obliquity of the ecliptic at this Julian date? (IAU model 2000)

Parameters jd (Floating point number) — Julian date
Returns Mean obliquity in degrees

Reference Fukushima, T. 2003, AJ, 126,1 Kaplan, H., 2005, The IAU Resolutions on Astro-
nomical Reference Systems, Time Scales, and Earth Rotation Models, United States Naval
Observatory circular no. 179, http://aa.usno.navy.mil/publications/docs/Circular_179.pdf
(page 44)

6.5. Utility functions 43

http://www.iau-sofa.rl.ac.uk/2003_0429/sofa/epj.html
http://aa.usno.navy.mil/publications/docs/Circular_179.pdf

Kapteyn Package Documentation, Release 2.2.1b16

Notes The epoch is entered in Julian date and the time is calculated w.r.t. J2000.

The obliquity is the angle between the mean equator and ecliptic, or, between the ecliptic
pole and mean celestial pole of date.

celestial.IAU2006precangles (epoch)
Calculate IAU 2000 precession angles for precession from input epoch to J2000.

Parameters epoch (Floating point number) — Julian epoch of observation.

Returns Angles ¢ (zeta), z, 6 (theta) in degrees to setup a rotation matrix to transform from

J2000 to input epoch.
Reference Capitaine N. et al., AU 2000 precession A&A 412, 567-586 (2003)
Notes Input are Julian epochs! T = (jd-2451545.0)/36525.0 Combined with jd

= Jepoch-2000.0)%x365.25 + 2451545.0 gives: (see module code at function
epochJulian2JD(epoch)) T = (epoch-2000.0)/100.0

This function should be updated as soon as there are IAU2006 adopted angles to replace the
angles used in this function.

celestial.Lieskeprecangles (jdl, jd2)
Calculate IAU 1976 precession angles for a precession of epoch corresponding to Julian date jd1 to epoch
corresponds to Julian date jd2.

Parameters
* jd1 (Floating point number) — Julian date for start epoch
* jd2 (Floating point number) — Julian date for end epoch
Returns Angles ((zeta), z, 0 (theta) degrees
Reference Lieske,J.H., 1979. Astron.Astrophys.,73,282. equations (6) & (7), p283.

Notes The ES (Explanatory Supplement to the Astronomical Almanac) lists for a IAU1976
precession from 1984, January 1dOh to J2000 the angles in arcsec: xi_a=368.9985,
ze_a=369.0188 and th_a=320.7279 Using the functions in this module, this can
be calculated by applying:

>>> jdl = celestial.JD(1984,1,1)
>>> jd2 = celestial.JdD(2000,1,1.5)
>>> print celestial.Lieskeprecangles (jdl, 3jd2)
(0.10249958598931658, 0.10250522534285664, 0.089091092843880629)
>>> print [ax3600 for a in angles]
[368.99850956153966, 369.01881123428387, 320.72793423797026]

The function returns values in degrees, while literature values often are listed in seconds of
arc.

Lieske’s fit belongs to the so called Quasi-Linear Types Below a table with the precision
(according to IAU SOFA):

* 1960AD to 2040AD: <0.1”

* 1640AD to 2360AD: < 1”7
500BC to 3000AD: < 3”

1200BC to 3900AD: > 10”

< 4200BC or > 5600AD: > 100”
* < 6800BC or > 8200AD: > 1000~

celestial .Newcombprecangles (epochl, epoch2)
Calculate precession angles for a precession in FK4, using Newcomb’s method (Woolard and Clemence
angles)

44 Chapter 6. Module Celestial

Kapteyn Package Documentation, Release 2.2.1b16

Parameters
* epochl (Floating point number) — Besselian start epoch
* epoch2 (Floating point number) — Besselian end epoch
Returns Angles ((zeta), z, 0 (theta) degrees
Reference ES 3.214 p.106

Notes Newcomb’s precession angles for old catalogs (FK4), see ES 3.214 p.106. In-
put are Besselian epochs! Adopted accumulated precession angles from equator and
equinox at B1950 to 1984 January 1d Oh according to ES (table 3.214.1, p 107)
are: zeta=783.7092, z=783.8009 and theta=681.3883 The Woolard and
Clemence angles (derived in this routine) are: zeta=783.70925, z=783.80093
and theta=681.38830 (see same ES table as above).

This routine found (in seconds of arc): =zeta,z,theta = 783.709246271
783.800934641 681.388298284 fortl = 0.1 and t2 = 0.133999566814
using the lines in the next example.

Examples From an interactive Python session:
>>> pl = 1950.0
>>> b2 = celestial.epochs ("F1984-01-01") [0]

>>> print [x+x3600 for x in celestial.Newcombprecangles (bel, be2)]
[783.70924627097793, 783.80093464073127, 681.38829828393466]

6.6 Rotation matrices

celestial.MatrixEqgB19502Gal ()
Create matrix to convert equatorial fk4 coordinates (without e-terms) to IAU 1958 1ILbII system of galactic
coordinates.

Parameters None

Results 3x3 Matrix M as in XYZgal =M * XYZb1950

Reference
1. Blaauw, A., Gum C.S., Pawsey, J.L., Westerhout, G.: 1958,
2. Monthly Notices Roy. Astron. Soc. 121, 123,
3. Blaauw, A., 2007. Private communications.

Notes Original definitions from 1.:

* The new north galactic pole lies in the direction alpha = 12h49m (192.25 deg),
delta=27.4 deg (equinox 1950.0).

* The new zero of longitude is the great semicircle originating at the new north galactic
pole at the position angle theta = 123 deg with respect to the equatorial pole for 1950.0.

* Longitude increases from 0 to 360 deg. The sense is such that, on the galactic equa-
tor increasing galactic longitude corresponds to increasing Right Ascension. Latitude
increases from -90 deg through 0 deg to 90 deg at the new galactic pole.

Given the RA and Dec of the galactic pole, and using the Euler angles scheme:
M = rotZ(a3) .rotY¥(a2) .rotZ(al)
We first rotate the spin vector of the XY plane about an angle al = ra_pole and then rotate

the spin vector in the XZ plane (i.e. around the Y axis) with an angle a2=90-dec_pole to
point it in the right declination.

6.6. Rotation matrices 45

Kapteyn Package Documentation, Release 2.2.1b16

Now think of a circle with the galactic pole as its center. The radius is equal to the distance
between this center and the equatorial pole. The zero point now is on the circle and opposite
to this pole.

We need to rotate along this circle (i.e. a rotation around the new Z-axis) in a way that the
angle between the zero point and the equatorial pole is equal to 123 deg. So first we need to
compensate for the 180 deg of the current zero longitude, opposite to the pole. Then we need
to rotate about an angle 123 deg but in a way that increasing galactic longitude corresponds
to increasing Right Ascension which is opposite to the standard rotation of this circle (note
that we rotated the original X axis about 192.25 deg). The last rotation angle therefore is
a3=+180-123:

M = rotZ(180-123.0)»rotY (90-27.4)*rotZz(192.25)
The composed rotation matrix is the same as in Slalib’s ‘ge50.f” and the matrix in eq. (32)
of Murray (1989).

celestial.MatrixGal2Sgal ()
Transform galactic to supergalactic coordinates

Parameters None
Returns Matrix M as in XYZsgal = M * XYZgal

Reference Lahav, O., The supergalactic plane revisited with the Optical Redshift Survey Mon.
Not. R. Astron. Soc. 312, 166-176 (2000)

Notes The Supergalactic equator is conceptually defined by the plane of the local (Virgo-Hydra-
Centaurus) supercluster, and the origin of supergalactic longitude is at the intersection of the
supergalactic and galactic planes. (de Vaucouleurs)

North SG pole at 1=47.37 deg, b=6.32 deg. Node at 1=137.37, sgl=0 (inclination 83.68 deg).

Older references give for he position of the SG node 137.29 which differs from 137.37 deg
in the official definition.

For the rotation matrix we chose the scheme Rz.Ry.Rz Then first we rotate about 47.37
degrees along the Z-axis followed by a rotation about 90-6.32 degrees is needed to set the
pole to the right declination. The new plane intersects the old one at two positions. One
of them is 1=137.37, b=0 (in galactic coordinates). If we want this to be sgl=0 we have
to rotate this plane along the new Z-axis about an angle of 90 degrees. So the composed
rotation matrix is:

M = Rotz (90) *Roty (90-6.32) xRotz (47.37)
celestial.MatrixEq2Ecl (epoch, S1)
Calculate a rotation matrix to convert equatorial coordinates to ecliptical coordinates
Parameters
* epoch (Floating point number) — Epoch of the equator and equinox of date
* S1 (Integer) — equatorial system to determine if one entered epoch in B or J coordinates.
Returns 3x3 Matrix M as in XYZecl =M * XYZeq

Reference Representations of celestial coordinates in FITS, Calabretta. MR,
& Greisen, E.W., (2002) Astronomy & Astrophysics, 395, 1077-1122.
http://www.atnf.csiro.au/people/mcalabre/WCS/ccs.pdf

Notes

1. The origin for ecliptic longitude is the vernal equinox. Therefore the coordinates of a
fixed object is subject to shifts due to precession. The rotation matrix uses the obliquity
to do the conversion to the wanted ecliptic coordinates. So we always need to enter

46 Chapter 6. Module Celestial

http://www.atnf.csiro.au/people/mcalabre/WCS/ccs.pdf

Kapteyn Package Documentation, Release 2.2.1b

16

an epoch. Usually this is J2000, but it can also be the epoch of date. The additional
reference system indicates whether we need a Besselian or a Julian epoch.

2. Inthe FITS paper of Calabretta and Greisen (2002), one observes the following relations
to FITS:

-Keyword RADESY Sa sets the catalog system FK4, FK4-NO-E or FK5 This applies to
equatorial and ecliptical coordinates with the exception of FK4-NO-E.

-FK4 coordinates are not strictly spherical since they include a contribution from the
elliptic terms of aberration, the so-called e-terms which amount to max. 343 milliarcsec.
FITS paper: ‘Strictly speaking, therefore, a map obtained from, say, a radio synthesis
telescope, should be regarded as FK4-NO-E unless it has been appropriately re-sampled
or a distortion correction provided. In common usage, however, CRVALia for such maps
is usually given in FK4 coordinates. In doing so, the e-terms are effectively corrected
to first order only.”. (See also ES, eq. 3.531-1 page 170.

-Keyword EQUINOX sets the epoch of the mean equator and equinox.

-Keyword EPOCH is often used in older FITS files. It is a deprecated keyword and
should be replaced by EQUINOX. It does not require keyword RADESYS. From its
value we derive whether the reference system is FK4 or FKS (the marker value is
1984.0)

-Ecliptic coordinates require the epoch of the equator and equinox of date. This will be
taken as the time of observation rather than EQUINOX.

FITS paper: ‘The time of observation may also be required for other astrometric pur-
poses in addition to the usual astrophysical uses, for example, to specify when the mean
place was correct in accounting for proper motion, including “fictitious” proper mo-
tions in the conversion between the FK4 and FK5 systems. The old *DATE-OBS key-
word may be used for this purpose. However, to provide a more convenient specification
we here introduce the new keyword MJD-OBS’ .*

So MJD-OBS is the modified Julian Date (JD - 2400000.5) of the start of the observa-
tion.

3. Equatorial to ecliptic transformations use the time dependent obliquity of the equator
(also known as the obliquity of the ecliptic). Again, start with:

M = rotZ(0) .rotX(eps) .rotZ(0) = E.rotX(eps).E = rotX(eps)

In fact this is only a rotation around the X axis

celestial .FK42FK5Matrix (1=None)
Create a matrix to precess from B1950 in FK4 to J2000 in FKS5 following to Murray’s (1989) procedure.

Parameters t (Floating point number) — Besselian epoch as epoch of observation.
Returns 3x3 matrix M as in XYZfk5 =M * XYZfk4
Reference

* Murray, C.A. The Transformation of coordinates between the systems B1950.0 and
J2000.0, and the principal galactic axis referred to J2000.0, Astronomy and Astro-
physics (ISSN 0004-6361), vol. 218, no. 1-2, July 1989, p. 325-329.

* Poppe P.C.R.,, Martin, V.A.F,, Sobre as Bases de Referencia Celeste SitientibusSerie
Ciencias Fisicas

Notes Murray precesses from B1950 to J2000 using a precession matrix by Lieske. Then ap-
plies the equinox correction and ends up with a transformation matrix X(0) as given in this
function.

In Murray’s article it is proven that using the procedure as described in the article, r_fk5 =
X (0) .r_fk4 for extra galactic sources where we assumed that the proper motion in FKS5

6.6. Rotation matrices

47

Kapteyn Package Documentation, Release 2.2.1b16

is zero. This procedure is independent of the epoch of observation. Note that the matrix is
not a rotation matrix.

FK4 is not an inertial coordinate frame (because of the error in precession and the motion of
the equinox. This has consequences for the proper motions. e.g. a source with zero proper
motion in FK5 has a fictitious proper motion in FK4. This affects the actual positions in
a way that the correction is bigger if the epoch of observation is further away from 1950.0
The focus of this library is on data of which we do not have information about the proper
motions. So for positions of which we allow non zero proper motion in FK5 one needs to
supply the epoch of observation.

Examples Print the difference between the rotation matrix for 1970 and 1980:

>>> M1 celestial .FK42FK5Matrix (1970)

>>> M2 = celestial .FK42FK5Matrix (1980)

>>> M2 - Ml

matrix ([[-2.64546940e-10, -1.15396722e-07, 2.11108953e-071,
[1.15403817e-07, -1.29040234e-09, 2.36016437e-09],
[-2.11125281e-07, -5.60232514e-10, 1.02585540e-09]]

celestial.ICRS2FK5Matrix ()
Create a rotation matrix to convert a position from ICRS to fk5, J2000

Parameters None
Returns 3x3 rotation matrix M as in XYZfk5 =M * XYZicrs

Reference Kaplan G.H., The IAU Resolutions on Astronomical Reference systems, Time
scales, and Earth Rotation Models, US Naval Observatory, Circular No. 179

Notes Return a matrix that converts a position vector in ICRS to FK5, J2000. We do not use
the first or second order approximations given in the reference, but use the three rotation
matrices from the same paper to obtain the exact result:

M = rotX(-etal)* rotY (xi0) *xrotZ (dal)

eta0 =-19.9 mas, xi0 = 9.1 mas and da0 = -22.9 mas

celestial.ICRS2J2000Matrix ()
Return a rotation matrix for conversion of a position in the ICRS to the dynamical reference system based
on the dynamical mean equator and equinox of J2000.0 (called the dynamical J2000 system)

Parameters None
Returns Rotation matrix to transform positions from ICRS to dyn J2000
Reference

* Hilton and Hohenkerk (2004), Astronomy and Astrophysics 413, 765-770

» Kaplan G.H., The IAU Resolutions on Astronomical Reference systems, Time scales,
and Earth Rotation Models, US Naval Observatory, Circular No. 179

Notes Return a matrix that converts a position vector in ICRS to Dyn. J2000. We do not use
the first or second order approximations given in the reference, but use the three rotation
matrices to obtain the exact result:

M = rotX(-etal)+rotY (xi0) rrotz (da0l)

eta0 = -6.8192 mas, xi0 =-16.617 mas and da0 = -14.6 mas

celestial.JdMatrixEpochl2Epoch2 (Jepochl, Jepoch2)
Precession from one epoch to another in the fk5 system. It uses Lieskeprecangles () to calculate the
precession angles.

Parameters

48 Chapter 6. Module Celestial

Kapteyn Package Documentation, Release 2.2.1b16

* Jepochl (Floating point number) — Julian start epoch
* Jepoch2 (Floating point number) — Julian epoch to precess to.
Returns 3x3 rotation matrix M as in XYZepoch2 =M * XYZepochl

Reference Seidelman, P.K., 1992. Explanatory Supplement to the Astronomical Almanac. Uni-
versity Science Books, Mill Valley. 3.214 p 106

Notes The precession matrix is:

M = rotZ(-z) .rotY (+theta) .rotZ (-zeta)

celestial.BMatrixEpochl2Epoch2 (Bepochl, Bepoch2)
Precession from one epoch to another in the fk4 system. It uses Newcombprecangles () to calculate
the precession angles.

Parameters

* Bepochl (Floating point number) — Besselian start epoch

* Bepoch2 (Floating point number) — Besselian epoch to precess to.
Returns 3x3 rotation matrix M as in XYZepoch2 =M * XYZepochl

Reference Seidelman, P.K., 1992. Explanatory Supplement to the Astronomical Almanac. Uni-
versity Science Books, Mill Valley. 3.214 p 106

Notes The precession matrix is:

M = rotZ(-z) .rotY¥ (+theta) .rotZ (-zeta)

celestial.IAU2006MatrixEpochl2Epoch2 (epochl, epoch2)
Create a rotation matrix for a precession based on IAU 2000/2006 expressions, see function
IAU2006precangles ()

Parameters
* epochl (Floating point number) — Julian start epoch
* epoch2 (Floating point number) — Julian epoch to precess to.

Returns Matrix to transform equatorial coordinates from epochl to epoch2 as in XYZepoch2
=M * XYZepochl

Reference Capitaine N. et al.: IAU 2000 precession A&A 412, 567-586 (2003)

Notes Note that we apply this precession only to equatorial coordinates in the system of dy-
namical J2000 coordinates. When converting from ICRS coordinates this means applying
a frame bias. Therefore the angles differ from the precession Fukushima-Williams angles
(IAU 2006)

The precession matrix is:

M = rotZ(-z) .rotY (+theta) .rotZ (—zeta)

celestial .MatrixEpochl2Epoch2 (epochl, epoch2, S1, S2, epobs=None)
Helper function for skymatrix (). It handles precession and the transformation between equatorial
systems. This function includes also conversions between reference systems.

Parameters

 epochl (Floating point number) — Epoch belonging to system S1 depending on the
reference system either Besselian or Julian.

* epoch2 — Epoch belonging to system S2 depending on the reference system either
Besselian or Julian.

* S1 (Integer) — Input reference system

6.6. Rotation matrices 49

Kapteyn Package Documentation, Release 2.2.1b16

* S2 (Integer) — Output rreferencesystem

* epobs (Floating point number) — Epoch of observation. Only valid for conversions
between FK4 and FKS5.

Returns Rotation matrix to transform a position in one of the reference systems S with epochl
to an equatorial system with equator and equinox at epoch?2 in reference system S2.

Notes Return matrix to transform equatorial coordinates from epochl to epoch?2 in either ref-
erence system FK4 or FKS5. Or transform from epoch, FK4 or FK5 to ICRS or J2000 vice
versa. Note that each transformation between FK4 and one of the other reference systems
involves a conversion to FK5 and therefore the epoch of observation will be involved.

Note that if no systems are entered and the one epoch is > 1984 and the other < 1984, then
the transformation involves both sky reference systems FK4 and FKS5.

Examples Calculate rotation matrix for a conversion between FK4, epoch 1940 to FKS, epoch
1960, while the date of observation was 1950.

>>> from kapteyn import celestial
>>> celestial.MatrixEpochl2Epoch2 (1940, 1960, celestial.fk4, celestial.fk5, 1950)
matrix ([[9.99988107e-01, -4.47301372e-03, -1.94362889e-03],

[4.47301372e-03, 9.99989996e-01, -4.34712255e-06],

[1.94362889e-03, -4.34680782e-06, 9.99998111e-01]1)

6.7 Functions related to E-terms

celestial.getEterms (epoch)
Compute the E-terms (elliptic terms of aberration) for a given epoch.

Parameters epoch (Floating point number) — A Besselian epoch
Returns A tuple containing the e-terms vector (DeltaD,DeltaC,DeltaC.tan(e0))

Reference Seidelman, P.K., 1992. Explanatory Supplement to the Astronomical Almanac. Uni-
versity Science Books, Mill Valley

Notes The method is described on page 170/171 of the ES. One needs to process the e-terms
for the appropriate epoch This routine returns the e-term vector for arbitrary epoch.

celestial.addEterms (xyz, a=None)
Add the elliptic component of annual aberration when the result must be a catalogue fk4 position.

Parameters

* xyz (NumPy (n,2) matrix) — Cartesian position(s) converted from lonlat = [
(al,dl),(a2,d2), ..., (an,dn)] > xyz = [(x1,y1,z1), (x2,y2,22), ..., (Xn,yn,zn)]

* a (Tuple with 3 floating point numbers) — E-terms vector (as returned by getEterms()) If
input a is omitted (i.e. a == None), the e-terms for 1950 will be substituted.

Result Apparent place, NumPy (n,2) matrix
Reference

* Seidelman, PK., 1992. Explanatory Supplement to the Astronomical Almanac. Univer-
sity Science Books, Mill Valley.

* Yallop et al, Transformation of mean star places, AJ, 1989, vol 97, page 274

» Stumpff, On the relation between Classical and Relativistic Theory of Stellar Aberra-
tion, Astron, Astrophys, 84, 257-259 (1980)

Notes There is a so called ecliptic component in the stellar aberration. This vector depends
on the epoch at which we want to process these terms. It corresponds to the component
of the earth’s velocity perpendicular to the major axis of the ellipse in the ecliptic. The

50 Chapter 6. Module Celestial

Kapteyn Package Documentation, Release 2.2.1b16

E-term corrections are as follows. A catalog FK4 position include corrections for elliptic
terms of aberration. These positions are apparent places. For precession and/or rotations
to other sky systems, one processes only mean places. So to get a mean place, one has to
remove the E-terms vector. The ES suggests for the removal to use a decompositions of
the E-term vector along the unit circle to get the approximate new vector, which has almost
the correct angle and has almost length 1. The advantage is that when we add the E-term
vector to this new vector, we obtain a new vector with the original angle, but with a length
unequal to 1, which makes it suitable for closure tests. However, the procedure can be made
more rigorous: For the subtraction we subtract the E-term vector from the start vector and
normalize it afterwards. Then we have an exact new angle (opposed to the approximation
in the ES). The procedure to go from a vector in the mean place system to a vector in the
system of apparent places is a bit more complicated: Find a value for lambda so that the
current vector is adjusted in length so that adding the e-term vector gives a new vector with
length 1. This is by definition the new vector with the right angle. For more information,
see the background information in Background information module celestial.

celestial.removeEterms (xyz, a=None)
Remove the elliptic component of annual aberration when this is included in a catalogue fk4 position.

Parameters

* xyz (NumPy (n,2) matrix) — Cartesian position(s) converted from lonlat = [
(al,dl),(a2,d2), ..., (an,dn)] —> xyz = [(x1,yl,z1), (x2,y2,22), ..., (Xxn,yn,zn)]

* a (Tuple with 3 floating point numbers) — E-terms vector (as returned by getEterms()) If
input a is omitted (== None), the e-terms for 1950 will be substituted.

Result Mean place, NumPy (n,2) matrix

Notes Return a new position where the elliptic terms of aberration are removed i.e. convert a
apparent position from a catalog to a mean place. The effects of ecliptic aberration were
included in the catalog positions to facilitate telescope pointing. See also notes at ‘addE-
terms’.

6.7. Functions related to E-terms 51

Kapteyn Package Documentation, Release 2.2.1b16

52

Chapter 6. Module Celestial

CHAPTER 7

Module wcsgrat

A graticule is a system of crossing lines on a map representing positions of which one coordinate is constant. For
a spatial map it consists of parallels of latitude and meridians of longitude as defined by a given projection.

This module is used to set up such graticules and labels for the selected world coordinate system. It plots the
results with plotting library Matplotlib.

Besides spatial axes, it supports also spectral axes and a mix of both (e.g. position-velocity diagrams). It deals with
data dimensions > 2 by allowing arbitrary selections of two axes. The transformations between pixel coordinates
and world coordinates are based on module wcs which is a Python binding for Mark R. Calabretta’s library
WCSLIB. >From WCSLIB we use only the core transformation routines. Header parsing is done with module
wCs.

Axes types that are not recognized by this software is treated as being linear. The axes types correspond with
keywords CTYPEn in a FITS file. The information from a FITS file is retrieved by module PyFITS

See Also:

Tutorial material with code examples:
¢ Tutorial maputils module which contains many examples with source code, see Tutorial maputils module.
* Figure gallery ‘all sky plots’ with many examples of Graticule constructors, see All Sky plots.

Module author: Martin Vogelaar <gipsy@astro.rug.nl>

7.1 Module level data

left, bottom, right, top The variables left, bottom, right and top are equivalent to the strings “left”,

» o«

“bottom”, “right” and “top” and are used as identifiers for plot axes.

native, notnative, bothticks, noticks The variables native, notnative, bothticks, noticks corre-
spond to the numbers O, 1, 2 and 3 and represent modes to make ticks along an axis visible or invisible.
Ticks along an axis can represent both world coordinate types (e.g. when a map is rotated). Sometimes one
wants to allow this and sometimes not.

Tick mode Description

native Show only ticks that are native to the coordinate axis. Do not allow ticks that correspond
to the axis for which a constant value applies. So, for example, in a RA-DEC map which
is rotated 45 degrees we want only Right Ascensions along the x-axis.

notnative Plot the ticks that are not native to the coordinate axis. So, for example, in a RA-DEC
map which is rotated 45 degrees we want only Declinations along the x-axis.

bothticks Allow both type of ticks along a plot axis

noticks Do not allow any tick to be plotted.

53

http://matplotlib.sourceforge.net/index.html
http://www.atnf.csiro.au/people/mcalabre/WCS
http://www.stsci.edu/resources/software_hardware/pyfits
mailto:gipsy@astro.rug.nl

Kapteyn Package Documentation, Release 2.2.1b16

7.2 Functions

wcsgrat .gethmsdms (a, prec, axtype, skysys, eqlon=None)
Given a number in degrees and an axis type in axtype equal to ‘longitude’ or ‘latitude’, calculate and return
the parts of its sexagesimal representation, i.e. hours or degrees, minutes and seconds. Also return the
fractional seconds and the sign if the input was a value at negative latitude. The value for skysys sets the
formatting to hours/minutes/seconds if it represents an equatorial system.

Parameters
* a (Floating point) — The longitude or latitude in degrees.
* prec (Integer) — The number of decimals in the seconds
* axtype (String) — One of ‘longitude’ or ‘latitude’
* skysys (Integer) — The sky system

Returns tuple: (Ihours, Ideg, Imin, Isec, Fsec, sign) which represent Integer values for the
hours, degrees, minutes and seconds. Fsec is the fractional part of the seconds. Element
sign is -1 for negative latitudes and +1 for positive latitudes.

wcsgrat .makelabel (hmsdms, Hlab, Dlab, Mlab, Slab, prec, fint, tex)
From the output of function gethmsdms and some Booleans, this function creates a label in plain text or in
TeX. The Booleans set a flag whether a field (hours, degrees, minutes or seconds) should be printed or not.
The fint parameter is used if it does not contain the percentage character (%) but instead contains characters
from the set HDMS. A capital overules the corresponding Boolean value, so if fimt="HMS’, the values for
Hlab, Mlab and Slab are all set to True.

Parameters

* hmsdms (Tuple with integer and floating point numbers) — The output of function
wcsgrat.gethmsdms ()

» Hlab - If False, there is no need to print the hours

* Dlab - If False, there is no need to print the degrees
e Mlab - If False, there is no need to print the minutes
* Slab - If False, there is no need to print the seconds

» fmt (String) — String containing a combination of the characters ['H’, ‘D’, ‘M’, ‘S’, .,
‘h’, ‘d’, ‘m’, ‘s’] A capital sets the corresponding input Boolean (Hlab, Dlab, etc.) to
True. A dot starts to set the precision. The number of characters after the dot set the
precision itself. A character that is not a capital sets the corresponding input Boolean
(Hlab, Dlab, etc.) to False. This is a bit dangerous because with this option one can
suppress fields to be printed that contain a value unequal to zero. It is applied if you
want to suppress e.g. seconds if all the seconds in your label are 0.0. The suppression of
printing minutes is overruled if hours (or degrees) and seconds are required. Otherwise
we could end up with non standard labels (e.g. 2h30s).

¢ tex (Boolean) — If True, then format the labels in LaTeX.
Returns lab, a label in either hms or dms in plain text or in LaTeX format.
Examples
>>> # Set the format in Hours, minutes and seconds with a precision

>>> # of three. The suppression of minutes will not work here:
>>> grat.setp_tick (wcsaxis=0, fmt="HmS.SSS")

>>> # The same effect 1is obtained with:
>>> grat.setp_tick(wcsaxis=0, fmt="HmS.###")

54 Chapter 7. Module wcsgrat

Kapteyn Package Documentation, Release 2.2.1b16

>>>
>>>
>>>

>>>
>>>
>>>

>>>
>>>

Let the system determine whether seconds are printed
but make sure that degrees and minutes are included:
grat.setp_tick (wcsaxis=1, fmt="DM")

If we know that all minutes and seconds in our labels are 0.0
and we want only the hours to be printed, then use:
grat.setp_tick (wcsaxis=0, fmt="Hms")

grat.setp_tick (wcsaxis=0, fmt="Dms")
Plot labels in Degrees even if the axis 1s an equatorial longitude.

7.3 Class Graticule

class wcsgrat .Graticule (header=None, graticuledata=None, axnum=None, wcstypes=None,

pxlim=None, pylim=None, mixpix=None, spectrans=None, skyout=None,
alter="°, wxlim=None, wylim=None, boxsamples=5000, startx=None,
starty=None, deltax=None, deltay=None, skipx=False, skipy=False,
gridsamples=1000, labelsintex=True, offsetx=None, offsety=None,
unitsx=None, unitsy=None)

Creates an object that defines a graticule A (spatial) graticule consists of parallels and meridians. We extend
this to a general grid so we can cover every type of map (e.g. position velocity maps).

Parameters

header (Python dictionary or FITS header object (pyfits.NP_pyfits. HDUList)) — Is a
Python dictionary or dictionary-like object containing FITS-style keys and values, e.g.
a header object from PyFITS. Python dictionaries are used for debugging, or plotting
experiments or when you need to define a projection system from scratch.

graticuledata (Object with some required attributes) — This is a helper object. It can be
any object as long it has attributes:

— header
— axnum
— pxlim

— pylim

mixpix

spectrans

Software that interfaces with a user to get data and relevant properties could/should
produce objects which have at least values for the attributes listed above. Then these
objects could be used as a shortcut parameter.

axnum (None, Integer or sequence of Integers) — This parameter sets which FITS axis
corresponds to the x-axis of your graticule plot rectangle and which one corresponds to
the y-axis (see also description at pxlim and pylim). The first axis in a FITS file is axis
1. If axnum set to None then the default FITS axes will be 1 and 2. With a sequence you
can set different FITS axes like axnum= (1, 3) Then the input is a tuple or a list.

westypes (List of strings) — List with the type of the used axes. These types are derived
from the projection object axis types (attribute wcstype) but are translated into a string:
The strings are ‘lo’ for a longitude axis, ‘la’ for a latitude axis, ‘sp; for a spectral axis
and ‘li_xxx’ for a linear axis where ‘xxx’ is the ctype for that axis.

pxlim (None or exactly 2 Integers) — The values of this parameter together with the
values in pylim define a rectangular frame. The intersections of graticule lines with this
frame are the positions where want to plot a tick mark and write a label that gives the

7.3. Class Graticule 55

Kapteyn Package Documentation, Release 2.2.1b16

position as a formatted string. Further, the limits in pixels are used to set the step size
when a graticule line is sampled. This step size then is used to distinguish a valid step
from a jump (e.g. from 180-delta degrees to 180+delta degrees which can jump from
one side in the plot to the other side). To prevent a jump in a plot, the graticule line is
splitted into line pieces without jumps. The default of pxlim is copied from the header
value. FITS data starts to address the pixels with 1 and the last pixel is given by FITS
keyword NAXISn. Note that internally the enclosing rectangle in pixels is enlarged with
0.5 pixel in all directions. This enables a correct overlay on an image where the pixels
have a size.

* pylim (None or exactly 2 Integers) — See description at pxlim. The range is along the
y-axis.

* mixpix (None or 1 Integer) — For maps with only 1 spatial coordinate we need to define
the pixel that sets the spatial value on the matching spatial axis. If its value is None then
the value of CRPIXn of the matching axis from the header is taken as default.

* spectrans (String) — The spectral translation. For spectral axes it is usually possible
to convert to another representation. For instance one can ‘translate’ a frequency into
a velocity which is one of the types: VOPT-F2W, VRAD, VELO-F2V (for optical,
radio and radial velocities). See also the article Representations of spectral coordinates
in FITS by Greisen, Calabretta, Valdes & Allen. Module maputils from the Kapteyn
Package provides a method that creates a list with possible spectral translations given
an arbitrary header. The spectral translation should be followed by a code (e.g. as in
‘VOPT-F2W’) which sets the conversion algorithm. If you don’t know this beforehand,
you can either append the string ‘-???’ or try your translation without this coding. Then
this module tries to find the appropriate code itself.

* skyout (None, one Integer or a tuple with a sky definition) — A single number or a tuple
which specifies the celestial system. The tuple is laid out as follows: (sky system,
equinox, reference system, epoch of observation). Predefined
are the systems:

— wcs.equatorial

wcs.ecliptic,

wcs.galactic

wcs.supergalactic

or the minimal matched string versions of these values.
Predefined reference systems are:

— wes.fk4,

— wes.fk4 no_e,

— wes.fk5,

— wcs.icrs,

- wcs.j2000

or the minimal matched string versions of these values.

Prefixes for epoch data are:

56 Chapter 7. Module wcsgrat

http://www.atnf.csiro.au/people/mcalabre/WCS/scs.pdf
http://www.atnf.csiro.au/people/mcalabre/WCS/scs.pdf

Kapteyn Package Documentation, Release 2.2.1b16

Prefix Description Example

B Besselian epoch ‘B 1950°, ‘b1950°, ‘B1983.5°, *-B1100
J Julian epoch j2000.7°, J 2000°, “-j100.0’

JD Julian Date ‘JD2450123.7°

MID Modified Julian Day ‘mJD 24034°, ‘MJD50123.2

RID Reduced Julian Day ‘1JD50123.2°, ‘Rjd 23433’

F DD/MM/YY (old FITS) ‘F29/11/57°

F YYYY-MM-DD ‘F2000-01-01°

F YYYY-MM-DDTHH:MM:SS | ‘F2002-04-04T09:42:42.1°

See the documentation of module celestial for more details. Example of a sky
definition:

skyout = (wcs.equatorial, wcs.fk4_no_e, "B19507)

alter (Character) — A character from ‘A’ through ‘Z’, indicating an alternative WCS
axis description from a FITS header.

wxlim (None or exactly two floating point numbers) — Two numbers in units of the x-
axis. For spatial axes this is usually in degrees. The numbers are the limits of an interval
for which graticules will be calculated. If these values are omitted, defaults will be
calculated. Then random positions in pixels are converted to world coordinates and the
greatest gap in these coordinates is calculated. The end- and start point of the gap are the
start- and end point of the range(s) in world coordinates. It is not enough to transform
only the limits in pixels because a maximum or minimum in world coordinates could
be located on arbitrary pixel positions depending on the projection.

wylim (None or exactly two floating point numbers) — See wxlim, but now applied for
the y-axis

boxsamples (Integer) — Number of random pixel positions within a box with limits
pxlim and pylim for which world coordinates are calculated to get an estimate of the
range in world coordinates (see description at wxlim). The default is listed in the ar-
gument list of this method. If speed is essential one can try smaller numbers than the
default.

startx (None or 1 floating point number or a sequence of floating point numbers or a
string.) — If one value is given then this is the first graticule line that has a constant
x world coordinate equal to startx. The other values will be calculated, either with
distance deltax between them or with a default distance calculated by this method. If
None is set, then a suitable value will be calculated. The input can also be a string which
is parsed by the positions module. This enables the use of units etc. Examples (see also
module positions:

For a frequency axis: startx="linspace(1.4240,1.4250,4) Ghz”
For a frequency axis: startx="arange(1.4240,1.4250,0.0005) Ghz”
For a spectral translation to WAVE: startx="‘0.2105, 0.2104’ m”

Two labels on a longitude axis: startx="3h00m20s 3h00m30s”

starty (None or 1 floating point number or a sequence of floating point numbers or a
string.) — [None, one value, sequence] Same for the graticule line with constant y world
coordinate equal to starty.

deltax (None or a floating point number or a string) — Step in world coordinates along
the x-axis between two subsequent graticule lines. It can also be a string with an ex-
pression and optionally a unit. Note that the expression cannot contain any spaces.
Example:

— deltax = 5*6/6 dmsmin

deltay (None or a floating point number or a string.) — Same as deltax but now as step
in y direction. It can also be a string with an expression and optionally a unit.

7.3. Class Graticule

57

Kapteyn Package Documentation, Release 2.2.1b16

* skipx (Boolean) — Do not calculate the graticule lines with the constant world coordinate
that is associated with the x-axis.

skipy (Boolean) — The same as skipx but now associated with the y-axis.

* gridsamples (Integer) — Number of positions on a graticule line for which a pixel posi-
tion is calculated and stored as part of the graticule line. If None is set then the default
is used (see the argument list of this method).

labelsintex (Boolean) — The default is that all tick labels are formatted for LaTeX. These
are not the axes labels. If you want to format these in LaTeX then you need to set them
explicitly as in:

>>> grat.setp_axislabel ("bottom",
label=r"$\mathrm{Right\ Ascension\ (2000)}s$",
fontsize=14) ‘"

Printing your axis labels in LaTeX limits the number of Matplotlib properties that one
can set.

* offsetx (None or Boolean) — Change the default mode which sets either plotting the
labels for the given -or calculated world coordinates or plotting labels which represent
constant offsets with respect to a given starting point. The offset mode is default for
plots with mixed axes, i.e. with only one spatial axis. In spatial maps this offset mode
is not very useful to plot the graticule lines because these lines are plotted at a constant
world coordinate and do not know about offsets. The offset axes correspond to the pixel
positions of start- and endpoint of the left and bottom axes and the default start point
of the offsets (value 0) is at the centre of the axis. One can change this start point with
startx, starty.

* offsety (None or Boolean) — Same as offsetx but now for the left plot axis.

* unitsx (String) — Units for first axis. Applies both to regular and offset axes. If this
parameter sets a unit other than the default, then a conversion function will be used to
display the labels in the new units. The unit in the default axis label will be replaced by
the new units.

* unitsy (String) — Units for second axis.
Raises

ValueError Could not find enough (>1) valid world coordinates in this map! User
wanted to let the constructor estimate what the ranges in world coordinates are for this
header, but only zero or one coordinate could be found.

ValueError Need data with at least two axes The header describes zero or one axes.
For a graticule plot we need at least two axes.

ValueError Need two axis numbers to create a graticule The axnum parameter needs
exactly two values.

ValueError Need two different axis numbers A user/programmer entered two identical
axis numbers. Graticules need two different axes.

ValueError pxlim needs to be of type tuple or list Check type.
ValueError pxlim must have two elements Number must be exactly 2.
ValueError pylim needs to be of type tuple or list Check type.
ValueError pylim must have two elements Number must be exactly 2.

ValueError Could not find a grid for the missing spatial axis The specification in
axnum corresponds to a map with only one spatial axis. If parameter mixpix is omitted
then the constructor tries to find a suitable value from the (FITS) header. It reads
CRPIXn where n is the appropriate axis number. If nothing could be found in the
header then this exception will be raised.

58 Chapter 7. Module wcsgrat

Kapteyn Package Documentation, Release 2.2.1b16

ValueError Could not find a matching spatial axis pair The specification in axnum
corresponds to a map with only one spatial axis. A We need the missing spatial axis
to find a matching world coordinate, but a matching axis could not be found in the
header.

ValueError wxlim needs to be of type tuple or list Check type.
ValueError wxlim must have two elements Number must be exactly 2.
ValueError wylim needs to be of type tuple or list Check type.
ValueError wylim must have two elements Number must be exactly 2.

ValueError boxsamples < 2: Need at least two samples to find limits There is a mini-
mum number of random positions we have to calculate to get an impression of the
axis limits in world coordinates.

ValueError Number of samples along graticule line must be >= 2 to avoid a step size of zero
The value of parameter gridsamples is too low. Low values give distorted graticule
lines. Higher values (like the default) give smooth results.

Returns A graticule object. This object contains the line pieces needed to draw the graticule and
the ticks (positions, text and axis number). The basis method to reveal this data (necessary
if you want to make a plot yourself) is described in the following example:

graticule = wcsgrat.Graticule (header)
for gridline in graticule:
print "\nThis gridline belongs to axis", gridline.wcsaxis
print "Axis type: %s. Sky system %$s:" % (gridline.axtype, gridline.skysys)
for t in gridline.ticks:
print "tick x,y:", t.x, t.y
print "tick label:", t.labval
print "tick on axis:", t.axisnr
for line in gridline.linepieces:
print "line piece has %d elements" % len(line[O0])

Note: A Graticule object has a string representation and can therefore be easily inspected with Python’s
print statement.

Attributes:

axes
Read the PLOTaxis class documentation. Four PLOTaxis instances, one for each axis of the rectangular
frame in pixels set by xplim and pylim If your graticule object is called grat then the four axes are
accessed with:

egrat.axes[wcsgrat.left]

egrat.axes[wcsgrat.bottom]

egrat.axes[wcsgrat.right]

egrat.axes[wcsgrat.top]
Usually these attributes are set with method setp_plotaxis ().
Examples:

grat.axes[wcsgrat.left] .mode = 1

[
grat.axes[wcsgrat.bottom] .label = ’'Longitude / Latitude’
grat.axes[wcsgrat.bottom] .mode = 2
grat.axes[wcsgrat.right] .mode = 0

7.3. Class Graticule 59

Kapteyn Package Documentation, Release 2.2.1b16

PLOTaxis modes are:

ticks native to axis type only

Only the tick that is not native to axis type
both types of ticks (map could be rotated)

no ticks

w N = O

The default values depend on how many ticks, native to the plot axis, are found. If this is < 2 then we
allow both native and not native ticks along all plot axes.

pxlim
The limits of the map in pixels along the x-axis. This value is either set in the constructor or calculated.
The default is [1,NAXISn]. The attribute is meant as a read-only attribute.

pylim:
Same for the y-axis.

wxlim
The limits of the map in world coordinates for the x-axis either set in the constructor or calculated (i.e.
estimated) by this method. The attribute is meant as a read-only attribute.

wylim
Same for the y-axis

xaxnum
The (FITS) axis number associated with the x-axis Note that axis numbers in FITS start with 1. If
these numbers are not given as argument for the constructor then xaxnum=1 is assumed. The attribute
is meant as a read-only attribute.

yaxnum
Same for the y-axis. Default: yaxnum=2

wcstypes
List with strings that represent the wcs axis type of the axes.

gmap
The wcs projection object for this graticule. See the wes module document for more information.
mixpix
The pixel on the matching spatial axis for maps with only one spatial axis. This attribute is meant as a
read-only attribute.

xstarts
World coordinates associated with the x-axis which set the constant value of a graticule line as calcu-
lated when the object is initialized. This attribute is meant as a read-only attribute.

ystarts
Same for the y-axis

skyout
Unformatted copy of input parameter skyout

spectrans
Unformatted copy of input parameter spectrans

Examples Example to show how to use a custom made header to create a graticule object.
Usually one uses this option to create all sky plots. It is also a useful tool for experiments.:

#1. A minimal header for an all sky plot

header = {/NAXIS’ : 2, ’"NAXIS1’: 100, ’NAXIS2’': 80,
"CTYPEL’ "RA-—--AZP’, ’'CRVALLl’ :0,
"CRPIX1’ : 50, ’CUNITL1’ "deg’, 'CDELT1’ : -5.0,

" CTYPE2' " DEC--AZP’,
" CRVAL2' dec0, ’'CRPIX2’ : 40, 'CUNIT2’ rdeg’,
" CDELT2' 5.0,

60

Chapter 7. Module wcsgrat

Kapteyn Package Documentation, Release 2.2.1b16

"PV2_1" : mu, 'PV2_27 : gamma,
}

grat = wcsgrat.Graticule (header)
Use module PyFITS to read a header from a FITS file:

#2. A header from a FITS file ’‘test.fits”’
import pyfits

hdulist = pyfits.open(’test.fits’)

header = hdulist[0].header

grat = wcsgrat.Graticule (header)

Select the axes for the graticules. Note that the order of the axes should be the same as the
order of axes in the image where you want to plot the graticule. If necessary one can swap
the graticule plot axes with input parameter axnum:

#3. Swap x and y- axis in a FITS file
grat = wcsgrat.Graticule (header, axnum= (2,1))

For data with more than two axes, one can select the axes with input parameter axnum:

#4. For a FITS file with axes (RA,DEC,FREQ)
create a graticule for the FREQ,RA axes:

grat = wcsgrat.Graticule (header, axnum=(3,1))

Use sexagesimal numbers for startx/starty:

#5. Sexagesimal input
grat = wcsgrat.Graticule(...., startx="7h59m30s", starty="-10d0m30s’)

Methods which set (plot) attributes:

setp_tick (wesaxis=None, plotaxis=None, position=None, tol=I1e-12, fmt=None, fun=None,

tex=None, texsexa=None, markerdict={}, **kwargs)
Set (plot) attributes for a wcs tick label. A tick is identified by the type of grid line it belongs to, and/or

the plot axis for which it defines an intersection and/or a position which corresponds to the constant
value of the graticule line. All these parameters are valid with none, one or a sequence of values.

Warning: If no value for wesaxis, plotaxis or position is entered then this method applies the
parameter setting on all the wcs axes.

Parameters

* wesaxis (None, 0, 1 or tuple with both) — Values are 0 or 1, corresponding to the
first and second world coordinate types. Note that wesaxis=0 corresponds to the first
element in the axis permutation array given in parameter axnum.

* plotaxis (One or more integers between 0 and 3.) — Accepted values are ‘None’, 0, 1,
2, 3 or a sequence of these numbers, to represent the left, bottom, right and top axis of
the enclosing rectangle that represents the limits in pixel coordinates.

* position (None or one or a sequence of floating point numbers) — Accepted are None,
or one or more values representing the constant value of the graticule line in world
coordinates. These positions are used to identify individual graticule lines so that
each line can have its own properties. The input can also be a string that represents a
sexagesimal number.

e tol (Floating point number) — If a value > 0 is given, the gridline with the constant
value closest to a given position within distance ‘tol” gets updated attributes.

7.3. Class Graticule 61

http://www.stsci.edu/resources/software_hardware/pyfits

Kapteyn Package Documentation, Release 2.2.1b16

* fmt (String) — A string that formats the tick value e.g. fmt="%10.5£" in the Python
way, or a string that contains no percentage character (%) but a format to set the out-
put of sexagesimal numbers e.g. fmt="HMSs’. The characters in the format either force
(uppercase) a field to be printed, or it suppresses (lowercase) a field to be printed. See
also the examples at wcsgrat .makelabel (). To create labels with an exponen-
tial, use a second format in the same format string. The syntax is %nne where nn is an
integer. This integer, which can be negative, sets the number in the exponential. The
number before the exponential is formatted in the usual way e.g. fmt="%.3f%-3e’.

e fun (Python function or Lambda expression) — An external function which will be
used to convert the tick value e.g. to convert velocities from m/s to km/s. See also
example 2 below.

* tex (Boolean) — Interpret the format in fint as a TeX label. The default is set to None
to indicate it has not been set (to True or False) so that it is possible to distinguish
between global and local settings of this property.

* texsexa — If False and parameter fex is True, then format the tick label without su-
perscripts for sexagesimal labels. This option can be used if superscripts result in
‘jumpy’ labels. The reason is that in Matplotlib the TeX labels at the bottom of a plot
are aligned at a baseline at the top of the characters.

» markerdict (Python dictionary) — Properties for the tick marker. Amongst others:

— markersize: Size of tick line. Use a negative number (e.g. -4) to get tick lines that
point outside the plot instead of the default which is inside.

— markeredgewidth: The width of the marker
— color: Color of the marker (not the label)

o **kwargs (Matplotlib keyword arguments) — Keyword arguments for plot properties
like color, visible, rotation etc. The plot attributes are standard Matplotlib attributes
which can be found in the Matplotlib documentation.

Note Some projections generate labels that are very close to each other. If you want to

skip labels then you can use keyword/value visible=False. There is not a documented
keyword visible in this method because visible is a valid keyword argument in Matplotlib.

Examples 1. Set tick properties with setp_tick (). The last line makes the label at a

declination of -10 degrees (we assume a spatial map) invisible:

grat.setp_tick (wcsaxis=0, color='g’)
grat.setp_tick (wcsaxis=1, color='m")
grat.setp_tick (wcsaxis=1, plotaxis=wcsgrat.bottom,

color="c’, rotation=-30, ha=’"left’)
grat.setp_tick(plotaxis=wcsgrat.right, backgroundcolor='"yellow’)
grat.setp_tick (plotaxis=wcsgrat.left, position=-10, visible=False)

2. Example of an external function to change the values of the tick labels for the hori-
zontal axis only:

def fx(x):
return x/1000.0

setp_tick (wcsaxis=0, fun=fx)

Or use the lambda operator as in: fun=lambda x: x/1000

setp_plotaxis (plotaxis, mode=None, label=None, xpos=None, ypos=None, **kwargs)
Set (plot) attributes for titles along a plot axis and set the ticks mode. The ticks mode sets the relation
between the ticks and the plot axis. For example a rotated map will show a rotated graticule, so ticks
for both axes can appear along a plot axis. With parameter mode one can influence this behaviour.

62

Chapter 7. Module wcsgrat

Kapteyn Package Documentation, Release 2.2.1b16

Note: This method addresses the four axes of a plot separately. Therefore its functionality cannot be
incorporated in setp_tick ()

Parameters

* plotaxis (Integer or String) — The axis number of one of the axes of the plot rectangle:

wcsgrat.left

wcsgrat.bottom

wcsgrat.right
— wcsgrat.top

or (part of) a string which can be (case insensitive) matched by one from ‘left’, ‘bot-
tom’, ‘right’, ‘top’.

* mode (Integer or String) — What should this axis do with the tick marks and labels?

— 0 = ticks native to axis type only

1 = only the tick that is not native to axis type

2 = both types of ticks (map could be rotated)
— 3 =no ticks
Or use a text that can (case insensitive) match one of:
- “NATIVE_TICKS”
- “SWITCHED_TICKS”
- “ALL_TICKS”
- “NO_TICKS”
¢ label (String) — An annotation of the current axis
o *¥*kwargs (Matplotlib keyword argument(s)) — Keywords for (plot) attributes
Examples Change the font size of the tick labels along the bottom axis in 11:

grat = Graticule(...)
grat.setp_plotaxis (wcsgrat.bottom, fontsize=11)

setp_lineswcsO0 (position=None, tol=1e-12, **kwargs)
Helper method for setp_gratline (). It pre-selects the grid line that corresponds to the first world
coordinate.

Parameters See description at setp_gratline ()

Examples Make lines of constant latitude magenta and lines of constant longitude green.
The line that corresponds to a latitude of 30 degrees and the line that corresponds to a
longitude of O degrees are plotted in red with a line width of 2:

grat.setp_lineswcsl (color="m’)
grat.setp_lineswcsO (color="g’)
grat.setp_lineswcsl (30, color='r’, lw=2)
grat.setp_lineswcs0 (0, color="r’, 1lw=2)

setp_lineswcsl (position=None, tol=1e-12, **kwargs)
Equivalent to method setp_gratline (). It pre-selects the grid line that corresponds to the second
world coordinate.

Parameters See description at setp_gratline ()

Examples See example at setp_lineswcsO ().

7.3. Class Graticule 63

Kapteyn Package Documentation, Release 2.2.1b16

setp_gratline (wcsaxis=None, position=None, tol=1e-12, **kwargs)
Set (plot) attributes for one or more graticule lines. These graticule lines are identified by the wcs axis
number (wesaxis=0 or wesaxis=1) and by their constant world coordinate in position.

Parameters

* wecsaxis (None , integer or tuple with integers from set 0, 1.) — If omitted, then for
both types of graticule lines the attributes are set. If one value is given then only for
that axis the attributes will be set.

* position (None, one or a sequence of floating point numbers) — None, one value or a
sequence of values representing the constant value of a graticule line in world coordi-
nates. For the graticule line(s) that match a position in this sequence, the attributes are
updated.

¢ tol (Floating point number) — If a value > 0 is given, the graticule line with the constant
value closest to a given position within distance fol gets updated attributes.

o **kwargs (Matplotlib keyword argument(s)) — Keyword arguments for plot properties
like color, rotation or visible, linestyle etc.

Returns -

Notes For each value in position find the index of the graticule line that belongs to wesaxis
so that the distance between that value and the constant value of the graticule line is the
smallest of all the graticule lines. If position=None then apply change of properties to
ALL graticule lines. The (plot) properties are stored in **kwargs Note that graticule lines
are initialized with default properties. These kwargs only update the existing kwargs i.e.
appending new keywords and update existing keywords.

setp_axislabel (plotaxis=None, label=None, xpos=None, ypos=None, **kwargs)
Utility method that calls method setp_plotaxis () but the parameters are restricted to the axis
labels. These labels belong to one of the 4 plot axes. See the documentation at setp_plotaxis for the
input of the plotaxis parameter. The kwargs are Matplotlib attributes.

Possible useful Matplotlib attributes:
*backgroundcolor
ecolor
erotation
estyle or fontstyle [‘normal’ | “italic’ | ‘oblique’]

*weight or fontweight

Parameters

* plotaxis (Integer or String) — The axis number of one of the axes of the plot rectangle:

wcesgrat.left

wcsgrat.bottom

wesgrat.right

wcesgrat.top

or (part of) a string which can be (case insensitive) matched by one from ‘left’, ‘bot-
tom’, ‘right’, ‘top’.

* label (String) — The label text.

* xpos (Floating point number) — The x position of the label in normalized device co-
ordinates

o **kwargs (Matplotlib keyword argument(s)) — Keywords for (plot) attributes

64 Chapter 7. Module wcsgrat

Kapteyn Package Documentation, Release 2.2.1b16

setp_tickmark (wcsaxis=None, plotaxis=None, position=None, tol=1e-12, **mkwargs)
Utility method for setp_tick (). It handles the properties of the tick marks, which are Line2D
objects in Matplotlib. The most useful properties are color, markeredgewidth and markersize.

setp_ticklabel (wcsaxis=None, plotaxis=None, position=None, tol=1e-12, fmt=None,

fun=None, tex=None, texsexa=None, **kwargs)

Utility method for setp_tick (). Ithandles the properties of the tick labels, which are Text objects
in Matplotlib. The most useful properties are color, fontsize and fontstyle.

Parameters

Note

wesaxis (None, 0, 1 or tuple with both) — Values are 0 or 1, corresponding to the
first and second world coordinate types. Note that wesaxis=0 corresponds to the first
element in the axis permutation array given in parameter axnum.

plotaxis (One or more integers between 0 and 3.) — Accepted values are ‘None’, 0, 1,
2, 3 or a combination, to represent the left, bottom, right and top axis of the enclosing
rectangle that represents the limits in pixel coordinates.

position (None or one or a sequence of floating point numbers) — Accepted are None,
or one or more values representing the constant value of the graticule line in world
coordinates. These positions are used to identify individual graticule lines so that
each line can have its own properties. The input can also be a string that represents a
sexagesimal number.

tol (Floating point number) — If a value > 0 is given, the gridline with the constant
value closest to a given position within distance ‘tol’ gets updated attributes.

fmt (String) — A string that formats the tick value e.g. fmt="%10.5£f" in the Python
way, or a string that contains no percentage character (%) but a format to set the output
of sexagesimal numbers e.g. fmt="HMs’. The characters in the format either force
(uppercase) a field to be printed, or it suppresses (lowercase) a field to be printed. See
also the examples at wesgrat .makelabel ().

fun (Python function or Lambda expression) — An external function which will be
used to convert the tick value e.g. to convert velocities from m/s to km/s. See also
example 2 below.

tex (Boolean) — If True then format the tick label in LaTeX. This is the default. If False
then standard text will applies. Some text properties cannot be changed if LaTeX is in
use.

texsexa — If False and parameter fex is True, then format the tick label without su-
perscripts for sexagesimal labels. This option can be used if superscripts result in
‘jumpy’ labels. The reason is that in Matplotlib the TeX labels at the bottom of a plot
are aligned at a baseline at the top of the characters.

**kwargs (Matplotlib keyword arguments) — Keyword arguments for plot properties
like color, visible, rotation etc. The plot attributes are standard Matplotlib attributes
which can be found in the Matplotlib documentation.

Some projections generate labels that are very close to each other. If you want to

skip labels then you can use keyword/value visible=False. There is not a documented
keyword visible in this method because visible is a valid keyword argument in Matplotlib.

set_tickmode (plotaxis=None, mode=None)
Utility method that calls method setp_plotaxis () but the parameters are restricted to the tick

mode.

Each plot axis has a tick mode.

Parameters

plotaxis (Integer or String) — The axis number of one of the axes of the plot rectangle:

— wesgrat.left

7.3. Class Graticule

65

Kapteyn Package Documentation, Release 2.2.1b16

— wcsgrat.bottom
— wesgrat.right
— wcsgrat.top

or (part of) a string which can be (minimal & case insensitive) matched by one from
‘left’, ‘bottom’, ‘right’, ‘top’.

mode (Integer or String) — What should this axis do with the tick marks and labels?

— 0 = ticks native to axis type only

1 = only the tick that is not native to axis type

2 = both types of ticks (map could be rotated)
— 3 =no ticks

Or use a text that can (minimal) match one of:
— “NATIVE_TICKS”

- “SWITCHED_TICKS”

- “ALL_TICKS”

- “NO_TICKS”

Methods that deal with special curves like borders:

scanborder (xstart, ystart, deltax=None, deltay=None, nxy=1000, tol=None)

For the slanted azimuthal projections, it is not trivial to draw a border because these borders are not
graticule lines with a constant longitude or constant latitude. Nor it is easy or even possible to find
mathematical expressions for this type of projection. Also, the mathematical expressions return world
coordinates which can suffer from loss of precision. This method tracks the border from a starting
point by scanning in x- and y direction and tries to find the position of a limb with a standard bisection

technique. This method has been applied to a number of all-sky plots with slanted projections.

Parameters

xstart (Floating point) — X-coordinate in pixels of position where to start the scan to
find a border. The parameter has no default.

ystart (Floating point) — Y-coordinate in pixels of position where to start the scan to
find border. The parameter has no default.

deltax (Floating point) — Set range in pixels to look for a border in scan direction. The
default value is 10 percent of the total pixel range in x- or y-direction.

deltay (Floating point) — See deltayx.
nxy (Integer) — Number of scan lines in x and y direction. Default is 1000.

tol (Floating point) — See note below.

Returns Identifier to set attributes of this graticule line with method
setp_linespecial ().

Note

This method uses an algorithm to find positions along the border of a projection. It

scans along both x- and y-axis for a NaN (Not a Number number) transition as a result
of an invalid coordinate transformation, and repeats this for a number of scan lines along
the x-axis and y-axis.

A position on a border off an all-sky plot is the position at
which a transition occurs from a valid coordinate to a NaN.

Its accuracy depends on the the tolerance given in argument fol. The start coordinates to
find the next border position on the next scan line is the position of the previous border

66

Chapter 7. Module wcsgrat

Kapteyn Package Documentation, Release 2.2.1b16

point. If you have missing line pieces, then add more borders by calling this method with
different starting points.

addgratline (x, y, pixels=False)
For any path given by a set of world coordinates of which none is a constant value (e.g. borders in
slanted projections where the positions are calculated by an external routine), one can create a line that
is processed as a graticule line, i.e. intersections and jumps are addressed. Instead of world coordi-
nates, this method can also process pixel positions. The type of input is set by the pixels parameter.

Parameters

* X (Floating point numbers) — A sequence of world coordinates or pixels that corre-
spond to the horizontal axis in a graticule plot..

* y — The same for the second axis

* pixels (Boolean) — False or True If False the coordinates in x and y are world- coordi-
nates. Else they are pixel coordinates.

Returns A Identification number id which can be used to set properties for this special path
with method setp_linespecial (). Return Norne if no line piece could be found
inside the pixel limits of the graticule.

Note This method can be used to plot a border around an all-sky plot e.g. for slanted
projections. See code at scanborder ().

setp_linespecial (id, **kwargs)
Set (plot) attributes for a special type of graticule line made with method addgratline () or method
scanborder (). This graticule line has no constant x- or y- value. It is identified by an id returned
by method addgratline ().

Parameters
¢ id (Integer) —id from addgratline ()
» **kwargs (Matplotlib keyword argument(s)) — keywords for (plot) attributes

Examples Create a special graticule line which follows the positions in two given sequences
x and y. and set the line width for this line to 2:

id = grat.addgratline(x, vy)
grat.setp_linespecial (id, 1lw=2)

Methods related to plotting derived elements:

Insidelabels (wcsaxis=0, world=None, constval=None, deltapx=0.0, deltapy=0.0, angle=None,

addangle=0.0, fun=None, fmt=None, tex=True, aspect=1.0, **kwargs)
Annotate positions in world coordinates within the boundaries of the plot. This method can be used

to plot positions on all-sky maps where there are usually no intersections with the enclosing axes
rectangle.

Parameters

* wecsaxis (Integer) — Values are 0 or 1, corresponding to the first and second world
coordinate types. The accepted values are 0 and 1. The default is 0.

* world (One or a sequence of floating point number(s) or None) — One or a sequence
of world coordinates on the axis given by wcsaxis. The positions are completed with
one value for constval. If world=None (the default) then the world coordinates are
copied from graticule world coordinates.

* constval (Floating point number or String) — A constant world coordinate to complete
the positions at which a label is plotted. The value can also be a string representing a
sexagesimal number.

7.3. Class Graticule 67

Kapteyn Package Documentation, Release 2.2.1b16

* deltapx (Floating point number.) — Small shift in pixels in x-direction of text. This
enables us to improve the layout of the plot by preventing that labels are intersected
by lines.

* deltapy (Floating point number.) — See description at deltapx.

 angle (Floating point number) — Use this angle (in degrees) instead of calculated
defaults. It is the angle at which then all position labels are plotted.

» addangle (Floating point number) — Add this angle (in degrees) to the calculated
default angles.

¢ fun — Function or lambda expression to convert the label value.
o fmt (String) — String to format the numbers. If omitted the format ‘%g’ is used.

* tex — Format these ‘inside’ labels in LaTeX if this parameter is set to True (which is
the default).

* aspect (Floating point number) — The aspect ratio of the frame. This number is needed
to plot labels at the right angle. It cannot be derived from the aspect ratio of the
frame, because at the moment of creation, the frame is not known (only after a call
to the plot() method, a frame is known). If the aspect ratio is known in the calling
environment, we should use it there to get the angles right.

o **kwargs (Matplotlib keyword argument(s)) — Keywords for (plot) attributes.

Returns An Insidelabel object with a series of derived label objects. These label objects
have a number of attributes, see Insidelabels

Notes For a map with only one spatial axis, the value of ‘mixpix’ is used as pixel value for
the matching spatial axis. The mixed() method from module wecs is used to calculate the
right positions.

Examples Annotate a plot with labels at positions from a list with longitudes at given fixed
latitude:

grat = Graticule(...)

lon_world = [0,30,60,90,120,150,180]

lat_constval = 30

inlabs = grat.Insidelabels (wcsaxis=0,
world=lon_world,
constval=lat_constval,
color="r")

Insidelabels.setp_label (position=None, tol=1e-12, fmt=None, fun=None, tex=None, tex-

sexa=None, **kwargs)
This method handles the properties of the ‘inside’ labels, which are Text objects in Matplotlib. The

most useful properties are color, fontsize and fontstyle. One can change the label values using an
external function and/or change the format of the label.

Parameters

* position (None or one or a sequence of floating point numbers) — Accepted are None,
or one or more values representing the constant value of the graticule line in world
coordinates. These positions are used to identify individual graticule lines so that each
line can have its own properties. If no position is entered, then the changes are applied
to all the labels in the current object. The input can also be a string that represents a
sexagesimal number.

¢ tol (Floating point number) — If a value > 0 is given, the gridline with the constant
value closest to a given position within distance ‘tol” gets updated attributes.

o fmt (String) — A string that formats the tick value e.g. fmt="%10.5£" in the Python
way, or a string that contains no percentage character (%) but a format to set the output
of sexagesimal numbers e.g. fmt="HMs’. The characters in the format either force

68 Chapter 7. Module wcsgrat

Kapteyn Package Documentation, Release 2.2.1b16

(uppercase) a field to be printed, or it suppresses (lowercase) a field to be printed. See
also the examples at wesgrat .makelabel ().

e fun (Python function or Lambda expression) — An external function which will be
used to convert the tick value e.g. to convert velocities from m/s to km/s. See also
example 2 below.

e tex (Boolean) — If True then format the tick label in LaTeX. This is the default. If
False then standard text will be applied. Some text properties cannot be changed if
LaTeX is in use.

* texsexa — If False and parameter fex is True, then format the tick label without su-
perscripts for sexagesimal labels. This option can be used if superscripts result in
‘jumpy’ labels. The reason is that in Matplotlib the TeX labels at the bottom of a plot
are aligned at a baseline at the top of the characters and not at the bottom, while the
height between LaTeX boxes may vary.

o **kwargs (Matplotlib keyword arguments) — Keyword arguments for plot properties
like color, visible, rotation etc. The plot attributes are standard Matplotlib attributes
which can be found in the Matplotlib documentation.

Note Some projections generate labels that are very close to each other. If you want to skip
labels then you can use keyword/value visible=False. Note that visible is a parameter of
Matplotlib’s plot functions.

Utility methods:

get_aspectratio (xcm=None, ycm=None)
Calculate and set, the aspect ratio for the current pixels. Also set default values for figure size and axes
lengths (i.e. size of canvas depends on the size of plot window with this aspect ratio).

Parameters

e xcm (Floating point number) — Given a value for xcm or ycm (or omit both), sug-
gest a suitable figure size in and a viewport in normalized device coordinates of
a plot which has an axes rectangle that corrects the figure for an aspect ratio (i.e.
CDELTy/CDELTx) unequal to 1 while the length of the x-axis is xcm OR the length
of the y-axis is ycm. See note for non-spatial maps.

* yem (Floating point number) — See description at xcm.
Returns The aspect ratio defined as: AR = CDELTy/CDELTx.

Note (i.e. AR > 10 or AR < 0.1), an aspect ratio of 1 is returned. This method sets the
attributes: ‘axesrect’, ‘figsize’, ‘aspectratio’. The attribute ‘figsize’ is in inches which is
compatible to the methods of Matplotlib.

class wesgrat .WCStick (x, y, axisnr, labval, wesaxis, offset, fun=None, fmt=None)
A WCStick object is an intersection of a parallel or meridian (or equivalent lines with one constant world
coordinate) with one of the axes of a rectangle in pixels. The position of that intersection is stored in pixel
coordinates and can be used to plot a (formatted) label showing the position of the constant world coordinate
of the graticule line. This class is only used in the context of the Graticule class.

7.4 Class Insidelabels

class wcsgrat . Insidelabels (wcsaxis)
A small utility class for wcs labels inside a plot with a graticule. Useful for all sky plots.

setp_1label (position=None, tol=le-12, fmt=None, fun=None, tex=None, texsexa=None,
**kwargs)
This method handles the properties of the ‘inside’ labels, which are Text objects in Matplotlib. The
most useful properties are color, fontsize and fontstyle. One can change the label values using an
external function and/or change the format of the label.

7.4. Class Insidelabels 69

Kapteyn Package Documentation, Release 2.2.1b16

Parameters

Note

position (None or one or a sequence of floating point numbers) — Accepted are None,
or one or more values representing the constant value of the graticule line in world
coordinates. These positions are used to identify individual graticule lines so that each
line can have its own properties. If no position is entered, then the changes are applied
to all the labels in the current object. The input can also be a string that represents a
sexagesimal number.

tol (Floating point number) — If a value > 0 is given, the gridline with the constant
value closest to a given position within distance ‘tol” gets updated attributes.

fmt (String) — A string that formats the tick value e.g. fmt="%10.5£" in the Python
way, or a string that contains no percentage character (%) but a format to set the output
of sexagesimal numbers e.g. fmt="HMs’. The characters in the format either force
(uppercase) a field to be printed, or it suppresses (lowercase) a field to be printed. See
also the examples at wesgrat .makelabel ().

fun (Python function or Lambda expression) — An external function which will be
used to convert the tick value e.g. to convert velocities from m/s to km/s. See also
example 2 below.

tex (Boolean) — If True then format the tick label in LaTeX. This is the default. If
False then standard text will be applied. Some text properties cannot be changed if
LaTeX is in use.

texsexa — If False and parameter tex is True, then format the tick label without su-
perscripts for sexagesimal labels. This option can be used if superscripts result in
‘jumpy’ labels. The reason is that in Matplotlib the TeX labels at the bottom of a plot
are aligned at a baseline at the top of the characters and not at the bottom, while the
height between LaTeX boxes may vary.

**kwargs (Matplotlib keyword arguments) — Keyword arguments for plot properties
like color, visible, rotation etc. The plot attributes are standard Matplotlib attributes
which can be found in the Matplotlib documentation.

Some projections generate labels that are very close to each other. If you want to skip

labels then you can use keyword/value visible=False. Note that visible is a parameter of
Matplotlib’s plot functions.

70

Chapter 7. Module wcsgrat

CHAPTER 8

Module maputils

In the maputils tutorial we show many examples with Python code and figures to illustrate the functionality and
flexibility of this module. The documentation below is restricted to the module’s classes and methods.

8.1 Introduction

One of the goals of the Kapteyn Package is to provide a user/programmer basic tools to make plots (with WCS
annotation) of image data from FITS files. These tools are based on the functionality of PyFITS and Matplotlib.
The methods from these packages are modified in maputils for an optimal support of inspection and presentation
of astronomical image data with easy to write and usually very short Python scripts. To illustrate what can be done
with this module, we list some steps you need in the process to create a hard copy of an image from a FITS file:

* Open FITS file on disk or from a remote location (URL)

¢ Specify in which header data unit the image data is stored

* Specify the data slice for data sets with dimensions > 2

* Specify the order of the image axes

* Set the limits in pixels of both image axes

¢ Set the sky system in which you want to plot wcs information.
Then for the display:

* Plot the image or a mosaic of images in the correct aspect ratio

Plot (labeled) contours

* Plot world coordinate labels along the image axes (basic routines in wcsgrat)

* Plot coordinate graticules (basic routines in wcsgrat)

* Interactively change color map and color limits

* Read the position of features in a map and write these positions in your terminal.
* Resize your plot canvas to get an optimal layout while preserving the aspect ratio.
e Write the result to png or pdf (or another format from a list)

Of course there are many programs that can do this job some way or the other. But most probably no program
does it exactly the way you want or the program does too much. Also many applications cannot be extended, at
least not as simple as with the building blocks in maputils.

Module maputils is also very useful as a tool to extract and plot data slices from data sets with more than two
axes. For example it can plot so called Position-Velocity maps from a radio interferometer data cube with channel
maps. It can annotate these plots with the correct WCS annotation using information about the ‘missing’ spatial
axis.

7

20

21

22

23

24

25

26

27

Kapteyn Package Documentation, Release 2.2.1b16

To facilitate the input of the correct data to open a FITS image, to specify the right data slice or to set the pixel
limits for the image axes, we implemented also some helper functions. These functions are primitive (terminal
based) but effective. You can replace them by enhanced versions, perhaps with a graphical user interface.

Here is an example of what you can expect. We have a three dimensional data set on disk called ngc6946.fits with
axes RA, DEC and VELO. The program prompts the user to enter image properties like data limits, axes and axes
order. The image below is a data slice in RA, DEC at VELO=50. We changed interactively the color map (keys
page-up/page-down) and the color limits (pressing right mouse button while moving the mouse) and saved a hard
copy on disk.

In the next code we use keyword parameter promptfie a number of times. Abbreviation ‘fie’ stands for Function
Interactive Environment.

#!/usr/bin/env python
from kapteyn import wcsgrat, maputils
from matplotlib import pylab as plt

Create a maputils FITS object from a FITS file on disk
fitsobject = maputils.FITSimage (promptfie=maputils.prompt_fitsfile)
fitsobject.set_imageaxes (promptfie=maputils.prompt_imageaxes)
fitsobject.set_limits (promptfie=maputils.prompt_box)
fitsobject.set_skyout (promptfie=maputils.prompt_skyout)

clipmin, clipmax = maputils.prompt_dataminmax (fitsobject)

Get connected to Matplotlib
fig = plt.figure()
frame = fig.add_subplot (1,1,1)

Create an image to be used in Matplotlib

annim = fitsobject.Annotatedimage (frame, clipmin=clipmin, clipmax=clipmax)
annim. Image ()

annim.Graticule ()

annim.plot ()

annim.interact_toolbarinfo ()
annim.interact_imagecolors ()

annim.interact_writepos ()

plt.show ()

72 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.2.1b16

60° 15’

Dec. (2000.0)

60° 00’

20" 36™

R.A. (2000.0)

20k 34™

Image from FITS file with graticules and WCS labels

8.2 Module level data

cmlist Object from class Colmaplist which has attribute colormaps which is a sorted list with names of col-
ormaps.

Example

1

>>> from kapteyn import maputils
>>> print maputils.cmlist.colormaps
>>> cmap = raw_input ("Enter name of a colormap: ")
BuGn’, ’'BuPu’, ’Dark2’,
OrRd’, ’Oranges’, ’'PRGn’,

["Accent’, ’'Blues’, ’'BrBG’, '
"GnBu’, 'Greens’, ’'Greys’, '

"Paired’, ’'Pastell’, ’'Pastel2’,

"PuOr’, ’'PuRd’, ’Purples’, '
"RdY1Bu’, ’'RdY1lGn’, ’'Reds’,
"Spectral’, ’'Y1lGn’, ’'Y1lGnBu’
"autumn’, ’‘binary’, ’‘bone’,

"gist_rainbow’, ’gist_stern’
"hot’, ’"hsv’, ’jet’, ’'pink’,
"spring’, ’summer’, ’‘winter’

"Pi¥YG’, ’PuBu’, ’PuBuGn’,

RdBu’, ’RdGy’, ’RdPu’,
’Setl’, ’'Set2’, ’'Set3’,

, "Y1OrBr’

, "Y1OrRd4d’,

"cool’, 'copper’, ’'flag’,
"gist_earth’, ’gist_gray’, ’gist_heat’, ’gist_ncar’,

, 'gist_ya
"prism’,

]

rg’, 'gray’,
" spectral’,

8.2. Module level data

73

Kapteyn Package Documentation, Release 2.2.1b16

8.3 Prompt functions

maputils.prompt_fitsfile (defaultfile=None, prompt=True, hnr=None, alter=None,

memmap=None)
An external helper function for the FITSimage class to prompt a user to open the right Header and Data Unit

(hdu) of a FITS file. A programmer can supply his/her own function of which the return value is a sequence
containing the hdu list, the header unit number, the filename and a character for the alternate header.

Parameters

¢ defaultfile (String) — Name of FITS file on disk or url of FITS file on the internet.
The syntax follows the standard described in the PyFITS documentation. See also the
examples.

» prompt (Boolean) — If False and a default file exists, then do not prompt for a file name.
Open file and start checking HDU’s

* hnr (Integer) — The number of the FITS header that you want to use. This function lists
the hdu information and when hnr is not given, you will be prompted.

o alter (Empty or a single character. Input is case insensitive.) — Selects an alternate
header. Default is the standard header. Keywords in alternate headers end on a character
A.Z

* memmap (Boolean) — Set PyFITS memory mapping on/off. Let PyFITS set the default.
Prompts
1. Enter name of fits file [a default]:
Enter name of file on disk of valid url.
2. Enter number of Header Data Unit [0]:

If a FITS file has more than one HDU, one must decide which HDU contains the re-
quired image data.

Returns

* hdulist - The HDU list and the user selected index of the wanted hdu from that list. The
HDU list is returned so that it can be closed in the calling environment.

 hnr - FITS header number. Usually the first header, i.e. hnr=0
* fitsname - Name of the FITS file.

* alter - A character that corresponds to an alternate header (with alternate WCS infor-
mation e.g. a spectral translation).

Notes —
Examples Besides file names of files on disk, PyFITS allows url’s and gzipped files to retrieve

FITS files e.g.:

http://www.atnf.csiro.au/people/mcalabre/data/WCS/1904-66_ZPN.fits.gz

maputils.prompt_imageaxes (fitsobj, axnuml=None, axnum2=None, slicepos=None)

Helper function for FITSimage class. It is a function that requires interaction with a user. Therefore we left
it out of any class definition. so that it can be replaced by any other function that returns the position of the
data slice in a FITS file.

It prompts the user for the names of the axes of the wanted image. For a 2D FITS data set there is nothing
to ask, but for dimensions > 2, we should prompt the user to enter two image axes. Then also a list with
pixel positions should be returned. These positions set the position of the data slice on the axes that do not
belong to the image. Only with this information the right slice can be extracted.

The user is prompted in a loop until a correct input is given. If a spectral axis is part of the selected image
then a second prompt is prepared for the input of the required spectral translation.

74

Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.2.1b16

Parameters

« fitsobj (Instance of class FITSimage) — An object from class FITSimage. This prompt
function derives useful attributes from this object such as the allowed spectral transla-
tions.

o axnuml (Integer [1, NAXIS]) — The axis number of the first (horizontal in terms of plot
software) axis of the selected image which should be used as the default in the prompt.
If None then the default is set to 1.

o axnum?2 (Integer [1, NAXIS]) — The axis number of the first (horizontal in terms of plot
software) axis of the selected image which should be used as the default in the prompt.
If None then the default is set to 1. If both axnuml and axnum?2 are specified then the
image axis input prompt is skipped.

Prompts
Name of the image axes: Enter 2 axes from (list with allowed axis names) [default]:
e.g.. Enter 2 axes from (RA,DEC,VELO) [RA,DEC] :
The axis names can be abbreviated. A minimal match is applied.
Returns Tuple with three elements:
* axnuml: Axis number of first image axis. Default or entered by a user.
* axnum?2: Axis number of second image axis. Default or entered by a user.

* slicepos: A list with pixel positions. One pixel for each axis outside the image in the
same order as the axes in the FITS header. These pixel positions are necessary to extract
the right 2D data from FITS data with dimensions > 2.

Example Interactively set the axes of an image using a prompt function:
Create a maputils FITSimage object from a FITS file on disk

fitsobject = maputils.FITSimage (' rense.fits’)
fitsobject.set_imageaxes (promptfie=maputils.prompt_imageaxes)

maputils.prompt_box (pxlim, pylim, axnameX, axnameY)
External helper function which returns the limits in pixels of the x- and y-axis. The input syntax is: xlo,xhi,
ylo,yhi. For x and y the names of the image axes are substituted. Numbers can be separated by comma’s and
or spaces. A number can also be specified with an expression e.g. 0, 10, 10/3, 100*numpy.pi.
All these numbers are converted to integers.

Parameters

* pxlim (tuple with two integers) — Sequence of two numbers representing limits in pixels
along the x axis as defined in the FITS file.

* pylim (tuple with two integers) — Sequence of two numbers representing limits in pixels
along the y axis as defined in the FITS file.

» axnameX (String) — Name of image X-axis
* axnameY (String) — Name of image Y-axis
Prompts Enter pixel limits in Xlo,Xhi, Ylo,Yhi [xlo,xhi, ylo,yhi]:

The default should be the axis limits as defined in the FITS header in keywords NAXISn. In
areal case this could look like:

Enter pixel limits in RAlo,RAhi, DEClo,DECHi [1, 100, 1, 100]:
Returns Tuple with two elements pxlim, pylim (see parameter description)

Notes This function does not check if the limits are within the index range of the (FITS)image.
This check is done in the FITSimage.set_limits () method of the FITSimage
class.

8.3. Prompt functions 75

Kapteyn Package Documentation, Release 2.2.1b16

Examples Use of this function as prompt function in the FITSimage.set_limits ()
method:

fitsobject = maputils.FITSimage ('’ rense.fits’)
fitsobject.set_imageaxes (1,2, slicepos=30) # Define image in cube
fitsobject.set_limits (promptfie=maputils.prompt_box)

This ‘box’ prompt needs four numbers. The first is the range in x and the second is the range
in y. The input are pixel coordinates, e.g.:

>>> 0, 10 10/3, 100*numpy.pi

Note the mixed use of spaces and comma’s to separate the numbers. Note also the use of
NumPy for mathematical functions. The numbers are truncated to integers.

maputils.prompt_spectrans (fitsobj)
Ask user to enter spectral translation if one of the axes is spectral.

Parameters fitsobj (Instance of class FITSimage) — An object from class FITSimage. From this
object we derive the allowed spectral translations.

Prompts The spectral translation if one of the image axes is a spectral axis.
Enter number between 0 and N of spectral translation [native]:

N is the number of allowed translations minus 1. The default Native in this context
implies that no translation is applied. All calculations are done in the spectral type
given by FITS header item CTYPEn where n is the number of the spectral axis.

Returns

* spectrans - The selected spectral translation from a list with spectral translations that
are allowed for the input object of class FITSimage. A spectral translation translates for
example frequencies to velocities.

Example
>>> fitsobject = maputils.FITSimage (promptfie=maputils.prompt_fitsfile)

>>> print fitsobject.str_spectrans() # Print a list with options first
>>> fitsobject.set_spectrans (promptfie=maputils.prompt_spectrans)

maputils.prompt_skyout (fitsobj)
Ask user to enter the output sky system if the data is a spatial map.

Parameters fitsobj (Instance of class FITSimage) — An object from class FITSimage. This
prompt function uses this object to get information about the axis numbers of the spatial
axes in a data structure.

Returns

* skyout - The sky definition to which positions in the native system will be trans-
formed.

Example
>>> fitsobject = maputils.FITSimage (promptfie=maputils.prompt_fitsfile)
>>> fitsobject.set_skyout (promptfie=maputils.prompt_skyout)
maputils.prompt_dataminmax (fitsobj)

Ask user to enter one or two clip values. If one clip level is entered then in display routines the data be-
low this value will be clipped. If a second level is entered, then all data values above this level will
also be filtered.

Parameters fitsobj (Instance of class FITSimage) — An object from class FITSimage.

76 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.2.1b16

Returns
* clipmin, clipmax - Two values to set limits on the image value e.g. for color editing.

Example

>>> fitsobject = maputils.FITSimage (promptfie=maputils.prompt_fitsfile)
>>> clipmin, clipmax = maputils.prompt_dataminmax (fitsobject)
>>> annim = fitsobject.Annotatedimage (frame, clipmin=clipmin, clipmax=clipmax)

8.4 Utility functions

maputils.fitsheader2dict (header, comment=True, history=True)
Transform a FITS header (read with PyFITS) into a Python dictionary. This is useful if one wants to iterate
over all keys in the header. The PyFITS header is not iterable.

maputils.dist_on_sphere (/1,bl, 12, b2)
Formula for distance on sphere accurate over entire sphere (Vinc