
WCSLIB 4.6

Generated by Doxygen 1.5.6

Tue Nov 16 17:15:49 2010

CONTENTS i

Contents

1 WCSLIB 4.6 and PGSBOX 4.6 1

1.1 Contents . 1

1.2 Copyright . 2

2 Deprecated List 2

3 Data Structure Index 4

3.1 Data Structures . 4

4 File Index 5

4.1 File List . 5

5 Data Structure Documentation 6

5.1 celprm Struct Reference . 6

5.1.1 Detailed Description . 6

5.1.2 Field Documentation . 6

5.2 fitskey Struct Reference . 8

5.2.1 Detailed Description . 8

5.2.2 Field Documentation . 8

5.3 fitskeyid Struct Reference . 11

5.3.1 Detailed Description . 12

5.3.2 Field Documentation . 12

5.4 linprm Struct Reference . 12

5.4.1 Detailed Description . 13

5.4.2 Field Documentation . 13

5.5 prjprm Struct Reference . 15

5.5.1 Detailed Description . 15

5.5.2 Field Documentation . 15

5.6 pscard Struct Reference . 18

5.6.1 Detailed Description . 19

5.6.2 Field Documentation . 19

5.7 pvcard Struct Reference . 19

5.7.1 Detailed Description . 19

5.7.2 Field Documentation . 19

5.8 spcprm Struct Reference . 20

5.8.1 Detailed Description . 20

5.8.2 Field Documentation . 20

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

CONTENTS ii

5.9 spxprm Struct Reference . 22

5.9.1 Detailed Description . 23

5.9.2 Field Documentation . 23

5.10 tabprm Struct Reference . 27

5.10.1 Detailed Description . 27

5.10.2 Field Documentation . 27

5.11 wcsprm Struct Reference . 30

5.11.1 Detailed Description . 32

5.11.2 Field Documentation . 32

5.12 wtbarr Struct Reference . 42

5.12.1 Detailed Description . 43

5.12.2 Field Documentation . 43

6 File Documentation 44

6.1 cel.h File Reference . 44

6.1.1 Detailed Description . 45

6.1.2 Define Documentation . 45

6.1.3 Function Documentation . 46

6.1.4 Variable Documentation . 48

6.2 fitshdr.h File Reference . 48

6.2.1 Detailed Description . 50

6.2.2 Define Documentation . 50

6.2.3 Typedef Documentation . 50

6.2.4 Function Documentation . 51

6.2.5 Variable Documentation . 52

6.3 getwcstab.h File Reference . 52

6.3.1 Detailed Description . 53

6.3.2 Function Documentation . 53

6.4 lin.h File Reference . 54

6.4.1 Detailed Description . 55

6.4.2 Define Documentation . 56

6.4.3 Function Documentation . 57

6.4.4 Variable Documentation . 60

6.5 log.h File Reference . 60

6.5.1 Detailed Description . 60

6.5.2 Function Documentation . 60

6.5.3 Variable Documentation . 61

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

CONTENTS iii

6.6 prj.h File Reference . 62

6.6.1 Detailed Description . 68

6.6.2 Define Documentation . 70

6.6.3 Function Documentation . 71

6.6.4 Variable Documentation . 83

6.7 spc.h File Reference . 84

6.7.1 Detailed Description . 85

6.7.2 Define Documentation . 87

6.7.3 Function Documentation . 88

6.7.4 Variable Documentation . 93

6.8 sph.h File Reference . 93

6.8.1 Detailed Description . 94

6.8.2 Function Documentation . 94

6.9 spx.h File Reference . 97

6.9.1 Detailed Description . 99

6.9.2 Define Documentation . 100

6.9.3 Function Documentation . 100

6.9.4 Variable Documentation . 105

6.10 tab.h File Reference . 105

6.10.1 Detailed Description . 106

6.10.2 Define Documentation . 106

6.10.3 Function Documentation . 108

6.10.4 Variable Documentation . 111

6.11 wcs.h File Reference . 111

6.11.1 Detailed Description . 113

6.11.2 Define Documentation . 114

6.11.3 Function Documentation . 116

6.11.4 Variable Documentation . 123

6.12 wcsfix.h File Reference . 123

6.12.1 Detailed Description . 125

6.12.2 Define Documentation . 126

6.12.3 Function Documentation . 126

6.12.4 Variable Documentation . 129

6.13 wcshdr.h File Reference . 129

6.13.1 Detailed Description . 132

6.13.2 Define Documentation . 133

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

1 WCSLIB 4.6 and PGSBOX 4.6 1

6.13.3 Function Documentation . 136

6.13.4 Variable Documentation . 149

6.14 wcslib.h File Reference . 150

6.14.1 Detailed Description . 150

6.15 wcsmath.h File Reference . 150

6.15.1 Detailed Description . 151

6.15.2 Define Documentation . 151

6.16 wcstrig.h File Reference . 151

6.16.1 Detailed Description . 152

6.16.2 Define Documentation . 153

6.16.3 Function Documentation . 153

6.17 wcsunits.h File Reference . 155

6.17.1 Detailed Description . 156

6.17.2 Define Documentation . 156

6.17.3 Function Documentation . 158

6.17.4 Variable Documentation . 161

6.18 wcsutil.h File Reference . 162

6.18.1 Detailed Description . 163

6.18.2 Function Documentation . 163

1 WCSLIB 4.6 and PGSBOX 4.6

1.1 Contents

• Introduction

• FITS-WCS and related software

• Overview of WCSLIB

• WCSLIB data structures

• Memory management

• Vector API

• Thread-safety

• Example code, testing and verification

• WCSLIB Fortran wrappers

• PGSBOX

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

1.2 Copyright 2

1.2 Copyright

WCSLIB 4.6 - an implementation of the FITS WCS standard.
Copyright (C) 1995-2010, Mark Calabretta

WCSLIB is free software: you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option)
any later version.

WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details.

You should have received a copy of the GNU Lesser General Public License
along with WCSLIB. If not, see <http://www.gnu.org/licenses/>.

Correspondence concerning WCSLIB may be directed to:
Internet email: mcalabre@atnf.csiro.au
Postal address: Dr. Mark Calabretta

Australia Telescope National Facility, CSIRO
PO Box 76
Epping NSW 1710
AUSTRALIA

2 Deprecated List

Global celini_errmsg Added for backwards compatibility, use cel_errmsg directly now instead.

Global celprt_errmsg Added for backwards compatibility, use cel_errmsg directly now instead.

Global celset_errmsg Added for backwards compatibility, use cel_errmsg directly now instead.

Global celx2s_errmsg Added for backwards compatibility, use cel_errmsg directly now instead.

Global cels2x_errmsg Added for backwards compatibility, use cel_errmsg directly now instead.

Global FITSHDR_CARD Added for backwards compatibility, use FITSHDR_KEYREC instead.

Global linini_errmsg Added for backwards compatibility, use lin_errmsg directly now instead.

Global lincpy_errmsg Added for backwards compatibility, use lin_errmsg directly now instead.

Global linfree_errmsg Added for backwards compatibility, use lin_errmsg directly now instead.

Global linprt_errmsg Added for backwards compatibility, use lin_errmsg directly now instead.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

2 Deprecated List 3

Global linset_errmsg Added for backwards compatibility, use lin_errmsg directly now instead.

Global linp2x_errmsg Added for backwards compatibility, use lin_errmsg directly now instead.

Global linx2p_errmsg Added for backwards compatibility, use lin_errmsg directly now instead.

Global prjini_errmsg Added for backwards compatibility, use prj_errmsg directly now instead.

Global prjprt_errmsg Added for backwards compatibility, use prj_errmsg directly now instead.

Global prjset_errmsg Added for backwards compatibility, use prj_errmsg directly now instead.

Global prjx2s_errmsg Added for backwards compatibility, use prj_errmsg directly now instead.

Global prjs2x_errmsg Added for backwards compatibility, use prj_errmsg directly now instead.

Global spcini_errmsg Added for backwards compatibility, use spc_errmsg directly now instead.

Global spcprt_errmsg Added for backwards compatibility, use spc_errmsg directly now instead.

Global spcset_errmsg Added for backwards compatibility, use spc_errmsg directly now instead.

Global spcx2s_errmsg Added for backwards compatibility, use spc_errmsg directly now instead.

Global spcs2x_errmsg Added for backwards compatibility, use spc_errmsg directly now instead.

Global tabini_errmsg Added for backwards compatibility, use tab_errmsg directly now instead.

Global tabcpy_errmsg Added for backwards compatibility, use tab_errmsg directly now instead.

Global tabfree_errmsg Added for backwards compatibility, use tab_errmsg directly now instead.

Global tabprt_errmsg Added for backwards compatibility, use tab_errmsg directly now instead.

Global tabset_errmsg Added for backwards compatibility, use tab_errmsg directly now instead.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

3 Data Structure Index 4

Global tabx2s_errmsg Added for backwards compatibility, use tab_errmsg directly now instead.

Global tabs2x_errmsg Added for backwards compatibility, use tab_errmsg directly now instead.

Global wcsini_errmsg Added for backwards compatibility, use wcs_errmsg directly now instead.

Global wcssub_errmsg Added for backwards compatibility, use wcs_errmsg directly now instead.

Global wcscopy_errmsg Added for backwards compatibility, use wcs_errmsg directly now instead.

Global wcsfree_errmsg Added for backwards compatibility, use wcs_errmsg directly now instead.

Global wcsprt_errmsg Added for backwards compatibility, use wcs_errmsg directly now instead.

Global wcsset_errmsg Added for backwards compatibility, use wcs_errmsg directly now instead.

Global wcsp2s_errmsg Added for backwards compatibility, use wcs_errmsg directly now instead.

Global wcss2p_errmsg Added for backwards compatibility, use wcs_errmsg directly now instead.

Global wcsmix_errmsg Added for backwards compatibility, use wcs_errmsg directly now instead.

Global cylfix_errmsg Added for backwards compatibility, use wcsfix_errmsg directly now instead.

3 Data Structure Index

3.1 Data Structures

Here are the data structures with brief descriptions:

celprm (Celestial transformation parameters) 6

fitskey (Keyword/value information) 8

fitskeyid (Keyword indexing) 11

linprm (Linear transformation parameters) 12

prjprm (Projection parameters) 15

pscard (Store for PSi_ma keyrecords) 18

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

4 File Index 5

pvcard (Store for PVi_ma keyrecords) 19

spcprm (Spectral transformation parameters) 20

spxprm (Spectral variables and their derivatives) 22

tabprm (Tabular transformation parameters) 27

wcsprm (Coordinate transformation parameters) 30

wtbarr (Extraction of coordinate lookup tables from BINTABLE) 42

4 File Index

4.1 File List

Here is a list of all files with brief descriptions:

cel.h 44

fitshdr.h 48

getwcstab.h 52

lin.h 54

log.h 60

prj.h 62

spc.h 84

sph.h 93

spx.h 97

tab.h 105

wcs.h 111

wcsfix.h 123

wcshdr.h 129

wcslib.h 150

wcsmath.h 150

wcstrig.h 151

wcsunits.h 155

wcsutil.h 162

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5 Data Structure Documentation 6

5 Data Structure Documentation

5.1 celprm Struct Reference

Celestial transformation parameters.

#include <cel.h>

Data Fields

• int flag
• int offset
• double phi0
• double theta0
• double ref [4]
• struct prjprm prj
• double euler [5]
• int latpreq
• int isolat

5.1.1 Detailed Description

The celprm struct contains information required to transform celestial coordinates. It consists of certain
members that must be set by the user (given) and others that are set by the WCSLIB routines (returned).
Some of the latter are supplied for informational purposes and others are for internal use only.

Returned celprm struct members must not be modified by the user.

5.1.2 Field Documentation

5.1.2.1 int celprm::flag

(Given and returned) This flag must be set to zero whenever any of the following celprm struct members
are set or changed:

• celprm::offset,

• celprm::phi0,

• celprm::theta0,

• celprm::ref[4],

• celprm::prj:

– prjprm::code,

– prjprm::r0,

– prjprm::pv[],

– prjprm::phi0,

– prjprm::theta0.

This signals the initialization routine, celset(), to recompute the returned members of the celprm struct.
celset() will reset flag to indicate that this has been done.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.1 celprm Struct Reference 7

5.1.2.2 int celprm::offset

(Given) If true, an offset will be applied to (x, y) to force (x, y) = (0,0) at the fiducial point, (φ0,θ0).

5.1.2.3 double celprm::phi0

(Given) The native longitude, φ0 [deg], and ...

5.1.2.4 double celprm::theta0

(Given) ... the native latitude, θ0 [deg], of the fiducial point, i.e. the point whose celestial coordinates are
given in celprm::ref[1:2]. If undefined (set to a magic value by prjini()) the initialization routine, celset(),
will set this to a projection-specific default.

5.1.2.5 double celprm::ref

(Given) The first pair of values should be set to the celestial longitude and latitude of the fiducial point
[deg] - typically right ascension and declination. These are given by the CRVALia keywords in FITS.

(Given and returned) The second pair of values are the native longitude, φp [deg], and latitude, θp [deg], of
the celestial pole (the latter is the same as the celestial latitude of the native pole, δp) and these are given by
the FITS keywords LONPOLEa and LATPOLEa (or by PVi_2a and PVi_3a attached to the longitude
axis which take precedence if defined).

LONPOLEa defaults to φ0 (see above) if the celestial latitude of the fiducial point of the projection is
greater than or equal to the native latitude, otherwise φ0 + 180 [deg]. (This is the condition for the celestial
latitude to increase in the same direction as the native latitude at the fiducial point.) ref[2] may be set to
UNDEFINED (from wcsmath.h) or 999.0 to indicate that the correct default should be substituted.

θp, the native latitude of the celestial pole (or equally the celestial latitude of the native pole, δp) is often
determined uniquely by CRVALia and LONPOLEa in which case LATPOLEa is ignored. However, in
some circumstances there are two valid solutions for θp and LATPOLEa is used to choose between them.
LATPOLEa is set in ref[3] and the solution closest to this value is used to reset ref[3]. It is therefore
legitimate, for example, to set ref[3] to +90.0 to choose the more northerly solution - the default if the
LATPOLEa keyword is omitted from the FITS header. For the special case where the fiducial point of
the projection is at native latitude zero, its celestial latitude is zero, and LONPOLEa = ± 90.0 then the
celestial latitude of the native pole is not determined by the first three reference values and LATPOLEa
specifies it completely.

The returned value, celprm::latpreq, specifies how LATPOLEa was actually used.

5.1.2.6 struct prjprm celprm::prj [read]

(Given and returned) Projection parameters described in the prologue to prj.h.

5.1.2.7 double celprm::euler

(Returned) Euler angles and associated intermediaries derived from the coordinate reference values. The
first three values are the Z-, X-, and Z ′-Euler angles [deg], and the remaining two are the cosine and sine
of the X-Euler angle.

5.1.2.8 int celprm::latpreq

(Returned) For informational purposes, this indicates how the LATPOLEa keyword was used

• 0: Not required, θp (== δp) was determined uniquely by the CRVALia and LONPOLEa keywords.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.2 fitskey Struct Reference 8

• 1: Required to select between two valid solutions of θp.

• 2: θp was specified solely by LATPOLEa.

5.1.2.9 int celprm::isolat

(Returned) True if the spherical rotation preserves the magnitude of the latitude, which occurs iff the
axes of the native and celestial coordinates are coincident. It signals an opportunity to cache intermediate
calculations common to all elements in a vector computation.

5.2 fitskey Struct Reference

Keyword/value information.

#include <fitshdr.h>

Data Fields

• int keyno
• int keyid
• int status
• char keyword [12]
• int type
• int padding
• union {

int i
int64 k
int l [8]
double f
double c [2]
char s [72]

} keyvalue

• int ulen
• char comment [84]

5.2.1 Detailed Description

fitshdr() returns an array of fitskey structs, each of which contains the result of parsing one FITS header
keyrecord. All members of the fitskey struct are returned by fitshdr(), none are given by the user.

5.2.2 Field Documentation

5.2.2.1 int fitskey::keyno

(Returned) Keyrecord number (1-relative) in the array passed as input to fitshdr(). This will be negated if
the keyword matched any specified in the keyids[] index.

5.2.2.2 int fitskey::keyid

(Returned) Index into the first entry in keyids[] with which the keyrecord matches, else -1.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.2 fitskey Struct Reference 9

5.2.2.3 int fitskey::status

(Returned) Status flag bit-vector for the header keyrecord employing the following bit masks defined as
preprocessor macros:

• FITSHDR_KEYWORD: Illegal keyword syntax.

• FITSHDR_KEYVALUE: Illegal keyvalue syntax.

• FITSHDR_COMMENT: Illegal keycomment syntax.

• FITSHDR_KEYREC: Illegal keyrecord, e.g. an END keyrecord with trailing text.

• FITSHDR_TRAILER: Keyrecord following a valid END keyrecord.

The header keyrecord is syntactically correct if no bits are set.

5.2.2.4 char fitskey::keyword

(Returned) Keyword name, null-filled for keywords of less than eight characters (trailing blanks replaced
by nulls).

Use

sprintf(dst, "%.8s", keyword)

to copy it to a character array with null-termination, or

sprintf(dst, "%8.8s", keyword)

to blank-fill to eight characters followed by null-termination.

5.2.2.5 int fitskey::type

(Returned) Keyvalue data type:

• 0: No keyvalue.

• 1: Logical, represented as int.

• 2: 32-bit signed integer.

• 3: 64-bit signed integer (see below).

• 4: Very long integer (see below).

• 5: Floating point (stored as double).

• 6: Integer complex (stored as double[2]).

• 7: Floating point complex (stored as double[2]).

• 8: String.

• 8+10∗n: Continued string (described below and in fitshdr() note 2).

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.2 fitskey Struct Reference 10

A negative type indicates that a syntax error was encountered when attempting to parse a keyvalue of the
particular type.

Comments on particular data types:

• 64-bit signed integers lie in the range

(-9223372036854775808 <= int64 < -2147483648) ||
(+2147483647 < int64 <= +9223372036854775807)

A native 64-bit data type may be defined via preprocessor macro WCSLIB_INT64 defined in wc-
sconfig.h, e.g. as ’long long int’; this will be typedef’d to ’int64’ here. If WCSLIB_INT64 is not set,
then int64 is typedef’d to int[3] instead and fitskey::keyvalue is to be computed as

((keyvalue.k[2]) * 1000000000 +
keyvalue.k[1]) * 1000000000 +
keyvalue.k[0]

and may reported via

if (keyvalue.k[2]) {
printf("%d%09d%09d", keyvalue.k[2], abs(keyvalue.k[1]),

abs(keyvalue.k[0]));
} else {
printf("%d%09d", keyvalue.k[1], abs(keyvalue.k[0]));

}

where keyvalue.k[0] and keyvalue.k[1] range from -999999999 to +999999999.

• Very long integers, up to 70 decimal digits in length, are encoded in keyvalue.l as an array of int[8],
each of which stores 9 decimal digits. fitskey::keyvalue is to be computed as

(((((((keyvalue.l[7]) * 1000000000 +
keyvalue.l[6]) * 1000000000 +
keyvalue.l[5]) * 1000000000 +
keyvalue.l[4]) * 1000000000 +
keyvalue.l[3]) * 1000000000 +
keyvalue.l[2]) * 1000000000 +
keyvalue.l[1]) * 1000000000 +
keyvalue.l[0]

• Continued strings are not reconstructed, they remain split over successive fitskey structs in the keys[]
array returned by fitshdr(). fitskey::keyvalue data type, 8 + 10n, indicates the segment number, n, in
the continuation.

5.2.2.6 int fitskey::padding

(An unused variable inserted for alignment purposes only.)

5.2.2.7 int fitskey::i

(Returned) Logical (fitskey::type == 1) and 32-bit signed integer (fitskey::type == 2) data types in the
fitskey::keyvalue union.

5.2.2.8 int64 fitskey::k

(Returned) 64-bit signed integer (fitskey::type == 3) data type in the fitskey::keyvalue union.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.3 fitskeyid Struct Reference 11

5.2.2.9 int fitskey::l

(Returned) Very long integer (fitskey::type == 4) data type in the fitskey::keyvalue union.

5.2.2.10 double fitskey::f

(Returned) Floating point (fitskey::type == 5) data type in the fitskey::keyvalue union.

5.2.2.11 double fitskey::c

(Returned) Integer and floating point complex (fitskey::type == 6 || 7) data types in the fitskey::keyvalue
union.

5.2.2.12 char fitskey::s

(Returned) Null-terminated string (fitskey::type == 8) data type in the fitskey::keyvalue union.

5.2.2.13 union fitskey::keyvalue

(Returned) A union comprised of

• fitskey::i,

• fitskey::k,

• fitskey::l,

• fitskey::f,

• fitskey::c,

• fitskey::s,

used by the fitskey struct to contain the value associated with a keyword.

5.2.2.14 int fitskey::ulen

(Returned) Where a keycomment contains a units string in the standard form, e.g. [m/s], the ulen member
indicates its length, inclusive of square brackets. Otherwise ulen is zero.

5.2.2.15 char fitskey::comment

(Returned) Keycomment, i.e. comment associated with the keyword or, for keyrecords rejected because of
syntax errors, the compete keyrecord itself with null-termination.

Comments are null-terminated with trailing spaces removed. Leading spaces are also removed from key-
comments (i.e. those immediately following the ’/’ character), but not from COMMENT or HISTORY
keyrecords or keyrecords without a value indicator (”= ” in columns 9-80).

5.3 fitskeyid Struct Reference

Keyword indexing.

#include <fitshdr.h>

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.4 linprm Struct Reference 12

Data Fields

• char name [12]
• int count
• int idx [2]

5.3.1 Detailed Description

fitshdr() uses the fitskeyid struct to return indexing information for specified keywords. The struct contains
three members, the first of which, fitskeyid::name, must be set by the user with the remainder returned by
fitshdr().

5.3.2 Field Documentation

5.3.2.1 char fitskeyid::name

(Given) Name of the required keyword. This is to be set by the user; the ’.’ character may be used for
wildcarding. Trailing blanks will be replaced with nulls.

5.3.2.2 int fitskeyid::count

(Returned) The number of matches found for the keyword.

5.3.2.3 int fitskeyid::idx

(Returned) Indices into keys[], the array of fitskey structs returned by fitshdr(). Note that these are 0-relative
array indices, not keyrecord numbers.

If the keyword is found in the header the first index will be set to the array index of its first occurrence,
otherwise it will be set to -1.

If multiples of the keyword are found, the second index will be set to the array index of its last occurrence,
otherwise it will be set to -1.

5.4 linprm Struct Reference

Linear transformation parameters.

#include <lin.h>

Data Fields

• int flag
• int naxis
• double ∗ crpix
• double ∗ pc
• double ∗ cdelt
• double ∗ piximg
• double ∗ imgpix
• int unity
• int i_naxis
• int m_flag

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.4 linprm Struct Reference 13

• int m_naxis
• double ∗ m_crpix
• double ∗ m_pc
• double ∗ m_cdelt

5.4.1 Detailed Description

The linprm struct contains all of the information required to perform a linear transformation. It consists
of certain members that must be set by the user (given) and others that are set by the WCSLIB routines
(returned).

5.4.2 Field Documentation

5.4.2.1 int linprm::flag

(Given and returned) This flag must be set to zero whenever any of the following members of the linprm
struct are set or modified:

• linprm::naxis (q.v., not normally set by the user),

• linprm::pc,

• linprm::cdelt.

This signals the initialization routine, linset(), to recompute the returned members of the linprm struct.
linset() will reset flag to indicate that this has been done.

PLEASE NOTE: flag should be set to -1 when linini() is called for the first time for a particular linprm
struct in order to initialize memory management. It must ONLY be used on the first initialization otherwise
memory leaks may result.

5.4.2.2 int linprm::naxis

(Given or returned) Number of pixel and world coordinate elements.

If linini() is used to initialize the linprm struct (as would normally be the case) then it will set naxis from
the value passed to it as a function argument. The user should not subsequently modify it.

5.4.2.3 double ∗ linprm::crpix

(Given) Pointer to the first element of an array of double containing the coordinate reference pixel, CR-
PIXja.

5.4.2.4 double ∗ linprm::pc

(Given) Pointer to the first element of the PCi_ja (pixel coordinate) transformation matrix. The expected
order is

struct linprm lin;
lin.pc = {PC1_1, PC1_2, PC2_1, PC2_2};

This may be constructed conveniently from a 2-D array via

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.4 linprm Struct Reference 14

double m[2][2] = {{PC1_1, PC1_2},
{PC2_1, PC2_2}};

which is equivalent to

double m[2][2];
m[0][0] = PC1_1;
m[0][1] = PC1_2;
m[1][0] = PC2_1;
m[1][1] = PC2_2;

The storage order for this 2-D array is the same as for the 1-D array, whence

lin.pc = *m;

would be legitimate.

5.4.2.5 double ∗ linprm::cdelt

(Given) Pointer to the first element of an array of double containing the coordinate increments, CDELTia.

5.4.2.6 double ∗ linprm::piximg

(Returned) Pointer to the first element of the matrix containing the product of the CDELTia diagonal
matrix and the PCi_ja matrix.

5.4.2.7 double ∗ linprm::imgpix

(Returned) Pointer to the first element of the inverse of the linprm::piximg matrix.

5.4.2.8 int linprm::unity

(Returned) True if the linear transformation matrix is unity.

5.4.2.9 int linprm::i_naxis

(For internal use only.)

5.4.2.10 int linprm::m_flag

(For internal use only.)

5.4.2.11 int linprm::m_naxis

(For internal use only.)

5.4.2.12 double ∗ linprm::m_crpix

(For internal use only.)

5.4.2.13 double ∗ linprm::m_pc

(For internal use only.)

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.5 prjprm Struct Reference 15

5.4.2.14 double ∗ linprm::m_cdelt

(For internal use only.)

5.5 prjprm Struct Reference

Projection parameters.

#include <prj.h>

Data Fields

• int flag
• char code [4]
• double r0
• double pv [PVN]
• double phi0
• double theta0
• int bounds
• char name [40]
• int category
• int pvrange
• int simplezen
• int equiareal
• int conformal
• int global
• int divergent
• double x0
• double y0
• double w [10]
• int n
• int padding
• int(∗ prjx2s)(PRJX2S_ARGS)
• int(∗ prjs2x)(PRJS2X_ARGS)

5.5.1 Detailed Description

The prjprm struct contains all information needed to project or deproject native spherical coordinates. It
consists of certain members that must be set by the user (given) and others that are set by the WCSLIB
routines (returned). Some of the latter are supplied for informational purposes while others are for internal
use only.

5.5.2 Field Documentation

5.5.2.1 int prjprm::flag

(Given and returned) This flag must be set to zero whenever any of the following prjprm struct members
are set or changed:

• prjprm::code,

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.5 prjprm Struct Reference 16

• prjprm::r0,

• prjprm::pv[],

• prjprm::phi0,

• prjprm::theta0.

This signals the initialization routine (prjset() or ???set()) to recompute the returned members of the pr-
jprm struct. flag will then be reset to indicate that this has been done.

Note that flag need not be reset when prjprm::bounds is changed.

5.5.2.2 char prjprm::code

(Given) Three-letter projection code defined by the FITS standard.

5.5.2.3 double prjprm::r0

(Given) The radius of the generating sphere for the projection, a linear scaling parameter. If this is zero, it
will be reset to its default value of 180◦/π (the value for FITS WCS).

5.5.2.4 double prjprm::pv

(Given) Projection parameters. These correspond to the PVi_ma keywords in FITS, so pv[0] is PVi_0a,
pv[1] is PVi_1a, etc., where i denotes the latitude-like axis. Many projections use pv[1] (PVi_1a), some
also use pv[2] (PVi_2a) and SZP uses pv[3] (PVi_3a). ZPN is currently the only projection that uses
any of the others.

Usage of the pv[] array as it applies to each projection is described in the prologue to each trio of projection
routines in prj.c.

5.5.2.5 double prjprm::phi0

(Given) The native longitude, φ0 [deg], and ...

5.5.2.6 double prjprm::theta0

(Given) ... the native latitude, θ0 [deg], of the reference point, i.e. the point (x, y) = (0,0). If undefined (set
to a magic value by prjini()) the initialization routine will set this to a projection-specific default.

5.5.2.7 int prjprm::bounds

(Given) Controls strict bounds checking for the AZP, SZP, TAN, SIN, ZPN, and COP projections; set to
zero to disable checking.

The remaining members of the prjprm struct are maintained by the setup routines and must not be modified
elsewhere:

5.5.2.8 char prjprm::name

(Returned) Long name of the projection.

Provided for information only, not used by the projection routines.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.5 prjprm Struct Reference 17

5.5.2.9 int prjprm::category

(Returned) Projection category matching the value of the relevant global variable:

• ZENITHAL,

• CYLINDRICAL,

• PSEUDOCYLINDRICAL,

• CONVENTIONAL,

• CONIC,

• POLYCONIC,

• QUADCUBE, and

• HEALPIX.

The category name may be identified via the prj_categories character array, e.g.

struct prjprm prj;
...

printf("%s\n", prj_categories[prj.category]);

Provided for information only, not used by the projection routines.

5.5.2.10 int prjprm::pvrange

(Returned) Range of projection parameter indices: 100 times the first allowed index plus the number of
parameters, e.g. TAN is 0 (no parameters), SZP is 103 (1 to 3), and ZPN is 30 (0 to 29).

Provided for information only, not used by the projection routines.

5.5.2.11 int prjprm::simplezen

(Returned) True if the projection is a radially-symmetric zenithal projection.

Provided for information only, not used by the projection routines.

5.5.2.12 int prjprm::equiareal

(Returned) True if the projection is equal area.

Provided for information only, not used by the projection routines.

5.5.2.13 int prjprm::conformal

(Returned) True if the projection is conformal.

Provided for information only, not used by the projection routines.

5.5.2.14 int prjprm::global

(Returned) True if the projection can represent the whole sphere in a finite, non-overlapped mapping.

Provided for information only, not used by the projection routines.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.6 pscard Struct Reference 18

5.5.2.15 int prjprm::divergent

(Returned) True if the projection diverges in latitude.

Provided for information only, not used by the projection routines.

5.5.2.16 double prjprm::x0

(Returned) The offset in x,and ...

5.5.2.17 double prjprm::y0

(Returned) ... the offset in y used to force (x, y) = (0,0) at (φ0,θ0).

5.5.2.18 double prjprm::w

(Returned) Intermediate floating-point values derived from the projection parameters, cached here to save
recomputation.

Usage of the w[] array as it applies to each projection is described in the prologue to each trio of projection
routines in prj.c.

5.5.2.19 int prjprm::n

(Returned) Intermediate integer value (used only for the ZPN and HPX projections).

5.5.2.20 int prjprm::padding

(An unused variable inserted for alignment purposes only.)

5.5.2.21 prjprm::prjx2s

(Returned) Pointer to the projection ...

5.5.2.22 prjprm::prjs2x

(Returned) ... and deprojection routines.

5.6 pscard Struct Reference

Store for PSi_ma keyrecords.

#include <wcs.h>

Data Fields

• int i
• int m
• char value [72]

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.7 pvcard Struct Reference 19

5.6.1 Detailed Description

The pscard struct is used to pass the parsed contents of PSi_ma keyrecords to wcsset() via the wcsprm
struct.

All members of this struct are to be set by the user.

5.6.2 Field Documentation

5.6.2.1 int pscard::i

(Given) Axis number (1-relative), as in the FITS PSi_ma keyword.

5.6.2.2 int pscard::m

(Given) Parameter number (non-negative), as in the FITS PSi_ma keyword.

5.6.2.3 char pscard::value

(Given) Parameter value.

5.7 pvcard Struct Reference

Store for PVi_ma keyrecords.

#include <wcs.h>

Data Fields

• int i
• int m
• double value

5.7.1 Detailed Description

The pvcard struct is used to pass the parsed contents of PVi_ma keyrecords to wcsset() via the wcsprm
struct.

All members of this struct are to be set by the user.

5.7.2 Field Documentation

5.7.2.1 int pvcard::i

(Given) Axis number (1-relative), as in the FITS PVi_ma keyword.

5.7.2.2 int pvcard::m

(Given) Parameter number (non-negative), as in the FITS PVi_ma keyword.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.8 spcprm Struct Reference 20

5.7.2.3 double pvcard::value

(Given) Parameter value.

5.8 spcprm Struct Reference

Spectral transformation parameters.

#include <spc.h>

Data Fields

• int flag
• char type [8]
• char code [4]
• double crval
• double restfrq
• double restwav
• double pv [7]
• double w [6]
• int isGrism
• int padding
• int(∗ spxX2P)(SPX_ARGS)
• int(∗ spxP2S)(SPX_ARGS)
• int(∗ spxS2P)(SPX_ARGS)
• int(∗ spxP2X)(SPX_ARGS)

5.8.1 Detailed Description

The spcprm struct contains information required to transform spectral coordinates. It consists of certain
members that must be set by the user (given) and others that are set by the WCSLIB routines (returned).
Some of the latter are supplied for informational purposes while others are for internal use only.

5.8.2 Field Documentation

5.8.2.1 int spcprm::flag

(Given and returned) This flag must be set to zero whenever any of the following spcprm structure members
are set or changed:

• spcprm::type,

• spcprm::code,

• spcprm::crval,

• spcprm::restfrq,

• spcprm::restwav,

• spcprm::pv[].

This signals the initialization routine, spcset(), to recompute the returned members of the spcprm struct.
spcset() will reset flag to indicate that this has been done.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.8 spcprm Struct Reference 21

5.8.2.2 char spcprm::type

(Given) Four-letter spectral variable type, e.g "ZOPT" for CTYPEia = ’ZOPT-F2W’. (Declared as
char[8] for alignment reasons.)

5.8.2.3 char spcprm::code

(Given) Three-letter spectral algorithm code, e.g "F2W" for CTYPEia = ’ZOPT-F2W’.

5.8.2.4 double spcprm::crval

(Given) Reference value (CRVALia), SI units.

5.8.2.5 double spcprm::restfrq

(Given) The rest frequency [Hz], and ...

5.8.2.6 double spcprm::restwav

(Given) ... the rest wavelength in vacuo [m], only one of which need be given, the other should be set to
zero. Neither are required if the X and S spectral variables are both wave-characteristic, or both velocity-
characteristic, types.

5.8.2.7 double spcprm::pv

(Given) Grism parameters for ’GRI’ and ’GRA’ algorithm codes:

• 0: G, grating ruling density.

• 1: m, interference order.

• 2: α, angle of incidence [deg].

• 3: nr, refractive index at the reference wavelength, λr.

• 4: n′
r, dn/dλ at the reference wavelength, λr (/m).

• 5: ε, grating tilt angle [deg].

• 6: θ, detector tilt angle [deg].

The remaining members of the spcprm struct are maintained by spcset() and must not be modified else-
where:

5.8.2.8 double spcprm::w

(Returned) Intermediate values:

• 0: Rest frequency or wavelength (SI).

• 1: The value of the X-type spectral variable at the reference point (SI units).

• 2: dX/dS at the reference point (SI units).

The remainder are grism intermediates.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.9 spxprm Struct Reference 22

5.8.2.9 int spcprm::isGrism

(Returned) Grism coordinates?

• 0: no,

• 1: in vacuum,

• 2: in air.

5.8.2.10 int spcprm::padding

(An unused variable inserted for alignment purposes only.)

5.8.2.11 spcprm::spxX2P

(Returned) The first and ...

5.8.2.12 spcprm::spxP2S

(Returned) ... the second of the pointers to the transformation functions in the two-step algorithm chain
X ; P → S in the pixel-to-spectral direction where the non-linear transformation is from X to P . The
argument list, SPX_ARGS, is defined in spx.h.

5.8.2.13 spcprm::spxS2P

(Returned) The first and ...

5.8.2.14 spcprm::spxP2X

(Returned) ... the second of the pointers to the transformation functions in the two-step algorithm chain
S → P ; X in the spectral-to-pixel direction where the non-linear transformation is from P to X . The
argument list, SPX_ARGS, is defined in spx.h.

5.9 spxprm Struct Reference

Spectral variables and their derivatives.

#include <spx.h>

Data Fields

• double restfrq
• double restwav
• int wavetype
• int velotype
• double freq
• double afrq
• double ener
• double wavn
• double vrad
• double wave

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.9 spxprm Struct Reference 23

• double vopt
• double zopt
• double awav
• double velo
• double beta
• double dfreqafrq
• double dafrqfreq
• double dfreqener
• double denerfreq
• double dfreqwavn
• double dwavnfreq
• double dfreqvrad
• double dvradfreq
• double dfreqwave
• double dwavefreq
• double dfreqawav
• double dawavfreq
• double dfreqvelo
• double dvelofreq
• double dwavevopt
• double dvoptwave
• double dwavezopt
• double dzoptwave
• double dwaveawav
• double dawavwave
• double dwavevelo
• double dvelowave
• double dawavvelo
• double dveloawav
• double dvelobeta
• double dbetavelo

5.9.1 Detailed Description

The spxprm struct contains the value of all spectral variables and their derivatives. It is used solely by
specx() which constructs it from information provided via its function arguments.

This struct should be considered read-only, no members need ever be set nor should ever be modified by
the user.

5.9.2 Field Documentation

5.9.2.1 double spxprm::restfrq

(Returned) Rest frequency [Hz].

5.9.2.2 double spxprm::restwav

(Returned) Rest wavelength [m].

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.9 spxprm Struct Reference 24

5.9.2.3 int spxprm::wavetype

(Returned) True if wave types have been computed, and ...

5.9.2.4 int spxprm::velotype

(Returned) ... true if velocity types have been computed; types are defined below.

If one or other of spxprm::restfrq and spxprm::restwav is given (non-zero) then all spectral variables may
be computed. If both are given, restfrq is used. If restfrq and restwav are both zero, only wave characteristic
xor velocity type spectral variables may be computed depending on the variable given. These flags indicate
what is available.

5.9.2.5 double spxprm::freq

(Returned) Frequency [Hz] (wavetype).

5.9.2.6 double spxprm::afrq

(Returned) Angular frequency [rad/s] (wavetype).

5.9.2.7 double spxprm::ener

(Returned) Photon energy [J] (wavetype).

5.9.2.8 double spxprm::wavn

(Returned) Wave number [/m] (wavetype).

5.9.2.9 double spxprm::vrad

(Returned) Radio velocity [m/s] (velotype).

5.9.2.10 double spxprm::wave

(Returned) Vacuum wavelength [m] (wavetype).

5.9.2.11 double spxprm::vopt

(Returned) Optical velocity [m/s] (velotype).

5.9.2.12 double spxprm::zopt

(Returned) Redshift [dimensionless] (velotype).

5.9.2.13 double spxprm::awav

(Returned) Air wavelength [m] (wavetype).

5.9.2.14 double spxprm::velo

(Returned) Relativistic velocity [m/s] (velotype).

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.9 spxprm Struct Reference 25

5.9.2.15 double spxprm::beta

(Returned) Relativistic beta [dimensionless] (velotype).

5.9.2.16 double spxprm::dfreqafrq

(Returned) Derivative of frequency with respect to angular frequency [/rad] (constant, = 1/2π), and ...

5.9.2.17 double spxprm::dafrqfreq

(Returned) ... vice versa [rad] (constant, = 2π, always available).

5.9.2.18 double spxprm::dfreqener

(Returned) Derivative of frequency with respect to photon energy [/J/s] (constant, = 1/h), and ...

5.9.2.19 double spxprm::denerfreq

(Returned) ... vice versa [Js] (constant, = h, Planck’s constant, always available).

5.9.2.20 double spxprm::dfreqwavn

(Returned) Derivative of frequency with respect to wave number [m/s] (constant, = c, the speed of light in
vacuuo), and ...

5.9.2.21 double spxprm::dwavnfreq

(Returned) ... vice versa [s/m] (constant, = 1/c, always available).

5.9.2.22 double spxprm::dfreqvrad

(Returned) Derivative of frequency with respect to radio velocity [/m], and ...

5.9.2.23 double spxprm::dvradfreq

(Returned) ... vice versa [m] (wavetype && velotype).

5.9.2.24 double spxprm::dfreqwave

(Returned) Derivative of frequency with respect to vacuum wavelength [/m/s], and ...

5.9.2.25 double spxprm::dwavefreq

(Returned) ... vice versa [m s] (wavetype).

5.9.2.26 double spxprm::dfreqawav

(Returned) Derivative of frequency with respect to air wavelength, [/m/s], and ...

5.9.2.27 double spxprm::dawavfreq

(Returned) ... vice versa [m s] (wavetype).

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.9 spxprm Struct Reference 26

5.9.2.28 double spxprm::dfreqvelo

(Returned) Derivative of frequency with respect to relativistic velocity [/m], and ...

5.9.2.29 double spxprm::dvelofreq

(Returned) ... vice versa [m] (wavetype && velotype).

5.9.2.30 double spxprm::dwavevopt

(Returned) Derivative of vacuum wavelength with respect to optical velocity [s], and ...

5.9.2.31 double spxprm::dvoptwave

(Returned) ... vice versa [/s] (wavetype && velotype).

5.9.2.32 double spxprm::dwavezopt

(Returned) Derivative of vacuum wavelength with respect to redshift [m], and ...

5.9.2.33 double spxprm::dzoptwave

(Returned) ... vice versa [/m] (wavetype && velotype).

5.9.2.34 double spxprm::dwaveawav

(Returned) Derivative of vacuum wavelength with respect to air wavelength [dimensionless], and ...

5.9.2.35 double spxprm::dawavwave

(Returned) ... vice versa [dimensionless] (wavetype).

5.9.2.36 double spxprm::dwavevelo

(Returned) Derivative of vacuum wavelength with respect to relativistic velocity [s], and ...

5.9.2.37 double spxprm::dvelowave

(Returned) ... vice versa [/s] (wavetype && velotype).

5.9.2.38 double spxprm::dawavvelo

(Returned) Derivative of air wavelength with respect to relativistic velocity [s], and ...

5.9.2.39 double spxprm::dveloawav

(Returned) ... vice versa [/s] (wavetype && velotype).

5.9.2.40 double spxprm::dvelobeta

(Returned) Derivative of relativistic velocity with respect to relativistic beta [m/s] (constant, = c, the speed
of light in vacuu0), and ...

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.10 tabprm Struct Reference 27

5.9.2.41 double spxprm::dbetavelo

(Returned) ... vice versa [s/m] (constant, = 1/c, always available).

5.10 tabprm Struct Reference

Tabular transformation parameters.

#include <tab.h>

Data Fields

• int flag
• int M
• int ∗ K
• int ∗ map
• double ∗ crval
• double ∗∗ index
• double ∗ coord
• int nc
• int padding
• int ∗ sense
• int ∗ p0
• double ∗ delta
• double ∗ extrema
• int m_flag
• int m_M
• int m_N
• int set_M
• int ∗ m_K
• int ∗ m_map
• double ∗ m_crval
• double ∗∗ m_index
• double ∗∗ m_indxs
• double ∗ m_coord

5.10.1 Detailed Description

The tabprm struct contains information required to transform tabular coordinates. It consists of certain
members that must be set by the user (given) and others that are set by the WCSLIB routines (returned).
Some of the latter are supplied for informational purposes while others are for internal use only.

5.10.2 Field Documentation

5.10.2.1 int tabprm::flag

(Given and returned) This flag must be set to zero whenever any of the following tabprm structure members
are set or changed:

• tabprm::M (q.v., not normally set by the user),

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.10 tabprm Struct Reference 28

• tabprm::K (q.v., not normally set by the user),

• tabprm::map,

• tabprm::crval,

• tabprm::index,

• tabprm::coord.

This signals the initialization routine, tabset(), to recompute the returned members of the tabprm struct.
tabset() will reset flag to indicate that this has been done.

PLEASE NOTE: flag should be set to -1 when tabini() is called for the first time for a particular tabprm
struct in order to initialize memory management. It must ONLY be used on the first initialization otherwise
memory leaks may result.

5.10.2.2 int tabprm::M

(Given or returned) Number of tabular coordinate axes.

If tabini() is used to initialize the linprm struct (as would normally be the case) then it will set M from the
value passed to it as a function argument. The user should not subsequently modify it.

5.10.2.3 int ∗ tabprm::K

(Given or returned) Pointer to the first element of a vector of length tabprm::M whose elements
(K1,K2, ...KM) record the lengths of the axes of the coordinate array and of each indexing vector.

If tabini() is used to initialize the linprm struct (as would normally be the case) then it will set K from the
array passed to it as a function argument. The user should not subsequently modify it.

5.10.2.4 int ∗ tabprm::map

(Given) Pointer to the first element of a vector of length tabprm::M that defines the association between
axis m in the M-dimensional coordinate array (1 ≤ m ≤ M) and the indices of the intermediate world
coordinate and world coordinate arrays, x[] and world[], in the argument lists for tabx2s() and tabs2x().

When x[] and world[] contain the full complement of coordinate elements in image-order, as will usually
be the case, then map[m-1] == i-1 for axis i in the N-dimensional image (1 ≤ i ≤ N). In terms of the FITS
keywords

map[PVi_3a - 1] == i - 1.

However, a different association may result if x[], for example, only contains a (relevant) subset of inter-
mediate world coordinate elements. For example, if M == 1 for an image with N > 1, it is possible to fill
x[] with the relevant coordinate element with nelem set to 1. In this case map[0] = 0 regardless of the value
of i.

5.10.2.5 double ∗ tabprm::crval

(Given) Pointer to the first element of a vector of length tabprm::M whose elements contain the index value
for the reference pixel for each of the tabular coordinate axes.

5.10.2.6 double ∗∗ tabprm::index

(Given) Pointer to the first element of a vector of length tabprm::M of pointers to vectors of lengths
(K1,K2, ...KM) of 0-relative indexes (see tabprm::K).

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.10 tabprm Struct Reference 29

The address of any or all of these index vectors may be set to zero, i.e.

index[m] == 0;

this is interpreted as default indexing, i.e.

index[m][k] = k;

5.10.2.7 double ∗ tabprm::coord

(Given) Pointer to the first element of the tabular coordinate array, treated as though it were defined as

double coord[K_M]...[K_2][K_1][M];

(see tabprm::K) i.e. with the M dimension varying fastest so that the M elements of a coordinate vector are
stored contiguously in memory.

5.10.2.8 int tabprm::nc

(Returned) Total number of coordinate vectors in the coordinate array being the productK1K2 . . .KM (see
tabprm::K).

5.10.2.9 int tabprm::padding

(An unused variable inserted for alignment purposes only.)

5.10.2.10 int ∗ tabprm::sense

(Returned) Pointer to the first element of a vector of length tabprm::M whose elements indicate whether
the corresponding indexing vector is monotonic increasing (+1), or decreasing (-1).

5.10.2.11 double ∗ tabprm::p0

(Returned) Pointer to the first element of a vector of length tabprm::M of interpolated indices into the
coordinate array such that Υm, as defined in Paper III, is equal to p0[m] + tabprm::delta[m].

5.10.2.12 double ∗ tabprm::delta

(Returned) Pointer to the first element of a vector of length tabprm::M of interpolated indices into the
coordinate array such that Υm, as defined in Paper III, is equal to tabprm::p0[m] + delta[m].

5.10.2.13 double ∗ tabprm::extrema

(Returned) Pointer to the first element of an array that records the minimum and maximum value of each
element of the coordinate vector in each row of the coordinate array, treated as though it were defined as

double extrema[K_M]...[K_2][2][M]

(see tabprm::K). The minimum is recorded in the first element of the compressed K1 dimension, then the
maximum. This array is used by the inverse table lookup function, tabs2x(), to speed up table searches.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.11 wcsprm Struct Reference 30

5.10.2.14 int tabprm::m_flag

(For internal use only.)

5.10.2.15 int tabprm::m_M

(For internal use only.)

5.10.2.16 int tabprm::m_N

(For internal use only.)

5.10.2.17 int tabprm::set_M

(For internal use only.)

5.10.2.18 int tabprm::m_K

(For internal use only.)

5.10.2.19 int tabprm::m_map

(For internal use only.)

5.10.2.20 int tabprm::m_crval

(For internal use only.)

5.10.2.21 int tabprm::m_index

(For internal use only.)

5.10.2.22 int tabprm::m_indxs

(For internal use only.)

5.10.2.23 int tabprm::m_coord

(For internal use only.)

5.11 wcsprm Struct Reference

Coordinate transformation parameters.

#include <wcs.h>

Data Fields

• int flag
• int naxis
• double ∗ crpix
• double ∗ pc

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.11 wcsprm Struct Reference 31

• double ∗ cdelt
• double ∗ crval
• char(∗ cunit)[72]
• char(∗ ctype)[72]
• double lonpole
• double latpole
• double restfrq
• double restwav
• int npv
• int npvmax
• struct pvcard ∗ pv
• int nps
• int npsmax
• struct pscard ∗ ps
• double ∗ cd
• double ∗ crota
• int altlin
• int velref
• char alt [4]
• int colnum
• int ∗ colax
• char(∗ cname)[72]
• double ∗ crder
• double ∗ csyer
• char dateavg [72]
• char dateobs [72]
• double equinox
• double mjdavg
• double mjdobs
• double obsgeo [3]
• char radesys [72]
• char specsys [72]
• char ssysobs [72]
• double velosys
• double zsource
• char ssyssrc [72]
• double velangl
• char wcsname [72]
• int ntab
• int nwtb
• struct tabprm ∗ tab
• struct wtbarr ∗ wtb
• int ∗ types
• char lngtyp [8]
• char lattyp [8]
• int lng
• int lat
• int spec
• int cubeface
• struct linprm lin

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.11 wcsprm Struct Reference 32

• struct celprm cel
• struct spcprm spc
• int m_flag
• int m_naxis
• double ∗ m_crpix
• double ∗ m_pc
• double ∗ m_cdelt
• double ∗ m_crval
• char(∗ m_cunit)[72]
• char((∗ m_ctype)[72]
• struct pvcard ∗ m_pv
• struct pscard ∗ m_ps
• double ∗ m_cd
• double ∗ m_crota
• int ∗ m_colax
• char(∗ m_cname)[72]
• double ∗ m_crder
• double ∗ m_csyer
• struct tabprm ∗ m_tab
• struct wtbarr ∗ m_wtb

5.11.1 Detailed Description

The wcsprm struct contains information required to transform world coordinates. It consists of certain
members that must be set by the user (given) and others that are set by the WCSLIB routines (returned).
Some of the former are not actually required for transforming coordinates. These are described as "auxil-
iary"; the struct simply provides a place to store them, though they may be used by wcshdo() in constructing
a FITS header from a wcsprm struct. Some of the returned values are supplied for informational purposes
and others are for internal use only as indicated.

In practice, it is expected that a WCS parser would scan the FITS header to determine the number of
coordinate axes. It would then use wcsini() to allocate memory for arrays in the wcsprm struct and set
default values. Then as it reread the header and identified each WCS keyrecord it would load the value
into the relevant wcsprm array element. This is essentially what wcspih() does - refer to the prologue of
wcshdr.h. As the final step, wcsset() is invoked, either directly or indirectly, to set the derived members
of the wcsprm struct. wcsset() strips off trailing blanks in all string members and null-fills the character
array.

5.11.2 Field Documentation

5.11.2.1 int wcsprm::flag

(Given and returned) This flag must be set to zero whenever any of the following wcsprm struct members
are set or changed:

• wcsprm::naxis (q.v., not normally set by the user),

• wcsprm::crpix,

• wcsprm::pc,

• wcsprm::cdelt,

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.11 wcsprm Struct Reference 33

• wcsprm::crval,

• wcsprm::cunit,

• wcsprm::ctype,

• wcsprm::lonpole,

• wcsprm::latpole,

• wcsprm::restfrq,

• wcsprm::restwav,

• wcsprm::npv,

• wcsprm::pv,

• wcsprm::nps,

• wcsprm::ps,

• wcsprm::cd,

• wcsprm::crota,

• wcsprm::altlin.

This signals the initialization routine, wcsset(), to recompute the returned members of the celprm struct.
celset() will reset flag to indicate that this has been done.

PLEASE NOTE: flag should be set to -1 when wcsini() is called for the first time for a particular wcsprm
struct in order to initialize memory management. It must ONLY be used on the first initialization otherwise
memory leaks may result.

5.11.2.2 int wcsprm::naxis

(Given or returned) Number of pixel and world coordinate elements.

If wcsini() is used to initialize the linprm struct (as would normally be the case) then it will set naxis from
the value passed to it as a function argument. The user should not subsequently modify it.

5.11.2.3 double ∗ wcsprm::crpix

(Given) Address of the first element of an array of double containing the coordinate reference pixel, CR-
PIXja.

5.11.2.4 double ∗ wcsprm::pc

(Given) Address of the first element of the PCi_ja (pixel coordinate) transformation matrix. The expected
order is

struct wcsprm wcs;
wcs.pc = {PC1_1, PC1_2, PC2_1, PC2_2};

This may be constructed conveniently from a 2-D array via

double m[2][2] = {{PC1_1, PC1_2},
{PC2_1, PC2_2}};

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.11 wcsprm Struct Reference 34

which is equivalent to

double m[2][2];
m[0][0] = PC1_1;
m[0][1] = PC1_2;
m[1][0] = PC2_1;
m[1][1] = PC2_2;

The storage order for this 2-D array is the same as for the 1-D array, whence

wcs.pc = *m;

would be legitimate.

5.11.2.5 double ∗ wcsprm::cdelt

(Given) Address of the first element of an array of double containing the coordinate increments,
CDELTia.

5.11.2.6 double ∗ wcsprm::crval

(Given) Address of the first element of an array of double containing the coordinate reference values,
CRVALia.

5.11.2.7 wcsprm::cunit

(Given) Address of the first element of an array of char[72] containing the CUNITia keyvalues which
define the units of measurement of the CRVALia, CDELTia, and CDi_ja keywords.

As CUNITia is an optional header keyword, cunit[][72] may be left blank but otherwise is expected to
contain a standard units specification as defined by WCS Paper I. Utility function wcsutrn(), described in
wcsunits.h, is available to translate commonly used non-standard units specifications but this must be done
as a separate step before invoking wcsset().

For celestial axes, if cunit[][72] is not blank, wcsset() uses wcsunits() to parse it and scale cdelt[], crval[],
and cd[][∗] to degrees. It then resets cunit[][72] to "deg".

For spectral axes, if cunit[][72] is not blank, wcsset() uses wcsunits() to parse it and scale cdelt[], crval[],
and cd[][∗] to SI units. It then resets cunit[][72] accordingly.

wcsset() ignores cunit[][72] for other coordinate types; cunit[][72] may be used to label coordinate values.

These variables accomodate the longest allowed string-valued FITS keyword, being limited to 68 charac-
ters, plus the null-terminating character.

5.11.2.8 wcsprm::ctype

(Given) Address of the first element of an array of char[72] containing the coordinate axis types,
CTYPEia.

The ctype[][72] keyword values must be in upper case and there must be zero or one pair of matched
celestial axis types, and zero or one spectral axis. The ctype[][72] strings should be padded with blanks on
the right and null-terminated so that they are at least eight characters in length.

These variables accomodate the longest allowed string-valued FITS keyword, being limited to 68 charac-
ters, plus the null-terminating character.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.11 wcsprm Struct Reference 35

5.11.2.9 double wcsprm::lonpole

(Given and returned) The native longitude of the celestial pole, φp, given by LONPOLEa [deg] or by
PVi_2a [deg] attached to the longitude axis which takes precedence if defined, and ...

5.11.2.10 double wcsprm::latpole

(Given and returned) ... the native latitude of the celestial pole, θp, given by LATPOLEa [deg] or by
PVi_3a [deg] attached to the longitude axis which takes precedence if defined.

lonpole and latpole may be left to default to values set by wcsini() (see celprm::ref), but in any case they
will be reset by wcsset() to the values actually used. Note therefore that if the wcsprm struct is reused
without resetting them, whether directly or via wcsini(), they will no longer have their default values.

5.11.2.11 double wcsprm::restfrq

(Given) The rest frequency [Hz], and/or ...

5.11.2.12 double wcsprm::restwav

(Given) ... the rest wavelength in vacuuo [m], only one of which need be given, the other should be set to
zero.

5.11.2.13 int wcsprm::npv

(Given) The number of entries in the wcsprm::pv[] array.

5.11.2.14 int wcsprm::npvmax

(Given or returned) The length of the wcsprm::pv[] array.

npvmax will be set by wcsini() if it allocates memory for wcsprm::pv[], otherwise it must be set by the
user. See also wcsnpv().

5.11.2.15 struct pvcard ∗ wcsprm::pv [read]

(Given or returned) Address of the first element of an array of length npvmax of pvcard structs. Set by
wcsini() if it allocates memory for pv[], otherwise it must be set by the user. See also wcsnpv().

As a FITS header parser encounters each PVi_ma keyword it should load it into a pvcard struct in the
array and increment npv. wcsset() interprets these as required.

Note that, if they were not given, wcsset() resets the entries for PVi_1a, PVi_2a, PVi_3a, and PVi_4a
for longitude axis i to match phi_0 and theta_0 (the native longitude and latitude of the reference point),
LONPOLEa and LATPOLEa respectively.

5.11.2.16 int wcsprm::nps

(Given) The number of entries in the wcsprm::ps[] array.

5.11.2.17 int wcsprm::npsmax

(Given or returned) The length of the wcsprm::ps[] array.

npsmax will be set by wcsini() if it allocates memory for wcsprm::ps[], otherwise it must be set by the user.
See also wcsnps().

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.11 wcsprm Struct Reference 36

5.11.2.18 struct pscard ∗ wcsprm::ps [read]

(Given or returned) Address of the first element of an array of length npsmax of pscard structs. Set by
wcsini() if it allocates memory for ps[], otherwise it must be set by the user. See also wcsnps().

As a FITS header parser encounters each PSi_ma keyword it should load it into a pscard struct in the array
and increment nps. wcsset() interprets these as required (currently no PSi_ma keyvalues are recognized).

5.11.2.19 double ∗ wcsprm::cd

(Given) For historical compatibility, the wcsprm struct supports two alternate specifications of the linear
transformation matrix, those associated with the CDi_ja keywords, and ...

5.11.2.20 double ∗ wcsprm::crota

(Given) ... those associated with the CROTAia keywords. Although these may not formally co-exist with
PCi_ja, the approach taken here is simply to ignore them if given in conjunction with PCi_ja.

5.11.2.21 int wcsprm::altlin

(Given) altlin is a bit flag that denotes which of the PCi_ja, CDi_ja and CROTAia keywords are
present in the header:

• Bit 0: PCi_ja is present.

• Bit 1: CDi_ja is present.

Matrix elements in the IRAF convention are equivalent to the product CDi_ja = CDELTia ∗
PCi_ja, but the defaults differ from that of the PCi_ja matrix. If one or more CDi_ja keywords
are present then all unspecified CDi_ja default to zero. If no CDi_ja (or CROTAia) keywords
are present, then the header is assumed to be in PCi_ja form whether or not any PCi_ja keywords
are present since this results in an interpretation of CDELTia consistent with the original FITS
specification.

While CDi_ja may not formally co-exist with PCi_ja, it may co-exist with CDELTia and
CROTAia which are to be ignored.

• Bit 2: CROTAia is present.

In the AIPS convention, CROTAia may only be associated with the latitude axis of a celestial axis
pair. It specifies a rotation in the image plane that is applied AFTER the CDELTia; any other
CROTAia keywords are ignored.

CROTAia may not formally co-exist with PCi_ja.

CROTAia and CDELTia may formally co-exist with CDi_ja but if so are to be ignored.

CDi_ja and CROTAia keywords, if found, are to be stored in the wcsprm::cd and wcsprm::crota arrays
which are dimensioned similarly to wcsprm::pc and wcsprm::cdelt. FITS header parsers should use the
following procedure:

• Whenever a PCi_ja keyword is encountered:

altlin |= 1;

• Whenever a CDi_ja keyword is encountered:

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.11 wcsprm Struct Reference 37

altlin |= 2;

• Whenever a CROTAia keyword is encountered:

altlin |= 4;

If none of these bits are set the PCi_ja representation results, i.e. wcsprm::pc and wcsprm::cdelt will be
used as given.

These alternate specifications of the linear transformation matrix are translated immediately to PCi_ja by
wcsset() and are invisible to the lower-level WCSLIB routines. In particular, wcsset() resets wcsprm::cdelt
to unity if CDi_ja is present (and no PCi_ja).

If CROTAia are present but none is associated with the latitude axis (and no PCi_ja or CDi_ja), then
wcsset() reverts to a unity PCi_ja matrix.

5.11.2.22 int wcsprm::velref

(Given) AIPS velocity code VELREF, refer to spcaips().

5.11.2.23 char wcsprm::alt

(Given, auxiliary) Character code for alternate coordinate descriptions (i.e. the ’a’ in keyword names such
as CTYPEia). This is blank for the primary coordinate description, or one of the 26 upper-case letters,
A-Z.

An array of four characters is provided for alignment purposes, only the first is used.

5.11.2.24 int wcsprm::colnum

(Given, auxiliary) Where the coordinate representation is associated with an image-array column in a FITS
binary table, this variable may be used to record the relevant column number.

It should be set to zero for an image header or pixel list.

5.11.2.25 int ∗ wcsprm::colax

(Given, auxiliary) Address of the first element of an array of int recording the column numbers for each
axis in a pixel list.

The array elements should be set to zero for an image header or image array in a binary table.

5.11.2.26 wcsprm::cname

(Given, auxiliary) The address of the first element of an array of char[72] containing the coordinate axis
names, CNAMEia.

These variables accomodate the longest allowed string-valued FITS keyword, being limited to 68 charac-
ters, plus the null-terminating character.

5.11.2.27 double ∗ wcsprm::crder

(Given, auxiliary) Address of the first element of an array of double recording the random error in the
coordinate value, CRDERia.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.11 wcsprm Struct Reference 38

5.11.2.28 double ∗ wcsprm::csyer

(Given, auxiliary) Address of the first element of an array of double recording the systematic error in the
coordinate value, CSYERia.

5.11.2.29 char wcsprm::dateavg

(Given, auxiliary) The date of a representative mid-point of the observation in ISO format, yyyy-mm-
ddThh:mm:ss.

5.11.2.30 char wcsprm::dateobs

(Given, auxiliary) The date of the start of the observation unless otherwise explained in the comment field
of the DATE-OBS keyword, in ISO format, yyyy-mm-ddThh:mm:ss.

5.11.2.31 double wcsprm::equinox

(Given, auxiliary) The equinox associated with dynamical equatorial or ecliptic coordinate systems,
EQUINOXa (or EPOCH in older headers). Not applicable to ICRS equatorial or ecliptic coordinates.

5.11.2.32 double wcsprm::mjdavg

(Given, auxiliary) Modified Julian Date (MJD = JD - 2400000.5), MJD-AVG, corresponding to DATE-
AVG.

5.11.2.33 double wcsprm::mjdobs

(Given, auxiliary) Modified Julian Date (MJD = JD - 2400000.5), MJD-OBS, corresponding to DATE-
OBS.

5.11.2.34 double wcsprm::obsgeo

(Given, auxiliary) Location of the observer in a standard terrestrial reference frame, OBSGEO-X,
OBSGEO-Y, OBSGEO-Z [m].

5.11.2.35 char wcsprm::radesys

(Given, auxiliary) The equatorial or ecliptic coordinate system type, RADESYSa.

5.11.2.36 char wcsprm::specsys

(Given, auxiliary) Spectral reference frame (standard of rest), SPECSYSa, and ...

5.11.2.37 char wcsprm::ssysobs

(Given, auxiliary) ... the actual frame in which there is no differential variation in the spectral coordinate
across the field-of-view, SSYSOBSa.

5.11.2.38 double wcsprm::velosys

(Given, auxiliary) The relative radial velocity [m/s] between the observer and the selected standard of rest
in the direction of the celestial reference coordinate, VELOSYSa.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.11 wcsprm Struct Reference 39

5.11.2.39 double wcsprm::zsource

(Given, auxiliary) The redshift, ZSOURCEa, of the source, and ...

5.11.2.40 char wcsprm::ssyssrc

(Given, auxiliary) ... the spectral reference frame (standard of rest) in which this was measured,
SSYSSRCa.

5.11.2.41 double wcsprm::velangl

(Given, auxiliary) The angle [deg] that should be used to decompose an observed velocity into radial and
transverse components.

5.11.2.42 char wcsprm::wcsname

(Given, auxiliary) The name given to the coordinate representation, WCSNAMEa. This variable acco-
modates the longest allowed string-valued FITS keyword, being limited to 68 characters, plus the null-
terminating character.

5.11.2.43 int wcsprm::ntab

(Given) See wcsprm::tab.

5.11.2.44 int wcsprm::nwtb

(Given) See wcsprm::wtb.

5.11.2.45 struct tabprm ∗ wcsprm::tab [read]

(Given) Address of the first element of an array of ntab tabprm structs for which memory has been allocated.
These are used to store tabular transformation parameters.

Although technically wcsprm::ntab and tab are "given", they will normally be set by invoking wcstab(),
whether directly or indirectly.

The tabprm structs contain some members that must be supplied and others that are derived. The informa-
tion to be supplied comes primarily from arrays stored in one or more FITS binary table extensions. These
arrays, referred to here as "wcstab arrays", are themselves located by parameters stored in the FITS image
header.

5.11.2.46 struct wtbarr ∗ wcsprm::wtb [read]

(Given) Address of the first element of an array of nwtb wtbarr structs for which memory has been allocated.
These are used in extracting wcstab arrays from a FITS binary table.

Although technically wcsprm::nwtb and wtb are "given", they will normally be set by invoking wcstab(),
whether directly or indirectly.

5.11.2.47 int ∗ wcsprm::types

(Returned) Address of the first element of an array of int containing a four-digit type code for each axis.

• First digit (i.e. 1000s):

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.11 wcsprm Struct Reference 40

– 0: Non-specific coordinate type.
– 1: Stokes coordinate.
– 2: Celestial coordinate (including CUBEFACE).
– 3: Spectral coordinate.

• Second digit (i.e. 100s):

– 0: Linear axis.
– 1: Quantized axis (STOKES, CUBEFACE).
– 2: Non-linear celestial axis.
– 3: Non-linear spectral axis.
– 4: Logarithmic axis.
– 5: Tabular axis.

• Third digit (i.e. 10s):

– 0: Group number, e.g. lookup table number, being an index into the tabprm array (see above).

• The fourth digit is used as a qualifier depending on the axis type.

– For celestial axes:

* 0: Longitude coordinate.

* 1: Latitude coordinate.

* 2: CUBEFACE number.
– For lookup tables: the axis number in a multidimensional table.

CTYPEia in "4-3" form with unrecognized algorithm code will have its type set to -1 and generate an
error.

5.11.2.48 char wcsprm::lngtyp

(Returned) Four-character WCS celestial longitude and ...

5.11.2.49 char wcsprm::lattyp

(Returned) ... latitude axis types. e.g. "RA", "DEC", "GLON", "GLAT", etc. extracted from ’RA–’,
’DEC-’, ’GLON’, ’GLAT’, etc. in the first four characters of CTYPEia but with trailing dashes removed.
(Declared as char[8] for alignment reasons.)

5.11.2.50 int wcsprm::lng

(Returned) Index for the longitude coordinate, and ...

5.11.2.51 int wcsprm::lat

(Returned) ... index for the latitude coordinate, and ...

5.11.2.52 int wcsprm::spec

(Returned) ... index for the spectral coordinate in the imgcrd[][] and world[][] arrays in the API of wcsp2s(),
wcss2p() and wcsmix().

These may also serve as indices into the pixcrd[][] array provided that the PCi_ja matrix does not trans-
pose axes.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.11 wcsprm Struct Reference 41

5.11.2.53 int wcsprm::cubeface

(Returned) Index into the pixcrd[][] array for the CUBEFACE axis. This is used for quadcube projections
where the cube faces are stored on a separate axis (see wcs.h).

5.11.2.54 struct linprm wcsprm::lin [read]

(Returned) Linear transformation parameters (usage is described in the prologue to lin.h).

5.11.2.55 struct celprm wcsprm::cel [read]

(Returned) Celestial transformation parameters (usage is described in the prologue to cel.h).

5.11.2.56 struct spcprm wcsprm::spc [read]

(Returned) Spectral transformation parameters (usage is described in the prologue to spc.h).

5.11.2.57 int wcsprm::m_flag

(For internal use only.)

5.11.2.58 int wcsprm::m_naxis

(For internal use only.)

5.11.2.59 double ∗ wcsprm::m_crpix

(For internal use only.)

5.11.2.60 double ∗ wcsprm::m_pc

(For internal use only.)

5.11.2.61 double ∗ wcsprm::m_cdelt

(For internal use only.)

5.11.2.62 double ∗ wcsprm::m_crval

(For internal use only.)

5.11.2.63 wcsprm::m_cunit

(For internal use only.)

5.11.2.64 wcsprm::m_ctype

(For internal use only.)

5.11.2.65 struct pvcard ∗ wcsprm::m_pv [read]

(For internal use only.)

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.12 wtbarr Struct Reference 42

5.11.2.66 struct pscard ∗ wcsprm::m_ps [read]

(For internal use only.)

5.11.2.67 double ∗ wcsprm::m_cd

(For internal use only.)

5.11.2.68 double ∗ wcsprm::m_crota

(For internal use only.)

5.11.2.69 int ∗ wcsprm::m_colax

(For internal use only.)

5.11.2.70 wcsprm::m_cname

(For internal use only.)

5.11.2.71 double ∗ wcsprm::m_crder

(For internal use only.)

5.11.2.72 double ∗ wcsprm::m_csyer

(For internal use only.)

5.11.2.73 struct tabprm ∗ wcsprm::m_tab [read]

(For internal use only.)

5.11.2.74 struct wtbarr ∗ wcsprm::m_wtb [read]

(For internal use only.)

5.12 wtbarr Struct Reference

Extraction of coordinate lookup tables from BINTABLE.

#include <getwcstab.h>

Data Fields

• int i
• int m
• int kind
• char extnam [72]
• int extver
• int extlev
• char ttype [72]

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

5.12 wtbarr Struct Reference 43

• long row
• int ndim
• int ∗ dimlen
• double ∗∗ arrayp

5.12.1 Detailed Description

Function wcstab(), which is invoked automatically by wcspih(), sets up an array of wtbarr structs to assist
in extracting coordinate lookup tables from a binary table extension (BINTABLE) and copying them into
the tabprm structs stored in wcsprm. Refer to the usage notes for wcspih() and wcstab() in wcshdr.h, and
also the prologue to tab.h.

For C++ usage, because of a name space conflict with the wtbarr typedef defined in CFITSIO header
fitsio.h, the wtbarr struct is renamed to wtbarr_s by preprocessor macro substitution with scope limited
to wcs.h itself.

5.12.2 Field Documentation

5.12.2.1 int wtbarr::i

(Given) Image axis number.

5.12.2.2 int wtbarr::m

(Given) wcstab array axis number for index vectors.

5.12.2.3 int wtbarr::kind

(Given) Character identifying the wcstab array type:

• c: coordinate array,

• i: index vector.

5.12.2.4 char wtbarr::extnam

(Given) EXTNAME identifying the binary table extension.

5.12.2.5 int wtbarr::extver

(Given) EXTVER identifying the binary table extension.

5.12.2.6 int wtbarr::extlev

(Given) EXTLEV identifying the binary table extension.

5.12.2.7 char wtbarr::ttype

(Given) TTYPEn identifying the column of the binary table that contains the wcstab array.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6 File Documentation 44

5.12.2.8 long wtbarr::row

(Given) Table row number.

5.12.2.9 int wtbarr::ndim

(Given) Expected dimensionality of the wcstab array.

5.12.2.10 int ∗ wtbarr::dimlen

(Given) Address of the first element of an array of int of length ndim into which the wcstab array axis
lengths are to be written.

5.12.2.11 double ∗∗ wtbarr::arrayp

(Given) Pointer to an array of double which is to be allocated by the user and into which the wcstab array
is to be written.

6 File Documentation

6.1 cel.h File Reference

#include "prj.h"

Data Structures

• struct celprm
Celestial transformation parameters.

Defines

• #define CELLEN (sizeof(struct celprm)/sizeof(int))
Size of the celprm struct in int units.

• #define celini_errmsg cel_errmsg
Deprecated.

• #define celprt_errmsg cel_errmsg
Deprecated.

• #define celset_errmsg cel_errmsg
Deprecated.

• #define celx2s_errmsg cel_errmsg
Deprecated.

• #define cels2x_errmsg cel_errmsg
Deprecated.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.1 cel.h File Reference 45

Functions

• int celini (struct celprm ∗cel)
Default constructor for the celprm struct.

• int celprt (const struct celprm ∗cel)
Print routine for the celprm struct.

• int celset (struct celprm ∗cel)
Setup routine for the celprm struct.

• int celx2s (struct celprm ∗cel, int nx, int ny, int sxy, int sll, const double x[], const double y[], double
phi[], double theta[], double lng[], double lat[], int stat[])

Pixel-to-world celestial transformation.

• int cels2x (struct celprm ∗cel, int nlng, int nlat, int sll, int sxy, const double lng[], const double lat[],
double phi[], double theta[], double x[], double y[], int stat[])

World-to-pixel celestial transformation.

Variables

• const char ∗ cel_errmsg []
Status return messages.

6.1.1 Detailed Description

These routines implement the part of the FITS World Coordinate System (WCS) standard that deals with
celestial coordinates. They define methods to be used for computing celestial world coordinates from
intermediate world coordinates (a linear transformation of image pixel coordinates), and vice versa. They
are based on the celprm struct which contains all information needed for the computations. This struct
contains some elements that must be set by the user, and others that are maintained by these routines,
somewhat like a C++ class but with no encapsulation.

Routine celini() is provided to initialize the celprm struct with default values, and another, celprt(), to print
its contents.

A setup routine, celset(), computes intermediate values in the celprm struct from parameters in it that were
supplied by the user. The struct always needs to be set up by celset() but it need not be called explicitly -
refer to the explanation of celprm::flag.

celx2s() and cels2x() implement the WCS celestial coordinate transformations. In fact, they are high level
driver routines for the lower level spherical coordinate rotation and projection routines described in sph.h
and prj.h.

6.1.2 Define Documentation

6.1.2.1 #define CELLEN (sizeof(struct celprm)/sizeof(int))

Size of the celprm struct in int units, used by the Fortran wrappers.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.1 cel.h File Reference 46

6.1.2.2 #define celini_errmsg cel_errmsg

Deprecated

Added for backwards compatibility, use cel_errmsg directly now instead.

6.1.2.3 #define celprt_errmsg cel_errmsg

Deprecated

Added for backwards compatibility, use cel_errmsg directly now instead.

6.1.2.4 #define celset_errmsg cel_errmsg

Deprecated

Added for backwards compatibility, use cel_errmsg directly now instead.

6.1.2.5 #define celx2s_errmsg cel_errmsg

Deprecated

Added for backwards compatibility, use cel_errmsg directly now instead.

6.1.2.6 #define cels2x_errmsg cel_errmsg

Deprecated

Added for backwards compatibility, use cel_errmsg directly now instead.

6.1.3 Function Documentation

6.1.3.1 int celini (struct celprm ∗ cel)

celini() sets all members of a celprm struct to default values. It should be used to initialize every celprm
struct.

Parameters:

→ cel Celestial transformation parameters.

Returns:

Status return value:

• 0: Success.

• 1: Null celprm pointer passed.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.1 cel.h File Reference 47

6.1.3.2 int celprt (const struct celprm ∗ cel)

celprt() prints the contents of a celprm struct. Mainly intended for diagnostic purposes.

Parameters:

← cel Celestial transformation parameters.

Returns:

Status return value:

• 0: Success.

• 1: Null celprm pointer passed.

6.1.3.3 int celset (struct celprm ∗ cel)

celset() sets up a celprm struct according to information supplied within it.

Note that this routine need not be called directly; it will be invoked by celx2s() and cels2x() if celprm::flag
is anything other than a predefined magic value.

Parameters:

↔ cel Celestial transformation parameters.

Returns:

Status return value:

• 0: Success.

• 1: Null celprm pointer passed.

• 2: Invalid projection parameters.

• 3: Invalid coordinate transformation parameters.

• 4: Ill-conditioned coordinate transformation parameters.

6.1.3.4 int celx2s (struct celprm ∗ cel, int nx, int ny, int sxy, int sll, const double x[], const double
y[], double phi[], double theta[], double lng[], double lat[], int stat[])

celx2s() transforms (x, y) coordinates in the plane of projection to celestial coordinates (α, δ).

Parameters:

↔ cel Celestial transformation parameters.

← nx,ny Vector lengths.

← sxy,sll Vector strides.

← x,y Projected coordinates in pseudo "degrees".

→ phi,theta Longitude and latitude (φ, θ) in the native coordinate system of the projection [deg].

→ lng,lat Celestial longitude and latitude (α, δ) of the projected point [deg].

→ stat Status return value for each vector element:

• 0: Success.
• 1: Invalid value of (x, y).

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.2 fitshdr.h File Reference 48

Returns:

Status return value:

• 0: Success.

• 1: Null celprm pointer passed.

• 2: Invalid projection parameters.

• 3: Invalid coordinate transformation parameters.

• 4: Ill-conditioned coordinate transformation parameters.

• 5: One or more of the (x, y) coordinates were invalid, as indicated by the stat vector.

6.1.3.5 int cels2x (struct celprm ∗ cel, int nlng, int nlat, int sll, int sxy, const double lng[], const
double lat[], double phi[], double theta[], double x[], double y[], int stat[])

cels2x() transforms celestial coordinates (α, δ) to (x, y) coordinates in the plane of projection.

Parameters:

↔ cel Celestial transformation parameters.

← nlng,nlat Vector lengths.

← sll,sxy Vector strides.

← lng,lat Celestial longitude and latitude (α, δ) of the projected point [deg].

→ phi,theta Longitude and latitude (φ, θ) in the native coordinate system of the projection [deg].

→ x,y Projected coordinates in pseudo "degrees".

→ stat Status return value for each vector element:

• 0: Success.
• 1: Invalid value of (α, δ).

Returns:

Status return value:

• 0: Success.

• 1: Null celprm pointer passed.

• 2: Invalid projection parameters.

• 3: Invalid coordinate transformation parameters.

• 4: Ill-conditioned coordinate transformation parameters.

• 6: One or more of the (α, δ) coordinates were invalid, as indicated by the stat vector.

6.1.4 Variable Documentation

6.1.4.1 const char ∗ cel_errmsg[]

Status messages to match the status value returned from each function.

6.2 fitshdr.h File Reference

#include "wcsconfig.h"

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.2 fitshdr.h File Reference 49

Data Structures

• struct fitskeyid
Keyword indexing.

• struct fitskey
Keyword/value information.

Defines

• #define FITSHDR_KEYWORD 0x01
Flag bit indicating illegal keyword syntax.

• #define FITSHDR_KEYVALUE 0x02
Flag bit indicating illegal keyvalue syntax.

• #define FITSHDR_COMMENT 0x04
Flag bit indicating illegal keycomment syntax.

• #define FITSHDR_KEYREC 0x08
Flag bit indicating illegal keyrecord.

• #define FITSHDR_CARD 0x08
Deprecated.

• #define FITSHDR_TRAILER 0x10
Flag bit indicating keyrecord following a valid END keyrecord.

• #define KEYIDLEN (sizeof(struct fitskeyid)/sizeof(int))
• #define KEYLEN (sizeof(struct fitskey)/sizeof(int))

Typedefs

• typedef int int64 [3]
64-bit signed integer data type.

Functions

• int fitshdr (const char header[], int nkeyrec, int nkeyids, struct fitskeyid keyids[], int ∗nreject, struct
fitskey ∗∗keys)

FITS header parser routine.

Variables

• const char ∗ fitshdr_errmsg []
Status return messages.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.2 fitshdr.h File Reference 50

6.2.1 Detailed Description

fitshdr() is a generic FITS header parser provided to handle keyrecords that are ignored by the WCS header
parsers, wcspih() and wcsbth(). Typically the latter may be set to remove WCS keyrecords from a header
leaving fitshdr() to handle the remainder.

6.2.2 Define Documentation

6.2.2.1 #define FITSHDR_KEYWORD 0x01

Bit mask for the status flag bit-vector returned by fitshdr() indicating illegal keyword syntax.

6.2.2.2 #define FITSHDR_KEYVALUE 0x02

Bit mask for the status flag bit-vector returned by fitshdr() indicating illegal keyvalue syntax.

6.2.2.3 #define FITSHDR_COMMENT 0x04

Bit mask for the status flag bit-vector returned by fitshdr() indicating illegal keycomment syntax.

6.2.2.4 #define FITSHDR_KEYREC 0x08

Bit mask for the status flag bit-vector returned by fitshdr() indicating an illegal keyrecord, e.g. an END
keyrecord with trailing text.

6.2.2.5 #define FITSHDR_CARD 0x08

Deprecated

Added for backwards compatibility, use FITSHDR_KEYREC instead.

6.2.2.6 #define FITSHDR_TRAILER 0x10

Bit mask for the status flag bit-vector returned by fitshdr() indicating a keyrecord following a valid END
keyrecord.

6.2.2.7 #define KEYIDLEN (sizeof(struct fitskeyid)/sizeof(int))

6.2.2.8 #define KEYLEN (sizeof(struct fitskey)/sizeof(int))

6.2.3 Typedef Documentation

6.2.3.1 int64

64-bit signed integer data type defined via preprocessor macro WCSLIB_INT64 which may be defined in
wcsconfig.h. For example

#define WCSLIB_INT64 long long int

This is typedef’d in fitshdr.h as

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.2 fitshdr.h File Reference 51

#ifdef WCSLIB_INT64
typedef WCSLIB_INT64 int64;

#else
typedef int int64[3];

#endif

See fitskey::type.

6.2.4 Function Documentation

6.2.4.1 int fitshdr (const char header[], int nkeyrec, int nkeyids, struct fitskeyid keyids[], int ∗
nreject, struct fitskey ∗∗ keys)

fitshdr() parses a character array containing a FITS header, extracting all keywords and their values into
an array of fitskey structs.

Parameters:

← header Character array containing the (entire) FITS header, for example, as might be obtained
conveniently via the CFITSIO routine fits_hdr2str().
Each header "keyrecord" (formerly "card image") consists of exactly 80 7-bit ASCII printing
characters in the range 0x20 to 0x7e (which excludes NUL, BS, TAB, LF, FF and CR) especially
noting that the keyrecords are NOT null-terminated.

← nkeyrec Number of keyrecords in header[].
← nkeyids Number of entries in keyids[].
↔ keyids While all keywords are extracted from the header, keyids[] provides a convienient way of

indexing them. The fitskeyid struct contains three members; fitskeyid::name must be set by the
user while fitskeyid::count and fitskeyid::name are returned by fitshdr(). All matched keywords
will have their fitskey::keyno member negated.

→ nreject Number of header keyrecords rejected for syntax errors.
→ keys Pointer to an array of nkeyrec fitskey structs containing all keywords and keyvalues extracted

from the header.
Memory for the array is allocated by fitshdr() and this must be freed by the user by invoking
free() on the array.

Returns:

Status return value:

• 0: Success.
• 1: Null fitskey pointer passed.
• 2: Memory allocation failed.
• 3: Fatal error returned by Flex parser.

Notes:

1. Keyword parsing is done in accordance with the syntax defined by NOST 100-2.0, noting the fol-
lowing points in particular:

(a) Sect. 5.1.2.1 specifies that keywords be left-justified in columns 1-8, blank-
filled with no embedded spaces, composed only of the ASCII characters
ABCDEFGHJKLMNOPQRSTUVWXYZ0123456789-_
fitshdr() accepts any characters in columns 1-8 but flags keywords that do not conform to
standard syntax.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.3 getwcstab.h File Reference 52

(b) Sect. 5.1.2.2 defines the "value indicator" as the characters ”= ” occurring in columns 9 and 10.
If these are absent then the keyword has no value and columns 9-80 may contain any ASCII
text (but see note 2 for CONTINUE keyrecords). This is copied to the comment member of
the fitskey struct.

(c) Sect. 5.1.2.3 states that a keyword may have a null (undefined) value if the value/comment
field, columns 11-80, consists entirely of spaces, possibly followed by a comment.

(d) Sect. 5.1.1 states that trailing blanks in a string keyvalue are not significant and the parser
always removes them. A string containing nothing but blanks will be replaced with a single
blank.
Sect. 5.2.1 also states that a quote character (’) in a string value is to be represented by two
successive quote characters and the parser removes the repeated quote.

(e) The parser recognizes free-format character (NOST 100-2.0, Sect. 5.2.1), integer (Sect. 5.2.3),
and floating-point values (Sect. 5.2.4) for all keywords.

(f) Sect. 5.2.3 offers no comment on the size of an integer keyvalue except indirectly in limiting it
to 70 digits. The parser will translates an integer keyvalue to a 32-bit signed integer if it lies in
the range -2147483648 to +2147483647, otherwise it interprets it as a 64-bit signed integer if
possible, or else a "very long" integer (see fitskey::type).

(g) END not followed by 77 blanks is not considered to be a legitimate end keyrecord.

2. The parser supports a generalization of the OGIP Long String Keyvalue Convention (v1.0) whereby
strings may be continued onto successive header keyrecords. A keyrecord contains a segment of a
continued string if and only if

(a) it contains the pseudo-keyword CONTINUE,

(b) columns 9 and 10 are both blank,

(c) columns 11 to 80 contain what would be considered a valid string keyvalue, including optional
keycomment, if column 9 had contained ’=’,

(d) the previous keyrecord contained either a valid string keyvalue or a valid CONTINUE
keyrecord.

If any of these conditions is violated, the keyrecord is considered in isolation.

Syntax errors in keycomments in a continued string are treated more permissively than usual; the ’/’
delimiter may be omitted provided that parsing of the string keyvalue is not compromised. However,
the FITSHDR_COMMENT status bit will be set for the keyrecord (see fitskey::status).

As for normal strings, trailing blanks in a continued string are not significant.

In the OGIP convention "the ’&’ character is used as the last non-blank character of the string to
indicate that the string is (probably) continued on the following keyword". This additional syntax is
not required by fitshdr(), but if ’&’ does occur as the last non-blank character of a continued string
keyvalue then it will be removed, along with any trailing blanks. However, blanks that occur before
the ’&’ will be preserved.

6.2.5 Variable Documentation

6.2.5.1 const char ∗ fitshdr_errmsg[]

Error messages to match the status value returned from each function.

6.3 getwcstab.h File Reference

#include <fitsio.h>

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.3 getwcstab.h File Reference 53

Data Structures

• struct wtbarr
Extraction of coordinate lookup tables from BINTABLE.

Functions

• int fits_read_wcstab (fitsfile ∗fptr, int nwtb, wtbarr ∗wtb, int ∗status)
FITS ’TAB’ table reading routine.

6.3.1 Detailed Description

fits_read_wcstab(), an implementation of a FITS table reading routine for ’TAB’ coordinates, is provided
for CFITSIO programmers. It has been incorporated into CFITSIO as of v3.006 with the definitions in this
file, getwcstab.h, moved into fitsio.h.

fits_read_wcstab() is not included in the WCSLIB object library but the source code is presented here as
it may be useful for programmers using an older version of CFITSIO than 3.006, or as a programming
template for non-CFITSIO programmers.

6.3.2 Function Documentation

6.3.2.1 int fits_read_wcstab (fitsfile ∗ fptr, int nwtb, wtbarr ∗ wtb, int ∗ status)

fits_read_wcstab() extracts arrays from a binary table required in constructing ’TAB’ coordinates.

Parameters:

← fptr Pointer to the file handle returned, for example, by the fits_open_file() routine in CFITSIO.

← nwtb Number of arrays to be read from the binary table(s).

↔ wtb Address of the first element of an array of wtbarr typedefs. This wtbarr typedef is defined to
match the wtbarr struct defined in WCSLIB. An array of such structs returned by the WCSLIB
function wcstab() as discussed in the notes below.

→ status CFITSIO status value.

Returns:

CFITSIO status value.

Notes:

In order to maintain WCSLIB and CFITSIO as independent libraries it is not permissible for any CFITSIO
library code to include WCSLIB header files, or vice versa. However, the CFITSIO function fits_read_-
wcstab() accepts an array of wtbarr structs defined in wcs.h within WCSLIB.

The problem therefore is to define the wtbarr struct within fitsio.h without including wcs.h, especially
noting that wcs.h will often (but not always) be included together with fitsio.h in an applications program
that uses fits_read_wcstab().

The solution adopted is for WCSLIB to define "struct wtbarr" while fitsio.h defines "typedef wtbarr" as an
untagged struct with identical members. This allows both wcs.h and fitsio.h to define a wtbarr data type

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.4 lin.h File Reference 54

without conflict by virtue of the fact that structure tags and typedef names share different name spaces in
C; Appendix A, Sect. A11.1 (p227) of the K&R ANSI edition states that:

Identifiers fall into several name spaces that do not interfere with one another; the same identifier may
be used for different purposes, even in the same scope, if the uses are in different name spaces. These
classes are: objects, functions, typedef names, and enum constants; labels; tags of structures, unions, and
enumerations; and members of each structure or union individually.

Therefore, declarations within WCSLIB look like

struct wtbarr *w;

while within CFITSIO they are simply

wtbarr *w;

As suggested by the commonality of the names, these are really the same aggregate data type. However, in
passing a (struct wtbarr ∗) to fits_read_wcstab() a cast to (wtbarr ∗) is formally required.

When using WCSLIB and CFITSIO together in C++ the situation is complicated by the fact that typedefs
and structs share the same namespace; C++ Annotated Reference Manual, Sect. 7.1.3 (p105). In that case
the wtbarr struct in wcs.h is renamed by preprocessor macro substitution to wtbarr_s to distinguish it from
the typedef defined in fitsio.h. However, the scope of this macro substitution is limited to wcs.h itself and
CFITSIO programmer code, whether in C++ or C, should always use the wtbarr typedef.

6.4 lin.h File Reference

Data Structures

• struct linprm
Linear transformation parameters.

Defines

• #define LINLEN (sizeof(struct linprm)/sizeof(int))
Size of the linprm struct in int units.

• #define linini_errmsg lin_errmsg
Deprecated.

• #define lincpy_errmsg lin_errmsg
Deprecated.

• #define linfree_errmsg lin_errmsg
Deprecated.

• #define linprt_errmsg lin_errmsg
Deprecated.

• #define linset_errmsg lin_errmsg
Deprecated.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.4 lin.h File Reference 55

• #define linp2x_errmsg lin_errmsg
Deprecated.

• #define linx2p_errmsg lin_errmsg
Deprecated.

Functions

• int linini (int alloc, int naxis, struct linprm ∗lin)
Default constructor for the linprm struct.

• int lincpy (int alloc, const struct linprm ∗linsrc, struct linprm ∗lindst)
Copy routine for the linprm struct.

• int linfree (struct linprm ∗lin)
Destructor for the linprm struct.

• int linprt (const struct linprm ∗lin)
Print routine for the linprm struct.

• int linset (struct linprm ∗lin)
Setup routine for the linprm struct.

• int linp2x (struct linprm ∗lin, int ncoord, int nelem, const double pixcrd[], double imgcrd[])
Pixel-to-world linear transformation.

• int linx2p (struct linprm ∗lin, int ncoord, int nelem, const double imgcrd[], double pixcrd[])
World-to-pixel linear transformation.

• int matinv (int n, const double mat[], double inv[])
Matrix inversion.

Variables

• const char ∗ lin_errmsg []
Status return messages.

6.4.1 Detailed Description

These routines apply the linear transformation defined by the FITS WCS standard. They are based on
the linprm struct which contains all information needed for the computations. The struct contains some
members that must be set by the user, and others that are maintained by these routines, somewhat like a
C++ class but with no encapsulation.

Three routines, linini(), lincpy(), and linfree() are provided to manage the linprm struct, and another, lin-
prt(), prints its contents.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.4 lin.h File Reference 56

A setup routine, linset(), computes intermediate values in the linprm struct from parameters in it that were
supplied by the user. The struct always needs to be set up by linset() but need not be called explicitly - refer
to the explanation of linprm::flag.

linp2x() and linx2p() implement the WCS linear transformations.

An auxiliary matrix inversion routine, matinv(), is included. It uses LU-triangular factorization with scaled
partial pivoting.

6.4.2 Define Documentation

6.4.2.1 #define LINLEN (sizeof(struct linprm)/sizeof(int))

Size of the linprm struct in int units, used by the Fortran wrappers.

6.4.2.2 #define linini_errmsg lin_errmsg

Deprecated

Added for backwards compatibility, use lin_errmsg directly now instead.

6.4.2.3 #define lincpy_errmsg lin_errmsg

Deprecated

Added for backwards compatibility, use lin_errmsg directly now instead.

6.4.2.4 #define linfree_errmsg lin_errmsg

Deprecated

Added for backwards compatibility, use lin_errmsg directly now instead.

6.4.2.5 #define linprt_errmsg lin_errmsg

Deprecated

Added for backwards compatibility, use lin_errmsg directly now instead.

6.4.2.6 #define linset_errmsg lin_errmsg

Deprecated

Added for backwards compatibility, use lin_errmsg directly now instead.

6.4.2.7 #define linp2x_errmsg lin_errmsg

Deprecated

Added for backwards compatibility, use lin_errmsg directly now instead.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.4 lin.h File Reference 57

6.4.2.8 #define linx2p_errmsg lin_errmsg

Deprecated

Added for backwards compatibility, use lin_errmsg directly now instead.

6.4.3 Function Documentation

6.4.3.1 int linini (int alloc, int naxis, struct linprm ∗ lin)

linini() allocates memory for arrays in a linprm struct and sets all members of the struct to default values.

PLEASE NOTE: every linprm struct should be initialized by linini(), possibly repeatedly. On the first
invokation, and only the first invokation, linprm::flag must be set to -1 to initialize memory management,
regardless of whether linini() will actually be used to allocate memory.

Parameters:

← alloc If true, allocate memory unconditionally for arrays in the linprm struct.
If false, it is assumed that pointers to these arrays have been set by the user except if they are null
pointers in which case memory will be allocated for them regardless. (In other words, setting
alloc true saves having to initalize these pointers to zero.)

← naxis The number of world coordinate axes, used to determine array sizes.
↔ lin Linear transformation parameters. Note that, in order to initialize memory management lin-

prm::flag should be set to -1 when lin is initialized for the first time (memory leaks may result if
it had already been initialized).

Returns:

Status return value:
• 0: Success.
• 1: Null linprm pointer passed.
• 2: Memory allocation failed.

6.4.3.2 int lincpy (int alloc, const struct linprm ∗ linsrc, struct linprm ∗ lindst)

lincpy() does a deep copy of one linprm struct to another, using linini() to allocate memory for its arrays if
required. Only the "information to be provided" part of the struct is copied; a call to linset() is required to
initialize the remainder.

Parameters:

← alloc If true, allocate memory for the crpix, pc, and cdelt arrays in the destination. Otherwise, it is
assumed that pointers to these arrays have been set by the user except if they are null pointers in
which case memory will be allocated for them regardless.

← linsrc Struct to copy from.
↔ lindst Struct to copy to. linprm::flag should be set to -1 if lindst was not previously initialized

(memory leaks may result if it was previously initialized).

Returns:

Status return value:
• 0: Success.
• 1: Null linprm pointer passed.
• 2: Memory allocation failed.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.4 lin.h File Reference 58

6.4.3.3 int linfree (struct linprm ∗ lin)

linfree() frees memory allocated for the linprm arrays by linini() and/or linset(). linini() keeps a record of
the memory it allocates and linfree() will only attempt to free this.

PLEASE NOTE: linfree() must not be invoked on a linprm struct that was not initialized by linini().

Parameters:

← lin Linear transformation parameters.

Returns:

Status return value:

• 0: Success.

• 1: Null linprm pointer passed.

6.4.3.4 int linprt (const struct linprm ∗ lin)

linprt() prints the contents of a linprm struct.

Parameters:

← lin Linear transformation parameters.

Returns:

Status return value:

• 0: Success.

• 1: Null linprm pointer passed.

6.4.3.5 int linset (struct linprm ∗ lin)

linset(), if necessary, allocates memory for the linprm::piximg and linprm::imgpix arrays and sets up the
linprm struct according to information supplied within it - refer to the explanation of linprm::flag.

Note that this routine need not be called directly; it will be invoked by linp2x() and linx2p() if the lin-
prm::flag is anything other than a predefined magic value.

Parameters:

↔ lin Linear transformation parameters.

Returns:

Status return value:

• 0: Success.

• 1: Null linprm pointer passed.

• 2: Memory allocation failed.

• 3: PCi_ja matrix is singular.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.4 lin.h File Reference 59

6.4.3.6 int linp2x (struct linprm ∗ lin, int ncoord, int nelem, const double pixcrd[], double
imgcrd[])

linp2x() transforms pixel coordinates to intermediate world coordinates.

Parameters:

↔ lin Linear transformation parameters.

← ncoord,nelem The number of coordinates, each of vector length nelem but containing lin.naxis
coordinate elements.

← pixcrd Array of pixel coordinates.

→ imgcrd Array of intermediate world coordinates.

Returns:

Status return value:

• 0: Success.

• 1: Null linprm pointer passed.

• 2: Memory allocation failed.

• 3: PCi_ja matrix is singular.

6.4.3.7 int linx2p (struct linprm ∗ lin, int ncoord, int nelem, const double imgcrd[], double
pixcrd[])

linx2p() transforms intermediate world coordinates to pixel coordinates.

Parameters:

↔ lin Linear transformation parameters.

← ncoord,nelem The number of coordinates, each of vector length nelem but containing lin.naxis
coordinate elements.

← imgcrd Array of intermediate world coordinates.

→ pixcrd Array of pixel coordinates. Status return value:

• 0: Success.
• 1: Null linprm pointer passed.
• 2: Memory allocation failed.
• 3: PCi_ja matrix is singular.

6.4.3.8 matinv (int n, const double mat[], double inv[])

matinv() performs matrix inversion using LU-triangular factorization with scaled partial pivoting.

Parameters:

← n Order of the matrix (n× n).

← mat Matrix to be inverted, stored as mat[in + j] where i and j are the row and column indices
respectively.

→ inv Inverse of mat with the same storage convention.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.5 log.h File Reference 60

Returns:

Status return value:

• 0: Success.

• 2: Memory allocation failed.

• 3: Singular matrix.

6.4.4 Variable Documentation

6.4.4.1 const char ∗ lin_errmsg[]

Error messages to match the status value returned from each function.

6.5 log.h File Reference

Functions

• int logx2s (double crval, int nx, int sx, int slogc, const double x[], double logc[], int stat[])
Transform to logarithmic coordinates.

• int logs2x (double crval, int nlogc, int slogc, int sx, const double logc[], double x[], int stat[])
Transform logarithmic coordinates.

Variables

• const char ∗ log_errmsg []
Status return messages.

6.5.1 Detailed Description

These routines implement the part of the FITS WCS standard that deals with logarithmic coordinates.
They define methods to be used for computing logarithmic world coordinates from intermediate world
coordinates (a linear transformation of image pixel coordinates), and vice versa.

logx2s() and logs2x() implement the WCS logarithmic coordinate transformations.

Argument checking:

The input log-coordinate values are only checked for values that would result in floating point exceptions
and the same is true for the log-coordinate reference value.

Accuracy:

No warranty is given for the accuracy of these routines (refer to the copyright notice); intending users
must satisfy for themselves their adequacy for the intended purpose. However, closure effectively to within
double precision rounding error was demonstrated by test routine tlog.c which accompanies this software.

6.5.2 Function Documentation

6.5.2.1 int logx2s (double crval, int nx, int sx, int slogc, const double x[], double logc[], int stat[])

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.5 log.h File Reference 61

logx2s() transforms intermediate world coordinates to logarithmic coordinates.

Parameters:

↔ crval Log-coordinate reference value (CRVALia).

← nx Vector length.

← sx Vector stride.

← slogc Vector stride.

← x Intermediate world coordinates, in SI units.

→ logc Logarithmic coordinates, in SI units.

→ stat Status return value status for each vector element:

• 0: Success.
• 1: Invalid value of x.

Returns:

Status return value:

• 0: Success.

• 2: Invalid log-coordinate reference value.

• 3: One or more of the x coordinates were invalid, as indicated by the stat vector.

6.5.2.2 int logs2x (double crval, int nlogc, int slogc, int sx, const double logc[], double x[], int
stat[])

logs2x() transforms logarithmic world coordinates to intermediate world coordinates.

Parameters:

↔ crval Log-coordinate reference value (CRVALia).

← nlogc Vector length.

← slogc Vector stride.

← sx Vector stride.

← logc Logarithmic coordinates, in SI units.

→ x Intermediate world coordinates, in SI units.

→ stat Status return value status for each vector element:

• 0: Success.
• 1: Invalid value of logc.

Returns:

Status return value:

• 0: Success.

• 2: Invalid log-coordinate reference value.

6.5.3 Variable Documentation

6.5.3.1 const char ∗ log_errmsg[]

Error messages to match the status value returned from each function.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.6 prj.h File Reference 62

6.6 prj.h File Reference

Data Structures

• struct prjprm
Projection parameters.

Defines

• #define PVN 30
Total number of projection parameters.

• #define PRJX2S_ARGS
For use in declaring deprojection function prototypes.

• #define PRJS2X_ARGS
For use in declaring projection function prototypes.

• #define PRJLEN (sizeof(struct prjprm)/sizeof(int))
Size of the prjprm struct in int units.

• #define prjini_errmsg prj_errmsg
Deprecated.

• #define prjprt_errmsg prj_errmsg
Deprecated.

• #define prjset_errmsg prj_errmsg
Deprecated.

• #define prjx2s_errmsg prj_errmsg
Deprecated.

• #define prjs2x_errmsg prj_errmsg
Deprecated.

Functions

• int prjini (struct prjprm ∗prj)
Default constructor for the prjprm struct.

• int prjprt (const struct prjprm ∗prj)
Print routine for the prjprm struct.

• int prjset (struct prjprm ∗prj)
Generic setup routine for the prjprm struct.

• int prjx2s (PRJX2S_ARGS)

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.6 prj.h File Reference 63

Generic Cartesian-to-spherical deprojection.

• int prjs2x (PRJS2X_ARGS)
Generic spherical-to-Cartesian projection.

• int azpset (struct prjprm ∗prj)
Set up a prjprm struct for the zenithal/azimuthal perspective (AZP) projection.

• int azpx2s (PRJX2S_ARGS)
Cartesian-to-spherical transformation for the zenithal/azimuthal perspective (AZP) projection.

• int azps2x (PRJS2X_ARGS)
Spherical-to-Cartesian transformation for the zenithal/azimuthal perspective (AZP) projection.

• int szpset (struct prjprm ∗prj)
Set up a prjprm struct for the slant zenithal perspective (SZP) projection.

• int szpx2s (PRJX2S_ARGS)
Cartesian-to-spherical transformation for the slant zenithal perspective (SZP) projection.

• int szps2x (PRJS2X_ARGS)
Spherical-to-Cartesian transformation for the slant zenithal perspective (SZP) projection.

• int tanset (struct prjprm ∗prj)
Set up a prjprm struct for the gnomonic (TAN) projection.

• int tanx2s (PRJX2S_ARGS)
Cartesian-to-spherical transformation for the gnomonic (TAN) projection.

• int tans2x (PRJS2X_ARGS)
Spherical-to-Cartesian transformation for the gnomonic (TAN) projection.

• int stgset (struct prjprm ∗prj)
Set up a prjprm struct for the stereographic (STG) projection.

• int stgx2s (PRJX2S_ARGS)
Cartesian-to-spherical transformation for the stereographic (STG) projection.

• int stgs2x (PRJS2X_ARGS)
Spherical-to-Cartesian transformation for the stereographic (STG) projection.

• int sinset (struct prjprm ∗prj)
Set up a prjprm struct for the orthographic/synthesis (SIN) projection.

• int sinx2s (PRJX2S_ARGS)
Cartesian-to-spherical transformation for the orthographic/synthesis (SIN) projection.

• int sins2x (PRJS2X_ARGS)
Spherical-to-Cartesian transformation for the orthographic/synthesis (SIN) projection.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.6 prj.h File Reference 64

• int arcset (struct prjprm ∗prj)
Set up a prjprm struct for the zenithal/azimuthal equidistant (ARC) projection.

• int arcx2s (PRJX2S_ARGS)
Cartesian-to-spherical transformation for the zenithal/azimuthal equidistant (ARC) projection.

• int arcs2x (PRJS2X_ARGS)
Spherical-to-Cartesian transformation for the zenithal/azimuthal equidistant (ARC) projection.

• int zpnset (struct prjprm ∗prj)
Set up a prjprm struct for the zenithal/azimuthal polynomial (ZPN) projection.

• int zpnx2s (PRJX2S_ARGS)
Cartesian-to-spherical transformation for the zenithal/azimuthal polynomial (ZPN) projection.

• int zpns2x (PRJS2X_ARGS)
Spherical-to-Cartesian transformation for the zenithal/azimuthal polynomial (ZPN) projection.

• int zeaset (struct prjprm ∗prj)
Set up a prjprm struct for the zenithal/azimuthal equal area (ZEA) projection.

• int zeax2s (PRJX2S_ARGS)
Cartesian-to-spherical transformation for the zenithal/azimuthal equal area (ZEA) projection.

• int zeas2x (PRJS2X_ARGS)
Spherical-to-Cartesian transformation for the zenithal/azimuthal equal area (ZEA) projection.

• int airset (struct prjprm ∗prj)
Set up a prjprm struct for Airy’s (AIR) projection.

• int airx2s (PRJX2S_ARGS)
Cartesian-to-spherical transformation for Airy’s (AIR) projection.

• int airs2x (PRJS2X_ARGS)
Spherical-to-Cartesian transformation for Airy’s (AIR) projection.

• int cypset (struct prjprm ∗prj)
Set up a prjprm struct for the cylindrical perspective (CYP) projection.

• int cypx2s (PRJX2S_ARGS)
Cartesian-to-spherical transformation for the cylindrical perspective (CYP) projection.

• int cyps2x (PRJS2X_ARGS)
Spherical-to-Cartesian transformation for the cylindrical perspective (CYP) projection.

• int ceaset (struct prjprm ∗prj)
Set up a prjprm struct for the cylindrical equal area (CEA) projection.

• int ceax2s (PRJX2S_ARGS)
Cartesian-to-spherical transformation for the cylindrical equal area (CEA) projection.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.6 prj.h File Reference 65

• int ceas2x (PRJS2X_ARGS)
Spherical-to-Cartesian transformation for the cylindrical equal area (CEA) projection.

• int carset (struct prjprm ∗prj)
Set up a prjprm struct for the plate carrée (CAR) projection.

• int carx2s (PRJX2S_ARGS)
Cartesian-to-spherical transformation for the plate carrée (CAR) projection.

• int cars2x (PRJS2X_ARGS)
Spherical-to-Cartesian transformation for the plate carrée (CAR) projection.

• int merset (struct prjprm ∗prj)
Set up a prjprm struct for Mercator’s (MER) projection.

• int merx2s (PRJX2S_ARGS)
Cartesian-to-spherical transformation for Mercator’s (MER) projection.

• int mers2x (PRJS2X_ARGS)
Spherical-to-Cartesian transformation for Mercator’s (MER) projection.

• int sflset (struct prjprm ∗prj)
Set up a prjprm struct for the Sanson-Flamsteed (SFL) projection.

• int sflx2s (PRJX2S_ARGS)
Cartesian-to-spherical transformation for the Sanson-Flamsteed (SFL) projection.

• int sfls2x (PRJS2X_ARGS)
Spherical-to-Cartesian transformation for the Sanson-Flamsteed (SFL) projection.

• int parset (struct prjprm ∗prj)
Set up a prjprm struct for the parabolic (PAR) projection.

• int parx2s (PRJX2S_ARGS)
Cartesian-to-spherical transformation for the parabolic (PAR) projection.

• int pars2x (PRJS2X_ARGS)
Spherical-to-Cartesian transformation for the parabolic (PAR) projection.

• int molset (struct prjprm ∗prj)
Set up a prjprm struct for Mollweide’s (MOL) projection.

• int molx2s (PRJX2S_ARGS)
Cartesian-to-spherical transformation for Mollweide’s (MOL) projection.

• int mols2x (PRJS2X_ARGS)
Spherical-to-Cartesian transformation for Mollweide’s (MOL) projection.

• int aitset (struct prjprm ∗prj)

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.6 prj.h File Reference 66

Set up a prjprm struct for the Hammer-Aitoff (AIT) projection.

• int aitx2s (PRJX2S_ARGS)
Cartesian-to-spherical transformation for the Hammer-Aitoff (AIT) projection.

• int aits2x (PRJS2X_ARGS)
Spherical-to-Cartesian transformation for the Hammer-Aitoff (AIT) projection.

• int copset (struct prjprm ∗prj)
Set up a prjprm struct for the conic perspective (COP) projection.

• int copx2s (PRJX2S_ARGS)
Cartesian-to-spherical transformation for the conic perspective (COP) projection.

• int cops2x (PRJS2X_ARGS)
Spherical-to-Cartesian transformation for the conic perspective (COP) projection.

• int coeset (struct prjprm ∗prj)
Set up a prjprm struct for the conic equal area (COE) projection.

• int coex2s (PRJX2S_ARGS)
Cartesian-to-spherical transformation for the conic equal area (COE) projection.

• int coes2x (PRJS2X_ARGS)
Spherical-to-Cartesian transformation for the conic equal area (COE) projection.

• int codset (struct prjprm ∗prj)
Set up a prjprm struct for the conic equidistant (COD) projection.

• int codx2s (PRJX2S_ARGS)
Cartesian-to-spherical transformation for the conic equidistant (COD) projection.

• int cods2x (PRJS2X_ARGS)
Spherical-to-Cartesian transformation for the conic equidistant (COD) projection.

• int cooset (struct prjprm ∗prj)
Set up a prjprm struct for the conic orthomorphic (COO) projection.

• int coox2s (PRJX2S_ARGS)
Cartesian-to-spherical transformation for the conic orthomorphic (COO) projection.

• int coos2x (PRJS2X_ARGS)
Spherical-to-Cartesian transformation for the conic orthomorphic (COO) projection.

• int bonset (struct prjprm ∗prj)
Set up a prjprm struct for Bonne’s (BON) projection.

• int bonx2s (PRJX2S_ARGS)
Cartesian-to-spherical transformation for Bonne’s (BON) projection.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.6 prj.h File Reference 67

• int bons2x (PRJS2X_ARGS)
Spherical-to-Cartesian transformation for Bonne’s (BON) projection.

• int pcoset (struct prjprm ∗prj)
Set up a prjprm struct for the polyconic (PCO) projection.

• int pcox2s (PRJX2S_ARGS)
Cartesian-to-spherical transformation for the polyconic (PCO) projection.

• int pcos2x (PRJS2X_ARGS)
Spherical-to-Cartesian transformation for the polyconic (PCO) projection.

• int tscset (struct prjprm ∗prj)
Set up a prjprm struct for the tangential spherical cube (TSC) projection.

• int tscx2s (PRJX2S_ARGS)
Cartesian-to-spherical transformation for the tangential spherical cube (TSC) projection.

• int tscs2x (PRJS2X_ARGS)
Spherical-to-Cartesian transformation for the tangential spherical cube (TSC) projection.

• int cscset (struct prjprm ∗prj)
Set up a prjprm struct for the COBE spherical cube (CSC) projection.

• int cscx2s (PRJX2S_ARGS)
Cartesian-to-spherical transformation for the COBE spherical cube (CSC) projection.

• int cscs2x (PRJS2X_ARGS)
Spherical-to-Cartesian transformation for the COBE spherical cube (CSC) projection.

• int qscset (struct prjprm ∗prj)
Set up a prjprm struct for the quadrilateralized spherical cube (QSC) projection.

• int qscx2s (PRJX2S_ARGS)
Cartesian-to-spherical transformation for the quadrilateralized spherical cube (QSC) projection.

• int qscs2x (PRJS2X_ARGS)
Spherical-to-Cartesian transformation for the quadrilateralized spherical cube (QSC) projection.

• int hpxset (struct prjprm ∗prj)
Set up a prjprm struct for the HEALPix (HPX) projection.

• int hpxx2s (PRJX2S_ARGS)
Cartesian-to-spherical transformation for the HEALPix (HPX) projection.

• int hpxs2x (PRJS2X_ARGS)
Spherical-to-Cartesian transformation for the HEALPix (HPX) projection.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.6 prj.h File Reference 68

Variables

• const char ∗ prj_errmsg []
Status return messages.

• const int CONIC
Identifier for conic projections.

• const int CONVENTIONAL
Identifier for conventional projections.

• const int CYLINDRICAL
Identifier for cylindrical projections.

• const int POLYCONIC
Identifier for polyconic projections.

• const int PSEUDOCYLINDRICAL
Identifier for pseudocylindrical projections.

• const int QUADCUBE
Identifier for quadcube projections.

• const int ZENITHAL
Identifier for zenithal/azimuthal projections.

• const int HEALPIX
Identifier for the HEALPix projection.

• const char prj_categories [9][32]
Projection categories.

• const int prj_ncode
The number of recognized three-letter projection codes.

• const char prj_codes [27][4]
Recognized three-letter projection codes.

6.6.1 Detailed Description

These routines implement the spherical map projections defined by the FITS WCS standard. They are
based on the prjprm struct which contains all information needed for the computations. The struct contains
some members that must be set by the user, and others that are maintained by these routines, somewhat
like a C++ class but with no encapsulation.

Routine prjini() is provided to initialize the prjprm struct with default values, and another, prjprt(), to print
its contents.

Setup routines for each projection with names of the form ???set(), where "???" is the down-cased three-
letter projection code, compute intermediate values in the prjprm struct from parameters in it that were

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.6 prj.h File Reference 69

supplied by the user. The struct always needs to be set by the projection’s setup routine but that need not
be called explicitly - refer to the explanation of prjprm::flag.

Each map projection is implemented via separate functions for the spherical projection, ???s2x(), and
deprojection, ???x2s().

A set of driver routines, prjset(), prjx2s(), and prjs2x(), provides a generic interface to the specific projection
routines which they invoke via pointers-to-functions stored in the prjprm struct.

In summary, the routines are:

• prjini() Initialization routine for the prjprm struct.

• prjprt() Routine to print the prjprm struct.

• prjset(), prjx2s(), prjs2x(): Generic driver routines

• azpset(), azpx2s(), azps2x(): AZP (zenithal/azimuthal perspective)

• szpset(), szpx2s(), szps2x(): SZP (slant zenithal perspective)

• tanset(), tanx2s(), tans2x(): TAN (gnomonic)

• stgset(), stgx2s(), stgs2x(): STG (stereographic)

• sinset(), sinx2s(), sins2x(): SIN (orthographic/synthesis)

• arcset(), arcx2s(), arcs2x(): ARC (zenithal/azimuthal equidistant)

• zpnset(), zpnx2s(), zpns2x(): ZPN (zenithal/azimuthal polynomial)

• zeaset(), zeax2s(), zeas2x(): ZEA (zenithal/azimuthal equal area)

• airset(), airx2s(), airs2x(): AIR (Airy)

• cypset(), cypx2s(), cyps2x(): CYP (cylindrical perspective)

• ceaset(), ceax2s(), ceas2x(): CEA (cylindrical equal area)

• carset(), carx2s(), cars2x(): CAR (Plate carée)

• merset(), merx2s(), mers2x(): MER (Mercator)

• sflset(), sflx2s(), sfls2x(): SFL (Sanson-Flamsteed)

• parset(), parx2s(), pars2x(): PAR (parabolic)

• molset(), molx2s(), mols2x(): MOL (Mollweide)

• aitset(), aitx2s(), aits2x(): AIT (Hammer-Aitoff)

• copset(), copx2s(), cops2x(): COP (conic perspective)

• coeset(), coex2s(), coes2x(): COE (conic equal area)

• codset(), codx2s(), cods2x(): COD (conic equidistant)

• cooset(), coox2s(), coos2x(): COO (conic orthomorphic)

• bonset(), bonx2s(), bons2x(): BON (Bonne)

• pcoset(), pcox2s(), pcos2x(): PCO (polyconic)

• tscset(), tscx2s(), tscs2x(): TSC (tangential spherical cube)

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.6 prj.h File Reference 70

• cscset(), cscx2s(), cscs2x(): CSC (COBE spherical cube)

• qscset(), qscx2s(), qscs2x(): QSC (quadrilateralized spherical cube)

• hpxset(), hpxx2s(), hpxs2x(): HPX (HEALPix)

Argument checking (projection routines):

The values of φ and θ (the native longitude and latitude) normally lie in the range [−180◦, 180◦] for φ, and
[−90◦, 90◦] for θ. However, all projection routines will accept any value of φ and will not normalize it.

The projection routines do not explicitly check that θ lies within the range [−90◦, 90◦]. They do check
for any value of θ that produces an invalid argument to the projection equations (e.g. leading to division
by zero). The projection routines for AZP, SZP, TAN, SIN, ZPN, and COP also return error 2 if (φ, θ)
corresponds to the overlapped (far) side of the projection but also return the corresponding value of (x, y).
This strict bounds checking may be relaxed at any time by setting prjprm::bounds to 0 (rather than 1); the
projections need not be reinitialized.

Argument checking (deprojection routines):

Error checking on the projected coordinates (x, y) is limited to that required to ascertain whether a solution
exists. Where a solution does exist no check is made that the value of φ and θ obtained lie within the ranges
[−180◦, 180◦] for φ, and [−90◦, 90◦] for θ.

Accuracy:

No warranty is given for the accuracy of these routines (refer to the copyright notice); intending users
must satisfy for themselves their adequacy for the intended purpose. However, closure to a precision of at
least 0◦.0000000001 of longitude and latitude has been verified for typical projection parameters on the
1◦ degree graticule of native longitude and latitude (to within 5◦ of any latitude where the projection may
diverge). Refer to the tprj1.c and tprj2.c test routines that accompany this software.

6.6.2 Define Documentation

6.6.2.1 #define PVN 30

The total number of projection parameters numbered 0 to PVN-1.

6.6.2.2 #define PRJX2S_ARGS

Value:

struct prjprm *prj, int nx, int ny, int sxy, int spt, \
const double x[], const double y[], double phi[], double theta[], int stat[]

Preprocessor macro used for declaring deprojection function prototypes.

6.6.2.3 #define PRJS2X_ARGS

Value:

struct prjprm *prj, int nx, int ny, int sxy, int spt, \
const double phi[], const double theta[], double x[], double y[], int stat[]

Preprocessor macro used for declaring projection function prototypes.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.6 prj.h File Reference 71

6.6.2.4 #define PRJLEN (sizeof(struct prjprm)/sizeof(int))

Size of the prjprm struct in int units, used by the Fortran wrappers.

6.6.2.5 #define prjini_errmsg prj_errmsg

Deprecated

Added for backwards compatibility, use prj_errmsg directly now instead.

6.6.2.6 #define prjprt_errmsg prj_errmsg

Deprecated

Added for backwards compatibility, use prj_errmsg directly now instead.

6.6.2.7 #define prjset_errmsg prj_errmsg

Deprecated

Added for backwards compatibility, use prj_errmsg directly now instead.

6.6.2.8 #define prjx2s_errmsg prj_errmsg

Deprecated

Added for backwards compatibility, use prj_errmsg directly now instead.

6.6.2.9 #define prjs2x_errmsg prj_errmsg

Deprecated

Added for backwards compatibility, use prj_errmsg directly now instead.

6.6.3 Function Documentation

6.6.3.1 int prjini (struct prjprm ∗ prj)

prjini() sets all members of a prjprm struct to default values. It should be used to initialize every prjprm
struct.

Parameters:

→ prj Projection parameters.

Returns:

Status return value:

• 0: Success.

• 1: Null prjprm pointer passed.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.6 prj.h File Reference 72

6.6.3.2 int prjprt (const struct prjprm ∗ prj)

prjprt() prints the contents of a prjprm struct.

Parameters:

← prj Projection parameters.

Returns:

Status return value:

• 0: Success.

• 1: Null prjprm pointer passed.

6.6.3.3 int prjset (struct prjprm ∗ prj)

prjset() sets up a prjprm struct according to information supplied within it.

Note that this routine need not be called directly; it will be invoked by prjx2s() and prjs2x() if prj.flag is
anything other than a predefined magic value.

The one important distinction between prjset() and the setup routines for the specific projections is that
the projection code must be defined in the prjprm struct in order for prjset() to identify the required pro-
jection. Once prjset() has initialized the prjprm struct, prjx2s() and prjs2x() use the pointers to the specific
projection and deprojection routines contained therein.

Parameters:

↔ prj Projection parameters.

Returns:

Status return value:

• 0: Success.

• 1: Null prjprm pointer passed.

• 2: Invalid projection parameters.

6.6.3.4 int prjx2s (PRJX2S_ARGS)

Deproject Cartesian (x, y) coordinates in the plane of projection to native spherical coordinates (φ, θ).

The projection is that specified by prjprm::code.

Parameters:

↔ prj Projection parameters.

← nx,ny Vector lengths.

← sxy,spt Vector strides.

← x,y Projected coordinates.

→ phi,theta Longitude and latitude (φ, θ) of the projected point in native spherical coordinates [deg].

→ stat Status return value for each vector element:

• 0: Success.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.6 prj.h File Reference 73

• 1: Invalid value of (x, y).

Returns:

Status return value:

• 0: Success.

• 1: Null prjprm pointer passed.

• 2: Invalid projection parameters.

• 3: One or more of the (x, y) coordinates were invalid, as indicated by the stat vector.

6.6.3.5 int prjs2x (PRJS2X_ARGS)

Project native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of projection.

The projection is that specified by prjprm::code.

Parameters:

↔ prj Projection parameters.

← nphi,ntheta Vector lengths.

← spt,sxy Vector strides.

← phi,theta Longitude and latitude (φ, θ) of the projected point in native spherical coordinates [deg].

→ x,y Projected coordinates.

→ stat Status return value for each vector element:

• 0: Success.
• 1: Invalid value of (φ, θ).

Returns:

Status return value:

• 0: Success.

• 1: Null prjprm pointer passed.

• 2: Invalid projection parameters.

• 4: One or more of the (φ, θ) coordinates were, invalid, as indicated by the stat vector.

6.6.3.6 int azpset (struct prjprm ∗ prj)

azpset() sets up a prjprm struct for a zenithal/azimuthal perspective (AZP) projection.

See prjset() for a description of the API.

6.6.3.7 int azpx2s (PRJX2S_ARGS)

azpx2s() deprojects Cartesian (x, y) coordinates in the plane of a zenithal/azimuthal perspective (AZP)
projection to native spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.6 prj.h File Reference 74

6.6.3.8 int azps2x (PRJS2X_ARGS)

azps2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a
zenithal/azimuthal perspective (AZP) projection.

See prjs2x() for a description of the API.

6.6.3.9 int szpset (struct prjprm ∗ prj)

szpset() sets up a prjprm struct for a slant zenithal perspective (SZP) projection.

See prjset() for a description of the API.

6.6.3.10 int szpx2s (PRJX2S_ARGS)

szpx2s() deprojects Cartesian (x, y) coordinates in the plane of a slant zenithal perspective (SZP) projec-
tion to native spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

6.6.3.11 int szps2x (PRJS2X_ARGS)

szps2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a slant
zenithal perspective (SZP) projection.

See prjs2x() for a description of the API.

6.6.3.12 int tanset (struct prjprm ∗ prj)

tanset() sets up a prjprm struct for a gnomonic (TAN) projection.

See prjset() for a description of the API.

6.6.3.13 int tanx2s (PRJX2S_ARGS)

tanx2s() deprojects Cartesian (x, y) coordinates in the plane of a gnomonic (TAN) projection to native
spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

6.6.3.14 int tans2x (PRJS2X_ARGS)

tans2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a
gnomonic (TAN) projection.

See prjs2x() for a description of the API.

6.6.3.15 int stgset (struct prjprm ∗ prj)

stgset() sets up a prjprm struct for a stereographic (STG) projection.

See prjset() for a description of the API.

6.6.3.16 int stgx2s (PRJX2S_ARGS)

stgx2s() deprojects Cartesian (x, y) coordinates in the plane of a stereographic (STG) projection to native
spherical coordinates (φ, θ).

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.6 prj.h File Reference 75

See prjx2s() for a description of the API.

6.6.3.17 int stgs2x (PRJS2X_ARGS)

stgs2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a stere-
ographic (STG) projection.

See prjs2x() for a description of the API.

6.6.3.18 int sinset (struct prjprm ∗ prj)

stgset() sets up a prjprm struct for an orthographic/synthesis (SIN) projection.

See prjset() for a description of the API.

6.6.3.19 int sinx2s (PRJX2S_ARGS)

sinx2s() deprojects Cartesian (x, y) coordinates in the plane of an orthographic/synthesis (SIN) projec-
tion to native spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

6.6.3.20 int sins2x (PRJS2X_ARGS)

sins2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of an or-
thographic/synthesis (SIN) projection.

See prjs2x() for a description of the API.

6.6.3.21 int arcset (struct prjprm ∗ prj)

arcset() sets up a prjprm struct for a zenithal/azimuthal equidistant (ARC) projection.

See prjset() for a description of the API.

6.6.3.22 int arcx2s (PRJX2S_ARGS)

arcx2s() deprojects Cartesian (x, y) coordinates in the plane of a zenithal/azimuthal equidistant (ARC)
projection to native spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

6.6.3.23 int arcs2x (PRJS2X_ARGS)

arcs2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a
zenithal/azimuthal equidistant (ARC) projection.

See prjs2x() for a description of the API.

6.6.3.24 int zpnset (struct prjprm ∗ prj)

zpnset() sets up a prjprm struct for a zenithal/azimuthal polynomial (ZPN) projection.

See prjset() for a description of the API.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.6 prj.h File Reference 76

6.6.3.25 int zpnx2s (PRJX2S_ARGS)

zpnx2s() deprojects Cartesian (x, y) coordinates in the plane of a zenithal/azimuthal polynomial (ZPN)
projection to native spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

6.6.3.26 int zpns2x (PRJS2X_ARGS)

zpns2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a
zenithal/azimuthal polynomial (ZPN) projection.

See prjs2x() for a description of the API.

6.6.3.27 int zeaset (struct prjprm ∗ prj)

zeaset() sets up a prjprm struct for a zenithal/azimuthal equal area (ZEA) projection.

See prjset() for a description of the API.

6.6.3.28 int zeax2s (PRJX2S_ARGS)

zeax2s() deprojects Cartesian (x, y) coordinates in the plane of a zenithal/azimuthal equal area (ZEA)
projection to native spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

6.6.3.29 int zeas2x (PRJS2X_ARGS)

zeas2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a
zenithal/azimuthal equal area (ZEA) projection.

See prjs2x() for a description of the API.

6.6.3.30 int airset (struct prjprm ∗ prj)

airset() sets up a prjprm struct for an Airy (AIR) projection.

See prjset() for a description of the API.

6.6.3.31 int airx2s (PRJX2S_ARGS)

airx2s() deprojects Cartesian (x, y) coordinates in the plane of an Airy (AIR) projection to native spherical
coordinates (φ, θ).

See prjx2s() for a description of the API.

6.6.3.32 int airs2x (PRJS2X_ARGS)

airs2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of an Airy
(AIR) projection.

See prjs2x() for a description of the API.

6.6.3.33 int cypset (struct prjprm ∗ prj)

cypset() sets up a prjprm struct for a cylindrical perspective (CYP) projection.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.6 prj.h File Reference 77

See prjset() for a description of the API.

6.6.3.34 int cypx2s (PRJX2S_ARGS)

cypx2s() deprojects Cartesian (x, y) coordinates in the plane of a cylindrical perspective (CYP) projection
to native spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

6.6.3.35 int cyps2x (PRJS2X_ARGS)

cyps2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a cylin-
drical perspective (CYP) projection.

See prjs2x() for a description of the API.

6.6.3.36 int ceaset (struct prjprm ∗ prj)

ceaset() sets up a prjprm struct for a cylindrical equal area (CEA) projection.

See prjset() for a description of the API.

6.6.3.37 int ceax2s (PRJX2S_ARGS)

ceax2s() deprojects Cartesian (x, y) coordinates in the plane of a cylindrical equal area (CEA) projection
to native spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

6.6.3.38 int ceas2x (PRJS2X_ARGS)

ceas2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a cylin-
drical equal area (CEA) projection.

See prjs2x() for a description of the API.

6.6.3.39 int carset (struct prjprm ∗ prj)

carset() sets up a prjprm struct for a plate carrée (CAR) projection.

See prjset() for a description of the API.

6.6.3.40 int carx2s (PRJX2S_ARGS)

carx2s() deprojects Cartesian (x, y) coordinates in the plane of a plate carrée (CAR) projection to native
spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

6.6.3.41 int cars2x (PRJS2X_ARGS)

cars2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a plate
carrée (CAR) projection.

See prjs2x() for a description of the API.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.6 prj.h File Reference 78

6.6.3.42 int merset (struct prjprm ∗ prj)

merset() sets up a prjprm struct for a Mercator (MER) projection.

See prjset() for a description of the API.

6.6.3.43 int merx2s (PRJX2S_ARGS)

merx2s() deprojects Cartesian (x, y) coordinates in the plane of a Mercator (MER) projection to native
spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

6.6.3.44 int mers2x (PRJS2X_ARGS)

mers2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a Mer-
cator (MER) projection.

See prjs2x() for a description of the API.

6.6.3.45 int sflset (struct prjprm ∗ prj)

sflset() sets up a prjprm struct for a Sanson-Flamsteed (SFL) projection.

See prjset() for a description of the API.

6.6.3.46 int sflx2s (PRJX2S_ARGS)

sflx2s() deprojects Cartesian (x, y) coordinates in the plane of a Sanson-Flamsteed (SFL) projection to
native spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

6.6.3.47 int sfls2x (PRJS2X_ARGS)

sfls2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a Sanson-
Flamsteed (SFL) projection.

See prjs2x() for a description of the API.

6.6.3.48 int parset (struct prjprm ∗ prj)

parset() sets up a prjprm struct for a parabolic (PAR) projection.

See prjset() for a description of the API.

6.6.3.49 int parx2s (PRJX2S_ARGS)

parx2s() deprojects Cartesian (x, y) coordinates in the plane of a parabolic (PAR) projection to native
spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

6.6.3.50 int pars2x (PRJS2X_ARGS)

pars2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a
parabolic (PAR) projection.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.6 prj.h File Reference 79

See prjs2x() for a description of the API.

6.6.3.51 int molset (struct prjprm ∗ prj)

molset() sets up a prjprm struct for a Mollweide (MOL) projection.

See prjset() for a description of the API.

6.6.3.52 int molx2s (PRJX2S_ARGS)

molx2s() deprojects Cartesian (x, y) coordinates in the plane of a Mollweide (MOL) projection to native
spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

6.6.3.53 int mols2x (PRJS2X_ARGS)

mols2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a Moll-
weide (MOL) projection.

See prjs2x() for a description of the API.

6.6.3.54 int aitset (struct prjprm ∗ prj)

aitset() sets up a prjprm struct for a Hammer-Aitoff (AIT) projection.

See prjset() for a description of the API.

6.6.3.55 int aitx2s (PRJX2S_ARGS)

aitx2s() deprojects Cartesian (x, y) coordinates in the plane of a Hammer-Aitoff (AIT) projection to native
spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

6.6.3.56 int aits2x (PRJS2X_ARGS)

aits2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a
Hammer-Aitoff (AIT) projection.

See prjs2x() for a description of the API.

6.6.3.57 int copset (struct prjprm ∗ prj)

copset() sets up a prjprm struct for a conic perspective (COP) projection.

See prjset() for a description of the API.

6.6.3.58 int copx2s (PRJX2S_ARGS)

copx2s() deprojects Cartesian (x, y) coordinates in the plane of a conic perspective (COP) projection to
native spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.6 prj.h File Reference 80

6.6.3.59 int cops2x (PRJS2X_ARGS)

cops2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a conic
perspective (COP) projection.

See prjs2x() for a description of the API.

6.6.3.60 int coeset (struct prjprm ∗ prj)

coeset() sets up a prjprm struct for a conic equal area (COE) projection.

See prjset() for a description of the API.

6.6.3.61 int coex2s (PRJX2S_ARGS)

coex2s() deprojects Cartesian (x, y) coordinates in the plane of a conic equal area (COE) projection to
native spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

6.6.3.62 int coes2x (PRJS2X_ARGS)

coes2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a conic
equal area (COE) projection.

See prjs2x() for a description of the API.

6.6.3.63 int codset (struct prjprm ∗ prj)

codset() sets up a prjprm struct for a conic equidistant (COD) projection.

See prjset() for a description of the API.

6.6.3.64 int codx2s (PRJX2S_ARGS)

codx2s() deprojects Cartesian (x, y) coordinates in the plane of a conic equidistant (COD) projection to
native spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

6.6.3.65 int cods2x (PRJS2X_ARGS)

cods2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a conic
equidistant (COD) projection.

See prjs2x() for a description of the API.

6.6.3.66 int cooset (struct prjprm ∗ prj)

cooset() sets up a prjprm struct for a conic orthomorphic (COO) projection.

See prjset() for a description of the API.

6.6.3.67 int coox2s (PRJX2S_ARGS)

coox2s() deprojects Cartesian (x, y) coordinates in the plane of a conic orthomorphic (COO) projection to
native spherical coordinates (φ, θ).

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.6 prj.h File Reference 81

See prjx2s() for a description of the API.

6.6.3.68 int coos2x (PRJS2X_ARGS)

coos2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a conic
orthomorphic (COO) projection.

See prjs2x() for a description of the API.

6.6.3.69 int bonset (struct prjprm ∗ prj)

bonset() sets up a prjprm struct for a Bonne (BON) projection.

See prjset() for a description of the API.

6.6.3.70 int bonx2s (PRJX2S_ARGS)

bonx2s() deprojects Cartesian (x, y) coordinates in the plane of a Bonne (BON) projection to native spher-
ical coordinates (φ, θ).

See prjx2s() for a description of the API.

6.6.3.71 int bons2x (PRJS2X_ARGS)

bons2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a Bonne
(BON) projection.

See prjs2x() for a description of the API.

6.6.3.72 int pcoset (struct prjprm ∗ prj)

pcoset() sets up a prjprm struct for a polyconic (PCO) projection.

See prjset() for a description of the API.

6.6.3.73 int pcox2s (PRJX2S_ARGS)

pcox2s() deprojects Cartesian (x, y) coordinates in the plane of a polyconic (PCO) projection to native
spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

6.6.3.74 int pcos2x (PRJS2X_ARGS)

pcos2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a poly-
conic (PCO) projection.

See prjs2x() for a description of the API.

6.6.3.75 int tscset (struct prjprm ∗ prj)

tscset() sets up a prjprm struct for a tangential spherical cube (TSC) projection.

See prjset() for a description of the API.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.6 prj.h File Reference 82

6.6.3.76 int tscx2s (PRJX2S_ARGS)

tscx2s() deprojects Cartesian (x, y) coordinates in the plane of a tangential spherical cube (TSC) projec-
tion to native spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

6.6.3.77 int tscs2x (PRJS2X_ARGS)

tscs2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a tan-
gential spherical cube (TSC) projection.

See prjs2x() for a description of the API.

6.6.3.78 int cscset (struct prjprm ∗ prj)

cscset() sets up a prjprm struct for a COBE spherical cube (CSC) projection.

See prjset() for a description of the API.

6.6.3.79 int cscx2s (PRJX2S_ARGS)

cscx2s() deprojects Cartesian (x, y) coordinates in the plane of a COBE spherical cube (CSC) projection
to native spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

6.6.3.80 int cscs2x (PRJS2X_ARGS)

cscs2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a COBE
spherical cube (CSC) projection.

See prjs2x() for a description of the API.

6.6.3.81 int qscset (struct prjprm ∗ prj)

qscset() sets up a prjprm struct for a quadrilateralized spherical cube (QSC) projection.

See prjset() for a description of the API.

6.6.3.82 int qscx2s (PRJX2S_ARGS)

qscx2s() deprojects Cartesian (x, y) coordinates in the plane of a quadrilateralized spherical cube (QSC)
projection to native spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

6.6.3.83 int qscs2x (PRJS2X_ARGS)

qscs2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a
quadrilateralized spherical cube (QSC) projection.

See prjs2x() for a description of the API.

6.6.3.84 int hpxset (struct prjprm ∗ prj)

hpxset() sets up a prjprm struct for a HEALPix (HPX) projection.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.6 prj.h File Reference 83

See prjset() for a description of the API.

6.6.3.85 int hpxx2s (PRJX2S_ARGS)

hpxx2s() deprojects Cartesian (x, y) coordinates in the plane of a HEALPix (HPX) projection to native
spherical coordinates (φ, θ).

See prjx2s() for a description of the API.

6.6.3.86 int hpxs2x (PRJS2X_ARGS)

hpxs2x() projects native spherical coordinates (φ, θ) to Cartesian (x, y) coordinates in the plane of a
HEALPix (HPX) projection.

See prjs2x() for a description of the API.

6.6.4 Variable Documentation

6.6.4.1 const char ∗ prj_errmsg[]

Error messages to match the status value returned from each function.

6.6.4.2 const int CONIC

Identifier for conic projections, see prjprm::category.

6.6.4.3 const int CONVENTIONAL

Identifier for conventional projections, see prjprm::category.

6.6.4.4 const int CYLINDRICAL

Identifier for cylindrical projections, see prjprm::category.

6.6.4.5 const int POLYCONIC

Identifier for polyconic projections, see prjprm::category.

6.6.4.6 const int PSEUDOCYLINDRICAL

Identifier for pseudocylindrical projections, see prjprm::category.

6.6.4.7 const int QUADCUBE

Identifier for quadcube projections, see prjprm::category.

6.6.4.8 const int ZENITHAL

Identifier for zenithal/azimuthal projections, see prjprm::category.

6.6.4.9 const int HEALPIX

Identifier for the HEALPix projection, see prjprm::category.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.7 spc.h File Reference 84

6.6.4.10 const char prj_categories[9][32]

Names of the projection categories, all in lower-case except for "HEALPix".

Provided for information only, not used by the projection routines.

6.6.4.11 const int prj_ncode

The number of recognized three-letter projection codes (currently 27), see prj_codes.

6.6.4.12 const char prj_codes[27][4]

List of all recognized three-letter projection codes (currently 27), e.g. SIN, TAN, etc.

6.7 spc.h File Reference

#include "spx.h"

Data Structures

• struct spcprm
Spectral transformation parameters.

Defines

• #define SPCLEN (sizeof(struct spcprm)/sizeof(int))
Size of the spcprm struct in int units.

• #define spcini_errmsg spc_errmsg
Deprecated.

• #define spcprt_errmsg spc_errmsg
Deprecated.

• #define spcset_errmsg spc_errmsg
Deprecated.

• #define spcx2s_errmsg spc_errmsg
Deprecated.

• #define spcs2x_errmsg spc_errmsg
Deprecated.

Functions

• int spcini (struct spcprm ∗spc)
Default constructor for the spcprm struct.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.7 spc.h File Reference 85

• int spcprt (const struct spcprm ∗spc)
Print routine for the spcprm struct.

• int spcset (struct spcprm ∗spc)
Setup routine for the spcprm struct.

• int spcx2s (struct spcprm ∗spc, int nx, int sx, int sspec, const double x[], double spec[], int stat[])
Transform to spectral coordinates.

• int spcs2x (struct spcprm ∗spc, int nspec, int sspec, int sx, const double spec[], double x[], int
stat[])

Transform spectral coordinates.

• int spctyp (const char ctype[], char stype[], char scode[], char sname[], char units[], char ∗ptype,
char ∗xtype, int ∗restreq)

Spectral CTYPEia keyword analysis.

• int spcspx (const char ctypeS[], double crvalS, double restfrq, double restwav, char ∗ptype, char
∗xtype, int ∗restreq, double ∗crvalX, double ∗dXdS)

Spectral keyword analysis.

• int spcxps (const char ctypeS[], double crvalX, double restfrq, double restwav, char ∗ptype, char
∗xtype, int ∗restreq, double ∗crvalS, double ∗dSdX)

Spectral keyword synthesis.

• int spctrn (const char ctypeS1[], double crvalS1, double cdeltS1, double restfrq, double restwav, char
ctypeS2[], double ∗crvalS2, double ∗cdeltS2)

Spectral keyword translation.

• int spcaips (const char ctypeA[], int velref, char ctype[], char specsys[])
Translate AIPS-convention spectral keywords.

Variables

• const char ∗ spc_errmsg []
Status return messages.

6.7.1 Detailed Description

These routines implement the part of the FITS WCS standard that deals with spectral coordinates. They
define methods to be used for computing spectral world coordinates from intermediate world coordinates
(a linear transformation of image pixel coordinates), and vice versa. They are based on the spcprm struct
which contains all information needed for the computations. The struct contains some members that must
be set by the user, and others that are maintained by these routines, somewhat like a C++ class but with no
encapsulation.

Routine spcini() is provided to initialize the spcprm struct with default values, and another, spcprt(), to
print its contents.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.7 spc.h File Reference 86

A setup routine, spcset(), computes intermediate values in the spcprm struct from parameters in it that were
supplied by the user. The struct always needs to be set up by spcset() but it need not be called explicitly -
refer to the explanation of spcprm::flag.

spcx2s() and spcs2x() implement the WCS spectral coordinate transformations. In fact, they are high level
driver routines for the lower level spectral coordinate transformation routines described in spx.h.

A number of routines are provided to aid in analysing or synthesising sets of FITS spectral axis keywords:

• spctyp() checks a spectral CTYPEia keyword for validity and returns information derived from it.

• Spectral keyword analysis routine spcspx() computes the values of the X-type spectral variables for
the S-type variables supplied.

• Spectral keyword synthesis routine, spcxps(), computes the S-type variables for the X-types sup-
plied.

• Given a set of spectral keywords, a translation routine, spctrn(), produces the corresponding set for
the specified spectral CTYPEia.

• spcaips() translates AIPS-convention spectral keywords, CTYPEn and VELREF, into CTYPEia
and SPECSYSa.

Spectral variable types - S, P , and X:

A few words of explanation are necessary regarding spectral variable types in FITS.

Every FITS spectral axis has three associated spectral variables:

S-type: the spectral variable in which coordinates are to be expressed. Each S-type is encoded as four
characters and is linearly related to one of four basic types as follows:

F: frequency ’FREQ’: frequency ’AFRQ’: angular frequency ’ENER’: photon energy ’WAVN’: wave
number ’VRAD’: radio velocity

W: wavelength in vacuo ’WAVE’: wavelength ’VOPT’: optical velocity ’ZOPT’: redshift

A: wavelength in air ’AWAV’: wavelength in air

V: velocity ’VELO’: relativistic velocity ’BETA’: relativistic beta factor

The S-type forms the first four characters of the CTYPEia keyvalue, and CRVALia and CDELTia are
expressed as S-type quantities so that they provide a first-order approximation to the S-type variable at the
reference point.

Note that ’AFRQ’, angular frequency, is additional to the variables defined in WCS Paper III.

P -type: the basic spectral variable (F, W, A, or V) with which the S-type variable is associated (see list
above).

For non-grism axes, the P -type is encoded as the eighth character of CTYPEia.

X-type: the basic spectral variable (F, W, A, or V) for which the spectral axis is linear, grisms excluded
(see below).

For non-grism axes, the X-type is encoded as the sixth character of CTYPEia.

Grisms: Grism axes have normal S-, and P -types but the axis is linear, not in any spectral variable, but
in a special "grism parameter". The X-type spectral variable is either W or A for grisms in vacuo or air
respectively, but is encoded as ’w’ or ’a’ to indicate that an additional transformation is required to convert
to or from the grism parameter. The spectral algorithm code for grisms also has a special encoding in
CTYPEia, either ’GRI’ (in vacuo) or ’GRA’ (in air).

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.7 spc.h File Reference 87

In the algorithm chain, the non-linear transformation occurs between the X-type and the P -type variables;
the transformation between P -type and S-type variables is always linear.

When the P -type and X-type variables are the same, the spectral axis is linear in the S-type variable and
the second four characters of CTYPEia are blank. This can never happen for grism axes.

As an example, correlating radio spectrometers always produce spectra that are regularly gridded in fre-
quency; a redshift scale on such a spectrum is non-linear. The required value of CTYPEia would be
’ZOPT-F2W’, where the desired S-type is ’ZOPT’ (redshift), the P -type is necessarily ’W’ (wavelength),
and the X-type is ’F’ (frequency) by the nature of the instrument.

Argument checking:

The input spectral values are only checked for values that would result in floating point exceptions. In
particular, negative frequencies and wavelengths are allowed, as are velocities greater than the speed of
light. The same is true for the spectral parameters - rest frequency and wavelength.

Accuracy:

No warranty is given for the accuracy of these routines (refer to the copyright notice); intending users
must satisfy for themselves their adequacy for the intended purpose. However, closure effectively to within
double precision rounding error was demonstrated by test routine tspc.c which accompanies this software.

6.7.2 Define Documentation

6.7.2.1 #define SPCLEN (sizeof(struct spcprm)/sizeof(int))

Size of the spcprm struct in int units, used by the Fortran wrappers.

6.7.2.2 #define spcini_errmsg spc_errmsg

Deprecated

Added for backwards compatibility, use spc_errmsg directly now instead.

6.7.2.3 #define spcprt_errmsg spc_errmsg

Deprecated

Added for backwards compatibility, use spc_errmsg directly now instead.

6.7.2.4 #define spcset_errmsg spc_errmsg

Deprecated

Added for backwards compatibility, use spc_errmsg directly now instead.

6.7.2.5 #define spcx2s_errmsg spc_errmsg

Deprecated

Added for backwards compatibility, use spc_errmsg directly now instead.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.7 spc.h File Reference 88

6.7.2.6 #define spcs2x_errmsg spc_errmsg

Deprecated

Added for backwards compatibility, use spc_errmsg directly now instead.

6.7.3 Function Documentation

6.7.3.1 int spcini (struct spcprm ∗ spc)

spcini() sets all members of a spcprm struct to default values. It should be used to initialize every spcprm
struct.

Parameters:

↔ spc Spectral transformation parameters.

Returns:

Status return value:

• 0: Success.
• 1: Null spcprm pointer passed.

6.7.3.2 int spcprt (const struct spcprm ∗ spc)

spcprt() prints the contents of a spcprm struct.

Parameters:

← spc Spectral transformation parameters.

Returns:

Status return value:

• 0: Success.
• 1: Null spcprm pointer passed.

6.7.3.3 int spcset (struct spcprm ∗ spc)

spcset() sets up a spcprm struct according to information supplied within it.

Note that this routine need not be called directly; it will be invoked by spcx2s() and spcs2x() if spcprm::flag
is anything other than a predefined magic value.

Parameters:

↔ spc Spectral transformation parameters.

Returns:

Status return value:

• 0: Success.
• 1: Null spcprm pointer passed.
• 2: Invalid spectral parameters.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.7 spc.h File Reference 89

6.7.3.4 int spcx2s (struct spcprm ∗ spc, int nx, int sx, int sspec, const double x[], double spec[],
int stat[])

spcx2s() transforms intermediate world coordinates to spectral coordinates.

Parameters:

↔ spc Spectral transformation parameters.

← nx Vector length.

← sx Vector stride.

← sspec Vector stride.

← x Intermediate world coordinates, in SI units.

→ spec Spectral coordinates, in SI units.

→ stat Status return value status for each vector element:

• 0: Success.
• 1: Invalid value of x.

Returns:

Status return value:

• 0: Success.

• 1: Null spcprm pointer passed.

• 2: Invalid spectral parameters.

• 3: One or more of the x coordinates were invalid, as indicated by the stat vector.

6.7.3.5 int spcs2x (struct spcprm ∗ spc, int nspec, int sspec, int sx, const double spec[], double
x[], int stat[])

spcs2x() transforms spectral world coordinates to intermediate world coordinates.

Parameters:

↔ spc Spectral transformation parameters.

← nspec Vector length.

← sspec Vector stride.

← sx Vector stride.

← spec Spectral coordinates, in SI units.

→ x Intermediate world coordinates, in SI units.

→ stat Status return value status for each vector element:

• 0: Success.
• 1: Invalid value of spec.

Returns:

Status return value:

• 0: Success.

• 1: Null spcprm pointer passed.

• 2: Invalid spectral parameters.

• 4: One or more of the spec coordinates were invalid, as indicated by the stat vector.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.7 spc.h File Reference 90

6.7.3.6 int spctyp (const char ctype[], char stype[], char scode[], char sname[], char units[], char
∗ ptype, char ∗ xtype, int ∗ restreq)

spctyp() checks whether a CTYPEia keyvalue is a valid spectral axis type and if so returns information
derived from it relating to the associated S-, P -, and X-type spectral variables (see explanation above).

The return arguments are guaranteed not be modified if CTYPEia is not a valid spectral type; zero-
pointers may be specified for any that are not of interest.

Parameters:

← ctype The CTYPEia keyvalue, (eight characters with null termination).

→ stype The four-letter name of the S-type spectral variable copied or translated from ctype. If a
non-zero pointer is given, the array must accomodate a null- terminated string of length 5.

→ scode The three-letter spectral algorithm code copied or translated from ctype. Logarithmic
(’LOG’) and tabular (’TAB’) codes are also recognized. If a non-zero pointer is given, the
array must accomodate a null-terminated string of length 4.

→ sname Descriptive name of the S-type spectral variable. If a non-zero pointer is given, the array
must accomodate a null-terminated string of length 22.

→ units SI units of the S-type spectral variable. If a non-zero pointer is given, the array must acco-
modate a null-terminated string of length 8.

→ ptype Character code for the P -type spectral variable derived from ctype, one of ’F’, ’W’, ’A’, or
’V’.

→ xtype Character code for the X-type spectral variable derived from ctype, one of ’F’, ’W’, ’A’, or
’V’. Also, ’w’ and ’a’ are synonymous to ’W’ and ’A’ for grisms in vacuo and air respectively.
Set to ’L’ or ’T’ for logarithmic (’LOG’) and tabular (’TAB’) axes.

→ restreq Multivalued flag that indicates whether rest frequency or wavelength is required to compute
spectral variables for this CTYPEia:

• 0: Not required.
• 1: Required for the conversion between S- and P -types (e.g. ’ZOPT-F2W’).
• 2: Required for the conversion between P - and X-types (e.g. ’BETA-W2V’).
• 3: Required for the conversion between S- and P -types, and between P - and X-types,

but not between S- and X-types (this applies only for ’VRAD-V2F’, ’VOPT-V2W’, and
’ZOPT-V2W’).

Thus the rest frequency or wavelength is required for spectral coordinate computations (i.e. be-
tween S- and X-types) only if

restreq%3 != 0

.

Returns:

Status return value:

• 0: Success.

• 2: Invalid spectral parameters (not a spectral CTYPEia).

6.7.3.7 int spcspx (const char ctypeS[], double crvalS, double restfrq, double restwav, char ∗ ptype,
char ∗ xtype, int ∗ restreq, double ∗ crvalX, double ∗ dXdS)

spcspx() analyses the CTYPEia and CRVALia FITS spectral axis keyword values and returns informa-
tion about the associated X-type spectral variable.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.7 spc.h File Reference 91

Parameters:

← ctypeS Spectral axis type, i.e. the CTYPEia keyvalue, (eight characters with null termination).
For non-grism axes, the character code for the P -type spectral variable in the algorithm code (i.e.
the eighth character of CTYPEia) may be set to ’?’ (it will not be reset).

← crvalS Value of the S-type spectral variable at the reference point, i.e. the CRVALia keyvalue, SI
units.

← restfrq,restwav Rest frequency [Hz] and rest wavelength in vacuo [m], only one of which need
be given, the other should be set to zero. Neither are required if the translation is between
wave-characteristic types, or between velocity-characteristic types. E.g., required for ’FREQ’
-> ’ZOPT-F2W’, but not required for ’VELO-F2V’ -> ’ZOPT-F2W’.

→ ptype Character code for the P -type spectral variable derived from ctypeS, one of ’F’, ’W’, ’A’, or
’V’.

→ xtype Character code for the X-type spectral variable derived from ctypeS, one of ’F’, ’W’, ’A’, or
’V’. Also, ’w’ and ’a’ are synonymous to ’W’ and ’A’ for grisms in vacuo and air respectively;
crvalX and dXdS (see below) will conform to these.

→ restreq Multivalued flag that indicates whether rest frequency or wavelength is required to compute
spectral variables for this CTYPEia, as for spctyp().

→ crvalX Value of the X-type spectral variable at the reference point, SI units.

→ dXdS The derivative, dX/dS, evaluated at the reference point, SI units. Multiply the CDELTia
keyvalue by this to get the pixel spacing in the X-type spectral coordinate.

Returns:

Status return value:

• 0: Success.

• 2: Invalid spectral parameters.

6.7.3.8 int spcxps (const char ctypeS[], double crvalX, double restfrq, double restwav, char ∗ ptype,
char ∗ xtype, int ∗ restreq, double ∗ crvalS, double ∗ dSdX)

spcxps(), for the spectral axis type specified and the value provided for the X-type spectral variable at the
reference point, deduces the value of the FITS spectral axis keyword CRVALia and also the derivative
dS/dX which may be used to compute CDELTia. See above for an explanation of the S-, P -, and X-type
spectral variables.

Parameters:

← ctypeS The required spectral axis type, i.e. the CTYPEia keyvalue, (eight characters with null
termination). For non-grism axes, the character code for the P -type spectral variable in the
algorithm code (i.e. the eighth character of CTYPEia) may be set to ’?’ (it will not be reset).

← crvalX Value of the X-type spectral variable at the reference point (N.B. NOT the CRVALia
keyvalue), SI units.

← restfrq,restwav Rest frequency [Hz] and rest wavelength in vacuo [m], only one of which need
be given, the other should be set to zero. Neither are required if the translation is between
wave-characteristic types, or between velocity-characteristic types. E.g., required for ’FREQ’
-> ’ZOPT-F2W’, but not required for ’VELO-F2V’ -> ’ZOPT-F2W’.

→ ptype Character code for the P -type spectral variable derived from ctypeS, one of ’F’, ’W’, ’A’, or
’V’.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.7 spc.h File Reference 92

→ xtype Character code for the X-type spectral variable derived from ctypeS, one of ’F’, ’W’, ’A’,
or ’V’. Also, ’w’ and ’a’ are synonymous to ’W’ and ’A’ for grisms; crvalX and cdeltX must
conform to these.

→ restreq Multivalued flag that indicates whether rest frequency or wavelength is required to compute
spectral variables for this CTYPEia, as for spctyp().

→ crvalS Value of the S-type spectral variable at the reference point (i.e. the appropriate CRVALia
keyvalue), SI units.

→ dSdX The derivative, dS/dX , evaluated at the reference point, SI units. Multiply this by the pixel
spacing in the X-type spectral coordinate to get the CDELTia keyvalue.

Returns:

Status return value:

• 0: Success.
• 2: Invalid spectral parameters.

6.7.3.9 int spctrn (const char ctypeS1[], double crvalS1, double cdeltS1, double restfrq, double
restwav, char ctypeS2[], double ∗ crvalS2, double ∗ cdeltS2)

spctrn() translates a set of FITS spectral axis keywords into the corresponding set for the specified spectral
axis type. For example, a ’FREQ’ axis may be translated into ’ZOPT-F2W’ and vice versa.

Parameters:

← ctypeS1 Spectral axis type, i.e. the CTYPEia keyvalue, (eight characters with null termination).
For non-grism axes, the character code for the P -type spectral variable in the algorithm code (i.e.
the eighth character of CTYPEia) may be set to ’?’ (it will not be reset).

← crvalS1 Value of the S-type spectral variable at the reference point, i.e. the CRVALia keyvalue,
SI units.

← cdeltS1 Increment of the S-type spectral variable at the reference point, SI units.
← restfrq,restwav Rest frequency [Hz] and rest wavelength in vacuo [m], only one of which need

be given, the other should be set to zero. Neither are required if the translation is between
wave-characteristic types, or between velocity-characteristic types. E.g., required for ’FREQ’
-> ’ZOPT-F2W’, but not required for ’VELO-F2V’ -> ’ZOPT-F2W’.

↔ ctypeS2 Required spectral axis type (eight characters with null termination). The first four charac-
ters are required to be given and are never modified. The remaining four, the algorithm code, are
completely determined by, and must be consistent with, ctypeS1 and the first four characters of
ctypeS2. A non-zero status value will be returned if they are inconsistent (see below). However,
if the final three characters are specified as "???", or if just the eighth character is specified as ’?’,
the correct algorithm code will be substituted (applies for grism axes as well as non-grism).

→ crvalS2 Value of the new S-type spectral variable at the reference point, i.e. the new CRVALia
keyvalue, SI units.

→ cdeltS2 Increment of the new S-type spectral variable at the reference point, i.e. the new
CDELTia keyvalue, SI units.

Returns:

Status return value:

• 0: Success.
• 2: Invalid spectral parameters.

A status value of 2 will be returned if restfrq or restwav are not specified when required, or if ctypeS1
or ctypeS2 are self-inconsistent, or have different spectral X-type variables.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.8 sph.h File Reference 93

6.7.3.10 int spcaips (const char ctypeA[], int velref, char ctype[], char specsys[])

spcaips() translates AIPS-convention spectral keywords, CTYPEn and VELREF, into CTYPEia and
SPECSYSa.

Parameters:

← ctypeA CTYPEia keyvalue (eight characters, need not be null- terminated).

← velref AIPS-convention VELREF code. It has the following integer values:

• 1: LSR kinematic, originally described simply as "LSR" without distinction between the
kinematic and dynamic definitions.

• 2: Barycentric, originally described as "HEL" meaning heliocentric.
• 3: Topocentric, originally described as "OBS" meaning geocentric but widely interpreted as

topocentric.

AIPS++ extensions to VELREF are also recognized:

• 4: LSR dynamic.
• 5: Geocentric.
• 6: Source rest frame.
• 7: Galactocentric.

For an AIPS ’VELO’ axis, a radio convention velocity is denoted by adding 256 to VELREF,
otherwise an optical velocity is indicated (not applicable to ’FELO’ axes). Unrecognized values
of VELREF are simply ignored.
VELREF takes precedence over CTYPEia in defining the Doppler frame, e.g. if

CTYPEn = ’VELO-HEL’
VELREF = 1

the Doppler frame is set to LSRK.

→ ctype Translated CTYPEia keyvalue, or a copy of ctypeA if no translation was performed (null-
filled).

→ specsys Doppler reference frame indicated by VELREF or else by CTYPEn.

Returns:

Status return value: -1: No translation required (not an error).

• 0: Success.

6.7.4 Variable Documentation

6.7.4.1 const char ∗ spc_errmsg[]

Error messages to match the status value returned from each function.

6.8 sph.h File Reference

Functions

• int sphx2s (const double eul[5], int nphi, int ntheta, int spt, int sxy, const double phi[], const double
theta[], double lng[], double lat[])

Rotation in the pixel-to-world direction.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.8 sph.h File Reference 94

• int sphs2x (const double eul[5], int nlng, int nlat, int sll, int spt, const double lng[], const double
lat[], double phi[], double theta[])

Rotation in the world-to-pixel direction.

• int sphdpa (int nfield, double lng0, double lat0, const double lng[], const double lat[], double dist[],
double pa[])

Compute angular distance and position angle.

• int sphpad (int nfield, double lng0, double lat0, const double dist[], const double pa[], double lng[],
double lat[])

Compute field points offset from a given point.

6.8.1 Detailed Description

The WCS spherical coordinate transformations are implemented via separate functions, sphx2s() and
sphs2x(), for the transformation in each direction.

A utility function, sphdpa(), computes the angular distances and position angles from a given point on the
sky to a number of other points. sphpad() does the complementary operation - computes the coordinates of
points offset by the given angular distances and position angles from a given point on the sky.

6.8.2 Function Documentation

6.8.2.1 int sphx2s (const double eul[5], int nphi, int ntheta, int spt, int sxy, const double phi[],
const double theta[], double lng[], double lat[])

sphx2s() transforms native coordinates of a projection to celestial coordinates.

Parameters:

← eul Euler angles for the transformation:

• 0: Celestial longitude of the native pole [deg].
• 1: Celestial colatitude of the native pole, or native colatitude of the celestial pole [deg].
• 2: Native longitude of the celestial pole [deg].
• 3: cos(eul[1])
• 4: sin(eul[1])

← nphi,ntheta Vector lengths.

← spt,sxy Vector strides.

← phi,theta Longitude and latitude in the native coordinate system of the projection [deg].

→ lng,lat Celestial longitude and latitude [deg]. These may refer to the same storage as phi and theta
respectively.

Returns:

Status return value:

• 0: Success.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.8 sph.h File Reference 95

6.8.2.2 int sphs2x (const double eul[5], int nlng, int nlat, int sll, int spt, const double lng[], const
double lat[], double phi[], double theta[])

sphs2x() transforms celestial coordinates to the native coordinates of a projection.

Parameters:

← eul Euler angles for the transformation:

• 0: Celestial longitude of the native pole [deg].
• 1: Celestial colatitude of the native pole, or native colatitude of the celestial pole [deg].
• 2: Native longitude of the celestial pole [deg].
• 3: cos(eul[1])
• 4: sin(eul[1])

← nlng,nlat Vector lengths.

← sll,spt Vector strides.

← lng,lat Celestial longitude and latitude [deg].

→ phi,theta Longitude and latitude in the native coordinate system of the projection [deg]. These
may refer to the same storage as lng and lat respectively.

Returns:

Status return value:

• 0: Success.

6.8.2.3 int sphdpa (int nfield, double lng0, double lat0, const double lng[], const double lat[],
double dist[], double pa[])

sphdpa() computes the angular distance and generalized position angle (see notes) from a "reference"
point to a number of "field" points on the sphere. The points must be specified consistently in any spherical
coordinate system.

sphdpa() is complementary to sphpad().

Parameters:

← nfield The number of field points.

← lng0,lat0 Spherical coordinates of the reference point [deg].

← lng,lat Spherical coordinates of the field points [deg].

→ dist,pa Angular distances and position angles [deg]. These may refer to the same storage as lng
and lat respectively.

Returns:

Status return value:

• 0: Success.

Notes:

sphdpa() uses sphs2x() to rotate coordinates so that the reference point is at the north pole of the new
system with the north pole of the old system at zero longitude in the new. The Euler angles required by
sphs2x() for this rotation are

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.8 sph.h File Reference 96

eul[0] = lng0;
eul[1] = 90.0 - lat0;
eul[2] = 0.0;

The angular distance and generalized position angle are readily obtained from the longitude and latitude
of the field point in the new system. This applies even if the reference point is at one of the poles, in
which case the "position angle" returned is as would be computed for a reference point at (α0,+90◦ − ε)
or (α0,−90◦ + ε), in the limit as ε goes to zero.

It is evident that the coordinate system in which the two points are expressed is irrelevant to the determi-
nation of the angular separation between the points. However, this is not true of the generalized position
angle.

The generalized position angle is here defined as the angle of intersection of the great circle containing
the reference and field points with that containing the reference point and the pole. It has its normal
meaning when the the reference and field points are specified in equatorial coordinates (right ascension and
declination).

Interchanging the reference and field points changes the position angle in a non-intuitive way (because the
sum of the angles of a spherical triangle normally exceeds 180◦).

The position angle is undefined if the reference and field points are coincident or antipodal. This may be
detected by checking for a distance of 0◦ or 180◦ (within rounding tolerance). sphdpa() will return an
arbitrary position angle in such circumstances.

6.8.2.4 int sphpad (int nfield, double lng0, double lat0, const double dist[], const double pa[],
double lng[], double lat[])

sphpad() computes the coordinates of a set of points that are offset by the specified angular distances
and position angles from a given "reference" point on the sky. The distances and position angles must be
specified consistently in any spherical coordinate system.

sphpad() is complementary to sphdpa().

Parameters:

← nfield The number of field points.

← lng0,lat0 Spherical coordinates of the reference point [deg].

← dist,pa Angular distances and position angles [deg].

→ lng,lat Spherical coordinates of the field points [deg]. These may refer to the same storage as dist
and pa respectively.

Returns:

Status return value:

• 0: Success.

Notes:

sphpad() is implemented analogously to sphdpa() although using sphx2s() for the inverse transformation.
In particular, when the reference point is at one of the poles, "position angle" is interpreted as though the
reference point was at (α0,+90◦ − ε) or (α0,−90◦ + ε), in the limit as ε goes to zero.

Applying sphpad() with the distances and position angles computed by sphdpa() should return the original
field points.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.9 spx.h File Reference 97

6.9 spx.h File Reference

Data Structures

• struct spxprm
Spectral variables and their derivatives.

Defines

• #define SPXLEN (sizeof(struct spxprm)/sizeof(int))
Size of the spxprm struct in int units.

• #define SPX_ARGS
For use in declaring spectral conversion function prototypes.

Functions

• int specx (const char ∗type, double spec, double restfrq, double restwav, struct spxprm ∗specs)
Spectral cross conversions (scalar).

• int freqafrq (SPX_ARGS)
Convert frequency to angular frequency (vector).

• int afrqfreq (SPX_ARGS)
Convert angular frequency to frequency (vector).

• int freqener (SPX_ARGS)
Convert frequency to photon energy (vector).

• int enerfreq (SPX_ARGS)
Convert photon energy to frequency (vector).

• int freqwavn (SPX_ARGS)
Convert frequency to wave number (vector).

• int wavnfreq (SPX_ARGS)
Convert wave number to frequency (vector).

• int freqwave (SPX_ARGS)
Convert frequency to vacuum wavelength (vector).

• int wavefreq (SPX_ARGS)
Convert vacuum wavelength to frequency (vector).

• int freqawav (SPX_ARGS)
Convert frequency to air wavelength (vector).

• int awavfreq (SPX_ARGS)

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.9 spx.h File Reference 98

Convert air wavelength to frequency (vector).

• int waveawav (SPX_ARGS)
Convert vacuum wavelength to air wavelength (vector).

• int awavwave (SPX_ARGS)
Convert air wavelength to vacuum wavelength (vector).

• int velobeta (SPX_ARGS)
Convert relativistic velocity to relativistic beta (vector).

• int betavelo (SPX_ARGS)
Convert relativistic beta to relativistic velocity (vector).

• int freqvelo (SPX_ARGS)
Convert frequency to relativistic velocity (vector).

• int velofreq (SPX_ARGS)
Convert relativistic velocity to frequency (vector).

• int freqvrad (SPX_ARGS)
Convert frequency to radio velocity (vector).

• int vradfreq (SPX_ARGS)
Convert radio velocity to frequency (vector).

• int wavevelo (SPX_ARGS)
Conversions between wavelength and velocity types (vector).

• int velowave (SPX_ARGS)
Convert relativistic velocity to vacuum wavelength (vector).

• int awavvelo (SPX_ARGS)
Convert air wavelength to relativistic velocity (vector).

• int veloawav (SPX_ARGS)
Convert relativistic velocity to air wavelength (vector).

• int wavevopt (SPX_ARGS)
Convert vacuum wavelength to optical velocity (vector).

• int voptwave (SPX_ARGS)
Convert optical velocity to vacuum wavelength (vector).

• int wavezopt (SPX_ARGS)
Convert vacuum wavelength to redshift (vector).

• int zoptwave (SPX_ARGS)
Convert redshift to vacuum wavelength (vector).

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.9 spx.h File Reference 99

Variables

• const char ∗ spx_errmsg []
Status return messages.

6.9.1 Detailed Description

specx() is a scalar routine that, given one spectral variable (e.g. frequency), computes all the others (e.g.
wavelength, velocity, etc.) plus the required derivatives of each with respect to the others. The results are
returned in the spxprm struct.

The remaining routines are all vector conversions from one spectral variable to another. The API of these
functions only differ in whether the rest frequency or wavelength need be supplied.

Non-linear:

• freqwave() frequency -> vacuum wavelength

• wavefreq() vacuum wavelength -> frequency

• freqawav() frequency -> air wavelength

• awavfreq() air wavelength -> frequency

• freqvelo() frequency -> relativistic velocity

• velofreq() relativistic velocity -> frequency

• waveawav() vacuum wavelength -> air wavelength

• awavwave() air wavelength -> vacuum wavelength

• wavevelo() vacuum wavelength -> relativistic velocity

• velowave() relativistic velocity -> vacuum wavelength

• awavvelo() air wavelength -> relativistic velocity

• veloawav() relativistic velocity -> air wavelength

Linear:

• freqafrq() frequency -> angular frequency

• afrqfreq() angular frequency -> frequency

• freqener() frequency -> energy

• enerfreq() energy -> frequency

• freqwavn() frequency -> wave number

• wavnfreq() wave number -> frequency

• freqvrad() frequency -> radio velocity

• vradfreq() radio velocity -> frequency

• wavevopt() vacuum wavelength -> optical velocity

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.9 spx.h File Reference 100

• voptwave() optical velocity -> vacuum wavelength

• wavezopt() vacuum wavelength -> redshift

• zoptwave() redshift -> vacuum wavelength

• velobeta() relativistic velocity -> beta (β = v/c)

• betavelo() beta (β = v/c) -> relativistic velocity

These are the workhorse routines, to be used for fast transformations. Conversions may be done "in place"
by calling the routine with the output vector set to the input.

Argument checking:

The input spectral values are only checked for values that would result in floating point exceptions. In
particular, negative frequencies and wavelengths are allowed, as are velocities greater than the speed of
light. The same is true for the spectral parameters - rest frequency and wavelength.

Accuracy:

No warranty is given for the accuracy of these routines (refer to the copyright notice); intending users
must satisfy for themselves their adequacy for the intended purpose. However, closure effectively to within
double precision rounding error was demonstrated by test routine tspec.c which accompanies this software.

6.9.2 Define Documentation

6.9.2.1 #define SPXLEN (sizeof(struct spxprm)/sizeof(int))

Size of the spxprm struct in int units, used by the Fortran wrappers.

6.9.2.2 #define SPX_ARGS

Value:

double param, int nspec, int instep, int outstep, \
const double inspec[], double outspec[], int stat[]

Preprocessor macro used for declaring spectral conversion function prototypes.

6.9.3 Function Documentation

6.9.3.1 int specx (const char ∗ type, double spec, double restfrq, double restwav, struct spxprm ∗
specs)

Given one spectral variable specx() computes all the others, plus the required derivatives of each with
respect to the others.

Parameters:

← type The type of spectral variable given by spec, FREQ, AFRQ, ENER, WAVN, VRAD, WAVE,
VOPT, ZOPT, AWAV, VELO, or BETA (case sensitive).

← spec The spectral variable given, in SI units.
← restfrq,restwav Rest frequency [Hz] or rest wavelength in vacuo [m], only one of which need be

given. The other should be set to zero. If both are zero, only a subset of the spectral variables can
be computed, the remainder are set to zero. Specifically, given one of FREQ, AFRQ, ENER,
WAVN, WAVE, or AWAV the others can be computed without knowledge of the rest frequency.
Likewise, VRAD, VOPT, ZOPT, VELO, and BETA.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.9 spx.h File Reference 101

↔ specs Data structure containing all spectral variables and their derivatives, in SI units.

Returns:

Status return value:

• 0: Success.

• 1: Null spxprm pointer passed.

• 2: Invalid spectral parameters.

• 3: Invalid spectral variable.

6.9.3.2 int freqafrq (SPX_ARGS)

freqafrq() converts frequency to angular frequency.

Parameters:

← param Ignored.

← nspec Vector length.

← instep,outstep Vector strides.

← inspec Input spectral variables, in SI units.

→ outspec Output spectral variables, in SI units.

→ stat Status return value for each vector element:

• 0: Success.
• 1: Invalid value of inspec.

Returns:

Status return value:

• 0: Success.

• 2: Invalid spectral parameters.

• 4: One or more of the inspec coordinates were invalid, as indicated by the stat vector.

6.9.3.3 int afrqfreq (SPX_ARGS)

afrqfreq() converts angular frequency to frequency.

See freqafrq() for a description of the API.

6.9.3.4 int freqener (SPX_ARGS)

freqener() converts frequency to photon energy.

See freqafrq() for a description of the API.

6.9.3.5 int enerfreq (SPX_ARGS)

enerfreq() converts photon energy to frequency.

See freqafrq() for a description of the API.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.9 spx.h File Reference 102

6.9.3.6 int freqwavn (SPX_ARGS)

freqwavn() converts frequency to wave number.

See freqafrq() for a description of the API.

6.9.3.7 int wavnfreq (SPX_ARGS)

wavnfreq() converts wave number to frequency.

See freqafrq() for a description of the API.

6.9.3.8 int freqwave (SPX_ARGS)

freqwave() converts frequency to vacuum wavelength.

See freqafrq() for a description of the API.

6.9.3.9 int wavefreq (SPX_ARGS)

wavefreq() converts vacuum wavelength to frequency.

See freqafrq() for a description of the API.

6.9.3.10 int freqawav (SPX_ARGS)

freqawav() converts frequency to air wavelength.

See freqafrq() for a description of the API.

6.9.3.11 int awavfreq (SPX_ARGS)

awavfreq() converts air wavelength to frequency.

See freqafrq() for a description of the API.

6.9.3.12 int waveawav (SPX_ARGS)

waveawav() converts vacuum wavelength to air wavelength.

See freqafrq() for a description of the API.

6.9.3.13 int awavwave (SPX_ARGS)

awavwave() converts air wavelength to vacuum wavelength.

See freqafrq() for a description of the API.

6.9.3.14 int velobeta (SPX_ARGS)

velobeta() converts relativistic velocity to relativistic beta.

See freqafrq() for a description of the API.

6.9.3.15 int betavelo (SPX_ARGS)

betavelo() converts relativistic beta to relativistic velocity.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.9 spx.h File Reference 103

See freqafrq() for a description of the API.

6.9.3.16 int freqvelo (SPX_ARGS)

freqvelo() converts frequency to relativistic velocity.

Parameters:

← param Rest frequency [Hz].

← nspec Vector length.

← instep,outstep Vector strides.

← inspec Input spectral variables, in SI units.

→ outspec Output spectral variables, in SI units.

→ stat Status return value for each vector element:

• 0: Success.
• 1: Invalid value of inspec.

Returns:

Status return value:

• 0: Success.

• 2: Invalid spectral parameters.

• 4: One or more of the inspec coordinates were invalid, as indicated by the stat vector.

6.9.3.17 int velofreq (SPX_ARGS)

velofreq() converts relativistic velocity to frequency.

See freqvelo() for a description of the API.

6.9.3.18 int freqvrad (SPX_ARGS)

freqvrad() converts frequency to radio velocity.

See freqvelo() for a description of the API.

6.9.3.19 int vradfreq (SPX_ARGS)

vradfreq() converts radio velocity to frequency.

See freqvelo() for a description of the API.

6.9.3.20 int wavevelo (SPX_ARGS)

wavevelo() converts vacuum wavelength to relativistic velocity.

Parameters:

← param Rest wavelength in vacuo [m].

← nspec Vector length.

← instep,outstep Vector strides.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.9 spx.h File Reference 104

← inspec Input spectral variables, in SI units.

→ outspec Output spectral variables, in SI units.

→ stat Status return value for each vector element:

• 0: Success.
• 1: Invalid value of inspec.

Returns:

Status return value:

• 0: Success.

• 2: Invalid spectral parameters.

• 4: One or more of the inspec coordinates were invalid, as indicated by the stat vector.

6.9.3.21 int velowave (SPX_ARGS)

velowave() converts relativistic velocity to vacuum wavelength.

See freqvelo() for a description of the API.

6.9.3.22 int awavvelo (SPX_ARGS)

awavvelo() converts air wavelength to relativistic velocity.

See freqvelo() for a description of the API.

6.9.3.23 int veloawav (SPX_ARGS)

veloawav() converts relativistic velocity to air wavelength.

See freqvelo() for a description of the API.

6.9.3.24 int wavevopt (SPX_ARGS)

wavevopt() converts vacuum wavelength to optical velocity.

See freqvelo() for a description of the API.

6.9.3.25 int voptwave (SPX_ARGS)

voptwave() converts optical velocity to vacuum wavelength.

See freqvelo() for a description of the API.

6.9.3.26 int wavezopt (SPX_ARGS)

wavevopt() converts vacuum wavelength to redshift.

See freqvelo() for a description of the API.

6.9.3.27 int zoptwave (SPX_ARGS)

zoptwave() converts redshift to vacuum wavelength.

See freqvelo() for a description of the API.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.10 tab.h File Reference 105

6.9.4 Variable Documentation

6.9.4.1 const char ∗ spx_errmsg[]

Error messages to match the status value returned from each function.

6.10 tab.h File Reference

Data Structures

• struct tabprm
Tabular transformation parameters.

Defines

• #define TABLEN (sizeof(struct tabprm)/sizeof(int))
Size of the tabprm struct in int units.

• #define tabini_errmsg tab_errmsg
Deprecated.

• #define tabcpy_errmsg tab_errmsg
Deprecated.

• #define tabfree_errmsg tab_errmsg
Deprecated.

• #define tabprt_errmsg tab_errmsg
Deprecated.

• #define tabset_errmsg tab_errmsg
Deprecated.

• #define tabx2s_errmsg tab_errmsg
Deprecated.

• #define tabs2x_errmsg tab_errmsg
Deprecated.

Functions

• int tabini (int alloc, int M, const int K[], struct tabprm ∗tab)
Default constructor for the tabprm struct.

• int tabmem (struct tabprm ∗tab)
Acquire tabular memory.

• int tabcpy (int alloc, const struct tabprm ∗tabsrc, struct tabprm ∗tabdst)

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.10 tab.h File Reference 106

Copy routine for the tabprm struct.

• int tabfree (struct tabprm ∗tab)
Destructor for the tabprm struct.

• int tabprt (const struct tabprm ∗tab)
Print routine for the tabprm struct.

• int tabset (struct tabprm ∗tab)
Setup routine for the tabprm struct.

• int tabx2s (struct tabprm ∗tab, int ncoord, int nelem, const double x[], double world[], int stat[])
Pixel-to-world transformation.

• int tabs2x (struct tabprm ∗tab, int ncoord, int nelem, const double world[], double x[], int stat[])
World-to-pixel transformation.

Variables

• const char ∗ tab_errmsg []
Status return messages.

6.10.1 Detailed Description

These routines implement the part of the FITS WCS standard that deals with tabular coordinates, i.e.
coordinates that are defined via a lookup table. They define methods to be used for computing tabular world
coordinates from intermediate world coordinates (a linear transformation of image pixel coordinates), and
vice versa. They are based on the tabprm struct which contains all information needed for the computations.
The struct contains some members that must be set by the user, and others that are maintained by these
routines, somewhat like a C++ class but with no encapsulation.

tabini(), tabmem(), tabcpy(), and tabfree() are provided to manage the tabprm struct, and another, tabprt(),
to print its contents.

A setup routine, tabset(), computes intermediate values in the tabprm struct from parameters in it that were
supplied by the user. The struct always needs to be set up by tabset() but it need not be called explicitly -
refer to the explanation of tabprm::flag.

tabx2s() and tabs2x() implement the WCS tabular coordinate transformations.

Accuracy:

No warranty is given for the accuracy of these routines (refer to the copyright notice); intending users
must satisfy for themselves their adequacy for the intended purpose. However, closure effectively to within
double precision rounding error was demonstrated by test routine ttab.c which accompanies this software.

6.10.2 Define Documentation

6.10.2.1 #define TABLEN (sizeof(struct tabprm)/sizeof(int))

Size of the tabprm struct in int units, used by the Fortran wrappers.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.10 tab.h File Reference 107

6.10.2.2 #define tabini_errmsg tab_errmsg

Deprecated

Added for backwards compatibility, use tab_errmsg directly now instead.

6.10.2.3 #define tabcpy_errmsg tab_errmsg

Deprecated

Added for backwards compatibility, use tab_errmsg directly now instead.

6.10.2.4 #define tabfree_errmsg tab_errmsg

Deprecated

Added for backwards compatibility, use tab_errmsg directly now instead.

6.10.2.5 #define tabprt_errmsg tab_errmsg

Deprecated

Added for backwards compatibility, use tab_errmsg directly now instead.

6.10.2.6 #define tabset_errmsg tab_errmsg

Deprecated

Added for backwards compatibility, use tab_errmsg directly now instead.

6.10.2.7 #define tabx2s_errmsg tab_errmsg

Deprecated

Added for backwards compatibility, use tab_errmsg directly now instead.

6.10.2.8 #define tabs2x_errmsg tab_errmsg

Deprecated

Added for backwards compatibility, use tab_errmsg directly now instead.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.10 tab.h File Reference 108

6.10.3 Function Documentation

6.10.3.1 int tabini (int alloc, int M, const int K[], struct tabprm ∗ tab)

tabini() allocates memory for arrays in a tabprm struct and sets all members of the struct to default values.

PLEASE NOTE: every tabprm struct should be initialized by tabini(), possibly repeatedly. On the first
invokation, and only the first invokation, the flag member of the tabprm struct must be set to -1 to initialize
memory management, regardless of whether tabini() will actually be used to allocate memory.

Parameters:

← alloc If true, allocate memory unconditionally for arrays in the tabprm struct.
If false, it is assumed that pointers to these arrays have been set by the user except if they are null
pointers in which case memory will be allocated for them regardless. (In other words, setting
alloc true saves having to initalize these pointers to zero.)

←M The number of tabular coordinate axes.

← K Vector of length M whose elements (K1,K2, ...KM) record the lengths of the axes of the co-
ordinate array and of each indexing vector. M and K[] are used to determine the length of the
various tabprm arrays and therefore the amount of memory to allocate for them. Their values are
copied into the tabprm struct.
It is permissible to set K (i.e. the address of the array) to zero which has the same effect as setting
each element of K[] to zero. In this case no memory will be allocated for the index vectors or
coordinate array in the tabprm struct. These together with the K vector must be set separately
before calling tabset().

↔ tab Tabular transformation parameters. Note that, in order to initialize memory management
tabprm::flag should be set to -1 when tab is initialized for the first time (memory leaks may
result if it had already been initialized).

Returns:

Status return value:

• 0: Success.

• 1: Null tabprm pointer passed.

• 2: Memory allocation failed.

• 3: Invalid tabular parameters.

6.10.3.2 int tabmem (struct tabprm ∗ tab)

tabmem() takes control of memory allocated by the user for arrays in the tabprm struct.

Parameters:

↔ tab Tabular transformation parameters.

Returns:

Status return value:

• 0: Success.

• 1: Null tabprm pointer passed.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.10 tab.h File Reference 109

6.10.3.3 int tabcpy (int alloc, const struct tabprm ∗ tabsrc, struct tabprm ∗ tabdst)

tabcpy() does a deep copy of one tabprm struct to another, using tabini() to allocate memory for its arrays
if required. Only the "information to be provided" part of the struct is copied; a call to tabset() is required
to set up the remainder.

Parameters:

← alloc If true, allocate memory unconditionally for arrays in the tabprm struct.
If false, it is assumed that pointers to these arrays have been set by the user except if they are null
pointers in which case memory will be allocated for them regardless. (In other words, setting
alloc true saves having to initalize these pointers to zero.)

← tabsrc Struct to copy from.

↔ tabdst Struct to copy to. tabprm::flag should be set to -1 if tabdst was not previously initialized
(memory leaks may result if it was previously initialized).

Returns:

Status return value:

• 0: Success.

• 1: Null tabprm pointer passed.

• 2: Memory allocation failed.

6.10.3.4 int tabfree (struct tabprm ∗ tab)

tabfree() frees memory allocated for the tabprm arrays by tabini(). tabini() records the memory it allocates
and tabfree() will only attempt to free this.

PLEASE NOTE: tabfree() must not be invoked on a tabprm struct that was not initialized by tabini().

Parameters:

→ tab Coordinate transformation parameters.

Returns:

Status return value:

• 0: Success.

• 1: Null tabprm pointer passed.

6.10.3.5 int tabprt (const struct tabprm ∗ tab)

tabprt() prints the contents of a tabprm struct.

Parameters:

← tab Tabular transformation parameters.

Returns:

Status return value:

• 0: Success.

• 1: Null tabprm pointer passed.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.10 tab.h File Reference 110

6.10.3.6 int tabset (struct tabprm ∗ tab)

tabset() allocates memory for work arrays in the tabprm struct and sets up the struct according to informa-
tion supplied within it.

Note that this routine need not be called directly; it will be invoked by tabx2s() and tabs2x() if tabprm::flag
is anything other than a predefined magic value.

Parameters:

↔ tab Tabular transformation parameters.

Returns:

Status return value:

• 0: Success.

• 1: Null tabprm pointer passed.

• 3: Invalid tabular parameters.

6.10.3.7 int tabx2s (struct tabprm ∗ tab, int ncoord, int nelem, const double x[], double world[],
int stat[])

tabx2s() transforms intermediate world coordinates to world coordinates using coordinate lookup.

Parameters:

↔ tab Tabular transformation parameters.

← ncoord,nelem The number of coordinates, each of vector length nelem.

← x Array of intermediate world coordinates, SI units.

→ world Array of world coordinates, in SI units.

→ stat Status return value status for each coordinate:

• 0: Success.
• 1: Invalid intermediate world coordinate.

Returns:

Status return value:

• 0: Success.

• 1: Null tabprm pointer passed.

• 3: Invalid tabular parameters.

• 4: One or more of the x coordinates were invalid, as indicated by the stat vector.

6.10.3.8 int tabs2x (struct tabprm ∗ tab, int ncoord, int nelem, const double world[], double x[],
int stat[])

tabs2x() transforms world coordinates to intermediate world coordinates.

Parameters:

↔ tab Tabular transformation parameters.

← ncoord,nelem The number of coordinates, each of vector length nelem.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.11 wcs.h File Reference 111

← world Array of world coordinates, in SI units.

→ x Array of intermediate world coordinates, SI units.

→ stat Status return value status for each vector element:

• 0: Success.
• 1: Invalid world coordinate.

Returns:

Status return value:

• 0: Success.

• 1: Null tabprm pointer passed.

• 3: Invalid tabular parameters.

• 5: One or more of the world coordinates were invalid, as indicated by the stat vector.

6.10.4 Variable Documentation

6.10.4.1 const char ∗ tab_errmsg[]

Error messages to match the status value returned from each function.

6.11 wcs.h File Reference

#include "lin.h"

#include "cel.h"

#include "spc.h"

#include "tab.h"

Data Structures

• struct pvcard
Store for PVi_ma keyrecords.

• struct pscard
Store for PSi_ma keyrecords.

• struct wtbarr
Extraction of coordinate lookup tables from BINTABLE.

• struct wcsprm
Coordinate transformation parameters.

Defines

• #define WCSSUB_LONGITUDE 0x1001
Mask for extraction of longitude axis by wcssub().

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.11 wcs.h File Reference 112

• #define WCSSUB_LATITUDE 0x1002
Mask for extraction of latitude axis by wcssub().

• #define WCSSUB_CUBEFACE 0x1004
Mask for extraction of CUBEFACE axis by wcssub().

• #define WCSSUB_CELESTIAL 0x1007
Mask for extraction of celestial axes by wcssub().

• #define WCSSUB_SPECTRAL 0x1008
Mask for extraction of spectral axis by wcssub().

• #define WCSSUB_STOKES 0x1010
Mask for extraction of STOKES axis by wcssub().

• #define WCSLEN (sizeof(struct wcsprm)/sizeof(int))
Size of the wcsprm struct in int units.

• #define wcscopy(alloc, wcssrc, wcsdst) wcssub(alloc, wcssrc, 0, 0, wcsdst)
Copy routine for the wcsprm struct.

• #define wcsini_errmsg wcs_errmsg
Deprecated.

• #define wcssub_errmsg wcs_errmsg
Deprecated.

• #define wcscopy_errmsg wcs_errmsg
Deprecated.

• #define wcsfree_errmsg wcs_errmsg
Deprecated.

• #define wcsprt_errmsg wcs_errmsg
Deprecated.

• #define wcsset_errmsg wcs_errmsg
Deprecated.

• #define wcsp2s_errmsg wcs_errmsg
Deprecated.

• #define wcss2p_errmsg wcs_errmsg
Deprecated.

• #define wcsmix_errmsg wcs_errmsg
Deprecated.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.11 wcs.h File Reference 113

Functions

• int wcsnpv (int n)
Memory allocation for PVi_ma.

• int wcsnps (int n)
Memory allocation for PSi_ma.

• int wcsini (int alloc, int naxis, struct wcsprm ∗wcs)
Default constructor for the wcsprm struct.

• int wcssub (int alloc, const struct wcsprm ∗wcssrc, int ∗nsub, int axes[], struct wcsprm ∗wcsdst)
Subimage extraction routine for the wcsprm struct.

• int wcsfree (struct wcsprm ∗wcs)
Destructor for the wcsprm struct.

• int wcsprt (const struct wcsprm ∗wcs)
Print routine for the wcsprm struct.

• int wcsset (struct wcsprm ∗wcs)
Setup routine for the wcsprm struct.

• int wcsp2s (struct wcsprm ∗wcs, int ncoord, int nelem, const double pixcrd[], double imgcrd[],
double phi[], double theta[], double world[], int stat[])

Pixel-to-world transformation.

• int wcss2p (struct wcsprm ∗wcs, int ncoord, int nelem, const double world[], double phi[], double
theta[], double imgcrd[], double pixcrd[], int stat[])

World-to-pixel transformation.

• int wcsmix (struct wcsprm ∗wcs, int mixpix, int mixcel, const double vspan[], double vstep, int viter,
double world[], double phi[], double theta[], double imgcrd[], double pixcrd[])

Hybrid coordinate transformation.

• int wcssptr (struct wcsprm ∗wcs, int ∗i, char ctype[9])
Spectral axis translation.

Variables

• const char ∗ wcs_errmsg []
Status return messages.

6.11.1 Detailed Description

These routines implement the FITS World Coordinate System (WCS) standard which defines methods to
be used for computing world coordinates from image pixel coordinates, and vice versa. They are based on
the wcsprm struct which contains all information needed for the computations. The struct contains some

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.11 wcs.h File Reference 114

members that must be set by the user, and others that are maintained by these routines, somewhat like a
C++ class but with no encapsulation.

Three routines, wcsini(), wcssub(), and wcsfree() are provided to manage the wcsprm struct and another,
wcsprt(), to prints its contents. Refer to the description of the wcsprm struct for an explanation of the
anticipated usage of these routines. wcscopy(), which does a deep copy of one wcsprm struct to another, is
defined as a preprocessor macro function that invokes wcssub().

A setup routine, wcsset(), computes intermediate values in the wcsprm struct from parameters in it that
were supplied by the user. The struct always needs to be set up by wcsset() but this need not be called
explicitly - refer to the explanation of wcsprm::flag.

wcsp2s() and wcss2p() implement the WCS world coordinate transformations. In fact, they are high level
driver routines for the WCS linear, logarithmic, celestial, spectral and tabular transformation routines de-
scribed in lin.h, log.h, cel.h, spc.h and tab.h.

Given either the celestial longitude or latitude plus an element of the pixel coordinate a hybrid routine,
wcsmix(), iteratively solves for the unknown elements.

wcssptr() translates the spectral axis in a wcsprm struct. For example, a ’FREQ’ axis may be translated
into ’ZOPT-F2W’ and vice versa.

Quadcube projections:

The quadcube projections (TSC, CSC, QSC) may be represented in FITS in either of two ways:

a: The six faces may be laid out in one plane and numbered as follows:

0

4 3 2 1 4 3 2

5

Faces 2, 3 and 4 may appear on one side or the other (or both). The world-to-pixel routines map faces 2, 3
and 4 to the left but the pixel-to-world routines accept them on either side.

b: The "COBE" convention in which the six faces are stored in a three-dimensional structure using a
CUBEFACE axis indexed from 0 to 5 as above.

These routines support both methods; wcsset() determines which is being used by the presence or absence
of a CUBEFACE axis in ctype[]. wcsp2s() and wcss2p() translate the CUBEFACE axis representation to
the single plane representation understood by the lower-level WCSLIB projection routines.

6.11.2 Define Documentation

6.11.2.1 #define WCSSUB_LONGITUDE 0x1001

Mask to use for extracting the longitude axis when sub-imaging, refer to the axes argument of wcssub().

6.11.2.2 #define WCSSUB_LATITUDE 0x1002

Mask to use for extracting the latitude axis when sub-imaging, refer to the axes argument of wcssub().

6.11.2.3 #define WCSSUB_CUBEFACE 0x1004

Mask to use for extracting the CUBEFACE axis when sub-imaging, refer to the axes argument of wcssub().

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.11 wcs.h File Reference 115

6.11.2.4 #define WCSSUB_CELESTIAL 0x1007

Mask to use for extracting the celestial axes (longitude, latitude and cubeface) when sub-imaging, refer to
the axes argument of wcssub().

6.11.2.5 #define WCSSUB_SPECTRAL 0x1008

Mask to use for extracting the spectral axis when sub-imaging, refer to the axes argument of wcssub().

6.11.2.6 #define WCSSUB_STOKES 0x1010

Mask to use for extracting the STOKES axis when sub-imaging, refer to the axes argument of wcssub().

6.11.2.7 #define WCSLEN (sizeof(struct wcsprm)/sizeof(int))

Size of the wcsprm struct in int units, used by the Fortran wrappers.

6.11.2.8 #define wcscopy(alloc, wcssrc, wcsdst) wcssub(alloc, wcssrc, 0, 0, wcsdst)

wcscopy() does a deep copy of one wcsprm struct to another. As of WCSLIB 3.6, it is implemented as a
preprocessor macro that invokes wcssub() with the nsub and axes pointers both set to zero.

6.11.2.9 #define wcsini_errmsg wcs_errmsg

Deprecated

Added for backwards compatibility, use wcs_errmsg directly now instead.

6.11.2.10 #define wcssub_errmsg wcs_errmsg

Deprecated

Added for backwards compatibility, use wcs_errmsg directly now instead.

6.11.2.11 #define wcscopy_errmsg wcs_errmsg

Deprecated

Added for backwards compatibility, use wcs_errmsg directly now instead.

6.11.2.12 #define wcsfree_errmsg wcs_errmsg

Deprecated

Added for backwards compatibility, use wcs_errmsg directly now instead.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.11 wcs.h File Reference 116

6.11.2.13 #define wcsprt_errmsg wcs_errmsg

Deprecated

Added for backwards compatibility, use wcs_errmsg directly now instead.

6.11.2.14 #define wcsset_errmsg wcs_errmsg

Deprecated

Added for backwards compatibility, use wcs_errmsg directly now instead.

6.11.2.15 #define wcsp2s_errmsg wcs_errmsg

Deprecated

Added for backwards compatibility, use wcs_errmsg directly now instead.

6.11.2.16 #define wcss2p_errmsg wcs_errmsg

Deprecated

Added for backwards compatibility, use wcs_errmsg directly now instead.

6.11.2.17 #define wcsmix_errmsg wcs_errmsg

Deprecated

Added for backwards compatibility, use wcs_errmsg directly now instead.

6.11.3 Function Documentation

6.11.3.1 int wcsnpv (int n)

wcsnpv() changes the value of NPVMAX (default 64). This global variable controls the number of PVi_-
ma keywords that wcsini() should allocate space for.

PLEASE NOTE: This function is not thread-safe.

Parameters:

← n Value of NPVMAX; ignored if < 0.

Returns:

Current value of NPVMAX.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.11 wcs.h File Reference 117

6.11.3.2 int wcsnps (int n)

wcsnps() changes the values of NPSMAX (default 8). This global variable controls the number of PSi_ma
keywords that wcsini() should allocate space for.

PLEASE NOTE: This function is not thread-safe.

Parameters:

← n Value of NPSMAX; ignored if < 0.

Returns:

Current value of NPSMAX.

6.11.3.3 int wcsini (int alloc, int naxis, struct wcsprm ∗ wcs)

wcsini() optionally allocates memory for arrays in a wcsprm struct and sets all members of the struct
to default values. Memory is allocated for up to NPVMAX PVi_ma keywords or NPSMAX PSi_ma
keywords per WCS representation. These may be changed via wcsnpv() and wcsnps() before wcsini() is
called.

PLEASE NOTE: every wcsprm struct should be initialized by wcsini(), possibly repeatedly. On the first
invokation, and only the first invokation, wcsprm::flag must be set to -1 to initialize memory management,
regardless of whether wcsini() will actually be used to allocate memory.

Parameters:

← alloc If true, allocate memory unconditionally for the crpix, etc. arrays.
If false, it is assumed that pointers to these arrays have been set by the user except if they are null
pointers in which case memory will be allocated for them regardless. (In other words, setting
alloc true saves having to initalize these pointers to zero.)

← naxis The number of world coordinate axes. This is used to determine the length of the various
wcsprm vectors and matrices and therefore the amount of memory to allocate for them.

↔ wcs Coordinate transformation parameters.
Note that, in order to initialize memory management, wcsprm::flag should be set to -1 when wcs
is initialized for the first time (memory leaks may result if it had already been initialized).

Returns:

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

6.11.3.4 int wcssub (int alloc, const struct wcsprm ∗ wcssrc, int ∗ nsub, int axes[], struct wcsprm
∗ wcsdst)

wcssub() extracts the coordinate description for a subimage from a wcsprm struct. It does a deep copy,
using wcsini() to allocate memory for its arrays if required. Only the "information to be provided" part of
the struct is extracted; a call to wcsset() is required to set up the remainder.

The world coordinate system of the subimage must be separable in the sense that the world coordinates at
any point in the subimage must depend only on the pixel coordinates of the axes extracted. In practice, this

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.11 wcs.h File Reference 118

means that the PCi_ja matrix of the original image must not contain non-zero off-diagonal terms that
associate any of the subimage axes with any of the non-subimage axes.

Note that while the required elements of the tabprm array are extracted, the wtbarr array is not. (Thus it is
not appropriate to call wcssub() after wcstab() but before filling the tabprm structs - refer to wcshdr.h.)

Parameters:

← alloc If true, allocate memory for the crpix, etc. arrays in the destination. Otherwise, it is assumed
that pointers to these arrays have been set by the user except if they are null pointers in which
case memory will be allocated for them regardless.

← wcssrc Struct to extract from.

↔ nsub
↔ axes Vector of length ∗nsub containing the image axis numbers (1-relative) to extract. Order is

significant; axes[0] is the axis number of the input image that corresponds to the first axis in the
subimage, etc.
nsub (the pointer) may be set to zero, and so also may nsub, to indicate the number of axes in the
input image; the number of axes will be returned if nsub != 0. axes itself (the pointer) may be set
to zero to indicate the first ∗nsub axes in their original order.
Set both nsub and axes to zero to do a deep copy of one wcsprm struct to another.
Subimage extraction by coordinate axis type may be done by setting the elements of axes[] to the
following special preprocessor macro values:

• WCSSUB_LONGITUDE: Celestial longitude.
• WCSSUB_LATITUDE: Celestial latitude.
• WCSSUB_CUBEFACE: Quadcube CUBEFACE axis.
• WCSSUB_SPECTRAL: Spectral axis.
• WCSSUB_STOKES: Stokes axis.

Refer to the notes (below) for further usage examples.
On return, ∗nsub will contain the number of axes in the subimage; this may be zero if there were
no axes of the required type(s) (in which case no memory will be allocated). axes[] will contain
the axis numbers that were extracted. The vector length must be sufficient to contain all axis
numbers. No checks are performed to verify that the coordinate axes are consistent, this is done
by wcsset().

↔ wcsdst Struct describing the subimage. wcsprm::flag should be set to -1 if wcsdst was not previ-
ously initialized (memory leaks may result if it was previously initialized).

Returns:

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

12: Invalid subimage specification. 13: Non-separable subimage coordinate system.

Notes:

Combinations of subimage axes of particular types may be extracted in the same order as they occur in the
input image by combining preprocessor codes, for example

*nsub = 1;
axes[0] = WCSSUB_LONGITUDE | WCSSUB_LATITUDE | WCSSUB_SPECTRAL;

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.11 wcs.h File Reference 119

would extract the longitude, latitude, and spectral axes in the same order as the input image. If one of each
were present, ∗nsub = 3 would be returned.

For convenience, WCSSUB_CELESTIAL is defined as the combination WCSSUB_LONGITUDE |
WCSSUB_LATITUDE |WCSSUB_CUBEFACE.

The codes may also be negated to extract all but the types specified, for example

*nsub = 4;
axes[0] = WCSSUB_LONGITUDE;
axes[1] = WCSSUB_LATITUDE;
axes[2] = WCSSUB_CUBEFACE;
axes[3] = -(WCSSUB_SPECTRAL | WCSSUB_STOKES);

The last of these specifies all axis types other than spectral or Stokes. Extraction is done in the order
specified by axes[] a longitude axis (if present) would be extracted first (via axes[0]) and not subsequently
(via axes[3]). Likewise for the latitude and cubeface axes in this example.

From the foregoing, it is apparent that the value of ∗nsub returned may be less than or greater than that
given. However, it will never exceed the number of axes in the input image.

6.11.3.5 int wcsfree (struct wcsprm ∗ wcs)

wcsfree() frees memory allocated for the wcsprm arrays by wcsini() and/or wcsset(). wcsini() records the
memory it allocates and wcsfree() will only attempt to free this.

PLEASE NOTE: wcsfree() must not be invoked on a wcsprm struct that was not initialized by wcsini().

Parameters:

→ wcs Coordinate transformation parameters.

Returns:

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

6.11.3.6 int wcsprt (const struct wcsprm ∗ wcs)

wcsprt() prints the contents of a wcsprm struct.

Parameters:

← wcs Coordinate transformation parameters.

Returns:

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.11 wcs.h File Reference 120

6.11.3.7 int wcsset (struct wcsprm ∗ wcs)

wcsset() sets up a wcsprm struct according to information supplied within it (refer to the description of the
wcsprm struct).

wcsset() recognizes the NCP projection and converts it to the equivalent SIN projection and likewise
translates GLS into SFL. It also translates the AIPS spectral types (’FREQ-LSR’, ’FELO-HEL’, etc.),
possibly changing the input header keywords wcsprm::ctype and/or wcsprm::specsys if necessary.

Note that this routine need not be called directly; it will be invoked by wcsp2s() and wcss2p() if the
wcsprm::flag is anything other than a predefined magic value.

Parameters:

↔ wcs Coordinate transformation parameters.

Returns:

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

• 3: Linear transformation matrix is singular.

• 4: Inconsistent or unrecognized coordinate axis types.

• 5: Invalid parameter value.

• 6: Invalid coordinate transformation parameters.

• 7: Ill-conditioned coordinate transformation parameters.

6.11.3.8 int wcsp2s (struct wcsprm ∗ wcs, int ncoord, int nelem, const double pixcrd[], double
imgcrd[], double phi[], double theta[], double world[], int stat[])

wcsp2s() transforms pixel coordinates to world coordinates.

Parameters:

↔ wcs Coordinate transformation parameters.

← ncoord,nelem The number of coordinates, each of vector length nelem but containing wcs.naxis
coordinate elements. Thus nelem must equal or exceed the value of the NAXIS keyword unless
ncoord == 1, in which case nelem is not used.

← pixcrd Array of pixel coordinates.

→ imgcrd Array of intermediate world coordinates. For celestial axes, imgcrd[][wcs.lng] and
imgcrd[][wcs.lat] are the projected x-, and y-coordinates in pseudo "degrees". For spectral axes,
imgcrd[][wcs.spec] is the intermediate spectral coordinate, in SI units.

→ phi,theta Longitude and latitude in the native coordinate system of the projection [deg].

→ world Array of world coordinates. For celestial axes, world[][wcs.lng] and world[][wcs.lat] are the
celestial longitude and latitude [deg]. For spectral axes, imgcrd[][wcs.spec] is the intermediate
spectral coordinate, in SI units.

→ stat Status return value for each coordinate:

• 0: Success.
• 1+: A bit mask indicating invalid pixel coordinate element(s).

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.11 wcs.h File Reference 121

Returns:

Status return value:

• 0: Success.
• 1: Null wcsprm pointer passed.
• 2: Memory allocation failed.
• 3: Linear transformation matrix is singular.
• 4: Inconsistent or unrecognized coordinate axis types.
• 5: Invalid parameter value.
• 6: Invalid coordinate transformation parameters.
• 7: Ill-conditioned coordinate transformation parameters.
• 8: One or more of the pixel coordinates were invalid, as indicated by the stat vector.

6.11.3.9 int wcss2p (struct wcsprm ∗ wcs, int ncoord, int nelem, const double world[], double
phi[], double theta[], double imgcrd[], double pixcrd[], int stat[])

wcss2p() transforms world coordinates to pixel coordinates.

Parameters:

↔ wcs Coordinate transformation parameters.
← ncoord,nelem The number of coordinates, each of vector length nelem but containing wcs.naxis

coordinate elements. Thus nelem must equal or exceed the value of the NAXIS keyword unless
ncoord == 1, in which case nelem is not used.

← world Array of world coordinates. For celestial axes, world[][wcs.lng] and world[][wcs.lat] are
the celestial longitude and latitude [deg]. For spectral axes, world[][wcs.spec] is the spectral
coordinate, in SI units.

→ phi,theta Longitude and latitude in the native coordinate system of the projection [deg].
→ imgcrd Array of intermediate world coordinates. For celestial axes, imgcrd[][wcs.lng] and

imgcrd[][wcs.lat] are the projected x-, and y-coordinates in pseudo "degrees". For quadcube
projections with a CUBEFACE axis the face number is also returned in imgcrd[][wcs.cubeface].
For spectral axes, imgcrd[][wcs.spec] is the intermediate spectral coordinate, in SI units.

→ pixcrd Array of pixel coordinates.
→ stat Status return value for each coordinate:

• 0: Success.
• 1+: A bit mask indicating invalid world coordinate element(s).

Returns:

Status return value:

• 0: Success.
• 1: Null wcsprm pointer passed.
• 2: Memory allocation failed.
• 3: Linear transformation matrix is singular.
• 4: Inconsistent or unrecognized coordinate axis types.
• 5: Invalid parameter value.
• 6: Invalid coordinate transformation parameters.
• 7: Ill-conditioned coordinate transformation parameters.
• 9: One or more of the world coordinates were invalid, as indicated by the stat vector.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.11 wcs.h File Reference 122

6.11.3.10 int wcsmix (struct wcsprm ∗ wcs, int mixpix, int mixcel, const double vspan[], double
vstep, int viter, double world[], double phi[], double theta[], double imgcrd[], double pixcrd[])

wcsmix(), given either the celestial longitude or latitude plus an element of the pixel coordinate, solves for
the remaining elements by iterating on the unknown celestial coordinate element using wcss2p(). Refer
also to the notes below.

Parameters:

↔ wcs Indices for the celestial coordinates obtained by parsing the wcsprm::ctype[].

← mixpix Which element of the pixel coordinate is given.

← mixcel Which element of the celestial coordinate is given:

• 1: Celestial longitude is given in world[wcs.lng], latitude returned in world[wcs.lat].
• 2: Celestial latitude is given in world[wcs.lat], longitude returned in world[wcs.lng].

← vspan Solution interval for the celestial coordinate [deg]. The ordering of the two limits is ir-
relevant. Longitude ranges may be specified with any convenient normalization, for example
[-120,+120] is the same as [240,480], except that the solution will be returned with the same
normalization, i.e. lie within the interval specified.

← vstep Step size for solution search [deg]. If zero, a sensible, although perhaps non-optimal default
will be used.

← viter If a solution is not found then the step size will be halved and the search recommenced. viter
controls how many times the step size is halved. The allowed range is 5 - 10.

↔ world World coordinate elements. world[wcs.lng] and world[wcs.lat] are the celestial longitude
and latitude [deg]. Which is given and which returned depends on the value of mixcel. All other
elements are given.

→ phi,theta Longitude and latitude in the native coordinate system of the projection [deg].

→ imgcrd Image coordinate elements. imgcrd[wcs.lng] and imgcrd[wcs.lat] are the projected x-, and
y-coordinates in pseudo "degrees".

↔ pixcrd Pixel coordinate. The element indicated by mixpix is given and the remaining elements are
returned.

Returns:

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

• 3: Linear transformation matrix is singular.

• 4: Inconsistent or unrecognized coordinate axis types.

• 5: Invalid parameter value.

• 6: Invalid coordinate transformation parameters.

• 7: Ill-conditioned coordinate transformation parameters.

10: Invalid world coordinate. 11: No solution found in the specified interval.

Notes:

Initially the specified solution interval is checked to see if it’s a "crossing" interval. If it isn’t, a search is
made for a crossing solution by iterating on the unknown celestial coordinate starting at the upper limit of
the solution interval and decrementing by the specified step size. A crossing is indicated if the trial value
of the pixel coordinate steps through the value specified. If a crossing interval is found then the solution is

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.12 wcsfix.h File Reference 123

determined by a modified form of "regula falsi" division of the crossing interval. If no crossing interval was
found within the specified solution interval then a search is made for a "non-crossing" solution as may arise
from a point of tangency. The process is complicated by having to make allowance for the discontinuities
that occur in all map projections.

Once one solution has been determined others may be found by subsequent invokations of wcsmix() with
suitably restricted solution intervals.

Note the circumstance that arises when the solution point lies at a native pole of a projection in which the
pole is represented as a finite curve, for example the zenithals and conics. In such cases two or more valid
solutions may exist but wcsmix() only ever returns one.

Because of its generality wcsmix() is very compute-intensive. For compute-limited applications more
efficient special-case solvers could be written for simple projections, for example non-oblique cylindrical
projections.

6.11.3.11 int wcssptr (struct wcsprm ∗ wcs, int ∗ i, char ctype[9])

wcssptr() translates the spectral axis in a wcsprm struct. For example, a ’FREQ’ axis may be translated
into ’ZOPT-F2W’ and vice versa.

Parameters:

↔ wcs Coordinate transformation parameters.
↔ i Index of the spectral axis (0-relative). If given < 0 it will be set to the first spectral axis identified

from the ctype[] keyvalues in the wcsprm struct.
↔ ctype Desired spectral CTYPEia. Wildcarding may be used as for the ctypeS2 argument to spc-

trn() as described in the prologue of spc.h, i.e. if the final three characters are specified as "???",
or if just the eighth character is specified as ’?’, the correct algorithm code will be substituted
and returned.

Returns:

Status return value:

• 0: Success.
• 1: Null wcsprm pointer passed.
• 2: Memory allocation failed.
• 3: Linear transformation matrix is singular.
• 4: Inconsistent or unrecognized coordinate axis types.
• 5: Invalid parameter value.
• 6: Invalid coordinate transformation parameters.
• 7: Ill-conditioned coordinate transformation parameters.

12: Invalid subimage specification (no spectral axis).

6.11.4 Variable Documentation

6.11.4.1 const char ∗ wcs_errmsg[]

Error messages to match the status value returned from each function.

6.12 wcsfix.h File Reference

#include "wcs.h"

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.12 wcsfix.h File Reference 124

Defines

• #define CDFIX 0
Index of cdfix() status value in vector returned by wcsfix().

• #define DATFIX 1
Index of datfix() status value in vector returned by wcsfix().

• #define UNITFIX 2
Index of unitfix() status value in vector returned by wcsfix().

• #define CELFIX 3
Index of celfix() status value in vector returned by wcsfix().

• #define SPCFIX 4
Index of spcfix() status value in vector returned by wcsfix().

• #define CYLFIX 5
Index of cylfix() status value in vector returned by wcsfix().

• #define NWCSFIX 6
Number of elements in the status vector returned by wcsfix().

• #define cylfix_errmsg wcsfix_errmsg
Deprecated.

Functions

• int wcsfix (int ctrl, const int naxis[], struct wcsprm ∗wcs, int stat[])
Translate a non-standard WCS struct.

• int cdfix (struct wcsprm ∗wcs)
Fix erroneously omitted CDi_ja keywords.

• int datfix (struct wcsprm ∗wcs)
Translate DATE-OBS and derive MJD-OBS or vice versa.

• int unitfix (int ctrl, struct wcsprm ∗wcs)
Correct aberrant CUNITia keyvalues.

• int celfix (struct wcsprm ∗wcs)
Translate AIPS-convention celestial projection types.

• int spcfix (struct wcsprm ∗wcs)
Translate AIPS-convention spectral types.

• int cylfix (const int naxis[], struct wcsprm ∗wcs)
Fix malformed cylindrical projections.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.12 wcsfix.h File Reference 125

Variables

• const char ∗ wcsfix_errmsg []
Status return messages.

6.12.1 Detailed Description

Routines in this suite identify and translate various forms of non-standard construct that are known to
occur in FITS WCS headers. These range from the translation of non-standard values for standard WCS
keywords, to the repair of malformed coordinate representations.

Non-standard keyvalues:

AIPS-convention celestial projection types, NCP and GLS, and spectral types, ’FREQ-LSR’, ’FELO-
HEL’, etc., set in CTYPEia are translated on-the-fly by wcsset() but without modifying the relevant
ctype[], pv[] or specsys members of the wcsprm struct. That is, only the information extracted from ctype[]
is translated when wcsset() fills in wcsprm::cel (celprm struct) or wcsprm::spc (spcprm struct).

On the other hand, these routines do change the values of wcsprm::ctype[], wcsprm::pv[], wcsprm::specsys
and other wcsprm struct members as appropriate to produce the same result as if the FITS header itself had
been translated.

Auxiliary WCS header information not used directly by WCSLIB may also be translated. For example,
the older DATE-OBS date format (wcsprm::dateobs) is recast to year-2000 standard form, and MJD-OBS
(wcsprm::mjdobs) will be deduced from it if not already set.

Certain combinations of keyvalues that result in malformed coordinate systems, as described in Sect. 7.3.4
of Paper I, may also be repaired. These are handled by cylfix().

Non-standard keywords:

The AIPS-convention CROTAn keywords are recognized as quasi-standard and as such are accomodated
by the wcsprm::crota[] and translated to wcsprm::pc[][] by wcsset(). These are not dealt with here, nor are
any other non-standard keywords since these routines work only on the contents of a wcsprm struct and
do not deal with FITS headers per se. In particular, they do not identify or translate CD00i00j, PC00i00j,
PROJPn, EPOCH, VELREF or VSOURCEa keywords; this may be done by the FITS WCS header
parser supplied with WCSLIB, refer to wcshdr.h.

wcsfix() applies all of the corrections handled by the following specific functions which may also be in-
voked separately:

• cdfix(): Sets the diagonal element of the CDi_ja matrix to 1.0 if all CDi_ja keywords associated
with a particular axis are omitted.

• datfix(): recast an older DATE-OBS date format in dateobs to year-2000 standard form and derive
mjdobs from it if not already set. Alternatively, if mjdobs is set and dateobs isn’t, then derive dateobs
from it.

• unitfix(): translate some commonly used but non-standard unit strings in the CUNITia keyvalues,
e.g. ’DEG’ -> ’deg’.

• celfix(): translate AIPS-convention celestial projection types, NCP and GLS, in ctype[] as set from
CTYPEia.

• spcfix(): translate AIPS-convention spectral types, ’FREQ-LSR’, ’FELO-HEL’, etc., in ctype[] as
set from CTYPEia.

• cylfix(): fixes WCS keyvalues for malformed cylindrical projections that suffer from the problem
described in Sect. 7.3.4 of Paper I.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.12 wcsfix.h File Reference 126

6.12.2 Define Documentation

6.12.2.1 #define CDFIX 0

Index of the status value returned by cdfix() in the status vector returned by wcsfix().

6.12.2.2 #define DATFIX 1

Index of the status value returned by datfix() in the status vector returned by wcsfix().

6.12.2.3 #define UNITFIX 2

Index of the status value returned by unitfix() in the status vector returned by wcsfix().

6.12.2.4 #define CELFIX 3

Index of the status value returned by celfix() in the status vector returned by wcsfix().

6.12.2.5 #define SPCFIX 4

Index of the status value returned by spcfix() in the status vector returned by wcsfix().

6.12.2.6 #define CYLFIX 5

Index of the status value returned by cylfix() in the status vector returned by wcsfix().

6.12.2.7 #define NWCSFIX 6

Number of elements in the status vector returned by wcsfix().

6.12.2.8 #define cylfix_errmsg wcsfix_errmsg

Deprecated

Added for backwards compatibility, use wcsfix_errmsg directly now instead.

6.12.3 Function Documentation

6.12.3.1 int wcsfix (int ctrl, const int naxis[], struct wcsprm ∗ wcs, int stat[])

wcsfix() applies all of the corrections handled separately by datfix(), unitfix(), celfix(), spcfix() and cylfix().

Parameters:

← ctrl Do potentially unsafe translations of non-standard unit strings as described in the usage notes
to wcsutrn().

← naxis Image axis lengths. If this array pointer is set to zero then cylfix() will not be invoked.

↔ wcs Coordinate transformation parameters.

→ stat Status returns from each of the functions. Use the preprocessor macros NWCSFIX to dimen-
sion this vector and CDFIX, DATFIX, UNITFIX, CELFIX, SPCFIX and CYLFIX to access its
elements. A status value of -2 is set for functions that were not invoked.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.12 wcsfix.h File Reference 127

Returns:

Status return value:

• 0: Success.

• 1: One or more of the translation functions returned an error.

6.12.3.2 int cdfix (struct wcsprm ∗ wcs)

cdfix() sets the diagonal element of the CDi_ja matrix to unity if all CDi_ja keywords associated with
a given axis were omitted. According to Paper I, if any CDi_ja keywords at all are given in a FITS header
then those not given default to zero. This results in a singular matrix with an intersecting row and column
of zeros.

Parameters:

↔ wcs Coordinate transformation parameters.

Returns:

Status return value: -1: No change required (not an error).

• 0: Success.

• 1: Null wcsprm pointer passed.

6.12.3.3 int datfix (struct wcsprm ∗ wcs)

datfix() translates the old DATE-OBS date format set in wcsprm::dateobs to year-2000 standard form
(yyyy-mm-ddThh:mm:ss) and derives MJD-OBS from it if not already set. Alternatively, if wc-
sprm::mjdobs is set and wcsprm::dateobs isn’t, then datfix() derives wcsprm::dateobs from it. If both
are set but disagree by more than half a day then status 5 is returned.

Parameters:

↔ wcs Coordinate transformation parameters. wcsprm::dateobs and/or wcsprm::mjdobs may be
changed.

Returns:

Status return value: -1: No change required (not an error).

• 0: Success.

• 1: Null wcsprm pointer passed.

• 5: Invalid parameter value.

Notes:

The MJD algorithms used by datfix() are from D.A. Hatcher, 1984, QJRAS, 25, 53-55, as modified by P.T.
Wallace for use in SLALIB subroutines CLDJ and DJCL.

6.12.3.4 int unitfix (int ctrl, struct wcsprm ∗ wcs)

unitfix() applies wcsutrn() to translate non-standard CUNITia keyvalues, e.g. ’DEG’ -> ’deg’, also
stripping off unnecessary whitespace.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.12 wcsfix.h File Reference 128

Parameters:

← ctrl Do potentially unsafe translations described in the usage notes to wcsutrn().

↔ wcs Coordinate transformation parameters.

Returns:

Status return value: -1: No change required (not an error).

• 0: Success.

• 1: Null wcsprm pointer passed.

6.12.3.5 int celfix (struct wcsprm ∗ wcs)

celfix() translates AIPS-convention celestial projection types, NCP and GLS, set in the ctype[] member of
the wcsprm struct.

Two additional pv[] keyvalues are created when translating NCP. If the pv[] array was initially allocated
by wcsini() then the array will be expanded if necessary. Otherwise, error 2 will be returned if two empty
slots are not already available for use.

Parameters:

↔ wcs Coordinate transformation parameters. wcsprm::ctype[] and/or wcsprm::pv[] may be changed.

Returns:

Status return value: -1: No change required (not an error).

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

• 3: Linear transformation matrix is singular.

• 4: Inconsistent or unrecognized coordinate axis types.

• 5: Invalid parameter value.

• 6: Invalid coordinate transformation parameters.

• 7: Ill-conditioned coordinate transformation parameters.

6.12.3.6 int spcfix (struct wcsprm ∗ wcs)

spcfix() translates AIPS-convention spectral coordinate types, ’{FREQ,FELO,VELO}-
{LSR,HEL,OBS}’ (e.g. ’FREQ-OBS’, ’FELO-HEL’, ’VELO-LSR’) set in wcsprm::ctype[], subject to
VELREF set in wcsprm::velref.

Parameters:

↔ wcs Coordinate transformation parameters. wcsprm::ctype[] and/or wcsprm::specsys may be
changed.

Returns:

Status return value: -1: No change required (not an error).

• 0: Success.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.13 wcshdr.h File Reference 129

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

• 3: Linear transformation matrix is singular.

• 4: Inconsistent or unrecognized coordinate axis types.

• 5: Invalid parameter value.

• 6: Invalid coordinate transformation parameters.

• 7: Ill-conditioned coordinate transformation parameters.

6.12.3.7 int cylfix (const int naxis[], struct wcsprm ∗ wcs)

cylfix() fixes WCS keyvalues for malformed cylindrical projections that suffer from the problem described
in Sect. 7.3.4 of Paper I.

Parameters:

← naxis Image axis lengths.

↔ wcs Coordinate transformation parameters.

Returns:

Status return value: -1: No change required (not an error).

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

• 3: Linear transformation matrix is singular.

• 4: Inconsistent or unrecognized coordinate axis types.

• 5: Invalid parameter value.

• 6: Invalid coordinate transformation parameters.

• 7: Ill-conditioned coordinate transformation parameters.

• 8: All of the corner pixel coordinates are invalid.

• 9: Could not determine reference pixel coordinate.

10: Could not determine reference pixel value.

6.12.4 Variable Documentation

6.12.4.1 const char ∗ wcsfix_errmsg[]

Error messages to match the status value returned from each function.

6.13 wcshdr.h File Reference

#include "wcs.h"

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.13 wcshdr.h File Reference 130

Defines

• #define WCSHDR_none 0x00000000
Bit mask for wcspih() and wcsbth() - reject all extensions.

• #define WCSHDR_all 0x000FFFFF
Bit mask for wcspih() and wcsbth() - accept all extensions.

• #define WCSHDR_reject 0x10000000
Bit mask for wcspih() and wcsbth() - reject non-standard keywords.

• #define WCSHDR_CROTAia 0x00000001
Bit mask for wcspih() and wcsbth() - accept CROTAia, iCROTna, TCROTna.

• #define WCSHDR_EPOCHa 0x00000002
Bit mask for wcspih() and wcsbth() - accept EPOCHa.

• #define WCSHDR_VELREFa 0x00000004
Bit mask for wcspih() and wcsbth() - accept VELREFa.

• #define WCSHDR_CD00i00j 0x00000008
Bit mask for wcspih() and wcsbth() - accept CD00i00j.

• #define WCSHDR_PC00i00j 0x00000010
Bit mask for wcspih() and wcsbth() - accept PC00i00j.

• #define WCSHDR_PROJPn 0x00000020
Bit mask for wcspih() and wcsbth() - accept PROJPn.

• #define WCSHDR_RADECSYS 0x00000040
Bit mask for wcspih() and wcsbth() - accept RADECSYS.

• #define WCSHDR_VSOURCE 0x00000080
Bit mask for wcspih() and wcsbth() - accept VSOURCEa.

• #define WCSHDR_DOBSn 0x00000100
Bit mask for wcspih() and wcsbth() - accept DOBSn.

• #define WCSHDR_LONGKEY 0x00000200
Bit mask for wcspih() and wcsbth() - accept long forms of the alternate binary table and pixel list WCS
keywords.

• #define WCSHDR_CNAMn 0x00000400
Bit mask for wcspih() and wcsbth() - accept iCNAMn, TCNAMn, iCRDEn, TCRDEn, iCSYEn, TC-
SYEn.

• #define WCSHDR_AUXIMG 0x00000800
Bit mask for wcspih() and wcsbth() - allow the image-header form of an auxiliary WCS keyword to provide
a default value for all images.

• #define WCSHDR_ALLIMG 0x00001000

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.13 wcshdr.h File Reference 131

Bit mask for wcspih() and wcsbth() - allow the image-header form of all image header WCS keywords to
provide a default value for all images.

• #define WCSHDR_IMGHEAD 0x00010000
Bit mask for wcsbth() - restrict to image header keywords only.

• #define WCSHDR_BIMGARR 0x00020000
Bit mask for wcsbth() - restrict to binary table image array keywords only.

• #define WCSHDR_PIXLIST 0x00040000
Bit mask for wcsbth() - restrict to pixel list keywords only.

• #define WCSHDO_none 0x00
Bit mask for wcshdo() - don’t write any extensions.

• #define WCSHDO_all 0xFF
Bit mask for wcshdo() - write all extensions.

• #define WCSHDO_safe 0x0F
Bit mask for wcshdo() - write safe extensions only.

• #define WCSHDO_DOBSn 0x01
Bit mask for wcshdo() - write DOBSn.

• #define WCSHDO_TPCn_ka 0x02
Bit mask for wcshdo() - write TPCn_ka.

• #define WCSHDO_PVn_ma 0x04
Bit mask for wcshdo() - write iPVn_ma, TPVn_ma, iPSn_ma, TPSn_ma.

• #define WCSHDO_CRPXna 0x08
Bit mask for wcshdo() - write jCRPXna, TCRPXna, iCDLTna, TCDLTna, iCUNIna, TCUNIna,
iCTYPna, TCTYPna, iCRVLna, TCRVLna.

• #define WCSHDO_CNAMna 0x10
Bit mask for wcshdo() - write iCNAMna, TCNAMna, iCRDEna, TCRDEna, iCSYEna, TCSYEna.

• #define WCSHDO_WCSNna 0x20
Bit mask for wcshdo() - write WCSNna instead of TWCSna.

Functions

• int wcspih (char ∗header, int nkeyrec, int relax, int ctrl, int ∗nreject, int ∗nwcs, struct wcsprm
∗∗wcs)

FITS WCS parser routine for image headers.

• int wcsbth (char ∗header, int nkeyrec, int relax, int ctrl, int keysel, int ∗colsel, int ∗nreject, int ∗nwcs,
struct wcsprm ∗∗wcs)

FITS WCS parser routine for binary table and image headers.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.13 wcshdr.h File Reference 132

• int wcstab (struct wcsprm ∗wcs)
Tabular construction routine.

• int wcsidx (int nwcs, struct wcsprm ∗∗wcs, int alts[27])
Index alternate coordinate representations.

• int wcsbdx (int nwcs, struct wcsprm ∗∗wcs, int type, short alts[1000][28])
Index alternate coordinate representions.

• int wcsvfree (int ∗nwcs, struct wcsprm ∗∗wcs)
Free the array of wcsprm structs.

• int wcshdo (int relax, struct wcsprm ∗wcs, int ∗nkeyrec, char ∗∗header)
Write out a wcsprm struct as a FITS header.

Variables

• const char ∗ wcshdr_errmsg []
Status return messages.

6.13.1 Detailed Description

Routines in this suite are aimed at extracting WCS information from a FITS file. They provide the high-
level interface between the FITS file and the WCS coordinate transformation routines.

Additionally, function wcshdo() is provided to write out the contents of a wcsprm struct as a FITS header.

Briefly, the anticipated sequence of operations is as follows:

• 1: Open the FITS file and read the image or binary table header, e.g. using CFITSIO routine fits_-
hdr2str().

• 2: Parse the header using wcspih() or wcsbth(); they will automatically interpret ’TAB’ header
keywords using wcstab().

• 3: Allocate memory for, and read ’TAB’ arrays from the binary table extension, e.g. using CFITSIO
routine fits_read_wcstab() - refer to the prologue of getwcstab.h. wcsset() will automatically take
control of this allocated memory, in particular causing it to be free’d by wcsfree().

• 4: Translate non-standard WCS usage using wcsfix(), see wcsfix.h.

• 5: Initialize wcsprm struct(s) using wcsset() and calculate coordinates using wcsp2s() and/or
wcss2p(). Refer to the prologue of wcs.h for a description of these and other high-level WCS coor-
dinate transformation routines.

• 6: Clean up by freeing memory with wcsvfree().

In detail:

• wcspih() is a high-level FITS WCS routine that parses an image header. It returns an array of up to
27 wcsprm structs on each of which it invokes wcstab().

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.13 wcshdr.h File Reference 133

• wcsbth() is the analogue of wcspih() for use with binary tables; it handles image array and pixel list
keywords. As an extension of the FITS WCS standard, it also recognizes image header keywords
which may be used to provide default values via an inheritance mechanism.

• wcstab() assists in filling in members of the wcsprm struct associated with coordinate lookup tables
(’TAB’). These are based on arrays stored in a FITS binary table extension (BINTABLE) that are
located by PVi_ma keywords in the image header.

• wcsidx() and wcsbdx() are utility routines that return the index for a specified alternate coordinate
descriptor in the array of wcsprm structs returned by wcspih() or wcsbth().

• wcsvfree() deallocates memory for an array of wcsprm structs, such as returned by wcspih() or
wcsbth().

• wcshdo() writes out a wcsprm struct as a FITS header.

6.13.2 Define Documentation

6.13.2.1 #define WCSHDR_none 0x00000000

Bit mask for the relax argument of wcspih() and wcsbth() - reject all extensions.

Refer to wcsbth() note 5.

6.13.2.2 #define WCSHDR_all 0x000FFFFF

Bit mask for the relax argument of wcspih() and wcsbth() - accept all extensions.

Refer to wcsbth() note 5.

6.13.2.3 #define WCSHDR_reject 0x10000000

Bit mask for the relax argument of wcspih() and wcsbth() - reject non-standard keywords.

Refer to wcsbth() note 5.

6.13.2.4 #define WCSHDR_CROTAia 0x00000001

Bit mask for the relax argument of wcspih() and wcsbth() - accept CROTAia, iCROTna, TCROTna.

Refer to wcsbth() note 5.

6.13.2.5 #define WCSHDR_EPOCHa 0x00000002

Bit mask for the relax argument of wcspih() and wcsbth() - accept EPOCHa.

Refer to wcsbth() note 5.

6.13.2.6 #define WCSHDR_VELREFa 0x00000004

Bit mask for the relax argument of wcspih() and wcsbth() - accept VELREFa.

Refer to wcsbth() note 5.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.13 wcshdr.h File Reference 134

6.13.2.7 #define WCSHDR_CD00i00j 0x00000008

Bit mask for the relax argument of wcspih() and wcsbth() - accept CD00i00j.

Refer to wcsbth() note 5.

6.13.2.8 #define WCSHDR_PC00i00j 0x00000010

Bit mask for the relax argument of wcspih() and wcsbth() - accept PC00i00j.

Refer to wcsbth() note 5.

6.13.2.9 #define WCSHDR_PROJPn 0x00000020

Bit mask for the relax argument of wcspih() and wcsbth() - accept PROJPn.

Refer to wcsbth() note 5.

6.13.2.10 #define WCSHDR_RADECSYS 0x00000040

Bit mask for the relax argument of wcspih() and wcsbth() - accept RADECSYS.

Refer to wcsbth() note 5.

6.13.2.11 #define WCSHDR_VSOURCE 0x00000080

Bit mask for the relax argument of wcspih() and wcsbth() - accept VSOURCEa.

Refer to wcsbth() note 5.

6.13.2.12 #define WCSHDR_DOBSn 0x00000100

Bit mask for the relax argument of wcspih() and wcsbth() - accept DOBSn.

Refer to wcsbth() note 5.

6.13.2.13 #define WCSHDR_LONGKEY 0x00000200

Bit mask for the relax argument of wcspih() and wcsbth() - accept long forms of the alternate binary table
and pixel list WCS keywords.

Refer to wcsbth() note 5.

6.13.2.14 #define WCSHDR_CNAMn 0x00000400

Bit mask for the relax argument of wcspih() and wcsbth() - accept iCNAMn, TCNAMn, iCRDEn,
TCRDEn, iCSYEn, TCSYEn.

Refer to wcsbth() note 5.

6.13.2.15 #define WCSHDR_AUXIMG 0x00000800

Bit mask for the relax argument of wcspih() and wcsbth() - allow the image-header form of an auxiliary
WCS keyword with representation-wide scope to provide a default value for all images.

Refer to wcsbth() note 5.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.13 wcshdr.h File Reference 135

6.13.2.16 #define WCSHDR_ALLIMG 0x00001000

Bit mask for the relax argument of wcspih() and wcsbth() - allow the image-header form of all image
header WCS keywords to provide a default value for all image arrays in a binary table (n.b. not pixel list).

Refer to wcsbth() note 5.

6.13.2.17 #define WCSHDR_IMGHEAD 0x00010000

Bit mask for the keysel argument of wcsbth() - restrict keyword types considered to image header keywords
only.

6.13.2.18 #define WCSHDR_BIMGARR 0x00020000

Bit mask for the keysel argument of wcsbth() - restrict keyword types considered to binary table image
array keywords only.

6.13.2.19 #define WCSHDR_PIXLIST 0x00040000

Bit mask for the keysel argument of wcsbth() - restrict keyword types considered to pixel list keywords
only.

6.13.2.20 #define WCSHDO_none 0x00

Bit mask for the relax argument of wcshdo() - don’t write any extensions.

Refer to the notes for wcshdo().

6.13.2.21 #define WCSHDO_all 0xFF

Bit mask for the relax argument of wcshdo() - write all extensions.

Refer to the notes for wcshdo().

6.13.2.22 #define WCSHDO_safe 0x0F

Bit mask for the relax argument of wcshdo() - write only extensions that are considered safe.

Refer to the notes for wcshdo().

6.13.2.23 #define WCSHDO_DOBSn 0x01

Bit mask for the relax argument of wcshdo() - write DOBSn, the column-specific analogue of DATE-OBS
for use in binary tables and pixel lists.

Refer to the notes for wcshdo().

6.13.2.24 #define WCSHDO_TPCn_ka 0x02

Bit mask for the relax argument of wcshdo() - write TPCn_ka if less than eight characters instead of
TPn_ka.

Refer to the notes for wcshdo().

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.13 wcshdr.h File Reference 136

6.13.2.25 #define WCSHDO_PVn_ma 0x04

Bit mask for the relax argument of wcshdo() - write iPVn_ma, TPVn_ma, iPSn_ma, TPSn_ma, if less
than eight characters instead of iVn_ma, TVn_ma, iSn_ma, TSn_ma.

Refer to the notes for wcshdo().

6.13.2.26 #define WCSHDO_CRPXna 0x08

Bit mask for the relax argument of wcshdo() - write jCRPXna, TCRPXna, iCDLTna, TCDLTna,
iCUNIna, TCUNIna, iCTYPna, TCTYPna, iCRVLna, TCRVLna, if less than eight charac-
ters instead of jCRPna, TCRPna, iCDEna, TCDEna, iCUNna, TCUNna, iCTYna, TCTYna,
iCRVna, TCRVna.

Refer to the notes for wcshdo().

6.13.2.27 #define WCSHDO_CNAMna 0x10

Bit mask for the relax argument of wcshdo() - write iCNAMna, TCNAMna, iCRDEna, TCRDEna,
iCSYEna, TCSYEna, if less than eight characters instead of iCNAna, TCNAna, iCRDna, TCRDna,
iCSYna, TCSYna.

Refer to the notes for wcshdo().

6.13.2.28 #define WCSHDO_WCSNna 0x20

Bit mask for the relax argument of wcshdo() - write WCSNna instead of TWCSna.

Refer to the notes for wcshdo().

6.13.3 Function Documentation

6.13.3.1 int wcspih (char ∗ header, int nkeyrec, int relax, int ctrl, int ∗ nreject, int ∗ nwcs, struct
wcsprm ∗∗ wcs)

wcspih() is a high-level FITS WCS routine that parses an image header, either that of a primary HDU or
of an image extension. All WCS keywords defined in Papers I, II, and III are recognized, and also those
used by the AIPS convention and certain other keywords that existed in early drafts of the WCS papers as
explained in wcsbth() note 5.

Given a character array containing a FITS image header, wcspih() identifies and reads all WCS keywords
for the primary coordinate representation and up to 26 alternate representations. It returns this information
as an array of wcsprm structs.

wcspih() invokes wcstab() on each of the wcsprm structs that it returns.

Use wcsbth() in preference to wcspih() for FITS headers of unknown type; wcsbth() can parse image
headers as well as binary table and pixel list headers.

Parameters:

↔ header Character array containing the (entire) FITS image header from which to identify and con-
struct the coordinate representations, for example, as might be obtained conveniently via the
CFITSIO routine fits_hdr2str().
Each header "keyrecord" (formerly "card image") consists of exactly 80 7-bit ASCII printing
characters in the range 0x20 to 0x7e (which excludes NUL, BS, TAB, LF, FF and CR) especially
noting that the keyrecords are NOT null-terminated.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.13 wcshdr.h File Reference 137

For negative values of ctrl (see below), header[] is modified so that WCS keyrecords processed
by wcspih() are removed from it.

← nkeyrec Number of keyrecords in header[].

← relax Degree of permissiveness:

• 0: Recognize only FITS keywords defined by the published WCS standard.
• WCSHDR_all: Admit all recognized informal extensions of the WCS standard.

Fine-grained control of the degree of permissiveness is also possible as explained in wcsbth()
note 5.

← ctrl Error reporting and other control options for invalid WCS and other header keyrecords:

• 0: Do not report any rejected header keyrecords.
• 1: Produce a one-line message stating the number of WCS keyrecords rejected (nreject).
• 2: Report each rejected keyrecord and the reason why it was rejected.
• 3: As above, but also report all non-WCS keyrecords that were discarded, and the number

of coordinate representations (nwcs) found.

The report is written to stderr.
For ctrl < 0, WCS keyrecords processed by wcspih() are removed from header[]:

• -1: Remove only valid WCS keyrecords whose values were successfully extracted, nothing
is reported.

• -2: Also remove WCS keyrecords that were rejected, reporting each one and the reason that
it was rejected.

• -3: As above, and also report the number of coordinate representations (nwcs) found.
• -11: Same as -1 but preserving the basic keywords ’{DATE,MJD}-{OBS,AVG}’ and

’OBSGEO-{X,Y,Z}’.
If any keyrecords are removed from header[] it will be null-terminated (NUL not being a legal
FITS header character), otherwise it will contain its original complement of nkeyrec keyrecords
and possibly not be null-terminated.

→ nreject Number of WCS keywords rejected for syntax errors, illegal values, etc. Keywords not
recognized as WCS keywords are simply ignored. Refer also to wcsbth() note 5.

→ nwcs Number of coordinate representations found.

→ wcs Pointer to an array of wcsprm structs containing up to 27 coordinate representations.
Memory for the array is allocated by wcspih() which also invokes wcsini() for each struct to
allocate memory for internal arrays and initialize their members to default values. Refer also to
wcsbth() note 8. Note that wcsset() is not invoked on these structs.
This allocated memory must be freed by the user, first by invoking wcsfree() for each struct, and
then by freeing the array itself. A routine, wcsvfree(), is provided to do this (see below).

Returns:

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

• 4: Fatal error returned by Flex parser.

Notes:

Refer to wcsbth() notes 1, 2, 3, 5, 7, and 8.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.13 wcshdr.h File Reference 138

6.13.3.2 int wcsbth (char ∗ header, int nkeyrec, int relax, int ctrl, int keysel, int ∗ colsel, int ∗
nreject, int ∗ nwcs, struct wcsprm ∗∗ wcs)

wcsbth() is a high-level FITS WCS routine that parses a binary table header. It handles image array and
pixel list WCS keywords which may be present together in one header.

As an extension of the FITS WCS standard, wcsbth() also recognizes image header keywords in a binary
table header. These may be used to provide default values via an inheritance mechanism discussed in note
5 (c.f. WCSHDR_AUXIMG and WCSHDR_ALLIMG), or may instead result in wcsprm structs that are
not associated with any particular column. Thus wcsbth() can handle primary image and image extension
headers in addition to binary table headers (it ignores NAXIS and does not rely on the presence of the
TFIELDS keyword).

All WCS keywords defined in Papers I, II, and III are recognized, and also those used by the AIPS con-
vention and certain other keywords that existed in early drafts of the WCS papers as explained in note 5
below.

wcsbth() sets the colnum or colax[] members of the wcsprm structs that it returns with the column number
of an image array or the column numbers associated with each pixel coordinate element in a pixel list.
wcsprm structs that are not associated with any particular column, as may be derived from image header
keywords, have colnum == 0.

Note 6 below discusses the number of wcsprm structs returned by wcsbth(), and the circumstances in which
image header keywords cause a struct to be created. See also note 9 concerning the number of separate
images that may be stored in a pixel list.

The API to wcsbth() is similar to that of wcspih() except for the addition of extra arguments that may be
used to restrict its operation. Like wcspih(), wcsbth() invokes wcstab() on each of the wcsprm structs that
it returns.

Parameters:

↔ header Character array containing the (entire) FITS binary table, primary image, or image exten-
sion header from which to identify and construct the coordinate representations, for example, as
might be obtained conveniently via the CFITSIO routine fits_hdr2str().
Each header "keyrecord" (formerly "card image") consists of exactly 80 7-bit ASCII printing
characters in the range 0x20 to 0x7e (which excludes NUL, BS, TAB, LF, FF and CR) especially
noting that the keyrecords are NOT null-terminated.
For negative values of ctrl (see below), header[] is modified so that WCS keyrecords processed
by wcsbth() are removed from it.

← nkeyrec Number of keyrecords in header[].

← relax Degree of permissiveness:

• 0: Recognize only FITS keywords defined by the published WCS standard.
• WCSHDR_all: Admit all recognized informal extensions of the WCS standard.

Fine-grained control of the degree of permissiveness is also possible, as explained in note 5
below.

← ctrl Error reporting and other control options for invalid WCS and other header keyrecords:

• 0: Do not report any rejected header keyrecords.
• 1: Produce a one-line message stating the number of WCS keyrecords rejected (nreject).
• 2: Report each rejected keyrecord and the reason why it was rejected.
• 3: As above, but also report all non-WCS keyrecords that were discarded, and the number

of coordinate representations (nwcs) found.

The report is written to stderr.
For ctrl < 0, WCS keyrecords processed by wcsbth() are removed from header[]:

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.13 wcshdr.h File Reference 139

• -1: Remove only valid WCS keyrecords whose values were successfully extracted, nothing
is reported.

• -2: Also remove WCS keyrecords that were rejected, reporting each one and the reason that
it was rejected.

• -3: As above, and also report the number of coordinate representations (nwcs) found.
• -11: Same as -1 but preserving the basic keywords ’{DATE,MJD}-{OBS,AVG}’ and

’OBSGEO-{X,Y,Z}’.
If any keyrecords are removed from header[] it will be null-terminated (NUL not being a legal
FITS header character), otherwise it will contain its original complement of nkeyrec keyrecords
and possibly not be null-terminated.

← keysel Vector of flag bits that may be used to restrict the keyword types considered:

• WCSHDR_IMGHEAD: Image header keywords.
• WCSHDR_BIMGARR: Binary table image array.
• WCSHDR_PIXLIST: Pixel list keywords.

If zero, there is no restriction.
Keywords such as EQUIna or RFRQna that are common to binary table image arrays and pixel
lists (including WCSNna and TWCSna, as explained in note 4 below) are selected by both
WCSHDR_BIMGARR and WCSHDR_PIXLIST. Thus if inheritance via WCSHDR_ALLIMG
is enabled as discussed in note 5 and one of these shared keywords is present, then WCSHDR_-
IMGHEAD and WCSHDR_PIXLIST alone may be sufficient to cause the construction of coor-
dinate descriptions for binary table image arrays.

← colsel Pointer to an array of table column numbers used to restrict the keywords considered by
wcsbth().
A null pointer may be specified to indicate that there is no restriction. Otherwise, the magnitude
of cols[0] specifies the length of the array:

• cols[0] > 0: the columns are included,
• cols[0] < 0: the columns are excluded.

For the pixel list keywords TPn_ka and TCn_ka (and TPCn_ka and TCDn_ka if
WCSHDR_LONGKEY is enabled), it is an error for one column to be selected but not the other.
This is unlike the situation with invalid keyrecords, which are simply rejected, because the error
is not intrinsic to the header itself but arises in the way that it is processed.

→ nreject Number of WCS keywords rejected for syntax errors, illegal values, etc. Keywords not
recognized as WCS keywords are simply ignored, refer also to note 5 below.

→ nwcs Number of coordinate representations found.

→ wcs Pointer to an array of wcsprm structs containing up to 27027 coordinate representations, refer
to note 6 below.
Memory for the array is allocated by wcsbth() which also invokes wcsini() for each struct to
allocate memory for internal arrays and initialize their members to default values. Refer also to
note 8 below. Note that wcsset() is not invoked on these structs.
This allocated memory must be freed by the user, first by invoking wcsfree() for each struct, and
then by freeing the array itself. A routine, wcsvfree(), is provided to do this (see below).

Returns:

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

• 2: Memory allocation failed.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.13 wcshdr.h File Reference 140

• 3: Invalid column selection.

• 4: Fatal error returned by Flex parser.

Notes:

1. wcspih() determines the number of coordinate axes independently for each alternate coordinate rep-
resentation (denoted by the "a" value in keywords like CTYPEia) from the higher of

(a) NAXIS,

(b) WCSAXESa,

(c) The highest axis number in any parameterized WCS keyword. The keyvalue, as well as the
keyword, must be syntactically valid otherwise it will not be considered.

If none of these keyword types is present, i.e. if the header only contains auxiliary WCS keywords
for a particular coordinate representation, then no coordinate description is constructed for it.

wcsbth() is similar except that it ignores the NAXIS keyword if given an image header to process.

The number of axes, which is returned as a member of the wcsprm struct, may differ for different
coordinate representations of the same image.

2. wcspih() and wcsbth() enforce correct FITS "keyword = value" syntax with regard to "= " occurring
in columns 9 and 10.

However, they do recognize free-format character (NOST 100-2.0, Sect. 5.2.1), integer (Sect. 5.2.3),
and floating-point values (Sect. 5.2.4) for all keywords.

3. Where CROTAn, CDi_ja, and PCi_ja occur together in one header wcspih() and wcsbth() treat
them as described in the prologue to wcs.h.

4. WCS Paper I mistakenly defined the pixel list form of WCSNAMEa as TWCSna instead of
WCSNna; the ’T’ is meant to substitute for the axis number in the binary table form of the keyword
- note that keywords defined in WCS Papers II and III that are not parameterised by axis number have
identical forms for binary tables and pixel lists. Consequently wcsbth() always treats WCSNna and
TWCSna as equivalent.

5. wcspih() and wcsbth() interpret the relax argument as a vector of flag bits to provide fine-grained
control over what non-standard WCS keywords to accept. The flag bits are subject to change in
future and should be set by using the preprocessor macros (see below) for the purpose.

• WCSHDR_none: Don’t accept any extensions (not even those in the errata). Treat non-
conformant keywords in the same way as non-WCS keywords in the header, i.e. simply ignore
them.

• WCSHDR_all: Accept all extensions recognized by the parser.

• WCSHDR_reject: Reject non-standard keywords (that are not otherwise accepted). A message
will optionally be printed on stderr, as determined by the ctrl argument, and nreject will be
incremented.
This flag may be used to signal the presence of non-standard keywords, otherwise they are
simply passed over as though they did not exist in the header.
Useful for testing conformance of a FITS header to the WCS standard.

• WCSHDR_CROTAia: Accept CROTAia (wcspih()), iCROTna (wcsbth()), TCROTna
(wcsbth()).

• WCSHDR_EPOCHa: Accept EPOCHa.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.13 wcshdr.h File Reference 141

• WCSHDR_VELREFa: Accept VELREFa. wcspih() always recognizes the AIPS-convention
keywords, CROTAn, EPOCH, and VELREF for the primary representation (a = ’ ’) but
alternates are non-standard.
wcsbth() accepts EPOCHa and VELREFa only if WCSHDR_AUXIMG is also enabled.

• WCSHDR_CD00i00j: Accept CD00i00j (wcspih()).

• WCSHDR_PC00i00j: Accept PC00i00j (wcspih()).

• WCSHDR_PROJPn: Accept PROJPn (wcspih()). These appeared in early drafts of WCS
Paper I+II (before they were split) and are equivalent to CDi_ja, PCi_ja, and PVi_ma for
the primary representation (a = ’ ’). PROJPn is equivalent to PVi_ma with m = n ≤ 9, and
is associated exclusively with the latitude axis.

• WCSHDR_RADECSYS: Accept RADECSYS. This appeared in early drafts of WCS Paper
I+II and was subsequently replaced by RADESYSa.
wcsbth() accepts RADECSYS only if WCSHDR_AUXIMG is also enabled.

• WCSHDR_VSOURCE: Accept VSOURCEa or VSOUna (wcsbth()). This appeared in
early drafts of WCS Paper III and was subsequently dropped in favour of ZSOURCEa and
ZSOUna.
wcsbth() accepts VSOURCEa only if WCSHDR_AUXIMG is also enabled.

• WCSHDR_DOBSn (wcsbth() only): Allow DOBSn, the column-specific analogue of DATE-
OBS. By an oversight this was never formally defined in the standard.

• WCSHDR_LONGKEY (wcsbth() only): Accept long forms of the alternate binary table and
pixel list WCS keywords, i.e. with "a" non- blank. Specifically

jCRPXna TCRPXna
:

jCRPXn jCRPna TCRPXn TCRPna
CR-
PIXja

TPCn_-
ka

:
ijPCna

TPn_-
ka

PCi_-
ja

TCDn_-
ka

:
ijCDna

TCn_-
ka

CDi_-
ja

iCDLTna TCDLTna
:

iCDLTn iCDEna TCDLTn TCDEna CDELTia

iCUNIna TCUNIna
:

iCUNIn iCUNna TCUNIn TCUNna
CU-
NITia

iCTYPna
TC-
TYPna

:
iCTYPn iCTYna

TC-
TYPn TCTYna CTYPEia

iCRVLna TCRVLna
:

iCRVLn iCRVna TCRVLn TCRVna
CR-
VALia

iPVn_-
ma

TPVn_-
ma

: iVn_-
ma

TVn_-
ma

PVi_-
ma

iPSn_-
ma

TPSn_-
ma

: iSn_ma TSn_-
ma

PSi_ma

where the primary and standard alternate forms together with the image-header equivalent are
shown rightwards of the colon.
The long form of these keywords could be described as quasi- standard. TPCn_ka, iPVn_-
ma, and TPVn_ma appeared by mistake in the examples in WCS Paper II and subsequently
these and also TCDn_ka, iPSn_ma and TPSn_ma were legitimized by the errata to the WCS
papers.
Strictly speaking, the other long forms are non-standard and in fact have never appeared in any
draft of the WCS papers nor in the errata. However, as natural extensions of the primary form
they are unlikely to be written with any other intention. Thus it should be safe to accept them
provided, of course, that the resulting keyword does not exceed the 8-character limit.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.13 wcshdr.h File Reference 142

If WCSHDR_CNAMn is enabled then also accept

iCNAMna
TC-
NAMna

: —
iCNAna

—
TCNAna CNAMEia

iCRDEna TCRDEna
: —

iCRDna
—

TCRDna CRDERia

iCSYEna
TC-
SYEna

: —
iCSYna

—
TCSYna CSYERia

Note that CNAMEia, CRDERia, CSYERia, and their variants are not used by WCSLIB
but are stored in the wcsprm struct as auxiliary information.

• WCSHDR_CNAMn (wcsbth() only): Accept iCNAMn, iCRDEn, iCSYEn, TCNAMn,
TCRDEn, and TCSYEn, i.e. with "a" blank. While non-standard, these are the obvious
analogues of iCTYPn, TCTYPn, etc.

• WCSHDR_AUXIMG (wcsbth() only): Allow the image-header form of an auxiliary WCS
keyword with representation-wide scope to provide a default value for all images. This default
may be overridden by the column-specific form of the keyword.
For example, a keyword like EQUINOXa would apply to all image arrays in a binary table, or
all pixel list columns with alternate representation "a" unless overridden by EQUIna.
Specifically the keywords are:

LATPOLEa for LATPna
LONPOLEa for LONPna
RESTFREQ for RFRQna
RESTFRQa for RFRQna
RESTWAVa for RWAVna

whose keyvalues are actually used by WCSLIB, and also keywords that provide auxiliary in-
formation that is simply stored in the wcsprm struct:

EPOCH ... (No column-specific
form.)

EPOCHa ... Only if
WCSHDR_EPOCHa is set.

EQUINOXa for EQUIna
RADESYSa for RADEna
RADECSYS for RADEna ... Only if

WCSHDR_RADECSYS is
set.

SPECSYSa for SPECna
SSYSOBSa for SOBSna
SSYSSRCa for SSRCna
VELOSYSa for VSYSna
VELANGLa for VANGna
VELREF ... (No column-specific

form.)
VELREFa ... Only if

WCSHDR_VELREFa is
set.

VSOURCEa for VSOUna ... Only if
WCSHDR_VSOURCE is
set.

WCSNAMEa for WCSNna ... Or TWCSna (see
below).

ZSOURCEa for ZSOUna

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.13 wcshdr.h File Reference 143

DATE-AVG for DAVGn
DATE-OBS for DOBSn
MJD-AVG for MJDAn
MJD-OBS for MJDOBn
OBSGEO-X for OBSGXn
OBSGEO-Y for OBSGYn
OBSGEO-Z for OBSGZn

where the image-header keywords on the left provide default values for the column specific
keywords on the right.
Keywords in the last group, such as MJD-OBS, apply to all alternate representations, so MJD-
OBS would provide a default value for all images in the header.
This auxiliary inheritance mechanism applies to binary table image arrays and pixel lists alike.
Most of these keywords have no default value, the exceptions being LONPOLEa and LAT-
POLEa, and also RADESYSa and EQUINOXa which provide defaults for each other. Thus
the only potential difficulty in using WCSHDR_AUXIMG is that of erroneously inheriting one
of these four keywords.
Unlike WCSHDR_ALLIMG, the existence of one (or all) of these auxiliary WCS image header
keywords will not by itself cause a wcsprm struct to be created for alternate representation "a".
This is because they do not provide sufficient information to create a non-trivial coordinate
representation when used in conjunction with the default values of those keywords, such as
CTYPEia, that are parameterized by axis number.

• WCSHDR_ALLIMG (wcsbth() only): Allow the image-header form of ∗all∗ image header
WCS keywords to provide a default value for all image arrays in a binary table (n.b. not pixel
list). This default may be overridden by the column-specific form of the keyword.
For example, a keyword like CRPIXja would apply to all image arrays in a binary table with
alternate representation "a" unless overridden by jCRPna.
Specifically the keywords are those listed above for WCSHDR_AUXIMG plus

WCSAXESa for WCAXna
which defines the coordinate dimensionality, and the following keywords which are parameter-
ized by axis number:

CRPIXja for jCRPna
PCi_ja for ijPCna
CDi_ja for ijCDna
CDELTia for iCDEna
CROTAi for iCROTn
CROTAia ... Only if

WCSHDR_CROTAia is set.
CUNITia for iCUNna
CTYPEia for iCTYna
CRVALia for iCRVna
PVi_ma for iVn_ma
PSi_ma for iSn_ma
CNAMEia for iCNAna
CRDERia for iCRDna
CSYERia for iCSYna

where the image-header keywords on the left provide default values for the column specific
keywords on the right.
This full inheritance mechanism only applies to binary table image arrays, not pixel lists, be-
cause in the latter case there is no well-defined association between coordinate axis number and
column number.
Note that CNAMEia, CRDERia, CSYERia, and their variants are not used by WCSLIB
but are stored in the wcsprm struct as auxiliary information.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.13 wcshdr.h File Reference 144

Note especially that at least one wcsprm struct will be returned for each "a" found in one of the
image header keywords listed above:

– If the image header keywords for "a" are not inherited by a binary table, then the struct
will not be associated with any particular table column number and it is up to the user to
provide an association.

– If the image header keywords for "a" are inherited by a binary table image array, then
those keywords are considered to be "exhausted" and do not result in a separate wcsprm
struct.

For example, to accept CD00i00j and PC00i00j and reject all other extensions, use

relax = WCSHDR_reject | WCSHDR_CD00i00j | WCSHDR_PC00i00j;

The parser always treats EPOCH as subordinate to EQUINOXa if both are present, and
VSOURCEa is always subordinate to ZSOURCEa.

Likewise, VELREF is subordinate to the formalism of WCS Paper III, see spcaips().

Neither wcspih() nor wcsbth() currently recognize the AIPS-convention keywords ALTRPIX or
ALTRVAL which effectively define an alternative representation for a spectral axis.

6. Depending on what flags have been set in its relax argument, wcsbth() could return as many as 27027
wcsprm structs:

• Up to 27 unattached representations derived from image header keywords.

• Up to 27 structs for each of up to 999 columns containing an image arrays.

• Up to 27 structs for a pixel list.

Note that it is considered legitimate for a column to contain an image array and also form part of a
pixel list, and in particular that wcsbth() does not check the TFORM keyword for a pixel list column
to check that it is scalar.

In practice, of course, a realistic binary table header is unlikely to contain more than a handful of
images.

In order for wcsbth() to create a wcsprm struct for a particular coordinate representation, at least
one WCS keyword that defines an axis number must be present, either directly or by inheritance if
WCSHDR_ALLIMG is set.

When the image header keywords for an alternate representation are inherited by a binary table image
array via WCSHDR_ALLIMG, those keywords are considered to be "exhausted" and do not result
in a separate wcsprm struct. Otherwise they do.

7. Neither wcspih() nor wcsbth() check for duplicated keywords, in most cases they accept the last
encountered.

8. wcspih() and wcsbth() use wcsnpv() and wcsnps() (refer to the prologue of wcs.h) to match the size
of the pv[] and ps[] arrays in the wcsprm structs to the number in the header. Consequently there are
no unused elements in the pv[] and ps[] arrays, indeed they will often be of zero length.

9. The FITS WCS standard for pixel lists assumes that a pixel list defines one and only one image, i.e.
that each row of the binary table refers to just one event, e.g. the detection of a single photon or
neutrino.

In the absence of a formal mechanism for identifying the columns containing pixel coordinates (as
opposed to pixel values or ancillary data recorded at the time the photon or neutrino was detected),
Paper I discusses how the WCS keywords themselves may be used to identify them.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.13 wcshdr.h File Reference 145

In practice, however, pixel lists have been used to store multiple images. Besides not specifying how
to identify columns, the pixel list convention is also silent on the method to be used to associate table
columns with image axes.

wcsbth() simply collects all WCS keywords for a particular coordinate representation (i.e. the "a"
value in TCTYna) into one wcsprm struct. However, these alternates need not be associated with
the same table columns and this allows a pixel list to contain up to 27 separate images. As usual, if
one of these representations happened to contain more than two celestial axes, for example, then an
error would result when wcsset() is invoked on it. In this case the "colsel" argument could be used to
restrict the columns used to construct the representation so that it only contained one pair of celestial
axes.

6.13.3.3 int wcstab (struct wcsprm ∗ wcs)

wcstab() assists in filling in the information in the wcsprm struct relating to coordinate lookup tables.

Tabular coordinates (’TAB’) present certain difficulties in that the main components of the lookup table
- the multidimensional coordinate array plus an index vector for each dimension - are stored in a FITS
binary table extension (BINTABLE). Information required to locate these arrays is stored in PVi_ma and
PSi_ma keywords in the image header.

wcstab() parses the PVi_ma and PSi_ma keywords associated with each ’TAB’ axis and allocates mem-
ory in the wcsprm struct for the required number of tabprm structs. It sets as much of the tabprm struct as
can be gleaned from the image header, and also sets up an array of wtbarr structs (described in the prologue
of wcs.h) to assist in extracting the required arrays from the BINTABLE extension(s).

It is then up to the user to allocate memory for, and copy arrays from the BINTABLE extension(s) into
the tabprm structs. A CFITSIO routine, fits_read_wcstab(), has been provided for this purpose, see getwc-
stab.h. wcsset() will automatically take control of this allocated memory, in particular causing it to be
free’d by wcsfree(); the user must not attempt to free it after wcsset() has been called.

Note that wcspih() and wcsbth() automatically invoke wcstab() on each of the wcsprm structs that they
return.

Parameters:

↔ wcs Coordinate transformation parameters (see below).
wcstab() sets ntab, tab, nwtb and wtb, allocating memory for the tab and wtb arrays. This
allocated memory will be free’d automatically by wcsfree().

Returns:

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

6.13.3.4 int wcsidx (int nwcs, struct wcsprm ∗∗ wcs, int alts[27])

wcsidx() returns an array of 27 indices for the alternate coordinate representations in the array of wcsprm
structs returned by wcspih(). For the array returned by wcsbth() it returns indices for the unattached (col-
num == 0) representations derived from image header keywords - use wcsbdx() for those derived from
binary table image arrays or pixel lists keywords.

Parameters:

← nwcs Number of coordinate representations in the array.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.13 wcshdr.h File Reference 146

← wcs Pointer to an array of wcsprm structs returned by wcspih() or wcsbth().

→ alts Index of each alternate coordinate representation in the array: alts[0] for the primary, alts[1]
for ’A’, etc., set to -1 if not present.
For example, if there was no ’P’ representation then

alts[’P’-’A’+1] == -1;

Otherwise, the address of its wcsprm struct would be

wcs + alts[’P’-’A’+1];

Returns:

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

6.13.3.5 int wcsbdx (int nwcs, struct wcsprm ∗∗ wcs, int type, short alts[1000][28])

wcsbdx() returns an array of 999 x 27 indices for the alternate coordinate representions for binary table
image arrays xor pixel lists in the array of wcsprm structs returned by wcsbth(). Use wcsidx() for the
unattached representations derived from image header keywords.

Parameters:

← nwcs Number of coordinate representations in the array.

← wcs Pointer to an array of wcsprm structs returned by wcsbth().

← type Select the type of coordinate representation:

• 0: binary table image arrays,
• 1: pixel lists.

→ alts Index of each alternate coordinate represention in the array: alts[col][0] for the primary,
alts[col][1] for ’A’, to alts[col][26] for ’Z’, where col is the 1-relative column number, and col
== 0 is used for unattached image headers. Set to -1 if not present.
alts[col][27] counts the number of coordinate representations of the chosen type for each column.
For example, if there was no ’P’ represention for column 13 then

alts[13][’P’-’A’+1] == -1;

Otherwise, the address of its wcsprm struct would be

wcs + alts[13][’P’-’A’+1];

Returns:

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.13 wcshdr.h File Reference 147

6.13.3.6 int wcsvfree (int ∗ nwcs, struct wcsprm ∗∗ wcs)

wcsvfree() frees the memory allocated by wcspih() or wcsbth() for the array of wcsprm structs, first invok-
ing wcsfree() on each of the array members.

Parameters:

↔ nwcs Number of coordinate representations found; set to 0 on return.

↔ wcs Pointer to the array of wcsprm structs; set to 0 on return.

Returns:

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

6.13.3.7 int wcshdo (int relax, struct wcsprm ∗ wcs, int ∗ nkeyrec, char ∗∗ header)

wcshdo() translates a wcsprm struct into a FITS header. If the colnum member of the struct is non-zero
then a binary table image array header will be produced. Otherwise, if the colax[] member of the struct
is set non-zero then a pixel list header will be produced. Otherwise, a primary image or image extension
header will be produced.

If the struct was originally constructed from a header, e.g. by wcspih(), the output header will almost
certainly differ in a number of respects:

• The output header only contains WCS-related keywords. In particular, it does not contain
syntactically-required keywords such as SIMPLE, NAXIS, BITPIX, or END.

• Deprecated (e.g. CROTAn) or non-standard usage will be translated to standard (this is partially
dependent on whether wcsfix() was applied).

• Quantities will be converted to the units used internally, basically SI with the addition of degrees.

• Floating-point quantities may be given to a different decimal precision.

• Elements of the PCi_ja matrix will be written if and only if they differ from the unit matrix. Thus,
if the matrix is unity then no elements will be written.

• Additional keywords such as WCSAXESa, CUNITia, LONPOLEa and LATPOLEa may ap-
pear.

• The original keycomments will be lost, although wcshdo() tries hard to write meaningful comments.

• Keyword order may be changed.

Keywords can be translated between the image array, binary table, and pixel lists forms by manipulating
the colnum or colax[] members of the wcsprm struct.

Parameters:

← relax Degree of permissiveness:

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.13 wcshdr.h File Reference 148

• 0: Recognize only FITS keywords defined by the published WCS standard.
• -1: Admit all informal extensions of the WCS standard.

Fine-grained control of the degree of permissiveness is also possible as explained in the notes
below.

↔ wcs Pointer to a wcsprm struct containing coordinate transformation parameters. Will be initialized
if necessary.

→ nkeyrec Number of FITS header keyrecords returned in the "header" array.

→ header Pointer to an array of char holding the header. Storage for the array is allocated by wc-
shdo() in blocks of 2880 bytes (32 x 80-character keyrecords) and must be free’d by the user to
avoid memory leaks.
Each keyrecord is 80 characters long and is ∗NOT∗ null-terminated, so the first keyrecord starts
at (∗header)[0], the second at (∗header)[80], etc.

Returns:

Status return value:

• 0: Success.

• 1: Null wcsprm pointer passed.

Notes:

wcshdo() interprets the relax argument as a vector of flag bits to provide fine-grained control over what
non-standard WCS keywords to write. The flag bits are subject to change in future and should be set by
using the preprocessor macros (see below) for the purpose.

• WCSHDO_none: Don’t use any extensions.

• WCSHDO_all: Write all recognized extensions, equivalent to setting each flag bit.

• WCSHDO_safe: Write all extensions that are considered to be safe and recommended.

• WCSHDO_DOBSn: Write DOBSn, the column-specific analogue of DATE-OBS for use in binary
tables and pixel lists. WCS Paper III introduced DATE-AVG and DAVGn but by an oversight
DOBSn (the obvious analogy) was never formally defined by the standard. The alternative to using
DOBSn is to write DATE-OBS which applies to the whole table. This usage is considered to be safe
and is recommended.

• WCSHDO_TPCn_ka: WCS Paper I defined

– TPn_ka and TCn_ka for pixel lists

but WCS Paper II uses TPCn_ka in one example and subsequently the errata for the WCS papers
legitimized the use of

– TPCn_ka and TCDn_ka for pixel lists

provided that the keyword does not exceed eight characters. This usage is considered to be safe and
is recommended because of the non-mnemonic terseness of the shorter forms.

• WCSHDO_PVn_ma: WCS Paper I defined

– iVn_ma and iSn_ma for bintables and

– TVn_ma and TSn_ma for pixel lists

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.13 wcshdr.h File Reference 149

but WCS Paper II uses iPVn_ma and TPVn_ma in the examples and subsequently the errata for the
WCS papers legitimized the use of

– iPVn_ma and iPSn_ma for bintables and

– TPVn_ma and TPSn_ma for pixel lists

provided that the keyword does not exceed eight characters. This usage is considered to be safe and
is recommended because of the non-mnemonic terseness of the shorter forms.

• WCSHDO_CRPXna: For historical reasons WCS Paper I defined

– jCRPXn, iCDLTn, iCUNIn, iCTYPn, and iCRVLn for bintables and

– TCRPXn, TCDLTn, TCUNIn, TCTYPn, and TCRVLn for pixel lists

for use without an alternate version specifier. However, because of the eight-character keyword
constraint, in order to accommodate column numbers greater than 99 WCS Paper I also defined

– jCRPna, iCDEna, iCUNna, iCTYna and iCRVna for bintables and

– TCRPna, TCDEna, TCUNna, TCTYna and TCRVna for pixel lists

for use with an alternate version specifier (the "a"). Like the PC, CD, PV, and PS keywords there is
an obvious tendency to confuse these two forms for column numbers up to 99. It is very unlikely
that any parser would reject keywords in the first set with a non-blank alternate version specifier so
this usage is considered to be safe and is recommended.

• WCSHDO_CNAMna: WCS Papers I and III defined

– iCNAna, iCRDna, and iCSYna for bintables and

– TCNAna, TCRDna, and TCSYna for pixel lists

By analogy with the above, the long forms would be

– iCNAMna, iCRDEna, and iCSYEna for bintables and

– TCNAMna, TCRDEna, and TCSYEna for pixel lists

Note that these keywords provide auxiliary information only, none of them are needed to compute
world coordinates. This usage is potentially unsafe and is not recommended at this time.

• WCSHDO_WCSNna: In light of wcsbth() note 4, write WCSNna instead of TWCSna for pixel
lists. While wcsbth() treats WCSNna and TWCSna as equivalent, other parsers may not. Conse-
quently, this usage is potentially unsafe and is not recommended at this time.

6.13.4 Variable Documentation

6.13.4.1 const char ∗ wcshdr_errmsg[]

Error messages to match the status value returned from each function.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.14 wcslib.h File Reference 150

6.14 wcslib.h File Reference

#include "cel.h"

#include "fitshdr.h"

#include "lin.h"

#include "log.h"

#include "prj.h"

#include "spc.h"

#include "sph.h"

#include "spx.h"

#include "tab.h"

#include "wcs.h"

#include "wcsfix.h"

#include "wcshdr.h"

#include "wcsmath.h"

#include "wcstrig.h"

#include "wcsunits.h"

#include "wcsutil.h"

6.14.1 Detailed Description

This header file is provided purely for convenience. Use it to include all of the separate WCSLIB headers.

6.15 wcsmath.h File Reference

Defines

• #define PI 3.141592653589793238462643
• #define D2R PI/180.0

Degrees to radians conversion factor.

• #define R2D 180.0/PI
Radians to degrees conversion factor.

• #define SQRT2 1.4142135623730950488
• #define SQRT2INV 1.0/SQRT2
• #define UNDEFINED 987654321.0e99

Value used to indicate an undefined quantity.

• #define undefined(value) (value == UNDEFINED)
Macro used to test for an undefined quantity.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.16 wcstrig.h File Reference 151

6.15.1 Detailed Description

Definition of mathematical constants used by WCSLIB.

6.15.2 Define Documentation

6.15.2.1 #define PI 3.141592653589793238462643

6.15.2.2 #define D2R PI/180.0

Factor π/180◦ to convert from degrees to radians.

6.15.2.3 #define R2D 180.0/PI

Factor 180◦/π to convert from radians to degrees.

6.15.2.4 #define SQRT2 1.4142135623730950488
√

2, used only by molset() (MOL projection).

6.15.2.5 #define SQRT2INV 1.0/SQRT2

1/
√

2, used only by qscx2s() (QSC projection).

6.15.2.6 #define UNDEFINED 987654321.0e99

Value used to indicate an undefined quantity (noting that NaNs cannot be used portably).

6.15.2.7 #define undefined(value) (value == UNDEFINED)

Macro used to test for an undefined value.

6.16 wcstrig.h File Reference

#include <math.h>

#include "wcsconfig.h"

Defines

• #define WCSTRIG_TOL 1e-10
Domain tolerance for asin() and acos() functions.

Functions

• double cosd (double angle)
Cosine of an angle in degrees.

• double sind (double angle)

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.16 wcstrig.h File Reference 152

Sine of an angle in degrees.

• void sincosd (double angle, double ∗sin, double ∗cos)
Sine and cosine of an angle in degrees.

• double tand (double angle)
Tangent of an angle in degrees.

• double acosd (double x)
Inverse cosine, returning angle in degrees.

• double asind (double y)
Inverse sine, returning angle in degrees.

• double atand (double s)
Inverse tangent, returning angle in degrees.

• double atan2d (double y, double x)
Polar angle of (x, y), in degrees.

6.16.1 Detailed Description

When dealing with celestial coordinate systems and spherical projections (some moreso than others) it is
often desirable to use an angular measure that provides an exact representation of the latitude of the north
or south pole. The WCSLIB routines use the following trigonometric functions that take or return angles
in degrees:

• cosd()

• sind()

• tand()

• acosd()

• asind()

• atand()

• atan2d()

• sincosd()

These "trigd" routines are expected to handle angles that are a multiple of 90◦ returning an exact result.
Some C implementations provide these as part of a system library and in such cases it may (or may not!)
be preferable to use them. WCSLIB provides wrappers on the standard trig functions based on radian
measure, adding tests for multiples of 90◦.

However, wcstrig.h also provides the choice of using preprocessor macro implementations of the trigd
functions that don’t test for multiples of 90◦ (compile with -DWCSTRIG_MACRO). These are typically
20% faster but may lead to problems near the poles.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.16 wcstrig.h File Reference 153

6.16.2 Define Documentation

6.16.2.1 #define WCSTRIG_TOL 1e-10

Domain tolerance for the asin() and acos() functions to allow for floating point rounding errors.

If v lies in the range 1 < |v| < 1 + WCSTRIG_TOL then it will be treated as |v| == 1.

6.16.3 Function Documentation

6.16.3.1 double cosd (double angle)

cosd() returns the cosine of an angle given in degrees.

Parameters:

← angle [deg].

Returns:

Cosine of the angle.

6.16.3.2 double sind (double angle)

sind() returns the sine of an angle given in degrees.

Parameters:

← angle [deg].

Returns:

Sine of the angle.

6.16.3.3 void sincosd (double angle, double ∗ sin, double ∗ cos)

sincosd() returns the sine and cosine of an angle given in degrees.

Parameters:

← angle [deg].

→ sin Sine of the angle.

→ cos Cosine of the angle.

Returns:

6.16.3.4 double tand (double angle)

tand() returns the tangent of an angle given in degrees.

Parameters:

← angle [deg].

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.16 wcstrig.h File Reference 154

Returns:

Tangent of the angle.

6.16.3.5 double acosd (double x)

acosd() returns the inverse cosine in degrees.

Parameters:

← x in the range [-1,1].

Returns:

Inverse cosine of x [deg].

6.16.3.6 double asind (double y)

asind() returns the inverse sine in degrees.

Parameters:

← y in the range [-1,1].

Returns:

Inverse sine of y [deg].

6.16.3.7 double atand (double s)

atand() returns the inverse tangent in degrees.

Parameters:

← s

Returns:

Inverse tangent of s [deg].

6.16.3.8 double atan2d (double y, double x)

atan2d() returns the polar angle, β, in degrees, of polar coordinates (ρ, β) corresponding Cartesian coordi-
nates (x, y). It is equivalent to the arg(x, y) function of WCS Paper II, though with transposed arguments.

Parameters:

← y Cartesian y-coordinate.

← x Cartesian x-coordinate.

Returns:

Polar angle of (x, y) [deg].

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.17 wcsunits.h File Reference 155

6.17 wcsunits.h File Reference

Defines

• #define WCSUNITS_PLANE_ANGLE 0
Array index for plane angle units type.

• #define WCSUNITS_SOLID_ANGLE 1
Array index for solid angle units type.

• #define WCSUNITS_CHARGE 2
Array index for charge units type.

• #define WCSUNITS_MOLE 3
Array index for mole units type.

• #define WCSUNITS_TEMPERATURE 4
Array index for temperature units type.

• #define WCSUNITS_LUMINTEN 5
Array index for luminous intensity units type.

• #define WCSUNITS_MASS 6
Array index for mass units type.

• #define WCSUNITS_LENGTH 7
Array index for length units type.

• #define WCSUNITS_TIME 8
Array index for time units type.

• #define WCSUNITS_BEAM 9
Array index for beam units type.

• #define WCSUNITS_BIN 10
Array index for bin units type.

• #define WCSUNITS_BIT 11
Array index for bit units type.

• #define WCSUNITS_COUNT 12
Array index for count units type.

• #define WCSUNITS_MAGNITUDE 13
Array index for stellar magnitude units type.

• #define WCSUNITS_PIXEL 14
Array index for pixel units type.

• #define WCSUNITS_SOLRATIO 15

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.17 wcsunits.h File Reference 156

Array index for solar mass ratio units type.

• #define WCSUNITS_VOXEL 16
Array index for voxel units type.

• #define WCSUNITS_NTYPE 17
Number of entries in the units array.

Functions

• int wcsunits (const char have[], const char want[], double ∗scale, double ∗offset, double ∗power)
FITS units specification conversion.

• int wcsutrn (int ctrl, char unitstr[])
Translation of non-standard unit specifications.

• int wcsulex (const char unitstr[], int ∗func, double ∗scale, double units[])
FITS units specification parser.

Variables

• const char ∗ wcsunits_errmsg []
Status return messages.

• const char ∗ wcsunits_types []
Names of physical quantities.

• const char ∗ wcsunits_units []
Names of units.

6.17.1 Detailed Description

Routines in this suite deal with units specifications and conversions:

• wcsunits(): given two unit specifications, derive the conversion from one to the other.

• wcsutrn(): translates certain commonly used but non-standard unit strings. It is intended to be called
before wcsulex() which only handles standard FITS units specifications.

• wcsulex(): parses a standard FITS units specification of arbitrary complexity, deriving the conversion
to canonical units.

6.17.2 Define Documentation

6.17.2.1 #define WCSUNITS_PLANE_ANGLE 0

Array index for plane angle units in the units array returned by wcsulex(), and the wcsunits_types[] and
wcsunits_units[] global variables.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.17 wcsunits.h File Reference 157

6.17.2.2 #define WCSUNITS_SOLID_ANGLE 1

Array index for solid angle units in the units array returned by wcsulex(), and the wcsunits_types[] and
wcsunits_units[] global variables.

6.17.2.3 #define WCSUNITS_CHARGE 2

Array index for charge units in the units array returned by wcsulex(), and the wcsunits_types[] and
wcsunits_units[] global variables.

6.17.2.4 #define WCSUNITS_MOLE 3

Array index for mole ("gram molecular weight") units in the units array returned by wcsulex(), and the
wcsunits_types[] and wcsunits_units[] global variables.

6.17.2.5 #define WCSUNITS_TEMPERATURE 4

Array index for temperature units in the units array returned by wcsulex(), and the wcsunits_types[] and
wcsunits_units[] global variables.

6.17.2.6 #define WCSUNITS_LUMINTEN 5

Array index for luminous intensity units in the units array returned by wcsulex(), and the wcsunits_types[]
and wcsunits_units[] global variables.

6.17.2.7 #define WCSUNITS_MASS 6

Array index for mass units in the units array returned by wcsulex(), and the wcsunits_types[] and wcsunits_-
units[] global variables.

6.17.2.8 #define WCSUNITS_LENGTH 7

Array index for length units in the units array returned by wcsulex(), and the wcsunits_types[] and
wcsunits_units[] global variables.

6.17.2.9 #define WCSUNITS_TIME 8

Array index for time units in the units array returned by wcsulex(), and the wcsunits_types[] and wcsunits_-
units[] global variables.

6.17.2.10 #define WCSUNITS_BEAM 9

Array index for beam units in the units array returned by wcsulex(), and the wcsunits_types[] and
wcsunits_units[] global variables.

6.17.2.11 #define WCSUNITS_BIN 10

Array index for bin units in the units array returned by wcsulex(), and the wcsunits_types[] and wcsunits_-
units[] global variables.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.17 wcsunits.h File Reference 158

6.17.2.12 #define WCSUNITS_BIT 11

Array index for bit units in the units array returned by wcsulex(), and the wcsunits_types[] and wcsunits_-
units[] global variables.

6.17.2.13 #define WCSUNITS_COUNT 12

Array index for count units in the units array returned by wcsulex(), and the wcsunits_types[] and
wcsunits_units[] global variables.

6.17.2.14 #define WCSUNITS_MAGNITUDE 13

Array index for stellar magnitude units in the units array returned by wcsulex(), and the wcsunits_types[]
and wcsunits_units[] global variables.

6.17.2.15 #define WCSUNITS_PIXEL 14

Array index for pixel units in the units array returned by wcsulex(), and the wcsunits_types[] and wcsunits_-
units[] global variables.

6.17.2.16 #define WCSUNITS_SOLRATIO 15

Array index for solar mass ratio units in the units array returned by wcsulex(), and the wcsunits_types[]
and wcsunits_units[] global variables.

6.17.2.17 #define WCSUNITS_VOXEL 16

Array index for voxel units in the units array returned by wcsulex(), and the wcsunits_types[] and
wcsunits_units[] global variables.

6.17.2.18 #define WCSUNITS_NTYPE 17

Number of entries in the units array returned by wcsulex(), and the wcsunits_types[] and wcsunits_units[]
global variables.

6.17.3 Function Documentation

6.17.3.1 int wcsunits (const char have[], const char want[], double ∗ scale, double ∗ offset, double
∗ power)

wcsunits() derives the conversion from one system of units to another.

Parameters:

← have FITS units specification to convert from (null- terminated), with or without surrounding
square brackets (for inline specifications); text following the closing bracket is ignored.

← want FITS units specification to convert to (null- terminated), with or without surrounding square
brackets (for inline specifications); text following the closing bracket is ignored.

→ scale,offset,power Convert units using

pow(scale*value + offset, power);

Normally offset is zero except for log() or ln() conversions, e.g. "log(MHz)" to "ln(Hz)". Like-
wise, power is normally unity except for exp() conversions, e.g. "exp(ms)" to "exp(/Hz)". Thus
conversions ordinarily consist of

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.17 wcsunits.h File Reference 159

value *= scale;

Returns:

Status return value:

• 0: Success.

1-9: Status return from wcsulex().

• 10: Non-conformant unit specifications.

• 11: Non-conformant functions.

scale is zeroed on return if an error occurs.

6.17.3.2 int wcsutrn (int ctrl, char unitstr[])

wcsutrn() translates certain commonly used but non-standard unit strings, e.g. "DEG", "MHZ",
"KELVIN", that are not recognized by wcsulex(), refer to the notes below for a full list. Compounds
are also recognized, e.g. "JY/BEAM" and "KM/SEC/SEC". Extraneous embedded blanks are removed.

Parameters:

← ctrl Although "S" is commonly used to represent seconds, its translation to "s" is potentially unsafe
since the standard recognizes "S" formally as Siemens, however rarely that may be used. The
same applies to "H" for hours (Henry), and "D" for days (Debye). This bit-flag controls what to
do in such cases:

• 1: Translate "S" to "s".
• 2: Translate "H" to "h".
• 4: Translate "D" to "d".

Thus ctrl == 0 doesn’t do any unsafe translations, whereas ctrl == 7 does all of them.

↔ unitstr Null-terminated character array containing the units specification to be translated.
Inline units specifications in the a FITS header keycomment are also handled. If the first non-
blank character in unitstr is ’[’ then the unit string is delimited by its matching ’]’. Blanks
preceding ’[’ will be stripped off, but text following the closing bracket will be preserved without
modification.

Returns:

Status return value: -1: No change was made, other than stripping blanks (not an error).

• 0: Success.

• 9: Internal parser error.

12: Potentially unsafe translation, whether applied or not (see notes).

Notes:

Translation of non-standard unit specifications: apart from leading and trailing blanks, a case-sensitive
match is required for the aliases listed below, in particular the only recognized aliases with metric prefixes
are "KM", "KHZ", "MHZ", and "GHZ". Potentially unsafe translations of "D", "H", and "S", shown in
parentheses, are optional.

Unit Recognized aliases
---- ---
Angstrom angstrom
arcmin arcmins, ARCMIN, ARCMINS

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.17 wcsunits.h File Reference 160

arcsec arcsecs, ARCSEC, ARCSECS
beam BEAM
byte Byte
d day, days, (D), DAY, DAYS
deg degree, degrees, DEG, DEGREE, DEGREES
GHz GHZ
h hr, (H), HR
Hz hz, HZ
kHz KHZ
Jy JY
K kelvin, kelvins, Kelvin, Kelvins, KELVIN, KELVINS
km KM
m metre, meter, metres, meters, M, METRE, METER, METRES, METERS
min MIN
MHz MHZ
Ohm ohm
Pa pascal, pascals, Pascal, Pascals, PASCAL, PASCALS
pixel pixels, PIXEL, PIXELS
rad radian, radians, RAD, RADIAN, RADIANS
s sec, second, seconds, (S), SEC, SECOND, SECONDS
V volt, volts, Volt, Volts, VOLT, VOLTS
yr year, years, YR, YEAR, YEARS

The aliases "angstrom", "ohm", and "Byte" for (Angstrom, Ohm, and byte) are recognized by wcsulex()
itself as an unofficial extension of the standard, but they are converted to the standard form here.

6.17.3.3 int wcsulex (const char unitstr[], int ∗ func, double ∗ scale, double units[])

wcsulex() parses a standard FITS units specification of arbitrary complexity, deriving the scale factor re-
quired to convert to canonical units - basically SI with degrees and "dimensionless" additions such as byte,
pixel and count.

Parameters:

← unitstr Null-terminated character array containing the units specification, with or without sur-
rounding square brackets (for inline specifications); text following the closing bracket is ignored.

→ func Special function type, see note 4:

• 0: None
• 1: log() ...base 10
• 2: ln() ...base e
• 3: exp()

→ scale Scale factor for the unit specification; multiply a value expressed in the given units by this
factor to convert it to canonical units.

→ units A units specification is decomposed into powers of 16 fundamental unit types: angle, mass,
length, time, count, pixel, etc. Preprocessor macro WCSUNITS_NTYPE is defined to dimension
this vector, and others such WCSUNITS_PLANE_ANGLE, WCSUNITS_LENGTH, etc. to
access its elements.
Corresponding character strings, wcsunits_types[] and wcsunits_units[], are predefined to de-
scribe each quantity and its canonical units.

Returns:

Status return value:

• 0: Success.

• 1: Invalid numeric multiplier.

• 2: Dangling binary operator.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.17 wcsunits.h File Reference 161

• 3: Invalid symbol in INITIAL context.

• 4: Function in invalid context.

• 5: Invalid symbol in EXPON context.

• 6: Unbalanced bracket.

• 7: Unbalanced parenthesis.

• 8: Consecutive binary operators.

• 9: Internal parser error.

scale and units[] are zeroed on return if an error occurs.

Notes:

1. wcsulex() is permissive in accepting whitespace in all contexts in a units specification where it does
not create ambiguity (e.g. not between a metric prefix and a basic unit string), including in strings
like "log (m ∗∗ 2)" which is formally disallowed.

2. Supported extensions:

• "angstrom" (OGIP usage) is allowed in addition to "Angstrom".

• "ohm" (OGIP usage) is allowed in addition to "Ohm".

• "Byte" (common usage) is allowed in addition to "byte".

3. Table 6 of WCS Paper I lists eleven units for which metric prefixes are allowed. However, in this im-
plementation only prefixes greater than unity are allowed for "a" (annum), "yr" (year), "pc" (parsec),
"bit", and "byte", and only prefixes less than unity are allowed for "mag" (stellar magnitude).

Metric prefix "P" (peta) is specifically forbidden for "a" (annum) to avoid confusion with "Pa" (Pas-
cal, not peta-annum). Note that metric prefixes are specifically disallowed for "h" (hour) and "d"
(day) so that "ph" (photons) cannot be interpreted as pico-hours, nor "cd" (candela) as centi-days.

4. Function types log(), ln() and exp() may only occur at the start of the units specification. The scale
and units[] returned for these refers to the string inside the function "argument", e.g. to "MHz" in
log(MHz) for which a scale of 106 will be returned.

6.17.4 Variable Documentation

6.17.4.1 const char ∗ wcsunits_errmsg[]

Error messages to match the status value returned from each function.

6.17.4.2 const char ∗ wcsunits_types[]

Names for physical quantities to match the units vector returned by wcsulex():

• 0: plane angle

• 1: solid angle

• 2: charge

• 3: mole

• 4: temperature

• 5: luminous intensity

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.18 wcsutil.h File Reference 162

• 6: mass

• 7: length

• 8: time

• 9: beam

• 10: bin

• 11: bit

• 12: count

• 13: stellar magnitude

• 14: pixel

• 15: solar ratio

• 16: voxel

6.17.4.3 const char ∗ wcsunits_units[]

Names for the units (SI) to match the units vector returned by wcsulex():

• 0: degree

• 1: steradian

• 2: Coulomb

• 3: mole

• 4: Kelvin

• 5: candela

• 6: kilogram

• 7: metre

• 8: second

The remainder are dimensionless.

6.18 wcsutil.h File Reference

Functions

• void wcsutil_blank_fill (int n, char c[])
Fill a character string with blanks.

• void wcsutil_null_fill (int n, char c[])
Fill a character string with NULLs.

• int wcsutil_allEq (int nvec, int nelem, const double ∗first)
Test for equality of a particular vector element.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.18 wcsutil.h File Reference 163

• void wcsutil_setAll (int nvec, int nelem, double ∗first)
Set a particular vector element.

• void wcsutil_setAli (int nvec, int nelem, int ∗first)
Set a particular vector element.

• void wcsutil_setBit (int nelem, const int ∗sel, int bits, int ∗array)
Set bits in selected elements of an array.

6.18.1 Detailed Description

Simple utility functions used by WCSLIB. They are documented here solely as an aid to understanding the
code. Thay are not intended for external use - the API may change without notice!

6.18.2 Function Documentation

6.18.2.1 void wcsutil_blank_fill (int n, char c[])

wcsutil_blank_fill() pads a character string with blanks starting with the terminating NULL character.

Used by the Fortran wrapper functions in translating C character strings into Fortran CHARACTER vari-
ables.

Parameters:

← n Length of the character array, c[].

↔ c The character string. It will not be null-terminated on return.

Returns:

6.18.2.2 void wcsutil_null_fill (int n, char c[])

wcsutil_null_fill() strips off trailing blanks and pads the character array holding the string with NULL
characters.

Used mainly to make character strings intelligible in the GNU debugger which prints the rubbish following
the terminating NULL, obscuring the valid part of the string.

Parameters:

← n Number of characters.

↔ c The character string.

Returns:

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.18 wcsutil.h File Reference 164

6.18.2.3 int wcsutil_allEq (int nvec, int nelem, const double ∗ first)

wcsutil_allEq() tests for equality of a particular element in a set of vectors.

Parameters:

← nvec The number of vectors.

← nelem The length of each vector.

← first Pointer to the first element to test in the array. The elements tested for equality are

*first == *(first + nelem)
== *(first + nelem*2)

:
== *(first + nelem*(nvec-1));

The array might be dimensioned as

double v[nvec][nelem];

Returns:

Status return value:

• 0: Not all equal.

• 1: All equal.

6.18.2.4 void wcsutil_setAll (int nvec, int nelem, double ∗ first)

wcsutil_setAll() sets the value of a particular element in a set of vectors.

Parameters:

← nvec The number of vectors.

← nelem The length of each vector.

↔ first Pointer to the first element in the array, the value of which is used to set the others

*(first + nelem) = *first;

*(first + nelem*2) = *first;
:

(first + nelem(nvec-1)) = *first;

The array might be dimensioned as

double v[nvec][nelem];

Returns:

6.18.2.5 void wcsutil_setAli (int nvec, int nelem, int ∗ first)

wcsutil_setAli() sets the value of a particular element in a set of vectors.

Parameters:

← nvec The number of vectors.

← nelem The length of each vector.

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

6.18 wcsutil.h File Reference 165

↔ first Pointer to the first element in the array, the value of which is used to set the others

*(first + nelem) = *first;

*(first + nelem*2) = *first;
:

(first + nelem(nvec-1)) = *first;

The array might be dimensioned as

int v[nvec][nelem];

Returns:

6.18.2.6 void wcsutil_setBit (int nelem, const int ∗ sel, int bits, int ∗ array)

wcsutil_setBit() sets bits in selected elements of an array.

Parameters:

← nelem Number of elements in the array.

← sel Address of a selection array of length nelem. May be specified as the null pointer in which case
all elements are selected.

← bits Bit mask.

↔ array Address of the array of length nelem.

Returns:

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

Index
acosd

wcstrig.h, 153
afrq

spxprm, 23
afrqfreq

spx.h, 101
airs2x

prj.h, 76
airset

prj.h, 75
airx2s

prj.h, 76
aits2x

prj.h, 79
aitset

prj.h, 78
aitx2s

prj.h, 78
alt

wcsprm, 36
altlin

wcsprm, 35
arcs2x

prj.h, 75
arcset

prj.h, 74
arcx2s

prj.h, 75
arrayp

wtbarr, 43
asind

wcstrig.h, 153
atan2d

wcstrig.h, 154
atand

wcstrig.h, 154
awav

spxprm, 24
awavfreq

spx.h, 102
awavvelo

spx.h, 103
awavwave

spx.h, 102
azps2x

prj.h, 73
azpset

prj.h, 73
azpx2s

prj.h, 73

beta
spxprm, 24

betavelo
spx.h, 102

bons2x
prj.h, 80

bonset
prj.h, 80

bonx2s
prj.h, 80

bounds
prjprm, 15

c
fitskey, 10

cars2x
prj.h, 77

carset
prj.h, 77

carx2s
prj.h, 77

category
prjprm, 16

cd
wcsprm, 35

cdelt
linprm, 13
wcsprm, 33

CDFIX
wcsfix.h, 125

cdfix
wcsfix.h, 126

ceas2x
prj.h, 76

ceaset
prj.h, 76

ceax2s
prj.h, 76

cel
wcsprm, 40

cel.h, 43
cel_errmsg, 48
celini, 45
celini_errmsg, 45
CELLEN, 45
celprt, 46
celprt_errmsg, 45
cels2x, 47
cels2x_errmsg, 45
celset, 46
celset_errmsg, 45

INDEX 167

celx2s, 46
celx2s_errmsg, 45

cel_errmsg
cel.h, 48

CELFIX
wcsfix.h, 125

celfix
wcsfix.h, 127

celini
cel.h, 45

celini_errmsg
cel.h, 45

CELLEN
cel.h, 45

celprm, 5
euler, 7
flag, 5
isolat, 7
latpreq, 7
offset, 6
phi0, 6
prj, 6
ref, 6
theta0, 6

celprt
cel.h, 46

celprt_errmsg
cel.h, 45

cels2x
cel.h, 47

cels2x_errmsg
cel.h, 45

celset
cel.h, 46

celset_errmsg
cel.h, 45

celx2s
cel.h, 46

celx2s_errmsg
cel.h, 45

cname
wcsprm, 36

code
prjprm, 15
spcprm, 20

cods2x
prj.h, 80

codset
prj.h, 79

codx2s
prj.h, 79

coes2x
prj.h, 79

coeset

prj.h, 79
coex2s

prj.h, 79
colax

wcsprm, 36
colnum

wcsprm, 36
comment

fitskey, 10
conformal

prjprm, 16
CONIC

prj.h, 82
CONVENTIONAL

prj.h, 82
coord

tabprm, 28
coos2x

prj.h, 80
cooset

prj.h, 80
coox2s

prj.h, 80
cops2x

prj.h, 79
copset

prj.h, 79
copx2s

prj.h, 79
cosd

wcstrig.h, 152
count

fitskeyid, 11
crder

wcsprm, 36
crota

wcsprm, 35
crpix

linprm, 12
wcsprm, 32

crval
spcprm, 20
tabprm, 28
wcsprm, 33

cscs2x
prj.h, 81

cscset
prj.h, 81

cscx2s
prj.h, 81

csyer
wcsprm, 37

ctype
wcsprm, 33

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

INDEX 168

cubeface
wcsprm, 40

cunit
wcsprm, 33

CYLFIX
wcsfix.h, 126

cylfix
wcsfix.h, 128

cylfix_errmsg
wcsfix.h, 126

CYLINDRICAL
prj.h, 82

cyps2x
prj.h, 76

cypset
prj.h, 76

cypx2s
prj.h, 76

D2R
wcsmath.h, 150

dafrqfreq
spxprm, 24

dateavg
wcsprm, 37

dateobs
wcsprm, 37

DATFIX
wcsfix.h, 125

datfix
wcsfix.h, 127

dawavfreq
spxprm, 25

dawavvelo
spxprm, 25

dawavwave
spxprm, 25

dbetavelo
spxprm, 26

delta
tabprm, 28

denerfreq
spxprm, 24

dfreqafrq
spxprm, 24

dfreqawav
spxprm, 25

dfreqener
spxprm, 24

dfreqvelo
spxprm, 25

dfreqvrad
spxprm, 24

dfreqwave

spxprm, 24
dfreqwavn

spxprm, 24
dimlen

wtbarr, 43
divergent

prjprm, 17
dveloawav

spxprm, 26
dvelobeta

spxprm, 26
dvelofreq

spxprm, 25
dvelowave

spxprm, 25
dvoptwave

spxprm, 25
dvradfreq

spxprm, 24
dwaveawav

spxprm, 25
dwavefreq

spxprm, 24
dwavevelo

spxprm, 25
dwavevopt

spxprm, 25
dwavezopt

spxprm, 25
dwavnfreq

spxprm, 24
dzoptwave

spxprm, 25

ener
spxprm, 23

enerfreq
spx.h, 101

equiareal
prjprm, 16

equinox
wcsprm, 37

euler
celprm, 7

extlev
wtbarr, 42

extnam
wtbarr, 42

extrema
tabprm, 29

extver
wtbarr, 42

f

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

INDEX 169

fitskey, 10
fits_read_wcstab

getwcstab.h, 52
fitshdr

fitshdr.h, 50
fitshdr.h, 48

fitshdr, 50
FITSHDR_CARD, 49
FITSHDR_COMMENT, 49
fitshdr_errmsg, 52
FITSHDR_KEYREC, 49
FITSHDR_KEYVALUE, 49
FITSHDR_KEYWORD, 49
FITSHDR_TRAILER, 49
int64, 50
KEYIDLEN, 49
KEYLEN, 49

FITSHDR_CARD
fitshdr.h, 49

FITSHDR_COMMENT
fitshdr.h, 49

fitshdr_errmsg
fitshdr.h, 52

FITSHDR_KEYREC
fitshdr.h, 49

FITSHDR_KEYVALUE
fitshdr.h, 49

FITSHDR_KEYWORD
fitshdr.h, 49

FITSHDR_TRAILER
fitshdr.h, 49

fitskey, 7
c, 10
comment, 10
f, 10
i, 10
k, 10
keyid, 8
keyno, 8
keyvalue, 10
keyword, 8
l, 10
padding, 9
s, 10
status, 8
type, 8
ulen, 10

fitskeyid, 11
count, 11
idx, 11
name, 11

flag
celprm, 5
linprm, 12

prjprm, 15
spcprm, 19
tabprm, 27
wcsprm, 32

freq
spxprm, 23

freqafrq
spx.h, 100

freqawav
spx.h, 101

freqener
spx.h, 101

freqvelo
spx.h, 102

freqvrad
spx.h, 103

freqwave
spx.h, 101

freqwavn
spx.h, 101

getwcstab.h, 52
fits_read_wcstab, 52

global
prjprm, 17

HEALPIX
prj.h, 83

hpxs2x
prj.h, 82

hpxset
prj.h, 82

hpxx2s
prj.h, 82

i
fitskey, 10
pscard, 18
pvcard, 18
wtbarr, 42

i_naxis
linprm, 13

idx
fitskeyid, 11

imgpix
linprm, 13

index
tabprm, 28

int64
fitshdr.h, 50

isGrism
spcprm, 21

isolat
celprm, 7

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

INDEX 170

K
tabprm, 27

k
fitskey, 10

keyid
fitskey, 8

KEYIDLEN
fitshdr.h, 49

KEYLEN
fitshdr.h, 49

keyno
fitskey, 8

keyvalue
fitskey, 10

keyword
fitskey, 8

kind
wtbarr, 42

l
fitskey, 10

lat
wcsprm, 39

latpole
wcsprm, 34

latpreq
celprm, 7

lattyp
wcsprm, 39

lin
wcsprm, 40

lin.h, 53
lin_errmsg, 59
lincpy, 56
lincpy_errmsg, 55
linfree, 57
linfree_errmsg, 55
linini, 56
linini_errmsg, 55
LINLEN, 55
linp2x, 58
linp2x_errmsg, 56
linprt, 57
linprt_errmsg, 55
linset, 57
linset_errmsg, 56
linx2p, 58
linx2p_errmsg, 56
matinv, 59

lin_errmsg
lin.h, 59

lincpy
lin.h, 56

lincpy_errmsg

lin.h, 55
linfree

lin.h, 57
linfree_errmsg

lin.h, 55
linini

lin.h, 56
linini_errmsg

lin.h, 55
LINLEN

lin.h, 55
linp2x

lin.h, 58
linp2x_errmsg

lin.h, 56
linprm, 11

cdelt, 13
crpix, 12
flag, 12
i_naxis, 13
imgpix, 13
m_cdelt, 14
m_crpix, 14
m_flag, 13
m_naxis, 13
m_pc, 14
naxis, 12
pc, 12
piximg, 13
unity, 13

linprt
lin.h, 57

linprt_errmsg
lin.h, 55

linset
lin.h, 57

linset_errmsg
lin.h, 56

linx2p
lin.h, 58

linx2p_errmsg
lin.h, 56

lng
wcsprm, 39

lngtyp
wcsprm, 39

log.h, 59
log_errmsg, 61
logs2x, 60
logx2s, 60

log_errmsg
log.h, 61

logs2x
log.h, 60

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

INDEX 171

logx2s
log.h, 60

lonpole
wcsprm, 34

M
tabprm, 27

m
pscard, 18
pvcard, 18
wtbarr, 42

m_cd
wcsprm, 41

m_cdelt
linprm, 14
wcsprm, 40

m_cname
wcsprm, 41

m_colax
wcsprm, 41

m_coord
tabprm, 29

m_crder
wcsprm, 41

m_crota
wcsprm, 41

m_crpix
linprm, 14
wcsprm, 40

m_crval
tabprm, 29
wcsprm, 40

m_csyer
wcsprm, 41

m_ctype
wcsprm, 40

m_cunit
wcsprm, 40

m_flag
linprm, 13
tabprm, 29
wcsprm, 40

m_index
tabprm, 29

m_indxs
tabprm, 29

m_K
tabprm, 29

m_M
tabprm, 29

m_map
tabprm, 29

m_N
tabprm, 29

m_naxis
linprm, 13
wcsprm, 40

m_pc
linprm, 14
wcsprm, 40

m_ps
wcsprm, 41

m_pv
wcsprm, 41

m_tab
wcsprm, 41

m_wtb
wcsprm, 41

map
tabprm, 27

matinv
lin.h, 59

mers2x
prj.h, 77

merset
prj.h, 77

merx2s
prj.h, 77

mjdavg
wcsprm, 37

mjdobs
wcsprm, 37

mols2x
prj.h, 78

molset
prj.h, 78

molx2s
prj.h, 78

n
prjprm, 17

name
fitskeyid, 11
prjprm, 16

naxis
linprm, 12
wcsprm, 32

nc
tabprm, 28

ndim
wtbarr, 43

nps
wcsprm, 34

npsmax
wcsprm, 35

npv
wcsprm, 34

npvmax

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

INDEX 172

wcsprm, 34
ntab

wcsprm, 38
NWCSFIX

wcsfix.h, 126
nwtb

wcsprm, 38

obsgeo
wcsprm, 37

offset
celprm, 6

p0
tabprm, 28

padding
fitskey, 9
prjprm, 17
spcprm, 21
tabprm, 28

pars2x
prj.h, 78

parset
prj.h, 78

parx2s
prj.h, 78

pc
linprm, 12
wcsprm, 32

pcos2x
prj.h, 81

pcoset
prj.h, 80

pcox2s
prj.h, 81

phi0
celprm, 6
prjprm, 15

PI
wcsmath.h, 150

piximg
linprm, 13

POLYCONIC
prj.h, 83

prj
celprm, 6

prj.h, 61
airs2x, 76
airset, 75
airx2s, 76
aits2x, 79
aitset, 78
aitx2s, 78
arcs2x, 75

arcset, 74
arcx2s, 75
azps2x, 73
azpset, 73
azpx2s, 73
bons2x, 80
bonset, 80
bonx2s, 80
cars2x, 77
carset, 77
carx2s, 77
ceas2x, 76
ceaset, 76
ceax2s, 76
cods2x, 80
codset, 79
codx2s, 79
coes2x, 79
coeset, 79
coex2s, 79
CONIC, 82
CONVENTIONAL, 82
coos2x, 80
cooset, 80
coox2s, 80
cops2x, 79
copset, 79
copx2s, 79
cscs2x, 81
cscset, 81
cscx2s, 81
CYLINDRICAL, 82
cyps2x, 76
cypset, 76
cypx2s, 76
HEALPIX, 83
hpxs2x, 82
hpxset, 82
hpxx2s, 82
mers2x, 77
merset, 77
merx2s, 77
mols2x, 78
molset, 78
molx2s, 78
pars2x, 78
parset, 78
parx2s, 78
pcos2x, 81
pcoset, 80
pcox2s, 81
POLYCONIC, 83
prj_categories, 83
prj_codes, 83

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

INDEX 173

prj_errmsg, 82
prj_ncode, 83
prjini, 71
prjini_errmsg, 70
PRJLEN, 70
prjprt, 71
prjprt_errmsg, 70
prjs2x, 72
PRJS2X_ARGS, 70
prjs2x_errmsg, 70
prjset, 71
prjset_errmsg, 70
prjx2s, 72
PRJX2S_ARGS, 70
prjx2s_errmsg, 70
PSEUDOCYLINDRICAL, 83
PVN, 70
qscs2x, 82
qscset, 81
qscx2s, 82
QUADCUBE, 83
sfls2x, 77
sflset, 77
sflx2s, 77
sins2x, 74
sinset, 74
sinx2s, 74
stgs2x, 74
stgset, 74
stgx2s, 74
szps2x, 73
szpset, 73
szpx2s, 73
tans2x, 74
tanset, 73
tanx2s, 73
tscs2x, 81
tscset, 81
tscx2s, 81
zeas2x, 75
zeaset, 75
zeax2s, 75
ZENITHAL, 83
zpns2x, 75
zpnset, 75
zpnx2s, 75

prj_categories
prj.h, 83

prj_codes
prj.h, 83

prj_errmsg
prj.h, 82

prj_ncode
prj.h, 83

prjini
prj.h, 71

prjini_errmsg
prj.h, 70

PRJLEN
prj.h, 70

prjprm, 14
bounds, 15
category, 16
code, 15
conformal, 16
divergent, 17
equiareal, 16
flag, 15
global, 17
n, 17
name, 16
padding, 17
phi0, 15
prjs2x, 17
prjx2s, 17
pv, 15
pvrange, 16
r0, 15
simplezen, 16
theta0, 15
w, 17
x0, 17
y0, 17

prjprt
prj.h, 71

prjprt_errmsg
prj.h, 70

prjs2x
prj.h, 72
prjprm, 17

PRJS2X_ARGS
prj.h, 70

prjs2x_errmsg
prj.h, 70

prjset
prj.h, 71

prjset_errmsg
prj.h, 70

prjx2s
prj.h, 72
prjprm, 17

PRJX2S_ARGS
prj.h, 70

prjx2s_errmsg
prj.h, 70

ps
wcsprm, 35

pscard, 17

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

INDEX 174

i, 18
m, 18
value, 18

PSEUDOCYLINDRICAL
prj.h, 83

pv
prjprm, 15
spcprm, 20
wcsprm, 34

pvcard, 18
i, 18
m, 18
value, 19

PVN
prj.h, 70

pvrange
prjprm, 16

qscs2x
prj.h, 82

qscset
prj.h, 81

qscx2s
prj.h, 82

QUADCUBE
prj.h, 83

r0
prjprm, 15

R2D
wcsmath.h, 150

radesys
wcsprm, 37

ref
celprm, 6

restfrq
spcprm, 20
spxprm, 23
wcsprm, 34

restwav
spcprm, 20
spxprm, 23
wcsprm, 34

row
wtbarr, 43

s
fitskey, 10

sense
tabprm, 28

set_M
tabprm, 29

sfls2x
prj.h, 77

sflset
prj.h, 77

sflx2s
prj.h, 77

simplezen
prjprm, 16

sincosd
wcstrig.h, 153

sind
wcstrig.h, 152

sins2x
prj.h, 74

sinset
prj.h, 74

sinx2s
prj.h, 74

spc
wcsprm, 40

spc.h, 83
spc_errmsg, 93
spcaips, 92
spcini, 87
spcini_errmsg, 86
SPCLEN, 86
spcprt, 87
spcprt_errmsg, 87
spcs2x, 89
spcs2x_errmsg, 87
spcset, 88
spcset_errmsg, 87
spcspx, 90
spctrn, 91
spctyp, 89
spcx2s, 88
spcx2s_errmsg, 87
spcxps, 91

spc_errmsg
spc.h, 93

spcaips
spc.h, 92

SPCFIX
wcsfix.h, 126

spcfix
wcsfix.h, 128

spcini
spc.h, 87

spcini_errmsg
spc.h, 86

SPCLEN
spc.h, 86

spcprm, 19
code, 20
crval, 20
flag, 19

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

INDEX 175

isGrism, 21
padding, 21
pv, 20
restfrq, 20
restwav, 20
spxP2S, 21
spxP2X, 21
spxS2P, 21
spxX2P, 21
type, 20
w, 20

spcprt
spc.h, 87

spcprt_errmsg
spc.h, 87

spcs2x
spc.h, 89

spcs2x_errmsg
spc.h, 87

spcset
spc.h, 88

spcset_errmsg
spc.h, 87

spcspx
spc.h, 90

spctrn
spc.h, 91

spctyp
spc.h, 89

spcx2s
spc.h, 88

spcx2s_errmsg
spc.h, 87

spcxps
spc.h, 91

spec
wcsprm, 39

specsys
wcsprm, 37

specx
spx.h, 100

sph.h, 93
sphdpa, 95
sphpad, 96
sphs2x, 94
sphx2s, 94

sphdpa
sph.h, 95

sphpad
sph.h, 96

sphs2x
sph.h, 94

sphx2s
sph.h, 94

spx.h, 96
afrqfreq, 101
awavfreq, 102
awavvelo, 103
awavwave, 102
betavelo, 102
enerfreq, 101
freqafrq, 100
freqawav, 101
freqener, 101
freqvelo, 102
freqvrad, 103
freqwave, 101
freqwavn, 101
specx, 100
SPX_ARGS, 100
spx_errmsg, 104
SPXLEN, 100
veloawav, 104
velobeta, 102
velofreq, 103
velowave, 103
voptwave, 104
vradfreq, 103
waveawav, 102
wavefreq, 101
wavevelo, 103
wavevopt, 104
wavezopt, 104
wavnfreq, 101
zoptwave, 104

SPX_ARGS
spx.h, 100

spx_errmsg
spx.h, 104

SPXLEN
spx.h, 100

spxP2S
spcprm, 21

spxP2X
spcprm, 21

spxprm, 21
afrq, 23
awav, 24
beta, 24
dafrqfreq, 24
dawavfreq, 25
dawavvelo, 25
dawavwave, 25
dbetavelo, 26
denerfreq, 24
dfreqafrq, 24
dfreqawav, 25
dfreqener, 24

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

INDEX 176

dfreqvelo, 25
dfreqvrad, 24
dfreqwave, 24
dfreqwavn, 24
dveloawav, 26
dvelobeta, 26
dvelofreq, 25
dvelowave, 25
dvoptwave, 25
dvradfreq, 24
dwaveawav, 25
dwavefreq, 24
dwavevelo, 25
dwavevopt, 25
dwavezopt, 25
dwavnfreq, 24
dzoptwave, 25
ener, 23
freq, 23
restfrq, 23
restwav, 23
velo, 24
velotype, 23
vopt, 23
vrad, 23
wave, 23
wavetype, 23
wavn, 23
zopt, 23

spxS2P
spcprm, 21

spxX2P
spcprm, 21

SQRT2
wcsmath.h, 150

SQRT2INV
wcsmath.h, 150

ssysobs
wcsprm, 37

ssyssrc
wcsprm, 38

status
fitskey, 8

stgs2x
prj.h, 74

stgset
prj.h, 74

stgx2s
prj.h, 74

szps2x
prj.h, 73

szpset
prj.h, 73

szpx2s

prj.h, 73

tab
wcsprm, 38

tab.h, 104
tab_errmsg, 110
tabcpy, 108
tabcpy_errmsg, 106
tabfree, 108
tabfree_errmsg, 106
tabini, 107
tabini_errmsg, 106
TABLEN, 106
tabmem, 108
tabprt, 109
tabprt_errmsg, 106
tabs2x, 110
tabs2x_errmsg, 107
tabset, 109
tabset_errmsg, 107
tabx2s, 109
tabx2s_errmsg, 107

tab_errmsg
tab.h, 110

tabcpy
tab.h, 108

tabcpy_errmsg
tab.h, 106

tabfree
tab.h, 108

tabfree_errmsg
tab.h, 106

tabini
tab.h, 107

tabini_errmsg
tab.h, 106

TABLEN
tab.h, 106

tabmem
tab.h, 108

tabprm, 26
coord, 28
crval, 28
delta, 28
extrema, 29
flag, 27
index, 28
K, 27
M, 27
m_coord, 29
m_crval, 29
m_flag, 29
m_index, 29
m_indxs, 29

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

INDEX 177

m_K, 29
m_M, 29
m_map, 29
m_N, 29
map, 27
nc, 28
p0, 28
padding, 28
sense, 28
set_M, 29

tabprt
tab.h, 109

tabprt_errmsg
tab.h, 106

tabs2x
tab.h, 110

tabs2x_errmsg
tab.h, 107

tabset
tab.h, 109

tabset_errmsg
tab.h, 107

tabx2s
tab.h, 109

tabx2s_errmsg
tab.h, 107

tand
wcstrig.h, 153

tans2x
prj.h, 74

tanset
prj.h, 73

tanx2s
prj.h, 73

theta0
celprm, 6
prjprm, 15

tscs2x
prj.h, 81

tscset
prj.h, 81

tscx2s
prj.h, 81

ttype
wtbarr, 43

type
fitskey, 8
spcprm, 20

types
wcsprm, 38

ulen
fitskey, 10

UNDEFINED

wcsmath.h, 150
undefined

wcsmath.h, 151
UNITFIX

wcsfix.h, 125
unitfix

wcsfix.h, 127
unity

linprm, 13

value
pscard, 18
pvcard, 19

velangl
wcsprm, 38

velo
spxprm, 24

veloawav
spx.h, 104

velobeta
spx.h, 102

velofreq
spx.h, 103

velosys
wcsprm, 37

velotype
spxprm, 23

velowave
spx.h, 103

velref
wcsprm, 36

vopt
spxprm, 23

voptwave
spx.h, 104

vrad
spxprm, 23

vradfreq
spx.h, 103

w
prjprm, 17
spcprm, 20

wave
spxprm, 23

waveawav
spx.h, 102

wavefreq
spx.h, 101

wavetype
spxprm, 23

wavevelo
spx.h, 103

wavevopt

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

INDEX 178

spx.h, 104
wavezopt

spx.h, 104
wavn

spxprm, 23
wavnfreq

spx.h, 101
wcs.h, 111

wcs_errmsg, 123
wcscopy, 114
wcscopy_errmsg, 115
wcsfree, 118
wcsfree_errmsg, 115
wcsini, 116
wcsini_errmsg, 114
WCSLEN, 114
wcsmix, 121
wcsmix_errmsg, 115
wcsnps, 116
wcsnpv, 116
wcsp2s, 119
wcsp2s_errmsg, 115
wcsprt, 119
wcsprt_errmsg, 115
wcss2p, 120
wcss2p_errmsg, 115
wcsset, 119
wcsset_errmsg, 115
wcssptr, 122
wcssub, 117
WCSSUB_CELESTIAL, 114
WCSSUB_CUBEFACE, 114
wcssub_errmsg, 115
WCSSUB_LATITUDE, 114
WCSSUB_LONGITUDE, 114
WCSSUB_SPECTRAL, 114
WCSSUB_STOKES, 114

wcs_errmsg
wcs.h, 123

wcsbdx
wcshdr.h, 145

wcsbth
wcshdr.h, 137

wcscopy
wcs.h, 114

wcscopy_errmsg
wcs.h, 115

wcsfix
wcsfix.h, 126

wcsfix.h, 123
CDFIX, 125
cdfix, 126
CELFIX, 125
celfix, 127

CYLFIX, 126
cylfix, 128
cylfix_errmsg, 126
DATFIX, 125
datfix, 127
NWCSFIX, 126
SPCFIX, 126
spcfix, 128
UNITFIX, 125
unitfix, 127
wcsfix, 126
wcsfix_errmsg, 129

wcsfix_errmsg
wcsfix.h, 129

wcsfree
wcs.h, 118

wcsfree_errmsg
wcs.h, 115

wcshdo
wcshdr.h, 146

WCSHDO_all
wcshdr.h, 135

WCSHDO_CNAMna
wcshdr.h, 135

WCSHDO_CRPXna
wcshdr.h, 135

WCSHDO_DOBSn
wcshdr.h, 135

WCSHDO_none
wcshdr.h, 135

WCSHDO_PVn_ma
wcshdr.h, 135

WCSHDO_safe
wcshdr.h, 135

WCSHDO_TPCn_ka
wcshdr.h, 135

WCSHDO_WCSNna
wcshdr.h, 136

wcshdr.h, 129
wcsbdx, 145
wcsbth, 137
wcshdo, 146
WCSHDO_all, 135
WCSHDO_CNAMna, 135
WCSHDO_CRPXna, 135
WCSHDO_DOBSn, 135
WCSHDO_none, 135
WCSHDO_PVn_ma, 135
WCSHDO_safe, 135
WCSHDO_TPCn_ka, 135
WCSHDO_WCSNna, 136
WCSHDR_all, 133
WCSHDR_ALLIMG, 134
WCSHDR_AUXIMG, 134

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

INDEX 179

WCSHDR_BIMGARR, 134
WCSHDR_CD00i00j, 133
WCSHDR_CNAMn, 134
WCSHDR_CROTAia, 133
WCSHDR_DOBSn, 134
WCSHDR_EPOCHa, 133
wcshdr_errmsg, 149
WCSHDR_IMGHEAD, 134
WCSHDR_LONGKEY, 134
WCSHDR_none, 133
WCSHDR_PC00i00j, 133
WCSHDR_PIXLIST, 135
WCSHDR_PROJPn, 133
WCSHDR_RADECSYS, 134
WCSHDR_reject, 133
WCSHDR_VELREFa, 133
WCSHDR_VSOURCE, 134
wcsidx, 145
wcspih, 136
wcstab, 144
wcsvfree, 146

WCSHDR_all
wcshdr.h, 133

WCSHDR_ALLIMG
wcshdr.h, 134

WCSHDR_AUXIMG
wcshdr.h, 134

WCSHDR_BIMGARR
wcshdr.h, 134

WCSHDR_CD00i00j
wcshdr.h, 133

WCSHDR_CNAMn
wcshdr.h, 134

WCSHDR_CROTAia
wcshdr.h, 133

WCSHDR_DOBSn
wcshdr.h, 134

WCSHDR_EPOCHa
wcshdr.h, 133

wcshdr_errmsg
wcshdr.h, 149

WCSHDR_IMGHEAD
wcshdr.h, 134

WCSHDR_LONGKEY
wcshdr.h, 134

WCSHDR_none
wcshdr.h, 133

WCSHDR_PC00i00j
wcshdr.h, 133

WCSHDR_PIXLIST
wcshdr.h, 135

WCSHDR_PROJPn
wcshdr.h, 133

WCSHDR_RADECSYS

wcshdr.h, 134
WCSHDR_reject

wcshdr.h, 133
WCSHDR_VELREFa

wcshdr.h, 133
WCSHDR_VSOURCE

wcshdr.h, 134
wcsidx

wcshdr.h, 145
wcsini

wcs.h, 116
wcsini_errmsg

wcs.h, 114
WCSLEN

wcs.h, 114
wcslib.h, 149
wcsmath.h, 150

D2R, 150
PI, 150
R2D, 150
SQRT2, 150
SQRT2INV, 150
UNDEFINED, 150
undefined, 151

wcsmix
wcs.h, 121

wcsmix_errmsg
wcs.h, 115

wcsname
wcsprm, 38

wcsnps
wcs.h, 116

wcsnpv
wcs.h, 116

wcsp2s
wcs.h, 119

wcsp2s_errmsg
wcs.h, 115

wcspih
wcshdr.h, 136

wcsprm, 30
alt, 36
altlin, 35
cd, 35
cdelt, 33
cel, 40
cname, 36
colax, 36
colnum, 36
crder, 36
crota, 35
crpix, 32
crval, 33
csyer, 37

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

INDEX 180

ctype, 33
cubeface, 40
cunit, 33
dateavg, 37
dateobs, 37
equinox, 37
flag, 32
lat, 39
latpole, 34
lattyp, 39
lin, 40
lng, 39
lngtyp, 39
lonpole, 34
m_cd, 41
m_cdelt, 40
m_cname, 41
m_colax, 41
m_crder, 41
m_crota, 41
m_crpix, 40
m_crval, 40
m_csyer, 41
m_ctype, 40
m_cunit, 40
m_flag, 40
m_naxis, 40
m_pc, 40
m_ps, 41
m_pv, 41
m_tab, 41
m_wtb, 41
mjdavg, 37
mjdobs, 37
naxis, 32
nps, 34
npsmax, 35
npv, 34
npvmax, 34
ntab, 38
nwtb, 38
obsgeo, 37
pc, 32
ps, 35
pv, 34
radesys, 37
restfrq, 34
restwav, 34
spc, 40
spec, 39
specsys, 37
ssysobs, 37
ssyssrc, 38
tab, 38

types, 38
velangl, 38
velosys, 37
velref, 36
wcsname, 38
wtb, 38
zsource, 38

wcsprt
wcs.h, 119

wcsprt_errmsg
wcs.h, 115

wcss2p
wcs.h, 120

wcss2p_errmsg
wcs.h, 115

wcsset
wcs.h, 119

wcsset_errmsg
wcs.h, 115

wcssptr
wcs.h, 122

wcssub
wcs.h, 117

WCSSUB_CELESTIAL
wcs.h, 114

WCSSUB_CUBEFACE
wcs.h, 114

wcssub_errmsg
wcs.h, 115

WCSSUB_LATITUDE
wcs.h, 114

WCSSUB_LONGITUDE
wcs.h, 114

WCSSUB_SPECTRAL
wcs.h, 114

WCSSUB_STOKES
wcs.h, 114

wcstab
wcshdr.h, 144

wcstrig.h, 151
acosd, 153
asind, 153
atan2d, 154
atand, 154
cosd, 152
sincosd, 153
sind, 152
tand, 153
WCSTRIG_TOL, 152

WCSTRIG_TOL
wcstrig.h, 152

wcsulex
wcsunits.h, 160

wcsunits

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

INDEX 181

wcsunits.h, 158
wcsunits.h, 154

wcsulex, 160
wcsunits, 158
WCSUNITS_BEAM, 157
WCSUNITS_BIN, 157
WCSUNITS_BIT, 157
WCSUNITS_CHARGE, 156
WCSUNITS_COUNT, 157
wcsunits_errmsg, 161
WCSUNITS_LENGTH, 157
WCSUNITS_LUMINTEN, 157
WCSUNITS_MAGNITUDE, 157
WCSUNITS_MASS, 157
WCSUNITS_MOLE, 156
WCSUNITS_NTYPE, 158
WCSUNITS_PIXEL, 157
WCSUNITS_PLANE_ANGLE, 156
WCSUNITS_SOLID_ANGLE, 156
WCSUNITS_SOLRATIO, 158
WCSUNITS_TEMPERATURE, 156
WCSUNITS_TIME, 157
wcsunits_types, 161
wcsunits_units, 162
WCSUNITS_VOXEL, 158
wcsutrn, 158

WCSUNITS_BEAM
wcsunits.h, 157

WCSUNITS_BIN
wcsunits.h, 157

WCSUNITS_BIT
wcsunits.h, 157

WCSUNITS_CHARGE
wcsunits.h, 156

WCSUNITS_COUNT
wcsunits.h, 157

wcsunits_errmsg
wcsunits.h, 161

WCSUNITS_LENGTH
wcsunits.h, 157

WCSUNITS_LUMINTEN
wcsunits.h, 157

WCSUNITS_MAGNITUDE
wcsunits.h, 157

WCSUNITS_MASS
wcsunits.h, 157

WCSUNITS_MOLE
wcsunits.h, 156

WCSUNITS_NTYPE
wcsunits.h, 158

WCSUNITS_PIXEL
wcsunits.h, 157

WCSUNITS_PLANE_ANGLE
wcsunits.h, 156

WCSUNITS_SOLID_ANGLE
wcsunits.h, 156

WCSUNITS_SOLRATIO
wcsunits.h, 158

WCSUNITS_TEMPERATURE
wcsunits.h, 156

WCSUNITS_TIME
wcsunits.h, 157

wcsunits_types
wcsunits.h, 161

wcsunits_units
wcsunits.h, 162

WCSUNITS_VOXEL
wcsunits.h, 158

wcsutil.h, 162
wcsutil_allEq, 163
wcsutil_blank_fill, 163
wcsutil_null_fill, 163
wcsutil_setAli, 164
wcsutil_setAll, 164
wcsutil_setBit, 164

wcsutil_allEq
wcsutil.h, 163

wcsutil_blank_fill
wcsutil.h, 163

wcsutil_null_fill
wcsutil.h, 163

wcsutil_setAli
wcsutil.h, 164

wcsutil_setAll
wcsutil.h, 164

wcsutil_setBit
wcsutil.h, 164

wcsutrn
wcsunits.h, 158

wcsvfree
wcshdr.h, 146

wtb
wcsprm, 38

wtbarr, 41
arrayp, 43
dimlen, 43
extlev, 42
extnam, 42
extver, 42
i, 42
kind, 42
m, 42
ndim, 43
row, 43
ttype, 43

x0
prjprm, 17

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

INDEX 182

y0
prjprm, 17

zeas2x
prj.h, 75

zeaset
prj.h, 75

zeax2s
prj.h, 75

ZENITHAL
prj.h, 83

zopt
spxprm, 23

zoptwave
spx.h, 104

zpns2x
prj.h, 75

zpnset
prj.h, 75

zpnx2s
prj.h, 75

zsource
wcsprm, 38

Generated on Tue Nov 16 17:15:49 2010 for WCSLIB 4.6 by Doxygen

	WCSLIB 4.6 and PGSBOX 4.6
	Contents
	Copyright

	Deprecated List
	Data Structure Index
	Data Structures

	File Index
	File List

	Data Structure Documentation
	celprm Struct Reference
	Detailed Description
	Field Documentation

	fitskey Struct Reference
	Detailed Description
	Field Documentation

	fitskeyid Struct Reference
	Detailed Description
	Field Documentation

	linprm Struct Reference
	Detailed Description
	Field Documentation

	prjprm Struct Reference
	Detailed Description
	Field Documentation

	pscard Struct Reference
	Detailed Description
	Field Documentation

	pvcard Struct Reference
	Detailed Description
	Field Documentation

	spcprm Struct Reference
	Detailed Description
	Field Documentation

	spxprm Struct Reference
	Detailed Description
	Field Documentation

	tabprm Struct Reference
	Detailed Description
	Field Documentation

	wcsprm Struct Reference
	Detailed Description
	Field Documentation

	wtbarr Struct Reference
	Detailed Description
	Field Documentation

	File Documentation
	cel.h File Reference
	Detailed Description
	Define Documentation
	Function Documentation
	Variable Documentation

	fitshdr.h File Reference
	Detailed Description
	Define Documentation
	Typedef Documentation
	Function Documentation
	Variable Documentation

	getwcstab.h File Reference
	Detailed Description
	Function Documentation

	lin.h File Reference
	Detailed Description
	Define Documentation
	Function Documentation
	Variable Documentation

	log.h File Reference
	Detailed Description
	Function Documentation
	Variable Documentation

	prj.h File Reference
	Detailed Description
	Define Documentation
	Function Documentation
	Variable Documentation

	spc.h File Reference
	Detailed Description
	Define Documentation
	Function Documentation
	Variable Documentation

	sph.h File Reference
	Detailed Description
	Function Documentation

	spx.h File Reference
	Detailed Description
	Define Documentation
	Function Documentation
	Variable Documentation

	tab.h File Reference
	Detailed Description
	Define Documentation
	Function Documentation
	Variable Documentation

	wcs.h File Reference
	Detailed Description
	Define Documentation
	Function Documentation
	Variable Documentation

	wcsfix.h File Reference
	Detailed Description
	Define Documentation
	Function Documentation
	Variable Documentation

	wcshdr.h File Reference
	Detailed Description
	Define Documentation
	Function Documentation
	Variable Documentation

	wcslib.h File Reference
	Detailed Description

	wcsmath.h File Reference
	Detailed Description
	Define Documentation

	wcstrig.h File Reference
	Detailed Description
	Define Documentation
	Function Documentation

	wcsunits.h File Reference
	Detailed Description
	Define Documentation
	Function Documentation
	Variable Documentation

	wcsutil.h File Reference
	Detailed Description
	Function Documentation

