univers itY of faculty of mathematics kapteyn astronomical
. and natural sciences institute
! / groningen / /

Kapteyn Package Documentation
Release 2.0.3b19

Hans Terlouw
Martin Vogelaar

January 26, 2011

CONTENTé

I Obtaining and using the package 1
1 Introduction 3
L1 OVEIVIEW . . . o o v e e e e e e s e e e e e e e 3
1.2 PrerequiSites v v v i e 4
1.3 Download. e e 4
1.4 Installing o L e e e e 4
1.5 Contact e 5
2 How to start 7
2.1 Introduction L e e e e e e e e e 7
2.2 Which module and documentstouse? e e e 7
2.3 Functionality of the modules in the Kapteyn Package 8
3 License 11
4 Release notes 13
4.1 Version 2.0.3 (indevelopment) L. Lo e e e e 13
4.2 Version 2.0.2 (Sep 16,2010) e e 14
4.3 Version 2.0.1 (Aug 11,2010) o e e 14
4.4 Version2.0 Jul 16,2010) e e e e e 14
4.5 Version 1.9.2 (Jul 12,2010) o . i e e e e e e 14
4.6 Version 1.9.1 (Feb 25,2010) 0 e e e 14
477 Version 1.9 (Jan 16,2010) e e e e e e e e e e 15
IT Module reference 17
5 Module wes 19
5.1 Introduction e e e e e e 19
5.2 Coordinates e e e e e e e e e e e e e e e e e 19
5.3 Class Projection 19
5.4 Class Transformation e e e e 24
5.5 Functions L e e e e 25
5.6 CONSLANLS o v ot e e e e e e e e e e e e e e e e e 26
5.7 Errorhandling e e e e 27
6 Module Celestial 29
6.1 Skydefinitions e e e e e e e 29
6.2 Moduleleveldata e e 31
6.3 ClasSes . . . v o i i e e e e e e e e 32
6.4 Core FUnctions e e 34
6.5 Utility functions o e e e e e e e e e e e e e e 38

9

6.6
6.7

Rotation matriCes o o e e e e e e e e e e e e e e
Functions related to E-terms e e e e

Module wesgrat

7.1
7.2
7.3
7.4

Module level data e e e e e
Functions e e e e
Class Graticule e e e e e e e e
Class Insidelabels e e e e e

Module maputils

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17

Introduction L e e e e e e
Module level data e e e e e e
Promptfunctions L. e
Utility functions o o e e e e e e e e e e e e e e e e e e e
Class FITSimage o o e
Class Annotatedimage i e e e e e e
ClassImage e e e
Class CONtOUTS v v v i e
Class Colorbar e e e e e e e e e e
Class Beam o o e
Class SKypolygon o o e e e e e e e e
Class Marker L . o e e e e
Class Pixellabels e e e
Class Colmaplist o o o o e e
Class FITSaxis o o i i e e e s e e e e e e e e s
Class POSItIONMESSAZE v v v v e
Class MovieContainer o v v v v i v it et e e e e e e e e e e e

Module positions

9.1
9.2
9.3
9.4

Introduction e e e e e e e e
How touse thismodule e
Position syntax oL e e e e e e e e e
Functions e e

10 Module rulers

11 Module shapes

12 Module tabarray

12.1
12.2
12.3

Class tabarray o e e e e e e e e e e e e e e e
Functions e
Example e e e

13 Module mplutil

13.1
13.2
13.3
13.4
13.5

Class AxesCallback e
Class TimeCallback e
Class VariableColormap o L o i e e e
Keypressfilter e
GIPSY keyword event connection v v v v v vt e e e e e e e e e e e e

14 Module profiles

14.1
14.2

Function e e e e
Reference L e e e e

15 SciPy modules

III Background information

16 Background information module celestial

51
51
51
53
66

69
69
71
72
75
75
88
105
106
107
107
107
107
107
109
109
110
111

115
116
117
117
126

129
133

135
135
136
137

139
139
140
142
143
143

145
145
145

147

149

151

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9

FK4 and the elliptic terms of aberration
Transformations between the reference systems FK4and FKS
Radiomaps e
Galactic Coordinates o i e e e e e e
Supergalactic coOrdinates i e e e e e e e e e e e e e e
Ecliptic coordinates o v i i e e e e e e e e e e e e
ICRS, Dynamical J2000 and FKS

16.10 Composing other transformations o . et e e e
16.11 Defaults inrelation to FITS o e
16.12 GIOSSATY . . v v v v o o e
16.13 References i e e e e e

17 Background information spectral translations

17.1
17.2
17.3
17.4
17.5

Introduction e e
Alternate headers for a spectral lineexample
Alternative CONVETSIONS . . v v v v v v v e v v et e e e e e e e e e e e e e e e e e
Legacy headers e e e
WCSLIBinaGIPSY task o e

IV Tutorials

18 Tutorial wes module

19

20

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8
18.9

Introduction e
Coordinate representations oL et e e e e e e e e e e e e e e e e e
NumPy arrays and matrices e e e
AUbULeSo e e e e
Invalid coordinates e
Reading datafroma FITSfile
Celestial transformations withwes o . o 0L 0oL L e
Spectral transformations L L. e e e
References e

Tutorial maputils module

19.1
19.2
19.3
19.4
19.5
19.6
19.7
19.8
19.9

Introduction e
Maputils basics o o e e e e e e e e e e e e e e
FITSAiles o e e
Promptfunctions e
Image objects L e e e e e e
Graticules L e e

19.10 Adding pixel coordinate labels oL
19.11 Addingabeam e
19.12 Markers oL L e e e
19.13 SKy polygons o o o e e e e e e e e e e e e e e e
19.14 Combining different plotobjects e e e
19.15 External headers and/ordata L e
19.16 Re-projections and image overlays L Lo
19.17 Plotting markers from file L
19.18 Mosaics Of PIOS . . . v v o e
19.19 Interaction with the display e e e
19.20 GIOSSATY . . o o v v e e e e e e e e e e e e e e e e

Tutorial tabarray module

20.1

Introduction e e e e e

169
169
169
183
184
205

207

209
209
209
217
219
221
222
224
231
239

241
241
242
242
246
247
251
279
283
287
292
293
294
296
303
305
311
320
324
328
339

341
341

20.2 Simple interface functions
20.3 Tabarray objects and methods . .
204 Glossary

V Examples

21 All sky plots and graticules
21.1 AllSkyplots
21.2 Allsky plot gallery
21.3 Source code of the service module

Bibliography
Module Index

Index

345

347
347
349
410

413
415

417

Part I

Obtaining and using the package

CHAPTER 1

INTRODUCTION

The Kapteyn Package is a collection of Python modules and applications developed by the computer group of
the Kapteyn Astronomical Institute, University of Groningen, The Netherlands. The purpose of the package is to
provide tools for the development of astronomical applications with Python.

The package is suitable for both inexperienced and experienced users and developers and documentation is pro-
vided for both groups. The documentation also provides in-depth chapters about celestial transformations and
spectral translations.

Some of the package’s features:

1.1

The handling of spatial and spectral coordinates, WCS projections and transformations between different
sky systems. Spectral translations (e.g., between frequencies and velocities) are supported and also mixed
coordinates. (Modules wcs and celestial)

Versatile tools for writing small and dedicated applications for the inspection of FITS headers, the extraction
and display of (FITS) data, interactive inspection of this data (color editing) and for the creation of plots with
world coordinate information. (Module maputils) As one example, a gallery of all-sky plots is provided.

A class for the efficient reading, writing and manipulating simple table-like structures in text files. (Module
tabarray)

Utilities for use with matplotlib such as obtaining coordinate information from plots, interactively modifi-
able colormaps and timer events (module mplutil); tools for parsing and interpreting coordinate information
entered by the user (module positions).

Overview

The the following modules are included:

wcs, a binary module which handles spatial and spectral coordinates and provides WCS projections and
transformations between different sky systems. Spectral translations (e.g., between frequencies and veloci-
ties) are supported and also mixed coordinates.

celestial, containing NumPy-based functions for creating matrices for transformation between different
celestial systems. Also a number of other utility functions are included.

wcsgrat, for calculating parameters for WCS graticules. It does not require a plot package.

maputils. Provides methods for reading FITS files. It can extract 2-dim image data from data sets with
three or more axes. A class is added which prepares FITS data to plot itself as an image with Matplotlib.

positions, enabling a user/programmer to specify positions in either pixel- or world coordinates.
rulers, defining a class for drawing rulers.

shapes, defining a class for interactively drawing shapes that define an area in an image. For each area a
number of properties of the data is calculated. This module can duplicate a shape in different images using
transformations to world coordinates. This enables one for instance to compare flux in two images with
different WCS systems.

http://www.astro.rug.nl

Kapteyn Package Documentation, Release 2.0.3b19

e mplutil, utilities for use with matplotlib. Classes AxesCallback, providing a more powerful mechanism
for handling events from LocationEvent and derived classes than matplotlib provides itself; TimeCallback
for handling timer events and VariableColormap which implements a matplotlib Colormap subclass with
special methods that allow the colormap to be modified.

e tabarray, providing a class for the efficient reading, writing and manipulating simple table-like structures
in text files.

1.2 Prerequisites

To install the Kapteyn Package, at least Python ! 2.4 and NumPy > are required. For using it, the availability of
PyFITS ? and matplotlib # is recommended. Windows users may also need to install Readline > or an equivalent
package.

Mark Calabretta’s WCSLIB © does not need to be installed separately anymore. Its code is now included in the
Kapteyn Package under the GNU Lesser General Public License.

1.3 Download

The Kapteyn Package and the example scripts can be downloaded via links on the package’s homepage:
http://www.astro.rug.nl/software/kapteyn/

1.4 Installing

First unpack the downloaded .tar.gz or .zip file and go to the resulting directory. Then one of the following options
can be chosen:

1. Install into your Python system (you usually need root permission for this):

python setup.py install

2. If you prefer not to modify your Python installation, you can create a directory under which to install the
module e.g., mydir. Then install as follows:

python setup.py install --install-lib mydir

To use the package you then need to include mydir in your PYTHONPATH.

3. If you want to use this package only for GIPSY, you can install it as follows:

python setup.py install --install-lib $gip_exe

1.4.1 Windows installer

An experimental installer for Microsoft Windows (together with other packages that the Kapteyn
Package depends on) is also available. Currently only for Python 2.6 on 32-bit systems.
http://www.astro.rug.nl/software/kapteyn_windows/

! http://www.python.org/

2 http://numpy.scipy.org/

3 http://www.stsci.edu/resources/software_hardware/pyfits
4 http://matplotlib.sourceforge.net/

5 http:/newcenturycomputers.net/projects/readline.html

6 http://www.atnf.csiro.au/people/mcalabre/WCS/

4 Chapter 1. Introduction

http://www.python.org/
http://numpy.scipy.org/
http://www.stsci.edu/resources/software_hardware/pyfits
http://matplotlib.sourceforge.net/
http://newcenturycomputers.net/projects/readline.html
http://www.atnf.csiro.au/people/mcalabre/WCS/
http://www.astro.rug.nl/software/kapteyn/
http://www.astro.rug.nl/software/kapteyn_windows/
http://www.python.org/
http://numpy.scipy.org/
http://www.stsci.edu/resources/software_hardware/pyfits
http://matplotlib.sourceforge.net/
http://newcenturycomputers.net/projects/readline.html
http://www.atnf.csiro.au/people/mcalabre/WCS/

Kapteyn Package Documentation, Release 2.0.3b19

1.4.2 Scisoft problem

If you have Scisoft installed on your computer, it may interfere with the installation of the Kapteyn Package. To
install it properly, disable the setup of Scisoft in your startup file (e.g. ~/.cshrc, .profile) by commenting it out.

1.5 Contact

The authors can be reached at:
Kapteyn Astronomical Institute
Postbus 800
NL-9700 AV Groningen
The Netherlands
Telephone: +31 50 363 4073

E-mail: gipsy @astro.rug.nl

1.5. Contact 5

mailto:gipsy@astro.rug.nl

Kapteyn Package Documentation, Release 2.0.3b19

6 Chapter 1. Introduction

CHAPTER 2

2.1 Introduction

HOW TO START

This chapter is intended to be a guide on how to use the modules from the Kapteyn Package for your own astro-
nomical software. The Kapteyn Package provides building blocks for software that has a focus on the use of world

coordinates and/or plotting image data.

To get an overview of what is possible, have a look at Tutorial maputils module which contains many examples of
world coordinate annotations and plots of astronomical data. It can be a good starting point to use the source code
in the example scripts to process your own data by making only small changes to the code.

If you are only interested in coordinate transformations, then the Tutorial wes module is a good starting point.

2.2 Which module and documents to use?

You want:

You need:

For a set of world coordinates, I want to transform these to another
projection system. I have a FITS header.

I want to transform world coordinates between sky- and reference sys-
tems

I want a parser to convert a string with position information to pixel-
and/or world coordinates.

I want to transform image data in a FITS file from one projection system
to another

I want to build a utility that converts a header with a PC or CD matrix
to a ‘classic’ header with CRPIX, CRVAL, CDELT and CROTA

I want to create a utility that can display a mosaic of image data

I want to plot an all sky map with graticules

I want to calculate flux in a set of images

I want to create a simple FITS file viewer with user interaction for the
colors etc.

I want to read a large data file very fast

Given a year, month and day number, I want the corresponding Julian

date
I want to know the obliquity of the ecliptic at a Julian date?

I want to convert my spectral axis from frequency to relativistic velocity

wcs, Tutorial wes module
wcs, Tutorial wes module
positions

maputils, Tutorial
module

maputils, Tutorial
module

maputils, Tutorial
module

maputils, Tutorial
module

maputils, shapes,
maputils module
maputils, Tutorial
module

tabarray, Tutorial
module

maputils
maputils
maputils
maputils
Tutorial
maputils

tabarray

celestial, Tutorial wes module

celestial, Tutorial wcs mod-
ule, Background information mod-

ule celestial
wcs, Tutorial maputils
Background information
translations

module,
spectral

Kapteyn Package Documentation, Release 2.0.3b19

2.3 Functionality of the modules in the Kapteyn Package

2.3.1 Wcs

* Given a FITS header or a Python dictionary with header information about a World Coordinate System
(WCS), transform between pixel- and world coordinates.

« Different coordinate representations are possible (tuple of scalars, NumPy array etc.)

* Transformations between sky and reference systems.

* Epoch transformations

* Support for ‘alternate’ headers (a header can have more than one description of a WCS)

* Support for mixed coordinate transformations (i.e. pixel- and world coordinates at input are mixed).

 Spectral coordinate translations, e.g. convert a frequency axis to an optical velocity axis.

2.3.2 Celestial

» Coordinate transformations between sky and reference systems. Also available via module wcs
* Epoch transformations. Also available via module wcs

e Many utility functions e.g. to convert epochs, to parse strings that define sky- and reference systems,
calculate Julian dates, precession angles etc.

2.3.3 Wcsgrat

* Most of the functionality in this module is provided via user friendly methods in module maputils.
* Calculate grid lines showing constant latitude as function of varying longitude or vice versa.
* Methods to set the properties of various plot elements like tick marks, tick labels and axis labels.

* Methods to calculate positions of labels inside a plot (e.g. for all sky plots).

2.3.4 Maputils

 Easy to combine with Matplotlib
¢ Convenience methods for methods of modules wcs, celestial, wecsgrat
* Overlays of different graticules (each representing a different sky system),

¢ Plots of data slices from a data set with more than two axes (e.g. a FITS file with channel maps from a radio
interferometer observation)

* Plots with a spectral axis with a ‘spectral translation’ (e.g. Frequency to Radio velocity)
* Rulers with distances in world coordinates, corrected for projections.

* Plots for data that cover the entire sky (allsky plot)

* Mosaics of multiple images (e.g. HI channel maps)

* A simple movie loop program to view ‘channel’ maps.

* Interactive colormap selection and modification.

2.3.5 Positions

» Convert strings to positions in pixel- and world coordinates

8 Chapter 2. How to start

Kapteyn Package Documentation, Release 2.0.3b19

2.3.6 Rulers

* Plot a straight line with markers at constant distance in world coordinates. Its functionality is available in
module maputils

2.3.7 Shapes

* Advanced plotting with user interaction. A user defines a shape (polygon, ellipse, circle, rectangle, spline)
in an image and the shape propagates (in world coordinates) to other images. A shape object keeps track of
its area (in pixels) and the sum of the pixels within the shape. From these a flux can be calculated.

2.3.8 Tabarray

e Fast I/O for data in ASCII files on disk.

2.3.9 Mplutil

e Various advanced utilities for event handling in Matplotlib. Most of its functionality is used in module
maputils.

2.3. Functionality of the modules in the Kapteyn Package 9

Kapteyn Package Documentation, Release 2.0.3b19

10 Chapter 2. How to start

CHAPTER 3

LICENSE

The Kapteyn Package is provided under the following license:

Copyright (c) 2010, Kapteyn Astronomical Institute, University of Groningen
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of the Kapteyn Astronomical Institute nor the names
of its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

To the modules included from the SciPy package, the following license applies:

Copyright (c) 2001, 2002 Enthought, Inc.
All rights reserved.

Copyright (c) 2003-2009 SciPy Developers.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

a. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

b. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the

11

Kapteyn Package Documentation, Release 2.0.3b19

documentation and/or other materials provided with the distribution.

c. Neither the name of the Enthought nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

WCSLIB, which is included in the Kapteyn Package’s distribution, is provided under the following license:

WCSLIB 4.6 - an implementation of the FITS WCS standard.
Copyright (C) 1995-2010, Mark Calabretta

This file is part of WCSLIB.

WCSLIB is free software: you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the

Free Software Foundation, either version 3 of the License, or (at your

option) any later version.

WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details.

You should have received a copy of the GNU Lesser General Public License
along with WCSLIB. If not, see <http://www.gnu.org/licenses/>.

Correspondence concerning WCSLIB may be directed to:
Internet email: mcalabre@atnf.csiro.au
Postal address: Dr. Mark Calabretta
Australia Telescope National Facility, CSIRO
PO Box 76
Epping NSW 1710
AUSTRALIA

12 Chapter 3. License

CHAPTER 4

RELEASE NOTES

4.1 Version 2.0.3 (in development)

¢ Class wcs.Projection:

added attribute category

fixed ZPN projection related problem in method mixed|()

minimal FITS headers are now accepted

added support for grid coordinates, i.e., CRPIX-relative pixel coordinates
* Module maputils:

— added new class Skypolygon for plotting shapes like ellipses, rectangles and regular polygons. For
these shapes angles and distances along a great circle are preserved. This class can be used for example
to draw footprints on all-sky plots or a beam to show the resolution of an instrument.

— improved position information in toolbar. Message format can be changed by user/programmer.
— support for RGB images. RGB values are displayed in message toolbar.

— class FITSimage: improved versions of header2classic() and reproject to() methods; new
slice2world() method prints information about slice positions (annotate 2d maps from a 3d data cube).

* Module mplutil:

— work-around for special keys which are defined in matplotlib’s GTKAgg backend but ‘missing’ from
the Qt4Agg backend. The following keys are made available: ‘pageup’, ‘pagedown’, ‘left’, ‘right’,
‘up’, ‘down’, ‘home’, ‘end’.

* Module positions:
— units 1/... and /... also recognized. Can be used for spectral translations that transform to e.g. AWAV.

* Module shapes:

messages for toolbar improved.

changed conversion routine to support shapes on maps with only one spatial axis (e.g. position-velocity
maps).

GUI improved.

— Improved writing shape data to file.
* Module wesgrat:

— fixed bug with precision in seconds.
* New module profiles:

— added function gauest() for estimating gaussian components in a profile. These estimates can e.g.
subsequently be used as initial estimates for a least squares fit.

13

Kapteyn Package Documentation, Release 2.0.3b19

* WCSLIB: changed to version 4.6 (from 4.5)

4.2 Version 2.0.2 (Sep 16, 2010)

* Class wcs.Projection:
— allow for FITS headers that incorrectly represent EQUINOX as a string
— added support for AIPS keyword VELREF
* Function mplutil.gipsy_connect() connects GIPSY keyword events to Matplotlib event loop.

* Added Microsoft Windows support.

4.3 Version 2.0.1 (Aug 11, 2010)

* WCSLIB 4.5 included in distribution so it does not need to be separately installed anymore.

4.4 Version 2.0 (Jul 16, 2010)

* Class wcs.Projection:

— added method inside().

4.5 Version 1.9.2 (Jul 12, 2010)

* Function wcs.coordmap(): added arguments dst_shape, dst_offset and src_offset.
* Class wcs.Projection:
— fixed bug in class WrappedHeader.
— allow for WSRT files with topocentric frequencies (via class WrappedHeader)

— added attribute altspecarg.

Added modules rulers and shapes.

Included SciPy modules filters and interpolation. The latter was slightly modified.

4.6 Version 1.9.1 (Feb 25, 2010)

¢ Class wcs.Projection:
— added attribute euler.
— fixed bug in method mixed()
* Class mplutil. VariableColormap:
— added NumPy array as possible source.

— added method set_length()

14 Chapter 4. Release notes

Kapteyn Package Documentation, Release 2.0.3b19

4.7 Version 1.9 (Jan 16, 2010)

* First public release.

4.7. Version 1.9 (Jan 16, 2010) 15

Kapteyn Package Documentation, Release 2.0.3b19

16 Chapter 4. Release notes

Part 11

Module reference

17

CHAPTER 5

MODULE WCS

5.1 Introduction

This Python module interfaces to Mark Calabretta’s WCSLIB and also provides a self-contained suite of celestial
transformations. The WCSLIB routines “implement the FITS World Coordinate System (WCS) standard which
defines methods to be used for computing world coordinates from image pixel coordinates, and vice versa.” The
celestial transformations have been implemented in Python, using NumPy, and support equatorial and ecliptic
coordinates of any epoch and reference systems FK4, FK4-NO-E, FK5, ICRS and dynamic J2000, and galactic
and supergalactic coordinates.

5.2 Coordinates

Coordinates can be represented in a number of different ways:
* as a tuple of scalars, e.g. (ra, dec).
* as a tuple of lists or NumPy arrays, e.g. ([ra_1,ra_2,...], [dec_1, dec_2, ...], [vel_1, vel_2, ...]).

e as a NumPy matrix. The standard representation is a matrix with column vectors, but row vectors are also
supported.

e as a NumPy array. This array can have any shape. The individual coordinate components are stored con-
tiguously along the last axis.

* as a list of tuples. Every tuple represents one position, e.g. [(ra_1, dec_1), (ra_2, dec_2), ...].

Results delivered by the transformations done by the classes described below will have the same representation as
their inputs. NumPy arrays and matrices will always be returned as type ‘f8” (64 bit).

5.3 Class Projection

class Projection (source, [rowvec=False, skyout=None, usedate=False, gridmode=False, alter="])
Parameters

* source — a Python dictionary or dictionary-like object containing FITS-style keys and
values, e.g. a header object from PyFITS.

* rowvec — indicates whether input and output coordinates, when given as NumPy matri-
ces, will be row vectors instead of the standard column vectors. True or False.

* skyout — can be used to specify a system different from the sky system specified
by the projection. This can be given as a string e.g., "equatorial fk4_no_e
B1950.0" or as a tuple: (equatorial fk4_no_e ’'B1950.0’). For a com-
plete description see: Sky definitions.

19

http://www.atnf.csiro.au/people/mcalabre/WCS/

Kapteyn Package Documentation, Release 2.0.3b19

* usedate — indicates whether the date of observation is to be used for the appropriate
celestial transformations. True or False.

* gridmode — True or False. If True, the object will use grid coordinates instead of pixel
coordinates. Grid coordinates are CRPIX-relative pixel coordinates, e.g. used in GIPSY.

* alter — an optional letter from ‘A’ through ‘Z’, indicating an alternative WCS axis de-
scription.

Methods:

toworld (pixel)
Pixel-to-world transformation. pixel is an object containing one or more pixel coordinates and a similar
object with the corresponding world coordinates will be returned. Note that FITS images are indexed
from (1,1), not from (0,0) like Python arrays. Coordinates can be specified in a number of different
ways. See section Coordinates. When an exception due to invalid coordinates has occurred, this
method can be called again without arguments to retrieve the result in which the invalid positions will
have the value numpy . NaN (“not a number”).

topixel (world)
World-to-pixel transformation. Similar to towor1d (), this method can also be called without argu-
ments.

toworldild (pixel)
Simplified method for one-dimensional projection objects. Its argument can be a list, a tuple, an array
or a scalar. An object of the same class will be returned.

topixelld (world)
Simplified method for one-dimensional projection objects. Its argument can be a list, a tuple, an array
or a scalar. An object of the same class will be returned.

mixed (world, pixel, [span=None, step=0.0, iter=7])
Hybrid transformation.

When either the celestial longitude or latitude plus an element of the pixel coordinate is given, the
remaining elements are solved by iteration on the unknown celestial coordinate. Which elements are
to be solved, is indicated by assigning NaN to those elements. In case of multiple coordinates, the same
elements must be indicated for every coordinate. This operation is only possible for the projection’s
“native” sky system. When a different sky system has been specified, an exception will be raised.
When either both celestial coordinates or both pixel coordinates are given, an operation equivalent to
topixel () ortoworld () is performed. For non-celestial coordinate elements any NaN value will
be replaced by a value derived from the corresponding element in the other coordinate.

espan — a sequence containing the solution interval for the celestial coordinate, in degrees. The

ordering of the two limits is irrelevant. Longitude ranges may be specified with any convenient
normalization, for example [-120,+120] is the same as [240,480], except that the solution will
be returned with the same normalization, i.e. lie within the interval specified. The default is the
appropriate CRVAL value +15°.

estep — step size for solution search, in degrees. If zero, a sensible, although perhaps non-optimal
default will be used.

eiter — if a solution is not found then the step size will be halved and the search recommenced. iter
controls how many times the step size is halved. The allowed range is 5 - 10.
Returns a tuple (world, pixel) containing the resulting coordinates.
sub ([axes=None, nsub=None])
Extract a new Projection object for a subimage from an existing one.

eaxes is a sequence of image axis numbers to extract. Order is significant; axes[0] is the axis
number of the input image that corresponds to the first axis in the subimage, etc. If not specified,
the first nsub axes are extracted.

ensub is the number of axes to extract when axes is not specified.

20 Chapter 5. Module wcs

Kapteyn Package Documentation, Release 2.0.3b19

Returns a new Projection object.

spectra (ctype, [axindex=None])
Create a new Projection object in which the spectral axis is translated. For example, a ‘FREQ’ axis
may be translated into ‘ZOPT-F2W’ and vice versa. For non-standard frequency types, e.g. FREQ-
OHEL as used by GIPSY, corrections are applied first to obtain barycentric frequencies. For more
information, see chapter Background information spectral translations.

ectype — Required spectral CTYPEi. Wildcarding may be used, i.e. if the final three characters

are specified as ‘???°, or if just the eighth character is specified as ‘?’, the correct algorithm code
will be substituted and returned. The attribute a1t spec provides a list of acceptable spectral
types. For later reference, the value of ctype is stored in the attribute a1t specarg of the new
Projection object.

eaxindex — Index of the spectral axis (O-relative). If not specified, the first spectral axis identified
by the CTYPE values of the object is assumed.

Returns a new Projection object.

inside (coords, mode)
Test whether one or more coordinates are inside the area defined by the attribute naxis. This is a
convenience method not directly related to WCS. coords is an object containing one or more coordi-
nates which depending on mode can be either world- or pixel coordinates. The argument mode must
be ‘world’ or ‘pixel’. The method returns a value True or False or, in the case of multiple coordinates,
a list with these values.

pixel2grid (pixel)
Pixel-to-grid conversion. pixel is an object containing one or more pixel coordinates and a similar
object with the corresponding grid coordinates will be returned. Grid coordinates are CRPIX-relative
pixel coordinates, e.g. used in GIPSY.

grid2pixel (grid)
Grid-to-pixel conversion. grid is an object containing one or more grid coordinates and a similar object
with the corresponding pixel coordinates will be returned. Grid coordinates are CRPIX-relative pixel
coordinates, e.g. used in GIPSY.

WCSLIB-related attributes:

The following attributes contain values which are parameters to WCSLIB, after interpretation. So they can
differ from the values in the source object. These attributes should not be modified.

category
The projection category: one of the strings undefined, zenithal, cylindrical,
pseudocylindrical, conventional, conic, polyconic, quadcube, HEALPix.

ctype
A tuple with the axes’ types in the axis order of the object.

cunit
A tuple with the axes’ physical units in the axis order of the object.

crval
A tuple with the axes’ reference values in the axis order of the object.

cdelt
A tuple with the axes’ coordinate increments in the axis order of the object.

crpix
A tuple with the axes’ reference points in the axis order of the object.

crota
A tuple with the axes’ coordinate rotations, or None if no rotations have been specified.

5.3.

Class Projection 21

Kapteyn Package Documentation, Release 2.0.3b19

pc
A NumPy matrix for the linear transformation between pixel axes and intermediate coordinate axes,
or None if not specified.

cd
A NumPy matrix for the linear transformation (with scale) between pixel axes and intermediate coor-
dinate axes, or None if not specified.

pv
A list with numeric coordinate parameters. Each list element is a tuple consisting of the world coordi-
nate axis number i, the parameter number m and the parameter value.

pPs
A list with character-valued coordinate parameters. Each list element is a tuple consisting of the world
coordinate axis number i, the parameter number m and the parameter value.

lonpole
The native longitude of the celestial pole.

latpole
The native latitude of the celestial pole.

euler
A five-element list: Euler angles and associated intermediaries derived from the coordinate reference
values. The first three values are the Z-, X-, and Z’-Euler angles, and the remaining two are the cosine
and sine of the X-Euler angle.

equinox
The equinox (formerly ‘epoch’) of the projection.

restfrq
Rest frequency in Hz.

restwav
Vacuum rest wavelength in m.

Other Attributes:

The attributes skyout, allow_invalid, rowvec, epobs, gridmode and usedate can be modified at any time. The
others are read-only.

skysys
The projection’s ‘native’ sky system. E.g., (equatorial, £fk5, 7J2000.0").

skyout
Alternative sky system. Can be specified according to the rules of the module celestial. See:
Sky definitions. For pixel-to-world transformations, the result in the projection’s ‘native’ system is
transformed to the specified one and for world-to-pixel transformations, the given coordinates are first
transformed to the native system, then to pixels.

radesys
Reference frame of equatorial or ecliptic coordinates: one of the (symbolic) values as defined in
module celestial. E.g. icrs, £k5 or fk4.

epoch
The projection’s epoch string as derived from the attributes equinox and radesys. E.g., “B1950.0”
or “J2000.0”.

dateobs
The date of observation (string) as specified by the ‘DATE-OBS’ key in the source object or None if
not present.

mjdobs
The date of observation (floating point number) as specified by the ‘MJD-OBS’ key in the source
object or None if not present.

22 Chapter 5. Module wcs

Kapteyn Package Documentation, Release 2.0.3b19

epobs
The date of observation as specified by either the ‘MJD-OBS’ or the ‘DATE-OBS’ key in the source
object or None if both are absent. This attribute is a string with the prefix ‘MJD’ or ‘F’ which can be
parsed by the function epochs() in the module ‘celestial’ and consequently be part of the arguments
sky_in and sky_out when creating a Transformation object.

gridmode
True or False. If True, the object will use grid coordinates instead of pixel coordinates. Grid coordi-
nates are CRPIX-relative pixel coordinates, e.g. used in GIPSY.

allow invalid
If set to True, no exception will be raised for invalid coordinates. Invalid coordinates will be indicated
by numpy . NaN (‘not a number’) values.

invalid
True or False, indicating whether invalid coordinates were detected in the last transformation. In the
output, invalid coordinates are indicated by numpy . NaN (‘not a number’) values.

rowvec
If set to True, input and output coordinates, when given as NumPy matrices, will be row vectors instead
of the standard column vectors.

usedate
Indicates whether the date of observation is to be used for the appropriate celestial transformations.
True or False.

types
A tuple with the axes’ coordinate types (‘longitude’, ‘latitude’, ‘spectral’ or None) in the axis order of
the object.

naxis
A tuple with the axes’ lengths in the axis order of the object. (Convenience attribute not directly related
to WCS.)

lonaxnum
Longitude axis number (1-relative). None if not defined.

lataxnum
Latitude axis number (1-relative). None if not defined.

specaxnum
Spectral axis number (1-relative). None if not defined.

source
Convenience attribute. The object from which the Projection object was created.

altspec
A list of tuples with alternative spectral types and units. The first element of such a tuple is a string
with an allowed alternative spectral type which can be used as the argument of method spectra ()
and the second element is a string with the corresponding units. Example: [(' FREQ’, ’'Hz'),
("ENER’, ’J’), ('VOPT-F2W’, 'm/s’), ..., ('BETA-F2v’, ”)]. If there is no
spectral axis, the attribute will have the value None.

altspecarg
If the object was created with a call to spectra (), the argument ctype as specified in that call.
Otherwise None.

Example:

#!/bin/env python
from kapteyn import wcs
import pyfits

hdulist = pyfits.open(’aurora.fits’) # open 3-dimensional FITS file

5.3.

Class Projection 23

Kapteyn Package Documentation, Release 2.0.3b19

7 proj3 = wcs.Projection (hdulist[0] .header)
8

s pixel = ([51, 321, [17, 601, [11, 121)
1o world = proj3.toworld(pixel)

1 print world

2 print proj3.topixel (world)

13

14 proj2 = proj3.sub([2,1])

15

16 pixel = ([1, 2, 4, 31, [7, 6, 8, 21)

17 world = proj2.toworld(pixel)

18 print world

19

0 proj2.skyout = (wcs.equatorial, wcs.fk5,

21 rJ2008")
3 world = proj2.toworld(pixel)

4 print world
5 print proj2.topixel (world)

5.4 Class Transformation

#

create Projection object

two 3-dimensional pixel coordinates
transform pixel to world coordinates

back from world to pixel coordinates
axes 2 and 1

subimage projection,

four 2-dimensional pixel coordinates
transform pixel to world coordinates

specify alternative sky system
transform to that sky system

back to pixel coordinates

Celestial transformations are handled by objects of the class Transformation. These objects are callable. Currently
supported sky systems are equatorial and ecliptic of any epoch and galactic and supergalactic.

class Transformation (sky_in, sky_out, [rowvec=False])

Parameters

* sky_in, sky_out — the input- and output sky system. Can be specified as e.g., “(equatorial,

fk4, ‘B1950.0’)” or “galactic”.

* rowvec — if set to True, input and output coordinates, when given as NumPy matrices,
will be row vectors instead of the standard column vectors.

Method:
transform (in, [reverse=Fualse])

Parameters

* in — an object containing one or more coordinates to be transformed and out will
receive a similar object with the transformed coordinates. Coordinates can be specified
in a number of different ways. See section Coordinates.

e reverse — if True, the inverse transformation will be performed.

Instead of calling this method, the object itself can also be called in the same way.

Attribute:

rowvec

If set to True, input and output coordinates, when given as NumPy matrices, will be row vectors instead

of the standard column vectors.
Example:
1 #!/bin/env python

> from kapteyn import wcs
3 import numpy

s tran = wcs.Transformation((wcs.equatorial, wcs.fk4, 'B1950.0’), wcs.galactic)
6
7 radec = numpy.matrix(([33.3, 177.2, 230.1]7,
24 Chapter 5. Module wcs

Kapteyn Package Documentation, Release 2.0.3b19

10

11

[66.2, -11.5, 13.01]))

lbgal = tran(radec)
print lbgal
print tran(lbgal, reverse=True)

5.5 Functions

5.5.1 Function coordmap

coordmap (proj_src, proj_dst, [dst_shape=None, dst_offset=None, src_offset=None])

20

21

22

23

24

25

eproj_src, proj_dst — the source- and destination projection objects.

edst_shape — the destination image’s shape. Must be compatible with the projections’ dimensionality.
The elements are in Python order, i.e., the first element corresponds to the last FITS axis. If dst_shape
is None (the default), the shape is derived from the proj_dst.naxis attribute.

edst_offset — the destination image’s offset. If None, the offset for all axes will be zero. Otherwise it
must be compatible with the projections’ dimensionality. The elements are in Python order, i.e., the
first element corresponds to the last FITS axis.

src_offset — the source image’s offset. If None, the offset for all axes will be zero. Otherwise it must
be compatible with the projections’ dimensionality. The elements are in Python order, i.e., the first
element corresponds to the last FITS axis.

This function returns a coordinate map which can be used as the argument coordinates in calls to the func-
tion map_coordinates () from the scipy.ndimage.interpolation module. ' The resulting
coordinate map can be used for reprojecting an image into another image with a different coordinate system.

Example:

#!/bin/env python

from kapteyn import wcs

import numpy, pyfits

from kapteyn.interpolation import map_coordinates

hdulist = pyfits.open('ngc6946.fits”)
header = hdulist[0].header

projl = wcs.Projection (header) # source projection
trans = wcs.Transformation (projl.skysys, skyout=wcs.galactic)

header [’ CTYPE1’], header[’CTYPE2’] = 'GLON-TAN’, ’GLAT-TAN’
new axis types

header [’ CRVAL1"], header[’CRVAL2’] = trans((header[’CRVAL1’],header [’ CRVAL2']))
new reference point

proj2 = wcs.Projection (header) # destination projection
coords = wcs.coordmap (projl, proj2)

image_in = hdulist[0] .data
image_out = map_coordinates (image_in, coords, order=1, cval=numpy.NaN)

hdulist[0] .data = image_out
hdulist.writeto('ngc6946-gal.fits’)

! For convenience, a slightly modified version of this module is also available in the Kapteyn Package as kapteyn.interpolation.
The modification replaces NaN values in the array to a finite value in case order>1, preventing the result becoming all NaN.

5.5. Functions 25

Kapteyn Package Documentation, Release 2.0.3b19

This example is a complete program and illustrates how a FITS file containing an image with arbitrary
coordinates can be reprojected into an image with galactic coordinates. The image can have two or more
dimensions.

5.5.2 Utility functions
The following are functions from the module celestial which have been made available within the namespace
of this wcs module: For detailed information, refer to celestial’s documentation.

epochs (spec)
Flexible epoch parser.

lat2dms (a, [prec=1])
Convert an angle in degrees into the degrees, minutes, seconds format assuming it was a latitude of which
the value should be in the range -90 to 90 degrees.

lon2dms (a, [prec=1])
Convert an angle in degrees to degrees, minutes, seconds.

lon2hms (a, [prec=1])
Convert an angle in degrees to hours, minutes, seconds format.

5.6 Constants

Sky systems (imported from celestial)
equatorial

eq

ecliptic

ecl

galactic

gal

supergalactic

sgal

Reference systems (imported from celestial)
fk4

fk4 no_e

fk5

icrs

dyn3j2000

32000

Physical

c
Velocity of light

26 Chapter 5. Module wcs

Kapteyn Package Documentation, Release 2.0.3b19

5.7 Error handling

Errors are reported through the exception mechanism. Two exception classes have been defined: WCSerror for
unrecoverable errors and WCSinvalid for situations where a partial result may be available.

5.7. Error handling 27

Kapteyn Package Documentation, Release 2.0.3b19

28

Chapter 5. Module wcs

CHAPTER 6

MODULE CELESTIAL

This document describes functions from the Python module celestial (celestial.py) which provides a programmer
with a basic set of routines to transform a world coordinate in a given sky system into a world coordinate of
another system assuming zero proper motion, parallax, and recessional velocity.

The most important function builds a matrix for conversions of positions between sky systems, celestial reference
systems and epochs of the equinox. This function is called skymatrix () and it can be used in the following
contexts:

* Implicit, in module wcs, using the Transformation class as in:
world_eq = (192.25, 27.4) # FK4 coordinates of galactic pole

tran = wcs.Transformation ("equatorial fk4 _no_e B1950.0", "galactic™)
print tran(world_eq)

* As stand alone utility in scripts or in an interactive Python session. Usually one uses function sky2sky ()
to transform longitudes and latitudes:

M = celestial.sky2sky((celestial.eq, celestial.fk5), celestial.gal,
(0,0,1.0), (10,20,20))

 Hidden in the fopixel() and toworld() methods in module wcs. There the sky system is read from a (FITS)
header and the sky system for which we want the transformed coordinates is set with attribute skyout of the
projection object.

See Also:
Tutorial material:

* Background Celestial Transformations which contains many examples with source code.

6.1 Sky definitions

A sky definition can consist of a sky system, a reference system, an equinox and an epoch of observation. It is
either a string or it is a tuple with one or more elements. It can also be a single element. The elements in a tuple
representing a sky- or reference system are symbols from the table below. For a string, the parts of the string
representing a sky- or reference system are minimal matched against the strings in the table below. The match is
case insensitive.

6.1.1 Sky systems

Symbol String Description

eq, equatorial EQUATORIAL Equatorial coordinates («, d), See also next table with reference systems
ecl, ecliptic ECLIPTIC Ecliptic coordinates (), 3) referred to the ecliptic and mean equinox
gal, galactic GALACTIC Galactic coordinates (111, bII)

sgal, supergalactic | SUPERGALACTIC | De Vaucouleurs Supergalactic coordinates (sgl, sgb)

29

http://www.astro.rug.nl/software/kapteyn/celestial.php

Kapteyn Package Documentation, Release 2.0.3b19

6.1.2 Reference systems

Symbol String Description

kA4 FK4 Mean place pre-IAU 1976 system. FK4 is the old barycentric (i.e. w.r.t. the
common center of mass) equatorial coordinate system, which should be qual-
ified by an Equinox value. For accurate work FK4 coordinate systems should
also be qualified by an Epoch value. This is the epoch of observation.
fk4_no_e FK4_NO_E, The old FK4 (barycentric) equatorial system but without the E-terms of aber-
FK4-NO-E ration. This coordinate system should also be qualified by both an Equinox
and an Epoch value.

fkS FK5 Mean place post IAU 1976 system. Also a barycentric equatorial coordinate
system. This should be qualified by an Equinox value (only).
icrs ICRS The International Celestial Reference System, for optical data realized through

the Hipparcos catalog. By definition, ICRS is not an equatorial system, but it
is very close to the FK5 (J2000) system. No Equinox value is required.

j2000, DYNIJ2000 This is an equatorial coordinate system based on the mean dynamical equator
dynj2000 and equinox at epoch J2000. The dynamical equator and equinox differ slightly
compared to the equator and equinox of FKS5 at J2000 and the ICRS system.
This system need not be qualified by an Equinox value

Note: Reference systems are stored in FITS headers under keyword RADESYS=.

Note: Standard in FITS: RADESYS defaults to IRCS unless EQUINOX is given alone, in which case it defaults
to FK4 prior to 1984 and FK5 after 1984.

EQUINOX defaults to 2000 unless RADESYS is FK4, in which case it defaults to 1950.

Note: In routines dealing with sky definitions tne names are minimal matched against a list with full names.

6.1.3 Epochs for the equinox and epoch of observation

An epoch can be set in various ways. The options are distinguished by a prefix. Only the ‘B’ and ‘J* epochs can
be negative.

Prefix Epoch

B Besselian epoch. Example: 'B 1950’,’b1950’,/B1983.5",’-B1100"

J Julian epoch. Example: * 32000.7’,’J 2000’,’-3100.0"

D Julian date. This number of days (with decimals) that have elapsed since the initial epoch defined

as noon Universal Time (UT) Monday, January 1, 4713 BC in the proleptic Julian calendar

Example: JD2450123.7"'

MID The Modified Julian Day (MJD) is the number of days that have elapsed since midnight at the

beginning of Wednesday November 17, 1858. In terms of the Julian day: MJD = JD - 2400000.5

Example: 'mJdD 24034’,'MJD50123.2"

RIJD The Reduced Julian Day (RJD): Julian date counted from nearly the same day as the MJD, but

lacks the additional offset of 12 hours that MJD has. It therefore starts from the previous noon

UT or TT, on Tuesday November 16, 1858. It is defined as: RJD = JD - 2400000 Example:

"rJgD50123.27,"Rjd 23433’

F Various FITS formats:

e DD/MM/YY Old FITS format. Example: ' ¥29/11/57'

* YYYY-MM-DD FITS format. Example: " F2000-01-01"

* YYYY-MM-DDTHH:MM:SS FITS format with date and time. Example:
"F2002-04-04T09:42:42.1"

Epoch of observation.

Reference system FK4 is not an inertial system. It is slowly rotating and positions are further away from the true
mean places if the date of observation is greater than B1950. FKS is an inertial system. If we convert coordinates
from FK4 to FKS, the accuracy of the FKS5 position can be improved if we know the date of the observation. So
in all transformations where a conversion between FK4 and FKS5 is involved, an epoch of observation can be part

30 Chapter 6. Module Celestial

L S

Kapteyn Package Documentation, Release 2.0.3b19

of the sky definition. Note that this also involves a conversion between galactic coordinates and equatorial, FK5
coordinates because that conversion is done in steps and one step involves FK4.

To be able to distinguish an equinox from an epoch of observation, an epoch of observation is followed by an
underscore character and some arbitrary characters to indicate that it is a special epoch (e.q. “B1960_OBS”).
Only the underscore is obligatory.

Note: If a sky definition is entered as a string, there cannot be a space between the prefix and the epoch, because

a space is a separator for the parser in celestial.skyparser ().

5

Note: An epoch of observation is either the second epoch in your input or or the epoch string has a suffix ‘_
which may be followed by arbitrary characters (e.g. “B1963.5_OBS”).

6.1.4 Input Examples

Input string Description Remarks

“eq” Equatorial, ICRS | ICRS because no reference system and no equinox is given.

“Eclip” Ecliptic, ICRS Ecliptic coordinates

“ecl tk5” Ecliptic, FK5 Ecliptic coordinates with a non default reference system

“GALACtic” Galactic II Minimal match is case insensitive

“s” Supergalactic Shortest string to identify system.

“tk4” Equatorial, FK4 Only a reference system is entered. Sky system is assumed to be
equatorial

“B1960” Equatorial, FK4 Only an equinox is given. This is a date before 1984 so FK4 is

assumed. Therefore the sky system is equatorial

“EQ, fk4_no_e, B1960” | Equatorial, FK4 | Sky system, reference system, and an equinox
no e-terms

“EQ, fk4-no-e, B1960” Equatorial, FK4 | Same as above but underscores replaced by hyphens.
no e-terms

“fk4,J1983.5_OBS” Equatorial, FK4 | FK4 with an epoch of observation. Note that only the underscore
+ epobs is important.

“J1983.5_OBS” Equatorial, FK4 | Only a date of observation. Then reference system FK4 is as-
+ epobs sumed.

“EQ,fk4,B1960, Equatorial, FK4 | A complete description of an equatorial system.

B1983.5_0” + epobs

“B1983.5_0 fk4 | Equatorial, FK4 | The same as above, showing that the order of the elements are

B1960,eq” + epobs unimportant.

6.1.5 Code examples

To show that one can use both the tuple and the string representation of a system, we use both for the same system
and compare a transformed position. The result should be 0 for both coordinates.

>>> world _eqg = numpy.array([192.25, 27.4]) # FK4 coordinates of galactic pole

>>> tranl = wcs.Transformation ("equatorial fk4 _no_e B1950.0", "galactic")

>>> tran2 = wcs.Transformation((wcs.equatorial, wcs.fk4_no_e, "B1950.0"), wcs.galactic)
>>> print tranl (world_eq)-tran2 (world_eq)

[0. 0.]

6.2 Module level data

skyrefsystems An object from class skyrefset which is a container with a list with systems and two
dictionaries with systems.

>>> for s in skyrefsystems.skyrefs_list:

>>> print s.fullname, s.description, s.idnum

6.2. Module level data 31

Kapteyn Package Documentation, Release 2.0.3b19

For programmers who need to access the id’s of the sky and reference systems: External modules can set their
own variables. Here are some examples how one can do this.

Example with copy of celestial’s variables:
* eq = celestial.eq
* ec = celestial.ecl
* ga = celestial.gal etc.

Example with minimal match:

s eq celestial.skyrefsystems.minmatch2skyref ('EQUA’) [0] .idnum

* ec celestial.skyrefsystems.minmatch2skyref (‘ecli’) [0].idnum

Read this as: get the object for which a minimal match is found. Item [0] is the object (the other is the number of
times a match is found). The ‘idnum’ is the integer for which we can identify a system.

Or use the equivalent with method skyrefset .minmatch2id ():
* eq = celestial.skyrefsystems.minmatch2id ('’ EQUA’)
* ec = celestial.skyrefsystems.minmatch2id(’ecli’)
Example with full name (case sensitive!):

* eq = celestial.skyrefsystems.fullname2id (' EQUATORIAL")

* ecC celestial.skyrefsystems.fullname2id (' ECLIPTIC')

6.3 Classes

class skyrefsys (fullname, idnum, description, refsystem)
Class creates an object that describes a sky- or reference system. This module initializes a set of systems.
They are accessible through methods in class celestial.skyrefset

Parameters
* fullname (String) — Complete name to identify the system, e.g. “EQUATORIAL”
* idnum (Integer) — A unique integer to identify the system
* description (String) — A short description of the system
* refsystem (Boolean) — Is this system a reference system?
Attributes:

fullname
A string to identify a system, e.g. “EQUATORIAL”.

idnum
A unique integer to identify the system.

description
A string to describe the system.

refsystem
If True then this system is a reference system. Else it is a sky system.

class skyrefset ()
A container with sky- and reference system objects from class celestial.skyrefsys. Itis used to
initialize variables that can be used as identifiers for sky- or reference systems. Applications can use its
methods to retrieve information given an integer identifier or (part of) a string.

For example when we want a list with all the supported systems then type:

32 Chapter 6. Module Celestial

Kapteyn Package Documentation, Release 2.0.3b19

>>> for s in skyrefsystems.skyrefs_list:
>>> print s.fullname, s.description, s.idnum
append (skyrefsys)

Parameter skyrefsys (Instance of class skyrefsys)— Append this system to the list with
supported systems

Returns A unique integer id which can be used to identify a system.

minmatch2skyref (s)
Return the relevant skyrefsys object with the number of times it is matched or return None if nothing
was found.

Parameter s (String) — Part of the string name of a system

Returns Instance of class skyrefsys and the number of times that the input string gives
a match.

minmatch2id (s)
From the found skyrefsys object corresponding to string s, return the idnum attribute. Case insensitive
minimal match is used to find the sky- or reference system. Return None if there was no match or
more than one match.

Parameter s (String) — Part of the string name of a system

Returns Instance of class skyrefsys or None if there was not a match or more than one
match.

fullname2id (fullname)
This is the fastest method to get an integer id from a string which represents a sky system or a reference
system. Note that the routine is case sensitive because it uses the full names as keys in a dictionary.
The parameter fullname therefore must be in in capitals!

Parameter fullname (String) — The full descriptive name of a system e.g. “EQUATORIAL”
Returns Integer id of the found system or None if nothing was found.

id2skyref (idnum)
Given an integer id of a system, return the corresponding system as an instance of class skyrefsys.
Usually the calling environment will deal with the attributes of this object, for instance to write a short
description of the system.

Parameter idnum (Integer) — Integer id of a system
Returns Instance of class skyrefsys or None if there was not a corresponding system.

id2fullname (idnum)
Given an integer id of a system, return the full name of the corresponding system.

Parameter idnum (Integer) — Integer id of a system

Returns Full name (e.g. “EQUATORIAL”) of the corresponding system or an empty string
if nothing was found.

id2description (idnum)
Given an integer id of a system, return the description of the corresponding system.

Parameter idnum (Integer) — Integer id of a system

Returns A short description of the corresponding system or an empty string if nothing was
found.

Attributes:

skyrefs_1list
The list with systems

6.3.

Classes 33

Kapteyn Package Documentation, Release 2.0.3b19

skyrefs_id
A dictionary with the systems and with id’s as keys

skyrefs_fullname
A dictionary with the systems and with full names as keys

Examples Next short script shows how to get a list with sky systems and how to use methods of
this class to get data for a system if an (integer) id is found:

1 from kapteyn.celestial import skyrefsystems

3 for s in skyrefsystems.skyrefs_list:

4 print s.fullname, s.description, s.idnum

5 i = s.idnum

6 print "Full name using id2fullname:", skyrefsystems.id2fullname (1)

7 print "Description using id2description:", skyrefsystems.id2description (i)

8 print "id of with minimal match: s\

9 (s.fullname[:3], skyrefsystems.minmatch2skyref(s.fullname[:3]) [0].idnum)
10 print "id of with minimal match, alternative: "5\

11 (s.fullname[:3], skyrefsystems.minmatch2id(s.fullname[:3]))

12 print "id of with full name: "\

13 (s.fullname[:3], skyrefsystems.fullname2id(s.fullname))

6.4 Core Functions

skyparser (skyin)

Parse a string, tuple or single integer that represents a sky definition. A sky definition can consist of a
sky system, a reference system, an equinox and an epoch of observation. See also the description at Sky
definitions. The elements in the string are separated by a comma or a space. The order of the elements is
not important. The string is converted to a tuple by celestial .parseskydefs ().

The parser is used in function celestial.skymatrix () and celestial.sky2sky (). External
applications can use this function to check whether user input is valid.

Definitions in strings are usually used to define output sky definitions in prompts or on command lines.
Applications can use integer id’s for the sky- and reference systems. These integer id’s are global constants
See also Sky systems and Reference systems.

The sky system and reference system strings are minimal matched (case INsensitive) with the strings in the
table in the documentation at Sky systems and Reference systems.

For the epoch syntax read the documentation at Epochs for the equinox and epoch of observation. Note that
an epoch of observation is either a second epoch in the string (the first is always the equinox) or the epoch
string has a suffix ‘_’ which may be follwed by arbitrary characters.

Parameter skyin (String, tuple or integer) — Represents a sky definition. See examples.

Returns A tuple with the ‘coded’ system where strings for sky- and reference systems are re-
placed by integer id’s. Missing values are filled in with defaults.

If an error occurred then an exception will be raised.
Raises
ValueError From celestial.parseskydefs():
o Empty string!
» Too many items for sky definition!
* ... is ambiguous sky or reference system!

e ... is not a valid epoch or sky/ref system!

34

Chapter 6. Module Celestial

Kapteyn Package Documentation, Release 2.0.3b19

From this function:

 Sky definition is not a string nor a tuple!

* Too many elements in sky definition (max. 4)!

e Two sky systems given!

* Two reference systems given!

e Invalid number for sky- or reference system!

* Cannot determine the sky system!

* Input contains an element that is not an integer or a string!
Examples

>>> print celestial.skyparser ("B1983.5_0 fk4 B1960,eq")
(0, 4, 1960.0, 1983.5)

>>> print celestial.skyparser ("su")
(3, None, None, None)

>>> print celestial.skyparser ("supergal")
(3, None, None, None)

Notes This is the parser for a sky definition. In this definition one can specify the sky system,
the reference system, an equinox and an epoch of observation if the reference system is fk4.
The order of these elements is not important.

The rules for the defaults are:

* What if the sky system is not defined? If there is a reference system then we assume it
is equatorial (could have been ecliptic).

e If there no sky system and no reference system but there is an equinox, assume sky
system is equatorial (could have been ecliptic).

* If there no sky system and no reference system and no equinox but there is an epoch of
observation, assume sky system is equatorial.

* Assume we have a sky system. What if there is no reference system? Standard in FITS:
RADESYS (i.e our reference system) defaults to IRCS unless EQUINOX is given alone,
in which case it defaults to FK4 prior to 1984 and FKS5 after 1984.

* Assume we have a sky system and a reference system and the sky system was ecliptic or
equatorial. What if we don’t have an equinox? Standard in FITS: EQUINOX defaults
to 2000 unless RADESYS is FK4, in which case it defaults to 1950.

* We have one item to address and that is the epoch of observation. This epoch of observa-
tion only applies to the reference systems FK4 and FK4_NO_E. In ‘Representations of
celestial coordinates in FITS’ (Calabretta & Greisen) we read that all reference systems
are allowed for both equatorial- and ecliptic coordinates, except FK4-NO-E, which is
only allowed for equatorial coordinates. If FK4-NO-E is given in combination with an
ecliptic sky system then silently FK4 is assumed.

skymatrix (skyin, skyout)
Create a transformation matrix to be used to transform a position from one sky system to another (including
epoch transformations). For a description of the sky definitions see Sky definitions.

Parameters

* skyin (Integer or tuple with one to four elements) — One of the supported sky systems or
a tuple for equatorial systems which are identified with an equinox an reference system.
This is the sky system from which you want to transform to another sky system (skyout).

6.4. Core Functions 35

Kapteyn Package Documentation, Release 2.0.3b19

* skyout — The destination sky system
Returns Three elements:

* The transformation matrix M for the transformation of positions in (x,y,z) as in XYZsky-
out = M * XYZskyin

* followed by ‘None’ or a tuple with the e-term vector belonging input epoch.
* followed by None or a tuple with the e-term vector belonging to the output epoch.
See also notes below.

Notes The reference systems FK4 and FK4_NO_E are special. We consider FK4 as a catalog
position where the e-terms are included. So besides a transformation matrix, this function
should also return a flag for the addition or removal of e-terms. This flag is either None or
the e-term vector which depends on the epoch.

The structure of the output then is as follows: M, (Al1,2A2,A3), (A4,A5,A6) where:
e M: The 3x3 transformation matrix

* (Al,A2,A3) or None: for adding or removing e-terms in the input sky system using this
e-term vector (AI,A2,A3).

* (A4,A5,A6) or None: for adding or removing e-terms in the output sky system using this
e-term vector (A4,A5,A0).

This function is the main function of this module. It calls function skyparser() for the pars-
ing of the input and rotmatrix() to get the rotation matrix. There utility function sky2sky()
transforms a sequence of longitudes and latitudes from one sky system to another. It is a
valuable tool for experiments in an interactive Python session.

Examples Some examples of transformations between sky systems using either strings or tuples.
We advise to use strings which is more safe then using variables from celestial (which can be
accidentally replaced by other values). Note that for transformations where FK4 is involved,
the matrix is followed by a vector with e-terms.

1 >>> from kapteyn import celestial
> >>> print skymatrix(celestial.gal, (celestial.eq,"32000",celestial.fkb))

3 (matrix ([[-0.05487554, 0.49410945, -0.867666147,

4 [-0.8734371 , -0.44482959, -0.19807639],

5 [-0.48383499, 0.74698225, 0.4559837911),
6 None,

7 None)

1 >>> print skymatrix(celestial.fk4, celestial.fkb)

2 (matrix([[9.99925679e-01, -1.11814832e-02, -4.85900382e-03],

3 [1.11814832e-02, 9.99937485e-01, -2.71625947e-05]7,

4 [4.85900377e-03, -2.71702937e-05, 9.99988195e-0111),
5 (-1.6255503575995309e-06,

6 -3.1918587795578522e-07,

7 -1.3842701121066153e-07), None)

1 >>> print skymatrix("eq,B1950.0,fk4_no_e","eq,B1950.0,fk4")

2 (matrix ([[1., 0., 0.],

3 [0., 1., 0.1,

4 [0., 0., 1.101),

5 None,

6 (-1.6255503575995309e-06,

7 -3.1918587795578522e-07,
8 -1.3842701121066153e-07))

36

Chapter 6. Module Celestial

Kapteyn Package Documentation, Release 2.0.3b19

1 >>> print skymatrix("eq b1950 fk4 31983.5", "eqg J2000 £k5")

2 (matrix ([[9.99925679e-01, -1.11818698e-02, -4.85829658e-03],

3 [1.11818699e-02, 9.99937481e-01, -2.71546879e-05],

4 [4.85829648e-03, -2.71721706e-05, 9.99988198e-0111),
5 (-1.6255503575995309e-06,

6 -3.1918587795578522e-07,

7 -1.3842701121066153e-07),

8 None)

1 >>> print skymatrix("eq J2000 fk4 F1984-1-1T0:30", "eg J2000 fk5")

2 (matrix ([[1.00000000e+00, -5.45185721e-06, —3.39404820e-077,

3 [5.45185723e-06, 1.00000000e+00, 2.24950276e-087,

4 [3.39404701e-07, -2.24971595e-08, 1.00000000e+0011),
5 (-1.6181121582090453e-06,

6 -3.4112123324131958e-07,

7 -1.4789407828956555e-07),

8 None)

See Epochs for the equinox and epoch of observation for the possible epoch formats.

sky2sky (skyin, skyout, lons, lats)
Utility function to facilitate command line use of skymatrix.

Parameters
* skyin (See function skymatrix ())— The input sky definition
* skyout (See function skymatrix ())— The output sky definition
* Jons (Floating point number(s), scalar, list or tuple) — Input longitude(s)
* lats (Floating point number(s), scalar, list or tuple) — Input latitude(s)

Returns Matrix. One position per row. See example below how to extract rows, columns and
elements from this matrix.

Example Interactive Python session:

1 >>> from kapteyn import celestial

2 >>> M = celestial.sky2sky((celestial.eq, celestial.fk5), celestial.gal,

3 (0,0,1.0), (10,20,20))
4 >>> M

s matrix([[102.6262244 , -50.83256452],

6 [106.78021643, -41.252896497,

7 [107.9914125 , -41.4914344811])

s >>> M[2,0]
9 107.99141249678289

0 >>> M[0] # Extract first transformed long, lat
n matrix ([[102.6262244 , -50.83256452]1)

2 >>> M[:,1] # Extract second column with latitudes
3 matrix([[-50.832564527,

14 [-41.25289649],

15 [-41.49143448]11)

Notes This function illustrates the core use of module celestial. First it converts the input of
world coordinates into a matrix. This matrix is converted to spatial positions (X,Y,Z) with
function longlat2xyz(). The function dotrans() transforms these positions (X,Y,Z) to posi-
tions (X2,Y2,72) in the output sky system. Then the function xyz2longlat() converts these
positions into longitudes and latitudes and finally a matrix with these values is returned:

1 lonlat = n.array([(lons,lats)])
2 xyz = longlat2xyz(lonlat)
3 xyz2 = dotrans (skymatrix(skyin, skyout), xyz)

6.4. Core Functions

37

Kapteyn Package Documentation, Release 2.0.3b19

4 newlonlats = xyz2longlat (xyz2)
5 return newlonlats

epochs (spec)

Flexible epoch parser. The functions in this module have different input parameters (Julian epoch, Besselian
epochs, Julian dates) because the algorithms came from different sources. What we needed was a routine
that could convert a string which represents a date in various formats, to values for a Julian epoch, Besselian
epochs and a Julian date. This function returns these value for any valid input date.

For the epoch syntax read the documentation at Epochs for the equinox and epoch of observation. Note that
an epoch of observation is either a second epoch in the string (the first is always the equinox) or the epoch
string has a suffix ‘_’ which may be follwed by arbitrary characters.

Parameter spec (String) — An epoch specification (see below)

Returns Calculated corresponding Besselian epoch, Julian epoch and Julian date. Return in

order: B, J, JD
Reference Various sources listing Julian dates.
Notes

Examples Some checks:

>>> celestial.epochs ('F2008-03-31T8:09")

LT Y T SR

6.5 Utility functions

JD (year, month, day)
Calculate Julian day number (Julian date)

Parameters
* year (Integer) — Year (nnnn)
* month (Integer) — Month (nn)
* day (Floating point number) — Day (nn.n...)

Returns Julian day number jd.

should return:

(2008.2474210134737, 2008.2459673739454, 2454556.8395833336)
>>> celestial.epochs ("F2007-01-14T13:18:59.9")

(2007.0378545262108, 2007.0364267212976, 2454115.0548599539)
>>> celestial.epochs ("52007.0364267212976")

(2007.0378545262108, 2007.0364267212976, 2454115.0548599539)
>>> celestial.epochs ("b2007.0378545262108")

(2007.0378545262108, 2007.0364267212976, 2454115.0548599539)

Reference Meeus, Astronomical formula for Calculators, 2nd ed, 1982

Notes Months start at 1. Days start at 1. The Julian day begins at Greenwich mean noon, i.e. at
12h. So Jan 1, 1984 at Oh is entered as JD(1984,1,1) and Jan 1, 1984 at 12h is entered as

JD(1984,1,1.5)

There is a jump at JD(1582,10,15) caused by a change of calendars. For dates after 1582-
10-15 one enters a date from the Julian calendar and before this date you enter a date from

the Gregorian calendar.

Examples

e Julian date of JD reference: print celestial.JD(-4712,1,1.5) ==> 0.0

* The first day of 1 B.C.: print celestial.JD(0,1,1) ==> 1721057.5

38

Chapter 6. Module Celestial

Kapteyn Package Documentation, Release 2.0.3b19

» Last day before Gregorian reform: print celestial.JD(1582,10,4) ==>
2299159.5

e First day of Gregorian reform: print celestial.JD(1582,10,15) ==>
2299170.5

» Half a day later: print celestial.JD(1582,10,15.5) ==> 2299161.0

e Unix reference: print celestial.JD(1970,1,1) ==> 2440587.5

lon2hms (a, prec=1, delta=None, tex=False)

Convert an angle in degrees to hours, minutes, seconds format.

Parameters

* a (Floating point number) — Angle (in degrees) for which we want to create a formatted

text label.

* prec (Integer) — The required number of decimals in the seconds part of output. If a
value is omitted, then the default is 1.

* delta (None or a floating point number) — If one labels world coordinates along an axis
then the default labels are in hours, minutes and seconds with some decimal number.
This is probably not want you want if the step size between subsequent positions is for
example an integer number of degrees or minutes. Then you want labels showing only
hours or hours and minutes. This function tries to find out whether this is the case (given
a value for delta) or not. If so, a minimum length label is returned.

* tex (Boolean) — The default is False. If set to True, the string is formatted in LaTeX.
Such labels can be plotted in, for example, Matplotlib.

Returns Formatted string representing the input angle.

Notes Longitudes are forced into the range, 360 deg. and then converted to hours, minutes and

seconds.

Examples Format a position in hms and dms:

>>> ra = 359.9999
>>> dec = 0.0000123

00h 00m

©w u U B W o —

lat2dms (q, prec=1, delta=None, tex=False)

>>> print celestial.lonZhms(ra),
0.0s +00d 00m
>>> print celestial.lon2hms(ra, 2),
23h 59m 59.98s +00d 00m
>>> print celestial.lon2hms(ra, 4),
23h 59m 59.9760s +00d 00m

celestial.lat2dms (dec)

0.0s

celestial.lat2dms (dec, 2)
0.04s

celestial.lat2dms (dec, 4)
0.0443s

Convert an angle in degrees into the degrees, minutes, seconds format assuming it was a latitude. Its value

should be in the range -90 to 90 degrees

Parameters

* a (Floating point number) — Angle (in degrees) for which we want to create a formatted

text label.

* prec (Integer) — The required number of decimals in the seconds part of output. If a
value is omitted, then the default is 1.

* delta (None or a floating point number) — If one labels world coordinates along an axis
then the default labels are in degrees, minutes and seconds with some decimal number.
This is probably not want you want if the step size between subsequent positions is for
example an integer number of degrees or minutes. Then you want labels showing only
degrees or degrees and minutes. This function tries to find out whether this is the case
(given a value for delta) or not. If so, a minimum length label is returned.

6.5. Utility functions

39

Kapteyn Package Documentation, Release 2.0.3b19

* tex (Boolean) — The default is False. If set to True, the string is formatted in LaTeX.
Such labels can be plotted in, for example, Matplotlib.

Returns Formatted string representing the input angle or a string with ‘#’ characters indicating
that the input was out of range.

Notes The HMS and DMS format should be treated differently because their ranges in world
coordinates are different. Longitudes should be in range of (0,360) degrees. So -10 deg is
in fact 350 deg. and 370 deg is in fact 10 deg. Latitudes range from -90 to 90 degrees. Then
91 degrees is in fact 89 degrees but at a longitude that is separated 180 deg. from the stated
longitude. But we don’t have control over the longitudes here so the only thing we can do is
reject the value and return a dummy string.

lon2dms (a, prec=1, delta=None, tex=False)
Convert an angle in degrees to degrees, minutes, seconds format, assuming the input is a longitude but not
associated with an equatorial system.

Parameters

* a (Floating point number) — Angle (in degrees) for which we want to create a formatted
text label

* prec (Integer) — The required number of decimals in the seconds part of output If a value
is omitted, then the default is 1.

* delta (None or a floating point number) — If one labels world coordinates along an axis
then the default labels are in hours, minutes and seconds with some decimal number.
This is probably not want you want if the step size between subsequent positions is for
example an integer number of degrees or minutes. Then you want labels showing only
degrees or degrees and minutes. This function tries to find out whether this is the case
(given a value for delta) or not. If so, a minimum length label is returned.

* tex (Boolean) — The default is False. If set to True, the string is formatted in LaTeX.
Such labels can be plotted in, for example, Matplotlib.

Returns Formatted string representing the input angle.

Notes Longitudes are forced into the range 0, 360 deg. and then converted to hours, minutes and
seconds.

Examples Format a longitude to dms:
>>> print celestial.lon2dms (167.342, 4)
167d 20m 31.2000s

>>> print celestial.lon2dms (-10, 4)
350d Om 0.0000s

JD2epochBessel (JD)
Convert a Julian date to a Besselian epoch.

Parameter JD (Floating point number) — Julian date (e.g. 2445700.5)
Returns Besselian epoch (e.g. 1983.9)
Reference Standards Of Fundamental Astronomy,
http://www.iau-sofa.rl.ac.uk/2003_0429/sofa/epb.html
Notes e.g. 2445700.5 -> 1983.99956681
One Tropical Year is 365.242198781 days and JD(1900) = 2415020.31352
If we know the JD then the Besselian epoch can be calculated with:
BE = B[1900 + (JD - 2415020.31352)/365.242198781]

Expression corresponds to the IAU SOFA expression in the reference with:
2451545-36524.68648 = 2415020.31352

40 Chapter 6. Module Celestial

http://www.iau-sofa.rl.ac.uk/2003_0429/sofa/epb.html

Kapteyn Package Documentation, Release 2.0.3b19

epochBessel2JD (Bepoch)
Convert a Besselian epoch to a Julian date

Parameter Bepoch (Floating point number) — Besselian epoch in format nnnn.nn

Returns Julian date

Reference See: JD2epochBessel ()

Notes e.g. 1983.99956681 converts into 2445700.5 It’s the inverse of JD2epochBessel ()

JD2epochdJulian (JD)
Convert a Julian date to a Julian epoch

Parameter JD (Floating point number) — Julian date

Returns Julian epoch

Reference Standards Of Fundamental Astronomy,
http://www.iau-sofa.rl.ac.uk/2003_0429/sofa/epj.html

Notes e.g. 2445700.5 converts into 1983.99863107 Assuming years of exactly
365.25 days, we can calculate a Julian epoch from a Julian date. Expression corresponds to
IAU SOFA routine ‘epj’

epochJulian2JD (Jepoch)
Convert a Julian epoch to a Julian date

Parameter Jepoch (Floating point number) — Julian epoch (in format nnnn.nn)
Returns Julian date
Reference See JD2epochJulian ()

Notes e.g. 1983.99863107 converts into 2445700.5 It’s the inverse of function
JD2epochJulian

obliquity1980 (jd)
What is the obliquity of the ecliptic at this Julian date? (IAU 1980 model)

Parameter jd (Floating point number) — Julian date
Returns Mean obliquity in degrees

Reference Explanatory Supplement to the Astronomical Almanac, P. Kenneth Seidelmann (ed),
University Science Books (1992), Expression 3.222-1 (p114).

Notes The epoch is entered in Julian date and the time is calculated w.r.t. J2000.

The obliquity is the angle between the mean equator and ecliptic, or, between the ecliptic
pole and mean celestial pole of date

obliquity2000 (jd)
What is the obliquity of the ecliptic at this Julian date? (IAU model 2000)

Parameter jd (Floating point number) — Julian date
Returns Mean obliquity in degrees

Reference Fukushima, T. 2003, AJ, 126,1 Kaplan, H., 2005, The IAU Resolutions on Astro-
nomical Reference Systems, Time Scales, and Earth Rotation Models, United States Naval
Observatory circular no. 179, http://aa.usno.navy.mil/publications/docs/Circular_179.pdf
(page 44)

Notes The epoch is entered in Julian date and the time is calculated w.r.t. J2000.

The obliquity is the angle between the mean equator and ecliptic, or, between the ecliptic
pole and mean celestial pole of date.

IAU2006precangles (epoch)
Calculate TAU 2000 precession angles for precession from input epoch to J2000.

6.5. Utility functions 41

http://www.iau-sofa.rl.ac.uk/2003_0429/sofa/epj.html
http://aa.usno.navy.mil/publications/docs/Circular_179.pdf

Kapteyn Package Documentation, Release 2.0.3b19

Parameter epoch (Floating point number) — Julian epoch of observation.

Returns Angles ¢ (zeta), z, 6 (theta) in degrees to setup a rotation matrix to transform from
J2000 to input epoch.

Reference Capitaine N. et al., IAU 2000 precession A&A 412, 567-586 (2003)

Notes Input are Julian epochs! T = (jd-2451545.0)/36525.0 Combined with jd
= Jepoch-2000.0)x365.25 + 2451545.0 gives: (see module code at function
epochJulian2JD(epoch)) T = (epoch-2000.0)/100.0

This function should be updated as soon as there are IAU2006 adopted angles to replace the
angles used in this function.

Lieskeprecangles (jdl, jd2)
Calculate IAU 1976 precession angles for a precession of epoch corresponding to Julian date jd1 to epoch
corresponds to Julian date jd2.

Parameters
* jdI (Floating point number) — Julian date for start epoch
* jd2 (Floating point number) — Julian date for end epoch
Returns Angles ((zeta), z, 6 (theta) degrees
Reference Lieske,J.H., 1979. Astron.Astrophys.,73,282. equations (6) & (7), p283.

Notes The ES (Explanatory Supplement to the Astronomical Almanac) lists for a IAU1976
precession from 1984, January 1dOh to J2000 the angles in arcsec: xi_a=368.9985,
ze_a=369.0188 and th_a=320.7279 Using the functions in this module, this can
be calculated by applying:

>>> jdl = celestial.JdD(1984,1,1)
>>> jd2 = celestial.JdD(2000,1,1.5)
>>> print celestial.Lieskeprecangles (jdl, 3jd2)
(0.10249958598931658, 0.10250522534285664, 0.089091092843880629)
>>> print [ax3600 for a in angles]
[368.99850956153966, 369.01881123428387, 320.72793423797026]

[Y T S VO O

The function returns values in degrees, while literature values often are listed in seconds of
arc.

Lieske’s fit belongs to the so called Quasi-Linear Types Below a table with the precision
(according to IAU SOFA):

* 1960AD to 2040AD: <0.1”

* 1640AD to 2360AD: < 1”

* 500BC to 3000AD: < 3”

1200BC to 3900AD: > 10~

< 4200BC or > 5600AD: > 100~
* < 6800BC or > 8200AD: > 1000”

Newcombprecangles (epochl, epoch2)
Calculate precession angles for a precession in FK4, using Newcomb’s method (Woolard and Clemence
angles)

Parameters
* epochl (Floating point number) — Besselian start epoch
* epoch?2 (Floating point number) — Besselian end epoch
Returns Angles ((zeta), z, 6 (theta) degrees
Reference ES 3.214 p.106

42 Chapter 6. Module Celestial

Kapteyn Package Documentation, Release 2.0.3b19

Notes Newcomb’s precession angles for old catalogs (FK4), see ES 3.214 p.106. In-
put are Besselian epochs! Adopted accumulated precession angles from equator and
equinox at B1950 to 1984 January 1d Oh according to ES (table 3.214.1, p 107)
are: zeta=783.7092, z=783.8009 and theta=681.3883 The Woolard and
Clemence angles (derived in this routine) are: zeta=783.70925, z=783.80093
and theta=681.38830 (see same ES table as above).

This routine found (in seconds of arc): zeta,z,theta = 783.709246271
783.800934641 681.388298284 fortl = 0.1 and t2 = 0.133999566814
using the lines in the next example.

Examples From an interactive Python session:
>>> bl = 1950.0
>>> b2 = celestial.epochs ("F1984-01-01") [0]

>>> print [x+x3600 for x in celestial.Newcombprecangles (bel, be2)]
[783.70924627097793, 783.80093464073127, 681.38829828393466]

6.6 Rotation matrices

MatrixEqB19502Gal ()
Create matrix to convert equatorial fk4 coordinates (without e-terms) to IAU 1958 1ILblI system of galactic
coordinates.

Parameters None

Results 3x3 Matrix M as in XYZgal =M * XYZb1950

Reference
1. Blaauw, A., Gum C.S., Pawsey, J.L., Westerhout, G.: 1958,
2. Monthly Notices Roy. Astron. Soc. 121, 123,
3. Blaauw, A., 2007. Private communications.

Notes Original definitions from 1.:

* The new north galactic pole lies in the direction alpha = 12h49m (192.25 deg),
delta=27.4 deg (equinox 1950.0).

* The new zero of longitude is the great semicircle originating at the new north galactic
pole at the position angle theta = 123 deg with respect to the equatorial pole for 1950.0.

* Longitude increases from 0 to 360 deg. The sense is such that, on the galactic equa-
tor increasing galactic longitude corresponds to increasing Right Ascension. Latitude
increases from -90 deg through 0 deg to 90 deg at the new galactic pole.

Given the RA and Dec of the galactic pole, and using the Euler angles scheme:
M = rotZ(a3) .rotY¥(a2) .rotZ(al)

We first rotate the spin vector of the XY plane about an angle al = ra_pole and then rotate
the spin vector in the XZ plane (i.e. around the Y axis) with an angle a2=90-dec_pole to
point it in the right declination.

Now think of a circle with the galactic pole as its center. The radius is equal to the distance
between this center and the equatorial pole. The zero point now is on the circle and opposite
to this pole.

We need to rotate along this circle (i.e. a rotation around the new Z-axis) in a way that the
angle between the zero point and the equatorial pole is equal to 123 deg. So first we need to
compensate for the 180 deg of the current zero longitude, opposite to the pole. Then we need
to rotate about an angle 123 deg but in a way that increasing galactic longitude corresponds

6.6. Rotation matrices 43

Kapteyn Package Documentation, Release 2.0.3b19

to increasing Right Ascension which is opposite to the standard rotation of this circle (note
that we rotated the original X axis about 192.25 deg). The last rotation angle therefore is
a3=+180-123:

M = rotz(180-123.0) rotY (90-27.4)+rotz(192.25)

The composed rotation matrix is the same as in Slalib’s ‘ge50.f” and the matrix in eq. (32)
of Murray (1989).

MatrixGal2Sgal ()
Transform galactic to supergalactic coordinates

Parameters None
Returns Matrix M as in XYZsgal = M * XYZgal

Reference Lahav, O., The supergalactic plane revisited with the Optical Redshift Survey Mon.
Not. R. Astron. Soc. 312, 166-176 (2000)

Notes The Supergalactic equator is conceptually defined by the plane of the local (Virgo-Hydra-
Centaurus) supercluster, and the origin of supergalactic longitude is at the intersection of the
supergalactic and galactic planes. (de Vaucouleurs)

North SG pole at 1=47.37 deg, b=6.32 deg. Node at 1=137.37, sgl=0 (inclination 83.68 deg).

Older references give for he position of the SG node 137.29 which differs from 137.37 deg
in the official definition.

For the rotation matrix we chose the scheme Rz.Ry.Rz Then first we rotate about 47.37
degrees along the Z-axis followed by a rotation about 90-6.32 degrees is needed to set the
pole to the right declination. The new plane intersects the old one at two positions. One
of them is 1=137.37, b=0 (in galactic coordinates). If we want this to be sgl=0 we have
to rotate this plane along the new Z-axis about an angle of 90 degrees. So the composed
rotation matrix is:

M = Rotz (90) *Roty (90-6.32) xRotz (47.37)
MatrixEq2Ecl (epoch, S1)
Calculate a rotation matrix to convert equatorial coordinates to ecliptical coordinates
Parameters
* epoch (Floating point number) — Epoch of the equator and equinox of date
* SI (Integer) — equatorial system to determine if one entered epoch in B or J coordinates.
Returns 3x3 Matrix M as in XYZecl =M * XYZeq

Reference Representations of celestial coordinates in FITS, Calabretta. MR.,
& Greisen, E.W., (2002) Astronomy & Astrophysics, 395, 1077-1122.
http://www.atnf.csiro.au/people/mcalabre/WCS/ccs.pdf

Notes

1. The origin for ecliptic longitude is the vernal equinox. Therefore the coordinates of a
fixed object is subject to shifts due to precession. The rotation matrix uses the obliquity
to do the conversion to the wanted ecliptic coordinates. So we always need to enter
an epoch. Usually this is J2000, but it can also be the epoch of date. The additional
reference system indicates whether we need a Besselian or a Julian epoch.

2. Inthe FITS paper of Calabretta and Greisen (2002), one observes the following relations
to FITS:

-Keyword RADESY Sa sets the catalog system FK4, FK4-NO-E or FK5 This applies to
equatorial and ecliptical coordinates with the exception of FK4-NO-E.

44 Chapter 6. Module Celestial

http://www.atnf.csiro.au/people/mcalabre/WCS/ccs.pdf

Kapteyn Package Documentation, Release 2.0.3b

19

-FK4 coordinates are not strictly spherical since they include a contribution from the
elliptic terms of aberration, the so-called e-terms which amount to max. 343 milliarcsec.
FITS paper: ‘Strictly speaking, therefore, a map obtained from, say, a radio synthesis
telescope, should be regarded as FK4-NO-E unless it has been appropriately re-sampled
or a distortion correction provided. In common usage, however, CRVALia for such maps
is usually given in FK4 coordinates. In doing so, the e-terms are effectively corrected
to first order only.’. (See also ES, eq. 3.531-1 page 170.

-Keyword EQUINOX sets the epoch of the mean equator and equinox.

-Keyword EPOCH is often used in older FITS files. It is a deprecated keyword and
should be replaced by EQUINOX. It does not require keyword RADESYS. From its
value we derive whether the reference system is FK4 or FKS5 (the marker value is
1984.0)

-Ecliptic coordinates require the epoch of the equator and equinox of date. This will be
taken as the time of observation rather than EQUINOX.

FITS paper: ‘The time of observation may also be required for other astrometric pur-
poses in addition to the usual astrophysical uses, for example, to specify when the mean
place was correct in accounting for proper motion, including “fictitious” proper mo-
tions in the conversion between the FK4 and FK5 systems. The old *DATE-OBS key-
word may be used for this purpose. However, to provide a more convenient specification
we here introduce the new keyword MJD-OBS’.*

So MJD-OBS is the modified Julian Date (JD - 2400000.5) of the start of the observa-
tion.

3. Equatorial to ecliptic transformations use the time dependent obliquity of the equator
(also known as the obliquity of the ecliptic). Again, start with:

M = rotZ(0) .rotX(eps).rotZ(0) = E.rotX(eps).E = rotX(eps)

In fact this is only a rotation around the X axis

FK42FK5Matrix (t=None)
Create a matrix to precess from B1950 in FK4 to J2000 in FKS following to Murray’s (1989) procedure.

Parameter 7 (Floating point number) — Besselian epoch as epoch of observation.
Returns 3x3 matrix M as in XYZfk5 =M * XYZfk4
Reference

* Murray, C.A. The Transformation of coordinates between the systems B1950.0 and
J2000.0, and the principal galactic axis referred to J2000.0, Astronomy and Astro-
physics (ISSN 0004-6361), vol. 218, no. 1-2, July 1989, p. 325-329.

* Poppe P.C.R.,, Martin, V.A.F., Sobre as Bases de Referencia Celeste SitientibusSerie
Ciencias Fisicas

Notes Murray precesses from B1950 to J2000 using a precession matrix by Lieske. Then ap-
plies the equinox correction and ends up with a transformation matrix X(0) as given in this
function.

In Murray’s article it is proven that using the procedure as described in the article, r_fk5 =
X (0) . r_fk4 for extra galactic sources where we assumed that the proper motion in FK5
is zero. This procedure is independent of the epoch of observation. Note that the matrix is
not a rotation matrix.

FK4 is not an inertial coordinate frame (because of the error in precession and the motion of
the equinox. This has consequences for the proper motions. e.g. a source with zero proper
motion in FKS has a fictitious proper motion in FK4. This affects the actual positions in
a way that the correction is bigger if the epoch of observation is further away from 1950.0
The focus of this library is on data of which we do not have information about the proper

6.6. Rotation matrices

45

Kapteyn Package Documentation, Release 2.0.3b19

motions. So for positions of which we allow non zero proper motion in FK5 one needs to
supply the epoch of observation.

Examples Print the difference between the rotation matrix for 1970 and 1980:

>>> Ml = celestial .FK42FK5Matrix (1970)

>>> M2 = celestial .FK42FK5Matrix (1980)

>>> M2 - Ml

matrix ([[-2.64546940e-10, -1.15396722e-07, 2.11108953e-07]1,
[1.15403817e-07, -1.29040234e-09, 2.36016437e-09],
[-2.11125281e-07, -5.60232514e-10, 1.02585540e-09]]

o n B W N =

ICRS2FK5Matrix ()
Create a rotation matrix to convert a position from ICRS to fk5, J2000

Parameters None
Returns 3x3 rotation matrix M as in XYZfk5 =M * XYZicrs

Reference Kaplan G.H., The IAU Resolutions on Astronomical Reference systems, Time scales,
and Earth Rotation Models, US Naval Observatory, Circular No. 179

Notes Return a matrix that converts a position vector in ICRS to FKS, J2000. We do not use
the first or second order approximations given in the reference, but use the three rotation
matrices from the same paper to obtain the exact result:

M = rotX(-etal)+rotY(xi0)+*rotZ (dal)

eta0 = -19.9 mas, xi0 = 9.1 mas and da0 = -22.9 mas

ICRS2J2000Matrix ()
Return a rotation matrix for conversion of a position in the ICRS to the dynamical reference system based
on the dynamical mean equator and equinox of J2000.0 (called the dynamical J2000 system)

Parameters None
Returns Rotation matrix to transform positions from ICRS to dyn J2000
Reference

* Hilton and Hohenkerk (2004), Astronomy and Astrophysics 413, 765-770

» Kaplan G.H., The IAU Resolutions on Astronomical Reference systems, Time scales,
and Earth Rotation Models, US Naval Observatory, Circular No. 179

Notes Return a matrix that converts a position vector in ICRS to Dyn. J2000. We do not use
the first or second order approximations given in the reference, but use the three rotation
matrices to obtain the exact result:

M = rotX(-etal)rrotY (xi0) xrotz (daOl)

eta0 = -6.8192 mas, xi0 = -16.617 mas and da0 = -14.6 mas

JMatrixEpochl2Epoch2 (Jepochl, Jepoch2)
Precession from one epoch to another in the k5 system. It uses Lieskeprecangles () to calculate the
precession angles.

Parameters

* Jepochl (Floating point number) — Julian start epoch

* Jepoch2 (Floating point number) — Julian epoch to precess to.
Returns 3x3 rotation matrix M as in XYZepoch2 = M * XYZepochl

Reference Seidelman, P.K., 1992. Explanatory Supplement to the Astronomical Almanac. Uni-
versity Science Books, Mill Valley. 3.214 p 106

46 Chapter 6. Module Celestial

Kapteyn Package Documentation, Release 2.0.3b19

Notes The precession matrix is:
M = rotZ(-z).rotY (+theta) .rotZ (—zeta)

BMatrixEpochl2Epoch2 (Bepochl, Bepoch2)
Precession from one epoch to another in the fk4 system. It uses Newcombprecangles () to calculate
the precession angles.

Parameters

* Bepochl (Floating point number) — Besselian start epoch

* Bepoch2 (Floating point number) — Besselian epoch to precess to.
Returns 3x3 rotation matrix M as in XYZepoch2 =M * XYZepochl

Reference Seidelman, PK., 1992. Explanatory Supplement to the Astronomical Almanac. Uni-
versity Science Books, Mill Valley. 3.214 p 106

Notes The precession matrix is:
M = rotZ(-z) .rotY (+theta) .rotZ (—zeta)

IAU2006MatrixEpochl2Epoch2 (epochl, epoch2)
Create a rotation matrix for a precession based on IAU 2000/2006 expressions, see function
IAU2006precangles ()

Parameters
* epochl (Floating point number) — Julian start epoch
* epoch?2 (Floating point number) — Julian epoch to precess to.

Returns Matrix to transform equatorial coordinates from epoch1 to epoch2 as in XYZepoch2 =
M * XYZepochl

Reference Capitaine N. et al.: AU 2000 precession A&A 412, 567-586 (2003)

Notes Note that we apply this precession only to equatorial coordinates in the system of dy-
namical J2000 coordinates. When converting from ICRS coordinates this means applying
a frame bias. Therefore the angles differ from the precession Fukushima-Williams angles
(IAU 2006)

The precession matrix is:

M = rotZ(-z).rotY (+theta) .rotZ (-zeta)

MatrixEpochl2Epoch2 (epochl, epoch2, S1, S2, epobs=None)
Helper function for skymatrix (). It handles precession and the transformation between equatorial
systems. This function includes also conversions between reference systems.

Parameters

» epochl (Floating point number) — Epoch belonging to system S1 depending on the
reference system either Besselian or Julian.

* epoch2 — Epoch belonging to system S2 depending on the reference system either
Besselian or Julian.

* SI (Integer) — Input reference system
* 52 (Integer) — Output rreferencesystem

* epobs (Floating point number) — Epoch of observation. Only valid for conversions
between FK4 and FKS.

Returns Rotation matrix to transform a position in one of the reference systems S/ with epochl
to an equatorial system with equator and equinox at epoch2 in reference system S2.

6.6. Rotation matrices 47

Kapteyn Package Documentation, Release 2.0.3b19

Notes Return matrix to transform equatorial coordinates from epochl to epoch?2 in either refer-
ence system FK4 or FKS. Or transform from epoch, FK4 or FK5 to ICRS or J2000 vice
versa. Note that each transformation between FK4 and one of the other reference systems
involves a conversion to FK5 and therefore the epoch of observation will be involved.

Note that if no systems are entered and the one epoch is > 1984 and the other < 1984, then
the transformation involves both sky reference systems FK4 and FKS5.

Examples Calculate rotation matrix for a conversion between FK4, epoch 1940 to FKS, epoch
1960, while the date of observation was 1950.

>>> from kapteyn import celestial

>>> celestial.MatrixEpochl2Epoch2 (1940, 1960, celestial.fk4, celestial.fk5,

[4.47301372e-03, 9.99989996e-01, -4.34712255e-06],

1
2
3 matrix([[9.99988107e-01, -4.47301372e-03, -1.94362889e-03],
4
5 [1.94362889e-03, -4.34680782e-06, 9.99998111e-01]]

6.7 Functions related to E-terms

getEterms (epoch)
Compute the E-terms (elliptic terms of aberration) for a given epoch.

Parameter epoch (Floating point number) — A Besselian epoch
Returns A tuple containing the e-terms vector (DeltaD,DeltaC,DeltaC.tan(e0))

Reference Seidelman, PK., 1992. Explanatory Supplement to the Astronomical Almanac. Uni-
versity Science Books, Mill Valley

Notes The method is described on page 170/171 of the ES. One needs to process the e-terms for
the appropriate epoch This routine returns the e-term vector for arbitrary epoch.

addEterms (xyz, a=None)
Add the elliptic component of annual aberration when the result must be a catalogue fk4 position.

Parameters

* xyz (NumPy (n,2) matrix) — Cartesian position(s) converted from lonlat = [
(al,dl),(a2,d2), ..., (an,dn)] > xyz =[(x1,yl,z1), (x2,y2,22), ..., (Xn,yn,zn)]

* a (Tuple with 3 floating point numbers) — E-terms vector (as returned by getEterms())
If input a is omitted (i.e. a == None), the e-terms for 1950 will be substituted.

Result Apparent place, NumPy (n,2) matrix
Reference

* Seidelman, P.K., 1992. Explanatory Supplement to the Astronomical Almanac. Univer-
sity Science Books, Mill Valley.

* Yallop et al, Transformation of mean star places, AJ, 1989, vol 97, page 274

» Stumpff, On the relation between Classical and Relativistic Theory of Stellar Aberra-
tion, Astron, Astrophys, 84, 257-259 (1980)

Notes There is a so called ecliptic component in the stellar aberration. This vector depends
on the epoch at which we want to process these terms. It corresponds to the component
of the earth’s velocity perpendicular to the major axis of the ellipse in the ecliptic. The
E-term corrections are as follows. A catalog FK4 position include corrections for elliptic
terms of aberration. These positions are apparent places. For precession and/or rotations
to other sky systems, one processes only mean places. So to get a mean place, one has to
remove the E-terms vector. The ES suggests for the removal to use a decompositions of
the E-term vector along the unit circle to get the approximate new vector, which has almost
the correct angle and has almost length 1. The advantage is that when we add the E-term

48 Chapter 6. Module Celestial

1950)

Kapteyn Package Documentation, Release 2.0.3b19

vector to this new vector, we obtain a new vector with the original angle, but with a length
unequal to 1, which makes it suitable for closure tests. However, the procedure can be made
more rigorous: For the subtraction we subtract the E-term vector from the start vector and
normalize it afterwards. Then we have an exact new angle (opposed to the approximation
in the ES). The procedure to go from a vector in the mean place system to a vector in the
system of apparent places is a bit more complicated: Find a value for lambda so that the
current vector is adjusted in length so that adding the e-term vector gives a new vector with
length 1. This is by definition the new vector with the right angle. For more information,
see the background information in Background information module celestial.

removeEterms (xyz, a=None)
Remove the elliptic component of annual aberration when this is included in a catalogue fk4 position.

Parameters

* xyz (NumPy (n,2) matrix) — Cartesian position(s) converted from lonlat = [
(al,dl),(a2,d2), ..., (an,dn)] > xyz = [(x1,y1,z1), (x2,y2,22), ..., (Xn,yn,zn)]

* a (Tuple with 3 floating point numbers) — E-terms vector (as returned by getEterms())
If input a is omitted (== None), the e-terms for 1950 will be substituted.

Result Mean place, NumPy (n,2) matrix

Notes Return a new position where the elliptic terms of aberration are removed i.e. convert a
apparent position from a catalog to a mean place. The effects of ecliptic aberration were
included in the catalog positions to facilitate telescope pointing. See also notes at ‘addE-
terms’.

6.7. Functions related to E-terms

49

Kapteyn Package Documentation, Release 2.0.3b19

50

Chapter 6. Module Celestial

CHAPTER 7

MODULE WCSGRAT

A graticule is a system of crossing lines on a map representing positions of which one coordinate is constant. For
a spatial map it consists of parallels of latitude and meridians of longitude as defined by a given projection.

This module is used to set up such graticules and labels for the selected world coordinate system. It plots the
results with plotting library Matplotlib.

Besides spatial axes, it supports also spectral axes and a mix of both (e.g. position-velocity diagrams). It deals with
data dimensions > 2 by allowing arbitrary selections of two axes. The transformations between pixel coordinates
and world coordinates are based on module wcs which is a Python binding for Mark R. Calabretta’s library
WCSLIB. >From WCSLIB we use only the core transformation routines. Header parsing is done with module
wWCS.

Axes types that are not recognized by this software is treated as being linear. The axes types correspond with
keywords CTYPEn in a FITS file. The information from a FITS file is retrieved by module PyFITS

See Also:
Tutorial material with code examples:
e Tutorial maputils module which contains many examples with source code, see Tutorial maputils module.

* Figure gallery ‘all sky plots’ with many examples of Graticule constructors, see All Sky plots.

7.1 Module level data

left, bottom, right, top The variables left, bottom, right and top are equivalent to the strings “left”,

» o«

“bottom”, “right” and “top” and are used as identifiers for plot axes.

native, notnative, bothticks, noticks The variables native, notnative, bothticks, noticks corre-
spond to the numbers 0, 1, 2 and 3 and represent modes to make ticks along an axis visible or invisible.
Ticks along an axis can represent both world coordinate types (e.g. when a map is rotated). Sometimes one
wants to allow this and sometimes not.

Tick mode Description

is rotated 45 degrees we want only Right Ascensions along the x-axis.

notnative Plot the ticks that are not native to the coordinate axis. So, for example, in a RA-DEC
map which is rotated 45 degrees we want only Declinations along the x-axis.

bothticks Allow both type of ticks along a plot axis

noticks Do not allow any tick to be plotted.

native Show only ticks that are native to the coordinate axis. Do not allow ticks that correspond
to the axis for which a constant value applies. So, for example, in a RA-DEC map which

7.2 Functions

gethmsdms (q, prec, axtype, skysys, eqlon=None)
Given a number in degrees and an axis type in axtype equal to ‘longitude’ or ‘latitude’, calculate and return

51

http://matplotlib.sourceforge.net/index.html
http://www.atnf.csiro.au/people/mcalabre/WCS
http://www.stsci.edu/resources/software_hardware/pyfits

Kapteyn Package Documentation, Release 2.0.3b19

the parts of its sexagesimal representation, i.e. hours or degrees, minutes and seconds. Also return the
fractional seconds and the sign if the input was a value at negative latitude. The value for skysys sets the
formatting to hours/minutes/seconds if it represents an equatorial system.

Parameters
* a (Floating point) — The longitude or latitude in degrees.
e prec (Integer) — The number of decimals in the seconds
* axtype (String) — One of ‘longitude’ or ‘latitude’
* skysys (Integer) — The sky system

Returns tuple: (Ihours, Ideg, Imin, Isec, Fsec, sign) which represent Integer values for the hours,
degrees, minutes and seconds. Fsec is the fractional part of the seconds. Element sign is -1
for negative latitudes and +1 for positive latitudes.

makelabel (hmsdms, Hlab, Dlab, Mlab, Slab, prec, fmt, tex)

From the output of function gethmsdms and some Booleans, this function creates a label in plain text or in
TeX. The Booleans set a flag whether a field (hours, degrees, minutes or seconds) should be printed or not.
The fimt parameter is used if it does not contain the percentage character (%) but instead contains characters
from the set HDMS. A capital overules the corresponding Boolean value, so if fimt="HMS’, the values for
Hlab, Mlab and Slab are all set to True.

Parameters

* hmsdms (Tuple with integer and floating point numbers) — The output of function
wcsgrat.gethmsdms ()

Hlab — If False, there is no need to print the hours

Dlab — If False, there is no need to print the degrees

Milab — If False, there is no need to print the minutes

* Slab — If False, there is no need to print the seconds

Jfmt (String) — String containing a combination of the characters ['H’, ‘D’, ‘M’, ‘S’, .,

‘h’, ‘d’, ‘m’, ‘s’] A capital sets the corresponding input Boolean (Hlab, Dlab, etc.) to
True. A dot starts to set the precision. The number of characters after the dot set the
precision itself. A character that is not a capital sets the corresponding input Boolean
(Hlab, Dlab, etc.) to False. This is a bit dangerous because with this option one can
suppress fields to be printed that contain a value unequal to zero. It is applied if you
want to suppress e.g. seconds if all the seconds in your label are 0.0. The suppression of
printing minutes is overruled if hours (or degrees) and seconds are required. Otherwise
we could end up with non standard labels (e.g. 2h30s).

e tex (Boolean) — If True, then format the labels in LaTeX.
Returns lab, a label in either hms or dms in plain text or in LaTeX format.
Examples
>>> # Set the format in Hours, minutes and seconds with a precision

>>> # of three. The suppression of minutes will not work here:
>>> grat.setp_tick (wcsaxis=0, fmt="HmS.SSS")

>>> # The same effect is obtained with:
>>> grat.setp_tick (wcsaxis=0, fmt="HmS.###")

>>> # Let the system determine whether seconds are printed
>>> # but make sure that degrees and minutes are included:
>>> grat.setp_tick (wcsaxis=1, fmt="DM")

52

Chapter 7. Module wcsgrat

Kapteyn Package Documentation, Release 2.0.3b19

>>> # If we know that all minutes and seconds in our labels are 0.0
>>> # and we want only the hours to be printed, then use:
>>> grat.setp_tick (wcsaxis=0, fmt="Hms")

>>> grat.setp_tick (wcsaxis=0, fmt="Dms")
>>> # Plot labels in Degrees even 1f the axis 1s an equatorial longitude.

7.3 Class Graticule

class Graticule (header=None, graticuledata=None, axnum=None, pxlim=None, pylim=None, mix-
pix=None, spectrans=None, skyout=None, alter=", wxlim=None, wylim=None, boxsam-
ples=5000, startx=None, starty=None, deltax=None, deltay=None, skipx=False,
skipy=False, gridsamples=1000, labelsintex=True, offsetx=None, offsety=None,

unitsx=None, unitsy=None)
Creates an object that defines a graticule A (spatial) graticule consists of parallels and meridians. We extend

this to a general grid so we can cover every type of map (e.g. position velocity maps).
Parameters

* header (Python dictionary or FITS header object (pyfits.NP_pyfits. HDUList)) — Is a
Python dictionary or dictionary-like object containing FITS-style keys and values, e.g.
a header object from PyFITS. Python dictionaries are used for debugging, or plotting
experiments or when you need to define a projection system from scratch.

* graticuledata (Object with some required attributes) — This is a helper object. It can be
any object as long it has attributes:

header

axnum

pxlim

pylim

mixpix
— spectrans

Software that interfaces with a user to get data and relevant properties could/should
produce objects which have at least values for the attributes listed above. Then these
objects could be used as a shortcut parameter.

» axnum (None, Integer or sequence of Integers) — This parameter sets which FITS axis
corresponds to the x-axis of your graticule plot rectangle and which one corresponds to
the y-axis (see also description at pxlim and pylim). The first axis in a FITS file is axis
1. If axnum set to None then the default FITS axes will be 1 and 2. With a sequence you
can set different FITS axes like axnum= (1, 3) Then the input is a tuple or a list.

» pxlim (None or exactly 2 Integers) — The values of this parameter together with the
values in pylim define a rectangular frame. The intersections of graticule lines with this
frame are the positions where want to plot a tick mark and write a label that gives the
position as a formatted string. Further, the limits in pixels are used to set the step size
when a graticule line is sampled. This step size then is used to distinguish a valid step
from a jump (e.g. from 180-delta degrees to 180+delta degrees which can jump from
one side in the plot to the other side). To prevent a jump in a plot, the graticule line is
splitted into line pieces without jumps. The default of pxlim is copied from the header
value. FITS data starts to address the pixels with 1 and the last pixel is given by FITS
keyword NAXISn. Note that internally the enclosing rectangle in pixels is enlarged with
0.5 pixel in all directions. This enables a correct overlay on an image where the pixels
have a size.

7.3. Class Graticule 53

Kapteyn Package Documentation, Release 2.0.3b19

» pylim (None or exactly 2 Integers) — See description at pxlim. The range is along the
y-axis.

* mixpix (None or 1 Integer) — For maps with only 1 spatial coordinate we need to define
the pixel that sets the spatial value on the matching spatial axis. If its value is None then
the value of CRPIXn of the matching axis from the header is taken as default.

* spectrans (String) — The spectral translation. For spectral axes it is usually possible
to convert to another representation. For instance one can ‘translate’ a frequency into
a velocity which is one of the types: VOPT-F2W, VRAD, VELO-F2V (for optical,
radio and radial velocities). See also the article Representations of spectral coordinates
in FITS by Greisen, Calabretta, Valdes & Allen. Module maputils from the Kapteyn
Package provides a method that creates a list with possible spectral translations given
an arbitrary header. The spectral translation should be followed by a code (e.g. as in
‘VOPT-F2W’) which sets the conversion algorithm. If you don’t know this beforehand,
you can either append the string ‘-???’ or try your translation without this coding. Then
this module tries to find the appropriate code itself.

* skyout (None, one Integer or a tuple with a sky definition) — A single number or a tuple
which specifies the celestial system. The tuple is laid out as follows: (sky system,
equinox, reference system, epoch of observation). Predefined
are the systems:

wcs.equatorial

wcs.ecliptic,

wcs.galactic

— wcs.supergalactic

or the minimal matched string versions of these values.
Predefined reference systems are:

— wecs.fk4,

wcs.fk4_no_e,

wcs.fk5,

wcs.icrs,

wcs.j2000

or the minimal matched string versions of these values.

Prefixes for epoch data are:

Prefix Description Example
B Besselian epoch ‘B 1950°, ‘b1950°, ‘B1983.5’, *-B1100
J Julian epoch 52000.7°, J 2000°, “-j100.0°
JD Julian Date ‘JD2450123.7°
MID Modified Julian Day ‘mJD 24034°, ‘MJD50123.2
RID Reduced Julian Day ‘1JD50123.2°, ‘Rjd 23433’
F DD/MM/YY (old FITS) ‘F29/11/57
F YYYY-MM-DD ‘F2000-01-01°
F YYYY-MM-DDTHH:MM:SS | ‘F2002-04-04T09:42:42.1°
See the documentation of module celestial for more details. Example of a sky
definition:
skyout = (wcs.equatorial, wcs.fk4_no_e, ’'B1950")

alter (Character) — A character from ‘A’ through ‘Z’, indicating an alternative WCS axis
description from a FITS header.

54 Chapter 7. Module wcsgrat

http://www.atnf.csiro.au/people/mcalabre/WCS/scs.pdf
http://www.atnf.csiro.au/people/mcalabre/WCS/scs.pdf

Kapteyn Package Documentation, Release 2.0.3b19

* wxlim (None or exactly two floating point numbers) — Two numbers in units of the x-
axis. For spatial axes this is usually in degrees. The numbers are the limits of an interval
for which graticules will be calculated. If these values are omitted, defaults will be
calculated. Then random positions in pixels are converted to world coordinates and the
greatest gap in these coordinates is calculated. The end- and start point of the gap are the
start- and end point of the range(s) in world coordinates. It is not enough to transform
only the limits in pixels because a maximum or minimum in world coordinates could
be located on arbitrary pixel positions depending on the projection.

* wylim (None or exactly two floating point numbers) — See wxlim, but now applied for
the y-axis

* boxsamples (Integer) — Number of random pixel positions within a box with limits pxlim
and pylim for which world coordinates are calculated to get an estimate of the range in
world coordinates (see description at wxlim). The default is listed in the argument list
of this method. If speed is essential one can try smaller numbers than the default.

* startx (None or 1 floating point number or a sequence of floating point numbers or a
string.) — If one value is given then this is the first graticule line that has a constant x
world coordinate equal to stzartx. The other values will be calculated, either with dis-
tance deltax between them or with a default distance calculated by this method. If None
is set, then a suitable value will be calculated. For longitudes and latitudes the parame-
ter can also be a string representing a sexagesimal number. The syntax is explained in
positions.parsehmsdms ().

e starty (None or 1 floating point number or a sequence of floating point numbers or a
string.) — [None, one value, sequence] Same for the graticule line with constant y world
coordinate equal to starty.

* deltax (None or a floating point number) — Step in world coordinates along the x-axis
between two subsequent graticule lines.

* deltay (None or a floating point number) — Same as deltax but now as step in y direction.

* skipx (Boolean) — Do not calculate the graticule lines with the constant world coordinate
that is associated with the x-axis.

* skipy (Boolean) — The same as skipx but now associated with the y-axis.

* gridsamples (Integer) — Number of positions on a graticule line for which a pixel posi-
tion is calculated and stored as part of the graticule line. If None is set then the default
is used (see the argument list of this method).

¢ labelsintex (Boolean) — The default is that all tick labels are formatted for LaTeX. These
are not the axes labels. If you want to format these in LaTeX then you need to set them
explicitly as in:

>>> grat.setp_axislabel ("bottom",
label=r"$\mathrm{Right\ Ascension\ (2000)}s$",
fontsize=14) "

Printing your axis labels in LaTeX limits the number of Matplotlib properties that one
can set.

* offsetx (None or Boolean) — Change the default mode which sets either plotting the
labels for the given -or calculated world coordinates or plotting labels which represent
constant offsets with respect to a given starting point. The offset mode is default for
plots with mixed axes, i.e. with only one spatial axis. In spatial maps this offset mode
is not very useful to plot the graticule lines because these lines are plotted at a constant
world coordinate and do not know about offsets. The offset axes correspond to the pixel
positions of start- and endpoint of the left and bottom axes and the start point of the
offsets (value 0) is at the centre of the axis.

* offsety (None or Boolean) — Same as offsetx but now for the left plot axis.

7.3. Class Graticule 55

Kapteyn Package Documentation, Release 2.0.3b19

* unitsx (String) — Units for first offset axis
* unitsy (String) — Units for second offset axis
Raises

ValueError Could not find enough (>1) valid world coordinates in this map! User
wanted to let the constructor estimate what the ranges in world coordinates are for this
header, but only zero or one coordinate could be found.

ValueError Need data with at least two axes The header describes zero or one axes.
For a graticule plot we need at least two axes.

ValueError Need two axis numbers to create a graticule The axnum parameter needs
exactly two values.

ValueError Need two different axis numbers A user/programmer entered two identical
axis numbers. Graticules need two different axes.

ValueError pxlim needs to be of type tuple or list Check type.
ValueError pxlim must have two elements Number must be exactly 2.
ValueError pylim needs to be of type tuple or list Check type.
ValueError pylim must have two elements Number must be exactly 2.

ValueError Could not find a grid for the missing spatial axis The specification in
axnum corresponds to a map with only one spatial axis. If parameter mixpix is omitted
then the constructor tries to find a suitable value from the (FITS) header. It reads
CRPIXn where n is the appropriate axis number. If nothing could be found in the
header then this exception will be raised.

ValueError Could not find a matching spatial axis pair The specification in axnum
corresponds to a map with only one spatial axis. A We need the missing spatial axis
to find a matching world coordinate, but a matching axis could not be found in the
header.

ValueError wxlim needs to be of type tuple or list Check type.
ValueError wxlim must have two elements Number must be exactly 2.
ValueError wylim needs to be of type tuple or list Check type.
ValueError wylim must have two elements Number must be exactly 2.

ValueError boxsamples < 2: Need at least two samples to find limits There is a mini-
mum number of random positions we have to calculate to get an impression of the
axis limits in world coordinates.

ValueError Number of samples along graticule line must be >= 2 to avoid a step size of zero
The value of parameter gridsamples is too low. Low values give distorted graticule
lines. Hogher values (like the default) give smooth results.

Returns A graticule object. This object contains the line pieces needed to draw the graticule and
the ticks (positions, text and axis number). The basis method to reveal this data (necessary
if you want to make a plot yourself) is described in the following example:

graticule = wcsgrat.Graticule (header)
for gridline in graticule:
print "\nThis gridline belongs to axis", gridline.wcsaxis
print "Axis type: %s. Sky system %$s:" % (gridline.axtype, gridline.skysys)
for t in gridline.ticks:
print "tick x,y:", t.x, t.y
print "tick label:", t.labval
print "tick on axis:", t.axisnr
for line in gridline.linepieces:
print "line piece has %d elements" % len(line[O0])

56 Chapter 7. Module wcsgrat

Kapteyn Package Documentation, Release 2.0.3b19

Note: A Graticule object has a string representation and can therefore be easily inspected with Python’s
print statement.

Attributes:

axes
Read the PLOTaxis class documentation. Four PLOTaxis instances, one for each axis of the rectangular
frame in pixels set by xplim and pylim If your graticule object is called grat then the four axes are
accessed with:

egrat.axes[wcsgrat.left]

egrat.axes[wcsgrat.bottom]

egrat.axes[wcsgrat.right]

egrat.axes[wcsgrat.top]
Usually these attributes are set with method setp_plotaxis ().
Examples:
grat.axes[wcsgrat.left] .mode = 1
grat.axes|[wcsgrat.bottom] .label = ’'Longitude / Latitude’

[
[
grat.axes[wcsgrat.bottom] .mode = 2
grat.axes[wcsgrat.right] .mode = 0

PLOTaxis modes are:

ticks native to axis type only

Only the tick that is not native to axis type
both types of ticks (map could be rotated)

no ticks

w N = O

The default values depend on how many ticks, native to the plot axis, are found. If this is < 2 then we
allow both native and not native ticks along all plot axes.

pxlim
The limits of the map in pixels along the x-axis. This value is either set in the constructor or calculated.
The default is [1,NAXISn]. The attribute is meant as a read-only attribute.

pylim:
Same for the y-axis.

wxlim
The limits of the map in world coordinates for the x-axis either set in the constructor or calculated (i.e.
estimated) by this method. The attribute is meant as a read-only attribute.

wylim
Same for the y-axis

xaxnum
The (FITS) axis number associated with the x-axis Note that axis numbers in FITS start with 1. If
these numbers are not given as argument for the constructor then xaxnum=1 is assumed. The attribute
is meant as a read-only attribute.

yaxnum
Same for the y-axis. Default: yaxnum=2

gmap
The wcs projection object for this graticule. See the wes module document for more information.
mixpix
The pixel on the matching spatial axis for maps with only one spatial axis. This attribute is meant as a
read-only attribute.

7.3. Class Graticule 57

Kapteyn Package Documentation, Release 2.0.3b19

xstarts

World coordinates associated with the x-axis which set the constant value of a graticule line as calcu-
lated when the object is initialized. This attribute is meant as a read-only attribute.

ystarts
Same for the y-axis

skyout

Unformatted copy of input parameter skyout

spectrans

Unformatted copy of input parameter spectrans

Examples Example to show how to use a custom made header to create a graticule object.
Usually one uses this option to create all sky plots. It is also a useful tool for experiments.:

1 #1. A minimal header for an all sky plot

> header = {/NAXIS’ 2, "NAXIS1’: 100, ’"NAXIS2’': 80,

3 "CTYPEL1' "RA---AZP’, ’'CRVAL1" :0,

4 " CRPIX1' 50, ’CUNIT1’ ’deg’, ’'CDELT1’ : -5.0,
5 "CTYPEZ2' "DEC--AZP’,

6 ' CRVAL2' dec0, ’CRPIX2’ : 40, ’'CUNIT2’ "deg’,
7 "CDELT2’ 5.0,

8 rpva_1' mu, ’'PV2_2' gamma,

9 }

10 grat = wcsgrat.Graticule (header)

Use module PyFITS to read a header from a FITS file:
#2. A header from a FITS file ’test.fits’
import pyfits

hdulist = pyfits.open(’test.fits’)

header = hdulist[0].header

grat = wcsgrat.Graticule (header)

Select the axes for the graticules. Note that the order of the axes should be the same as the
order of axes in the image where you want to plot the graticule. If necessary one can swap
the graticule plot axes with input parameter axnum:

#3. Swap x and y—- axis in a FITS file

grat = wcsgrat.Graticule (header, axnum= (2,1))

For data with more than two axes, one can select the axes with input parameter axnum:

#4. For a FITS file with axes

(RA, DEC, FREQ)

create a graticule for the FREQ,RA axes:

grat = wcsgrat.Graticule (header,

axnum= (3, 1))

Use sexagesimal numbers for startx/starty:

#5.

Sexagesimal input
grat = wcsgrat.Graticule(....,

startx="7h59m30s", starty="-10d0m30s’)

Methods which set (plot) attributes:

setp_tick (wcsaxis=None,

plotaxis=None,

position=None,

fun=None, tex=None, markerdict={}, **kwargs)
Set (plot) attributes for a wcs tick label. A tick is identified by the type of grid line it belongs to, and/or

the plot axis for which it defines an intersection and/or a position which corresponds to the constant
value of the graticule line. All these parameters are valid with none, one or a sequence of values.

58

Chapter 7. Module wcsgrat

101=9.9999999999999998e¢-13, fint=None,

http://www.stsci.edu/resources/software_hardware/pyfits

Kapteyn Package Documentation, Release 2.0.3b19

Warning:

parameter setting on all the wcs axes.

If no value for wcsaxis, plotaxis or position is entered then this method applies the

Parameters

* wesaxis (None, 0, 1 or tuple with both) — Values are 0 or 1, corresponding to the
first and second world coordinate types. Note that wesaxis=0 corresponds to the first
element in the axis permutation array given in parameter axnum.

* plotaxis (One or more integers between 0 and 3.) — Accepted values are ‘None’, 0, 1,
2, 3 or a sequence of these numbers, to represent the left, bottom, right and top axis of
the enclosing rectangle that represents the limits in pixel coordinates.

* position (None or one or a sequence of floating point numbers) — Accepted are None,
or one or more values representing the constant value of the graticule line in world
coordinates. These positions are used to identify individual graticule lines so that
each line can have its own properties. The input can also be a string that represents a
sexagesimal number.

tol (Floating point number) — If a value > 0 is given, the gridline with the constant
value closest to a given position within distance ‘tol” gets updated attributes.

e fmt (String) — A string that formats the tick value e.g. fmt="%10.5f" in the Python
way, or a string that contains no percentage character (%) but a format to set the output
of sexagesimal numbers e.g. fmt="HMs’. The characters in the format either force
(uppercase) a field to be printed, or it suppresses (lowercase) a field to be printed. Se
also the examples at wecsgrat .makelabel ().

fun (Python function or Lambda expression) — An external function which will be used
to convert the tick value e.g. to convert velocities from m/s to km/s. See also example
2 below.

tex (Boolean) — Interpret the format in fit as a TeX label. The default is set to None
to indicate it has not been set (to True or False) so that it is possible to distinguish
between global and local settings of this property.

markerdict (Python dictionary) — Properties for the tick marker. Amongst others:

— markersize: Size of tick line. Use a negative number (e.g. -4) to get tick lines that
point outside the plot instead of the default which is inside.

— markeredgewidth: The width of the marker
— color: Color of the marker (not the label)

**kwargs (Matplotlib keyword arguments) — Keyword arguments for plot properties
like color, visible, rotation etc. The plot attributes are standard Matplotlib attributes
which can be found in the Matplotlib documentation.

Note Some projections generate labels that are very close to each other. If you want to
skip labels then you can use keyword/value visible=False. There is not a documented
keyword visible in this method because visible is a valid keyword argument in Matplotlib.

Examples 1. Set tick properties with setp_tick (). The last line makes the label at a
declination of -10 degrees (we assume a spatial map) invisible:

1 grat.setp_tick (wcsaxis=0, color='g’)
> grat.setp_tick (wcsaxis=1, color='m’)
3 grat.setp_tick(wcsaxis=1, plotaxis=wcsgrat.bottom,

color="c’, rotation=-30, ha=’"left’)

s grat.setp_tick (plotaxis=wcsgrat.right, backgroundcolor="yellow’)
¢ grat.setp_tick(plotaxis=wcsgrat.left, position=-10, visible=False)

2. Example of an external function to change the values of the tick labels for the hori-
zontal axis only:

7.3. Class Graticule

59

Kapteyn Package Documentation, Release 2.0.3b19

def fx(x):
return x/1000.0

setp_tick (wcsaxis=0, fun=£fx)

Or use the lambda operator as in: fun=lambda x: x/1000

setp_plotaxis (plotaxis, mode=None, label=None, xpos=None, ypos=None, **kwargs)
Set (plot) attributes for titles along a plot axis and set the ticks mode. The ticks mode sets the relation
between the ticks and the plot axis. For example a rotated map will show a rotated graticule, so ticks
for both axes can appear along a plot axis. With parameter mode one can influence this behaviour.

Note: This method addresses the four axes of a plot separately. Therefore its functionality cannot be
incorporated in setp_tick ()

Parameters

¢ plotaxis (Integer or String) — The axis number of one of the axes of the plot rectangle:

wcsgrat.left

wcsgrat.bottom

wcesgrat.right

wcesgrat.top

or (part of) a string which can be (case insensitive) matched by one from ‘left’, ‘bot-
tom’, ‘right’, ‘top’.

* mode (Integer or String) — What should this axis do with the tick marks and labels?

— 0 = ticks native to axis type only

1 = only the tick that is not native to axis type

2 = both types of ticks (map could be rotated)
— 3 =noticks
Or use a text that can (case insensitive) match one of:
- “NATIVE_TICKS”
— “SWITCHED_TICKS”
- “ALL_TICKS”
- “NO_TICKS”
* label (String) — An annotation of the current axis
o **kwargs (Matplotlib keyword argument(s)) — Keywords for (plot) attributes

Examples Change the font size of the tick labels along the bottom axis in 11:

grat Graticule(...)
grat.setp_plotaxis (wcsgrat.bottom, fontsize=11)

setp_1lineswesO0 (position=None, t01=9.9999999999999998e¢- 13, **kwargs)
Helper method for setp_gratline (). It pre-selects the grid line that corresponds to the first world
coordinate.

Parameters See description at setp_gratline ()

Examples Make lines of constant latitude magenta and lines of constant longitude green.
The line that corresponds to a latitude of 30 degrees and the line that corresponds to a
longitude of O degrees are plotted in red with a line width of 2:

60 Chapter 7. Module wcsgrat

Kapteyn Package Documentation, Release 2.0.3b19

color="m")
color="g")
30, color="r’, 1lw=2)
0, color="r’, 1lw=2)

grat.setp_lineswcsl
grat.setp_lineswcsO
grat.setp_lineswcsl
grat.setp_lineswcsO

setp_1lineswcsl (position=None, t0l=9.9999999999999998e¢- 13, **kwargs)
Equivalent to method setp_gratline (). It pre-selects the grid line that corresponds to the second
world coordinate.

Parameters See description at setp_gratline ()
Examples See example at setp_lineswcsO ().

setp_gratline (wcsaxis=None, position=None, t0l=9.9999999999999998e- 13, **kwargs)
Set (plot) attributes for one or more graticule lines. These graticule lines are identified by the wcs axis
number (wesaxis=0 or wesaxis=1) and by their constant world coordinate in position.

Parameters

* wesaxis (None , integer or tuple with integers from set 0, 1.) — If omitted, then for
both types of graticule lines the attributes are set. If one value is given then only for
that axis the attributes will be set.

* position (None, one or a sequence of floating point numbers) — None, one value or a
sequence of values representing the constant value of a graticule line in world coordi-
nates. For the graticule line(s) that match a position in this sequence, the attributes are
updated.

¢ tol (Floating point number) — If a value > 0 is given, the graticule line with the constant
value closest to a given position within distance fol gets updated attributes.

* **kwargs (Matplotlib keyword argument(s)) — Keyword arguments for plot properties
like color, rotation or visible, linestyle etc.

Returns —

Notes For each value in position find the index of the graticule line that belongs to wesaxis
so that the distance between that value and the constant value of the graticule line is the
smallest of all the graticule lines. If position=None then apply change of properties to
ALL graticule lines. The (plot) properties are stored in **kwargs Note that graticule lines
are initialized with default properties. These kwargs only update the existing kwargs i.e.
appending new keywords and update existing keywords.

setp_axislabel (plotaxis=None, label=None, xpos=None, ypos=None, **kwargs)
Utility method that calls method setp_plotaxis () but the parameters are restricted to the axis
labels. These labels belong to one of the 4 plot axes. See the documentation at setp_plotaxis for the
input of the plotaxis parameter. The kwargs are Matplotlib attributes.

Possible useful Matplotlib attributes:
*backgroundcolor
ecolor
erotation
estyle or fontstyle [‘normal’ | ‘italic’ | ‘oblique’]

*weight or fontweight

Parameters
¢ plotaxis (Integer or String) — The axis number of one of the axes of the plot rectangle:
— wecsgrat.left

— wecsgrat.bottom

7.3. Class Graticule 61

Kapteyn Package Documentation, Release 2.0.3b19

setp_tickmark (wcsaxis=None, plotaxis=None, position=None,

— wesgrat.right
— wcsgrat.top

or (part of) a string which can be (case insensitive) matched by one from ‘left’, ‘bot-
tom’, ‘right’, ‘top’.

* label (String) — The label text.

* xpos (Floating point number) — The x position of the label in normalized device coor-

dinates

o **kwargs (Matplotlib keyword argument(s)) — Keywords for (plot) attributes

wargs)

Utility method for setp_tick (). It handles the properties of the tick marks, which are Line2D
objects in Matplotlib. The most useful properties are color, markeredgewidth and markersize.

fun=None, tex=None, **kwargs)

Utility method for setp_tick (). It handles the properties of the tick labels, which are Text objects
in Matplotlib. The most useful properties are color, fontsize and fontstyle.

Parameters

* wesaxis (None, 0, 1 or tuple with both) — Values are 0 or 1, corresponding to the

first and second world coordinate types. Note that wesaxis=0 corresponds to the first
element in the axis permutation array given in parameter axnum.

¢ plotaxis (One or more integers between 0 and 3.) — Accepted values are ‘None’, 0, 1,

2, 3 or a combination, to represent the left, bottom, right and top axis of the enclosing
rectangle that represents the limits in pixel coordinates.

* position (None or one or a sequence of floating point numbers) — Accepted are None,

or one or more values representing the constant value of the graticule line in world
coordinates. These positions are used to identify individual graticule lines so that
each line can have its own properties. The input can also be a string that represents a
sexagesimal number.

tol (Floating point number) — If a value > 0 is given, the gridline with the constant
value closest to a given position within distance ‘tol” gets updated attributes.

e fmt (String) — A string that formats the tick value e.g. fmt="%10.5£f" in the Python

way, or a string that contains no percentage character (%) but a format to set the output
of sexagesimal numbers e.g. fmt="HMs’. The characters in the format either force
(uppercase) a field to be printed, or it suppresses (lowercase) a field to be printed. See
also the examples at wesgrat .makelabel ().

* fun (Python function or Lambda expression) — An external function which will be used

to convert the tick value e.g. to convert velocities from m/s to km/s. See also example
2 below.

tex (Boolean) — If True then format the tick label in LaTeX. This is the default. If False
then standard text will applies. Some text properties cannot be changed if LaTeX is in
use.

**kwargs (Matplotlib keyword arguments) — Keyword arguments for plot properties
like color, visible, rotation etc. The plot attributes are standard Matplotlib attributes
which can be found in the Matplotlib documentation.

Note Some projections generate labels that are very close to each other. If you want to
skip labels then you can use keyword/value visible=False. There is not a documented
keyword visible in this method because visible is a valid keyword argument in Matplotlib.

101=9.9999999999999998e-13,

62

Chapter 7. Module wcsgrat

k-

setp_ticklabel (wcsaxis=None, plotaxis=None, position=None, t0l=9.9999999999999998e- 13, fint=None,

Kapteyn Package Documentation, Release 2.0.3b19

set_tickmode (plotaxis=None, mode=None)
Utility method that calls method setp_plotaxis () but the parameters are restricted to the tick

mode.

Each plot axis has a tick mode.

Parameters

* plotaxis (Integer or String) — The axis number of one of the axes of the plot rectangle:

— wesgrat.left

wcsgrat.bottom

wcsgrat.right

wcesgrat.top

or (part of) a string which can be (minimal & case insensitive) matched by one from
‘left’, ‘bottom’, ‘right’, ‘top’.

mode (Integer or String) — What should this axis do with the tick marks and labels?

— 0 = ticks native to axis type only

1 = only the tick that is not native to axis type

2 = both types of ticks (map could be rotated)
— 3 =no ticks

Or use a text that can (minimal) match one of:
- “NATIVE_TICKS”

- “SWITCHED_TICKS”

- “ALL_TICKS”

- “NO_TICKS”

Methods that deal with special curves like borders:

scanborder (xstart, ystart, deltax=None, deltay=None, nxy=1000, tol=None)
For the slanted azimuthal projections, it is not trivial to draw a border because these borders are not
graticule lines with a constant longitude or constant latitude. Nor it is easy or even possible to find
mathematical expressions for this type of projection. Also, the mathematical expressions return world
coordinates which can suffer from loss of precision. This method tracks the border from a starting
point by scanning in x- and y direction and tries to find the position of a limb with a standard bisection
technique. This method has been applied to a number of all-sky plots with slanted projections.

Parameters

xstart (Floating point) — X-coordinate in pixels of position where to start the scan to
find a border. The parameter has no default.

ystart (Floating point) — Y-coordinate in pixels of position where to start the scan to
find border. The parameter has no default.

deltax (Floating point) — Set range in pixels to look for a border in scan direction. The
default value is 10 percent of the total pixel range in x- or y-direction.

deltay (Floating point) — See deltayx.
nxy (Integer) — Number of scan lines in x and y direction. Default is 1000.

tol (Floating point) — See note below.

Returns Identifier to set attributes of this graticule line with method
setp_linespecial ().

7.3. Class Graticule

63

Kapteyn Package Documentation, Release 2.0.3b19

Note This method uses an algorithm to find positions along the border of a projection. It
scans along both x- and y-axis for a NaN (Not a Number number) transition as a result
of an invalid coordinate transformation, and repeats this for a number of scan lines along
the x-axis and y-axis.

A position on a border off an all-sky plot is the position at
which a transition occurs from a valid coordinate to a NaN.

Its accuracy depends on the the tolerance given in argument fol. The start coordinates to
find the next border position on the next scan line is the position of the previous border
point. If you have missing line pieces, then add more borders by calling this method with
different starting points.

addgratline (x, y, pixels=False)
For any path given by a set of world coordinates of which none is a constant value (e.g. borders in
slanted projections where the positions are calculated by an external routine), one can create a line that
is processed as a graticule line, i.e. intersections and jumps are addressed. Instead of world coordi-
nates, this method can also process pixel positions. The type of input is set by the pixels parameter.

Parameters

* x (Floating point numbers) — A sequence of world coordinates or pixels that corre-
spond to the horizontal axis in a graticule plot..

¢ y— The same for the second axis

* pixels (Boolean) — False or True If False the coordinates in x and y are world- coordi-
nates. Else they are pixel coordinates.

Returns A Identification number id which can be used to set properties for this special path
with method setp_linespecial (). Return None if no line piece could be found
inside the pixel limits of the graticule.

Note This method can be used to plot a border around an all-sky plot e.g. for slanted projec-
tions. See code at scanborder ().

setp_linespecial (id, **kwargs)
Set (plot) attributes for a special type of graticule line made with method addgratline () or method
scanborder (). This graticule line has no constant x- or y- value. It is identified by an id returned
by method addgratline ().

Parameters

* id (Integer) — id from addgratline ()

* **kwargs (Matplotlib keyword argument(s)) — keywords for (plot) attributes
Examples Create a special graticule line which follows the positions in two given sequences

x and y. and set the line width for this line to 2:

id = grat.addgratline(x, vy)
grat.setp_linespecial (id, 1lw=2)

Methods related to plotting derived elements:

Insidelabels (wcsaxis=0, world=None, constval=None, deltapx=0.0, deltapy=0.0, angle=None, addan-
gle=0.0, fun=None, fmt=None, tex=True, **kwargs)
Annotate positions in world coordinates within the boundaries of the plot. This method can be used
to plot positions on all-sky maps where there are usually no intersections with the enclosing axes
rectangle.

Parameters

* wesaxis (Integer) — Values are 0 or 1, corresponding to the first and second world
coordinate types. The accepted values are O and 1. The default is O.

64 Chapter 7. Module wcsgrat

Kapteyn Package Documentation, Release 2.0.3b19

* world (One or a sequence of floating point number(s) or None) — One or a sequence of
world coordinates on the axis given by wesaxis. The positions are completed with one
value for constval. If world=None (the default) then the world coordinates are copied
from graticule world coordinates.

¢ constval (Floating point number or String) — A constant world coordinate to complete
the positions at which a label is plotted. The value can also be a string representing a
sexagesimal number.

* deltapx (Floating point number.) — Small shift in pixels in x-direction of text. This
enables us to improve the layout of the plot by preventing that labels are intersected
by lines.

* deltapy (Floating point number.) — See description at deltapx.

* angle (Floating point number) — Use this angle (in degrees) instead of calculated de-
faults. It is the angle at which then all position labels are plotted.

* addangle (Floating point number) — Add this angle (in degrees) to the calculated de-
fault angles.

* fun — Function or lambda expression to convert the label value.
e fmt (String) — String to format the numbers. If omitted the format ‘%g’ is used.

* tex — Format these ‘inside’ labels in LaTeX if this parameter is set to True (which is
the default).

* **kwargs (Matplotlib keyword argument(s)) — Keywords for (plot) attributes.

Returns An Insidelabel object with a series of derived label objects. These label objects
have a number of attributes, see Insidelabels

Notes For a map with only one spatial axis, the value of ‘mixpix’ is used as pixel value for
the matching spatial axis. The mixed() method from module wes is used to calculate the
right positions.

Examples Annotate a plot with labels at positions from a list with longitudes at given fixed
latitude:

grat = Graticule(...)

lon_world = [0,30,60,90,120,150,180]

lat_constval = 30

inlabs = grat.Insidelabels (wcsaxis=0,
world=lon_world,
constval=lat_constval,
color="r")

R T S o

setp_1label (position=None, t0l=9.9999999999999998¢-13, fmt=None, fun=None, tex=None, **kwargs)
This method handles the properties of the ‘inside’ labels, which are Text objects in Matplotlib. The
most useful properties are color, fontsize and fontstyle. One can change the label values using an
external function and/or change the format of the label.

Parameters

* position (None or one or a sequence of floating point numbers) — Accepted are None,
or one or more values representing the constant value of the graticule line in world
coordinates. These positions are used to identify individual graticule lines so that each
line can have its own properties. If no position is entered, then the changes are applied
to all the labels in the current object. The input can also be a string that represents a
sexagesimal number.

¢ tol (Floating point number) — If a value > 0 is given, the gridline with the constant
value closest to a given position within distance ‘tol’ gets updated attributes.

e fmt (String) — A string that formats the tick value e.g. fmt="%10.5£" in the Python
way, or a string that contains no percentage character (%) but a format to set the output

7.3. Class Graticule 65

Kapteyn Package Documentation, Release 2.0.3b19

of sexagesimal numbers e.g. fmt="HMs’. The characters in the format either force
(uppercase) a field to be printed, or it suppresses (lowercase) a field to be printed. See
also the examples at wesgrat .makelabel ().

¢ fun (Python function or Lambda expression) — An external function which will be used
to convert the tick value e.g. to convert velocities from m/s to km/s. See also example
2 below.

¢ tex (Boolean) — If True then format the tick label in LaTeX. This is the default. If False
then standard text will be applied. Some text properties cannot be changed if LaTeX
is in use.

* **kwargs (Matplotlib keyword arguments) — Keyword arguments for plot properties
like color, visible, rotation etc. The plot attributes are standard Matplotlib attributes
which can be found in the Matplotlib documentation.

Note Some projections generate labels that are very close to each other. If you want to skip
labels then you can use keyword/value visible=False. Note that visible is a parameter of
Matplotlib’s plot functions.

Utility methods:

get_aspectratio (xcm=None, ycm=None)
Calculate and set, the aspect ratio for the current pixels. Also set default values for figure size and axes
lengths (i.e. size of canvas depends on the size of plot window with this aspect ratio).

Parameters

* xcm (Floating point number) — Given a value for xcm or ycm (or omit both), sug-
gest a suitable figure size in and a viewport in normalized device coordinates of
a plot which has an axes rectangle that corrects the figure for an aspect ratio (i.e.
CDELTy/CDELTx) unequal to 1 while the length of the x-axis is xcm OR the length
of the y-axis is ycm. See note for non-spatial maps.

» ycm (Floating point number) — See description at xcm.
Returns The aspect ratio defined as: AR = CDELTy/CDELTx.

Note (i.e. AR > 10 or AR < 0.1), an aspect ratio of 1 is returned. This method sets the
attributes: ‘axesrect’, ‘figsize’, ‘aspectratio’. The attribute ‘figsize’ is in inches which is
compatible to the methods of Matplotlib.

class WCStick (x, y, axisnr, labval, wesaxis, offset, fun=None, fmt=None)
A WCStick object is an intersection of a parallel or meridian (or equivalent lines with one constant world
coordinate) with one of the axes of a rectangle in pixels. The position of that intersection is stored in pixel
coordinates and can be used to plot a (formatted) label showing the position of the constant world coordinate
of the graticule line. This class is only used in the context of the Graticule class.

7.4 Class Insidelabels

class Insidelabels (wcsaxis)
A small utility class for wcs labels inside a plot with a graticule. Useful for all sky plots.

setp_1label (position=None, t0l=9.9999999999999998e¢-13, fimmt=None, fun=None, tex=None, **kwargs)
This method handles the properties of the ‘inside’ labels, which are Text objects in Matplotlib. The
most useful properties are color, fontsize and fontstyle. One can change the label values using an
external function and/or change the format of the label.

Parameters

* position (None or one or a sequence of floating point numbers) — Accepted are None,
or one or more values representing the constant value of the graticule line in world
coordinates. These positions are used to identify individual graticule lines so that each
line can have its own properties. If no position is entered, then the changes are applied

66 Chapter 7. Module wcsgrat

Kapteyn Package Documentation, Release 2.0.3b19

to all the labels in the current object. The input can also be a string that represents a
sexagesimal number.

* tol (Floating point number) — If a value > 0 is given, the gridline with the constant
value closest to a given position within distance ‘tol” gets updated attributes.

e fmt (String) — A string that formats the tick value e.g. fmt="%10.5£f" in the Python
way, or a string that contains no percentage character (%) but a format to set the output
of sexagesimal numbers e.g. fmt="HMs’. The characters in the format either force
(uppercase) a field to be printed, or it suppresses (lowercase) a field to be printed. See
also the examples at wesgrat .makelabel ().

* fun (Python function or Lambda expression) — An external function which will be used
to convert the tick value e.g. to convert velocities from m/s to km/s. See also example
2 below.

¢ tex (Boolean) — If True then format the tick label in LaTeX. This is the default. If False
then standard text will be applied. Some text properties cannot be changed if LaTeX
is in use.

* **kwargs (Matplotlib keyword arguments) — Keyword arguments for plot properties
like color, visible, rotation etc. The plot attributes are standard Matplotlib attributes
which can be found in the Matplotlib documentation.

Note Some projections generate labels that are very close to each other. If you want to skip
labels then you can use keyword/value visible=False. Note that visible is a parameter of
Matplotlib’s plot functions.

7.4. Class Insidelabels 67

Kapteyn Package Documentation, Release 2.0.3b19

68

Chapter 7. Module wcsgrat

CHAPTER 8

MODULE MAPUTILS

In the maputils tutorial we show many examples with Python code and figures to illustrate the functionality and
flexibility of this module. The documentation below is restricted to the module’s classes and methods.

8.1 Introduction

One of the goals of the Kapteyn Package is to provide a user/programmer basic tools to make plots (with WCS
annotation) of image data from FITS files. These tools are based on the functionality of PyFITS and Matplotlib.
The methods from these packages are modified in maputils for an optimal support of inspection and presentation
of astronomical image data with easy to write and usually very short Python scripts. To illustrate what can be done
with this module, we list some steps you need in the process to create a hard copy of an image from a FITS file:

* Open FITS file on disk or from a remote location (URL)

 Specify in which header data unit the image data is stored

 Specify the data slice for data sets with dimensions > 2

* Specify the order of the image axes

* Set the limits in pixels of both image axes

* Set the sky system in which you want to plot wcs information.
Then for the display:

* Plot the image or a mosaic of images in the correct aspect ratio

Plot (labeled) contours

* Plot world coordinate labels along the image axes (basic routines in wcsgrat)

* Plot coordinate graticules (basic routines in wcsgrat)

* Interactively change color map and color limits

* Read the position of features in a map and write these positions in your terminal.
* Resize your plot canvas to get an optimal layout while preserving the aspect ratio.
» Write the result to png or pdf (or another format from a list)

Of course there are many programs that can do this job some way or the other. But most probably no program
does it exactly the way you want or the program does too much. Also many applications cannot be extended, at
least not as simple as with the building blocks in maputils.

Module maputils is also very useful as a tool to extract and plot data slices from data sets with more than two
axes. For example it can plot so called Position-Velocity maps from a radio interferometer data cube with channel
maps. It can annotate these plots with the correct WCS annotation using information about the ‘missing’ spatial
axis.

69

Kapteyn Package Documentation, Release 2.0.3b19

To facilitate the input of the correct data to open a FITS image, to specify the right data slice or to set the pixel
limits for the image axes, we implemented also some helper functions. These functions are primitive (terminal
based) but effective. You can replace them by enhanced versions, perhaps with a graphical user interface.

Here is an example of what you can expect. We have a three dimensional data set on disk called ngc6946.fits with
axes RA, DEC and VELO. The program prompts the user to enter image properties like data limits, axes and axes
order. The image below is a data slice in RA, DEC at VELO=50. We changed interactively the color map (keys
page-up/page-down) and the color limits (pressing right mouse button while moving the mouse) and saved a hard
copy on disk.

In the next code we use keyword parameter promptfie a number of times. Abbreviation ‘fie’ stands for Function
Interactive Environment.

#!/usr/bin/env python
from kapteyn import wcsgrat, maputils
from matplotlib import pylab as plt

Create a maputils FITS object from a FITS file on disk
fitsobject = maputils.FITSimage (promptfie=maputils.prompt_fitsfile)
fitsobject.set_imageaxes (promptfie=maputils.prompt_imageaxes)
fitsobject.set_limits (promptfie=maputils.prompt_box)
fitsobject.set_skyout (promptfie=maputils.prompt_skyout)

clipmin, clipmax = maputils.prompt_dataminmax (fitsobject)

Get connected to Matplotlib
fig = plt.figure()
frame = fig.add_subplot (1,1,1)

Create an image to be used in Matplotlib

annim = fitsobject.Annotatedimage (frame, clipmin=clipmin, clipmax=clipmax)
annim. Image ()

annim.Graticule ()

annim.plot ()

annim.interact_toolbarinfo ()
annim.interact_imagecolors ()

annim.interact_writepos ()

plt.show ()

70 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.0.3b19

60° 15’

Dec. (2000.0)

60° 00’

20" 36™

R.A. (2000.0)

20k 34™

Image from FITS file with graticules and WCS labels

8.2 Module level data

cmlist Object from class Colmaplist which has attribute colormaps which is a sorted list with names of col-

ormaps.

colormaps The actual list of colormaps.

Example

1 >>> from kapteyn import maputils

2 >>> print maputils.colormaps

"BuPu’, ’'Dark2’,
"Oranges’, 'PRGn’

3 >>> cmap = raw_input ("Enter name of a colormap: ")
4 ["Accent’, ’'Blues’, "BuGn’ ,

5 "GnBu’, ’Greens’, ’'Greys’, ’'OrRd’,

6 "Paired’, ’'Pastell’, ’'Pastel2’, ’'PiYG’

7 "PuOr’, ’"PuRd’, ’'Purples’, ’'RdBu’,

8 "RAY1Bu’, ’'RdY1Gn’,
9 "Spectral’, ’'Y1lGn’,
10 "autumn’, ’‘binary’,

1 "gist_earth’, ’gist_gray’,

"Setl’, ’'Set2’, ’'Set3’,

"Y1GnBu’, ’'Y1OrBr’

, "Y1OrRd’,

"cool’, ’'copper’, ’'flag’

"gist_heat’

12 "gist_rainbow’, ’gist_stern’, ’'gist_ya

13 "hot’, "hsv’, ’jet’,

14 "spring’, 'summer’,

"pink’, ’prism’,
"winter’]

, 'gist_ncar’,
rgl , !gray!,
’spectral’,

’
, "PuBu’, ’'PuBuGn’,
"RdGy’, ’"RdPu’,

4

8.2. Module level data

7

Kapteyn Package Documentation, Release 2.0.3b19

8.3 Prompt functions

prompt_fitsfile (defaultfile=None, prompt=True, hnr=None, alter=None, memmap=None)
An external helper function for the FITSimage class to prompt a user to open the right Header and Data Unit
(hdu) of a FITS file. A programmer can supply his/her own function of which the return value is a sequence
containing the hdu list, the header unit number, the filename and a character for the alternate header.

Parameters

* defaultfile (String) — Name of FITS file on disk or url of FITS file on the internet.
The syntax follows the standard described in the PyFITS documentation. See also the
examples.

» prompt (Boolean) — If False and a default file exists, then do not prompt for a file name.
Open file and start checking HDU’s

 hnr (Integer) — The number of the FITS header that you want to use. This function lists
the hdu information and when hnr is not given, you will be prompted.

* alter (Empty or a single character. Input is case insensitive.) — Selects an alternate
header. Default is the standard header. Keywords in alternate headers end on a character
A.Z

» memmap (Boolean) — Set PyFITS memory mapping on/off. Let PyFITS set the default.
Prompts
1. Enter name of fits file [a default]:
Enter name of file on disk of valid url.
2. Enter number of Header Data Unit [0]:

If a FITS file has more than one HDU, one must decide which HDU contains the re-
quired image data.

Returns

* hdulist - The HDU list and the user selected index of the wanted hdu from that list. The
HDU list is returned so that it can be closed in the calling environment.

* hnr - FITS header number. Usually the first header, i.e. hnr=0
* fitsname - Name of the FITS file.

* alter - A character that corresponds to an alternate header (with alternate WCS infor-
mation e.g. a spectral translation).

Notes —

Examples Besides file names of files on disk, PyFITS allows url’s and gzipped files to retrieve
FITS files e.g.:

http://www.atnf.csiro.au/people/mcalabre/data/WCS/1904-66_ZPN.fits.gz

prompt_imageaxes (fitsobj, axnuml=None, axnum2=None, slicepos=None)
Helper function for FITSimage class. It is a function that requires interaction with a user. Therefore we left
it out of any class definition. so that it can be replaced by any other function that returns the position of the
data slice in a FITS file.

It prompts the user for the names of the axes of the wanted image. For a 2D FITS data set there is nothing
to ask, but for dimensions > 2, we should prompt the user to enter two image axes. Then also a list with
pixel positions should be returned. These positions set the position of the data slice on the axes that do not
belong to the image. Only with this information the right slice can be extracted.

The user is prompted in a loop until a correct input is given. If a spectral axis is part of the selected image
then a second prompt is prepared for the input of the required spectral translation.

72 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.0.3b19

Parameters

* fitsobj (Instance of class FITSimage) — An object from class FITSimage. This prompt
function derives useful attributes from this object such as the allowed spectral transla-
tions.

* axnumli (Integer [1, NAXIS]) — The axis number of the first (horizontal in terms of plot
software) axis of the selected image which should be used as the default in the prompt.
If None then the default is set to 1.

* axnum?2 (Integer [1, NAXIS]) — The axis number of the first (horizontal in terms of plot
software) axis of the selected image which should be used as the default in the prompt.
If None then the default is set to 1. If both axnuml and axnum?2 are specified then the
image axis input prompt is skipped.

Prompts
Name of the image axes: Enter 2 axes from (list with allowed axis names) [default]:
e.g.. Enter 2 axes from (RA,DEC,VELO) [RA,DEC] :
The axis names can be abbreviated. A minimal match is applied.
Returns Tuple with three elements:
* axnuml: Axis number of first image axis. Default or entered by a user.
* axnum2: Axis number of second image axis. Default or entered by a user.

* slicepos: A list with pixel positions. One pixel for each axis outside the image in the
same order as the axes in the FITS header. These pixel positions are necessary to extract
the right 2D data from FITS data with dimensions > 2.

Example Interactively set the axes of an image using a prompt function:
Create a maputils FITSimage object from a FITS file on disk
fitsobject = maputils.FITSimage (' rense.fits’)

fitsobject.set_imageaxes (promptfie=maputils.prompt_imageaxes)

prompt_box (pxlim, pylim, axnameX, axnameY)

External helper function which returns the limits in pixels of the x- and y-axis. The input syntax is: xlo,xhi,
ylo,yhi. For x and y the names of the image axes are substituted. Numbers can be separated by comma’s and
or spaces. A number can also be specified with an expression e.g. 0, 10, 10/3, 100*numpy.pi.

All these numbers are converted to integers.
Parameters

* pxlim (tuple with two integers) — Sequence of two numbers representing limits in pixels
along the x axis as defined in the FITS file.

 pylim (tuple with two integers) — Sequence of two numbers representing limits in pixels
along the y axis as defined in the FITS file.

» axnameX (String) — Name of image X-axis
* axnameY (String) — Name of image Y-axis
Prompts Enter pixel limits in Xlo,Xhi, Ylo,Yhi [xlo,xhi, ylo,yhi]:

The default should be the axis limits as defined in the FITS header in keywords NAXISn. In
areal case this could look like:

Enter pixel limits in RAlo,RAhi, DEClo,DECHi [1, 100, 1, 100]:
Returns Tuple with two elements pxlim, pylim (see parameter description)

Notes This function does not check if the limits are within the index range of the (FITS)image.
This check is done in the FITSimage.set_limits () method of the FITSimage
class.

8.3. Prompt functions

73

Kapteyn Package Documentation, Release 2.0.3b19

Examples Use of this function as prompt function in the FITSimage.set_limits ()
method:

fitsobject = maputils.FITSimage ('’ rense.fits’)
fitsobject.set_imageaxes (1,2, slicepos=30) # Define image in cube
fitsobject.set_limits (promptfie=maputils.prompt_box)

This ‘box’ prompt needs four numbers. The first is the range in x and the second is the range
in y. The input are pixel coordinates, e.g.:

>>> 0, 10 10/3, 100*numpy.pi

Note the mixed use of spaces and comma’s to separate the numbers. Note also the use of
NumPy for mathematical functions. The numbers are truncated to integers.

prompt_spectrans (fitsobj)
Ask user to enter spectral translation if one of the axes is spectral.

Parameter fitzsobj (Instance of class FITSimage) — An object from class FITSimage. From this
object we derive the allowed spectral translations.

Prompts The spectral translation if one of the image axes is a spectral axis.
Enter number between 0 and N of spectral translation [native]:

N is the number of allowed translations minus 1. The default Native in this context
implies that no translation is applied. All calculations are done in the spectral type
given by FITS header item CTYPEn where n is the number of the spectral axis.

Returns

 spectrans - The selected spectral translation from a list with spectral translations that
are allowed for the input object of class FITSimage. A spectral translation translates for
example frequencies to velocities.

Example
>>> fitsobject = maputils.FITSimage (promptfie=maputils.prompt_fitsfile)

>>> print fitsobject.str_spectrans/() # Print a list with options first
>>> fitsobject.set_spectrans (promptfie=maputils.prompt_spectrans)

prompt_skyout (fitsobj)
Ask user to enter the output sky system if the data is a spatial map.

Parameter fizsobj (Instance of class FITSimage) — An object from class FITSimage. This
prompt function uses this object to get information about the axis numbers of the spatial
axes in a data structure.

Returns

* skyout - The sky definition to which positions in the native system will be trans-
formed.

Example
>>> fitsobject = maputils.FITSimage (promptfie=maputils.prompt_fitsfile)
>>> fitsobject.set_skyout (promptfie=maputils.prompt_skyout)
prompt_dataminmax (fitsobj)

Ask user to enter one or two clip values. If one clip level is entered then in display routines the
data below this value will be clipped. If a second level is entered, then all data values above this
level will also be filtered.

Parameter fitsobj (Instance of class FITSimage) — An object from class FITSimage.

74 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.0.3b19

Returns
* clipmin, clipmax - Two values to set limits on the image value e.g. for color editing.

Example

>>> fitsobject = maputils.FITSimage (promptfie=maputils.prompt_fitsfile)
>>> clipmin, clipmax = maputils.prompt_dataminmax (fitsobject)
>>> annim = fitsobject.Annotatedimage (frame, clipmin=clipmin, clipmax=clipmax)

8.4 Utility functions

fitsheader2dict (header, comment=True, history=True)
Transform a FITS header, read with PyFITS into a Python dictionary. This is useful if one wants to iterate
over all keys in the header. The PyFITS header is not iterable.

dist_on_sphere (/1, bl, 12, b2)
Formula for distance on sphere accurate over entire sphere (Vincenty, Thaddeus, 1975). Input and output
are in degrees.

Parameters
* /I (float) — Longitude of first location on sphere
* bl (float) — Latitude of first location on sphere
* [2 (float) — Longitude of second location on sphere
* b2 (float) — Latitude of second location on sphere

Examples

>>> from kapteyn.maputils import dist_on_sphere
>>> print dist_on_sphere (0,0, 20,0)
20.0

>>> print dist_on_sphere (0,30, 20,30)
17.2983302106

showall ()
Usually in a script with only one object of class maputils.Annotatedimage one plots this object,
and its derived objects, with method maputils.Annotatedimage.plot (). Matplotlib must be in-
structed to do the real plotting with pyplot’s function show(). This function does this all.

Examples

>>> iml = fl.Annotatedimage (framel)
>>> iml.Image ()

>>> iml.Graticule ()

>>> im2 = f2.Annotatedimage (frame2)
>>> im2.Image ()

>>> maputils.showall ()

8.5 Class FITSimage

class FITSimage (filespec=None, promptfie=None, prompt=True, hdunr=None, alter=", memmap=None, ex-
ternalheader=None, externaldata=None, externalname="artificial’, **parms)
This class extracts 2D image data from FITS files. It allows for external functions to prompt users for

relevant input like the name of the FITS file, which header in that file should be used, the axis numbers of
the image axes, the pixel limits and a spectral translation if one of the selected axes is a spectral axis. All

8.4. Utility functions 75

Kapteyn Package Documentation, Release 2.0.3b19

the methods in this class that allow these external functions for prompting can also be used without these
functions. Then one needs to know the properties of the FITS data beforehand.

Parameters

* filespec (String) — A default file either to open directly or to be used in a prompt as
default file. This variable should have a value if no external function is used to prompt
a user.

» promptfie (Python function) — A user supplied function which should prompt a user for
some data, opens the FITS file and returns the hdu list and a user selected index for the
header from this hdu list. An example of a function supplied by maput ils is function
prompt_fitsfile ()

* hdunr (Integer) — A preset of the index of the header from the hdu list. If this variable
is set then it should not prompted for in the user supplied function promptfie.

* alter (Empty or a single character. Input is case insensitive.) — Selects an alternate
header for the world coordinate system. Default is the standard header. Keywords in
alternate headers end on a character A..Z

* memmap (Boolean) — Set the memory mapping for PyFITS. The default is copied from
the default in your version of PyFITS. If you want to be sure it is on then specify
memmap=1

* externalheader (Python dictionary) — If defined, then it is a header from an external
source e.g. a user defined header.

* externaldata (Numpy array) — If defined, then it is data from an external source e.g. user
defined data or processed data in a numpy array. A user/programmer should check if
the shape of the numpy array fits the sizes given in FITS keywords NAXISn.

* parms (keyword arguments) — Extra parameters for PyFITS’s open() method, such as
uintl6, ignore_missing_end, checksum, see PyFITS documentation for their meaning.

Attributes

filename
Name of the FITS file (read-only).

hdr
Header as read from the header (read-only).

naxis
Number of axes (read-only).

dat
The raw image data (not sliced, swapped or limited in range). The required sliced image
data is stored in attribute boxdat. This is a read-only attribute.

axperm

Axis permutation array. These are the (FITS) axis numbers of your image x & y axis.
mixpix

The missing pixel if the image has only one spatial axis. The other world coordinate

could be calculated with a so called mixed method which allows for one world coordi-
nate and one pixel.

axisinfo
Alist with FITSaxis objects. One for each axis. The index is an axis number (starting
at1).

slicepos

A list with position on axes in the FITS file which do not belong to the required image.
pxlim

Axis limit in pixels. This is a tuple or list (xlo, xhi).

76 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.0.3b19

pylim
Axis limit in pixels. This is a tuple or list (xlo, xhi).

boxdat
The image data. Possibly sliced, axis swapped and limited in axis range.

imshape
Sizes of the 2D array in boxdat.

spectrans
A string that sets the spectra translation. If one uses the prompt function for the image
axes, then you will get a list of possible translations for the spectral axis in your image.

proj
An object from wcs.Projection. This object is the result of the call: proj =
wcs.Projection(self.hdr), so it is the Projection object that involves all the
axes in the FITS header.

convproj
An object from wcs .Projection. This object is needed to be able to use methods
toworld() and topixel() for the current image.

figsize
A suggested figure size (inches) in X and Y directions.

aspectratio
Plot a circle in world coordinates as a circle. That is, if the pixel size in the FITS header
differs in X and Y, then correct the (plot) size of the pixels with value aspectratio so that
features in an image have the correct sizes in longitude and latitude in degrees.

Notes The object is initialized with a default position for a data slice if the dimension of the
FITS data is > 2. This position is either the value of CRPIX from the header or 1 if CRPIX
is outside the range [1, NAXIS].

Values -inf and +inf in a dataset are replaced by NaN’s (not a number number). We know
that Matplotlib’s methods have problems with these values, but these methods can deal with
NaN'’s.

Examples PyFITS allows URL'’s to retrieve FITS files. It can also read gzipped files e.g.:

>>> f = 'http://www.atnf.csiro.au/people/mcalabre/data/WCS/1904-66_ZPN.fits.gz’
>>> fitsobject = maputils.FITSimage (f)
>>> print fitsobject.str_axisinfo()
Axis 1: RA-—-—-ZPN from pixel 1 to 192
{crpix=-183 crval=0 cdelt=-0.0666667 (Unknown) }
{wcs type=longitude, wcs unit=deg}
Axis 2: DEC--ZPN from pixel 1 to 192
{crpix=22 crval=-90 cdelt=0.0666667 (Unknown)}
{wcs type=latitude, wcs unit=deg}

Use Maputil’s prompt function prompt_fitsfile () to getuser interaction for the FITS
file specification.

>>> fitsobject = maputils.FITSimage (promptfie=maputils.prompt_fitsfile)

Methods

set_imageaxes (axnrl=None, axnr2=None, slicepos=None, promptfie=None)
A FITS file can contain a data set of dimension n. If n <2 we cannot display the data without more
information. If n == 2 the data axes are those in the FITS file, Their numbers are 1 and 2. If n > 2 then
we have to know the numbers of those axes that are part of the image. For the other axes we need to
know a pixel position so that we are able to extract a data slice.

Attribute dat is then always a 2D array.

8.5. Class FITSimage 77

Kapteyn Package Documentation, Release 2.0.3b19

Parameters

e axnrl (Integer or String) — Axis number of first image axis (X-axis). If it is a string,
then the number of the first axis which matches is returned. The string match is mini-
mal and case insensitive.

e axnr2 (Integer or String) — Axis number of second image axis (Y-axis). If it is a
string, then the number of the first axis which matches is returned. The string match
is minimal and case insensitive.

* slicepos (Integer or sequence of integers) — list with pixel positions on axes outside
the image at which an image is extracted from the data set. Applies only to data sets
with dimensions > 2. The length of the list must be equal to the number of axes in the
data set that are not part of the image.

* spectrans (Integer) — The spectral translation to convert between different spectral
types if one of the image axes has spectral type.

» promptfie — A Function that for in an Interactive Environment (fie), supplied by the
user, that can prompt a user to enter the values for axnrl, axnr2 and slicepos. An
example of a function supplied by maputils is function prompt_imageaxes ()

Raises
Exception One axis number is missing and no prompt function is given!

Exception Missing positions on axes outside image! — Somehow there are not
enough elements in parameter slicepos. One should supply as many pixel positions as
there are axes in the FITS data that do not belong to the selected image.

Exception Cannot find a matching axis for the spatial axis! — The matching spatial
axis for one of the image axes could not be found in the FITS header. It will not be
possible to get useful world coordinates for the spatial axis in your image.

Modifies attributes:

axisinfo
A dictionary with objects from class FITSaxis. One object for each axis. The dictionary
keys are the axis numbers. See also second example at method FITSaxis.printattr ().

allowedtrans
A list with strings representing the spectral translations that are possible for the current image
axis selection.

spectrans
The selected spectral translation

slicepos
One or a list with integers that represent pixel positions on axes in the data set that do not
belong to the image. At these position, a slice with image data is extracted.

map
Image data from the selected FITS file. It is always a 2D data slice and its size can be found
in attribute imshape.

imshape
The shape of the array map.
mixpix
Images with only one spatial axis, need another spatial axis to produces useful world coordi-

nates. This attribute is extracted from the relevant axis in attribute s1icepos.

convproj
An object from class Projection as defined in wcs.

axperm
The axis numbers corresponding with the X-axis and Y-axis in the image.

78 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.0.3b19

Note The aspect ratio is reset (to None) after each call to this method.

Examples Set the image axes explicitly:

>>> fitsobject = maputils.FITSimage ('’ rense.fits’)
>>> fitsobject.set_imageaxes (1,2, slicepos=30)

Set the images axes in interaction with the user using a prompt function:

>>> fitsobject = maputils.FITSimage (' rense.fits’)
>>> fitsobject.set_imageaxes (promptfie=maputils.prompt_imageaxes)

Enter (part of) the axis names. Note the minimal matching and case insensitivity.

>>> fitsobject = maputils.FITSimage (' rense.fits’)
>>> fitsobject.set_imageaxes('ra’,’d’, slicepos=30)

set_limits (pxlim=None, pylim=None, promptfie=None)
This method sets the image box. That is, it sets the limits of the image axes in pixels. This can be a
useful feature if one knows which part of an image contains the interesting data.

Parameters

* pxlim (Tuple with two integers) — Two integer numbers which should not be smaller
than 1 and not bigger than the header value NAXISn, where n represents the x axis.

 pylim (Tuple with two integers) — Two integer numbers which should not be smaller
than 1 and not bigger than the header value NAXISn, where n represents the y axis.

» promptfie (Python function) — An external function with parameters pxlim, pylim, ax-
nameX, and axnameY which are used to compose a prompt. If a function is given then
there is no need to enter pxlim and pylim. The prompt function must return (new) val-
ues for pxlim and pylim. An example of a function supplied by maputils is function
prompt_box ()

Examples Ask user to enter limits with prompt function prompt_box ()

>>> fitsobject = maputils.FITSimage (' rense.fits’)
>>> fitsobject.set_imageaxes(l,2, slicepos=30) # Define image in cube
>>> fitsobject.set_limits (promptfie=maputils.prompt_box)

set_spectrans (spectrans=None, promptfie=None)
Set spectral translation or ask user to enter a spectral translation if one of the axes in the current
FITSimage is spectral.

Parameters

* spectrans (String) — A spectral translation e.g. to convert frequencies to optical veloc-
ities.

» promptfie (A Python function without parameters. It returns a string with the spec-
tral translation. An example of a function supplied by maputils is function

prompt_spectrans ())— A function, supplied by the user, that can prompt a user
to enter a sky definition.

Examples Set a spectral translation using 1) a prompt function, 2) a spectral translation for
which we don’t know the code for the conversion algorithm and 3) set the translation
explicitly:

>>> fitsobject.set_spectrans (promptfie=maputils.prompt_spectrans)
>>> fitsobject.set_spectrans (spectrans="VOPT-2772")
>>> fitsobject.set_spectrans (spectrans="VOPT-V2W")

8.5. Class FITSimage 79

Kapteyn Package Documentation, Release 2.0.3b19

set_skyout (skyout=None, promptfie=None)
Set the output sky definition. Mouse positions and coordinate labels will correspond to the selected
definition. The method will only work if both axes are spatial axes.

Parameters

e skyout (A single value or tuple.) — The output sky definition for sky system, reference
system, equinox and date of observation. For the syntax of a sky definition see the
description at celestial.skymatrix ()

» promptfie (A Python function without parameters. It returns the sky definition. An
example of a function supplied by maputils is function prompt_skyout ()) —
A function, supplied by the user, that can prompt a user to enter a sky definition.

Notes The method sets an output system only for data with two spatial axes. For XV maps
the output sky system is always the same as the native system.

Annotatedimage (frame=None, **kwargs)
This method couples the data slice that represents an image to a Matplotlib Axes object (parameter
frame). It returns an object from class Annotatedimage which has only attributes relevant for
Matplotlib.

Parameters

* frame (A Matplotlib Axes instance) — Plot the current image in this Matplotlib Axes
object. If omitted, a default frame will be set using Matplotlib’s method add_subplot()

* kwargs (Python keyword arguments) — These parameters are keyword arguments for
the constructor of Annotatedimage. All of them get a default value in this routine.
The ones for which it can be useful to change are:

skyout: The sky definition for graticule and world coordinates

spectrans: The spectral translation for the spectral axis

aspect: The aspect ratio of the pixels

basename: A name for a file on disk e.g. to store a color lut

cmap: A color map

blankcolor: The color of bad pixels,

clipmin: Scale colors between image values clipmin and clipmax

clipmax: Scale colors between image values clipmin and clipmax
Attributes See documentation at Annotatedimage
Returns An object from class Annotatedimage

Examples

>>> f = maputils.FITSimage ("ngc6946.£its")
>>> f.set_imageaxes(l, 3, slicepos=51)
>>> annim = f.Annotatedimage ()

or:

1 from kapteyn import maputils
> from matplotlib import pyplot as plt

4+ f = maputils.FITSimage("ml01l.£fits")
s fig = plt.figure()

¢ frame = fig.add_subplot(l,1,1)

7 annim = f.Annotatedimage (frame)

s annim.Image ()

9 annim.Graticule ()

80 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.0.3b19

1o annim.plot ()
1 plt.show()

get_pixelaspectratio ()
Return the aspect ratio of the pixels in the current data structure defined by the two selected axes. The
aspect ratio is defined as pixel height / pixel width.

Example

>>> fitsobject = maputils.FITSimage ('ml0l.fits’)
>>> print fitsobject.get_pixelaspectratio()
1.0002571958

get_figsize (xsize=None, ysize=None, cm=False)
Usually a user will set the figure size manually with Matplotlib’s figure(figsize=...) construction. For
many plots this is a waste of white space around the plot. This can be improved by taking the aspect
ratio into account and adding some extra space for labels and titles. For aspect ratios far from 1.0 the
number of pixels in x and y are taken into account.

A handy feature is that you can enter the two values in centimeters if you set the flag cm to True.

If you have a plot which is higher than its width and you want to fit in on a A4 page then use:

>>> f = maputils.FITSimage (externalheader=header)
>>> figsize = f.get_figsize(ysize=21, cm=True)
>>> fig = plt.figure(figsize=figsize)

>>> frame = fig.add_subplot(l,1,1)

str_header()
Print the meta information from the selected header. Omit items of type HISTORY.

Returns A string with the header keywords

Examples If you think a user needs more information from the header than can be provided
with method str_axisinfo () itcan be useful to display the contents of the selected
FITS header. This is the entire header and not a selected alternate header.

1 >>> from kapteyn import maputils
2 >>> fitsobject = maputils.FITSimage ('’ rense.fits’)
3 >>> print fitsobject.str_header ()

4 SIMPLE = T / SIMPLE FITS FORMAT

s BITPIX = -32 / NUMBER OF BITS PER PIXEL
6 NAXIS = 3 / NUMBER OF AXES

7 NAXIS1l = 100 / LENGTH OF AXIS

8 NAXIS2 = 100 / LENGTH OF AXIS

9 NAXIS3 = 101 / LENGTH OF AXIS

1o BLOCKED = T / TAPE MAY BE BLOCKED

n CDELT1 = -7.165998823000E-03 / PRIMARY PIXEL SEPARATION
2 CRPIX1 = 5.100000000000E+01 / PRIMARY REFERENCE PIXEL
3 CRVAL1L = -5.128208479590E+01 / PRIMARY REFERENCE VALUE
u CTYPE1l = ’'RA-—--NCP ’ / PRIMARY AXIS NAME

15 CUNIT1 = ’DEGREE "/ PRIMARY AXIS UNITS

16 etc. etc.

str_axisinfo (axnum=None, long=False)
For each axis in the FITS header, return a string with the data related to the World Coordinate System
(WCS).

Parameters

e axnum (None, Integer or list with Integers) — A list with axis numbers for which
one wants to print information. These axis numbers are FITS numbers i.e. in range

8.5. Class FITSimage 81

Kapteyn Package Documentation, Release 2.0.3b19

[1,NAXIS]. To display information about the two image axes one should use attribute
maputils.FITSimage.axperm as in the second example below.

* long (Boolean) — If True then more verbose information is printed.

Returns A string with WCS information for each axis in axnum.

Examples Print useful header information after the input of the FITS file and just before the

specification of the image axes:

1 >>> from kapteyn import maputils

2 >>> fitsobject = maputils.FITSimage ('’ rense.fits’)

3 >>> print fitsobject.str_axisinfol()

4 Axis 1: RA-——-NCP from pixel 1 to 100

5 {crpix=51 crval=-51.2821 cdelt=-0.007166
6 {wcs type=longitude, wcs unit=deg}

7 Axis 2: DEC--NCP from pixel 1 to 100

8 {crpix=51 crval=60.1539 cdelt=0.007166

9 {wcs type=latitude, wcs unit=deg}
10 Axis 3: VELO-HEL from pixel 1 to 101
1 {crpix=-20 crval=-243 cdelt=4200 (km/s)}

12 {wcs type=spectral, wcs unit=m/s}

Print extended information for the two image axes only:

>>> print str_axisinfo (axnum=fitsobject.axperm,

(DEGREE) }

(DEGREE) }

long=True)

Notes For axis numbers outside the range of existing axes in the FITS file, nothing will be

printed. No exception will be raised.

str wesinfo ()

Compose a string with information about the data related to the current World Coordinate System

(WCS) (e.g. which axes are longitude, latitude or spectral axes)

Returns String with WCS information for the current Projection object.

Examples Print information related to the world coordinate system:

1 >>> print fitsobject.str_wcsinfol()

2 Current sky system: Equatorial
3 reference system: ICRS

4 Output sky system: Equatorial
s Output reference system: ICRS

¢ projection’s epoch: J2000.0

7 Date of observation from DATE-OBS: 2002-04-04T09:42:42.1
8 Date of observation from MJD-OBS: None

9 Axis number longitude axis: 1

10 Axis number latitude axis: 2

11 Axis number spectral axis: None

12 Allowed spectral translations: None

str_ spectrans ()

Compose a string with the possible spectral translations for this data.

Returns String with information about the allowed spectral translations for the current Pro-

jection object.

Examples Print allowed spectral translations:

>>> print fitsobject.str_spectrans()

get_dataminmax (box=False)

Get minimum and maximum value of data in entire data structure defined by the current FITS header

82

Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.0.3b19

or in a slice. These values can be important if you want to compare different images from the same
source (e.g. channel maps in a radio data cube).

Parameter box (Boolean) — Find min, max in data or if set to True in data slice (with limits).

Returns min, max, two floating point numbers representing the minimum and maximum
data value in data units of the header (BUNIT).

Note We assume here that the data is read when a FITSobject was created. Then the data is
filtered and the -inf, inf values are replaced by NaN’s.

Example Note the difference between the min, max of the entire data or the min, max of the
slice (limited by a box):

fitsobj = maputils.FITSimage ('ngc6946.fits’)
vmin, vmax = fitsobj.get_dataminmax ()
for i, ch in enumerate (channels) :
fitsobj.set_imageaxes (lonaxnum, lataxnum, slicepos=ch)
print "Min, max in this channel: ", fitsobj.get_dataminmax (box=True)

slice2world (skyout=None, spectra=None, userunits=None)
Given the pixel coordinates of a slice, return the world coordinates of these pixel positions and their
units. For example in a 3-D radio cube with axes RA-DEC-FREQ one can have several RA-DEC
images as function of FREQ. This FREQ is given in pixels coordinates in attribute slicepos. The
world coordinates are calculated using the Projection object which is also an attribute.

Parameters

e skyout (String or tuple representing sky definition) — Set current projection object in
new output sky mode

* spectra (String) — Use this spectral translation for the output world coordinates

* userunits (String) — A sequence of units as the user wants to have it appear in the slice
info string. The order of these units must be equal to the order of the axes outside the
slice/subset. Both the world coordinates and the units are adjusted.

Returns A tuple with two elements: world and units. Element world is either an empty list
or a list with one or more world coordinates. The number of coordinates is equal to the
number of axes in a data set that do not belong to the extracted data which can be a slice.
For each world coordinate there is a unit in element units.

Note This method first calculates a complete set of world coordinates. Where it did not
define a slice position, it takes the header value CRPIXn. So if a map is defined with
only one spatial axes and the missing spatial axis is found in slicepos than we have
two matching pixel coordinates for which we can calculate world coordinates. So by
definition, if a slice is a function of a spatial coordinate, then its world coordinate is found
by using the matching pixel coordinate which, in case of a spatial map, corresponds to
the projection center.

Example
>>> vel, uni = fitsobj.slice2world(spectra="VOPT-2772")
>>> velinfo = "ch = km/s" % (ch, vel[0]/1000.0)

or: >>> vel, uni = fitsobj.slice2world(spectra="VOPT-??7", userunits="km/s”)

header2classic()
If a header contains PC or CD elements, and not all the ‘classic’ elements for a WCS then a number
of FITS readers could have a problem if they don’t recognize a PC and CD matrix. What can be done
is to derive the missing header items, CDELTn and CROTA from these headers and add them to the
header.

Sometimes one wants to have a classic header to get a CROTA from a skewed image to be able to
apply a rotation afterwards.

. Class FITSimage 83

Kapteyn Package Documentation, Release 2.0.3b19

When a header is altered in such legacy environments and written back into a FITS file, you will end
up with a mixed environment because you have a header that has both all classic FITS cards to describe
a WCS and the PC or CD description which is usually is untouched. This method inspects the header
of the current FITSimage object. If it has all the classic keywords for a WCS then it will only search
voor PC and CD elements and remove them from the header. If the CDELTs or CROTA are missing
in the header and there is a CD matrix, then the necessary elements are derived from this matrix. The
same can be done if there is a PC matrix, but then the CDELT’s must be present in the header.

The CDi_j matrix must not be singular. If so, an exception is raised. Elements in the CD matrix that
are not specified default to 0.0

PCi_j elements that are not specified default to 1.0 if i == j and to 0.0 if i !=j. Also the PC matrix
must not be singular.

A PC and CD matrix should not both be present in the same header.
See also: Calabretta & Greisen: ‘Representations of celestial coordinates in FITS’, section 6
Returns A tuple with three elements:
* hdr - A modified copy of the current header. The CD and PC elements are removed.

 skew - Difference between the two calculated rotation angles If this number is bigger
then say 0.001 then there is considerable skew in the data. One should reproject the
data so that it fits a non skewed version with only a CROTA in the header

* A Boolean which indicates whether a header is changed or not.

Example

from kapteyn import maputils, wcs
import pyfits

Basefits = maputils.FITSimage (promptfie=maputils.prompt_fitsfile)
newheader, skew, hdrchanged = Basefits.header2classic/()
if hdrchanged:
print newheader
9 if skew != 0.0:
10 print "found skew:", skew

® N o U kW N =

Notes This method is tested with FITS files:
* With classic header
¢ With only CD matrix
e With only PC matrix
* With PC and CD matrix
¢ With CD matrix and NAXIS > 2
* With sample files with skew

reproject_to (reprojobj=None, pxlim_dst=None, pylim_dst=None, plimlo=None, plimhi=None, inter-

pol_dict=None, rotation=None, **fitskeys)
The current FITSimage object must contain a number of spatial maps. This method then reprojects

these maps so that they conform to the input header.

Imagine an image and a second image of which you want to overlay contours on the first one. Then
this method uses the current data to reproject to the input header and you will end up with a new
FITSimage object which has the spatial properties of the input header and the reprojected data of the
current FITSimage object.

Also more complicated data structures can be used. Assume you have a data cube with axes RA, Dec
and Freq. Then this method will reproject all its spatial subsets to the spatial properties of the input
header.

84 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.0.3b19

The current FITSimage object tries to keep as much of its original FITS keywords. Only those related
to spatial data are copied from the input header. The size of the spatial map can be limited or extended.
The axes that are not spatial are unaltered.

The spatial information for both data structures are extracted from the headers so there is no need to
specify the spatial parts of the data structures.

The image that is reprojected can be limited in pixel coordinates with the set_1imits () method.
If the input is a FITSimage object then also the output size can be altered by using set_limits ()
for the pixel coordinate limits of the destination.

Parameters

* reprojobj (Python dictionary or PyFITS header. Or a maputils.FITSimage ob-
ject) —

— The header which provides the new information to reproject to. The size of the
reprojected map is either copied from the NAXIS keywords in the header or entered
with parameters pxlim_dst and pylim_dst. The reprojections are done for all spatial
maps in the current FITSimage object or for a selection entered with parameters
plimlo and plimhi (see examples).

— The FITSimage object from which relevant information is extracted like the header
and the new sizes of the spatial axes which otherwise should have been provided
in parameters px/im_dst and pylim_dst. The reprojection is restricted to one spatial
map and its slice information is copied from the current FITSimage. This option is
selected if you want to overlay e.g. contours from the current FITSimage data onto
data from another WCS.

— If None, then the current header is used. Modifications to this header are done with
keyword arguments.

pxlim_dst — Limits in pixels for the reprojected box.

plimlo (Integer or tuple of integers) — One or more pixel coordinates corresponding to
axes outside the spatial map in order as found in the header ‘reprojobj’. The values
set the lower limits of the axes. There is no need to specify all limits but the order is
important.

plimhi (Integer or tuple of integers) — The same as plimhi, but now for the upper limits.

interpol_dict — This parameter is a dictionary with parameters for the interpolation
routine which is used to reproject data. The interpolation routine is based on SciPy’s
map_coordinates. The most important parameters with the maputils defaults are:

order : | Integer, optional

The order of the spline interpolation, default is 1. The order has to be in
the range 0-5.

mode : | String, optional

Points outside the boundaries of the input are filled according to the
given mode (‘constant’, ‘nearest’, ‘reflect’ or ‘wrap’). Default is ‘con-
stant’.

cval : scalar, optional

Value used for points outside the boundaries of the input if
mode="constant’. Default is numpy.NaN

rotation (Floating point number or None) — Sets a rotation angle. If this method en-
counters this keyword, it will create a so called ‘classic’ header. That is a header
without CD or PC elements. Then the rotation angle of the current spatial map is only
given by FITS keyword CROTAn. The value of rotation is added to CROTAn to create
a new value which is inserted in the new header. Note that values for CROTAn in the
fitskeys parameter list overwrite this calculated value.

fitskeys (Python keyword arguments.) — Parameters containing FITS keywords and
values which are written in the reprojection header.

8.5. Class FITSimage 85

Kapteyn Package Documentation, Release 2.0.3b19

Warning: Values for CROTAn in parameter fitskeys overwrite values previously set with keyword
rotation.

Warning: Changing values of CROTAn will not always result in a rotated image. If the world
coordinate system was defined using CD or PC elements, then changing CROTAn will only add
the keyword but it is never read because CD & PC transformations have precedence.

Examples -Set limits for axes outside the spatial map. Assume a data structure with axes
RA-DEC-FREQ-STOKES for which the RA-DEC part is reprojected to a set RA’-DEC’-
FREQ-STOKES. The ranges for FREQ and STOKES set the number of spatial maps in
this data structure. One can limit these ranges with plimlo and plimhi.

* plimlo=(20,2), plimhi=(40,2)
we restrict the reprojections for spatial maps at frequencies 20 to 40 at one position on
the STOKES axis (at pixel coordinate 2).

* plimlo=(None,2), plimhi=(None,2)
If one wants to reproject all the maps at all frequencies but only for STOKES=2 and
3 then use: plimlo=(None,2) and plimhi=(None,2) where None implies no limits.

e plimlo=40

No plimhi is entered. Then there are no upper limits. Only one value (40) is entered
so this must represent the FREQ axis at pixel coordinate 40. It represents all spatial
maps from FREQ pixel coordinate 40 to the end of the FREQ range, repeated for all
pixels on the STOKES axis.

plimlo=(55,1), plimhi=(55,1)

This reprojects just one map at FREQ pixel coordinate 55 and STOKES pixel co-
ordinate 1. This enables a user/programmer to extract one spatial map, reproject it
and write it as a single map to a FITS file while no information about the FREQ and
STOKES axes is lost. The dimensionality of the new data remains 4 but the length of
the ‘repeat axes’ is 1.

Note that if the data structure was represented by axes FREQ-RA-STOKES-DEC then
the examples above are still valid because these set the limits on the repeat axes FREQ
and POL whatever the position of these axes in the data structure.

-Use and modify the current header to change the data. The example shows how to rotate
an image and display the result.

Basefits = maputils.FITSimage ("ml0l.fits")

Rotfits = Basefits.reproject_to(rotation=40.0,
naxisl=800, naxis2=800,
crpix1=400, crpix2=400)

If copy on disk required:
Rotfits.writetofits ("mlOrot.fits", clobber=True, append=False)

9 annim = Rotfits.Annotatedimage ()
10 annim.Image ()

11 annim.Graticule ()

12 annim.interact_toolbarinfo ()

13 maputils.showall ()

-Use an external header and change keywords in that header befor the re-projection:

>>> Rotfits = Basefits.reproject_to(externalheader,
naxisl=800, naxis2=800,
crpix1=400, crpix2=400)

86

Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.0.3b19

Note: If you want to align an image with the direction of the north, then the value of CROTAn (e.g.
CROTA2) should be set to zero. To ensure that the data will be rotated, use parameter rotation with a
dummy value so that the header used for the re-projection is a ‘classic’ header:

e.g.

>>> Rotfits = Basefits.reproject_to(rotation=0.0, crotaz2=0.0)

Tests

1. The first test was a reprojection of data of mapl to the spatial header of map2. One
should observe that the result of the reprojection (reproj) has its spatial structure from
map?2 and its non spatial structure (i.e. the repeat axes) from map1. Note that the order
of longitude, latitude in map1 is swapped in map2.

mapl: CTYPE: RA - POL - FREQ - DEC NAXIS 35516 41
map2: CTYPE: DEC - POL - FREQ - RA NAXIS 36 4 17 30
reproj = mapl.reproject_to(map2)
reproj: CTYPE: RA - POL - FREQ - DEC NAXIS 36 5 16 30
2. Tested with values for the repeat axes
3. Tested with values for the output box

writetofits (filename=None, comment=True, history=True, bitpix=None, bzero=None, bscale=None,

blank=None, clobber=False, append=False, extname="")
This method copies current data and current header to a FITS file on disk. This is useful if either

header or data comes from an external source. If no file name is entered then a file name will be
composed using current date and time of writing. The name then start with ‘FITS’.

Parameters

* filename (String) — Name of new file on disk. If omitted the default name is ‘FITS’
followed by a date and a time (in hours, minutes seconds).

* comment (Boolean) — If you do not want to copy comments, set parameter to False
* history (Boolean) — If you do not want to copy history, set parameter to False

* bitpix (Integer) — Write FITS data in another format (8, 16, 32, -32, -64). If no bitpix
is entered then -32 is assumed. Parameters bzero, bscale and blank are ignored then.

* bzero (Float) — Offset in scaled data. If bitpix is not equal to -32 and the values
for bscale and bzero are None, then the data is scaled between the minimum and
maximum data values. For this scaling the method scale() from PyFITS is used with
option="minmax’. However PyFITS 1.3 generates an error due to a bug.

* bscale (Float) — Scale factor for scaled data. If bitpix is not equal to -32 and the
values for bscale and bzero are None, then the data is scaled between the minimum
and maximum data values. For this scaling the method scale() from PyFITS is used
with opt ion='minmax’. However PyFITS 1.3 generates an error due to a bug.

* blank (Float/Integer) — Value that represents a blank. Usually only for scaled data.

* clobber (Boolean) — If a file on disk already exists then an exception is raised. With
clobber=True an existing file will be overwritten. We don’t attempt to suppres PyFITS
warnings because its warning mechanism depends on the Python version.

* append (Boolean) — Append image data in new HDU to existing FITS file
* extname (String) — Name of image extension if append=True. Default is empty string.

Raises

8.5. Class FITSimage 87

Kapteyn Package Documentation, Release 2.0.3b19

ValueError You will get an exception if the shape of your external data in parameter
‘boxdat’ is not equal to the current sliced data with limits.

Examples Artificial header and data:

I # Example 1. From a Python dictionary header

3 header = {/NAXIS’ : 2, ’NAXIS1’: 800, 'NAXIS2’: 800,

4 "CTYPE1l’ : "RA-—--TAN’,
5 "CRVAL1"” :0.0, ’'CRPIX1’ : 1, ’'CUNIT1l"” : ’'deg’, 'CDELT1’ : -0.
6 "CTYPE2’ : 'DEC--TAN’,
7 "CRVAL2’" : 0.0, ’CRPIX2’ : 1, 'CUNIT2’ : ’'deg’, 'CDELT2’ : O.

8 }

9y X, y = numpy.mgrid[-sizexl:sizex2, -sizeyl:sizey?2]

10 edata = numpy.exp (- (x*+2/float (sizex1+10)+y*+2/float (sizeylx10)))
n £ = maputils.FITSimage (externalheader=header, externaldata=edata)
2 f.writetofits/()

Example 2. From an external header and dataset.

In this example we try to copy the data format from the input file.
PyFITS removes header items BZERO and BSCALE because it reads its
data in a NumPy array that is compatible with BITPIX=-32.

The original values for x*bitpix#*, x*bzero*, x*bscale* and xblankx*
are retrieved from the object attributes with the same name.

HH HH W W K H

20

21 from kapteyn import maputils

22

23 fitsobject = maputils.FITSimage (promptfie=maputils.prompt_fitsfile)
24 header = fitsobject.hdr

5 edata = fitsobject.dat

2 f = maputils.FITSimage (externalheader=header, externaldata=edata)

27

% f.writetofits(history=True, comment=True,

2 bitpix=fitsobject.bitpix,
30 bzero=fitsobject.bzero,

31 bscale=fitsobject.bscale,
32 blank=fitsobject.blank,
33 clobber=True)

34
35 # Example 3. Write a FITS file in the default format, BITPIX=-32
3 # and don’t bother about FITS history and comment cards.

37

3 f.writetofits(history=False, comment=False)

8.6 Class Annotatedimage

class Annotatedimage (frame, header, pxlim, pylim, imdata, projection, axperm, skyout, spec-

trans, alter=", mixpix=None, aspect=1, slicepos=None, basename=None,
,

cmap="jet’, blankcolor="w’, clipmin=None, clipmax=None, boxdat=None,

o sourcename="unknownsource’))
This is one of the core classes of this module. It sets the connection between the FITS data (created or read

from file) and the routines that do the actual plotting with Matplotlib. The class is usually used in the context
of class FITSimage which has a method that prepares the parameters for the constructor of this class.

Parameters

* frame (Matplotlib Axes instance) — This is the frame where image and or contours will
be plotted. If omitted then a default frame will be set

* header (Python dictionary or pyfits.NP_pyfits.Header instance) — The header data for
this file. Either from a FITS header or a dictionary with header data.

88

Chapter 8. Module maputils

05,

05,

Kapteyn Package Documentation, Release 2.0.3b19

* pxlim (Tuple with two integers) — Two integer numbers which should not be smaller
than 1 and not bigger than the header value NAXISn, where n represents the x axis.

* pylim (Tuple with two integers) — Two integer numbers which should not be smaller
than 1 and not bigger than the header value NAXISn, where n represents the y axis.

* imdata (2D NumPy array) — Image data. This data must represent the area defined by
pxlim and pylim.

* projection (Instance of Projection class from module wcs) — The current pro-
jection object which provides this class with conversion methods from wcs like
wcs.Projection.toworld() and wcs.Projection.topixel () needed
for conversions between pixel- and world coordinates.

* axperm (Tuple with integers) — Tuple or list with the FITS axis number of the two image
axes, e.g. axperm=(1,2)

* skyout (String) — A so called sky definition (sky system, reference system, equinox)
which is used to annotate the world coordinates and to draw graticule lines.

* spectrans (String) — The spectral translation. It sets the output system for spectral axes.
E.g. a frequency axis can be labeled with velocities.

* mixpix (None or an integer) — The axis number (FITS standard i.e. starts with 1) of the
missing spatial axis for images with only one spatial axis (e.q. Position-Velocity plots).

* aspect — The aspect ratio. This value is used to correct the scale of the plot so that equal
sizes in world coordinates (degrees) represent equal sizes in a plot. This aspect ratio
is only useful for spatial maps. Its default value is 1.0. The aspect ratio is defined as:
abs(cdelty/cdeltz). This value is automatically set in objects from FITSimage

* slicepos (Single value or tuple with integers) — Pixel coordinates used to slice the data
in a data set with more than two axes. The pixel coordinates represent positions on the
axes that do not belong to the image.

* filename (string) — Base name for new files on disk, for example to store a color map on
disk. The default is supplied by method FITSimage .Annotatedimage ().

* cmap (mplutil.VariableColormap instance or string) — A colormap from class
mplutil.VariableColormap or a string that represents a colormap (e.g. ‘jet’,
‘spectral’ etc.).

e clipmin (Float) — A value which sets the lower value of the interval between which
the colors in the colormap are distributed. If omitted, the minimum data value will be
clipmin.

* clipmax (Float) — A value which sets the upper value of the interval between which
the colors in the colormap are distributed. If omitted, the maximum data value will be
clipmin.

* boxdat (NumPy array) — An 2dim. array with the same shape as the boxdat attribute of
the input FITSimage object.
Attributes

frame
Matplotlib Axes instance where image and contours are plotted

data

Image data
mixpix

The pixel of the missing spatial axis in a Position-Velocity image
projection

An object from the Projection class as defined in module wcs

8.6. Class Annotatedimage 89

Kapteyn Package Documentation, Release 2.0.3b19

skyout
The sky definition for which graticule lines are plotted and axis annotation is made (e.g.
“Equatorial FK4”)

spectrans
The translation code to transform native spectral coordinates to another system (e.g.
frequencies to velocities)

pxlim
Pixel limits in x = (xlo, xhi)

pylim
Pixel limits in y = (ylo, yhi)

slicepos
Single value or tuple with more than one value representing the pixel coordinates on
axes in the original data structure that do not belong to the image. It defines how the
data slice is ectracted from the original. The order of these ‘outside’ axes is copied from
the (FITS) header.

aspect
Aspect ratio of a pixel according to the FITS header. For spatial maps this value is used
to set and keep an image in the correct aspect ratio.

cmap
The color map. This is an object from class mplutil.VariableColormap. which
is inherited from the Matplotlib color map class.

objlist
List with all plot objects (image, contours, colour bar, graticules) for this annotated
image object.

Methods

set_norm (clipmin, clipmax)
Matplotlib scales image values between 0 and 1 for its distribution of colors from the color map. With
this method we set the image values which we want to scale between 0 and 1. The default image
values are the minimum and maximum of the data in Annotatedimage.data. If you want to
inspect a certain range of data values you need more colors in a smaller intensity range, then use
different clipmin and clipmax in the constructor of Annotatedimage or in this method.

Parameters
* clipmin (Float) — Image data below this threshold will get the same color
* clipmax (Float) — Image data above this threshold will get the same color

Examples

>>> fitsobj = maputils.FITSimage ("ml01l.£fits")

>>> annim = fitsobj.Annotatedimage (frame, cmap="spectral')
>>> annim.Image (interpolation='"spline36’)

>>> annim.set_norm (10000, 15500)

or:

>>> fitsobj = maputils.FITSimage ("ml01l.fits")
>>> annim = fitsobj.Annotatedimage (frame, cmap="spectral", clipmin=10000, clipmax=

Notes It is also possible to change the norm after an image has been displayed. This en-
ables a programmer to setup key interaction for changing the clip levels in an image for
example when the default clip levels are not suitable to inspect a certain data range. Usu-
ally the color editing (with Annotatedimage.interact_imagecolors ())can
do this job very well so we think there is not much demand in a scripting environment.
With GUT’s it will be different.

90 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.0.3b19

set_colormap (cmap, blankcolor=None)
Method to set the initial color map for images, contours and colorbars. These color maps are either
strings (e.g. ‘jet’ or ‘spectral’) from a list with Matplotlib color maps or it is a path to a color map on
disk (e.g. cmap="/home/user/luts/mousse.lut”). If the color map is not found in the list with known
color maps then it is added to the list, which is a global variable called cmlist.

The Kapteyn Package has also a list with useful color maps. See example below or example
‘mu_luttest.py’ in the Tutorial maputils module.

If you add the event handler interact_imagecolors() it is possible to change colormaps with keyboard
keys and mouse.

Parameters

* cmap (String or instance of VariableColormap) — The color map to be used for image,
contours and colorbar

e blankcolor (Matplotlib color) — Color of the bad pixels in your image.
Examples
>>> fitsobj = maputils.FITSimage ("ml01l.fits")

>>> annim = fitsobj.Annotatedimage (frame, clipmin=10000, clipmax=15500)
>>> annim.set_colormap ("spectral™)

or use the constructor as in:
>>> annim = fitsobj.Annotatedimage (frame, cmap="spectral", clipmin=10000, clipmax=

Get extra lookup tables from Kapteyn Package (by default, these luts are appended at
creation tome of cmlist)

>>> extralist = mplutil.VariableColormap.luts()
>>> maputils.cmlist.add(extralist)

write_colormap (filename)
Method to write current colormap rgb values to file on disk. If you add the event handler inter-
act_imagecolors(), this method is automatically invoked if you press key ‘m’.

This method is only useful if the colormap changes i.e. in an interactive environment.

set_blankcolor (blankcolor, alpha=1.0)
Set the color of bad pixels. If you add the event handler interact_imagecolors(), this method steps
through a list of colors for the bad pixels in an image.

Parameters
* blankcolor (Matplotlib color) — The color of the bad pixels (blanks) in your map

* alpha (Float in interval [0,1]) — Make the color of bad pixels transparent with alpha <
1

Example
>>> annim.set_blankcolor ('c’)

set_aspectratio (aspect)
Set the aspect ratio. Overrule the default aspect ratio which corrects pixels that are not square in world
coordinates. Can be useful if you want to stretch images for which the aspect ratio doesn’t matter (e.g.
XV maps).

Parameter aspect (Float) — The aspect ratio is defined as pixel height / pixel width. With
this value one can stretch an image in x- or y direction. The default is such that 1 arcmin
in x has the same length in cm as 1 arcmin in y.

Example

8.6. Class Annotatedimage 91

Kapteyn Package Documentation, Release 2.0.3b19

>>> annim = fitsobj.Annotatedimage (frame)
>>> annim.set_aspectratio(l.2)

get_colornavigation_info ()
This method compiles and returns a help text for color map interaction.

Image (**kwargs)
Setup of an image. This method is a call to the constructor of class ITmage with a default value
for most of the keyword parameters. This created object has an attribute im which is an instance of
Matplotlib’s imshow() method. This object has a plot method. This method is used by the more general
Annotatedimage.plot () method.

Parameter kwargs (Python keyword parameters) — From the documentation of Matplotlib
we learn that for method imshow() (used in the plot method if an Image) a few interesting
keyword arguments remain:

* interpolation - From Matplotlib’s documentation: Acceptable values are None, ‘near-
est’, ‘bilinear’, ‘bicubic’, ‘splinel6’, ‘spline36’, ‘hanning’, ‘hamming’, ‘hermite’,
‘kaiser’, ‘quadric’, ‘catrom’, ‘gaussian’, ‘bessel’, ‘mitchell’, ‘sinc’, ‘lanczos’
* visible - Switch the visibility of the image
* alpha - Value between 0 and 1 which sets the transparency of the image.
Attributes
im
The object generated after a call to Matplotlib’s imshow().
Examples
>>> fitsobject = maputils.FITSimage (promptfie=maputils.prompt_fitsfile)

>>> annim = fitsobject.Annotatedimage ()
>>> annim.Image (interpolation="spline36")

or create an image but make it invisible:
>>> annim.Image (visible=False)

RGBimage (f_red, f_green, f_blue, fun=None, **kwargs)
Matplotlib’s method imshow() is able to produce RGB images. To create a real RGB image, we need
three arrays with identical shape representing the red, green and blue components. Method imshow()
requires data scaled between 0 and 1.

This utility method prepares a composed and scaled data array derived from three FITSimage objects.
It scales the composed array and not the individual image arrays. The method allows for a function
or lambda expression to be entered to process the scaled data. The world coordinate system (e.g. to
plot graticules) is copied from the current Annotatedimage object. Note that for the three images
only the shape of the array must be equal to the shape of the data of the current Annotatedimage
object.

Parameters

* f_red (Object from class F I TSimage) — This object describes a two dimensional data
structure which represents the red part of the composed image.

 f _green (Object from class FITSimage) — This object describes a two dimensional
data structure which represents the green part of the composed image.

¢ f_blue (Object from class FITSimage) — This object describes a two dimensional
data structure which represents the blue part of the composed image.

* fun (Function or Lambda expression) — A function or a Lambda expression to process
the scaled data.

92 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.0.3b19

e kwargs (Python keyword parameters) — See description method
Annotatedimage.Image ().

Note A RGB image does not interact with a colormap. Interacting with a colormap (e.g.
after adding annim.interact_imagecolors() in the example below) is not forbidden but it
gives weird results. To rescale the data, for instance for a better view of interesting data,
you need to enter a function or Lambda expression with parameter fun.

Example

1 from kapteyn import maputils
> from numpy import sqgrt
3 from matplotlib import pyplot as plt

5 f_red = maputils.FITSimage ('ml01l_red.fits’)
¢ f_green = maputils.FITSimage('ml0l_green.fits’)
7 f_blue = maputils.FITSimage ('ml01_blue.fits’)

9 fig = plt.figure()

10 frame = fig.add_subplot(l,1,1)

n annim = f_red.Annotatedimage (frame)

2 annim.RGBimage (f_red, f_green, f_blue, fun=lambda x:sgrt (x), alpha=0.5)

4 grat = annim.Graticule ()
15 annim.interact_toolbarinfo ()

17 maputils.showall ()

Contours (levels=None, **kwargs)
Setup of contour lines. This method is a call to the constructor of class Contours with a number
of default parameters. Either it plots single contour lines or a combination of contour lines and filled
regions between the contours. The colors are taken from the current colormap.

Parameters

* levels (None or a list with floating point numbers) — Image values for which contours
must be plotted. The default is None which results in a list with values calculated by
the Contour constructor.

* kwargs (Python keyword parameters) — There are a number of keyword arguments
that are useful:

— filled - if set to True the area between two contours will get a color (close to the
color of the contour.

— negative - one of Matplotlib’s line styles ‘solid’, ‘dashed’, ‘dashdot’, ‘dotted’ in
which contours are plotted which represent negative image values.

— colors - If None, the current colormap will be used. If a character or string, all levels
will be plotted in this color. If a tuple of matplotlib colors then different levels will
be plotted in different colors in the order specified.

— linewidths - If a number, all levels will be plotted with this linewidth. If a tuple,
different levels will be plotted with different linewidths in the order specified

— linestyles - One of ‘solid’, ‘dashed’, ‘dashdot’, ‘dotted’, which sets the style of the
contour. It can also be given in a list. See the Matplotlib documentation for its
behaviour.

Methods
* Contours.setp_contour () - Set properties for individual contours
e Contours.setp_label () - Plotlabels for individual contours

Examples

8.6. Class Annotatedimage 93

Kapteyn Package Documentation, Release 2.0.3b19

>>> fitsobj = maputils.FITSimage ("ml01l.fits")
>>> annim = fitsobj.Annotatedimage ()
>>> annim.Image (alpha=0.5)

>>> cont = annim.Contours ()
>>> print "Levels=", cont.clevels
Levels= [4000. 6000. 8000. 10000. 12000. 14000.]

>>> annim.Contours (filled=True)

In the next example note the plural form of the standard Matplotlib keywords. They
apply to all contours:

>>> annim.Contours (colors='w’, linewidths=2)

Set levels and the line style for negative contours:
>>> annim.Contours (levels=[-500,-300, 0, 300, 500], negative="dotted")

A combination of keyword parameters with less elements than the number of contour
levels:

>>> cont = annim.Contours (linestyles=(’'solid’, ’dashed’, ’dashdot’, ’dotted’),
linewidths=(2,3,4), colors=("r’',’g’,’b’,’'m"))

Example of setting of properties for all and 1 contour with setp_contour():

>>> cont = annim.Contours (levels=range (10000,16000,1000))
>>> cont.setp_contour (linewidth=1)
>>> cont.setp_contour (levels=11000, color=’'g’, linewidth=3)

Plot a (formatted) label near a contour with setp_label():

>>> cont2 = annim.Contours (levels=(8000,9000,10000,11000))
>>> cont2.setp_label (11000, colors='b’, fontsize=14, fmt=" ")
>>> cont2.setp_label (fontsize=10, fmt="$ \lambdas$")

Colorbar (clines=False, **kwargs)
This method is a call to the constructor of class Colorbar with a number of default parameters. A
color bar is an image which represents the current color scheme. It annotates the colors with image
values so that it is possible to get an idea of the distribution of the values in your image.

Parameters

e clines (Boolean) — If set to true AND a contour set (an
Annotatedimage.Contours () object) is available, then lines will be plotted in
the colorbar at positions that correspond to the contour levels

* kwargs (Python keyword arguments) — Specific keyword arguments and Keyword ar-
guments for Matplotlib’s method ColorbarBase()

— frame - By default a colorbar will ‘steal’ some space from its parent frame but this
behaviour can be overruled by setting an explicit frame (Matplotlib Axes object).

— label - A text that will be plotted along the long axis of the colorbar.
From Matplotlib:

— orientation - ‘horizontal’ or ‘vertical’

— fontsize - Size of numbers along the colorbar

— ticks - Levels which are annotated along the colorbar

94 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.0.3b19

Methods Colorbar.set_label () - Plot a title along the long side of the colorbar.

Examples A basic example were the font size for the ticks are set:

>>> fitsobj = maputils.FITSimage ("ml01l.fits")

>>> annim = fitsobj.Annotatedimage (cmap="spectral")
>>> annim.Image ()

>>> colbar = annim.Colorbar (fontsize=8)

>>> annim.plot ()

>>> plt.show ()

Set frames for Image and Colorbar:

>>> frame = fig.add_axes((0.1, 0.2, 0.8, 0.8))

>>> cbframe = fig.add_axes((0.1, 0.1, 0.8, 0.1))

>>> annim = fitsobj.Annotatedimage (cmap="Accent", clipmin=8000, frame=frame)

>>> colbar = annim.Colorbar (fontsize=8, orientation="horizontal’, frame=cbframe)

Create a title for the colorbar and change its font size:

>>> units = r’S$ergs/ (sec.cm”2)$’
>>> colbar.set_label (label=units, fontsize=24)

Graticule (visible=True, **kwargs)
This method is a call to the constructor of class wcsgrat .Graticule with a number of default
parameters.

It calculates and plots graticule lines of constant longitude or constant latitude. The description of
the parameters is found in wcsgrat .Graticule. An extra parameter is visible. If visible is set
to False than we can plot objects derived from this class such as ‘Rulers’ and ‘Insidelabels’ without
plotting unwanted graticule lines and labels.

Methods
* wcsgrat.Graticule.Ruler ()
* wcsgrat.Graticule.Insidelabels ()

Other parameters such as hdr, axperm, pxlim, pylim, mixpix, skyout and spectrans are set to defaults
in the context of this method and should not be overwritten.

Examples

>>> fitsobj = maputils.FITSimage ('ml0l.fits”)
>>> annim = fitsobj.Annotatedimage ()

>>> grat = annim.Graticule()

>>> annim.plot ()

>>> plt.show ()

Set the range in world coordinates and set the positions for the labels with (X, Y):

>>> X = arange(0,360.0,15.0)

>>> Y = [20, 30,45, 60, 75, 90]

>>> grat = annim.Graticule(wylim=(20.0,90.0), wxlim=(0,360),
startx=X, starty=Y)

Add a ruler, based on the current Annotatedimage object:

>>> ruler3 = annim.Ruler(23x15,30,22%15,15, 0.5, 1, world=True,
fmt=r"$%4.0f "\primes$",
fun=lambda x: x%x60.0, addangle=0)

>>> ruler3.setp_labels(color="r")

8.6. Class Annotatedimage 95

Kapteyn Package Documentation, Release 2.0.3b19

Add world coordinate labels inside the plot. Note that these are derived from the current
Graticule object.

>>> grat.Insidelabels (wcsaxis=0, constval=-51, rotation=90, fontsize=10,
color="r’, ha=’"right’)

Pixellabels (**kwargs)
This method is a call to the constructor of class wecsgrat .Pixellabels with a number of default
parameters. It sets the annotation along a plot axis to pixel coordinates.

Parameters

* plotaxis (String) — The axis name of one or two of the axes of the plot rectangle: or
‘left’, ‘bottom’, ‘right’, ‘top’ Combinations are always between ‘left’ and ‘bottom’
and ‘right’” and ‘top’.

* markersize (Integer) — Set size of ticks at pixel positions. The size can be negative to
get tick marks that point outwards.

e gridlines (Boolean) — Set plotting of grid lines (connected tick marks) on or off
(True/False). The default is off.

* offset (None or a floating point number) — The pixels can have an integer offset. If
you want the reference pixel to be pixel 0 then supply offset=(crpixX, crpixY). These
crpix values are usually read from then header (e.g. as CRPIX1 and CRPIX2). In
this routine the nearest integer of the input is calculated to ensure that the offset is an
integer value.

Other parameters are related to Matplotlib label attributes.
Examples
>>> fitsobject = maputils.FITSimage ("ml0l.fits")

>>> annim = fitsobject.Annotatedimage ()
>>> annim.Pixellabels (plotaxis=("top","right"), color="b", markersize=10)

or separate the labeling so that you can give different properties for different axes. In this case we shift
the labels along the top axis towards the axis line with va="top’:

>>> annim.Pixellabels (plotaxis="top’, va='top’)
>>> annim.Pixellabels (plotaxis="right’)

Beam (major, minor, pa=0.0, pos=None, xc=None, yc=None, units=None, **kwargs)
Objects from class Beam are graphical representations of the resolution of an instrument. The beam
is centered at a position xc, yc. The major axis of the beam is the FWHM of the longest distance
between two opposite points on the ellipse. The angle between the major axis and the North is the
position angle.

A beam is an ellipse in world coordinates. To draw a beam given the input parameters, points are
calculated in world coordinates so that angle and required distance of sample points on the ellipse are
correct on a sphere.

Parameters
* major (Float) — Full width at half maximum of major axis of beam in degrees.
* minor (Float) — Full width at half maximum of minor axis of beam in degrees.

* pa (Float) — Position angle in degrees. This is the angle between the positive y-axis
and the major axis of the beam. The default value is 0.0.

* pos (String) — A string that represents the position of the center of the beam. If two
numbers are available then one can also use parameters xc and yc. The value in pa-
rameter pos supersedes the values in xc and yc.

* xc (Float) — X value in world coordinates of the center position of the beam.

96 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.0.3b19

* yc (Float) — Y value in world coordinates of the center position of the beam.

Examples

1 fwhm _maj = 0.08
> fwhm_min = 0.06
3 lat = 54.347395233845
4+ lon = 210.80254413455

5 beam = annim.Beam(fwhm_maj, fwhm _min, 90, xc=lon, yc=lat,
6 fc="g’, f£ill=True, alpha=0.6)
7 pos = 7210.80254413455 deg, 54.347395233845 deg’

s beam = annim.Beam(fwhm_maj, fwhm_min, pos=pos, fc='m’, fill=True, alpha=0.6)
9 pos = ’14h03ml12.6105s 54d20m50.622s’

10 beam = annim.Beam (fwhm_maj, fwhm_min, pos=pos, fc="y’, fill=True, alpha=0.6)
n pos = ‘ga 102.0354152 {} 59.7725125"

2 beam = annim.Beam(fwhm_maj, fwhm min, pos=pos, fc="g’, fill=True, alpha=0.6)
13 pos = ‘ga 102d02m07.494s {} 59.7725125"

14 beam = annim.Beam (fwhm_maj, fwhm_min, pos=pos, fc='b’, fill=True, alpha=0.6)
15 pos = ’'{ecliptic, fk4, j2000} 174.3674627 {} 59.7961737'

16 beam = annim.Beam (fwhm_maj, fwhm_min, pos=pos, fc="r’, fill=True, alpha=0.6)
17 pos = ’'{eq, fk4-no-e, B1950} 14h01m26.4501ls {} 54d35ml13.480s’

18 beam = annim.Beam(fwhm_maj, fwhm min, pos=pos, fc=’'c¢’, fill=True, alpha=0.6)
19 pos = '{eq, fkd-no-e, B1950, F24/04/55} 14h01m26.4482s {} 54d35m13.460s’

20 beam = annim.Beam (fwhm_maj, fwhm_min, pos=pos, fc='c¢’, fill=True, alpha=0.6)
21 pos = '{ecl} 174.367764 {} 59.79623457’

» beam = annim.Beam (fwhm_maj, fwhm_min, pos=pos, fc='c’, fill=True, alpha=0.6)
3 pos = 53 587 # Pixels

% beam = annim.Beam(0.04, 0.02, pa=30, pos=pos, fc='y’, fill=True, alpha=0.4)
5 pos = ’14h03ml2.6105s 58’ # World coordinate and a pixel coordinate

2% beam = annim.Beam(0.04, 0.02, pa=-30, pos=pos, fc='y’, fill=True, alpha=0.4)

Properties A selection of keyword arguments for the beam (which is a Matplotlib Polygon
object) are:

* alpha - float (0.0 transparent through 1.0 opaque)

* color - Matplotlib color arg or sequence of rgba tuples

* edgecolor or ec - Matplotlib color spec, or None for default, or ‘none’ for no color
» facecolor or fc - Matplotlib color spec, or None for default, or ‘none’ for no color
* linestyle or Is - [’solid’ | ‘dashed’ | ‘dashdot’ | ‘dotted’]

¢ linewidth or Iw - float or None for default

Marker (pos=None, x=None, y=None, mode=", **kwargs)
Plot marker symbols at given positions. This method creates objects from class Marker. The construc-
tor of that class needs positions in pixel coordinates. Here we allow positions to be defined in a string
which can contain either world- or pixel coordinates (or a mix of both). If x and y coordinates are
known, or read from file, one can also enter this data without parsing. The keyword arguments x and
y can be used to enter pixel coordinates or world coordinates.

Parameters

* pos (String) — A definition of one or more positions for the current image. The string
is parsed by positions.

* x (Float or a sequence of floating point numbers) — If keyword argument pos is not
used, then this method expects numbers in parameters x and y. Advantage of using
this parameter, is that it skips the position parser and therefore it is much faster.

¢ y (Float or a sequence of floating point numbers) — If keyword argument pos is not
used, then this method expects numbers in parameters x and y

* world —Flag to set the conversion mode. If True then the numbers in x and y are world
coordinates. Else, they are processed as pixel coordinates.

8.6. Class Annotatedimage 97

Kapteyn Package Documentation, Release 2.0.3b19

Returns Object from class Marker

Examples In the first example we show 4 markers plotted in the projection center (given by
header values CRPIX):

1 f = maputils.FITSimage ("ml101.fits")
> fig = plt.figure()
3 frame = fig.add_subplot(1,1,1)

4+ annim = f.Annotatedimage (frame, cmap="binary")
s annim.Image ()
¢ grat = annim.Graticule()

7 annim.Marker (pos="pc", marker='o’, markersize=10, color='r’)

8 annim.Marker (pos="ga 102.035415152 ga 59.772512522", marker=’'+’,

9 markersize=20, markeredgewidth=2, color='m’)

10 annim.Marker (pos="{ecl, fk4,J2000} 174.367462651 {} 59.796173724",

1 marker='x’, markersize=20, markeredgewidth=2, color=’'g’)

2 annim.Marker (pos="{eq, fkd-no-e,B1950,F24/04/55} 210.360200881 {} 54.587072397",
13 marker="0’, markersize=25, markeredgewidth=2, color=’'c’,

14 alpha=0.4)

In the second example we show how to plot a sequence of markers. Note the use of the
different keyword arguments and the role of flag world to force the given values to be
processed in pixel coordinates:

1 # Use pos= keyword argument to enter sequence of

2 # positions in pixel coordinates

3 pos = "[200+20%sin(x/20) for x in range(100,200)], range(100,200)"
4+ annim.Marker (pos=pos, marker=’'o’, color='r’)

¢ # Use x= and y= keyword arguments to enter sequence of

7 # positions in pixel coordinates

s xp = [400+20*numpy.sin(x/20.0) for x in range (100,200)]

9 yp = range(100,200)

10 annim.Marker (x=xp, y=yp, mode='pixels’, marker='o’, color='g’)

2 # Single position in pixel coordinates
13 annim.Marker (x=150, y=150, mode=’'pixels’, marker='+’, color='Db’)

In the next example we show how to use method positionsfromfile () in com-
bination with this Marker method to read positions from a file and to plot them. The
positions in the file are world coordinates. Method positionsfromfile () returns
pixel coordinates:

fn = "smallworld.txt’
xp, yp = annim.positionsfromfile(fn, ’"s’, cols=[0,1])
annim.Marker (x=xp, y=yp, mode='pixels’, marker=’,’, color='Db’)

Ruler (posl=None, pos2=None, xI=None, yl=None, x2=None, y2=None, lambda0=0.5, step=None,
world=False, angle=None, addangle=0.0, fmt=None, fun=None, fliplabelside=False, mscale=None, la-

belsintex=True, **kwargs)
This method prepares arguments for a call to function rulers.Ruler () in module rulers

Note that this method sets a number of parameters which cannot be changed like projection,
mixpix, pxlim, pylim and aspectratio, which are all derived from the properties of the current
maputils.Annotatedimage object.

Skypolygon (prescription=None, xc=None, yc=None, cpos=None, major=None, minor=None, nangles=6,
pa=0.0, units=None, lons=None, lats=None, **kwargs)
Construct an object that represents an area in the sky. Usually this is an ellipse, rectangle or regular
polygon with given center and other parameters to define its size or number of angles and the position
angle. The object is plotted in a way that the sizes and angles, as defined on a sphere, are preserved.
The objects need a ‘prescription’. This is a recipe to calculate a distance to a center point (0,0) as

98 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.0.3b19

function of an angle in a linear and flat system. Then the object perimeter is re-calculated for a given
center (xc,yc) and for corresponding angles and distances on a sphere.

If prescription=None, then this method expects two arrays lons and lats. These are copied unaltered
as vertices for an irregular polygon.

For cylindrical projections it is possible that a polygon in a all sky plot crosses a boundary (e.g. 180
degrees longitude if the projection center is at O degrees). Then the object is splitted into two parts one
for the region 180-phi and one for the region 180+phi where phi is an arbitrary positive angle. This
splitting is done for objects with and without a prescription.

Parameters

* prescription (String or None) — How should the polygon be created? The prescriptions

are “ellipse”, “rectangle”, “npolygon” or None. This method only checks the first
character of the string.

xc (Floating point number) — Coordinate in degrees to set the center of the shape in X

yc (Floating point number) — Coordinate in degrees to set the center of the shape in Y

cpos (String) — Instead of a position in world coordinates (xc, yc), supply a string
with a position. The syntax is described in the positions module. For example:
cpos='20h30ml10s -10d10m20.23s or cpos=ga 110.3 ga 33.4

» major (Floating point number) — Major axis of ellipse in degrees. This parameter is
also used as height for rectangles and as radius for regular polygons.

» minor (Floating point number) —

Minor axis of ellipse in degrees. This parameter is also used as width for rectan-
gles. If the prescription is an ellipse then a circle is defined if major*=*minor

nangles (Integer) — The number of angles in a regular polygon. The radius of this
shape is copied from parameter major.

pa (Floating point number) — Position angle. This is an astronomical angle i.e. with
respect to the north in the direction of the east. For an ellipse the angle is between
the north and the major axis. For a rectangle it is the angle between the north and the
parameter that represents the height. For a regular polygon, it is the angle between the
north and the line that connects the center with the first angle in the polygon.

units (String) — A case insensitive minimal matched string that sets the units for the
values in major and minor (e.g. arcmin, arcsec).

* Jons (Sequence of floating point numbers.) — Sequence with longitudes in degrees
that (together with matching latitudes) are used to define the vertices of a polygon. If
nothing is entered for prescription or prescription=None then these positions are used
unaltered.

* lats (Sequence of floating point numbers.) — See description at lons.

plot ()
Plot all objects stored in the objects list for this Annotated image.

Example

>>> fitsobj = maputils.FITSimage ('ml01l.fits”)
>>> annim = fitsobj.Annotatedimage ()

>>> grat = annim.Graticule()

>>> annim.plot ()

>>> plt.show ()

toworld (xp, yp, matchspatial=False)
This is a helper method for method wcs.Projection.toworld (). It converts pixel positions
from a map to world coordinates. The difference with that method is that this method has its focus on
maps, i.e. two dimensional structures. It knows about the missing spatial axis if your data slice has

8.6. Class Annotatedimage 99

Kapteyn Package Documentation, Release 2.0.3b19

only one spatial axis. Note that pixels in FITS run from 1 to NAXISn and that the pixel coordinate
equal to CRPIXn corresponds to the world coordinate in CRVALn.

Parameters

* xp (Single Floating point number or sequence) — Pixel value(s) corresponding to the x
coordinate of a position.

* yp (Single Floating point number or sequence) — A pixel value corresponding to the y
coordinate of a position.

* matchspatial (Boolean) — If True then also return the world coordinate of the matching
spatial axis. Usually this is an issue when the map is a slice with only one spatial axis
(XV- or Position-Velocity map)

Note If somewhere in the process an error occurs, then the return values of the world coor-
dinates are all None.

Returns Three world coordinates: xw which is the world coordinate for the x-axis, yw which
is the world coordinate for the y-axis and (if matchspatial=True) missingspatial which
is the world coordinate that belongs to the missing spatial axis. If there is not a missing
spatial axis, then the value of this output parameter is None. So you don’t need to know
the structure of the map beforehand. You can test whether the last value is None or not
None in the calling environment.

Examples We have a test set with:
* RA: crpix1=51 - crval1=-51,28208479590
* DEC: crpix2=51 - crval2=+60.15388802060
* VELO: crpix3=-20 - crval3=-243000 (m/s)

Now let us try to find the world coordinates of a RA-VELO map at (crpix1, crpix3) at
slice position DEC=51. We should get three numbers which are all equal to the value of
CRVALn

>>> from kapteyn import maputils

>>> fig = figure()

>>> fitsobject = maputils.FITSimage (' ngc6946.fits”)
>>> fitsobject.set_imageaxes (1,3, slicepos=51)

>>> annim = fitsobject.Annotatedimage ()

>>> annim.toworld (51, -20)

(-51.282084795899998, -243000.0, 60.1538880206)

>>> annim.topixel (-51.282084795899998, -243000.0)
(51.0, -20.0)

Or work with a sequence of numbers (list, tuple of NumPy ndarray object) as in this
example:

1 from kapteyn import maputils

3 £ = maputils.FITSimage ("ngc6946.fits")
4+ # Get an XV slice at DEC=51

s f.set_imageaxes(l, 3, slicepos=51)

¢ annim = f.Annotatedimage ()

8 x = [10, 50, 300, 399]
s y = [1, 44, 88, 100]

n # Convert these to world coordinates
2 lon, velo, lat = annim.toworld(x, vy, matchspatial=True)

3 print "lon, velo lat=", lon, velo, lat

15 # We are not interested in the pixel coordinate of the slice

100 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.0.3b19

16 # because we know it is 51. Therefore we omit ’‘matchspatial’
7 X, y = annim.topixel (lon, velo)
18 print "Back to pixel coordinates: x, y =", x, y

0 #Output:

21 #lon, velo lat= [-50.691745281033555,

2 # -51.267685761904154,
-54.862775451370837,
56.280231731192607]

[-154800.00401099998,
25799.987775999994,
210599.97937199997,
260999.97707999998]

[60.152142940138205,
60.153886982461088,
60.089564526325667,
60.028325686860846]

23

24

25

26

27

28

29

30

31

FHoH O H I W W R W K

32
33
34 #Back to pixel coordinates: x, y = [10. 50. 300. 399.]
s # [1. 44 . 88. 100.]

topixel (xw, yw, matchspatial=False)
This is a helper method for method wcs .Projection.topixel (). It knows about the missing
spatial axis if a data slice has only one spatial axis. It converts world coordinates in units (given by the
FITS header, or the spectral translation) from a map to pixel coordinates. Note that pixels in FITS run
from 1 to NAXISn.

Parameters

* xw (Floating point number) — A world coordinate corresponding to the x coordinate
of a position.

e yw (Floating point number) — A world coordinate corresponding to the y coordinate
of a position.

* matchspatial (Boolean) — If set to True then return the pixel coordinates and the value
of the pixel on the missing spatial axis.

Returns Two pixel coordinates: x which is the world coordinate for the x-axis and y which
is the world coordinate for the y-axis.

If somewhere in the proces an error occurs, then the return values of the pixel coordinates
are all None.

Notes This method knows about the pixel on the missing spatial axis (if there is one). This
pixel is usually the pixel coordinate of the slice if the dimension of the data is > 2.

Examples See example at toworld ()

inside (x=None, y=None, pos=None, mode="")

This convenience method belongs to class Annotatedimage which represents a two dimensional
map which could be a slice (slicepos) from a bigger data structure and/or could be limited by limits
on the pixel ranges of the image axes (pxlim, pylim). Then, for a sequence of coordinates in x and
y, return a sequence with Booleans with True for a coordinate within the boundaries of this map and
False when it is outside the boundaries of this map. This method can work with either sequences of
coordinates (parameters x and y) or a string with a position (parameter pos). If parameters x and y are
used then parameter world sets these coordinates to world- or pixel coordinates.

Parameters

* x (Floating point number or sequence of floating point numbers.) — Single number
of a sequence representing the x coordinates of your input positions. These coordi-
nates are world coordinates if mode="world’ (or mode="w’) and pixel coordinates if
mode="pixels (or mode="p").

8.6. Class Annotatedimage 101

Kapteyn Package Documentation, Release 2.0.3b19

¢ y (Floating point number or sequence of floating point numbers.) — Single number of
a sequence representing the x coordinates of your input positions. See description for
parameter x

e mode — Input in x and*y* represent either pixel coordinates or world coordinates. Is
the first character is ‘p’ or ‘P’ then the mode is set to pixels. If it starts with ‘w’ or
‘W’ the input in x and y are world coordinates.

* pos (String) — A description of one or a number of positions entered as a string. The
syntax is described in module positions. The value of parameter mode is ignored.

* world (Boolean) — If parameters x and y are used then the step of coordinate interpreta-
tion as with pos is skipped. These coordinates can be either pixel- or world coordinates
depending on the value of world. By default this value is True.

Raises
Exception One of the arrays is None and the other is not!
Exception You cannot enter values for both pos= and x= and/or y=
Returns
* None — there was nothing to do
* Single Boolean — Input was a single position
e NumPy array of Booleans — Input was a sequence of positions

Note For programmers: note the similarity to method Marker () with respect to the use of
method positions.str2pos ().

This method is tested with script mu_insidetest.py which is part of the examples tar file.

Examples

>>> fitsobj = maputils.FITSimage ("ml01l.fits")
>>> fitsobj.set_limits((180,344), (100,200))
>>> annim = fitsobj.Annotatedimage ()

>>> pos="{} 210.870170 {} 54.269001"
>>> print annim.inside (pos=pos)

>>> pos="ga 101.973853, ga 59.816461"
>>> print annim.inside (pos=pos)

>>> x = range(180,400,40)
>>> y = range(100,330,40)
>>> print annim.inside (x=x, y=y, mode='pixels’)

>>> print annim.inside (x=crvall, y=crval2, mode='w’)

histeq (nbr_bins=256)
Create a histogram equalized version of the data. The histogram equalized data is stored in attribute
data_hist.

blur (nx, ny=None)
Blur the image by convolving with a gaussian kernel of typical size nx (pixels). The optional keyword
argument ny allows for a different size in the y direction. nx, ny are the sigma’s for the gaussian kernel.

interact_toolbarinfo (pixfmt="%.1f", wesfmt="%.3g’, zfmt="%.3e’, hmsdms=True, dmsprec=1)
Allow this Annotatedimage object to interact with the user. It reacts to mouse movements. A
message is prepared with position information in both pixel coordinates and world coordinates. The
world coordinates are in the units given by the (FITS) header.

Parameters

102 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.0.3b19

e pixfmt (String) — Python number format for pixel coordinates

* wesfmt (String) — Python number format for wes coordinates if the coordinates are not
spatial or if parameter hmsdms is False.

e zfimt — Python number format for image value(s)

e hmsdms (Boolean) — If True (default) then spatial coordinates will be formatted in
hours/degrees, minutes and seconds according to the current sky system. The preci-
sion in seconds is entered with parameter dmsprec.

e dmsprec (Integer) — Number of decimal digits in seconds for coordinates formatted in
in HMS/DMS

Notes If a format is set to None, its corresponding number(s) will not appear in the informa-
tive message.

If a message does not fit in the toolbar then only a part is displayed. We don’t have
control over the maximum size of that message because it depends on the backend that is
used (GTK, QT,...). If nothing appears, then a manual resize of the window will suffice.

Example Attach to an object from class Annotatedimage:

>>> annim = f.Annotatedimage (frame)
>>> annim.interact_toolbarinfo ()

or:
>>> annim.interact_toolbarinfo (wcsfmt=None, zfmt=" ")

A more complete example:

1 from kapteyn import maputils
> from matplotlib import pyplot as plt

4+ £ = maputils.FITSimage ("ml0l.£fits")

¢ fig = plt.figure(figsize=(9,7))
7 frame = fig.add_subplot (1,1,1)

9 annim = f.Annotatedimage (frame)
10 ima = annim.Image ()

11 annim.Pixellabels ()

12 annim.plot ()

13 annim.interact_toolbarinfo ()

15 plt.show()

interact_imagecolors ()
Add mouse interaction (right mouse button) and keyboard interaction to change the colors in an image.

MOUSE

If you move the mouse in the image for which you did register this callback function and press the
right mouse button at the same time, then the color limits for image and colorbar are set to a new
value.

The new color setting is calculated as follows: first the position of the mouse (x, y) is transformed
into normalized coordinates (i.e. between 0 and 1) called (xn, yn). These values are used to set the
slope and offset for a function that sets an color for an image value according to the relations: slope
= 2.0 » xn; offset = yn - 0.5. The minimum and maximum values of the image are set
by parameters clipmin and clipmax. For a mouse position exactly in the center (xn,yn) = (0.5,0.5) the
slope is 1.0 and the offset is 0.0 and the colors will be divided equally between clipmin and clipmax.

KEYBOARD

8.6. Class Annotatedimage 103

Kapteyn Package Documentation, Release 2.0.3b19

*page-down move forwards through a list with known color maps.

epage-up move backwards through a list with known color maps.

*0 resets the colors to the original colormap and scaling. The default color map is ‘jet’.
*i (or ‘T") toggles between inverse and normal scaling.

*1 sets the colormap scaling to linear

*2 sets the colormap scaling to logarithmic

*3 sets the colormap scaling to exponential

*4 sets the colormap scaling to square root

*5 sets the colormap scaling to square

*b (or ‘B’) changes color of bad pixels.

*h (or ‘H’) replaces the current data by a histogram equalized version of this data. This key
toggles between the original data and the equalized data.

*z (or ‘Z’) replaces the current data by a smoothed version of this data. This key is a toggle
between the original data and the blurred version, smoothed with a value of sigma set by key ‘x’

*x (or ‘X”) increases the smoothing factor. The number of steps is 10. Then is starts again with
step 1.

*m (or ‘M’) saves current colormap look up data to a file. The default name of the file is the
name of file from which the data was extracted or the name given in the constructor. The name is
appended with ‘.lut’. This data is written in the right format so that it can be be (re)used as input
colormap. This way you can fix a color setting and reproduce the same setting in another run of a
program that allows one to enter a colormap from file.

If annim is an object from class Annotatedimage then activate color editing with:

>>> fits = maputils.FITSimage ("ml01l.fits")
>>> fig = plt.figure()

>>> frame = fig.add_subplot(l,1,1)

>>> annim = fits.Annotatedimage (frame)

>>> annim.Image ()

>>> annim.interact_imagecolors ()

>>> annim.plot ()

interact_writepos (pixfint="%.1f’, wcsfimt="%.3g’, zfmt="%.3e’, hmsdms=True, dmsprec=I,
gipsy=False, typecli=False)
Add mouse interaction (left mouse button) to write the position of the mouse to screen. The position
is written both in pixel coordinates and world coordinates.

Parameters
e pixfmt (String) — Python number format for pixel coordinates

* wesfmt (String) — Python number format for wcs coordinates if the coordinates are not
spatial or if parameter hmsdms is False.

* zfmt — Python number format for image value(s)

* hmsdms (Boolean) — If True (default) then spatial coordinates will be formatted in
hours/degrees, minutes and seconds according to the current sky system. The preci-
sion in seconds is entered with parameter dmsprec.

* dmsprec (Integer) — Number of decimal digits in seconds for coordinates formatted in
in HMS/DMS

* gipsy (Boolean) — If set to True, the output is written with a GIPSY command to a log
file.

Example

104 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.0.3b19

>>> fits = maputils.FITSimage("ml01l.£fits")
>>> fig = plt.figure()

>>> frame = fig.add_subplot(l,1,1)

>>> annim = fits.Annotatedimage (frame)

>>> annim. Image ()

>>> annim.interact_writepos ()

>>> annim.plot ()

For a formatted output one could add parameters to interact_writepos(). The next line writes no pixel
coordinates, writes spatial coordinates in degrees (not in HMS/DMS format) and adds a format for the
world coordinates and the image value(s).

>>> annim.interact_writepos (pixfmt=None, wcsfmt=" ", zfmt=" ",
hmsdms=False)

positionsfromfile (filename, comment, skyout=None, **kwargs)
Read positions from a file with world coordinates and convert them to pixel coordinates. The interface
is exactly the same as from method tabarray.readColumns ()

It expects that the first column you specify contains the longitudes and the second column that is
specified the latitudes.

Parameters

* filename (String) — Name (and pahth if necessary) of the file which contains longitudes
and latitudes.

* comment (String) — Comment characters. If a line starts with a comment character, it
will be skipped.

* skyout (Sky definition) — Tell the system in what sky system your longitudes and
latitudes are.

e kwargs (Python keyword arguments) — Keywords for Tabarray’s method read-
Columns.

Examples
>>> fn = ’"smallworld.txt’

>>> xp, yp = annim.positionsfromfile(fn, ’'s’, cols=[0,1])
>>> frame.plot (xp, yp, ’',’, color=’#FFDAAA")

Or: your graticule is equatorial but the coordinates in the file are galactic:

>>> xp, yp = annim.positionsfromfile(fn, ’'s’, skyout='ga’, cols=[0,1])

8.7 Class Image

class Image (imdata, box, cmap, norm, **kwargs)
Prepare the FITS- or external image data to be plotted in Matplotlib. All parameters are set by method
Annotatedimage.Image (). The keyword arguments are those for Matplotlib’s method imshow().
Two of them are useful in the context of this class. These parameters are visible, a boolean to set the
visibility of the image to on or off, and alpha, a number between 0 and 1 which sets the transparency of the
image.

See also: Annotatedimage.Image ()

Methods:

8.7. Class Image 105

Kapteyn Package Documentation, Release 2.0.3b19

plot (frame)

Plot image object. Usually this is done by method Annotatedimage.plot () but it can also be
used separately.

8.8 Class Contours

class Contours (imdata, box, levels=None, cmap=None, norm=None, filled=False, negative=’dashed’,

**kwargs)
Objects from this class calculate and plot contour lines. Most of the parameters are set by method
Annotatedimage.Contours (). The others are:
Parameters

* filled (Boolean) — If True, then first create filled contours and draw the contour lines
upon these filled contours

* negative (String) — Set the line style of the contours that represent negative image num-
bers. The line styles are Matplotlib line styles e.g.: [None | ‘solid’ | ‘dashed’ | ‘dashdot’
| ‘dotted’]

* kwargs — Parameters for properties of all contours (e.g. linewidths).

Notes If the line widths of contours are given in the constructor (parameter linewidths) then
these linewidths are copied to the line widths in the colorbar (if requested).

Methods:

plot (frame)
Plot contours object. Usually this is done by method Annotatedimage.plot () butitcan also be
used separately.

setp_contour (levels=None, **kwargs)

Set properties for contours either for all contours if levels is omitted or for specific levels if keyword
levels is set to one or more levels.

Examples

>>> cont = annim.Contours (levels=range (10000,16000,1000))
>>> cont.setp_contour (linewidth=1)
>>> cont.setp_contour (levels=11000, color="g’, linewidth=3)

setp_1label (levels=None, tex=True, **kwargs)

Set properties for the labels along the contours. The properties are Matplotlib properties (fontsize,
colors, inline, fmt).

Parameters

* levels (None or one or a sequence of numbers) — None or one or more levels from the
set of given contour levels

* tex (Boolean) — Print the labels in TeX if a format is entered. If set to True, add ‘$’

characters so that Matplotlib knows that it has to format the label in TeX. The default
is True.

Other parameters are Matplotlib parameters for method clabel() in Matplotlib
ContourLabeler (fontsize, colors, inline, fmt).

Examples
>>> cont2 = annim.Contours (levels=(8000,9000,10000,11000))

>>> cont2.setp_label (11000, colors='b’, fontsize=14, fmt=" ")
>>> cont2.setp_label (fontsize=10, fmt=" \lambda")

106 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.0.3b19

8.9 Class Colorbar

class Colorbar (cmap, frame=None, norm=None, contourset=None, clines=False, fontsize=9, label=None,
linewidths=None, visible=True, **kwargs)
Colorbar class. Usually the parameters will be provided by method Annotatedimage.Colorbar ()

Useful keyword parameters:

Parameter frame (Matplotlib Axes instance) — If a frame is given then this frame will be the
colorbar frame. If None, the frame is calculated by taking space from its parent frame.

plot (cbframe)
Plot image object. Usually this is done by method Annotatedimage.plot () but it can also be
used separately.

set_label (label, **kwargs)
Set a text label along the long side of the color bar. It is a convenience routine for Matplotlib’s
set_label() but this one needs a plotted colorbar while we postpone plotting.

8.10 Class Beam

class Beam (xc, yc, fwhm_major, fwhm_minor, pa, projection=None, units=None, **kwargs)
Beam class. Usually the parameters will be provided by method Annotatedimage.Beam ()

Objects from class Beam are graphical representations of the resolution of an instrument. The beam is
centered at a position xc, yc. The major axis of the beam is the FWHM of longest distance between two
opposite points on the ellipse. The angle between the major axis and the North is the position angle.

Note that it is not correct to calculate the ellipse that represents the beam by applying distance ‘r’ (see code)
as a function of angle, to get the new world coordinates. The reason is that the fwhm’s are given as sizes
on a sphere and therefore a correction for the declination is required. With method dispcoord() (see source
code of class Beam) we sample the ellipse on a sphere with a correct position angle and with the correct
sizes.

8.11 Class Skypolygon

class Skypolygon (projection, prescription=None, xc=None, yc=None, major=None, minor=None, nan-
gles=6, pa=0.0, units=None, lons=None, lats=None, **kwargs)
This class defines objects that can only be plotted onto spatial maps. Usually the parameters will be provided
by method Annotatedimage. Skypolygon ()

8.12 Class Marker

class Marker (xp=None, yp=None, **kwargs)
Marker class. Usually the parameters will be provided by method Annotatedimage.Marker ()

Mark features in your map with a marker symbol. Properties of the marker are set with Matplotlib’s keyword
arguments.

8.13 Class Pixellabels

class Pixellabels (pxlim, pylim, plotaxis=None, markersize=None, gridlines=False, ticks=None, ma-

jor=None, minor=None, offset=None, **kwargs)
Draw positions in pixels along one or more plot axes. Nice numbers and step size are calculated by Mat-

plotlib’s own plot methods.

8.9. Class Colorbar 107

Kapteyn Package Documentation, Release 2.0.3b19

Parameters
* plotaxis (Integer) — The axis number of one or two of the axes of the plot rectangle:

— wesgrat.left

wcsgrat.bottom

wesgrat.right

wcsgrat.top
or ‘left’, ‘bottom’, ‘right’, ‘top’

» markersize (Integer) — Set size of ticks at pixel positions. The size can be negative to
get tick marks that point outwards.

* gridlines (Boolean) — Set plotting of grid lines (connected tick marks) on or off
(True/False). The default is off.

» major (Float or Integer (usually the input will be an integer).) — This number overrules
the default positions for the major tick marks. The tick marks and labels are plotted at a
multiple number of major.

» minor (Float or Integer (usually the input will be an integer).) — This number sets the
plotting of minor tick marks on. The markers are plotted at a multiple value of minor.

* offset (None or a floating point number) — The pixels can have an integer offset. If you
want the reference pixel to be pixel O then supply offset=(crpixX, crpixY). These crpix
values are usually read from then header. In this routine the nearest integer of the input
is calculated to ensure that the offset is an integer value.

* **kwargs (Matplotlib keyword argument(s)) — Keyword arguments to set attributes for
the labels.

Returns An object from class Gridframe which is added to the plot container with Plotversion’s
method Plotversion.add ().

Notes Graticules and Pixellabels are plotted in their own plot frame. If you want to be able to
toggle grid lines in a frame labeled with pixel coordinates, then you have to make sure that
the Pixellabels frame is plotted last. So always define Pixellabels objects before Graticule
objects.

Examples Annotate the pixels in a plot along the right and top axis of a plot. Change the color
of the labels to red:

mplim = f.Annotatedimage (frame)
mplim.Pixellabels (plotaxis=("bottom", "right"), color="r")

or with separate axes:
mplim.Pixellabels (plotaxis="bottom", color="xr")

mplim.Pixellabels (plotaxis="right", color="b", markersize=10)
mplim.Pixellabels (plotaxis="top", color="g", markersize=-10, gridlines=True)

setp_marker (**kwargs)
Set properties of the pixel label tick markers

Parameter kwargs (Python keyword arguments.) — keyword arguments to change proper-
ties of the tick marks. A tick mark is a Matploltlib Line2D object with attributes like
markeredgewidth etc.

setp_label (**kwargs)
Set properties of the pixel label tick markers

108 Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.0.3b19

Parameter kwargs (Python keyword arguments.) —keyword arguments to change properties
of (all) the tick labels. A tick mark is a Matploltlib Text object with attributes like
fontsize, fontstyle etc.

8.14 Class Colmaplist

class Colmaplist ()
This class provides an object which stores the names of all available colormaps. The method add() adds
external colormaps to this list. The class is used in the context of other classes but its attribute colormaps
can be useful.

colormaps
List with names of colormaps as used in combination with keyword parameter cmap in the constructor
of Annotatedimage.

8.15 Class FITSaxis

class FITSaxis (axisnr, hdr, alter)
This class defines objects which store WCS information from a FITS header. It includes axis number and
alternate header information in a FITS keyword.

Parameters

* axisnr (Integer) — FITS axis number. For this number the relevant keys in the header are
read.

* hdr (pyfits.NP_pyfits.Header instance) — FITS header
Methods

printattr()
Print formatted information for this axis.

Examples

1 >>> from kapteyn import maputils

> >>> fitsobject = maputils.FITSimage ('’ rense.fits’)
3 >>> fitsobject.hdr

4+ <pyfits.NP_pyfits.Header instance at 0xlcae3170>
5 >>> axl = maputils.FITSaxis (1, fitsobject.hdr)

¢ >>> axl.printattr()

7 axisnr - Axis number: 1

s axlen - Length of axis in pixels (NAXIS) : 100

9 ctype - Type of axis (CTYPE): RA-—-NCP

10 axname — Short axis name: RA

1 cdelt - Pixel size: -0.007165998823

2 crpix — Reference pixel: 51.0

3 crval — World coordinate at reference pixel: -51.2820847959
4 cunit — Unit of world coordinate: DEGREE

15 wcstype - Axis type according to WCSLIB: None

16 wcsunits - Axis units according to WCSLIB: None

17 outsidepix - A position on an axis that does not belong to an image: None

If we set the image axes in fitsobject then the WCS attributes will get a value also. This object stores
its FITSaxis objects in a list called axisinfo[]. The index is the required FITS axis number.

>>> fitsobject.set_imageaxes(l, 2, 30)
>>> fitsobject.axisinfo[l].printattr()

wcstype — Axis type according to WCSLIB: longitude

8.14. Class Colmaplist 109

Kapteyn Package Documentation, Release 2.0.3b19

wcsunits - Axis units according to WCSLIB: deg
outsidepix - A position on an axis that does not belong to an image: None

printinfo ()
Print formatted information for this axis.

Examples

1 >>> from kapteyn import maputils

> >>> fitsobject = maputils.FITSimage (' rense.fits’)
3 >>> axl = maputils.FITSaxis(l, fitsobject.hdr)

4 >>> axl.printinfo ()

5 Axis 1: RA-—-NCP from pixel 1 to 512

6 {crpix=257 crval=178.779 cdelt=-0.0012 (DEGREE) }

7 {wcs type=longitude, wcs unit=deg}

8 Axis 2: DEC--NCP from pixel 1 to 512

9 {crpix=257 crval=53.655 cdelt=0.00149716 (DEGREE) }
10 {wcs type=latitude, wcs unit=deg}

Notes if attributes for amaputils.FITSimage object are changed then the relevant axis
properties are updated. So this method can return different results depending on when it
is used.

8.16 Class Positionmessage

class Positionmessage (skysys, skyout, axtype)

This class creates an object with attributes that are needed to set a proper message with information about a
position in a map and its corresponding image value. The world coordinates are calculated in the sky system
of the image. This system could have been changed by the user.

The input parameters are usually set after initialization of an object from class Annotatedimage. For
users/programmers the atributes are more important. With the attributes of objects of this class we can
change the format of the numbers in the informative message.

Note that the methods of this class return separate strings for the pixel coordinates, the world coordinates
and the image values. The final string is composed in the calling environment.

Parameters
¢ skysys — The sky definition of the current image

* skyout (A single parameter or tuple with integers or string) — The sky definition of the
current image as defined by a user/programmer

* skysys (A single parameter or tuple with integers or string) — The sky definition of the
current image

Attributes

pixfmt
Python number format to set formatting of pixel coordinates in position message in
toolbar.

wcsfmt
Python number format to set formatting of world coordinates in position message in
toolbar. If the map has a valid sky system then the values will be formatted in hms/dms,
unless attribute hmsdms is set to False.

zfmt
Python number format to set formatting of image value(s) in position message in toolbar.

hmsdms
If True, spatial coordinates are formatted in hms/dms.

110

Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.0.3b19

dmsprec
Precision in (dms) seconds if coordinate is formatted in dms. The precision in seconds
of a longitude axis in an equatorial system is automatically copied from this number and
increased with 1.

8.17 Class MovieContainer

class MovieContainer (helptext=True, imagenumbers=True)

This class is a container for objects from class maputils.Annotatedimage.

For this container

there are methods to alter the visibility of the stored objects to get the effect of a movie loop. The ob-

jects are appended to a list with method maputils.MovieContainer.append ().

With method

MovieContainer.movie_events () the movie is started and keys ‘P, ‘<’, *>’, “+” and °-* are avail-
able to control the movie.

*‘P’ : Pause/resume movie loop
*‘<’ : Step 1 image back in the sequence of images. Key °,” has the same effect.
*“>’ : Step 1 image forward in the sequence of images. Key ‘.’ has the same effect.
*‘+’ [Increase the speed of the loop. The speed is limited by the size of the image and] the hardware
in use.
‘-: Decrease the speed of the movie loop
Parameters

* helptext (Boolean) — Allow or disallow methods to set an informative text about the keys
in use.

* imagenumbers (Boolean) — Allow or disallow methods to set an informative text about
which image is displayed and, if available, it prints information about the pixel coordi-
nate(s) of the slice if the image was extracted from a data cube.

Attributes

annimagelist
List with objects from class maputils.Annotatedimage.
indx
Index in list with objects of object which represents the current image.

framespersec
A value in seconds, representing the interval of refreshing an image in the movie loop.

Examples Use of this class as a container for images in a movie loop:

#!/usr/bin/env python
from kapteyn import wcsgrat, maputils
from matplotlib import pylab as plt

Get connected to Matplotlib
fig = plt.figure()
frame = fig.add_subplot(1,1,1)

#Create a container to store the annotated images
movieimages = maputils.MovieContainer ()

Create a maputils FITS object from a FITS file on disk
fitsobject = maputils.FITSimage (' ngc6946.fits’)

Get a the range of channels in the data cube
n3 = fitsobject.hdr[’'NAXIS3’]

8.17. Class MovieContainer

111

Kapteyn Package Documentation, Release 2.0.3b19

17 ch = range(1l,n3)

18 vmin, vmax = fitsobject.get_dataminmax ()

19 print "Vmin, Vmax of data in cube:", vmin, vmax
20 cmap = None

»n # Start to build and store the annotated images

13 first = True

% for i in ch:

25 fitsobject.set_imageaxes (1,2, slicepos=i)

2 # Set limits as in: fitsobject.set_limits (pxlim=(150,350), pylim=(200,350))
27 mplim = fitsobject.Annotatedimage (frame, cmap=cmap, clipmin=vmin, clipmax=vmax)
28 mplim. Image ()

29 mplim.plot ()

30 if first:

31 mplim.interact_imagecolors ()

32 cmap = mplim.cmap

33 movieimages.append (mplim, visible=first)

34 first = False

3 movieimages.movie_events ()

8 # Draw the graticule lines and plot WCS labels
9 grat = mplim.Graticule()

40 grat.plot (frame)

2 plt.show()

Skip informative text:

>>> movieimages = maputils.MovieContainer (helptext=False, imagenumbers=False)

Methods

append (annimage, visible=True)

Append object from class Annotatedimage. First there is a check for the class of the incoming
object. If it is the first object that is appended then from this object the Matplotlib figure instance is

copied.
Parameters
* annimage (An object from class Annotatedimage.) — Add an image to the list.

* visible — Set the data in this object to visible or invisible. Usually one sets the first
image in a movie to visible and the others to invisible.

Raises ‘Container object not of class maputils. Annotatedimage!” An object was not recog-
nized as a valid object to append.

movie_events ()
Connect keys for movie control and start the movie.

Raises ‘No objects in container!” The movie container is empty. Use method
MovieContainer.append () to fill it.

controlpanel (event)
Process the key events.

imageloop (cbh)
Helper method to get movie loop

Parameter cb (Callback object based on matplotlib.backend_bases.MouseEvent instance) —
Mouse event object with pixel position information.

toggle_images (next=True)

Toggle the visible state of images either by a timed callback function or by keys. This toggle works

112

Chapter 8. Module maputils

Kapteyn Package Documentation, Release 2.0.3b19

if one stacks multiple image in one frame with method MovieContainer.append (). Only one
image gets status visible=True. The others are set to visible=False. This toggle changes this visibility
for images and the effect, is a movie.

Parameter next (Boolean) — Step forward through list if next=True. Else step backwards.

8.17. Class MovieContainer 113

Kapteyn Package Documentation, Release 2.0.3b19

114 Chapter 8. Module maputils

CHAPTER 9

MODULE POSITIONS

In module wcs we provided two methods of the Projection object for transformations between pixels and world
coordinates. These methods are wcs .Projection.topixel () and wes.Projection.toworld () and
they allow (only) numbers as their input parameters. These transformations methods apply to the native coordinate
system, i.e. it expects that world coordinates are given for the system that is described by the Projection object
from module wcs.

Often one wants more flexibility. For instance in interaction with the user, positions can be used to plot markers
on a map or to set the location of labels and graticule lines. But what to do if you have positions that need to be
marked and the positions are from a FKS5 catalog while your current map is given in Galactic coordinates? Or
what to do if you need to know what the optical velocity is, given a radio velocity, for a spectral axis which has
frequency as its primary type? For these situations we wrote this module.

This module enables a user/programmer to specify positions in either pixel- or world coordinates. Its functionality
is provided by a parser which converts strings with position information into pixel coordinates and world coordi-
nates. Let’s list some options with examples how to use method st r2pos () which is the most important method
in this module.

Assume we have a projection object pr and you want to know the world coordinates w and the pixels p for a given
string. Further, assume u are the units of the world coordinates and e is an error message. Here are some examples
how to use st r2pos (). We will give detailed descriptions of the options in later sections.

» Expressions for the input of numbers. Example: w,p,e = str2pos(’ [pi]l*3, [ex*2]x3'',
pr)
e Use of physical constants. Example: w,p,u,e = str2pos(’c_/299792458.0,

G_/6.67428e-11", pr)

* Use of units to set world coordinates Example: w,p,u,e = str2pos(’178.7792 deg 53.655
deg’, pr)

e Mix of pixels and world coordinates. Example: w,p,u,e = str2pos(’5.0, 53.655 deg’,
pr)

e Support of sky definitions. Example: w,p,u,e = str2pos(’{eq, B1950,fk4, J1983.5}
178.12830409 {} 53.93322241', pr)

 Support for spectral translations. Example: w, p,u, e = str2pos (’vopt 1050 km/s’, pr)

¢ Coordinates from text file on disk. Example: w,p,u,e =
str2pos (' readcol ("testl23positions.txt", col=2)’, pr)

 Support for maps with only one spatial axis (e.g. XV maps). Example: w,p,u,e = str2pos(’{}
53.655 1.415418199417E+03 Mhz', p, mixpix=6)

e Use of sexagesimal notation of spatial world coordinates. Example: w,p,u,e =
str2pos (/' 11h55m07.008s 53d39ml18.0s’, pr)

e Read header items. Example: w,p,u,e = str2pos("{} header ('crvall’) {}
header (' crval2’)", pr)

* Units, sky definitions and spectral translations are minimal matched to the full names.

115

20

21

22

23

24

25

26

27

28

29

30

Kapteyn Package Documentation, Release 2.0.3b19

Example: mu_markers.py - Demonstrate the use of strings for a position

from kapteyn import maputils

from matplotlib import pyplot as plt
from kapteyn import tabarray

import numpy

f = maputils.FITSimage ("ml0l.fits")
fig = plt.figure()
frame = fig.add_subplot (1,1,1)

annim = f.Annotatedimage (frame, cmap="binary")
annim. Image ()
grat = annim.Graticule()

#annim.Marker (pos="210.80 deg 54.34 deg", marker=’o’, color=’b’)

annim.Marker (pos="pc", marker=’'0o’, markersize=10, color='r’)

annim.Marker (pos="14h03m30 54d20m", marker='0o’, color="y’)

annim.Marker (pos="ga 102.035415152 ga 59.772512522", marker='+’",
markersize=20, markeredgewidth=2, color="m’)

annim.Marker (pos="{ecl, fk4,J2000} 174.367462651 {} 59.796173724",
marker="x’, markersize=20, markeredgewidth=2, color=’'g’)

annim.Marker (pos="{eq, fkd-no-e,B1950,F24/04/55} 210.360200881 {} 54.587072397",
marker="0’, markersize=25, markeredgewidth=2, color=’'c’,
alpha=0.4)

Use pos= keyword argument to enter sequence of

positions in pixel coordinates

pos = "[200+20%sin(x/20) for x in range(100,200)], range(100,200)"
annim.Marker (pos=pos, marker="0o’, color='r’)

Use x= and y= keyword arguments to enter sequence of

positions in pixel coordinates

xp = [400+20+numpy.sin(x/20.0) for x in range (100,200)]

yp = range(100,200)

annim.Marker (x=xp, y=yp, mode=’'pixels’, marker='0o’, color="g’)

xp = yp = 150
annim.Marker (x=xp, y=yp, mode=’'pixels’, marker='+’, color='Db’)

annim.plot ()
annim.interact_imagecolors ()
annim.interact_toolbarinfo ()
plt.show ()

9.1 Introduction

Physical quantities in a data structure that represents a physical measurement are usually measurements at fixed
positions in the sky or at spectral locations such as in Doppler shifts, frequencies or velocities. These positions
are examples of so called World Coordinates. In these data structures the quantities are identified by their pixel
coordinates. Following the rules for FITS files, the first pixel on an axis is labeled with coordinate 1 and it runs to
NAXISn which is a header item that sets the length of the n-th axis in the FITS data structure.

Assume you have a data structure representing an optical image of a part of the sky and you need to mark a certain
feature in the image or need to retrieve the intensity of a pixel at a certain location. Then usually it is easy to
identify the pixel using pixel coordinates. But sometimes you have positions (e.g. from external sources like
catalogs) given in world coordinates and then it would be convenient if you could specify positions exactly in
those coordinates.

This module uses two other modules from the Kapteyn Package: Module wcs provides methods for conversions
between pixel coordinates and world coordinates given a description of the world coordinate system as defined in
a (FITS) header). Module celestial converts world coordinates between different sky- and reference systems

116 Chapter 9. Module positions

Kapteyn Package Documentation, Release 2.0.3b19

and/or epochs. In this module we combined the functionality of wcs and celestial to write a coordinate
parser. Note that a description of a world coordinate system can be either a FITS header or a Python dictionary

with FITS keywords.

9.2 How to use this module

This module is included in other modules of the Kapteyn Package, but it can also be imported in your own scripts
so that you are able to convert positions given in a string to pixel- and world coordinates. It is also possible to use
it as a test application (then, on the command line type: python positions.py and add your own strings for

conversion. The source of this test run can be found in function dotest () in this module.

To get the idea, we list a short example starting with the definition of a header:

from kapteyn import wcs, positions

header = { "NAXIS’ 2,
"CDELT1” : -1.200000000000E-03,
"CRPIX1’ : 5, 'CRPIX2’ : 6,

"CRVAL1’” : 1.787792000000E+02,
"CTYPE1’” : "RA-—-NCP’, ’'CTYPEZ2’

"CUNIT1"” : '"DEGREE’, ’'CUNIT2’
"NAXIS1’ : 10, ’'NAXIS2’ : 10,
}
pr = wcs.Projection (header)

w,p,u,e = positions.str2pos(’'5, 6’, pr)
if e == "'

print "pixels:", p

print "world coordinates:", w, u

Its output is:

pixels: [[5. 6.]]
world coordinates: [[178.7792 53.655 1]

The meaning of the variables ‘w’, ‘p’ etc are explained in a previous section.

9.3 Position syntax

9.3.1 Number of coordinates

" CRVAL2'

"CDELT2’” : 1.497160000000E-03,

" DEC--NCP’,
' DEGREE’ ,

("deg’, ’"deg’)

5.365500000000E+01,

A position has the same number of coordinates as the number of axes that are defined by the Projection object. So

a position in a 2-dim map has two coordinates. One can enter 1 position or a sequence of positions as in:

>>> pos="0,1 4,5 2,3"

Numbers are separated either by a space or a comma.

So both:

>>> pos="0 1 4 5 2 3"
>>> pos="0,1,4,5,2,3"

give the same result.

9.2. How to use this module

117

Kapteyn Package Documentation, Release 2.0.3b19

9.3.2 Numbers as expressions

Numbers can be given as valid (Python) expressions. All functions and operators known to Pythons ‘math’ module
can be used. We added two from module NumPy (arange and linspace). To get information about these functions
you have to read the Python documentation (e.g. on the command line type: ipython. On the ipython command
line type: import numpy; help (numpy.linspace)). Examples:

>>> pos = "degrees (pi) e" # pixel coordinates: 180, 2.71828183
>>> pos "degrees (atan2(1,1)) abs(-10)" # pixel coordinates: 45, 10.

9.3.3 Grouping of numbers

Coordinates can also be grouped. Elements in a group are processed in one pass and they represent only one
coordinate in a position. A group of numbers can be prepended by a modifier or appended by a unit. Then the
unit applies to all the elements in the group. We will see examples of this in one of the next sections. For the first
example we could have grouped the coordinates as follows:

>>> pos="'0,4,2" ’1,5,3""

or, perhaps more familiar, as:

>>> pos="[0,4,2] [1,5,3]"

Coordinates enclosed by single quotes or square brackets are parsed by Python’s expression evaluator eval() as
one expression. As a result of this, the elements in a group can also be expressions. If square brackets are part of

the expression, the expression represents a list. Also Pythons list comprehension and the list operators ‘*’ and ‘+’
are allowed:

>>> pos = "[2xpi,3]1+[4,5] [1,2,3,4]"
>>> pos = "[3]x3 [1,2,3]"
>>> pos = "[sin(x) for x in range(10)], range(1l0)",

Python’s eval() function requires that the elements in an expression are separated by a comma.

The arguments of this function are separated by comma’s only. Other examples of grouping are listed in the
section about reading data from disk with readcol() and in the section about the eval() function.

9.3.4 Pixel coordinates

All numbers, in a string representing a position, which are not recognized as world coordinates are returned as
pixel coordinates. The first pixel on an axis has coordinate 1. Header value CRPIX sets the position of the
reference pixel. If this is an integer number, the reference is located at the center of a pixel. This reference sets
the location of of the world coordinate given in the (FITS) header in keyword CRVAL.

For the examples below you should use function st r2pos () to test the conversions. However, for this function
you need a (FITS) header. In the description at st r2pos () you will find an example of its use.

Examples of two pixel coordinates in a two dimensional world coordinate system (wcs):

>>> pos = "10 20" # Pixel position 10, 20
>>> pos = "10 20 10 30" # Two pixel positions

One can enter everything that Python’s eval() function can parse. Lists and list comprehension is allowed.

118 Chapter 9. Module positions

Kapteyn Package Documentation, Release 2.0.3b19

>>> pos = "(3%x4)-5 1/5x(7-2)",

>>> pos = "abs (-10), sgrt(3)",

>>> pos = "sin(radians(30)), degrees(asin(0.5))",
>>> pos = "cos (radians (60)), degrees(acos(0.5))",
>>> pos = "pi, tan(radians(45))-0.5, 3x4,0",

>>> pos = "[sin(x) for x in range(10)], range(10)",
>>> pos = "atan2(2,3), 192",

>>> pos = "atan2 (2, 3) 192",

>>> pos = "[pi]*3, [exx2]x3"

All functions and symbols from Python’s math module are allowed. Besides those we added two functions from
the numpy module: arange and linspace. Both are used to set a range of floating point numbers (which
cannot be done with range.

Example: For a set of one dimensional. positions on a spatial axis use:
>>> pos = "arange (178.7792, 178.7796, 0.0002) deg"
>>> pos = "linspace(178.7792, 178.7796, 4) deg"

9.3.5 Constants

A number of global constants are defined and these can be used in the expressions for positions. The constants are
case sensitive. These constants are:

c_ = 299792458.0 # Speed of light in m/s

h. = 6.6260689%96e-34 # Planck constant in J.s

k_ = 1.3806504e-23 # Boltzmann in J.K"-1

G_ = 6.67428e-11 # Gravitation in m"3. kg"-1.s5"-2

s_ = 5.6704e-8 # Stefan-Boltzmann in J.s”-1.m"-2.K"-4
M_ = 1.9891e+30 # Mass of Sun in kg

P_ = 3.08567758066631e+16 # Parsec in m

9.3.6 Special pixel coordinates

For the reference position in a map we can use symbol ‘PC’ (Projection center). The center of your data structure
is set with symbol ‘AC’. You can use either one symbol or the same number of symbols as there are axes in your
data structure.

>>> pos = "pc" # Pixel coordinates of the reference pixel
>>> pos = "PC pc" # Same as previous. Note case insensitive parsing
>>> pos = "AC" # Center of the map in pixel coordinates

9.3.7 World coordinates

World coordinates can be distinguished from pixel coordinates. A world coordinate is:

¢ a coordinate followed by a (compatible) unit. Note that the units of the world coordinate are given in the
(FITS) header in keyword CUNIT. If there is no CUNIT in the header or it is an empty string or you don’t
remember the units then use either:

— The wildcard symbol ‘?°
— A case insensitive minimal match for the string ‘UNITS’
* acoordinate prepended by a definition for a sky system or a spectral system.

¢ acoordinate entered in sexagesimal notation. (hms/dms)

9.3. Position syntax 119

Kapteyn Package Documentation, Release 2.0.3b19

Note: One can mix pixel- and world coordinates in a position.
Units

For a two dimensional data structure (e.g. an optical image of part of the sky) we can enter a position in world
coordinates as:

>>> pos = 178.7792 deg 53.655 deg

But we can also use compatible units:

>>> pos = "178.7792x60 arcmin 53.655 deg" # Use of a compatible unit if CUNIT is "DEGREE"
>>> pos = "10 1.41541820e+09 Hz" # Mix of pixel coordinate and world coordinate
>>> pos = "10 1.41541820 GHz" # Same position as previous using a compatible unit

Units are minimal matched against a list with known units. The parsing of units is case insensitive. The list with
known units is:

e angles: ‘DEGREE’;ARCMIN’, ‘ARCSEC’, ‘MAS’, ‘RADIAN’ ‘CIRCLE’, ‘DMSSEC’, ‘DMSMIN’,
‘DMSDEG’, ‘HMSSEC’, ‘HMSMIN’, ‘HMSHOUR’

e distances: ‘METER’, ‘ANGSTROM’, ‘NM’, ‘MICRON’, ‘MM’, ‘CM’, ‘INCH’, ‘FOOT’, ‘YARD’, ‘M’,
‘KM’, ‘MILE’, ‘PC’, ‘KPC’, ‘MPC’, ‘AU’, ‘LYR’

* time: ‘TICK’, ‘SECOND’, ‘MINUTE’, ‘HOUR’, ‘DAY’, ‘YR’
e frequency: ‘HZ’, ‘KHZ’,MHZ’, ‘GHZ’

e velocity: ‘M/S’, ‘MM/S’, ‘CM/S’, ‘KM/S’

e temperature: ‘K’, ‘MK’

e flux (radio astr.): “W/M2/HZ’, ‘JY’, ‘MIY’

* energy: ‘7', ‘EV’, ‘ERG’, ‘RY’

It is also possible to convert between inverse units like the wave number’s 1/m which, for example, can be con-
verted to 1/cm.

For a unit, one can also substitute the wildcard symbol ‘?’. This is the same as setting the units from the header
(conversion factor is 1.0). The symbol is handy to set coordinates to world coordinates. But it is essential if there
are no units in the header like the unitless STOKES axis. One can also use the string units which has the same
role as ‘7.

>>> pos = "[0, 3, 4] 2"
>>> pos = 7 units

>>> pos = [5, 6.3] U
Sky definitions

If a coordinate follows a sky definition it is parsed as a world coordinate. A sky definition is either a case insensitive
minimal match from the list:

"EQUATORIAL’ ,"ECLIPTIC’, " GALACTIC’,’ SUPERGALACTIC’

or it is a definition between curly brackets which can contain one or more items from the list sky system, ref-
erence system, equinox and epoch of observation. The documentation for sky definitions is found in module
celestial. Epochs are described in celestial.epochs.

An empty string between curly brackets e.g. {}, followed by a number, implies a world coordinate in the native
sky system.

Examples:

120 Chapter 9. Module positions

Kapteyn Package Documentation, Release 2.0.3b19

>>> pos = "{eqgq} 178.7792 {} 53.655" # As a sky definition between curly bra
>>> pos = "{} 178.7792 {} 53.655" # A world coordinate in the native sky
>>> pos = "{eq,B1950,fk4} 178.12830409 {} 53.93322241" # With sky system, reference system and
>>> pos = "{fk4} 178.12830409 {} 53.93322241" # With reference system only.

>>> pos = "{eq, B1950,fk4, J1983.5} 178.1283 {} 53.933" # With epoch of observation (FK4 only)
>>> pos = "{eq B1950 fk4 J1983.5} 178.1283 {} 53.933" # With space as separator

>>> pos = "ga 140.52382927 ga 61.50745891" # Galactic coordinates

>>> pos = "ga 140.52382927 {} 61.50745891" # Second definition copies from first
>>> pos = "su 61.4767412, su 4.0520188" # Supergalactic

>>> pos = "ec 150.73844942 ec 47.22071243" # Ecliptic

>>> pos = "{} 178.7792 6.0" # Mix world- and pixel coordinate

>>> pos = "5.0, {} 53.655" # Mix with world coordinate in native s
Note:

* Mixing sky definitions for one position is not allowed i.e. one cannot enter pos = “ga 140.52382927 eq
53.655”

¢ If you mix a pixel- and a world coordinate in a spatial system then this world coordinate must be defined in
the native system, i.e. {}

We can also specify positions in data structures with only one spatial axis and a non-spatial axis (e.g. position
velocity diagrams). The conversion function st r2pos () needs a pixel coordinate for the missing spatial axis. If
one of the axes is a spectral axis, then one can enter world coordinates in a compatible spectral system:

>>> pos = "{} 53.655 1.415418199417E+09 hz" # Spatial and spectral world coordinate

>>> pos = "{} 53.655 1.415418199417E+03 Mhz" # Change Hz to MHz

>>> pos = "53.655 deg 1.415418199417 Ghz" # to GHz

>>> pos = "{} 53.655 vopt 1.05000000e+06" # Use spectral translation to enter optical veloci
>>> pos = "{} 53.655 , vopt 1050 km/s" # Change units

>>> pos = "10.0 , vopt 1050000 m/s" # Combine with a pixel position

>>> pos = "{} 53.655 vrad 1.05000000e+06" # Radio velocity

>>> pos = "{} 53.655 vrad 1.05000000e+03 km/s" # Radio velocity with different unit

>>> pos = "{} 53.655 FREQ 1.41541820e+09" # A Frequency

>>> pos = "{} 53.655 wave 21.2 cm" # A wave length with alternative unit

>>> pos = "{} 53.655 vopt c_/285.51662 # Use speed of light constant to get number in m/s

Note: For positions in a data structure with one spatial axis, the other (missing) spatial axis is identified by a
pixel coordinate. Usually it’s a slice). This restricts the spatial world coordinates to their native wcs. We define a
world coordinate in its native sky system with {}

Note: A sky definition needs not to be repeated. Only one definition is allowed in a position. The second
definition therefore can be empty as in {.

Note: World coordinates followed by a unit, are supposed to be compatible with the Projection object. So
if you have a header with spectral type FREQ but with a spectral translation set to VOPT, then "{} 53.655
1.415418199417E+09 hz"isinvalid,10.0 , vopt 1050000 m/sisokandalso {} 53.655 FREQ
1.415418199417e+09" is correct.

Sexagesimal notation

Read the documentation at parsehmsdms () for the details. Here are some examples:

>>> pos = "11h55m07.008s 53d39ml18.0s"
>>> pos = "{B1983.5} 11h55m07.008s {} -53d39ml18.0s"
>>> pos = —33d 0d

9.3.8 Reading from file with function readcol(), readhms() and readdms()

Often one wants to plot markers at positions that are stored in an Ascii file (text file) on disk.

9.3. Position syntax 121

Kapteyn Package Documentation, Release 2.0.3b19

In practice one can encounter many formats for coordinates in Ascii files. Usually these coordinates are written
in columns. For example one can expect longitudes in degrees in the first column and latitudes in degrees in the
second. But what do these coordinates represent? Are they galactic or ecliptic positions? If your current plot
represents an equatorial system can we still plot the markers from the file if these are given in the galactic sky
system? And there are more questions:

* Assume you have a file with three columns with hours, minutes and seconds as longitude and three columns
with degrees, minutes and seconds as latitude. Is it possible to read these columns and combine them into
longitudes and latitudes? Assume you have a file and the Right Ascensions are given in decimal hours, is it
possible to convert those to degrees?

* Assume your file has numbers that are in a unit that is not the same unit as the axis unit in your plot. Is it
possible to change the units of the data of the column in the text file?

* Assume you have several (hundreds of) thousands marker positions. Is reading the marker positions fast?

>

* If a file has comment lines that start with another symbol than ‘!
lines?

or ‘#°, can one still skip the comment

* If a file has columns separated by something else than whitespace, is it still possible then to read a column?

All these questions are answered with yes if you use this module. We provided three functions: readcol(),
readhms() and READDMS(). These functions are based on module tabarray. The routines in this module
are written in C and as a result, reading data from file is very fast. The arguments of these functions are derived
from those in tabarray.readColumns () with the exception that argument cols= is replaced by col= for
function readcol() because we want to read only one column per coordinate to keep the syntax easy and flexible.
In the functions readhms() and readdms(), which are also based on tabarray.readColumns (), the cols=
argument is replaced by arguments coll=, col2=, col3=.

syntax

>>> readcol (filename, col=1, fromline=None, toline=None, rows=None, comment=""!#",
sepchar=", t’, bad=999.999, fromrow=None, torow=None, rowstep=None)

>>> readhms (filename, coll=0, col2=1, col3=2,
fromline=None, toline=None, rows=None, comment="!#",
sepchar=", t’, bad=0.0,
rowslice=(None,), colslice=(None,)):

Function readdms() has the same syntax as readhms()
The parameters are:

* filename - a string with the name of a text file containing the table. The string can be entered with or without
double quotes.

¢ col - a scalar that sets the column number.
¢ fromline - Start line to be read from file (first is 1).
* toline - Last line to be read from file. If not specified, the end of the file is assumed.

e comment - a string with characters which are used to designate comments in the input file. The occurrence
of any of these characters on a line causes the rest of the line to be ignored. Empty lines and lines containing
only a comment are also ignored.

* sepchar - a string containing the column separation characters to be used. Columns are separated by any
combination of these characters.

* rows - a tuple or list containing the row numbers to be extracted.

* bad - a number to be substituted for any field which cannot be decoded as a number.

» fromrow - number of row from the set of lines with real data to start reading

* torow - number of row from the set of lines with real data to end reading. The forow line is included.

* rowstep - Step size in rows. Works also if no values are given for fromrow and torow.

122 Chapter 9. Module positions

Kapteyn Package Documentation, Release 2.0.3b19

There is a difference between the rows= and the fromline= , toline= keywords. The first reads the specified
rows from the parsed contents of the file((parsed contents are lines that are not comment lines), while the line
keywords specify which lines you want to read from file. Usually comment characters ‘#° and ‘!’ are used. If you
expect another comment character then change this keyword. Keyword sepchar= sets the separation character.
The default is a comma, a space and a tab. bad= is the value that is substituted for values that could not be parsed
so that they can be easily identified.

Note:

e Numbering of columns start with 1.

¢ Numbering of rows start with 1.

* Numbering of lines start with 1.

* Filenames can be specified either with or without double quotes.
Some examples:

Assume a text file on disk with a number of rows with 2 dimensional marker positions in pixel coordinates. The
text file is called pixmarks.txt. Then the simplest line to read this data is:

>>> pos = ’'readcol (pixmarks.txt) readcol (pixmarks.txt,2)’
>>> annim.Marker (pos=pos, marker='o’, markersize=10, color='r’)

All parameters have defaults except the filename parameter. The default column is 1, i.e. the first column. For
readability we prefer to write the positions as:

>>> pos = 'readcol (pixmarks.txt, col=1l) readcol (pixmarks.txt,col=2)"’

If you want all the data up to line 30 (and line 30 including) you should write:

>>> pos = ’'readcol (pixmarks.txt, col=1, toline=30) readcol (pixmarks.txt,col=2, toline=30)’

If your file has relevant data from line 30 to the end of the file, one should write:

>>> pos = ’'readcol (pixmarks.txt, col=1, fromline=30) readcol (pixmarks.txt,col=2, fromline=30)"’

As stated earlier, we distinguish lines and rows in a file. Lines are also those which are empty or which start with
a comment. Rows are only those lines with data. So if you want to read only the first 5 rows of data, then use:

>>> pos = ’'readcol (pixmarks.txt, col=1, torow=5) readcol (pixmarks.txt,col=2, torow=5)’

Note that the parameters toline and torow include the given value. You can specify a range of rows including a
step size with:

>>> pos = ’'readcol (pixmarks.txt, col=1, fromrow=10, torow=44, rowstep=2), ’
to get row number 10, 12, ..., 44. Note that it is not possible to set a step size if you use the fromline or toline
parameter.

In some special circumstances you want to be able to read only pre selected rows from the data lines. Assume a
user needs rows 1,3,7,12,44. Then the position string should be:

>>> pos = ’'readcol (pixmarks.txt, col=1, rows=[1,3,7,12,4471), ’

Perhaps you wonder why you need to repeat the readcol function for each coordinate. It is easier to use it once
and specify two columns instead of one. We did not implement this feature because usually one will read world
coordinates from file and often we want to add units or a sky- or spectral conversion. Then you must be able to
read the data for each column separately. Assume we have a file on disk called ‘lasfootprint” which stores two sets
of 2 dimensional positions (i.e. 4 coordinates) separated by an empty line.

9.3. Position syntax 123

Kapteyn Package Documentation, Release 2.0.3b19

RA J2000 Dec 1 b eta lambda
8.330 -1.874 225.624 19.107 -36.250 300.000
8.663 -2.150 228.598 23.268 -36.250 305.000
8.996 -2.409 231.763 27.369 -36.250 310.000
9.329 -2.651 235.170 31.394 -36.250 315.000
9.663 -2.872 238.878 35.320 -36.250 320.000

It has a blank line at line 63. The first column represents Right Ascensions in decimal hours. If we want to read the
positions given by column 1 and 2 of the second segment (starting with line 66) and column 1 is given in decimal
hours, then you need the command:

>>> pos= 'readcol (lasfootprint, col=1l,fromline=64) HMShour readcol ("lasfootprint", col=2,fromlin

The first coordinate is followed by a unit, so it is a world coordinate. We have a special unit that converts from
decimal hours to degrees (HMSHOUR). The last coordinate is followed by a unit (deg) so it is a world coordinate.
It was also possible to prepend the second coordinate with {} and omit the unit as in: Between the brackets there
is nothing specified. This means that we assume the coordinates in the file (J2000) match the sky system of the
world coordinate system of your map.

>>> pos= 'readcol (lasfootprint, 1,64) HMShour {} readcol (lasfootprint, 2,64)’

Note that the third parameter is the fromline parameter. If columns 3 and 4 in the file are galactic longitudes and
latitudes, but our basemap is equatorial, then we could have read the positions with an alternative sky system as in
(now we read the first data segment):

>>> pos= ' {ga} readcol (lasfootprint, 3, toline=63) {} readcol (lasfootprint, 4, toline=63)’

The second sky definition is empty which implies a copy of the first definition (i.e. {ga}).

Note: The sky definition must describe the world coordinate system of the data on disk. It will be automatically
converted to a position in the sky system of the Projection object which is associated with your map or axis.

Some files have separate columns for hour, degrees, minutes and seconds. Assume you have an ASCII file on disk
with 6 columns representing sexagesimal coordinates. For example:

! Test file for Ascii data and the READHMS/READDMS command
11 57 .008 53 39 18.0

11 58 .008 53 39 17.0
11 59 .008 53 39 16.0

Assume that this file is called hmsdms.txt and it contains equatorial coordinates in ‘hours minutes seconds degrees
minutes seconds’ format, then read this data with:

>>> pos= ' {} readhms (hmsdms.txt,1,2,3) {} readdms (hmsdms.txt,4,5,6)"’
Or with explicit choice of which lines to read:
>>> pos= ' {} readhms (hmsdms.txt,1,2,3,toline=63) {} readdms (hmsdms.txt,4,5,6,toline=63)"’

The data is automatically converted to degrees. What if the format is ‘d m s d m s’ and the coordinates are galactic.
Then we should enter;

>>> pos= 'ga readdms (hmsdms.txt,1,2,3) ga readdms (hmsdms.txt,4,5,6)"’

if your current sky system is galactic then it also possible to enter:

124 Chapter 9. Module positions

Kapteyn Package Documentation, Release 2.0.3b19

>>> pos= ’'readdms (hmsdms.txt,1,2,3) deg readdms (hmsdms.txt,4,5,6) deg’
If the columns are not in the required order use the keyword names:

>>> pos= ’'readdms (hmsdms.txt,col3=0,col2=1,col3=2) deg readdms (hmsdms.txt,4,5,6) deg’

9.3.9 Reading header items with function header()

Command header reads an item from the header that was used to create the Projection object. The header item
must represent a number.

>>> pos= "header ('crpixl’) header ('crpix2’)"

9.3.10 Using Python’s evaluation function with eval()

One can always force the parser to use Python’s expression evaluation. We defined function eval() for this. The
argument is one expression or a sequence of expressions separated by a comma. This allows you to use spaces in
an expression because a space is not a separator symbol in the context of eval(). For example:

>>> pos="eval (atan2(3, 2) , 11 /2) eval([10,20])"
works while
>>> pos="atan2 (3, 2), 11 /2 10,20"

does not. Also one should note that the eval() function groups data. So in eval (atan2 (3, 2) , 11 /2)
the two values represent the X-coordinate and not a position!

9.3.11 Structure of output
In a previous example we processed the output as follows:

w,p,u,e = positions.str2pos(’'5, 6’, pr)
if e == "'

print "pixels:", p

print "world coordinates:", w, u

The function st r2pos () returns a tuple with four items:
e w: an array with positions in world coordinates
* p: an array with positions in pixel coordinates

e u: an array with the units of the world coordinates These units are derived from the projection object with
an optional alternative sky system and/or an optional spectral translation.

* e: an error message. If the length of this string is not 0, then it represents an error message and the arrays w
and p are empty.

9.3.12 Errors:

The position parser is flexible but there are some rules. If the input cannot be transformed into coordinates then an
appropriate message will be returned. In some cases the error message seems not related to the problem but that
seems inherent to parsers. If a number is wrong, the parser tries to parse it as a sky system or a unit. If it fails, it
will complain about the sky system or the unit and not about the number.

9.3. Position syntax 125

Kapteyn Package Documentation, Release 2.0.3b19

9.3.13 Testing the parser

You can run the module’s ‘main’ (i.e. execute the module) to test pre installed expressions and to experiment with
your own positions entered at a prompt. Please copy the module positions.py to your working directory first! The
program will display a couple of examples before it prompts for user input. Then your are prompted to enter a
string (no need to enclose it with quotes because it is read as a string). Enter positions for a two dimensional data
structure with axes R.A. and Dec. Start the test with:

>>> python position.py

Note that if the module is used in the GIPSY context then you can use GIPSY’s functions and constants. Python
parsing then, is done with the eval() command. For reading data from files you can either use GIPSY’s file()
command or command readcol().

9.4 Functions

str2pos (postxt, subproj, mixpix=None, usegipsy=False)
This method accepts a string that represents a position in the world coordinate system defined by subproj.
If the string contains a valid position, it returns a tuple with numbers that are the corresponding pixel
coordinates and a tuple with world coordinates in the system of subproj. One can also enter a number of
positions. If a position could not be converted then an error message is returned.

Parameters
* postxt (String) — The position(s) which must be parsed.

* subproj (wcs.Projection object) — A projection object (see wcs). Often this pro-
jection object will describe a subset of the data structure (e.g. a channel map in a radio
data cube).

» mixpix (Integer) — For a world coordinate system with one spatial axis we need a pixel
coordinate for the missing spatial axis to be able to convert between world- and pixel
coordinates.

Returns
This method returns a tuple with four elements:
*a NumPy array with the parsed positions in world coordinates
*a NumPy array with the parsed positions in pixel coordinates
*A tuple with the units that correspond to the axes in your world coordinate system.
*An error message when a position could not be parsed

Each position in the input string is returned in the output as an element of a numpy array with parsed
positions. A position has the same number of coordinates are there are axes in the data defined by the
projection object.

Examples

1 from kapteyn import wcs, positions

)

3 header = { /NAXIS’/ 2,

4 "BUNIT’ woul’,

5 "CDELT1” : -1.200000000000E-03,
6 "CDELT2’ : 1.497160000000E-03,
7 "CRPIX1’ : 5,

8 "CRPIX2’ : 6,

9 "CRVAL1’ : 1.787792000000E+02,
10 "CRVAL2’ : 5.365500000000E+01,

1 "CTYPE1’ :’"RA---NCP’,

126 Chapter 9. Module positions

Kapteyn Package Documentation, Release 2.0.3b19

26
27
28
29
30

31

33

34

35

37

"CTYPE2’ :’'DEC--NCP’,
"CUNIT1l’ :’'DEGREE’,
"CUNIT2’ :’'DEGREE’}

proj = wcs.Projection (header)

position = []

position.append ("0 0O")

position.append("eqg 178.7792 eqgq 53.655")
position.append("{eqg} 178.7792 {} 53.655")
position.append("{} 178.7792 {} 53.655")
position.append("178.7792 deg 53.655 deg")
position.append("11h55m07.008s 53d39ml18.0s")
position.append("{eq, B1950,fk4d} 178.7792 {} 53.655")

position.
position.

pos

position.
position.
ition.append("su 61.4767412,
append ("ec 150.73844942 ec 47.22071243")
append ("eq 178.7792 0.0")

pos

position.
position.

pos

append ("{fk4}
ition.append ("{B1983.5}
append ("{eq, B1950, fk4,
append ("ga 140.52382927 ga 61.50745891")

(
(
(
(
(
(
(
append ("{eqg, B1950, fk4}
(
(
(
(
(su 4.0520188")
(
(

ition.append ("0.0, eg 53.655")
for pos in position:

178.12830409 {} 53.93322241")

178.12830409 {} 53.93322241")
11h55m07.008s {} 53d39ml18.0s")

J1983.5} 178.12830409 {} 53.93322241")

poswp = positions.str2pos(pos, proj)
if poswp[3] != "":
raise Exception, poswpl[3]
world = poswp[0][0]
pixel = poswp[l][0]
units = poswp[2]
print pos, "=", pixel, '->’, world , units

parsehmsdms (hmsdms, axtyp=None)
Given a string, this routine tries to parse its contents as if it was a spatial world coordinate either in
hours/minutes/seconds format or degrees/minutes/seconds format.

Parameters

Returns The parsed world coordinate in degrees and an empty error message or None and an

Notes A distinction has been made between longitude axes and latitude axes. The hms format
can only be used on longitude axes. However there is no check on the sky system (it should

* hmsdms (String) — A string containing at least a number followed by the character ‘h’
or ‘d’ (case insensitive) followed by a number and character ‘m’. This check must be
performed in the calling environment. The number can be a negative value. The string

cannot contain any white space.

* axtype (String) — Distinguish formatted coordinates for longitude and latitude.

error message that the parsing failed.

be equatorial). The input is flexible (see examples), even expressions are allowed.

Examples

>>>
>>>
>>>
>>>
>>>
>>>

hmsdms
hmsdms
hmsdms
hmsdms
hmsdms
hmsdms

720h34m52.2997s’
760d9m13.996s’
720h34m52.2997"
760d9m13.996"
"20h34m60-7.7003"
7-51.28208458d0m’

* The ‘s’ for seconds is optional

Omit ’s’ for seconds

Expression NOT allowed
Negative value for latitude

9.4. Functions

127

Kapteyn Package Documentation, Release 2.0.3b19

» Expressions in numbers are not allowed because we cannot use Python’s eval() function.
This function cannot cope with expressions like ‘08’.

* dms format always allowed, hms only for longitude axes. Both minutes and seconds are
optional. The numbers need not to be integer.

unitfactor (unitfrom, unitto)
Return the factor for a conversion of numbers between two units.

Parameters

* unitfrom (String) — Units to convert from. Strings with ‘1/unit’ or ‘/unit’ are also al-
lowed. If this parameter is ‘?’ then the incoming unit is a wildcard character and the
conversion factor 1.0 is returned. The same holds for a case insensitive minimum match
of the string ‘UNITS’. This option is necessary for the option to use world coordinates
when there are no units given in the header of the data (i.e. there is no CUNITn keyword
or its contents is empty).

* unitto — Units to convert to. Strings with ‘1/unit’ or ‘/unit’ are also allowed.
Returns The conversion factor to convert a number in ‘unitsfrom’ to a number in ‘unitsto’.
Notes
Examples

>>> print unitfactor(’1/m’, ’"1/km’)

(1000.0, ")

>>> print positions.unitfactor(’1/mile’, ’"1/km’)
(0.62137119223733395, ")

>>> print positions.unitfactor ('mile’, "km’)
(1.6093440000000001, "7)

128 Chapter 9. Module positions

CcHAPTER 10

MODULE RULERS

This module defines a class for drawing rulers.

class Ruler (projection, mixpix, pxlim, pylim, aspectratio=1.0, posl=None, pos2=None, xI=None,
yI=None, x2=None, y2=None, lambda0=0.5, step=None, world=False, angle=None, addan-
gle=0.0, fmt=None, fun=None, units=None, fliplabelside=False, mscale=None, labelsintex=True,

**ewargs)
Draws a line between two spatial positions from a start point (x1,y1l) to an end point (x2,y2) with labels

indicating a constant offset in world coordinates. The positions are either in pixels or in world coordinates.
The ruler is a straight line but the ticks are usually not equidistant because projection effects make the offsets
non linear (e.g. the TAN projection diverges while the CAR projection shows equidistant ticks). By default,
the zero point is exactly in the middle of the ruler but this can be changed by setting a value for lambda0.
The step size for the ruler ticks in units of the spatial axes is entered in parameter step. At least one of the
axes in the plot needs to be a spatial axis.

Parameters

* projection (A wcs .Projection object) — The Projection object which sets the WCS
for the ruler.

» mixpix (Integer) — The pixel of the missing spatial axis in a Position-Velocity image.
* pxlim (Tuple or list with two integers.) — Limit in pixel coordinates for the x-axis.
* pylim (Tuple or list with two integers.) — Limit in pixel coordinates for the y-axis.

* aspectratio (Float) — The aspect ratio is defined as pixel height / pixel width. The value
is needed to draw tick mark perpendicular to the ruler line for images where the pixels
are not square in world coordinates. Its default is 1.0.

* posl — Position information for the start point. This info overrules the values in x1 and
yl.

* posl (String) — Position information for the end point. This info overrules the values in
x2 and y2.

* x/ (None or Floating point number) — X-location of start of ruler either in pixels or
world coordinates Default is lowest pixel coordinate in x.

* y!I (None or Floating point number) — Y-location of start of ruler either in pixels or world
coordinates Default is lowest pixel coordinate in y.

* x2 (None or Floating point number) — X-location of end of ruler either in pixels or world
coordinates Default is highest pixel coordinate in x.

* y2 (None or Floating point number) — Y-location of end of ruler either in pixels or world
coordinates Default is highest pixel coordinate in y.

* lambda0 (Floating point number) — Set the position of label which represents offset 0.0.
Default is lambda=0.5 which represents the middle of the ruler. If you set lambda=0
then offset 0.0 is located at the start of the ruler. If you set lambda=1 then offset 0.0 is
located at the end of the ruler.

129

Kapteyn Package Documentation, Release 2.0.3b19

* step (Floating point number) — Step size of world coordinates in degrees or in units
entered in units.

world (Boolean) — Set ruler mode to world coordinates (default is pixels)

* angle (Floating point number) — Set angle of tick marks in degrees. If omitted then a
default is calculated (perpendicular to ruler line) which applies to all labels.

* addangle — Add a constant angle in degrees to angle. Only useful if angle has its default
value. This parameter is used to improve layout.

* fimt (String) — Format of the labels. See example.

* fun (Python function or Lambda expression) — Format ruler values according to this
function (e.g. to convert degrees into arcminutes). The output is always in degrees.

* units (String) — Rulers ticks are labeled in a unit that is compatible with degrees. The
units are set by the step size used to calculate the position of the tick marks. You can set
these units explicitely with this parameter. Note that values for fun and fint cannot be
set because these are set automatically if units has a value. Note that units needs only
a part of a complete units string because a case insensitive minimal match is applied.
Usually one will use something like units=arcmin or units=Arcsec.

Note: If a value for units is entered, then this method expects the step size is given in
the same units.

* fliplabelside (Boolean) — Choose other side of ruler to draw labels.

» mscale (Floating point number) — A scaling factor to create more or less distance be-
tween the ruler and its labels. If None then this method calculates defaults. The values
are usually less than 5.0.

» **kwargs (Matplotlib keyword argument(s)) — Set keyword arguments for the labels.
The attributes for the ruler labels are set with these keyword arguments.

Raises

Exception Rulers only suitable for maps with at least one spatial axis! These rulers are
only for plotting offsets as distances on a sphere for the current projection system. So
we need at least one spatial axis and if there is only one spatial axis in the plot, then we
need a matching spatial axis.

Exception Cannot make ruler with step size equal to zero! Either the input of the step
size is invalid or a wrong default was calculated (perhaps end point is equal to start
point).

Exception Start point of ruler not in pixel limits!
Exception End point of ruler not in pixel limits!

Returns A ruler object of class ruler which is added to the plot container with Plotversion’s
method Plotversion.add (). This ruler object has two methods to change the proper-
ties of the line and the labels:

* setp_line(**kwargs) — Matplotlib keyword arguments for changing the line proper-
ties.

* setp_labels(**kwargs) — Matplotlib keyword arguments for changing the label
properties.

Notes A bisection is used to find a new marker position so that the distance to a previous position
is step.. We use a formula of Thaddeus Vincenty, 1975, for the calculation of a distance on
a sphere accurate over the entire sphere.

Examples Create a ruler object and change its properties

130 Chapter 10. Module rulers

Kapteyn Package Documentation, Release 2.0.3b19

1 ruler2 = annim.Ruler (x1=x1, yl=yl, x2=x2, y2=y2, lambda0=0.5, step=2.0,
2 fmt=’ ", mscale=-1.5, fliplabelside=True)
3 ruler2.setp_labels (ha=’"left’, va='center’, color="b’)

s rulerd4 = annim.Ruler (posl="23h0m 15d0m", pos2="22h0m 30d0m", lambda0=0.0,

6 step=1, world=True,
7 fmt=r"$ “"\primes",
8 fun=lambda x: x%x60.0, addangle=0)

9 rulerd.setp_line(color="g’)
10 ruler4d.setp_labels(color="m’")

Force step size and labeling to be in minutes of arc.
13 annim.Ruler (posl=’'0h3m30s 6d30m’, pos2=’'0h3m30s 7d0m’,
14 lambda0=0.0, step=5.0,

15 units="arcmin’, color="c’)

setp_1line (**kwargs)
Set the ruler line properties. The keyword arguments are Matplotlib keywords for Line2D objects.

Parameter kwargs (Python keyword arguments) — Keyword argument(s) for changing the
default properties of the ruler line. This line is a Line2D Matplotlib object with at-
tributes like linewidth, color etc.

setp_1label (**kwargs)
Set the ruler label properties. The keyword arguments are Matplotlib keywords for Text objects.
Note that the properties apply to all labels. It is not possible to address a separate label.

Parameter kwargs (Python keyword arguments) — Keyword argument(s) for changing the
default properties of the ruler labels. This line is a Text Matplotlib object with attributes

like fontsize, color etc.

131

Kapteyn Package Documentation, Release 2.0.3b19

132 Chapter 10. Module rulers

CHAPTER 11

MODULE SHAPES

This module defines a class for drawing shapes that define an area in your image. The drawing is interactive using
mouse- and keyboard buttons. For each defined area the module maput ils calculates the sum of the intensities,
the area and some other properties of the data. The shapes are one of polygon, ellipse, circle, rectangle or spline.

The strength of this module is that it duplicates a shape in different images using transformations to world coor-
dinates. This enables one to compare flux in two images with different WCS systems. It works with both spatial
maps and maps with mixed axes (e.g. position-velocity maps)

class Shapecollection (images, ifigure, wes=True, inputfilename=None, inputwcs=False, gipsy=False)

Administration class for a collection of shapes. The figure

Parameters

images (A list of objects from class maputils.Annotatedimage)—In each image
a shape can be drawn using mouse- and keyboard buttons. This shape is duplicated
either in pixel coordinates or world coordinates in the other images of the list with
images. These images have two attributes that are relevant for this module. These are
fluxfie to define how the flux should be calculated using fixed variables s for the sum of
the intensities of the pixels in an area and a which represents the area.

ifigure (Matplotlib Figure object) — The Matplotlib figure where the images are.

wcs (Boolean) — The default is True which implies that in case of multiple images shapes
propagate through world coordinates. If you have images with the same size and WCS,
then set wes=False to duplicate shapes in pixel coordinates which is much faster.

inputfilename (String) — Name of file on disk which stores shape information. The
objects are read from this file and plotted on all the images in the image list. The
coordinates in the file can be either pixel- or world coordinates. You should specify that
with parameter inputwcs

inputwcs (Boolean) — Set the shape mode for shapes from file to either pixels coordinates
(inputwces=False) or to world coordinates (inputwcs=True).

This shape interactor reacts to the following keyboard and mouse buttons:

mouse

mouse
key
key
key
key
key
key
key
key
key

left : Drag a polygon point to a new position or

change the radius of a circle or
change the minor axis of an ellipse or
change the major axis and position angle of an ellipse

middle: Select an existing object in any frame

— R = 3 0 QO QW

Add a point to a polygon or spline

Copy current object at mouse cursor

Delete a point in a polygon or spline

Erase active object and associated objects in other images
Insert a point in a polygon or spline

Start with a new object

Write object data in current image to file on disk

Read objects from file for current image

Next active object in current shape selection

133

Kapteyn Package Documentation, Release 2.0.3b19

key -]

Interactive navigation defined by canvas
Amongst others:
key - £
key - g

Toggle fullscreen
Toggle grid

Gui buttons:
"Quit’

"plot result’
'Save result’

Abort program

Save flux information to disk

Previous active object in current shape selection

Plot calculated flux as function of shape and image

"Pol.

"E1l.

"Cir.:

The file names are generated and contain date
and time stamp (e.g flux_24042010_212029.dat)
Select shape polygon. Start with key ’'n’ for
new polygon. Add new points with key ’a’.
Select shape ellipse. Start with key ’'n’
new ellipse. With left mouse button Drag
size and rotation or, using a point near the
center, drag entire ellipse to a new position.
Select shape circle. Start with key 'n’ for

new circle. The radius can be changed by dragging
an arbitrary point on the border to a new position.

for

major axis to change

"Rec.’ Select shape rectangle. Start
new rectangle.
the rectangle.
"Spl.’

follow a spline curve.

with key ’'n’ for

Drag any of the four edges to resize

Like the polygon but the points between two knots

Notes All shapes are derived from a polygon class. There is one method that generates co-
ordinates for all shapes and maputils.getflux () uses the same routine to calculate
whether a pixel in an enclosing box is within or outside the shape. For circles and ellipses
the number of polygon points is 360 and this slows down the calculation significantly. Meth-
ods which assume a perfect circle or ellipse can handle the inside/outside problem much

faster, but note that due to different WCS’s, ellipses

and circles don’t keep their shape in

other images. So in fact only a polygon is the common shape. A spline is a polygon with an

artificially increased number of points.
Example
1 fig =

> framel =
3 frame2 =

plt.figure(figsize=(12,10))

4 1iml = fl.Annotatedimage (framel)
s im2 = f2.Annotatedimage (frame2)
6 1iml.Image(); iml.Graticule()

7 im2.Image(); im2.Graticule()

s 1iml.interact_imagecolors();

9 1im2.interact_imagecolors();

1o iml.plot(); im2.plot ()

1 iml.fluxfie = lambda s, a: s/a
2 im2.fluxfie = lambda s, a: s/a
13 iml.pixelstep = 0.5; im2.pixelstep = 0.5
4 images = [iml, im2]

15 shapes = shapes.Shapecollection (images,

fig.add_axes([0.07,0.1,0.35, O.
fig.add_axes([0.5,0.1,0.43, 0.8

81)
1)

iml.interact_toolbarinfo ()
im2.interact_toolbarinfo ()

fig, wcs=True, inputwcs=True)

134

Chapter 11. Module shapes

CHAPTER 12

MODULE TABARRAY

Module tabarray provides a class which allows the user to read, write and manipulate simple table-like structures.
It is based on NumPy and the table-reading part has been optimized for speed. When the flexibility of SciPy’s
read_array() function is not needed, Tabarray can be considered as an alternative.

12.1 Class tabarray

class tabarray (source, [comchar="#!", sepchar="\t’, lines=None, bad=None, segsep=None])
Tabarray is a subclass of NumPy’s ndarray. It provides all of ndarray’s functionality as well as some extra
methods and attributes.

Parameters

source — the object from which the tabarray object is constructed. It can be a 2-
dimensional NumPy array, a list or tuple containing the table columns as 1-dimensional
NumPy arrays, or a string with the name of a text file containing the table. Only in the
latter case the other arguments are meaningful.

comchar — a string with characters which are used to designate comments in the input
file. The occurrence of any of these characters on a line causes the rest of the line to be
ignored. Empty lines and lines containing only a comment are also ignored.

sepchar — a string containing the column separation characters to be used. Columns are
separated by any combination of these characters.

lines — a two-element tuple or list specifying a range of lines to be read. Line numbers
are counted from one and the range is inclusive. So (1,10) specifies the first 10 lines of
a file. Comment lines are included in the count. If any element of the tuple or list is
zero, this limit is ignored. So (1,0) specifies the whole file, just like the default None.

bad — is a number to be substituted for any field which cannot be decoded as a number.
The default None causes a ValueError exception to be raised in such cases.

segsep — a string containing segment separation characters. If any of these characters
is present in a comment block, this comment block is taken as the end of the current
segment. The default None indicates that every comment block will separate segments.

Raises TOError, when the file cannot be opened.

IndexError, when a line with an inconsistent number of fields is encountered in the input

file.

ValueError: when a field cannot be decoded as a number and no alternative value was
specified.

Attributes:

nrows

the number of rows

135

Kapteyn Package Documentation, Release 2.0.3b19

ncols
the number of columns

segments
a list with slice objects which can be used to address the different segments from the table. Segments
are parts of the table which are separated by comment blocks which meet the conditions specified by
argument segsep. The following example illustrates how a program can iterate over all segments:

1 from kapteyn.tabarray import tabarray
3 coasts = tabarray('world.txt’)

s for segment in coasts.segments:
6 coast = coasts[segment]

Methods:

columns (cols=None)
Parameter cols — a tuple or list with the column numbers. Default: all colums.
Returns a NumPy array.

Extract specified columns from a tabarray and return an array containing these columns. Cols is a
tuple or list with the column numbers. As the first index of the resulting array is the column number,
multiple assignment is possible. E.g., x, v = t.columns ((2,3)) delivers columns 2 and 3 in
variables x and y. Default: return all columns.

rows (rows=None)
Parameter rows — a tuple or list containing the row numbers to be extracted.
Returns a new tabarray.

This method extracts specified rows from a tabarray and returns a new tabarray. Rows is a tuple or list
containing the row numbers to be extracted. Normal Python indexing applies, so (0, -1) specifies the
first and the last row. Default: return whole tabarray.

writeto (filename, rows=None, cols=None, comment=, [], format=, [])
Write the contents of a tabarray to a file.

Parameters
* filename — the name of the file to be written.
* rows — a tuple or list with a selection of the rows te be written. Default: all rows.

* columns — a tuple or list with a selection of the columns te be written. Default: all
columns.

* comment — a list with text strings which will be inserted as comments in the output
file. These comments will be prefixed by the hash character (#).

* format — a list with format strings for formatting the output, one element per column,
eg., ["%5d", ' %10.7f", ' %g’].

12.2 Functions

readColumns (filename, comment="!#", cols="all’, sepchar=’, t’, rows=None, lines=None, bad=0.0,

rowslice=(None,), colslice=(None,))
TableIO-compatible function for directly extracting table data from a file.

Parameters

* filename — a string with the name of a text file containing the table.

136 Chapter 12. Module tabarray

Kapteyn Package Documentation, Release 2.0.3b19

* comment — a string with characters which are used to designate comments in the input
file. The occurrence of any of these characters on a line causes the rest of the line to be
ignored. Empty lines and lines containing only a comment are also ignored.

* cols — a tuple or list with the column numbers or a scalar with one column number.

* sepchar — a string containing the column separation characters to be used. Columns are
separated by any combination of these characters.

* rows — a tuple or list containing the row numbers to be extracted.

* lines — a two-element tuple or list specifying a range of lines to be read. Line numbers
are counted from one and the range is inclusive. So (1,10) specifies the first 10 lines of
a file. Comment lines are included in the count. If any element of the tuple or list is
zero, this limit is ignored. So (1,0) specifies the whole file, just like the default None.

* bad — a number to be substituted for any field which cannot be decoded as a number.

* rowslice — a tuple containing a Python slice indicating which rows should be selected.
If this argument is used in combination with the argument rows, the latter should be
expressed in terms of the new row numbers after slicing. Example: rowslice= (10,
None) selects all rows, beginning with the eleventh (the first row has number 0) and
rowslice= (10, 13) selects row numbers 10, 11 and 12.

* colslice — a tuple containing a Python slice indicating which columns should be selected.
If this argument is used in combination with the argument cols, the latter should be
expressed in terms of the new column numbers after slicing. Selection is analogous to
rowslice.

writeColumns (filename, list, comment=, [])
TableIO-compatible function for directly writing table data to a file.

Parameters
* filename — the name of the file to be written;
* [ist — a list containing the columns to be written.

* comment — a list with text strings which will be inserted as comments in the output file.
These comments will be prefixed by the hash character (#).

12.3 Example

Suppose you have a file with catheti data from right-angled triangles and you want to compute the hypotenuses
and write the result to a second file. The input file may be as follows:

Triangle data
#
! classic example

O b W
o = O

4.0
3.6
1 10.0

Then the following simple script will do the job:

#!/usr/bin/env python
import numpy
from kapteyn.tabarray import tabarray

x,y = tabarray (’triangles.txt’) .columns ()
tabarray ([x,y, numpy.sqgrt (x*x+y+*y)]) .writeto (‘outfile.txt’)

leaving the following result in the output file:

12.3. Example 137

Kapteyn Package Documentation, Release 2.0.3b19

3 4 5
4.1 3.6 5.45619
10 10 14.1421

138 Chapter 12. Module tabarray

CHAPTER 13

MODULE MPLUTIL

Utilities for use with matplotlib. Classes AxesCallback, TimeCallback and VariableColormap and
module-internal function KeyPressFilter ().

13.1 Class AxesCallback

class AxesCallback (proc, axes, eventtype, schedule=True, **attr)

AxesCallback has been built on top of matplotlib’s event handling mechanism. Objects of this class
provide a more powerful mechanism for handling events from Locat ionEvent and derived classes than
matplotlib provides itself. This class allows the programmer to register a callback function with an event
type combined with an Axes object. Whenever the event occurs within the specified Axes object, the
callback function is called with the AxesCallback object as its single argument. Different from matplotlib-
style event handlers, it is possible to handle overlapping Axes objects. An AxesCallback object will not be
deleted as long as it is scheduled (“active”), so it is not always necessary to keep a reference to it.

Parameters

* proc — the function to be called upon receiving an event of the specified type and occur-
ring in the specified Axes object. It is called with one argument: the current AxesCall-
back object. If it returns a value which evaluates to True, processing of the current event
stops, i.e., no further callback functions will be called for this event.

* axes — the matplotlib Axes object.

* eventtype — the matplotlib event type such as ‘motion_notify_event’ or
‘key_press_event’.

* schedule — indicates whether the object should start handling events immediately. De-
fault True.

* attr — keyword arguments each resulting in an attribute with the same name.
Attributes:

axes
The specified axes object.

canvas
The FigureCanvas object to which axes belongs.

eventtype
The specified event type.

active
True if callback is scheduled, False otherwise.

xdata, ydata
The cursor position in data coordinates within the specified Axes object. These values may be different
from the attributes with the same name of the event object.

139

Kapteyn Package Documentation, Release 2.0.3b19

event
The Event object delivered by matplotlib.

Methods:

schedule ()
Activate the object so that it will start receiving matplotlib events and calling the callback function.
If the object is already active, it will be put in front of the list of active objects so that its callback
function will be called before others.

deschedule ()
Deactivate the object so that it does not receive matplotlib events anymore and will not call its callback

function. If the object is already inactive, nothing will be done.

Example:

#!/usr/bin/env python

from matplotlib.pyplot import figure, show
from kapteyn.mplutil import AxesCallback

def draw_cb (cb) :
if cb.event.button:
if cb.pos is not None:
cb.axes.plot ((cb.pos[0], cb.xdata), (cb.pos[l], cb.ydata), cb.c)
cb.canvas.draw ()
cb.pos = (cb.xdata, cb.ydata)
else:
cb.pos = None

def colour_cb(cb):
cb.drawer.c = cb.event.key

fig = figure()

frame = fig.add_axes((0.1, 0.1, 0.8, 0.8))
frame.set_autoscale_on (False)

draw = AxesCallback (draw_cb, frame, 'motion_notify_ event’, pos=None, c='r’)
setc = AxesCallback (colour_cb, frame, ’'key_press_event’, drawer=draw)
show ()

The above code implements a complete, though very simple, drawing program. It first creates a drawing
frame and then connects two AxesCal lback objects to it. The first object, draw, connects to the callback
function draw_cb (), which will draw line segments as long as the mouse is moved with a button down.
The previous position is “remembered” by draw via its attribute pos. The drawing colour is determined
by draw‘s attribute ¢ which can be modified by the callback function colour_cb () by typing one of the
letters ‘r’, ‘g’, ‘b’, ‘y’, ‘m’, ‘c’, ‘W’ or ‘k’. This callback function is called via the second AxesCallback
object setc which has the first AxesCallback object draw as an attribute.

13.2 Class TimeCallback

class TimeCallback (proc, interval, schedule=True, **attr)

Objects of this class are responsible for handling timer events. Timer events occur periodically whenever
a predefined period of time expires. A TimeCallback object will not be deleted as long as it is scheduled
(““active”), so it is not always necessary to keep a reference to it. This class is backend-dependent. Currently
supported backends are GTKAgg, GTK, Qt4Agg and TkAgg.

Parameters

140

Chapter 13. Module mplutil

Kapteyn Package Documentation, Release 2.0.3b19

20

21

22

23

24

25

26

27

28

29

30

* proc — the function to be called upon receiving an event of the specified type and occur-
ring in the specified Axes object. It is called with one argument: the current TimeCall-
back object.

* interval — the time interval in seconds.

* schedule — indicates whether the object should start handling events immediately. De-
fault True.

* artr — keyword arguments each resulting in an attribute with the same name.
Attribute:

active
True if callback is scheduled, False otherwise.

Methods:

schedule ()
Activate the object so that it will start calling the callback function periodically. If the object is already
active, nothing will be done.

deschedule ()
Deactivate the object so that it stops calling its callback function. If the object is already inactive,

nothing will be done.

set_interval (interval)
Changes the object’s time interval in seconds.

Example:

#/usr/bin/env python

from matplotlib import pyplot

from kapteyn.mplutil import VariableColormap, TimeCallback
import numpy

from matplotlib import mlab

def colour_cb(cb):
slope = cb.cmap.slope
shift = cb.cmap.shift
if shift>0.5:
shift = -0.5
cb.cmap.modify(slope, shift+0.01) # change colormap

figure = pyplot.figure(figsize=(8,8))
frame = figure.add_axes ([0.05, 0.05, 0.85, 0.85])

colormap = VariableColormap (' jet’”)
colormap.add_frame (frame)

TimeCallback (colour_cb, 0.1, cmap=colormap) # change every 0.1 s

X = y = numpy.arange(-3.0, 3.0, 0.025)

X, Y = numpy.meshgrid(x, y)

z1 = mlab.bivariate_normal (X, ¥, 1.0, 1.0, 0.0, 0.0) # Gaussian 1
zZ2 = mlab.bivariate_normal (X, Y, 1.5, 0.5, 1, 1) # Gaussian 2
Z = 722-71 # difference
img = frame.imshow(Z, origin="lower", cmap=colormap)

pyplot.show ()

This code displays an image composed of 2 Gaussians and continuously modifies its colormap’s shift value
between -0.5 and 0.5 in steps of 0.01. These steps take place at 0.1 second intervals.

13.2. Class TimeCallback 141

Kapteyn Package Documentation, Release 2.0.3b19

13.3 Class VariableColormap

class VariableColormap (source, name="Variable’)
VariableColormap is a subclass of matplotlib.colors.Colormap with special methods that
allow the colormap to be modified. A VariableColormap can be constructed from any other matplotlib
colormap object, from a NumPy array with one RGB triplet per row or from a textfile with one RGB triplet
per line. Values should be between 0.0 and 1.0.

Parameters

* source — the object from which the VariableColormap is created. Either an other col-
ormap object or its registered name, a NumPy array or the name of a text file containing
RGB triplets. A number of colormap files is available within the package. A list of
names can be obtained with class method 1uts ().

* name — the name of the color map.
Attributes:

auto
Indicates whether Axes objects registered with method add_ frame () will be automatically updated
when the colormap changes. Default True.

slope
The colormap slope as specified with method modify ().

shift
The colormap shift as specified with method modify ().

scale
The colormap’s current scale as specified with method set_scale ().

source
The object (string or colormap) from which the colormap is currently derived.

Methods

modify (slope, shift)
Apply a slope and a shift to the colormap. Defaults are 1.0 and 0.0. If one or more Axes objects have
been registered with method add_ frame (), the images in them will be updated and the correspond-
ing canvases will be redrawn.

set_scale (scale="LINEAR’)
Apply a scale to this colormap. scale can be one of: ‘LINEAR’, ‘LOG’, ‘EXP’, ‘SQRT’ and
‘SQUARE’.

set__source (source)
Define an alternative source for the colormap. source can be any other matplotlib colormap object or
its registered name, a NumPy array with one RGB triplet per row or the name of a textfile with one
RGB triplet per line. Values should be between 0.0 and 1.0.

set_length (length)
Change the colormap’s number of entries. The new set of entries is derived from the current set by
linear interpolation. The current length can be obtained with the function 1en () . For best results, the
new length should be chosen such that the original colormap entries are represented unmodified in the
new set. This can be achieved by setting n,e, = knoiqg — k + 1, where n; is the colormap’s length
and k is integer.

For normal work, the ‘standard’ length of 256 is usually sufficient, but in special cases increasing the
colormap’s length can be helpful to eliminate false contours.

add_frame (frame)
Associate matplotlib Axes object frame with this colormap. If the colormap is subsequently modified,
images in this frame will be updated and frame‘s canvas will be redrawn.

142 Chapter 13. Module mplutil

Kapteyn Package Documentation, Release 2.0.3b19

remove_frame (frame)
Disassociate matplotlib Axes object frame from this colormap.

update ()
Redraw all images in the Axes objects registered with method add_frame (). update() is called

automatically when the colormap changes while auto is True.

class luts ()
Return a list with filenames of colormaps available within the package.

13.4 Key press filter

Via its internal function KeyPressFilter () the module filters key_press events for the backend in which
the application displays its contents. By default all key_press events are discarded by the filter and do not
reach the backend. This behaviour can be changed by assigning a list of acceptable keys to KeyPressFilter’s
attribute allowed. E.g., KeyPressFilter.allowed = [’g’, ’£f’] will allow characters g and f to
reach the backend so that the backend’s grid- and full-screen toggles will be available again. The filtering
can be completely switched on and off by assigning True or False to KeyPressFilter’s attribute enabled. E.g.,
KeyPressFilter.enabled = False.

13.5 GIPSY keyword event connection

gipsy_connect ()
Function only to be used by GIPSY tasks. It should be called by matplotlib programs when GIPSY’s
keyword events need to be handled, i.e., when the task uses the class KeyCallback. Here is an example:

#!/usr/bin/env python
import gipsy
from matplotlib.pyplot import figure, show

1

2

3

4

5 from kapteyn.mplutil import AxesCallback, gipsy_connect
6

7

8

def key_handler (cb) :
gipsy.anyout (' Event: " % (cb.key, gipsy.usertext (cb.key)))

10 gipsy.init ()

2 fig = figure()

14 frame = fig.add_axes((0.1, 0.1, 0.8, 0.8))
16 glipsy_connect ()

18 gipsy.KeyCallback (key_handler, ’'TESTKEY=')
20 show()

» gipsy.finis ()

13.4. Key press filter 143

Kapteyn Package Documentation, Release 2.0.3b19

144 Chapter 13. Module mplutil

CHAPTER 14

MODULE PROFILES

14.1 Function

gauest (y, rms, cutamp, cutsig, q, [ncomp=200, smode=0])

Function to search for gaussian components in a profile.

Parameters

* y—aone-dimensional NumPy array (or slice) containing the profile.

rms — the r.m.s. noise level of the profile.

cutamp — critical amplitude of gaussian. Gaussians below this amplitude will be dis-
carded.

cutsig — critical dispersion of gaussian.

q — smoothing parameter used in calculating the second derivative of the profile. It must
be greater than zero.

ncomp — maximum number of gaussian components to be found. It should be > 1.

smode — order in which gaussian components are delivered. 0: decreasing amplitude, 1:
decreasing dispersion, 2: decreasing flux.

Returns a list with up to ncomp tuples of which each tuple contains the amplitude, the centre
and the dispersion of the gaussian, in that order.

In this function the second derivative of the profile in the signal region is calculated by fitting a second
degree polynomal. The smoothing parameter g determines the number of points used for this (2¢ + 1). The
gaussians are then estimated as described by [Schwarz1968].

14.2 Reference

145

Kapteyn Package Documentation, Release 2.0.3b19

146 Chapter 14. Module profiles

CHAPTER 15

SCIPY MODULES

Mainly for convenience, SciPy’s modules scipy.ndimage.filters and scipy.ndimage.interpolation have been in-
cluded in the Kapteyn Package as kapteyn.filters and kapteyn.interpolation. In this way users of
the package do not need to have all of SciPy installed, of which only a few functions are currently used. To these
modules the SciPy license applies which is compatible with the Kapteyn Package’s license.

Function map_coordinates () from module interpolation has slightly been modified. If the source
array contains one or more NaN values, and the order argument is larger than 1, the unmodified function will
return an array with all NaN values. The modification prevents this by replacing NaN values by nearby finite
values.

147

http://docs.scipy.org/doc/scipy/reference/ndimage.html#module-scipy.ndimage.filters
http://docs.scipy.org/doc/scipy/reference/ndimage.html#module-scipy.ndimage.interpolation

Kapteyn Package Documentation, Release 2.0.3b19

148 Chapter 15. SciPy modules

Part 111

Background information

149

CHAPTER 16

BACKGROUND INFORMATION
MODULE CELESTIAL

16.1 Rotation matrices

Spherical astronomy sections in older textbooks rely heavily on the reader’s knowledge of spherical trigonometry
(e.g. Smart 1977). For more complicated problems than a simple rotation, this technique becomes laborious. Ma-
trix and vector techniques come to rescue. Many of the transformations are defined in terms of rotation matrices.
A rotation matrix is a matrix whose multiplication with a vector rotates the vector while preserving its length.
There is a special group 3 x 3 rotation matrices R where

|R| = +land R~ = RT (16.1)
For transformations between sky systems we only use matrices with |R| = +1.

A coordinate rotation is a rotation about a single coordinate axis. The three coordinate rotation matrices are:

1 0 0

Ri(a) = |0 cos(a) sin(a) (16.2)
|10 —sin(a) cos(a)]
[cos(a) 0 —sin(a)]

Ro()=| 0 1 0 (16.3)

[sin(a) 0 cos(a) |

[cos(a) sin(a) O]
R3(a) = | —sin(a) cos(a) 0 (16.4)
0 0 1]

Three coordinate rotations in sequence can describe any rotation. The result matrix is:

Riji(9,0,%) = Ri(¢)R;(0) R (¢) (16.5)

The angles are called Euler angles. There are 27 possible sequences of the three indices i,j,k. Not all sequences
are valid rotations. The most common choices of valid combinations are (1,2,3), (3,1,3) and (3,2,3) ([Diebel],
2006)

If 7 is a position vector in system O and 7 is the same position in the sky but in another sky system then, with
the appropriate rotation matrix R, we calculate 7 in the coordinates belonging to the rotated system with:

1 = R (16.6)

Note that the listed rotations represent the same position in different coordinate systems. The indices 1,2,3 cor-
respond to the rotation axes x, y, z. In this documentation we will write R, for %y, R, for R, and R, for Rs:

Gz Riy Riz Riz| |aq
ay2| = |Ra1 Raz Raz| |ay (16.7)
a2 R31 R3x Rs3| |ax

151

Kapteyn Package Documentation, Release 2.0.3b19

If (o, 0) is the longitude and latitude of a position in system O, then the corresponding position vector can be
written as:

cos dp COS
79 = | cos dg sin ay (16.8)
sin 50

Note that the longitude and latitude applies to the other sky systems too, but then we use other symbols, like (A, 3),
(Ib) or (sgl, sgb). >From any position (x,y,z) we calculate the longitude and latitude with the expressions:

tan(lon) = y/x (16.9)

and

tan(lat) = z/v/x? + y? (16.10)

where we used the arctan2 function to solve for (lon,lat) to keep the right quadrant. Longitudes range from 0° to
360° and latitudes from —90° to 90°.

16.2 FK4

The impression one could get from the literature is that FK4 and FK4-NO-E are different sky systems and that
there exists a matrix to rotate a position from one system to the other. But this is not true. The systems differ
because positions in FK4 catalogs usually contain the elliptic terms of aberration (so they are almost mean places).
Others list positions that are corrected for these E-terms (like catalogs with radio sources). Also B1950 radio
interferometer data (e.g. maps from the W.S.R.T.) could be processed in a way that positions are corrected for
E-terms. It is convenient to define a system that is FK4 but without the E-terms. FITS uses the name FK4-NO-E
for this system. Catalog positions corrected for the E-terms are (real) mean places and are used for precession and
transformations from FK4 B1950 positions to FK5 J2000 positions and galactic coordinates.

In a later section we give the original definition of galactic coordinates.

16.3 FK4 and the elliptic terms of aberration

Stellar aberration is caused by the motion of the earth in its orbit. This motion is represented by a circular velocity
component and a component perpendicular to the major axis caused by the fact that the orbit is elliptical. This
velocity component is responsible for elliptical terms of aberration (E-terms) which are less than 0.35 arcseconds
(maximum is equal to the constant of aberration times the eccentricity of the earths orbit = 20”.496 x 0.01673 ~=
343 mas). The terms are independent of the position of the earth and depend only on the position of the object in
the sky.

152 Chapter 16. Background information module celestial

Kapteyn Package Documentation, Release 2.0.3b19

Fig.1 — Ecliptic from above showing e-terms.

Fig.1 shows the ecliptic from above. S is the Sun, in one of the focal points of the ellipse and P the position of the
Earth. The plot was made with Python script etermfig.py.

Smart (1977) gives an excellent description of aberration and its elliptical terms. We reproduced one of his figures
with a small program. Here are the steps.

Given an elliptical orbit with semi major axis a and semi minor axis b, and center at (0,0), the positions of
the focal points are (-c,0) and (c,0) with ¢? = a® — b?

Suppose the Sun is in focal point S and the Earth is on the ellipse in P
The tangent in P is the normal of the bisector of the two lines from focal point to P
r is the radius vector SP

Earth has a velocity V along the tangent at P and:

dr do
2 2 2 — (Z0)2)2 16.11
1% PL*+ PR (dt) +(7“dt) ()

So for given P and a velocity V, we can calculate the angle between the normal of SP (i.e. in the direction
PL) and decompose V into a linear velocity perpendicular to the radius vector and a component in the
direction of the radius vector

Now we want to decompose V into a circular velocity component PL; and a velocity perpendicular to the
major axis (PQ)

16.3.

FK4 and the elliptic terms of aberration 153

Kapteyn Package Documentation, Release 2.0.3b19

* PQ = PR/sin(«) and PL; = PL — PR/ tan(«)
Smart derives two epressions:

ep

Vg = (16.12)
Vpr, = & (16.13)
h
with:
5 da
wu=GM+m); h=r s (16.14)

With M is mass of the Sun, m is mass of the Earth, G is the gravitational constant and e is the eccentricity of the
ellipse:

b =a*(1 — e?) (16.15)

The most important observation now is that these velocities are constant! Therefore the total displacement of the
position of a star due to aberration can be decomposed into a displacement due to a constant velocity at right angle
to the radius vector and one due to a constant velocity perpendicular to the major axis.

If the position of a star is given by longitude A and latitude (3 and the longitude (measured from the vernal equinox)
is w then the displacements due to the velocity perpendicular to the major axis are:

AN = 4ersec(f) cos(w — N)

16.16
AB = +ersin(f) sin(w — A) ()
and « is the constant of aberration (Smart section 108).
The constant of aberration is defined as:
"
o = Vpy,) (16.17)

and c is the speed of light.

The value of « is 20”.496. Therefore, given the eccentricity of the Earth’s orbit (0.01673), the maximum displace-
ment in A or 3 is 20”.496 * 0.01673 ~= 343 mas.

Data in FK4 catalogs are ‘almost’ mean places because the conventional correction for annual aberration in FK4
includes only terms for circular motion and not the small E-terms. Therefore all published FK4 catalog positions
are affected by elliptic aberration.

Mean places should be unaffected by aberration of any kind. Thus, for precession or transformation of FK4
positions, one should remove the E-terms first.

With a standard transformation from ecliptic coordinates to equatorial coordinates one can find expressions for the
displacements in « and §. (e.g. see ES, section 3.531, p 170):

Aa=a — aegt = —(AC cos @t + ADSsinacqt /(15 cos dcqt)

A8 =6 = beat = —(AD cos apqr — ACSINQqt)8iNTeqr — AC tan € cos depqs (16.18)
where ¢ is the obliquity of the ecliptic.
Also one could write a position vector in an equatorial system:
cos 0 COS (g
7o = | cosdg sin ag (16.19)

sin 50
and a second vector:

cos(dg + Ad) cos(ag + Aar)
71 = | cos(dp + Ad) sin(ag + Aa) (16.20)
sin(dp + AJ)

154 Chapter 16. Background information module celestial

Kapteyn Package Documentation, Release 2.0.3b19

then one can define the E-term vector as:

—

E=7 -7, (16.21)

If one works out this difference between two vectors, neglect terms that are very small and rearrange the equations
so that we can compare them to the expressions for the displacements in « and 6, then the E-term vector is equal
to:

. —AD
E=| +AC (16.22)
AC tan(e)

This E-term vector can then be used to transform FK4 positions to real mean places (i.e. remove E-terms) or to
convert mean places to FK4 catalog positions (i.e. add E-terms).

Module celestial calculates the E-term vector in the equatorial system as function of epoch. Removing and
adding E-term vectors are best illustrated in a figure. In the next plot, the red circle represents the FK4 catalog
system. For each unit vector in this circle one can transform a position in RA, Dec to a new position where the
E-terms are removed. The new vector has its end point on the blue circle. So adding E-terms would be as simple
as adding the E-term vector to the new vector. However, if one converts the new position to RA and Dec, the
information about the length of the new vector will be lost. If one converts these RA and Dec back to Cartesian
coordinates, and add the E-term vector, then we would not obtain the original vector that we started with. Plot and
explanation demonstrate how we should deal with removing and adding E-terms:

7o 1
+r}f) &

Fig.2 — E-term vectors.

In the figure one starts with a FK4 catalog position represented by vector 7y. Removing the E-terms (represented
by vector @) results in vector \i;. If vectors kept their length after converting them back to longitude and latitude
then the inverse procedure would be as easy to add vector @ to A7';. Usually this is not the case, so for convenience
we normalize A7} to get unit vector 7.

16.3. FK4 and the elliptic terms of aberration 155

Kapteyn Package Documentation, Release 2.0.3b19

However, if we add vector @ to 7} we end up with a vector 1o which is not aligned with the original vector. To get
it aligned, we have to stretch 7 again with some factor A. We need an E-term adding procedure that applies to all
unit vectors. It is straightforward to derive an expression for the wanted scaling factor A:

Adding the E-term vector applying the conditions described above we write:
N +d =T (16.23)
And the conditions are:
|[71[| = [I7ol| = 1 (16.24)

If we write this out in terms of the Cartesian coordinates x, y, z then with ¥} = (x1,y1, 21), 7o = (%0, Yo, 20), and
a=ag,ay,a;):

Ax1 + a; = xg
Ay +ay =1%o (16.25)
Az1+a, = 2o

And:

iyl +n2=1 (16.26)

o +yol + 202 =1 (16.27)

If we substitute the expressions for 7 (16.25) in this last equation (eq.27) then we obtain the simplified expression
for A:

N4+ wr+p=0 (16.28)

with:
w = 2(azx1 + ayy1 + a.z1) (16.29)
p=ai+a,+al—1 (16.30)

We know that the length of the E-term vector a is much smaller than 1 so p is always less than 0. We also observe
that only the positive solution for) is the one we are searching for because a negative value represents a vector in
opposite direction. Then we are left with an expression for the wanted A:

A= (—w+ va? — 4p) /2 (16.31)

We started with known 7, and @. With those we can calculate the wanted vector 7, which represents the catalog
position.

16.4 Transformations between the reference systems FK4 and FK5

For conversions between FK4 and FK5 we follow the procedure of Murray [Murray]. Murray precesses from
B1950 to J2000 using a precession matrix by Lieske (1979) and then applies the equinox correction and ends up
with a transformation matrix X(0) and its rate of change per Julian century X’(0).

If F is the ratio of Julian century to tropical century (1.000021359027778) and T is the time in Julian centuries
from the epoch B1950, then Murray derives a transformation equation for a position and velocity in FK4:

m _ {X(O) ;(OT)X(O) Ti)?ié(;)] m (1632

Positions:

156 Chapter 16. Background information module celestial

Kapteyn Package Documentation, Release 2.0.3b19

If the epoch of observation is T in Julian centuries counted from B1950 then from the previous equation we derive:

772000 = X (0)(rB1950 + vB1950 FT) + T X (0)r 51050 (16.33)

Module celestial assumes that we have unknown or zero proper motions. We allow for fictitious proper
motion in FK5, then we get the equation:

772000 = 7 + V2000t = X (0)rB1950 + TX (0)rB1950 (16.34)

where v is the (fictitious) proper motion in FKS5 and ¢ is the time in Julian centuries form J2000. This is how the
function celestial .FK42FK5Matrix () works for a given epoch of observation. In the output of the next
interactive session, we show the results of varying the epoch of observation for a position R.A., Dec = (0,0):

>>> from kapteyn.celestial import =«

>>> print sky2sky((eq,’bl950’,fk4), (eq,’j2000’,£fk5), 0,0)

[[0.640691 0.278409447]]

>>> print sky2sky((eq,’bl950’,fk4, "J1970"), (eq,’32000",fk5), 0,0)
[[0.64070422 0.278385241]

>>> print sky2sky((eq,’bl1950",fk4, "J1980"), (eq,’j2000",£fk5), 0,0)
[[0.64071084 0.27837314]1]

>>> print sky2sky((eq,’b1950",fk4, 7J1990"), (eq,’32000",fk5), 0,0)
[[0.64071745 0.27836105]]

The differences are a result of the fact that FK4 is slowly rotating with respect to the inertial FK5 system.
Velocities

The relation between velocities in the two systems is given also by the transformation equations:

v 12000 = X (0)rB1950 + FX(0)vB1950 (16.35)

Then:

vp1950 = F~1 X 1(0) (2000 — X (0)7B1950) (16.36)

Module celestial deals with positions from maps with objects for which we expect that the proper motion in
FKS5 is zero (e.g. extra-galactic sources). Then the expression for the fictitious proper motion in FK4 is:

VB1950 = 7F71X71(0)X(0)7‘31950 (1637)
If we substitute this in equation (16.33) then we have the simple relation:

772000 = X (0)7B1950 (16.38)

To summarize the possible transformations between FK4 and FK5:

Note: If you allow non zero proper motion in FK5 you should specify an epoch for the date that the mean place
was correct and apply the formula:

772000 = X (0)7B1950 + TX (0)7B1950 (16.39)

If you are sure that the your position corresponds to an object with zero proper motion in FKS5 then the epoch of
observation is not necessary and one applies the formula:

72000 = X (0)7B1950 (16.40)

Note that the matrix X(0) is not a rotation matrix because the inverse matrix is not equal to the transpose. Therefore
the transformation matrix for conversion of FK5 to FK4 is the inverse of X(0).

Murray’s method has been described as controversial (e.g. see Soma (1990), [Soma]), but Poppe (2005) [Poppe]
shows that the differences in results between the methods of Standish, Aoki and Murray are less than 5 mas.

16.4. Transformations between the reference systems FK4 and FK5 157

Kapteyn Package Documentation, Release 2.0.3b19

16.5 Radio maps

Much of the B1950 data that users at the Kapteyn Astronomical Institute transform to FK5 J2000, is data from
the Westerbork Synthesis Radio Telescope (WSRT). For this telesope we retrieved some information about the
correction program that was used to transform apparent places to mean places. Apparent coordinates change
during an observing run, due to:

* Refraction
* Precession
e Nutation
e Aberration
1. Annual aberration
2. Diurnal aberration
3. Secular aberration (unknown and not significant)
4. Planetary aberration (unknown and not significant)
* Proper motion (not significant)
* Parallax (not significant)
If X; are the coordinates of a source at a time ¢, X, are the coordinates at epoch e and:
* N is the rotation matrix describing the nutation
¢ P is the rotation matrix describing the precession
* A is the vector describing the annual aberration
* D is the vector describing the diurnal aberration

then the following relations apply:

X,=NPX.+A+D (16.41)

X, =P 'N ' (X,—A-D) (16.42)
The vector describing the correction for annual aberration is the vector

-D
A= | 1C (16.43)
C'tan(e)

C and D are the so called Besselian Day Numbers (tabulated in the Astronomical Almanac) that correct for annual
aberration. Early interferometers like the WSRT produced images with greater resolution than obtainable in the
optical at that time and in the construction of the radio maps a correction for the elliptical terms was included. So
these maps are in fact FK4-NO-E (which is FITS terminology for a FK4 map where the E-terms are removed).
For precession and transformations for these maps, no E-terms need to be removed.

Regretably many of FITS files with B1950 data do not include a value for the RADESYS keyword and one should
try to find out how the coordinate system of these radio maps were constructed to be sure whether E-terms are
included or not.

Calabretta (2002) writes:

FK4 coordinates are not strictly spherical since they include a contribution from the elliptic terms of aberration,
the so-called E-terms which amount to a maximum of 343 milliarcsec. Strictly speaking, therefore, a map obtained
Jfrom, say, a radio synthesis telescope, should be regarded as FK4-NO-E unless it has been appropriately resam-
pled or a distortion correction provided. In common usage, however, ‘CRVAL* for such maps is usually given in
FK4 coordinates. In doing so, the E-terms are effectively corrected to first order only.

158 Chapter 16. Background information module celestial

Kapteyn Package Documentation, Release 2.0.3b19

Contradictory to this, we understand that it depends on how a radio map is sampled whether E-terms are included
or not. Also not clear is the reason why one would resample a map in FK4-NO-E. Finally, assuming that usu-
ally CRVAL is given in FK4 coordinates seems a bit dangerous. For example for a transformation to Galactic
coordinates the E-terms in the FK4 map are removed while it possibly didn’t contain E-terms at all.

With a primary focus on maps with extragalactic objects we have to be sure that galaxy positions given in FK4
coordinates can reliably be converted to FK5 positions. Cotton (1999) [Cotton] presents a list with galaxy positions
in B1950 and J2000 coordinates from the Uppsala General catalog (UGC). For the J2000 positions they used
Digitized Sky Survey (DSS) images to measure accurate positions of all included UGC galaxies. The positions
are accurate to the arcsecond level. For a sample of these galaxies we converted the B1950 positions and compared
these to the listed J2000 positions in the article. The numbers were accurate to 10 mas, well within the positional
errors given in the listing (which are > 1 arcsecond).

For VLBI data we need another kind of test for accuracy. Aoki (1986) [Aoki2] compares the transformation results
of the B1950 position of 3C273B

a = 12726/33".246, § = 2°19'42".4238, epoch of observation: 1978.62) to J2000 of several authors. He
concludes that different authors use different methods and get different results. Aoki’s method differs a few tens
mas from the J2000 (VLBI radio sources based) catalog position where RA=12h29m6.6997 (no value for Dec was
given). We also noticed that the highest accuracy is obtained if one uses the epoch of observation. Aoki’s result
differs 1.6 mas from the catalog value. The results of celestial.py differ only 0.01 mas in RA compared to Aoki’s
results.

Hering (1998) [Hering] gives a short description of a procedure in which a B1950 position of a radio source is
converted to a J2000 position using the position in B1950 and J2000 of a calibrator source assuming that the
angular distance between these sources is the same in both reference systems. An example of Radio star HIP
66257 was added:

Calibrator: 14044286 (FK4)

alpha (B1950) = 14h 04m 45.613s delta(B1950) = 28d 41lm 29.22"'
1404+286 (ICRF)
alpha (J2000) = 14h 07m 00.3944s delta(J2000) = 28d 27m 14.690"'

Radio star: HIP 66257 = HR 5110, Julian epoch of observation: t0 = 1982.3619
alpha (B1950) = 13h 32m 32.145s delta(B1950) = 37d 26’ 16.18"'
Updated radio star position with respect to the calibrator given
in the ICRF:
alpha (J2000)

13h 34m 45.6817s delta(J2000)

37d 10" 56.854"7

Celestial: FK4 to ICRS
alpha (J2000) = 13h 34m 45.6862s delta(J2000) = 37d 10" 56.790"’

We assumed that the original article has an error in the value of alpha(J2000) of 2 seconds. This must be a typing
mistake because the procedure described in that article is based on Aoki (1986) and when we apply this method
to the data we are close to the corrected position. A difference of 2000 mas cannot be explained otherwise.
The difference between celestial and the updated radio star position using the method of constant angular
distances, is:

(Aa, Ad) = (68 mas, 64 mas)

Hering claims a difference between the updated radio star position and that obtained by (his) formal transformation
from B1950 to J2000 of:

(Aacos(d), Ad) = (20 mas, 7 mas)

It is not straightforward to draw conclusions from these comparisons because the formal transformation is not
described in detail. The results of celestial are close to Aoki’s so if Hering’s method is based on Aoki’s, we
expect comparable differences, which is, for unknown reasons, not the case.

16.5. Radio maps 159

Kapteyn Package Documentation, Release 2.0.3b19

16.6 Galactic Coordinates

According to Blaauw et al. (1959), the original definitions for the Galactic sky systems are:

* The new north galactic pole lies in the direction:
(o, 0) = (12h49m , 27°.4) = (192°.25, 27°.4) (16.44)

(equinox 1950.0)

* The new zero of longitude is the great semicircle originating at the new north galactic pole at the position
angle theta = 123 degrees with respect to the equatorial pole for 1950.0.

* Longitude increases from 0 degrees to 360 degrees. The sense is such that, on the galactic equator increasing
galactic longitude corresponds to increasing Right Ascension. Latitude increases from -90 degrees through
0 degrees to +90 degrees at the new galactic pole.

Given the RA and Dec of the galactic pole, and using the Euler angles scheme Rz(a3).Ry(a2).Rz(al), we first
rotate the spin vector of the XY plane about an angle al = 192.25 degrees and then rotate the spin vector in the
XZ plane (i.e. around the Y axis) with an angle a2 = 90-27.4 degrees to point it in the right declination.

Now think of a circle with the galactic pole as its center. The radius is equal to the distance between this center
and the equatorial pole. The zero point in longitude now is opposite to this pole We need to rotate along this circle
(i.e. a rotation around the new Z-axis) in a way that the angle between the zero point and the equatorial pole is
equal to 123 degrees. So first we need to compensate for the 180 degrees of the current zero longitude, opposite
to the pole. Then we need to rotate about an angle 123 degrees but in a way that increasing galactic longitude
corresponds to increasing Right Ascension which is opposite to the standard rotation of this circle (note that we
rotated the original X axis about 192.25 degrees which flips the direction of rotation when viewed from (0,0,0).
The last rotation angle therefore is a3 = 180-123 degrees. The composed rotation matrix is calculated with:

R = R.(180 — 123)R, (90 — 27.4)R.(192.25) (16.45)

The numbers are the same as in Slalib’s ‘ge50.f” and in the matrix of eq. (32) of Murray (1989) [Murray]. The
numbers in the composed rotation matrix to convert equatorial FK4 mean places to IAU1958 galactic coordinates,
calculated with celestial are:

>>> from kapteyn.celestial import =«

>>> import numpy

>>> m = skymatrix((eq,’bl1950’,fk4d), gal) [0]

>>> print numpy.array2string(numpy.array(m), precision=12)
[-0.066988739415 -0.872755765852 —-0.483538914632]

[0.492728466075 -0.45034695802 0.744584633283]
[-0.867600811151 -0.188374601723 0.460199784784]

Compare this to the numbers in SLALIB’s ge50.f:

[-0.066988739415D0,-0.872755765852D0,-0.483538914632D0]
[+0.492728466075D0,-0.450346958020D0, +0.744584633283D0]
[-0.867600811151D0,-0.188374601723D0,+0.460199784784D0]

And to Murray’s matrix:

[-0.066988739 -0.872755766 —-0.483538915]
[0.492728466 -0.450346958 0.744584633]
[-0.867600811 -0.188374602 0.460199785]

FK4 catalog positions are not corrected for the elliptic terms of aberration. One should remove these terms first
before transforming to galactic coordinates.
Transformations from FKS5 J2000 to Galactic coordinates

Galactic coordinates are defined using features in the FK4 system. If these axes could be identified with catalog
objects one should first remove the E-terms. Then the rotation to FK5 results in a new system of axes that are

160 Chapter 16. Background information module celestial

http://koala.ir.isas.ac.jp/AKARI/iris_data/trac/iraf64/browser/trunk/src/iraf/math/slalib/ge50.f?rev=9

Kapteyn Package Documentation, Release 2.0.3b19

non-orthogonal because the E-term correction depends on the position in the sky. Therefore we consider the
position of the galactic pole as a FK4 position corrected for E-terms (i.e. FK4-NO-E) and apply transformations
only to FK4 positions corrected for E-terms (i.e. we transform from and to the FK4-NO-E system). According to
Blaauw (private communication 2008) the precision in the determination of the position of the galactic pole did
not justify the effort to bother about E-terms. So if we define the position of the Galactic pole to be in FK4-NO-E
coordinates, we don’t change the original definition.

Using this definition of the galactic pole one can find the position of this pole in J2000 coordinates by direct
transformations from FK4-NO-E to FK5 and define a rotation matrix for a transformation from FKS5 to Galactic
coordinates. But to preserve as accurate as possible the galactic coordinates of objects observed in the FK4 system
one should first apply the transformation from FK5 to FK4-NO-E and then apply the transformation from FK4-
NO-E to Galactic coordinates.

We identify the same problem with the conversion from FK4 to Ecliptic coordinates and using the same logic, we
only define transformation between FK4-NO-E and the Ecliptic system.

Note: Transformations involving FK4 coordinates are defined in the FK4-NO-E system. For FK4 catalog posi-
tions, this means that one needs to remove the E-terms first before any transformation is applied.

The composed rotation matrix for FK5 fo Galactic coordinates from celestial is:
>>> m = skymatrix((eq,’ 32000’ ,£fk5), gal) [0]
[-0.054875539396 -0.873437104728 -0.48383499177]

[0.494109453628 -0.444829594298 0.7469822487]
[-0.867666135683 -0.198076389613 0.455983794521]

which is consistent with the transpose of the matrix in eq. 33 of Murray (1989) [Murray].

[-0.054875539 -0.873437105 -0.483834992]
[0.494109454 -0.444829594 0.746982249]
[-0.867666136 —-0.198076390 0.455983795]

And to SLALIB’s galeq.f:

[-0.054875539726D0,-0.873437108010D0,-0.483834985808D0]
[+0.494109453312D0,-0.444829589425D0,+0.746982251810D0]
[-0.867666135858D0,—-0.198076386122D0,+0.455983795705D0]

The SLALIB version also first applies the standard FK4 to FKS5 transformation, for zero proper motion in FK5
and then applies the transformation from FK4 to galactic coordinates.

Galactic coordinates are given in (I,b) (also known as {11, b’/

16.7 Supergalactic coordinates

The Supergalactic equator is conceptually defined by the plane of the local (Virgo-Hydra-Centaurus) supercluster,
and the origin of supergalactic longitude is at the intersection of the supergalactic and galactic planes. Accord-
ing to Corwin (1994) the northern supergalactic pole is at 1=47 degrees.37, b=6 degrees.32 (IAU1958 galactic
coordinates) and the supergalactic longitude (sgl) is zero at 1=137 degrees.37.

For the rotation matrix we chose the scheme R = Rz.Ry.Rz

Then first we rotate about 47 degrees.37 along the Z-axis followed by a rotation about 90-6.32 degrees along the
Y-axis to set the supergalactic pole to the right declination. The new plane intersects the old one at two positions.
One of them is 1=137 degrees.37, b=0 degrees (in galactic coordinates). If we want this position to be sgl=0 we
have to rotate this plane along the new Z-axis about an angle of 90 degrees. So the composed rotation matrix is:

R = R.(90)R, (90 — 6.32) R, (47.37) (16.46)

The numbers in the matrix that converts from galactic to supergalactic coordinates are:

16.7. Supergalactic coordinates 161

http://koala.ir.isas.ac.jp/AKARI/iris_data/trac/iraf64/browser/trunk/src/iraf/math/slalib/galeq.f?rev=9

Kapteyn Package Documentation, Release 2.0.3b19

[=7.357425748044e-01 6.772612964139%9e-01 -6.085819597056e-17]
[=7.455377836523e-02 -8.099147130698e-02 9.939225903998e-01]
[6.731453021092e-01 7.312711658170e-01 1.100812622248e-01]

Compare this to the numbers in SLALIB’s galsup.f

[-0.735742574804D0,+0.677261296414D0,+0.000000000000D0]
[-0.074553778365D0,-0.080991471307D0,+0.993922590400D0]
[+0.673145302109D0,+0.731271165817D0,+0.110081262225D0]

Supergalactic coordinates are given in (sgl, sgb).

16.8 Ecliptic coordinates

The ecliptic coordinate system is a celestial coordinate system that uses the ecliptic for its fundamental plane. The
coordinate system is suitable for objects with small deviations from the ecliptic (e.g. planets).

The latitude is measured positive towards the north. The longitude is measured eastwards and has an angle between
0 degrees and 360 degrees, the same direction as in the equatorial system. The intersection of the ecliptic and the
equatorial plane at Right Ascension zero (vernal equinox) is the origin of the ecliptic longitude. In converting
equatorial coordinates to ecliptic coordinates, only one angle is involved. This angle is known as the obliquity of
the ecliptic. The value for the obliquity depends on epoch. In fact, the ecliptic is the rotation of the equatorial
plane along the X-axis and the rotation angle is the obliquity:

R = R,(e) (16.47)

Like equatorial coordinates, ecliptic coordinates are subject to precession and a value for the equinox is required
to specify positions. Ecliptic coordinates therefore are also related to the reference systems (FK4, FKS and ICRS)
known to the equatorial sky system. ICRS positions are defined without an equinox value so the corresponding
ecliptic coordinates should be fixed also (to J2000). However we apply a frame bias to ICRS to get a position in
the dynamical j2000 system and allow for precession of this system.

According to the IAU 1980 theory of nutation an estimation of the obliquity can be made with the expression:
€ = 23°26'21".448 — 46"81507 — 0000597 + 0”.0018137*° (16.48)

The expression is from Lieske (1977). T is the time, measured in Julian centuries of 36525 days, since ‘basic’
epoch J2000.

The TAU2000 expression is:
€ = €9 — 46”836769T — 07000183172 + 0.0.002003407" — 0.0000005767* — 0.0000000434T° (16.49)
and ¢ = 84381.406 arcseconds.

Ecliptic coordinates are given in (X,)

16.9 ICRS, Dynamical J2000 and FK5

16.9.1 ICRS

In 1991 a new celestial reference system was proposed by the IAU. It was adopted by the IAU General Assembly of
1997 as the The International Celestial Reference System (ICRS) It officially replaced the FKS5 system on January
1, 1998 and is now in common use for positional astronomy. The ICRS is based on a number of extra-galactic
radio sources. The system is centered on the barycenter of the Solar System. It doesn’t depend on any rotating
pole and its origin is close to the mean equinox at J2000. This origin is called the Celestial Ephemeris Origin
(CEO). The realization of the reference frame is provided by a sample of suitable stars from the Hipparcos catalog.
Coordinates in this frame are Right Ascension and Declination. There is no associated equinox but when dealing
with proper motions one should associate an epoch of observation.

162 Chapter 16. Background information module celestial

http://koala.ir.isas.ac.jp/AKARI/iris_data/trac/iraf64/browser/trunk/src/iraf/math/slalib/galsup.f?rev=9

© ® N L R W N —

Kapteyn Package Documentation, Release 2.0.3b19

16.9.2 The dynamical J2000 system

The dynamical J2000 system is based on the real mean position of the equinox at J2000. We follow the inertial
definition (i.e. inertial ecliptic versus rotating ecliptic) which has an offset of 93.66 mas with respect to the
rotating definition. So the offsets of the right ascensions in the next sections are in correspondence with the
inertial definition.

Offsets

The tilt and offset of the FKS5 equator with respect to the ICRS is:
* 19 =-19.9 mas (ICRS pole offset)
* £y =9.1 mas (ICRS pole offset)
e dag =-22.9 (the ICRS right ascension offset)

To transform vectors from ICRS to FK5 at J2000 one uses the rotation matrix:
R = Ry(—n0)Ry(§0) R (dav) (16.50)

The rotation matrix is:

>>> print skymatrix (fk5,icrs)

[[1.00000000e+00 1.11022337e-07 4.41180343e-08]
[=1.11022333e-07 1.00000000e+00 -9.64779274e-08]
[-4.41180450e-08 9.64779225e-08 1.00000000e+00]]

Observations showed that the J2000 mean pole is not at ICRS position (0,0) but at position (-0”.016617, -
07.0068192) and that the J2000 mean equinox was positioned 0”.0146 west of the ICRS meridian (JAU-SOFA
2007).

With the angles:
* 19 =-6.8192 mas
e £y =-16.617 mas
e dog =-14.6 mas

we construct the rotation matrix:

>>> print skymatrix (j2000, icrs)

[[1.00000000e+00, 7.07827948e-08, -8.05614917e-08]
[=7.07827974e-08, 1.00000000e+00, -3.30604088e-08]
[8.05614894e-08, 3.30604145e-08, 1.00000000e+007]

which is similar to the rotation matrix described in eq. 8 of Hilton (2004). In this article the rotation matrix from
J2000 to the ICRS is discussed. The authors follow the rotation scheme R, R, R., but we follow the scheme in
Kaplan (2005) which is equivalent but is a more straightforward translation of the pole offsets and the origin.

So if we define a position (x,y,z) = (0,0,1) in the J2000 system, then we expect in the ICRS system two values that
are approximately the pole offsets. Indeed this is the case as is shown in the next code fragment. Note that the
offsets in x and y can be converted to angles because these angles are very small dz ~ R.d¢:

>>> import numpy as n

>>> from kapteyn.celestial import =«

>>> xyz = n.asmatrix((0,0,1.0), "d’).T

>>> xyz2 = dotrans (skymatrix (j2000,icrs), xyz)
>>> print xyz2

[[-8.05614894e-08],

[-3.30604145e-081,

[1.00000000e+001]

>>> print xyz2[0,0]%(180/n.pi)~*3600000
-16.6170004827

16.9. ICRS, Dynamical J2000 and FK5 163

Kapteyn Package Documentation, Release 2.0.3b19

>>> print xyz2[1,0]*(180/n.pi)~*3600000
-6.8191988238

16.10 Composing other transformations

With the basic transformation described above we can compose all other transformations by composing a new
rotation matrix. In the next figure we show all the transformations that celestial supports.

164 Chapter 16. Background information module celestial

Kapteyn Package Documentation, Release 2.0.3b19

_——————
Gakdic SupsrGabdic SupsrGaboic
|4 1958 to Galackic De Yaucouleurs
Gakdic o
SupsrGabdaic
FK4 bo Galactic Gakdic o FR4
——————] T
FK4 B1G50.0 Add E-tems FK4 B1950.0 Mewcomb's FEA Boooo: x FEA Boooor x Ecliptic (FE4)
E-termes included E-terms memoved precession to Ecliptic Banoox coordirabes
for equatorand
eq uino ak e poch
Bocooe.x
Remowe Eterms Mewcomb's Ecliptic Buoooex
precession b FEA B
FKA ba FKS FES bo FK4
Mumay (L989) Murmay (1989)
EE——
FES |2000 Lieske's peoesior FES o s FES hesooe x Ecliptic (FE5)
to Ecliptic |xooos coordirates
for equatorand
eq uino at e poch
Joooes
— |
Lieske's pecessior Ecliptic o
b FES |rooox
FKS bo ICRS ICRS bo FES
Kaplan Kaplan
ICRS ICRS to Ecliptic Ecliptic (ICRS)
_——————
Ecliptic to ICRS
ICRS bo | 2000 |2000 to ICRS
e
20000 1AL 2000 Meandyn. Jroooex ko Ecliptic coordinates
Meandynamiz | precession e uEtor and Ecliptic for equatorand
e uEbor and J2000 0 bo oo s &4 Linoi ak eq uino at e poch
= Uino epoch |oooe s JESE
at e poch |2000.0
——— -
1AL 2000 Ecliptic epoch oo
precession b oo x

Jroone e bo | 2000

Fig.3 — Schematic overview of all possible transformations in celestial.

16.10. Composing other transformations

165

Kapteyn Package Documentation, Release 2.0.3b19

Note: The figure illustrates that for each transformation from FK4 and for each transformation to FK4, the E-
terms are processed. This has been motivated for transformations between FK4 and FKS. For galactic coordinates
we assume that the galactic pole was given in FK4-NO-E. The difference between the position in FK4 and FK4-
NO-E is much smaller than the errors in the position of the galactic pole which is the motivation to use FK4-NO-E
as the starting point (which means that we use improved mean places anyhow).

16.11 Defaults in relation to FITS

In FITS the type of world coordinate system (celestial system) is specified in keyword CTYPE For equatorial
systems, the reference system in FITS is given with keyword RADESYS

The epoch of the mean equator and equinox is given with FITS keyword EPOCH (deprecated) or EQUINOX For
ecliptic and equatorial systems, some rules are set:

* Epoch is sometimes used to refer to the time of observation so if both keywords are given, EQUINOX takes
preference

* EQUINOKX also applies to ecliptic coordinates

* For RADESYS values of FK4 and FK4-NO-E any stated equinox is Besselian

* RADESYS also applies to ecliptic coordinates

e If for FK4 neither EQUINOX or EPOCH are given, a default of 1950 will be taken
* For RADESYS value of FKS5 the stated equinox is Julian

* If only EQUINOX is given and not RADESYS then the reference system defaults to FK4 if EQUINOX < 1984
and it defaults to FKS if EQUINOX > 1984

e If both RADESYS and EQUINOX are absent then RADESYS defaults to ICRS

* A date of observation is given in keywords MJD-OBS or DATE-OBS

16.12 Glossary

Most of the definitions are from the reference below or from various web sources.
Besselian to Julian epoch B = 1900.0 + (Julian date - 2415020.31352) / 365.242198781 (according to IAU).
Epoch Instant of time.

Epoch B1950 Mean orientation of the earth’s equator and ecliptic at the beginning of the year 1950 (1950,01,01,
12h). It is tied to the sky by star coordinates in the FK4 catalog.

Epoch J2000 Mean orientation of the earth’s equator and ecliptic at the beginning of the year 2000 (2000,01,01,
12h). It is tied to the sky by star coordinates in the FKS catalog.

Equinox An equinox is a moment in time when the center of the Sun can be observed to be directly above the
Earth’s equator. At an equinox, the Sun is at one of two opposite points on the celestial sphere where the
celestial equator (i.e. declination 0) and the ecliptic intersect (Vernal and autumnal points).

Equinox of the date Means that the equinox is the same as the epoch.

Ecliptic The Ecliptic is the plane of the Earth’s orbit, projected onto the sky. Ecliptic coordinates are a spher-
ical coordinate system referred to the ecliptic and expressed in terms of “Ecliptic latitude” and “Ecliptic
longitude”. By implication, Ecliptic coordinates are also referred to a specific “Equinox”

Equator: true equator of a date Is the plane perpendicular to direction of the celestial pole.

Equator: mean equator of a date Is deduced from the true equator of the date by a transformation given by the
nutation theory.

Fiducial point A point on a scale used for reference or comparison purposes. If the plane of the ecliptic and the
plane of the equator is used as lanes of reference, the equinox is used as fiducial point.

166 Chapter 16. Background information module celestial

Kapteyn Package Documentation, Release 2.0.3b19

FK4 FundamentalKatalog 4. The 4th fundamental catalog. The FK4 is an equatorial coordinate system (co-
ordinate system linked to the Earth) based on its B1950 position. The units used for time specification is
the Besselian Year (Fricke & Kopff 1963). See also: Fricke, W., & Kopff, A. 1963, Fourth Fundamental
Katalog (FK4), Veroeff. Astron. Rechen-Inst. Heidelb. No. 10. The FK4 system is not inertial. There is
a small but significant rotation relative to distant objects. So, besides the equinox, an epoch is required to
specify when the mean place was correct.

FKS FundamentalKatalog 5. Based on J2000 positions. The units used for time specification is the Julian year.

Galactic coordinates The galactic coordinate system is a spherical reference system on the sky where the origin
is close to the apparent center of the Milky Way, and the “equator” is aligned to the galactic plane.

ICRS Current astrometric observations and measurements should now be made in the International Celestial
Reference System (ICRS) The best optical realization of the ICRF currently available is the Hipparcos
catalogue. The Hipparcos frame is aligned to the ICRF to within about 0.5 mas For reasons of continuity
and convenience, the orientation of the new ICRS frame was set up to have a close match to FKS5 J2000.
See for example: http://aa.usno.navy.mil/faq/docs/ICRS_doc.php

mas milliarcsecond (1073 arcsec).

Obliquity (of the Ecliptic) This term refers to the angle the plane of the equator makes with the plane of the
Earth’s orbit.

Precession The orientation of the Earth’s axis is slowly but continuously changing, tracing out a conical shape
in a cycle of approximately 25,765 years This change is caused by the gravitational forces (mainly Sun and
Moon).

Reference frame A reference frame consists of a set of identifiable fiducial points on the sky along with their
coordinates, which serves as the practical realization of a reference system.

Reference system A reference system is the complete specification of how a celestial coordinate system is to be
formed. It defines the origin and fundamental planes (or axes) of the coordinate system. It also specifies
all of the constants, models, and algorithms used to transform between observable quantities and reference
data that conform to the system.

16.13 References

16.13. References 167

http://aa.usno.navy.mil/faq/docs/ICRS_doc.php

Kapteyn Package Documentation, Release 2.0.3b19

168 Chapter 16. Background information module celestial

CHAPTER 17

BACKGROUND INFORMATION
SPECTRAL TRANSLATIONS

17.1 Introduction

This background information has been written for two reasons. First we wanted to get some understanding of
the conversions between spectral quantities and second, we wanted to have some knowledge about legacy FITS
headers (of which there must be a lot) where applying the conversions of WCSLIB in the context of module wcs
without modifications will give wrong results.

Warning: One needs to be aware of the fact that WCSLIB converts between frequencies and velocities in the
same reference system while in legacy FITS headers it is common to give a topocentric reference frequency
and a reference velocity in a different reference system.

17.2 Alternate headers for a spectral line example

In “Representations of spectral coordinates in FITS” ([Ref3]), section 10.1 deals with an example of a VLA
spectral line cube which is regularly sampled in frequency (CTYPE3="FREQ’). The section describes how one
can define alternative FITS headers to deal with different velocity definitions. We want to examine this exercise in
more detail than provided in the article to illustrate how a FITS header can be modified and serve as an alternate
header.

The topocentric spectral properties in the FITS header from the paper are:

CTYPE3= 'FREQ’

CRVAL3= 1.37835117405e9
CDELT3= 9.765625e4
CRPIX3= 32

CUNIT3= ’"Hz'

RESTFRQ= 1.420405752e+9
SPECSYS="TOPOCENT’

Note: For a pixel coordinate IV, reference pixel N,y with reference world coordinate W,..; and a step size in
world coordinates AW, the world coordinate W is calculated with:

W(N) = Wyer + (N — Nyey) X AW 7.1

If CTYPE contains a code for a non linear conversion algorithm (as in CTYPE="VOPT-F2W’) then this relation
cannot be applied.

As stated in the note above, code for a conversion algorithm is important. The statements can be verified with the
following script:

169

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Kapteyn Package Documentation, Release 2.0.3b19

#!/usr/bin/env python
from kapteyn import wcs

Z0 = 9120000 # Barycentric optical reference velocity
dZ0 = -2.1882651e+4 # Increment 1in barycentric optical velocity
N = 32 # Pixel coordinate of reference pixel
header = { "NAXIS’ : 1,

"RESTWAV’ : 0.211061140507, # [m]

"CTYPEL1' : 'VOPT',

"CRVAL1" : Z0, # [m/s]

'CDELT1’ . dzo, # [m/s]

"CRPIX1’ : N,

"CUNIT1" : 'm/s’

}

spec = wcs.Projection (header)

print "From VOPT: Pixel, velocity wcs, velocity linear (%s)" % spec.units
pixels = range (30, 35)
Vwcs = spec.toworldld(pixels)

for p,v in zip(pixels, Vwcs):
print p, v/1000.0, (Z0 + (p-N)=%dz0)/1000.0

header = { "NAXIS’ : 1,
"CNAME1” : '"Barycentric optical velocity’,
"RESTWAV’ : 0.211061140507, # [m]
"CTYPEL1' : '"VOPT-F2W’,
' CRVAL1' 70, # [m/s]
'CDELT1’ : dzo, # [m/s]
"CRPIX1" : N,
"CUNIT1’ : 'm/s’

}
spec = wcs.Projection (header)
print "From VOPT-F2W: Pixel, velocity wcs, velocity linear (%s)" % spec.units
pixels = range (30, 35)
Vwcs = spec.toworldld(pixels)
for p,v in zip(pixels, Vwcs):
print p, v/1000.0, (20 + (p-N)=%dz0)/1000.0

Output:

From VOPT: Pixel, velocity wcs, velocity linear (m/s)
Conversion is linear; no differences

30 9163.765302 9163.765302

31 9141.882651 9141.882651

32 9120.0 9120.0

33 9098.117349 9098.117349

34 9076.234698 9076.234698

From VOPT-F2W: Pixel, velocity wcs, velocity linear (m/s)
Conversion is not linear

30 9163.77150335 9163.765302

31 9141.88420123 9141.882651

32 9120.0 9120.0

33 9098.11889901 9098.117349

34 9076.24089759 9076.234698

S H R R H KR W ¥ KR R R R %R R R

17.2.1 Relation optical velocity and barycentric/lsrk reference frequency

Let’s start to find the alternate header information for the header from article in [Ref3] . The extra information
about the velocity there is that we have an optical barycentric velocity of 9120 km/s (as required by an observer)
stored as an alternate FITS keyword CRVAL3Z.:

170 Chapter 17. Background information spectral translations

Kapteyn Package Documentation, Release 2.0.3b19

CTYPE3Z= 'VOPT-F2W’
CRVAL3Z= 9.120e+6 / [m/s]

The relation between frequency and optical velocity requires a rest frequency (RESTFRQ=). The relation is:

Z:C(/\XO)\O):C(VO_V) (172)

v

We adopted variable Z for velocities following the optical definition. The header tells us that equal steps in
pixel coordinates are equal steps in frequency and the formula above shows that these steps in terms of optical
velocity depends on the frequency in a non-linear way. Therefore we set the conversion algorithm to F2W which
indicates that there is a non linear conversion from frequency to wavelength (optical velocities are associated
with wavelength, see [Ref3] .). Note that we can use wildcards for the non linear conversion algorithm, so
CTYPE3Z="VOPT-???’ is also allowed in our programs.

We can rewrite equation 1 into:

V= 71/0
(1+Z/e) (17.3)

If we enter the numbers we get a barycentric HI reference frequency:

1.420405752 x 10°
= = 1378471216.43 H 174
v (1 4 9120000/299792458.0) i (17.4)

and we have part of a new alternate header:

CTYPE3F= 'FREQ’
CRVAL3F= 1.37847121643e+9 / [Hz]

So given an optical velocity in a reference system (in our case the barycentric system), we can calculate which
barycentric frequency we can use as a reference frequency. For a conversion between a barycentric frequency and
a barycentric velocity we also need to know what the barycentric frequency increment is.

17.2.2 Barycentric/lsrk frequency increments

Ve

Ve

Source

Vo Vb

Vb

fig.1 Overview of velocities and frequencies of barycenter (B) and Earth (E) w.r.t. source. The arrows represent
velocities. The object and the Earth are moving. The longest arrow represents the (relativistic) addition of two
velocities

Let’s use index b for variables bound to the barycentric system and e for the topocentric system. This frequency,
vy =1.37847121643 GHz is greater than the reference frequency v, at the observatory (FITS keyword CRVAL3=
1.37835117405 GHz).

The difference between frequencies in the topocentric and barycentric system is caused by the difference
between the velocities of reference frames B and E at the time of observation.

17.2. Alternate headers for a spectral line example 171

Kapteyn Package Documentation, Release 2.0.3b19

This velocity is a true velocity. It is called the fopocentric correction.

Let’s try to find an expression for this topocentric correction in terms of frequencies. The relation between a true
velocity and a shift in frequency is given by the formula

1—v/c c—v c—v

= = = 17.5
vo 1+v/c kY Vom a7
If we want to express the apparent radial velocity in terms of frequencies, then this can be written as:
2 2
vy —V
= 17.6
v=c T2 (17.6)
For the apparent radial velocities v, and v, we have:
2 2 2 2
Vi — vp 1420405752.0° — 1378471216.43
= = 299792458.0 = 8981342.29811 17.7
R 1420405752.02 + 1378471216.432 mfs (7D
and:
2 2 2 2
v — v, 1420405752.0° — 1378351174.05
e = S = 209792458.0 = 9007426.97201 17.8
Ve T2 1420405752.02 + 1378351174.052 m/s (17.8)
The relativistic addition of velocities in fig. 1. requires:
_Up =+ vt
Ve = 7 + o (17.9)
which gives the topocentric correction as:
Ve — U
U= T (17.10)
— Lpe
With the numbers inserted we find:
9007426.97201 — 8981342.29811
Ut = T 89813422081 1x 900742697201 26108.1743997 m/ s (17.11)

299792458.02

If the FITS header has keywords with the position of the source, the time of observation and the location of
the observatory then one can calculate the topocentric correction by hand. This information was needed at the
observatory to set a frequency for a given barycentric velocity. However many FITS files do not have enough
information to calculate the topocentric correction. Also it is not needed if one knows the shifted frequencies v,
and v, , then we can calculate the topocentric velocity without calculating the apparent radial velocities. This can
be shown if we insert the expressions for velocities v, and vy, in the expression for v, . Then after some rearranging
one finds:

2 2
vy — Ve
= 17.12
v =c V202 ()
and with the numbers:
1378471216.43% — 1378351174.052
vy = 299792458.0 = 26108.1743998 m/s (17.13)

1378471216.432 + 1378351174.052

which is consistent with (17.11).

VELOSYSZ=26108 / [m/s]

With a given topocentric correction and the reference frequency in the barycenter we can reconstruct the reference
frequency at the observatory with (17.12) written as:

(17.14)

172 Chapter 17. Background information spectral translations

Kapteyn Package Documentation, Release 2.0.3b19

Note: 1) It is important to realize that the reference frequency at E is smaller than the reference frequency at B
because w.r.t. the source E moves faster than B. So if there is a change in the velocity of the source, the frequencies
in B and E will change, but the topocentric correction keeps the same value and therefore the relation between the
frequencies v, and v, remains the same (eq. (17.14)).

Note: 2) If we forget about the source and we have an event on E with a certain frequency then an observer
in barycenter B will observe a lower frequency. This is because on the line that connects the source and B, the
observatory at E moves away from B which decreases the remote frequency.

So if we change a frequency on E by tuning the receiver at the observatory at frequency v. + Av, , then the
observer at B would observe a smaller frequency v, +Av, . The amount of the decrease is related to the topocentric
correction as follows:

Vo + Avp = (Ve + Avg)y | (17.15)
c+ v
and therefore we can write for the frequency bandwidth in B:
Avy = Avgy | S0 (17.16)
c+ vy

At first it seems that this contradicts eq. (17.14) (where the indices seem to be swapped), but this is not true
because we changed the frame of the observer from Earth to the barycenter. The event was in E and it is observed
in B.

v/299792458.0 — 26108.1743998
v/299792458.0 + 26108.1743998

Ay, = 97656.25 =97647.745732 Hz 17.17)

The increment in frequency therefore becomes 97.64775 kHz:

CDELT3F= 9.764775e+4 / [Hz]

So if we change CRVAL1 and CDELT1 in our demonstration script to the barycentric values, we get the barycentric
optical convention velocities for the pixels. As a check we listed the script and the value for pixel 32 which is
exactly 9120 (km/s):

#!/usr/bin/env python
from kapteyn import wcs
header = { ’'NAXIS’ : 1,
"CTYPE1l’ : ’'FREQ’,
"CRVAL1’ : 1378471216.429278¢6,
"CRPIX1’ : 32,
"CUNIT1’ : ’'Hz',
"CDELT1’ : 97647.745732,
"RESTFRQ’ : 1.420405752e+9
}
spec = wcs.Projection (header) .spectra (' VOPT-F2W")
pixels = range (30, 35)
Vwcs = spec.toworldld(pixels)
print "Pixel, velocity ()" % spec.units
for p,v in zip(pixels, Vwcs):
print p, v/1000.0

print "Pixel at velocity 9120 km/s: ", spec.topixelld(9120000)
Output

Pixel, velocity (m/s)

30 9163.77150423

31 9141.88420167

32 9120.0

33 9098.11889856

34 9076.2408967

Pixel at velocity 9120 km/s: 32.0

HHFH W H H R W H

17.2. Alternate headers for a spectral line example 173

Kapteyn Package Documentation, Release 2.0.3b19

Note: A closure test is added with method fopixelld()

Note: In the previous two sections we started with a topocentric frequency and a topocentric frequency increment
and derived values for a barycentric frequency and a barycentric frequency increment. These values can be used
to set an alternate header (barycentric frequency system ‘F’) for which we can convert between frequency and
optical velocity. For GIPSY legacy headers these steps are used to convert between topocentric frequencies and
velocities in another reference system, See A recipe for modification of Nmap/GIPSY FITS data

17.2.3 Increment in barycentric/lsrk optical velocity

The optical velocity was given by:

vy — vV 140
() —e (M (7.18)
Its derivative is:
dZ —cvy
4o 17.19
dv V2 ()
But for v we have the expression:
Vo
V=
1+ %) (17.20)
so we end up with:
_ 7.2
iZ="01+2) dv (17.21)
140 C

With dv = Aw, and the given barycentric velocity Z, = 9120000 m/s, this gives an increment in optical velocity
of:

—999792458.0 9120000.0 2
47.745732 = —21882.651 (17.22)
T20105752.0 \ * 2097921580) ITOAT T 882.651 m/s

With these values we explained some other alternate header keywords in the basic spectral-line example:

dZy =

CDELT3Z= -2.1882651le+4 / [m/s]
SPECSYSZ= ’'BARYCENT’ / Velocities w.r.t. barycenter
SSYSOBSZ= ' TOPOCENT' / Observation was made from the ’TOPOCENT’ frame

17.2.4 Barycentric/lsrk radio velocity

For radio velocities one needs to apply the definition:

Viadio = V = ¢ (=5 (17.23)
Vo
and for the shifted frequency we derive from this equation:
|4
V=1 (1 — —) (17.24)
c

and the spectral translation code becomes: proj.spectra(‘VRAD’)

In the next code example we demonstrate for a barycentric radio velocity V = 8850.750904 km/s how to calculate
the barycentric velocities at arbitrary pixels. This velocity is derived from the optical example in a way that shifted
frequency and topocentric correction are the same. One can use the formula

Vo w

Zy v
to find the value of V}, = 1.37847121643 % 9120/1.420405752 = 8850.750904 km/s (with the frequencies in GHz
and the velocity in km/s). In a next section we will derive this value in another way; see (17.26) and (17.27)

(17.25)

174 Chapter 17. Background information spectral translations

20

21

22

23

24

25

26

27

28

29

35

36

37

38

39

40

41

42

Kapteyn Package Documentation, Release 2.0.3b19

#!/usr/bin/env python
from kapteyn import wcs
import numpy as n

c 299792458.0
f = 1.37835117405e9
df = 9.765625e4
f0 = 1.420405752e+9
V = 8850750.904

Speed of light (m/s)

Topocentric reference frequency (Hz)
Topocentric frequency increment (Hz)
Rest frequency (Hz)

Barycentric radio velocity (m/s)

HH FH W W K

fb = f0x(1-V/c)

print "Barycentric freq.: ", fb

v = c * ((fbxfb—f+f)/ (fbxfb+fxf))

print "VELOSYSR= Topocentric correction:", v, "m/s"
dfb = dfx(c-v)/n.sqgrt (cxc-v+*v)

print "CDELT3F= Delta in frequency in the barycentric frame eqg.4): ", dfb
header = { "NAXIS’ 1,
"CTYPE1l’ : 'FREQ’,

"CRVALL’ : fb,
"CRPIX1" : 32,
'CUNITL1’ : ’'Hz’,
"CDELT1’ : dfb,
"RESTFRQ’ : 1.420405752e+9
}
line = wcs.Projection (header) .spectra (' VRAD’)
pixels = range(30,35)
Vwcs = line.toworldld(pixels)
for p,v in zip(pixels, Vwcs):
print p, v/1000

Output:

Barycentric freq.: 1378471216.43

VELOSYSR= Topocentric correction: 26108.1745986 m/s

CDELT3F= Delta in frequency in the barycentric frame eq.4): 97647.745732

Output Radio velocities (km/s)
30 8891.97019316

31 8871.36054858

32 8850.750904

33 8830.14125942

34 8809.53161484

S o H R W R KR R R R H

17.2.5 Frequency to Radio velocity

From the definition of radio velocity:

V=c(@Y (17.26)

Vo
we can find a radio velocity that corresponds to the value of the optical velocity. This (barycentric) optical velocity
(9120 Km/s) caused a shift of the rest frequency. The new frequency became v}, = 1.37847122 x 10°Hz. If we
insert this number in the equation above we find:

. (1420405752.0 — 1378471216.43
b 1420405752.0
The formula for a direct conversion from optical to radio velocity can be derived by inserting the formula for the
frequency shift corresponding to optical velocity, into the expression for the radio velocity:
1
1+ £

C

) = 8850750.90419 m/s 17.27)

V:c(l—

) (17.28)

17.2. Alternate headers for a spectral line example 175

Kapteyn Package Documentation, Release 2.0.3b19

With eq. (17.26) it is easy to find the increment of the velocity if the increment in frequency at the reference
frequency is given:

av="Sdv (17.29)
Vo

Note that this increment in frequency is the increment in the barycentric system!
Inserting the numbers with dv = Ay, we find:

 —299792458.0
T 1420405752.0

This gives us another two values for the alternate header keywords:

avy X 97647.7457312 = —20609.644582 m/s (17.30)

CTYPE3R= ' VRAD’
CRVAL3R= 8.85075090419e+6 / [m/s]
CDELT3R= -2.0609645e+4 / [m/s]

Note that CTYPE3R= ‘VRAD'’ indicates that the conversion between frequency and radio velocity is linear.

The next script shows how we can use these new header values to get a list of radio velocities as function of pixel.
We commented out the rest frequency. Its value is not necessary because we can rewrite the formulas for the
velocity in terms of v /vy and Av /i

#!/usr/bin/env python

from kapteyn import wcs

header = { "NAXIS’ 1,
"CTYPE1l" : 'VRAD’,
"CRVAL1" : 8850750.904193053,
"CRPIX1’" : 32,

"CUNIT1’ : 'm/s’,
"CDELT1’ : -20609.644582145629,
"RESTFRQ’: 1.420405752e+9
}
line = wcs.Projection (header)
pixels = range(30,35)
Vwcs = line.toworldld(pixels)

for p,v in zip(pixels, Vwcs):
print p, v/1000

Output barycentric radio velocity in km/s:
30 8891.97019336
31 8871.36054878
32 8850.75090419
33 8830.14125961
34 8809.53161503

HH o W H H W H

Alternatively use the spectral translation method spectra() with the values of the barycentric frequency and fre-
quency increment as follows to get (exactly) the same output:

#!/usr/bin/env python
from kapteyn import wcs
header = { "NAXIS’ 1,
"CTYPE1l’ : 'FREQ’,
"CRVALL" : 1378471216.4292786,
"CRPIX1’" : 32,
"CUNITL1’ : ’'Hz’,
"CDELT1" : 97647.745732,
"RESTFRQ’: 1.420405752e+9
}

line = wcs.Projection (header) .spectra (/' VRAD')
pixels = range(30,35)
Vwcs = line.toworldld (pixels)

176 Chapter 17. Background information spectral translations

Kapteyn Package Documentation, Release 2.0.3b19

for p,v in zip(pixels, Vwcs):
print p, v/1000

Output barycentric radio velocity in km/s:
30 8891.97019336
31 8871.36054878
32 8850.75090419
33 8830.14125961
34 8809.53161503

S o HH W W R R

17.2.6 Frequency to Apparent radial velocity

As written before, the relation between a true velocity and a shifted frequency is:

2 2
vg — v
—c2 - 17.31
v Cy§+y2 ()

Observed from the barycenter the source has an apparent radial velocity:

1420405752.0% — 1378471216.429272
1420405752.02 + 1378471216.42927

vy = 299792458.0 = 8981342.29811 m/s (17.32)

CTYPE3V= 'VELO-F2V’
CRVAL3V= 8.98134229811le+6 / [m/s]

Note that CTYPE3V= ‘VELO-F2V’ indicates that we derived these velocities from a system in which the frequency
is linear with the pixel value.

For the increment of the apparent radial velocity we need to find the derivative of eq. (17.6)

d d _ 1d
=)R+ e) (0 -) (17.33)
This works out as:
—4 2
v=—""0_ gy (17.34)
(v +v?)

and with the appropriate numbers inserted for dv = Ay,

and v = vy:

=4 x299792458.0 x 1378471216.4292786 x 1420405752.02

5 97647.745732 = —21217.55136
(1420405752.0% 4 1378471216.42927862)

dvb
(17.35)

which reveals the value of another keyword from the header in the article’s example:

CDELT3V= -2.121755le+4 / [m/s]

Sometimes you might encounter an alternative formula that doesn’t list the frequency. It uses eq. (17.5) to express
the frequency in terms of the apparent radial velocity and the rest frequency.

B [1—v/c
V=1 1T o/c (17.36)

—4 2
dv = —=%_ g, (17.37)
3 +v2)°

If you insert this into:

17.2. Alternate headers for a spectral line example 177

Kapteyn Package Documentation, Release 2.0.3b19

then after some rearrangements you end up with the expression:

3
dv = —€ (1- 9) 1+ 9)2 dy (17.38)
2 c c
If you insert v = 8981342.29811 (m/s) in this expression you will get exactly the same apparent radial velocity
increment (-2.1217551e+4 m/s).

We found an apparent radial velocity and calculated the increment for this radial velocity. With a short script and

a minimal header we demonstrate how to use WCSLIB to get an apparent radial velocity for an arbitrary pixel:

#!/usr/bin/env python
from kapteyn import wcs

header = { "NAXIS’ 1,
"CTYPE1l’" : ’"VELO-F2V’,
"CRVAL1" : 8981342.2981121931,

"CRPIX1’ : 32,
"CUNIT1’” : 'm/s’,
"CDELT1’ : -21217.5513673598,
"RESTFRQ’: 1.420405752e+9
}

line = wcs.Projection (header)

pixels = range (30, 35)

Vwcs = line.toworldld(pixels)

for p,v in zip(pixels, Vwcs):

print p, v/1000

Output:

30 9023.78022672

31 9002.56055595

32 8981.34229811

33 8960.12545322

34 8938.9100213

FH o H HFH I K

How can this work? From eq. (17.36) and eq. (17.37) it is obvious that WCSLIB can calculate the reference
frequency from the reference apparent radial velocity. For this reference frequency and the increment in apparent
radial velocity it can calculate the increment in frequency at this reference frequency. Then we have all the
information to use eq. (17.36) to calculate radial velocities for different frequencies (i.e. different pixels). Note
that the step in frequency is linear and the step in radial velocity is not (which explains the extension ‘F2V’ in the
CTYPE keyword).

Next script and header is an alternative to get exactly the same results. The header lists the barycentric frequency
and frequency increment. We need a spectral translation with method spectra() to tell WCSLIB to calculate
apparent radial velocities:

#!/usr/bin/env python
from kapteyn import wcs
header = { "NAXIS’ : 1,
"CTYPE1l’ : ’"FREQ',
"CRVAL1’ : 1378471216.4292786,
"CRPIX1’ : 32,
'CUNIT1’ : ’Hz’,
"CDELT1” : 97647.745732,
"RESTFRQ’ : 1.420405752e+9
}
line = wcs.Projection (header) .spectra (/' VELO-F2V’")
pixels = range (30, 35)
Vwcs = line.toworldld(pixels)
for p,v in zip(pixels, Vwcs):
print p, v/1000
Output:
30 9023.78022672
31 9002.56055595

178 Chapter 17. Background information spectral translations

Kapteyn Package Documentation, Release 2.0.3b19

32 8981.34229811
33 8960.12545322
34 8938.9100213

17.2.7 Frequency to Wavelength

The rest wavelength is given by the relation:

Inserting the right numbers we find:

299792458.0

= —————— = 021106114
11201057520 — 0211061140507 m

0

For the barycentric wavelength we need to insert the barycentric frequency.

299792458.0

= arsitialc.ag = V217481841062 m

The increment in wavelength as function of the increment in (barycentric) frequency is:
—c
d\ = —dv
v

With the right numbers:

—299792458.0

dX
This gives us the alternate header keywords:

RESTWAVZ= 0.211061140507 / [m]

CTYPE3W= 'WAVE-F2W’

CRVAL3W= 0.217481841062 / [m]
CDELT3W= -1.5405916e-05 / [m]
CUNIT3W= 'm’

RESTWAVW= 0.211061140507 / [m]

Note that CTYPE indicates that there is a non linear conversion from frequency to wavelength.

From the standard definition of optical velocity:

it follows that the increment in optical velocity as function of increment of wavelength is given by:
c
dZ = — dX
Ao
Then with the numbers we find:

299792458.0

7y = o LIEE00T
9Zv = § 311061140507

x —1.54059158176 x 107° = —21882.6514422 m/s

which is the increment in optical velocity earlier given for CDELT3Z.

(17.39)

(17.40)

(17.41)

(17.42)

(17.43)

(17.44)

(17.45)

(17.46)

This is one of the possible conversions between wavelength and velocity. Others are listed in scs.pdf table 3 of

E.W. Greisen et al. page 750.

17.2. Alternate headers for a spectral line example

179

http://www.atnf.csiro.au/people/mcalabre/WCS/scs.pdf

Kapteyn Package Documentation, Release 2.0.3b19

17.2.8 Conclusions

* Note that the inertial system is set by a (FITS) header using a special keyword (e.g. VELREF=) or it is

coded in the CTYPEn keyword. It doesn’t change anything in the calculations above. Conversions between
inertial reference systems is not possible because headers do (usually) not contain the relevant information to
calculate the topocentric correction w.r.t. that system (one needs time of observation, position of observatory
and position of the observed source).

From a header with CTYPEn="FREQ’ we can derive optical, radio and apparent radial velocities with
method spectra():

— proj = wes.Projection(header).spectra(‘VOPT-F2W’)
— proj = wes.Projection(header).spectra(‘VRAD’)
— proj = wes.Projection(header).spectra(‘VELO-F2V’)

This applies also to alternate axis descriptions. So if CTYPE1="VRAD’ one can derive one of
the other velocity definitions by adding the spectra() method with the appropriate argument.

Here is an example:

\ #!/usr/bin/env python
> from kapteyn import wcs

3 wcs.debug = True

4 header = { "NAXIS’ : 1,

5 "CTYPE1l’ : ’'VRAD’,

6 "CRVAL1’ : 8850750.904193053,

7 "CRPIX1’ : 32,

5 "CUNIT1’ : 'm/s’,

9 "CDELT1’ : -20609.644582145629,
10 "RESTFRQ’ : 1.420405752e+9

1 }

2 line = wcs.Projection (header) .spectra (/' VOPT-F2W’)
13 pixels = range(30,35)

4 Vwcs = line.toworldld(pixels)

5 for p,v in zip(pixels, Vwcs):

16 print p, v/1000

7 # Output:

18 # Velocities in km/s converted from ’'VRAD’ to ’'VOPT-F2W’
19 # 30 9163.77150423

20 # 31 9141.88420167

2 # 32 9120.0

» # 33 9098.11889856

» # 34 9076.2408967

Note that the rest frequency is required now.

Note also that we added statement wcs.debug = True to get some debug information from WC-
SLIB.

* Axis types ‘FREQ-HEL’ and ‘FREQ-LSR’ (AIPS definitions) are recognized by WCSLIB and are treated

as ‘FREQ’. No conversions are done. Internally the keyword SPECSYS= gets a value.

17.2.9 The complete alternate axis descriptions

In this section we summarize the alternate axis descriptions and we add a small script that proves that these
descriptions are consistent:

CNAME= 'Topocentric Frequency. Basic header’
CTYPE3= ’FREQ’

CRVAL3= 1.37835117405e9

CDELT3= 9.765625e4

180

Chapter 17. Background information spectral translations

Kapteyn Package Documentation, Release 2.0.3b19

CRPIX3= 32

CUNIT3= ’Hz'

RESTFRQ= 1.420405752e+9
SPECSYS=' TOPOCENT'

CNAME3Z= ’'Barycentric optical velocity’
RESTWAVZ= 0.211061140507 / [m]
CTYPE3Z= ’'VOPT-F2W’

CRVAL3Z= 9.120e+6 / [m/s]
CDELT3Z= -2.1882651e+4 / [m/s]
CRPIX3Z= 32

CUNIT3Z= 'm/s’

SPECSYSZ='BARYCENT"’ / Velocities w.r.t. barycenter
SSYSOBSZ=" TOPOCENT' / Observation was made from the ’TOPOCENT’ frame
VELOSYSZ= 26108 / [m/s]

CNAME3F= ’Barycentric frequency’
CTYPE3F= ’'FREQ’

CRVAL3F= 1.37847121643e+9 / [Hz]
CDELT3F= 9.764775e+4 / [Hz]
CRPIX3F= 32

CUNIT3F= 'Hz'

RESTFRQF= 1.420405752e+9
SPECSYSF='BARYCENT'

SSYSOBSFEF=' TOPOCENT"

VELOSYSF= 26108 / [m/s]

CNAME3R= ’Barycentric radio velocity’
CTYPE3R= ’VRAD’

CRVAL3R= 8.85075090419e+6 / [m/s]
CDELT3R= -2.0609645e+4 / [m/s]
CRPIX3R= 32

CUNIT3R= 'm/s’

RESTFRQR= 1.420405752e+9
SPECSYSR=’BARYCENT’

SSYSOBSR=' TOPOCENT’

VELOSYSR= 26108 / [m/s]

CNAME3V= ’Barycentric apparent radial velocity’
RESTFRQV= 1.420405752e+9 / [Hz]

CTYPE3V= ’VELO-F2V’

CRVAL3V= 8.98134229811le+6 / [m/s]

CDELT3V= -2.1217551e+4 / [m/s]

CRPIX3V= 32

CUNIT3V= 'm/s’

SPECSYSV='BARYCENT’

SSYSOBSV='TOPOCENT"

VELOSYSV= 26108 / [m/s]

CNAME3W= ’Barycentric wavelength’
CTYPE3W= 'WAVE-F2W’

CRVAL3W= 0.217481841062 / [m]
CDELT3W= -1.5405916e-05 / [m]
CRPIX3W= 32

CUNIT3W= 'm’

RESTWAVW= 0.211061140507 / [m]
SPECSYSW='"BARYCENT'
SSYSOBSW='"TOPOCENT"’

VELOSYSW= 26108 / [m/s]

To check the validity and completeness of these alternate axis descriptions, we wrote a small script that loops over
all the mnemonic letter codes in a header that is composed from the header fragments above. We only changed

17.2. Alternate headers for a spectral line example 181

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

)

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Kapteyn Package Documentation, Release 2.0.3b19

axisnumber 3 to 1. The output is the same within the boundaries of the given precision of the numbers. To change
the axis description in a header we use the alter parameter when we create the projection object.

Parameter alter is an optional letter from ‘A’ through ‘Z’, indicating an alternative WCS axis description:

#!/usr/bin/env python

from kapteyn import wcs

header = { "NAXIS’ 1,
"CTYPEL1' "FREQ’,
"CRVALL’ 1378471216.429278¢6,
"CRPIX1' 32,
’CUNIT1' "Hz',
"CDELTL1’ 97647.745732,
"RESTFRQ’ 1.420405752e+9,
"CNAME1Z' "Barycentric optical velocity’,
"RESTWAVZ' 0.211061140507, # [m]
"CTYPE1Z' "VOPT-F2W’,
" CRVAL1Z' 9.120e+6, # [m/s]
"CDELT1Z’ -2.1882651e+4, # [m/s]
"CRPIX1Z' 32,
"CUNIT1Z’ "m/s’,
" SPECSYSZ’ "BARYCENT’, # Velocities w.r.t. barycenter,
" SSYSOBSZ’ " TOPOCENT’, # Observation was made from the ’TOPOCENT’
' VELOSYSZ’ 26108, # [m/s]
"CNAME1F' "Barycentric frequency’,
"CTYPEL1F' "FREQ’,
" CRVAL1FE’ 1.37847121643e+9, # [Hz]
"CDELT1F’ 9.764775e+4, # [Hz]
' CRPIX1F’ 32,
"CUNITI1FE’ "Hz',
"RESTFRQF’ 1.420405752e+9,
" SPECSYSFE’ "BARYCENT’,
" SSYSOBSEFE’ "TOPOCENT',
"VELOSYSF' 26108, # [m/s]
" CNAME1W’ "Barycentric wavelength’,
"CTYPE1W’ "WAVE-F2W’,
" CRVAL1W’ 0.217481841062, # [m]
"CDELT1W” -1.5405916e-05, # [m]
' CRPIX1W' 32,
" CUNIT1W’ "m’,
"RESTWAVW’ 0.211061140507, # [m]
" SPECSYSW’ "BARYCENT',
" SSYSOBSW’ " TOPOCENT’,
" VELOSYSW’ 26108, # [m/s]
" CNAME 1R’ "Barycentric radio velocity’,
"CTYPEIR' "VRAD’,
" CRVAL1R' 8.85075090419e+6, # [m/s]
" CDELT1R’ -2.0609645e+4, # [m/s]
' CRPIX1R/ 32,
"CUNITIR’ "m/s’,
"RESTFRQR’ 1.420405752e+9,
" SPECSYSR’ "BARYCENT’,
" SSYSOBSR' " TOPOCENT’,
' VELOSYSR/’ 26108, # [m/s]
" CNAME1V' "Barycentric apparent radial velocity’,
"CTYPE1V’ "VELO-F2V’,
/" CRVAL1V’ 8.98134229811e+6, # [m/s]
"CDELT1V’ -2.1217551e+4, # [m/s]
' CRPIX1V' 32,
/CUNIT1V’ 'm/s’,
"RESTFRQV’ 1.420405752e+9, # [Hz]
" SPECSYSV’ "BARYCENT’,
" SSYSOBSV' "TOPOCENT',
182 Chapter 17. Background information spectral translations

frame,

59
60

61

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

83

84

86

87

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

Kapteyn Package Documentation, Release 2.0.3b19

"VELOSYSV’ : 2

6108 # [m/s]

Loop over all the alternative headers

for alt in

S H R R O R R H S R O R ¥ S R Y e R Y P R Y P R R P R Y O R W R

[IFI, IZI’ le’

IRI, !vl]:

spec = wcs.Projection (header, alter=alt) .spectra (/' VOPT-F2W’)
pixels = range (30, 35)
Vwcs = spec.toworldld(pixels)
cname = header[’CNAME1l’ +alt] # Just a header text
print "VOPT-F2W from %s" % (cname,)
print "Pixel, velocity (%s)" % spec.units
for p,v in zip(pixels, Vwcs):
print p, v/1000.0
Output
VOPT-F2W from Barycentric frequency

velocity (m/s)
77150598

88420246

32 9119.99999984

33 9098.11889745

34 9076.24089463

VOPT-F2W from Barycentric
Pixel, velocity (m/s)

30 9163.77150335

31 9141.88420123

32 9120.0

33 9098.11889901

34 9076.24089759

VOPT-F2W from Barycentric
Pixel, velocity (m/s)

30 9163.77150495

31 9141.88420213

32 9120.0000002

33 9098.1188985

34 9076.24089638
VOPT-F2W from Barycentric
Pixel, velocity (m/s)

30 9163.77150512

31 9141.88420211

32 9120.0

33 9098.11889812

34 9076.24089581

VOPT-F2W from Barycentric
Pixel, velocity (m/s)

30 9163.77150347

31 9141.88420129

32 9120.0

33 9098.11889894

34 9076.24089746

Pixel,
30 9163.
31 9141.

optical velocity

wavelength

radio velocity

apparent radial velocity

17.3 Alternative conversions

17.3.1 Conversion between radio and optical velocity

In the next two sections we give some formula’s that could be handy if you want to verify numbers. They are not
used in WCSLIB.

17.3. Alternative conversions

183

Kapteyn Package Documentation, Release 2.0.3b19

With the definitions for radio and optical velocity it is easy to derive:
- =— (17.47)

This can be verified with:
e Z =9120000.00000 m/s
* V =8850750.90419 m/s
* 1y = 1420405752.00 Hz
* 1, =1378471216.43 Hz
Both ratios are equal to 1.030421045482.

17.3.2 Conversion between apparent radial velocity and optical/radio velocity

It is possible to find a relation between the true velocity and the optical velocity using eq. (17.3) and eq. (17.7).
The apparent radial velocity can be written as:

2
v
Z = Zi (17.48)
C Tg + 1
The frequency shift for an optical velocity is:
Z
P _ (1+2) (17.49)
v c
Then:
v (1+Z/e)? -1 Z?+2Z

- = = 17.50
¢ (1+Z/e)*+1 Z2+2cZ +2c3 ()

This equation is used in AIPS memo 27 [Aipsmemo] to relate an optical velocity to an apparent radial velocity. If
we insert Z, = 9120000 (m/s) then we find v, = 8981342.29811 (m/s) as expected (eq. (17.7), (17.32))

For radio velocities we find in a similar way:

o L 17.51
R 751
which gives the relation between apparent radial velocity and radio velocity:
_ 12
v_ 2V -VE (17.52)
¢ V2—-2cV + 2¢2

If we substitute the calculated barycentric radio velocity V;, = 8850750.90419 (m/s) then one finds again: v, =
8981342.29811 (m/s) (see also (eq. (17.7), (17.32)) Note that the last formula is equation 4 in AIPS memo 27
[Aipsmemo] Non-Linear Coordinate Systems in AIPS. However that formula lacks a minus sign in the nominator
and therefore does not give a correct result.

17.4 Legacy headers

17.4.1 A recipe for modification of Nmap/GIPSY FITS data

For FITS headers produced by Nmap/GIPSY we don’t have an increment in velocity available so we cannot use
them as input for WCSLIB (otherwise we would treat them like the FELO axis recognized by AIPS). The Python
interface to WCSLIB applies a conversion for these headers before they are processed by WCSLIB. From the
previous steps we can summarize how the data in the Nmap/GIPSY FITS header is changed:

184 Chapter 17. Background information spectral translations

20
21
22
23
24
25
26
27
28

29

Kapteyn Package Documentation, Release 2.0.3b19

¢ The extension in CTYPEn is --OHEL’, ‘-OLSR’, ‘-RHEL’ or ‘-RLSR’
* The velocity is retrieved from FITS keyword VELR= (always in m/s) or DRVALn= (in units of DUNITn)
» Convert reference frequency to a frequency in Hz.

¢ Calculate the reference frequency in the barycentric system using eq. (17.3) if the velocity is optical and eq.
(17.24) if the velocity is a radio velocity.

* Calculate the topocentric velocity using eq. (17.12)
» Convert frequency increment to an increment in Hz
* Calculate the increment in frequency in the selected reference system (HEL, LSR) using eq. (17.16).
* Change CRVALn and CDELTn to the barycentric values
* Change CTYPEn to ‘FREQ’
* Create a projection object with spectral translation, e.g. proj.spectra(‘VOPT-F2W?)
In the following script we show:
* the (invisible) conversion to the heliocentric system
* how to get the same output by applying the appropriate formulas
¢ the approximation that GIPSY uses

from kapteyn import wcs
from math import sqgrt

header = { "NAXIS’ 1,
"CTYPE1l’ : ’"FREQ-OHEL’,
"CRVAL1" : 1.415418199417E+09,

"CRPIX1' : 32,

"CUNIT1’ : 'HZ',

"CDELT1" : -7.812500000000E+04,
" VELR' : 1.050000000000E+06,

"RESTFRQ’: 0.14204057520000E+10

f = crval = header [’ CRVAL1']

df = cdelt = header[’'CDELT1’]
crpix = header [’ CRPIX1’]

velr = header[’VELR’]

f0 = header[’RESTFRQ’]

c = wcs.cC # Speed of light

print "VELR is the reference velocity given in the velocity frame"
print "coded in CTYPE (e.g. HEL, LSR)"

print "The velocity is either an optical or a radio velocity. This"
print "is also coded in CTYPE (e.g. 'O', 'R’")"

proj = wcs.Projection (header)
spec = proj.spectra(ctype='VOPT-F2W")
pixrange = range (crpix—3, crpix+3)

V = spec.toworldld(pixrange)
print "\n VOPT-F2W with spectral translation:"
for p, v in zip(pixrange, V):

print " "% (p, v/1000)

print "\n VOPT calculated:"

fb = f0/(1.0+velr/c)

Vtopo = ¢ * ((fbxfb—f*f)/ (fbxfb+fxf))
dfb = df* (c-Vtopo) /sqrt (cxc-Vtopo*Vtopo)
for p in pixrange:

17.4. Legacy headers 185

43

44

45

46

47

48

Kapteyn Package Documentation, Release 2.0.3b19

f2 = fb + (p-crpix) ~dfb
7 = c « (f0/f2-1.0)
print " "% (p, Z/1000.0)

print "\nOptical with native GIPSY formula, which is an approximation:"
fR = crval
dfR = cdelt
for p in pixrange:
Zs = velr + c+xf0x (1/ (fR+ (p-crpix) *dfR)-1/fR)
print " "% (p, Z2s/1000.0)

Output:

VELR is the reference velocity given in the velocity frame
coded in CTYPE (e.g. HEL, LSR)

The velocity is either an optical or a radio velocity. This
is also coded in CTYPE (e.g. '0O’, 'R’)

VOPT-F2W with spectral translation:

29 1000.194731
30 1016.794655
31 1033.396411
32 1050.000000
33 1066.605422
34 1083.212677

VOPT calculated:

29 1000.194731
30 1016.794655
31 1033.396411
32 1050.000000
33 1066.605422
34 1083.212677

VOPT with native GIPSY formula, which is an approximation:

29 1000.191559
30 1016.792540
31 1033.395354
32 1050.000000
33 1066.606480
34 1083.214793

The Python interface allows for an easy implementation for these special exceptions. Here is a script that uses this
facility. The conversion here is triggered by the CTYPE extension OHEL. So as long this is unique to GIPSY
spectral axes, you are safe to use it. Note that we converted the frequencies to optical, radio and apparent radial
velocities. This is added value to the existing GIPSY implementation where these conversions are not possible.
These WCSLIB conversions are explained in previous sections:

#!/usr/bin/env python

from kapteyn import wcs

header = { "NAXIS’ 1,
"CTYPE1l’ : ’"FREQ-OHEL’,
"CRVAL1" : 1.37835117405e9,
"CRPIX1’ : 32,
"CUNIT1"” : "Hz',
"CDELT1’ : 9.765625e4,
"RESTFRQ’: 1.420405752e+9,
"DRVAL1’ : 9120000.0,

’VELR’ : 9120000.0
"DUNITL1’ : 'm/s’
}
proj = wcs.Projection (header)

186 Chapter 17. Background information spectral translations

20

21

22

23

24

25

26

27

28

29

30

39

40

41

42

43

44

45

46

47

48

49

51

52

54

55

Kapteyn Package Documentation, Release 2.0.3b19

pixels = range (30, 35)

voptical = proj.spectra (/' VOPT-F2W’")
Vwcs = voptical.toworldld(pixels)
print "\nPixel, optical velocity (%s)" % voptical.units
for p,v in zip(pixels, Vwcs):
print p, v/1000.0

vradio = proj.spectra(’VRAD")
Vwcs = vradio.toworldld(pixels)
print "\nPixel, radio velocity (%s)" % vradio.units
for p,v in zip(pixels, Vwcs):
print p, v/1000.0

vradial = proj.spectra (/' VELO-F2V’)
Vwcs = vradial.toworldld(pixels)
print "\nPixel, apparent radial velocity ()" % vradial.units
for p,v in zip(pixels, Vwcs):
print p, v/1000.0

Output:

Pixel, optical velocity (m/s)
30 9163.77150423

31 9141.88420167

32 9120.0

33 9098.11889856

34 9076.2408967

Pixel, radio velocity (m/s)
30 8891.97019336
31 8871.36054878
32 8850.75090419
33 8830.14125961
34 8809.53161503

Pixel, apparent radial velocity (m/s)
30 9023.78022672
31 9002.56055595
32 8981.34229811
33 8960.12545322
34 8938.9100213

FHoH H H M W H HHE H K H H W W H H W H R R

Note: Note that changing DRVALI to VELR gives the same output. Both are recognized as keywords that store
a velocity. The value in VELR should always be in m/s. Note also how we created different sub-projections (one

for each type of velocity) from the same main projection. All these objects can coexist.

17.4.2 AIPS axis type FELO

Next script and output shows that with the optical reference velocity and the corresponding increment in velocity
(CDELT3Z), we can get velocities without spectral translation. WCSLIB recognizes the axis type ‘FELO’ which
is regularly gridded in frequency but expressed in velocity units in the optical convention. It is therefore not a
surprise that the output is the same as the list with optical velocities derived from the spectral translation ‘“VOPT-

F2wW’.

We can prove this if we calculate the barycentric reference frequency and its increment. If Zr is the optical

reference velocity then we find the barycentric reference frequency with:

o= Y0
o1+ %)

(17.53)

17.4. Legacy headers

187

20

21

Kapteyn Package Documentation, Release 2.0.3b19

and from
_ 7.2
iz = —=(1+22) dv (17.54)
)
we derive:
—vp
dv = dz 17.55
(1+2) e
which we rewrite in:
—lpC
dv = ——— dZ 17.56

So if we have a barycentric reference velocity and a barycentric velocity increment, then according to the formu-
las above it is easy to retrieve the values for the barycentric reference frequency and the barycentric frequency
increment. The script below proves that indeed with these values the optical velocities are derived from a linear

frequency axis and not from a linear velocity axis (see the last option in this script):

#!/usr/bin/env python

from kapteyn import wcs
from numpy import arange

header = { "NAXIS’ 1,
"CTYPEL' 'FELO-HEL',
" CRVAL1’ 9120,
"CRPIX1’ 32,
" CUNITL1’ "km/s’,
"CDELT1’ : -21.882651442,
"RESTFRQ’ : 1.420405752e+9

}

crpix = header[’CRPIX1’]

pixrange =

arange (crpix—2,

proj = wcs.Projection (header)
Z = proj.toworldld(pixrange)

print "Pixel,

velocity

(km/s)

for p,v in zip(pixrange, Z):

print p,

v/1000.0

crpix+3)

with native header with FELO-HEL"

Calculate the barycentric reference frequency and the frequency increment
f0 = header['RESTFRQ’]

7Zr = header[’CRVAL1’] = 1000.0 # m/s

dZ = header[’CDELT1’] * 1000.0 # m/s

25

26

27

28

29

30

39

40

41

42

43

c = wcs.c
fr = £0 / (1 + Zr/c)

print "\nCalculated a reference frequency: ", fr
df = —f0+x dZ *c / ((c+Zr)*(c+Zr))

print "Calculated a frequency increment: ", df
Z = Zr + c+f0x (1/ (fr+ (pixrange-crpix) +xdf)-1/fr)

print "Pixel,

velocity

(km/s)

for p,z in zip(pixrange, 2):

print p,

z/1000.0

FELO-HEL is equivalent to VOPT-F2W

header [’CTYPEL1’] = 'VOPT-F2W’
proj = wcs.Projection (header)

Z = proj.toworldld(pixrange)

print "\nPixel, velocity

for p,v in zip(pixrange, Z):

print p,

Now as a linear axis.

v/1000.0

(km/s)

with spectral translation VOPT-F2W"

Note that thoe output of toworld is in km/s

with barycentric reference frequency and increment:"

188

Chapter 17. Background information spectral translations

44

45

46

47

48

49

50

Kapteyn Package Documentation, Release 2.0.3b19

and not in standard units (m/s) as for the recognized axis types
header ['CTYPEL1"] = "FELO’
proj = wcs.Projection (header)
Z = proj.toworldld(pixrange)
print "\nPixel, velocity (km/s) with CUNIT=’FELO’, which is unrecognized "
print "and therefore linear. This deviates from the previous output."
print "The second velocity is calculated manually."
for p,v in zip(pixrange, Z):
print p, v, (Zr+(p-crpix)~*dz)/1000.0

Output:

Pixel, velocity (km/s) with native header with FELO-HEL
30 9163.77150423

31 9141.88420167

32 9120.0

33 9098.11889857

34 9076.24089671

Calculated a reference frequency: 1378471216.43

Calculated a frequency increment: 97647.7457311

Pixel, velocity (km/s) with barycentric reference frequency and increment:
30 9163.77150423

31 9141.88420167

32 9120.0

33 9098.11889857

34 9076.24089671

Pixel, velocity (km/s) with spectral translation VOPT-F2W
30 9163.77150423

31 9141.88420167

32 9120.0

33 9098.11889857

34 9076.24089671

Pixel, velocity (km/s) with CUNIT=’'FELO’, which is unrecognized
and therefore linear. This deviates from the previous output.
The second velocity is calculated manually.

30 9163.76530288 9163.76530288

31 9141.88265144 9141.88265144

32 9120.0 9120.0

33 9098.11734856 9098.11734856

34 9076.23469712 9076.23469712

So in this script we demonstrated the use of a special velocity axis type which originates from a classic AIPS data
FITS file. It is called ‘FELO’. WCSLIB (and not our Python interface) recognizes this type as an optical velocity
and performs the necessary internal conversions as we can see in the source code:

if (strcmp(wcs—->ctypeli], "FELO") == 0) {
strcpy (wcs—>ctype[i], "VOPT-F2W");

The source code also reveals that the extensions in CUNITn are translated into values for FITS keyword SPECSYS:

if (strcmp(scode, "-LSR") == 0) {
strcpy (wcs—>specsys, "LSRK");

} else if (strcmp(scode, "-HEL") == 0) {
strcpy (wcs—>specsys, "BARYCENT");

} else if (strcmp(scode, "-OBS") == 0) {

strcpy (wcs—>specsys, "TOPOCENT");

Conclusions

17.4. Legacy headers 189

25

Kapteyn Package Documentation, Release 2.0.3b19

* The extension HEL or LSR after FELO in CTYPE] is not used in the calculations. But when you omit a
valid extension the axis will be treated as a linear axis.

¢ In the example above one can replace FELO-HEL in CTYPE] by FITS standard VOPT-F2W showing that
for WCSLIB FELO-HEL is in fact the same as VOPT-F2W.

17.4.3 AIPS axis type VELO

In this section we want to address the question what WCSLIB does if it encounters an AIPS VELO-XXX axis
as in CTYPEI="VELO-HEL’ or ‘VELO-LSR’. From the AIPS documentation we learn that VELO is regularly
gridded in velocity (m/s) in the optical convention, unless overridden by use of the VELREF keyword. VELREF
is an integer. From the documentation of WCSLIB we learn that for Classic Aips:

1. LSR kinematic, originally described simply as “LLSR” without distinction between the kinematic and dy-
namic definitions.

2. Barycentric, originally described as “HEL” meaning heliocentric.

3. Topocentric, originally described as “OBS” meaning geocentric but widely interpreted as topocentric.
And for AIPS++ extensions to VELREF which are also recognized:

4. LSR dynamic.

5. Geocentric.

6. Source rest frame.

7. Galactocentric.
Note: From the WCSLIB documentation:

For an AIPS ‘VELO’ axis, a radio convention velocity is denoted by adding 256 to VELREF, otherwise an optical
velocity is indicated (not applicable to ‘FELO’ axes). Unrecognized values of VELREF are simply ignored.
VELREEF takes precedence over CTYPEia in defining the Doppler frame.

Note: Only WCSLIB (versions >=4.5.1) do recognize keyword VELREF'.
We show the use of VELREF with the following script:
#!/usr/bin/env python

from kapteyn import wcs
from math import sqgrt

VO = —-.24300000000000E+06 # Radio vel in m/s

dv = 5000.0 # Delta in m/s

f0 = 0.14204057583700e+10

c = wcs.c # Speed of light 299792458.0 m/s
crpix = 32

pixels = range (30, 35)

header = { "NAXIS’ : 1,
"CTYPE1l’ : ’'VELO-HEL’,
'VELREF’ : 258,
"CRVALL’ : VO,
"CRPIX1" : crpix,
"CUNIT1’ : 'm/s’,

"CDELT1’ : dv,
"RESTFRQ’ : £0
}

print "The velocity increment is constant and equal to (km/s): "\
% (dv/1000.0)

proj = wcs.Projection (header)

190 Chapter 17. Background information spectral translations

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

)

43

44

45

46

47

48

49

50

51

53

54

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

2

73

74

75

76

77

78

79

80

Kapteyn Package Documentation, Release 2.0.3b19

print "Allowed spectral translations", proj.altspec
P2 = proj.spectra(/VOPT-27272")

print "\nTl. Radio velocity directly from header and optical velocity"
print "from spectral translation. VELO is a radio velocity here because"
print "VELREE > 256"

\Y proj.toworldld (pixels)
Z = p2.toworldld(pixels)
print "Pixel Vradio in (km/s) and Voptical (km/s)"
for p,v,z in zip(pixels, V, Z):
print "$%4d $15f ¢15f" % (p, v/1000, z/1000)

print "\nT2. Now insert CTYPEl='VRAD’ in the header and convert to VOPT-F2W"
print "with a spectral translation (Z1) and with a calculation (Z2)"

print "This should give the same results as in table T1."

header [’ CTYPE1’] = ’VRAD’

proj = wcs.Projection (header)

p2 = proj.spectra (/' VOPT-F2W’)

Z0 = proj.toworldld(pixels)

z1 p2.toworldld (pixels)

print "\nWith CTYPE='RAD’ and spec.trans 'VOPT-F2W’: Pixel , Vrad, Z1 (km/s), 22 (km/s)"

for p,z0,z1 in zip(pixels, z0, Z1):
V = V0 + (p-crpix)*dv
nu_r = f0x (1-V/c)
72 = cx ((f0-nu_r) /nu_r)
print p, z0/1000, 2z1/1000, Z2/1000

print "\nT3. We set CTYPEl to VELO-HEL and VELREF to 2 (Helio) and "
print "derive optical and radio velocities from it. Compare these with"
print "the relativistic velocity in Table T4."

header [’ CTYPE1l’] = ’VELO-HEL'
header [’ VELREF’] = 2
proj = wcs.Projection (header)

print "Allowed spectral translations for VELO as optical velocity", proj.altspec
P2 = proj.spectra(/VRAD-?727?")
V = proj.toworldld(pixels)
Z = p2.toworldld(pixels)
print "Pixel Voptical in (km/s) and Vradio (km/s)"
for p,v,z in zip(pixels, V, Z):
print "$%4d $15f ¢15f" % (p, v/1000, z/1000)

print "\nT4. Next a list with optical velocities calculated from relativistic"
print "velocity with constant increment."
print "If these values are different from the previous optical velocity then "
print "obviously the velocities derived from the header are not relativistic"
print "as in pre 4.5.1 versions of WCSLIB."
v0 = VO
for i in pixels:

vl = v0 + (i-crpix) *dv

beta = vl/c

frac = (l-beta)/ (l+beta)

f = £0 * sqgrt(frac)

Z = cx (£f0-f)/f

print "%4d $15f" % (1 ,Z/1000.0)

Output:

The velocity increment is constant and equal to 5.000000 (km/s):

Allowed spectral translations [('FREQ’, ’'Hz’), ('ENER’, 'J’), ('WAVN', '/m’),
("VOPT-F2W’, ’'m/s’), ('VRAD’, 'm/s’), ('VELO-F2V’, 'm/s’), ('WAVE-F2W’', 'm’'),
(" ZOPT-F2W’, '’), ('AWAV-F2A’, 'm’), ('BETA-F2V’', '’)]

17.4. Legacy headers 191

Kapteyn Package Documentation, Release 2.0.3b19

Tl. Radio velocity directly from header and optical velocity
from spectral translation. VELO is a radio velocity here because
VELREF > 256

Pixel Vradio in (km/s) and Voptical (km/s)

30 -253.000000 -252.786669
31 -248.000000 -247.795014
32 -243.000000 -242.803193
33 -238.000000 -237.811206
34 —-233.000000 -232.819052

T2. Now insert CTYPEl1='VRAD’ in the header and convert to VOPT-F2W
with a spectral translation (Z1) and with a calculation (Z2)
This should give the same results as in table T1.

With CTYPE='’RAD’ and spec.trans ’'VOPT-F2W’: Pixel , Vrad, 71 (km/s), Z2 (km/s)
30 —-253.0 -252.786668992 -252.786668992
31 -248.0 -247.795014311 -247.795014311
32 -243.0 -242.803193261 -242.803193261
33 -238.0 -237.811205834 -237.811205834
34 -233.0 -232.819052022 -232.819052022

T3. We set CTYPEl to VELO-HEL and VELREF to 2 (Helio) and

derive optical and radio velocities from it. Compare these with

the relativistic velocity in Table T4.

Allowed spectral translations for VELO as optical velocity [(/FREQ-W2F’, ’'Hz'),
("ENER-W2F’, 'J’), ('WAVN-W2F’, ’/m’), ('VOPT’, ’'m/s’), ('VRAD-W2F’, 'm/s’),

(' VELO-W2V’, 'm/s’), ('WAVE’, 'm’), ('ZOPT’, ’’), ('AWAV-W2A’, 'm’),

(' BETA-W2V', '')]

Pixel Voptical in (km/s) and Vradio (km/s)

30 -253.000000 -253.213691
31 -248.000000 -248.205325
32 -243.000000 -243.197126
33 —-238.000000 -238.189094
34 -233.000000 -233.181229

T4. Next a list with optical velocities calculated from relativistic
velocity with constant increment.

If these values are different from the previous optical velocity then
obviously the velocities derived from the header are not relativistic
as in pre 4.5.1 versions of WCSLIB.

30 -252.893335
31 -247.897507
32 -242.901597
33 -237.905603
34 -232.909526

We used eq. (17.5) to calculate a frequency for a given apparent radial velocity. This frequency is used in eq.
(17.2) to calculate the optical velocity. The script proves:

» Axis VELO-HEL is processed as an optical velocity and if keyword VELREF is present and its value is
greater than 256, then VELO-HEL is processed as a radio velocity. In versions of WCSLIB < 4.5.1, the
VELO-XXX axis was processed as VELO i.e. a relativistic velocity.

Note: From the WCSLIB API documentation:

AIPS-convention celestial projection types, NCP and GLS, and spectral types, ‘{FREQ,FELO,VELO}-
{OBS,HEL,LSR}’ as in ‘FREQ-LSR’, ‘FELO-HEL’, etc., set in CTYPEia are translated on-the-fly by wcsset()
but without modifying the relevant ctype[], pv[] or specsys members of the wesprm struct. That is, only the in-
formation extracted from ctypel] is translated when wcsset() fills in wesprm::cel (celprm struct) or wesprm::spc
(spcprm struct).

On the other hand, these routines do change the values of wcsprm::ctype[], wesprm::pv[], wesprm::specsys and
other wesprm struct members as appropriate to produce the same result as if the FITS header itself had been

192 Chapter 17. Background information spectral translations

Kapteyn Package Documentation, Release 2.0.3b19

translated.

17.4.4 Definitions and formulas from AIPS and GIPSY

AIPS

A radio velocity is defined by:

’

V=22 (17.57)
Vo
where v is the Doppler shifted rest frequency, given by:
c—v
ctv

v =gy /() (17.58)
Equivalent to the relativistic addition of apparent radial velocities we can derive a relation for radio velocities if
the velocities in given in different reference systems.

The addition of apparent radial velocities is given in AIPS memo 27 [Aipsmemo] Non-Linear Coordinate Systems
in AIPS (Eric W. Greisen, NRAO) Greisen, is

Vs + Vobs

-1 T 'Usgé)bs

(17.59)

To stay close to our previous examples and definitions we set v5 which is the apparent radial velocity of an object
w.r.t. an inertial system, to be equal to v (our inertial system in this case is barycentric).

The other velocity, v,y is equal to the topocentric correction: v; and the result v = v, the apparent radial velocity
of the object as we would observe it on earth.

Then we get the familiar formula (eq. (17.9)):

o = ot U 17.60
€] e (17.60)

c2

With the relation between V and v and the relativistic addition of velocities we find that the radio velocities in
different systems are related according to the equation:

Ve=Vy+ Vi =V Vi /c (17.61)

(see also AIPS memo 27 [Aipsmemo]). The barycentric radio velocity was calculated in a previous section.
Its value was V}, = 8850750.90404 m/s. With the topocentric reference frequency 1378351174.05 Hz we find
V. = 8876087.18567 m/s. We know from fig. 1 that the topocentric correction is positive. To calculate the
corresponding radio velocity V; we use:

. 1378471216.43 — 1378351174.05
Yo = Ve _ 999792458.0 x .)

V:
=l 1378471216.43

= 26107.03781 m/s (17.62)

With these values for V}, and V; you can verify that the expression for V, is valid.

8850750.90404 x 26107.03781
= .90404 + 26107. 1— = 1 17.63
V. = 8850750.90404 + 26107.0378 5997924530 8876087.18567 m/s ()

which is the value of V, that we found before using the topocentric reference frequency, so we can have confidence
in the relation for radio velocities as found in the AIPS memo [Aipsmemo] .
But this radio velocity V. (w.r.t. observer on Earth) for a pixel N is also given by the relation:
C (&
Ve(N) = —;O(Ve(N) —1) = —;O(Ve +6,(N — N,) —) (17.64)
It is important to emphasize the meaning of the variables:

* v, = topocentric reference frequency).

17.4. Legacy headers 193

Kapteyn Package Documentation, Release 2.0.3b19

* 4, = the increment in frequency per pixel in the topocentric system
* N, = the frequency reference pixel
e N = the pixel

If we use the previous formulas we can also write:

Vo(Nv) = V] + Vi — V{ViJe (17.65)
Vo(Ny) = _y%("e +6,(Ny = N,) — 1) (17.66)

The velocity Vb, is the barycentric reference velocity at velocity reference pixel Ny .

From these relations we observe:

Vo(N) =V,
Vp(N) = % (17.67)
and from eq. (17.65) with Vb/ = V3(Ny):
Ve(Nv) — Vp(Ny)
Vv, = ¢ e (17.68)

Using also the equations with the frequencies, we can derive the following expression for V,(V):

51,(6 — ‘/I,(Nv))(N — Nv)
Ve + 6D(NV - Nu)

Vi(N) = Vy(Ny) — (17.69)

or in an alternative notation:
Vp(N) = Vo (Nv) + ov (N — Ny) (17.70)

Note that in AIPS memo 27 [Aipsmemo] the variable Vy is used for V;,(Ny) and Vi and Ny are stored in AIPS
headers as alternative reference information (if frequency is in the main axis description).

The difference between the velocity and frequency reference pixel can be expressed in terms of the radio velocities
Vi (Ny) and Vi, (N,). It follows from eq. (17.69)) that for N = N, and a little rearranging:

17.71
5, [c=Vh(N,)] (17.70)

We conclude that either one calculates (barycentric) radio velocities using the reference frequency and the fre-
quency increment from the header, or one calculates these velocities using a reference velocity and a velocity
increment from the header.

Note that we assumed that the frequency increment in the barycentric system is the same as in the the system of
the observer, which is not correct. However the differences are small (Iess than 0.01% for 100 pixels from the
reference pixel for typical observations as in our examples).

For optical velocities Greisen derives:
Ze=2Zy+ Zs + ZpZi/c (17.72)

and:
6y (c+ Zy(Nv)) (N — Nyz)

Zy(N) = Zp(Ny) — 17.73
b() b(V) Ve+5y(N_Ny) ()
The difference between the velocity and frequency reference pixels in terms of optical velocity is:
Ve | Zp(N,) — Zp(N.
Nz —N, = Zo(Ny) = Z(Nz)] (17.74)

8, [c+ Zo(N,)]

Next script demonstrates how we reconstruct the topocentric optical velocity and the reference pixel for that
velocity as it is used in the AIPS formula. Then we compare the output of the WCSLIB method and the AIPS
formula:

194 Chapter 17. Background information spectral translations

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

Kapteyn Package Documentation, Release 2.0.3b19

#!/usr/bin/env python
from kapteyn import wcs
import numpy

c = 299792458.0 # m/s From literature

f0 = 1.42040575200e+9 # Rest frequency HI (Hz)

fR = 1.37835117405e+9 # Topocentric reference frequency (Hz)
dfR = 9.765625e+4 # Increment in topocentric frequency (Hz)
fb = 1.3784712164292786e+9 # Barycentric reference frequency (Hz)
dfb = 97647.745732 # Increment in barycentric frequency (Hz)
Zb = 9120.0e+3 # Barycentric optical velocity in m/s

Nf = 32 # Reference pixel for frequency

header = { ’'NAXIS’ : 1,

"CTYPE1l’ : ’"FREQ’,
"CRVALL’ : fb,
"CRPIX1’ : Nf,
"CUNIT1" : "Hz',
"CDELT1’ : dfR,
"RESTFRQ’ : fO0

}

line = wcs.Projection (header) .spectra (' VOPT-EF2W")

pixels = numpy.array (range (30, 35))
Vwcs = line.toworldld(pixels) / 1000
print """Optical velocities from WCSLIB with spectral

translation and with barycentric ref. freq. (km/s):"""
for p,v in zip(pixels, Vwcs):
print p, v

Select an arbitrary velocity reference pixel
Nz = 44.0
then calculate corresponding velocity
Zb2 = (fR+Zb-dfRxcx (Nz-Nf)) / (fR+dfR* (Nz-Nf))
print "Zb (Nz) =", Zb2
dN = fRx (Zb-Zb2) / (dfRx (c+2b2))
Nz = dN + Nf
print "Closure test for selected reference pixel: Nz=", Nz
print "\nOptical velocities using AIPS formula (km/s):"
Zs = Zb2 - dfR« (c+Zb2) % (pixels—Nz) / (fR+dfR* (pixels-Nf))
Zs /= 1000
for p,z in zip(pixels, Zs):
print p, =z

fx = fR + dfR«* (Nz-Nf)

dz = -dfR« (ct+Zb2) / fx
print "Velocity increment: ", dZ
header = { "NAXIS’ : 1,

"CTYPE1l" : "VOPT-F2W’,

"CRVAL1’ : Zb2,

"CRPIX1" : Nz,

"CUNIT1’ : 'm/s’,

"CDELT1’ : dz,

"RESTFRQ’ : fO0

}
line2 = wcs.Projection (header)
Vwcs = line2.toworldld(pixels) / 1000
print """\nOptical velocities from WCSLIB without spectral
translation with barycentric Z (km/s):"""
for p,v in zip(pixels, Vwcs):
print p, v

17.4. Legacy headers

195

64

65

66

67

68

69

70

71

3

74

75

76

77

78

79

Kapteyn Package Documentation, Release 2.0.3b19

Output:

Optical velocities from WCSLIB with spectral
translation and with barycentric ref. freq. (km/s):
30 9163.77531689

31 9141.88610773

32 9120.0

33 9098.11699305

34 9076.23708621

Zb (Nz) = 8857585.54671

Closure test for selected reference pixel: Nz= 44.0

Optical velocities using AIPS formula (km/s):
30 9163.77912988

31 9141.88801395

32 9120.0

33 9098.11508736

34 9076.23327538

Velocity increment: -21849.2948239

Optical velocities from WCSLIB without spectral
translation with barycentric Z (km/s):

30 9163.77912988

31 9141.88801395

32 9120.0

33 9098.11508736

34 9076.23327538

HHoFH H H H M K H H W H HHE O W H H W W H HE W W R W R R

Note that we used the topocentric frequency increment in the WCSLIB call for a better comparison with the AIPS
formula. The output of velocities with the AIPS formula is exactly the same as WCSLIB with optical velocities
using the velocity increment calculated with the AIPS method (as to be expected). And these velocities are very
close to the velocities calculates with WCSLIB using the barycentric frequency that corresponds to the given
optical velocity. The differences can be explained by the fact that the different methods are used to calculate a
velocity increment.

What did we prove with this script? We selected an arbitrary pixel as reference pixel for the velocity. This
velocity has a relation with the initial optical velocity (9120 km/s) through the difference in reference pixels. We
calculated that velocity and showed that the AIPS formula generates results that are almost equal to WCSLIB
with the barycentric reference frequency. If we use the AIPS formulas to calculate a velocity increment, we can
use the values in WCSLIB if we set CTYPE to ‘“VOPT-F2W’. This generates exactly the same results as with the
AIPS formula for velocities. So in frequency mode WCSLIB calculates topocentric frequencies (and topocentric
velocities if we use a spectral translation method) and in velocity mode it calculates barycentric velocities. AIPS
axis type FELO can be used as input for WCSLIB without modification.

Conclusions

* In AIPS the reference pixel for the reference velocity differs from the frequency reference pixel. There is a
relation between this reference velocity and the barycentric velocity and these reference pixels. To us it is
not clear what this reference velocity represents and why it is not changed to a velocity at the same reference
pixel as the frequency.

¢ Inthe AIPS approach it is assumed that the increment in frequency is the same in different reference systems.
This assumption is not correct, but the deviations are usually very small.

GIPSY

The formulas used in GIPSY to convert frequencies to velocities are described in section: spectral coordinates
in the GIPSY programmers guide. There is a formula for optical velocities and one for radio velocities. Both
formulas are derived from the standard formulas for velocities but the result is split into a reference velocity and a
part that is a non linear function of the increment in frequency.

196 Chapter 17. Background information spectral translations

http://www.astro.rug.nl/~gipsy/pguide/coordinates.html

Kapteyn Package Documentation, Release 2.0.3b19

Optical

For optical velocities we use symbol Z. The conversion from frequencies to optical velocities is not linear. One can
try to approximate a constant step in velocity, and to apply the standard linear transformation Z(N) = Z,.+ (N —
erpiz) x dZ, but this approximation can deviate significantly in certain circumstances. Therefore most reduction
and analysis packages provide functionality to calculate velocities also for the non-linear cases. Like Classic
AIPS, GIPSY provides a system for these transformations (e.g. function velpro. c), but it turns out that these
transformations are also approximations because where a barycentric or Istk frequency should be used, GIPSY
uses values from the FITS header and for FITS files made by Newstar/Nmap for data observed before 2006-07-03,
these frequencies are topocentric. In this section we show how GIPSY transforms frequencies to optical velocities.
Also we derive formulas for a linear transformation (i.e. for a constant velocity increment) which can be used if
one wants to compose a modified header for a linear transformation Z(N) = Z, + (N — crpiz) x dZ

Given a barycentric (or Isrk) frequency one calculates an optical velocity Z in that system with:

vy — 1o

Z = —c) (17.75)

123
Assume for channel V:
V(N) = vy + (N = Nyey)dy, = Upr + 1y, (17.76)

For (N — N,..y) we wrote n. The frequencies are related to the barycentric (or Irsk) reference system. N, is the
reference pixel (CRPIX) given in a FITS header, v, is the reference frequency in this barycentric system and 9,,
is the barycentric frequency increment.

Inserting (17.76) into (17.75) gives:

T 51/ - T
Z(N) = —c(Lr T 00 Z Yoy (Mr ZH0) | yg7 — 7, 4 ndZ (17.77)
Vor + n(sub Vor
Z, is the given reference velocity in the barycentric/lsrk reference system. Solve this equation for ndZ to get an
expression for the increment:

761/051,17 1 1
ndZ=n ————=cp(———— — — 17.78
(Vbr + néub)ybr 0((Vbr + néub) Vbr) ()
The formula to calculate optical velocities then becomes:
1 1
Z(N) = Zy + cvp(-—) (17.79)

(Vor +1dy,) Vor
with:

* Z(N) is the barycentric optical velocity for pixel N

* vy, 1s the barycentric reference frequency

* §,, is the increment in barycentric frequency

This is the formula that GIPSY uses to calculate optical velocities. However, GIPSY uses the topocentric
reference frequency and the topocentric frequency increment.

If we want to express the optical velocity at pixel N as a function of the reference velocity and a constant velocity
increment as in Z(N) = Z, + ndZ, then we need to find an expression for dZ which does not depend on n.
Rewrite ndZ into:

—cvpdy,

nd =n—---2>"— 17.80
(Vb'r + n(sl/b)ybr ()
Then, with the observation that nd,, << vp,:
—cvod,
ndZ ~ n——w (17.81)
Vbr

17.4. Legacy headers 197

Kapteyn Package Documentation, Release 2.0.3b19

and thereby:

—cvyby,

dZ =~ 5

(17.82)

Vpr
This is the formula that is documented in the programmers manual to get a value for GIPSY’s keyword DDELT
(one of the alternative keywords from the list DRVAL, DDELT, DRPIX, DUNIT which describe an alternative
coordinate system with a higher priority than the system described by the corresponding keywords that start with
‘C’). However the formula is never used in GIPSY to explicitly set the value of DDELT. Only when DDELT is
given in a header, it is used as an increment.

So the formula to calculate optical velocities, without the use of the rest frequency, is:

—cvpdy,

Z(N) = Z, + n—2 (17.83)

Vpr

In the formulas above we included the rest frequency. But it is not necessary to know its value because we can
express this rest frequency in terms of optical velocity:

_ Z,
7= (=) vy = (14 25) (17.84)
vy &
Then:
Z 1 1
Z(N)=Z, +cvp(1+ 2 (s — — 17.85
() CVp (c)((Vb?"+n61/b) Vbr) ()
from which we derive in a straightforward way:
Zr T 61/
Z(N) = Zrlr — (17.86)

Vb + 10y,

The formula above is the method used by GIPSY’s function velpro.c to get velocities if the rest frequency is
unknown.

And again, if we want to express the optical velocity at pixel N as a function of the reference velocity and a
constant velocity increment as in Z(N) = Z, + ndZ then we need to find an expression for dZ which does not
depend on n. Note that ndv, << vy, then

Zr T 5u 51/
n S RO g b= (17.87)

Z(N
() Vpr Vor

Next script implements these formulas and show the deviations. The first three columns show the correct result.

from kapteyn import wcs
from math import sqgrt
from numpy import arange

header_gds = {
"NAXIS’ : 1,
"NAXIS1’ : 127,
"CTYPE1l’ : ’"FREQ-OHEL’,
"CRVAL1" : 1418921567.851000,
"CRPIX1’ : 63.993952051196288,
"CUNIT1’ : ’HZ',
"CDELT1’ : -9765.625,
"VELR’ : 304000.0,
"RESTFRQ’ : 1420405752.0,

}

f0 = header_gds[’RESTFRQ’]
Zr = header_gds|[’VELR’]

fr = header_gds[’CRVALL’]

df = header_gds[’/CDELT1’"]
crpix = header_gds[/CRPIX1']

198 Chapter 17. Background information spectral translations

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Kapteyn Package Documentation, Release 2.0.3b19

Cc = wCs.cC # Speed of 1light
P pixrange = arange (crpix—-2, crpix+3) # Range of pixels for which we
want world coordinates

Calculate the barycentric equivalents

fb = £0/(1.0+Zxr/c)

Vtopo = ¢ * ((fbxfb-fr«fr)/ (foxfb+fr«fr))

dfb = df* (c-Vtopo) /sqgrt (cxc-Vtopo*Vtopo)

print "Topocentric correction (km/s):", Vtopo/1000

print "Barycentric frequency and increment (Hz):", fb, dfb

VOPT-F2W from spectral translation, assumed to give the correct velocities
proj = wcs.Projection (header_gds)

spec = proj.spectra(ctype='VOPT-F2W")

Z1 = spec.toworldld(pixrange)

Non linear: Optical with GIPSY formula with barycentric
values (excact).
722 = Zr + c+f0x(1/ (fb+ (p-crpix) +dfb) -1/fb)

Non Linear: Optical with GIPSY formula without rest frequency and
with barycentric values (exact).
Z3 = (Zr+fb - (p-crpix)*c+dfb) / (fb+ (p-crpix) ~dfb)

Non Linear: Optical with GIPSY formula using topocentric,
values (approximation).
Z4 = Zr + c+f0+(1/ (fr+ (p-crpix)+df)-1/fr)

Linear: Optical with GIPSY formula with barycentric values
and dZ approximation for linear transformation

Rest frequency 1is part of formula.

dZ = -cxf0«dfb/fb/fb

Z5 = Zr + (p-crpix) * dz

Linear: Optical with GIPSY formula with barycentric values
and dZ approximation for linear transformation

Rest frequency 1is not used.

dz = -c »dfb/fb

726 = Zr + (p-crpix) * dZz

print "\n$10s $14s $14s %14s %14s %14s %14s" % ('pix’, ’'WCSLIB’,
"GIP+bary’, 'GIP+bary-f0’, ’"GIP+topo’, ’Linear+f0’, ’"Linear-f0')
for pixel, z1,2z2,2z3,z4,25, z6 in zip(pixrange, Z1, 722, Z3, Z4, 75, Z6):
print "$10.4f %14f $14f $14f $14f $14f %14f" % (pixel, z1/1000, z2/1000,
z3/1000, =z4/1000, z5/1000, z6/1000)

N oo

Output:

Topocentric correction (km/s): 9.57140206387
Barycentric frequency and increment (Hz): 1418966870.14 -9765.3132202

pix WCSLIB GIP+bary GIP+bary-£0
61.9940 299.869536 299.869536 299.869536
62.9940 301.934754 301.934754 301.934754
63.9940 304.000000 304.000000 304.000000
64.9940 306.065274 306.065274 306.065274
65.9940 308.130577 308.130577 308.130577
GIP+topo Linear+f£f0 Linear-f£0
299.869141 299.869479 299.873664
301.934556 301.934740 301.936832
304.000000 304.000000 304.000000
306.065472 306.065260 306.063168

17.4. Legacy headers 199

Kapteyn Package Documentation, Release 2.0.3b19

308.130973 308.130521 308.126336

The columns in the output are:
1. pix: The (non integer) pixel value at which a velocity is calculated.

2. WCSLIB: The optical velocity (km/s) as calculated by WCSLIB. The extension in CTYPE is recognized
and the frequencies are replaced by their barycentric counterparts according to the recipe in A recipe for
modification of Nmap/GIPSY FITS data.

3. GIP+bary: The optical velocity (km/s) calculated with GIPSY formula in eq. (17.79) using barycentric
reference frequency and barycentric frequency increment.

4. GIP+bary-f0: The optical velocity (km/s) calculated with GIPSY formula without the rest frequency as in
eq. (17.86) using barycentric reference frequency and barycentric frequency increment.

5. GIP+topo: The optical velocity (km/s) calculated with GIPSY formula in eq. (17.79) using topocen-
tric/geocentric reference frequency and frequency increment.

6. Linear+f0: The optical velocity (km/s) calculated with GIPSY formula in eq. (17.83) using a rest frequency.

7. Linear-f0: The optical velocity (km/s) calculated with GIPSY formula in eq. (17.87) without a rest fre-
quency.

If you do some experiments with the values in this script, you will observe that the GIPSY formula with topocentric
instead of the barycentric/Isrk values is not a bad approximation although it is sensitive to the channel number (p).
The linear approximations are worse and should be avoided if high precision is required.

What remains is the question how good GIPSY’s approximation is. With (17.79) we write:

1 1 1 1
Z,(N) - Z,(N)=cvo(——— — — (o .
b() t() CUO(Vbr+n6Vb Vpr (Vtr+n61/t Vtr)) (1788)

With the parameters:
* Z,,(N) the optical velocity at pixel N using topocentric values
* vy, the topocentric frequency at the reference pixel
* §,, the topocentric frequency increment

Rewrite this in:
61/5 _ 6l/t
Vbr (Vbr + néub) Vtr(ytr + n(sut

Zy,(N) = Z,,(N) = —ncwo ()) (17.89)

Note that ndv, << v, and ndr; << v4,.. Then write the difference in increment as function of N as:
Ouy O,
Zy, (N) = Z,,(N) =~ —ncyo(—2 — —2) (17.90)

br Vir

This expression explains the different values in the output of our previous script and it shows that the differences
depend on n.

Use (17.14) to write:

C — Vte

r — Vbr 17.91
Vir = Vor\| T ()
and from (17.16)
C — VUtce
Ou, = 0Oy 17.92
Y e (17.92)
Define g = % then vy, = q/v4r and 6, = q % 6,
Insert this in (17.90) to obtain:
Oy,
Z,,(N) = Z,,(N) ~ —ncyoy—Q(qg -1) (17.93)

tr

200 Chapter 17. Background information spectral translations

Kapteyn Package Documentation, Release 2.0.3b19

The topocentric correction vy, has a range between -30 Km/s and 30 Km/s. For v;. = 30000 m/s this corresponds
to a maximum of q: ¢ = 0.99989993577786473. With this maximum for ¢ we find for (17.93) approximately
0.62 m/s

Note that the difference is a function of n, so after 64 channels the deviation is almost 40 m/s. In our example, the
channel separation is approximately 2 km/s and the deviations are therefore small (2%).

For the example at the start of this chapter, the reference velocity was 9120 km/s. The channel separation
(CDELT3Z) is approximately 20 km/s. For the listed topocentric frequency and the calculated barycentric fre-
quency we find with (17.93) an error of approximately 6.6 m/s. After 64 channels the deviation is approximately
420 m/s (2%).

With (17.82) we get an relative error:

Zu,(N) = Zy, (N) _ n(g® — 1) 2V on(g? - 1) (17.94)

With the maximum value of ¢ we find a maximum percentage of 0.03% for 1 channel. After 64 channels the
deviation is almost 2%. After 512 channels it is more than 15%.

Conclusions

* The GIPSY formulas assume constant frequency increments in the system of the reference system. When
these are topocentric, there are small deviations from the result with WCSLIB which assume the frequencies
in the same reference system as the given velocity.

e The formula that GIPSY routines use to calculate optical velocities is an approximation. The deviations
are small but depend on the pixel i.e. (N — N,). This approximation is not necessary because when the
optical velocity in the barycenter is given, then one can calculate the barycentric reference frequency (see
eq. (17.3)) and use that frequency in the GIPSY formula to get the exact result.

» The deviation is more sensitive to the topocentric correction (velocity between observatory on earth and
barycenter/lsrk) than the reference frequency and the frequency increment. Also there is a maximum value
for the topocentric velocity which results in a maximum deviation of 0.03% for one channel.

For the data in the previous script, we used the code below (which should be added to the previous script) to
calculate the percentages:

q = sqrt ((c—Vtopo) / (c+Vtopo))
delta = -c+f0xdf/fr/fr » (gxgxg-1)
d = (p-crpix) » delta

Now change the topocentric correction to its maximum.
Vtopo = 30000.0

gmax = sqgrt ((c-Vtopo) / (c+Vtopo))

deltamax = —-cxf0xdf/fr/fr » (gmaxsgmaxxgqmax-—1)

dmax = (p-crpix) = deltamax

perc = abs (100+«deltamax/dZ)

print "dZ, deltamax:", dZ, deltamax

print "Percentage deviation for 1 channel: ", perc

print "Approximate percentage: ", abs (100 * (gmax*gmaxxgmax-—1))
print "Percentage deviation for 64 channel: ", 64xperc

print "Approximate percentage: ", abs (100 x 64 (gmaxrgmaxxgmax—1))
print "Percentage deviation for 64 channel: ", 512xperc

print "Approximate percentage: ", abs (100 * 512x (gmaxxgmax*gmax—1))

print "\nThe approximate difference and the real difference"
print "between topocentric nd barycentric increments"
for pixel, dl1,d2,d3 in zip(pixrange, d, Z2-Z4, dmax):
print " " % (pixel, d1/1000, d2/1000, d3/1000)

Output:

17.4. Legacy headers 201

Kapteyn Package Documentation, Release 2.0.3b19

dz, deltamax: -21236.6115174 6.57007047211
Percentage deviation for 1 channel: 0.0309374707295
Approximate percentage: 0.0300162628862

Percentage deviation for 64 channel: 1.97999812669
Approximate percentage: 1.92104082472

Percentage deviation for 64 channel: 15.8399850135
Approximate percentage: 15.3683265977

The approximate difference and the real difference
between topocentric and barycentric increments and
the maximum deviation as function of the pixel:

61.9940 -0.011436 -0.011438 -0.013140
62.9940 -0.005718 -0.005719 -0.006570
63.9940 0.000000 0.000000 0.000000
64.9940 0.005718 0.005717 0.006570
65.9940 0.011436 0.011433 0.013140
61.9940 -0.011436 -0.011438 -0.013140
62.9940 -0.005718 -0.005719 -0.006570
63.9940 0.000000 0.000000 0.000000
64.9940 0.005718 0.005717 0.006570
65.9940 0.011436 0.011433 0.013140
Radio

Given a frequency, a radio velocity is calculated with the formula:

V= —c(u) (17.95)

Yo

Assume for channel V:
V(N) = Vpr + (N - NT‘ef)(Sl/b = Upr + naub (1796)

For (N — N,.y) we wrote n. The frequencies are related to the barycentric (or Irsk) reference system. N, is the
reference pixel (CRPIX) given in a FITS header, 1, is the reference frequency in this barycentric system and d,,
is the barycentric frequency increment.

Inserting (17.95) into (17.96) gives:
—cdy,

C(W) =V, +n (17.97)

Vo) = Vo Vo
with:
* V() is the barycentric radio velocity for pixel N using barycentric frequency increments
* vy, 1s the barycentric reference frequency

* §,, is the increment in barycentric frequency

This increment in radio velocity was also derived in eq. (17.29). The increment in radio velocity is a linear function
of the increment in frequency. The frequencies in the FITS and GIPSY headers for pre July, 2006 WSRT/Nmap
FITS files are the topocentric frequencies.

We show the difference between the velocities derived from the barycentric/lsrk values and the velocities derived
from the topocentric values.

from kapteyn import wcs
from math import sqgrt
from numpy import arange

202 Chapter 17. Background information spectral translations

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

Kapteyn Package Documentation, Release 2.0.3b19

header_gds = {
"NAXIS’ 1,
"NAXIS1’ : 127,
"CTYPE1l’” : 'FREQ-RHEL’,
"CRVAL1’ : 1418921567.851000,
"CRPIX1’” : 63.993952051196288,
"CUNIT1" : "HZ',
"CDELT1’” : -9765.625,
"VELR’ : 304000.0,
"RESTFRQ’ : 1420405752.0,

f0 = header_gds[’'RESTEFRQ’]
Vr = header_gds|[’ VELR’]
[

fr = header_gds[’CRVALL’"]

df = header_gds[’/CDELT1’]

crpix = header_gds[’CRPIX1’]

Cc = wCs.cC # Speed of 1light

P = pixrange = arange (crpix-2, crpix+3) # Range of pixels for which we

want world coordinates
Calculate the barycentric equivalents
fb = f0x(1.0-Vr/c)
Vtopo = ¢ * ((fbxfb-fr«fr)/ (foxfb+fr+fr))
dfb = dfx (c-Vtopo) /sgrt (cxc—-Vtopo*Vtopo)
print "Topocentric correction (km/s):", Vtopo/1000
print "Barycentric frequency and increment (Hz):", fb, dfb

VRAD from spectral translation, assumed to give the correct velocities

proj = wcs.Projection (header_gds)
spec = proj.spectra(ctype=’'VRAD")
V1 = spec.toworldld(pixrange)

Radio velocities with GIPSY formula with barycentric
values (excact).
V2 = Vr - c*(p-crpix)+«dfb/f0

Radio velocities with GIPSY formula without rest frequency and
with barycentric values (exact).
V3 = Vr + (p-crpix) +*dfb« (Vr-c)/fb

Radio velocities with GIPSY formula using topocentric,
values (approximation).
V4 = Vr — c*(p-crpix)«df/f0

Check the differences
d = —c#(p-crpix) (df-dfb) /f0
print (V4-V1)/1000, d/1000

oo

print "\n%10s %14s %14s %14s %14s" % ('pix’, 'WCSLIB',
"GIP+bary’, 'GIP+bary-f0’, ’'GIP+topo’)
for pixel, vl1l,v2,v3,v4 in zip(pixrange, V1, V2, V3, V4):
print "$10.4f $14f $14f 214f $14f" % (pixel, v1/1000, v2/1000,
v3/1000, v4/1000)

Output:

Topocentric correction (km/s): 9.26313531147
Barycentric frequency and increment (Hz): 1418965411.07 -9765.32326156

pix WCSLIB GIP+bary GIP+bary-£0 GIP+topo
61.9940 299.877839 299.877839 299.877839 299.877712

17.4. Legacy headers

203

Kapteyn Package Documentation, Release 2.0.3b19

62.9940 301.938920 301.938920 301.938920 301.938856
63.9940 304.000000 304.000000 304.000000 304.000000
64.9940 306.061080 306.061080 306.061080 306.061144
65.9940 308.122161 308.122161 308.122161 308.122288

The second, third and fourth column represent V;, and the last column is V;. The difference between the exact and
approximate velocities as function of n is given by:

c
Vi(N) = Vo(N) = —n—=(by, =01, (17.98)
0
With the parameters:
* V4(NN) the barycentric radio velocity at pixel N using topocentric frequency increments

* J,, the topocentric frequency increment

The topocentric correction vy, has a range between -30 Km/s and 30 Km/s. Rewrite (17.16) into:

0w, C — Vg
g R 17.99
§Vt c+ Vte ()

For vy = 30000 m/s this corresponds to a maximum ¢ = d,, /d,, = 0.99989993577786473 which is equivalent
to:

= (1-q)b,, =0.2m/s (17.100)

Vo

Note that the difference is a function of n, so after 64 channels the deviation is more than 12 m/s. In our example,
the channel separation is approximately 2 km/s and the deviations are therefore small.

17.4.5 Header items in a (legacy) WSRT FITS file

Program nmap (part of NEWSTAR which is a package developed to process WSRT and ATCA data) is/was used
to create FITS files with WSRT line data. We investigated the meaning or interpretation of the various FITS header
items. The program generates it own descriptors related to velocities and frequencies. For example:

* VEL: Velocity (m/s)
¢ VELC: Velocity code

O=continuum,

1=heliocentric radio

— 2=LSR radio

3=heliocentric optical
— 4=LSR optical
VELR: Velocity at reference frequency (FRQC)
INST: Instrument code (0=WSRT, 1=ATCA)
* FRQO: Rest frequency for line (MHz)

* FRQV: Real frequency for line (MHz)
* FRQC: Centre frequency for line (MHz)
One of functions in nmap is called nmawfh.for. It writes a FITS header using the values in the nmap descriptors.

The value of CRVALS3 is set to FRQYV if the velocity code is one of combinations of optical and radio velocity with
heliocentric or local standard of rest reference systems (i.e. RHEL, RLSR, OHEL, OLSR).

The value of CRPIX3 is equal to FRQV -lowest frequency divided by the channel separation. ‘lowest frequency’
is the frequency of the input channel with the lowest frequency.

204 Chapter 17. Background information spectral translations

Kapteyn Package Documentation, Release 2.0.3b19

* The value for FITS keyword VEL= is equal to nmap descriptor VEL, the centre velocity in m/s

* The value for FITS keyword VELR= is equal to nmap descriptor VELR, the Reference velocity

* The value for FITS keyword FREQR= is equal to nmap descriptor FRQC, the Reference frequency (Hz)
* The value for FITS keyword FREQO= is equal to nmap descriptor FRQO, the Rest frequency (Hz)

VEL !CENTRE VELOCITY (M/S)
VELCODE !VELOCITY CODE

VELR !REFERENCE VELOCITY (M/S)
FREQR !REFERENCE FREQUENCY (HERTZ)
FREQO 'REST FREQUENCY (HERTZ)

17.5 WCSLIB in a GIPSY task

GIPSY (Groningen Image Processing SYstem) is one of the oldest image processing and data analysis systems.
Python can be used to create GIPSY tasks. The Kapteyn Package is integrated in GIPSY. Here we give a small
example how to use both.

Assuming you have a data set with three axes and the last axis is the spectral axis, the next script is a very small
GIPSY program that asks the user for the name of this set and then calculates the optical velocities for a number
of pixels in the neighborhood of the reference pixel (CRPIX3).

GIPSY data have a descriptor which contains FITS header items (e.g. CRVALI=) and GIPSY specific keywords
but not only attached to the set but also to subsets (slices) of the data. Not only planes or lines can have their
own header but even pixels can. The script below reads its information from top level (which hosts the global
description of the data cube itself):

#!/usr/bin/env python
from gipsy import =
from kapteyn import wcs

init ()

while True:

try:
set = Set (usertext (' INSET=’, ’'Input set’))
break
except:
reject (/ INSET=’, ’'Cannot open set’)
proj = wcs.Projection(set) .sub((3,))
s = "Ref. freqg at that pixel: Hz" % (set[’CRVAL3’],)
anyout (s)
s = "Velocity: m/s" % (set[’DRVAL3’'],)
anyout (s)

crpix = set[’CRPIX3’]

proj2 = proj.spectra (/' VOPT-F2W")

for i in range(-2,+3):
world = proj2.toworld((crpix+i,)) [0]/1000.0 # to world coordinates
anyout (str (world)+’ km/s’)

finis ()
This little GIPSY task simulates the functionality of GIPSY task COORDS which lists world coordinates for data
slices. The two most important differences between this task and COORDS are:

» With WCSLIB it is simple to change the output velocity to radio or apparent radial by changing the spectral
translation.

17.5. WCSLIB in a GIPSY task 205

https://www.astro.rug.nl/~gipsy

Kapteyn Package Documentation, Release 2.0.3b19

* The Python interface to WCSLIB prepares the GIPSY header information to give correct barycentric or Isrk
velocities (i.e. it also converts the frequency increment to the barycentric or Isrk system).

Read more about GIPSY tasks written in Python in Python recipes for GIPSY

17.5.1 References

206 Chapter 17. Background information spectral translations

https://www.astro.rug.nl/~gipsy/python/recipes/pythonrep.php

Part IV

Tutorials

207

CHAPTER 18

TUTORIAL WCS MODULE

18.1 Introduction

This tutorial aims at starters. Experienced users find relevant but compact documentation in the module documen-
tation. In this tutorial we address different practical situations where we need to convert between pixel- and world
coordinates. Many examples are working scripts, others are very useful to try in an interactive Python session.

wcs is the core of the Kapteyn Package. An important feature of that package is that it provides a world coordinate
system which is easy to incorporate in your own (Python) environment and wcs provides the basic methods to
do this. Together with module celestial it allows a user to transform between pixel coordinates and world
coordinates for a set of supported projections and sky systems. Module celestial provides a rotation matrix
for sky transformations and is more or less embedded in wcs, so (for standard work) there is no need to import it
separately. Module wcs module has a number of important features:

¢ Flexible I/O of coordinates

* Support for spatial and spectral data

* Support for ‘mixed’ coordinates

» Support for conversions between different celestial systems
* Objects have useful attributes

* Easy to combine with other software written in Python

18.2 Coordinate representations

18.2.1 One coordinate axis

For experiments and debug sessions, module wcs allows for very simple and flexible input and output of coordi-
nates. This module interfaces with Mark Calabretta’s WCSLIB and is, because of the flexible I/0O, a valuable tool
to test this well known library.

Main goal of module wcs is to enable transformations between pixel coordinates and world coordinates The pixel
coordinates are defined by the FITS standard. The transformation is defined by meta data which are usually found
in FITS headers. So it may be obvious that FITS files play an important role in the use of Module wcs.

However, FITS data processed by wcs can also be FITS keywords that are stored in a Python dictionary. This
invites to experiment with WCSLIB even more because one can create a (minimal) FITS header from scratch. In
an attempt to create the most simple use of wcs we started to write a minimal FITS header. It defines only one
axis. The minimal requirement for FITS keywords are CTYPE, CRVAL, CRPIX and CDELT. A description of
these keywords can be found in The FITS standard.

We entered an axis type in CTYPEI that WCSLIB does not recognize as a known type. With this trick we force
the system to do a linear transformation. It shows that you have to be careful with values for CTYPE because you
will not be warned when a CTYPE is not recognized.

209

http://www.atnf.csiro.au/people/mcalabre/WCS/
http://fits.gsfc.nasa.gov/fits_standard.html

Kapteyn Package Documentation, Release 2.0.3b19

For the conversions between pixel coordinates and world coordinates we defined methods in a class which we
called the wcs . Projection class. An object of this class is created using the header of the FITS file for which
we want WCS transformations. It accepts also a user defined Python dictionary with FITS keywords and values.
We use this last option in this tutorial to be more flexible when we want to apply changes to the header.

The methods for single axes are called wcs.Projection.toworldld() and
wcs.Projection.topixelld (). FITS defines CRVAL as the world coordinate that corresponds to
the pixel value in CRPIX. Let’s check this with the most basic example we could think of:

#!/usr/bin/env python

from kapteyn import wcs

header = { "NAXIS’ 1,
"CTYPE1l" : "PARAM',
"CRVAL1’ : 5,
"CRPIX1’ : 10,
"CDELT1" : 1

}
proj = wcs.Projection (header)
print proj.toworldld(10)

Output:
5.0

Indeed, at pixel coordinate 10 (=CRPIX), the world coordinate is 5 (=CRVAL). If we want to know which pixel
coordinate corresponds to world coordinate 5, then we use proj.topixelld (5) to get the answer (which is
the value of CRPIX: 10). Note that we forced the system to apply linear transformations only.

In many of the examples that we present in this tutorial we included a so called closure test. This is a test which
uses the result of a transformation to test the inverse transformation which should result into the original value.
Sometimes the result is not exactly what you expect because we work with a limited number precision. A simple
closure test is:

proj = wcs.Projection (header)
w = proj.toworldld(10)

P = proj.topixelld(w)

print "CRPIX: ", p

Output:
CRPIX: 10.0

Coordinate transformations are often done in bulk, so of course the transformation methods accept more than
one coordinate to convert. They can be represented as a Python list, a Python tuple or a NumPy array. The
representation of the output is the same as that of the input coordinates. The output of the next statements therefore
is not a surprise:

#!/usr/bin/env python
from kapteyn import wcs
import numpy

header = { ’"NAXIS’ 1,
"CTYPE1l’ : ’"PARAM',
"CRVALL’ : 5,
"CRPIX1’ : 10,
"CDELT1" : 1

proj = wcs.Projection (header)

range(9,12))

[9,10,111)

(9,10,11))
numpy.array([9,10,11]))

wl = proj.toworldld
w2 = proj.toworldld
w3 = proj.toworldld
w4 = proj.toworldld

210 Chapter 18. Tutorial wcs module

20

21

22

23

24

25

26

27

28

29

30

Kapteyn Package Documentation, Release 2.0.3b19

print wl, type(w
print w2, type
print w3, type
print w4, type(w
closure = proj.topixelld (wd) # Closure test
print closure, type(closure)

Output:

[4.0, 5.0, 6.0] <type ’list’>

[4.0, 5.0, 6.0] <type ’list’>

(4.0, 5.0, 6.0) <type ’tuple’>

[4. 5 6.] <type ’‘numpy.ndarray’>
[9. 10. 11.] <type ’‘numpy.ndarray’>

The first two sequences are lists. The third is a tuple and the last is a NumPy array. The pixel coordinates 9, 10
and 11 should give values in the neighbourhood of CRVALI and the step size is 1 (CDELTI=1), in arbitrary units.

Note: An advantage of NumPy arrays is that you can use them in mathematical expressions to process the array
content. For example: assume you have a sequence of velocities in a numpy array V but want to express the
numbers in km/s, then change the content with expression: V /= 1000

For representation purposes we often want to print a pixel coordinate and the corresponding world coordinate on
one line. Then we often use Pythons built-in function zip to combine two sequences to avoid a call to transforma-
tion methods in the print loop:

p = range(5,15)
w proj.toworldld (p)
for pix,wor in zip(p,w):

<)

print " : " % (pix,wor)

Output:

9: 4.000000
10: 5.000000
11: 6.000000

Note: Class wcs has an attribute called debug. If you set its value to True then you get debug information from
WCSLIB showing what has been correctly parsed from the given header data. Use it as follows:

wcs.debug = True
proj = wcs.Projection (header)

Next we apply the procedures described above to a real example where we created an artificial header with FITS
data. The header describes a single axis of spectral type. Units are standard FITS units and are given in keyword
CUNITI. The example shows that we can access the keywords from the artificial header (or a real FITS header)
directly and use their values for example to find the length of the axis in pixels, or to find the units of the world
coordinates of that axis:

#!/usr/bin/env python
from kapteyn import wcs
header = { ’'NAXIS’ : 1,
"NAXIS1’ : 64,
"CTYPE1l’ : ’"FREQ’,
"CRVAL1’” : 1.37835117405e9,
"CRPIX1’ : 32,
'CUNIT1’ : ’'Hz',
"CDELT1’ : 9.765625e4
}

proj = wcs.Projection (header)

n = header [’ NAXIS1'] # Get the length of the spectral axis
p = range(l, n+l) # Set pixel range accordingly

w = proj.toworldld (p) # Do the transformation

18.2. Coordinate representations 211

)

Kapteyn Package Documentation, Release 2.0.3b19

print "Pixel (5s)" % (header[’'CTYPELl’],header [/ CUNIT1"1])
for pix,frg in zip(p,w):

print " : "% (pix, frq)
Output:

Pixel FREQ (Hz)

1: 1375323830.300000
: 1375421486.550000

1375519142.800000

1375616799.050000

1375714455.300000

HH H W H
[S; I NGV N}

In the example we wanted to make a table with pixel coordinates and the corresponding world coordinates. Ac-
cording to the header there are 64 pixels (NAXIS1) along the axis so the first pixel coordinate is 1 and the last is
64. The axis represents frequencies. A start frequency is given by CRVALI and a step size is given by CDELT].
Note that the coordinate transformation is linear.

18.2.2 Generic methods toworld() and topixel()

The methods wcs .Projection.toworldld() and wes.Projection.topixelld () are special ver-
sions of the more general methods wcs.Projection.toworld () and wes.Projection.topixel ().
These methods can be used to convert pixel data for more than one axis at the same time which is necessary for
coupled axes, for example in spatial maps where longitude and latitude are not independent axes.

These general methods wcs.Projection.toworld () and wcs.Projection.topixel () accept the
same sequences as the ‘1d’ versions. The reason that we introduced the ‘1d’ versions is that for non-experienced
Python programmers it usually is confusing that in the one dimensional case the general methods only accept
tuples and not scalars and that a tuple with one element (for example 10) needs to be written as (10,).

If you want to replace method toworld1d() by topixel1ld() in the first example, then the relevant lines become:

>>> p = proj.toworld((10,))
>>> (5.0,)

for one scalar and for a list of values:

>>> p = proj.toworld((range(9,12),))
>>> ([4.0, 5.0, 6.01,)

If you want to extract the scalar or the list from the tuple, use element O of the tuple.

>>> p = proj.toworld((range(9,12),))
>>> print p[0]
>>> [4.0, 5.0, 6.0]

18.2.3 Two coordinate axes

As described in the previous section we use wcs.Projection.toworld() and
wcs.Projection.topixel () if the number of axes in our data is more than 1. The input and out-
put tuples for projection objects with two coordinate axes consist of two elements. The first element corresponds
to the first axis in the projection object and the second element to the second axis. The following Python code
constructs an artificial header which describes the world coordinate system of two spatial axes. Then we want to
find the world coordinates of the reference pixels (CRPIXI, CRPIX2) and expect the reference values (CRVALI,
CRVAL?2) as output tuple:

#!/usr/bin/env python
from kapteyn import wcs
header = { "NAXIS’ : 2,

212 Chapter 18. Tutorial wcs module

20

21

22

23

Kapteyn Package Documentation, Release 2.0.3b19

"NAXIS1’ : 5,
"CTYPE1l’” : "RA-—-NCP’,
"CRVAL1’ : 45,
"CRPIX1’ : 5,
"CUNIT1"” : ’"deg’,
'CDELT1’ : -0.01,
"NAXIS2' : 10,
"CTYPE2’ : 'DEC--NCP’,
’CRVAL2’ : 30,
"CRPIX2' : 5,
"CUNIT2" : ’"deg’,
"CDELT2’ : +0.01,
}

proj = wcs.Projection (header)

pixel = (5,5)

world = proj.toworld(pixel)

print world

Output:
(45.0, 30.0)

Comments about the composed header: the header is composed from scratch. but it could very well have been
copied from an existing FITS header. In either case you should verify items CUNITn and CTYPEn because they
are are important. In section 2.1.1 of [Ref1] we read that in WCSLIB:

Note: any CTYPEi not covered by convention and agreement shall be taken to be linear.

The CTYPE consists of a coordinate type (max 4 characters) followed by ‘- followed by a three character code that
represents the algorithm to calculate the world coordinates (‘ABCD-XYZ’). Shorter coordinate types are padded
with the ‘-¢ character, shorter algorithm codes are padded on the right with blanks (‘RA—NCP’, ‘RA—UV_).
So if we were sloppy and wrote RA-NCP and DEC-NCP then WCSLIB assigns a linear conversion algorithm. It
does not complain, but you get unexpected results. If your CTYPEs are correct but the units are not standard and
are not recognized by WCSLIB, then you get an Python exception after you try to create the Projection object.
For example, if you specified CUNIT1="Degree’ then the error message displayed by the exception is: “Invalid
coordinate transformation parameters”.

If you want to be sure that WCSLIB recognizes your coordinate type and unit, you can print the Projection at-
tributes wcs .Projection.types and wcs.Projection.units as in the example below. Unrecognized
types are returned as None.

>>> proj = wcs.Projection (header)
>>> print "WCS units: ",proj.units
WCS units: ("deg’, ’"deg’)
>>> print "WCS type: ",proj.types
WCS type: (" longitude’, ’latitude’)

With the same variable header as in the previous script we demonstrate that each element in the coordinate tuple
can be a list of scalars. Let’s convert pixel positions (3,3), (4,4), ..., (7,7) etc. to their corresponding world
coordinates:

proj = wcs.Projection (header)
X = range(3,8)

y = range(3,8)

pixel = (x,vy)

world = proj.toworld(pixel)
print world

Output:

([45.023089356221305, 45.011545841750113, 45.0, 44.988451831142257, 44.97690133535837],
[29.979985885372404, 29.989996472289789, 30.0, 30.009996474046854, 30.019985899953429])

18.2. Coordinate representations 213

Kapteyn Package Documentation, Release 2.0.3b19

The output is a tuple with two elements. Each element is a list. The first list contains the longitude coordinates
for input pixel coordinates (3,3), (4,4) etc. The second list contains the latitude coordinates for the input pixel

coordinates (3,3), (4,4) etc.

Note: Note that longitude and latitude are not independent. You need always two pixel coordinates (X,y) to get a

world coordinate pair (RA,DEC).

Here input and output coordinates for the methods

wcs.Projection.topixel () are tuples.

wcs.Projection.toworld()
The dimension of the tuple corresponds to the number of

and

axes in the Projection object, and each element in the tuple can be a list of scalars. In some situations it is more
intuitive to start with a list of 2 dimensional positions. The wcs module allows for this type of input. You can get
the same coordinate output as the previous script if you replace the body by:

proj = wcs.Projection (header)
pixels = [(3,3), (4,4), (5,5),
world = proj.toworld(pixels)
print world

(6,6), (7,71

Output:
[(45.023089356221305,
(44.988451831142257,

29.979985885372404),
30.009996474046854),

(44.97690133535837,

(45.011545841750113, 29.989996472289789),
30.019985899953429)]

Note that the representation of the output differs from the previous script because the representation of the input
differs, i.e.: a list with tuples. The dimension of the tuples being the number of axes in your projection object.

Note: The coordinate representation in methods

wcs.Projection.toworld()

wcs.Projection.topixel () of the output is the same as that of the input.

and

18.2.4 Mixed transformations (pixel- and world coordinates) using method

wcs .Projection.mixed ()

We describe the mixed() method in some detail in the section about data sets with three or more axes. Here we
show how to use the method in a simple case. Suppose you want to mark data in a plot at constant declination
in pixels (i.e. parallel to the x-axis of the plot) but with equal steps in Right Ascension, then you need method

wcs.Projection.mixed():

#!/usr/bin/env python
from kapteyn import wcs
import numpy

header = { ’'NAXIS’ 2,
'NAXIS1’ : 5,
"CTYPE1l’” : "RA-—-TAN’,
"CRVAL1’ : 45,
"CRPIX1’ : 5,
"CUNIT1’ "deg’,
"CDELT1’ : -0.01,
'NAXIS2’ : 10,
"CTYPEZ2' "DEC--TAN’,
/CRVAL2’ : 30,
"CRPIX2' : 10,
"CUNIT2’ "deg’,
"CDELT2’ +0.01,

}
proj = wcs.Projection (header)

1 pixel and 1 world coordinate pair
(numpy .nan, 10)

(45.0, numpy.nan)

pixel_out = proj.mixed(world_in,

pixel_in =
world_in =
world_out,
print world_out
print pixel_out

pixel_in)

214

Chapter 18

. Tutorial wcs module

26

27

28

29

Kapteyn Package Documentation, Release 2.0.3b19

Output:
(45.0, 30.0)
(5.0, 10.0)

A loop over a number of Right Ascensions at constant Declination
for ra in range (44, 47):

world_in = (ra,numpy.nan)
world_out, pixel_out = proj.mixed(world_in, pixel_in)
print "World: ", world_out, "Pixel: ", pixel_out

Output:

World: (44.0, 29.99622120337045) Pixel: (91.61133499750801, 10.000000000096229)
World: (45.0, 30.0) Pixel: (5.0, 10.0)
World: (46.0, 29.99622120337045) Pixel: (-81.61133499750801, 10.000000000096248)

First we have a pixel position of which the x coordinate is set to unknown. We use a special value for this:
numpy.nan which is the representation of NumPy’s Not A Number. The y coordinate is set to 10. For the
wcs.Projection.mixed (), we need to specify the unknown values in the pixel position with a world coor-
dinate. In the example we entered 45.0 (deg). The mixed() method returns two tuples. One for the pixel position
and one for the position in world coordinates. The unknown values are calculated in an iterative process. The
second part of the example is a loop over a number of world coordinates in Right Ascension, and a constant pixel
coordinate in the y-direction (i.e. 10). The output (as listed as comment in the code) shows two things that need to
be addressed. First we notice that the output pixel is not exactly 10. This is related to finite precision of numbers
when a solution is calculated in an iterative way. The second observation is more important: the Declination varies
while the y coordinate in pixels is constant. But this is exactly what we expect for spatial data when a projection
is involved.

A note about efficiency:

Note: The transformation routines accept sequences of coordinates. Calculations with sequences are more
efficient than repetitive calls in a loop.

So in our example it is more efficient to avoid the loop over the right ascensions. This can be done by creating an
input tuple with two lists. The output is the same as in the example above, but the representation is different. As
we stated earlier, the representation of the output is the same as the representation of the input (a tuple with two
lists):

As example above but without a loop

ra = range (44, 47)

dec = [numpy.nan]=*len(ra) # NumPy trick to repeat elements in a list.
world_in = (ra, dec)

x = [numpy.nan]xlen(ra)

y = [10]*len(ra)

pixel_in = (x, V)

world_out, pixel_out = proj.mixed(world_in, pixel_in)
print world_out
print pixel_out

Output:
([44.0, 45.0, 46.0], [29.99622120337045, 30.0, 29.99622120337045])

([91.61133499750801, 5.0, -81.61133499750801)], [10.000000000096229, 10.0, 10.000000000096248])

18.2.5 Three or more coordinate axes

In this section we discuss method wcs.Projection.sub () which allows us to define coordinate transfor-
mations for positions with less dimensions than the dimension of the data structure. In practice we encounter
many astronomical measurements based on three or more independent axes. Well known examples are of course
the data sets from radio interferometers. Usually these are spatial maps observed at different frequencies and
sometimes as function of Stokes parameters (polarization). If we are only interested in spatial maps and don’t

18.2. Coordinate representations 215

20

21

22

23

24

25

26

27

28

29

40

41

42

43

44

45

46

47

48

49

50

Kapteyn Package Documentation, Release 2.0.3b19

bother about the other axes, we can create a Projection object with only the relevant axes. This is done with the
wcs.Projection. sub () method from the Projection class.

map = proj.sub(axes=None, nsub=None)

The method has two parameters. You can specify parameter nsub which sets the first nsub axes from the original
Projection object to the actual axes. Or you can use the other parameter axes which is a tuple or a list with axis
numbers. Axis numbers in WCSLIB follow the FITS standard so they start with 1. The order in the sequence
is important. The axis description sequence in a FITS file is not bound to rules and luckily WCSLIB accepts
permuted axis number sequences. This can be illustrated with the next example. First we show the code and then

explain the output:

#!/usr/bin/env python
from kapteyn import wcs
import numpy

header = { ’"NAXIS’ 3,
First spatial axis
"NAXIS1' 5,
"CTYPEL’ "RA---TAN’,
’ CRVAL1' 45,
"CRPIX1' 5,
" CUNIT1' "deg’,
"CDELT1’ : -0.01,
A dummy axis
" NAXIS2' 5,
"CTYPEZ2' "PARAM’,
' CRVAL2' 444,
" CRPIX2' 99,
' CDELT2' 1.0,
"CUNIT2’ : 'wprf’,
Second spatial axis
"NAXIS3' 0,
"CTYPE3' "DEC--TAN’,
' CRVAL3' 30,
" CRPIX3' 10,
"CUNIT3' "deg’,
"CDELT3’ +0.01
}
proj = wcs.Projection (header)
map = proj.sub([1,3])
pixel = (header[’CRPIX1’], header[’CRPIX3’1])
world = map.toworld(pixel)

print world

Output:
(45.0, 30.0)

proj.sub([3,1])
pixel = (header[’CRPIX3'],
world = map.toworld(pixel)
print world

map =
header[’"CRPIX1"1])

Output:

(30.0, 45.0)

line = proj.sub(2)

crpix = header [’/ CRPIX2’]

pixels = range(crpix—-5,crpix+6)
world = line.toworldld(pixels)

print world

Output:
[439.0, 440.0, 441.0, 442.0, 443.0, 444.0, 445.0, 446.0, 447.0, 448.0, 449.0]
216 Chapter 18. Tutorial wcs module

Kapteyn Package Documentation, Release 2.0.3b19

We created a header representing a spatial map as function of some parameter along the CTYPE2="PARAM’ axis.
This axis is not recognized by WCSLIB and a linear transformation is applied. Also special is that the spatial axes
do not have conventional numbers. First we want to set up a transformation of pixel (x,y) to (R.A., Dec) for the
pixel values in (CRPIX1, CRPIX3) -which should transform to (CRVAL1, CRVAL3)-. Then we reverse the spatial
axis sequence to set up a transformation from (y,x) to (Dec, R.A.). Finally we want a transformation only for the
PARAM axis. Its axis number is 2. With the output we show that for this axis indeed the transformation between
pixels and world coordinates is a linear. transformation.

The axis sequence in the wcs.Projection.sub () method sets the axis order with parameter axes. It
sets in fact the order of the coordinates in the transformation methods wcs.Projection.toworld(),
wcs.Projection.topixel () and wes.Projection.mixed (). Parameter axes is either a single in-
teger or a list/tuple of integers e.g. sub(2) vs. sub([3,1]).

18.3 NumPy arrays and matrices

18.3.1 NumPy matrices

In many Python applications programmers use NumPy arrays and matrices because it is easy to manipulate them.
First let’s explore what can be done with a NumPy matrix as coordinate representation. A NumPy matrix is a rank
2 array with special properties. The first list in the numpy.matrix() constructor in the next example is the first row
in the matrix and the second list is the second row. The first row contains the x coordinate of the pixels and the
second row contains the y coordinates. In the next script we want to convert pixel positions (4,5), (5,5) and (6,5)
to world coordinates. So the first list in the matrix constructor are the x coordinates [4,5,6] and the second are the
y coordinates [5,5,5]. We convert these with:

proj = wcs.Projection (header)

pixel = numpy.matrix([[4,5,6],[5,5,5]1])
world = proj.toworld(pixel)

print world

Output:
[[45.01154701 45. 44.98845299]
[29.99999798 30. 29.99999798]]

pixel = proj.topixel (world)
print pixel

Output:
[[4.00000001 5. 5.99999999]
[5. 5. 5. 77

The output is what we expected. It is a NumPy matrix with two rows. The first row contains the longitudes and
the second the latitudes. The numbers seem ok (three RA’s at almost constant declination). We added a closure
test by using the output world coordinates as input for the wcs.Projection.topixel () method. As you
can see, the closure test returns the original input.

There is also a matrix representation that is equivalent to the list of coordinate tuples in the previous section. We
want an input matrix to contain the coordinates: [[4,5],/5,5],[6,5]]. For this representation you have to set an
attribute of the projection object. The name of the attribute is wcs .Projection. rowvec. Its default value is
False. When you set it to True then each row in the matrix represents a position in x and y. Here is an example:

proj = wcs.Projection (header)
proj.rowvec = True
pixel = numpy.matrix([[4,5],[5,5]1,106,51])

world = proj.toworld(pixel)
print world

Output:
[[45.01154701 29.99999798]
[45. 30.]

18.3. NumPy arrays and matrices 217

Kapteyn Package Documentation, Release 2.0.3b19

[44.98845299 29.99999798]]

pixel = proj.topixel (world)
print pixel

Output:

[[4.00000001 5.]
[5. 5.

[5.99999999 5. 1]

Note: The rowvec attribute can also be set in the constructor of the projection object as follows: proj =
wcs. Projection(header, rowvec=True)

18.3.2 NumPy arrays

It is possible to build a NumPy array with x coordinates and another for the y coordinates. You can use these
arrays in a tuple. Then the elements in the tuple are not lists, as in the previous section, but NumPy arrays. With
the same example in mind as the one with the NumPy matrix we demonstrate this option in the following script:

proj = wcs.Projection (header)
X = numpy.array([4,5,6])

y = numpy.array([5,5,5])
pixel = (x, V)

world = proj.toworld(pixel)
print world

Output:

(array ([45.01154701, 45. , 44.98845299]), array([29.99999798, 30. , 29.99999798]))

pixel = proj.topixel (world)
print pixel

Output:
(array ([4.00000001, 5. , 5.99999999]), array ([5., 5., 5.7))

As you can see, the representation of the output is the same as that of the input. The result is a tuple and the
elements of the tuple are 1 dimensional (rank 1, shape N) NumPy arrays. The first array contains the RA’s and the
second the Dec’s. The closure test also gives the expected result.

18.3.3 Using NumPy arrays to convert an entire map

For applications that transform all the positions in a data set (or in a subset of the data) in one run (e.g.
for re-projections of images), it is possible to store all the positions in a NumPy array with shape (NAXIS2,
NAXIS1, 2) (note the order). The array can be handled by the wcs.Projection.toworld() and
wcs.Projection.topixel () in one step. You could say that we have a two-dimensional array of which
the elements are coordinate pairs. The example code below could be part of the body of a real application that
re-projects an image:

from kapteyn import wcs
import numpy

header = { /NAXIS’ 2,
'NAXIS1’ : 5,
"CTYPE1l’ : '"RA-—-TAN’,
"CRVAL1’ : 45,
'CRPIX1’ : 5,
"CUNIT1"” : ’"deg’,
'CDELT1’ : -0.01,

218 Chapter 18. Tutorial wcs module

Kapteyn Package Documentation, Release 2.0.3b19

"NAXIS2' : 10,
"CTYPE2’ : "DEC--TAN’,
’CRVAL2' : 30,
"CRPIX2' : 10,
"CUNIT2" : ’"deg’,
'CDELT2’ : +0.01,

= wcs.Projection (header)
nl = 10
n2 = 8
pixel = numpy.zeros (shape=(n2,nl,2))
for y in xrange (n2):
for x in xrange (nl):
pixelly, x] = (x+1, y+1)

world = proj.toworld(pixel)
print world

Output:

[[[45.04614616 29.90999204]
[45.03460962 29.90999556]
[45.02307308 29.90999807]
[45.01153654 29.90999957]
etc.

pixel = proj.topixel (world)
print pixel

Output:

[[[1. 1.]
[2. 1.]
[3. 1.]
[4 1.]
etc

In this example we have NAXIS2=10 y values and NAXIS1=5 x values. The indices start at 0, but the FITS pixel
indices start at 1. That’s why the coordinate tuple reads as (x+1, y+1).

Note: In this module the values in the NumPy arrays and matrices are of type ‘f8’ (64 bit).

18.4 Attributes

18.4.1 Attributes lonaxnum, lataxnum and specaxnum

In the previous examples we had foreknowledge of the axis numbers that represented a spatial axis or a
spectral axis. If you read a header from a FITS file then it is not always obvious what the axes repre-
sent and in which order they are stored in the FITS header. In those circumstances the projection attributes
wcs.Projection.lonaxnum, wcs.Projection.lataxnum and wcs.Projection.specaxnum
are very useful. These attributes are axis numbers, i.e. they start with 1 and the highest number is equal to header
item ‘NAXIS’. In the source below we provide a header which shows an unexpected axis order representing a
number of spatial maps as function of frequency. For demonstration purposes we create two separate Projection
objects. The first, called line, represents the spectral axis. This is a sub projection of the parent projection object
and the axis number is that of the spectral axis. We add a spectral translation to get velocities in the output.

The second, called map, is the spatial map with axis longitude first and latitude second. We try to create these
objects in a try/except clause. For any header, this results in the requested sub projections for a spatial map and
spectral axis or an error message and an exception. The construction with the attributes and the try/except clause
saves us tedious work because without, we need to find and inspect the axis numbers ourselves.

18.4. Attributes 219

20

21

22

23

24

25

26

27

28

29

30

31

33

34

36

37

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Kapteyn Package Documentation, Release 2.0.3b19

Note: If WCSLIB cannot find a value of one of the requested attributes, its value is set to None

#!/usr/bin/env python

from kapteyn import wcs

header = { "NAXIS’ . 3,
"NAXIS3' : 5,
"CTYPE3’ : "RA-—-NCP’,
"CRVAL3’" : 45,
"CRPIX3' : 5,
"CUNIT3’" : ’'deg’,
"CDELT3’ : -0.01,
"CTYPE2’ : 'FREQ’,
"CRVAL2' : 1378471216.429278¢,
"CRPIX2' : 32,
"CUNIT2’ : ’"Hz',
"CDELT2’ : 97647.745732,
"RESTFRQ’ : 1.420405752e+9,
"NAXIS1’ : 10,
"CTYPE1l"” : "DEC--NCP’,
"CRVAL1" : 30,
"CRPIX1’ : 15,
"CUNIT1" : ’"deg’,
"CDELT1’ : +0.01

try:
proj = wcs.Projection (header)
line = proj.sub(proj.specaxnum) .spectra (/' VRAD")
map = proj.sub((proj.lonaxnum, proj.lataxnum))
except:
print "Could not find a spatial map AND a spectral line!"
raise

print proj.lonaxnum, proj.lataxnum, proj.specaxnum

Output:
3 1 2

A transformation along the spectral axis:
pixels = range (30, 35)
Vwcs = line.toworldld(pixels)
for p,v in zip(pixels, Vwcs):
print p, v/1000

Output:

30 8891.97019336
31 8871.36054878
32 8850.75090419
33 8830.14125961
34 8809.53161503

S ¥ HH W W H

A transformation of a coordinate in a spatial map:
ra = header[’CRVAL’+str (proj.lonaxnum)]

dec header [’ CRVAL’ +str (proj.lataxnum)]

print map.topixel((ra,dec))

Output:
(5.0, 15.0)

Are these indeed the CRPIXn?

axl = "CRPIX"+str (proj.lonaxnum)
ax2 = "CRPIX"+str (proj.lataxnum)
print map.topixel((ra,dec)) == (header[axl], header[ax2])

220 Chapter 18. Tutorial wecs module

62

63

Kapteyn Package Documentation, Release 2.0.3b19

Output:
True

Note the check at the end of the code. It should return True (i.e. within some limited precision). We started with
world coordinates equal to the values of CRVALn from the header and we assert that these correspond to pixel
values equal to the corresponding CRPIXn.

18.4.2 Two dimensional data slices with only one spatial axis

Suppose we have a 3D data set with CTYPE’s: (RA—NCP, DEC-NCP, VOPT-F2W) and we want to write coor-
dinate labels in a plot that represents the data as function of one spatial axis and the spectral axis (usually called a
position-velocity plot or XV map)? It is obvious that we need extra information about the spatial axis that is left
out. Usually this is a pixel position that corresponds to the position on the missing axis along which a data slice is
taken. These data slices are fixed on pixel coordinates and not on world coordinates.

Assume the XV data we want to plot has axis types DEC-NCP and VOPT-F2W, then we need to specify at which
pixel coordinate in Right Ascension the data is extracted.

What we need is a sub-projection (i.e. a Projection object which is modified by method sub()) which represents
the WCSLIB types: (‘latitude’, ‘spectral’, ‘longitude’). Given the CTYPE’s from the header, the axis permutation
sequence that is needed for the sub projection is (2,3,1). Now we require a method that for instance calculates for
a given world coordinate in Declination (e.g. 60.1538880206 deg) and a velocity (e.g. -243000.0 m/s) and a fixed
pixel for R.A. (e.g. 51) the corresponding pixel coordinates.

The required method is called wcs.Projection.mixed (). In a previous section we discussed its use.
Method mixed() has for a Projection object p the following syntax and parameters.

world, pixel = p.mixed(world, pixel, span=None, step=0.0, iter=7)

It is a hybrid transformation suited for celestial coordinates. It uses an iterative method to find an unknown pixel-
or world coordinate. The iteration is controlled by parameters span, step and iter. They have reasonable defaults
which usually give good results. The method needs knowledge about elements that need to be solved. Unknown
values that need to be solved are initially set to NaN (i.e. numpy.nan).

With the numbers we listed, the input world coordinate tuple will be world_in = (60.1538880206, -243000.0,
numpy.nan). The input pixel tuple will be: pixel_in = (numpy.nan, numpy.nan, 51) then we find the missing
coordinates after applying the lines:

subproj = proj.sub([2,3,1])

world_in = (60.1538880206, -243000.0, numpy.nan)

pixel_in = (numpy.nan, numpy.nan, 51)

world_out, pixel_out = subproj.mixed(world_in, pixel_in)
print "world_out = ", world_out

world out = (60.1538880206, —-243000.0, —-51.282084795900005)
print "pixel out = ", pixel_out

pixel_out = (51.0, -20.0, 51.0)

The mixed() method in wcs is more powerful than its equivalent in the C-version of WCSLIB. It accepts the same
coordinate representations as for topixel() and foworld() whereas the library version accepts only one coordinate
pair per call.

18.5 Invalid coordinates

18.5.1 Suppress exceptions for invalid coordinates

We introduced matrices and arrays as coordinate representations to facilitate the input and output of many coordi-
nates in one call. This is in many practical situations the most efficient way to process those coordinates. However
if there is a pixel coordinate in a sequence that could not be converted to a world coordinate then an exception will
be raised and your script will stop. One can suppress the exception and flag the unknown coordinate. You need

18.5. Invalid coordinates 221

20

21

22

23

24

25

26

27

28

29

Kapteyn Package Documentation, Release 2.0.3b19

to setthe wes.Projection.allow_invalid attribute of the projection object. Invalid coordinates then are
flagged in the output with a NaN (i.e. numpy.nan). On the other hand, if the input contains a NaN, the correspond-
ing converted coordinate will also be a NaN. You can test whether a value is a NaN with function numpy.isnan().
NaN’s cannot be compared so a simple test as in:

>>> X = numpy.nan
>>> if x == numpy.nan: # ... fails

will fail because the result is always False The test x !=x will give True if x is NaN.

In practice it will be difficult to get into problems if you convert from world coordinates to pixel coordinates, but
when you start with pixel coordinates then it is possible that a corresponding world coordinate is not available. For
a projection like Aitoff’s projection it is obvious that the rectangle in which an all sky map in this the projection
is enclosed, contains such pixels.

Here is an example how one can deal with invalid transformations:

#!/usr/bin/env python
from kapteyn import wcs
import numpy
header = { /'NAXIS’ : 2,
"NAXIS1’ : 5,
"CTYPE1l" : "RA-—-AIT’,
"CRVAL1’ : 45,
"CRPIX1’ : 5,
"CUNIT1" : ’"deg’,
'CDELT1’ : -0.01,
"NAXIS2’ : 10,
"CTYPE2’ : 'DEC--AIT’,
"CRVAL2’ : 30,
"CRPIX2' : 5,
"CUNIT2’ : ’'deg’,
"CDELT2’ : +0.01,
}
proj = wcs.Projection (header)
proj.allow_invalid = True
pixel_in = numpy.matrix([[4000,5000,6000],[5000,5000,758011)
world = proj.toworld(pixel_in)
print "World coordinates:\n",world
pixel_out = proj.topixel (world)
print "Back to pixels:\n", pixel_out

if numpy.isnan(pixel_out) .any () :
print "Some pixels could not be converted"

indices = numpy.where (numpy.isnan (pixel_out))
print "Index of NaNs: ", indices
print pixel_in[indices]

18.6 Reading data from a FITS file

18.6.1 Reading a FITS header

Until now, we created our own header as a Python dictionary. But usually our starting point is a FITS file. A
FITS file can contain more than one header. Header data is read from a FITS file with methods from module
pyfits. Select the unit you want and store it in a variable (like header) so that it can be parsed by wcs. Below
we demonstrate how to read the first header from a FITS file. A flag is set to enter WCSLIB’s debug mode:

222 Chapter 18. Tutorial wcs module

20

21

22

23

24

25

26

27

28

29

Kapteyn Package Documentation, Release 2.0.3b19

#!/usr/bin/env python
from kapteyn import wcs
import pyfits

wcs.debug = True

f = raw_input ('Enter name of FITS file: ')
hdulist = pyfits.open(f)

header = hdulist[0] .header

proj = wcs.Projection (header)

Part of the output of arbitrary FITS file:

Output:

flag: 137

naxis: 3

crpix: 0x99b53d8

51 51 -20
pc: 0x99adfio

pcl[O0][]: 1 0 0

pcll][]: 0 1

pcl2][]: 0 0 1

cdelt: 0x99b71c8

-0.007166 0.007166 4200
crval: 0x992bd30

-51.282 60.154 -2.43e+05
cunit: 0x99ad768

"deg"

"deg"

"m/s"

ctype: 0x999a7f8

"RA-——-SIN"

"DEC-—-SIN"

"VELO"

For testing and debugging one often wants to inspect the items in a FITS header. PyFITS has a nice method to make
a list with all the FITS cards. In the next example we added a little filter, using list comprehension, to filter all items
that start with ‘HISTORY’. Also we added output for the two projection attributes wcs .Projection.types
and wcs.Projection.units. The script is a useful tool to inspect the FITS file and to check its parsing by
module wcs:

#!/usr/bin/env python
from kapteyn import wcs
import pyfits

f = raw_input ('Enter name of FITS file: ')
hdulist = pyfits.open (f)
header = hdulist[0] .header
clist = header.ascardlist ()
c2 = [str(k) for k in header.ascardlist () if not str(k).startswith (’HISTORY’)]
for i in c2:
print i

proj = wcs.Projection (header)
print "WCS found types: ", proj.types
print "WCS found units: ", proj.units

18.6.2 Reading WCS data for a spatial map

For some world coordinate related applications we want to force the input to represent a spatial map. A spatial map
has axes of type longitude and latitude. For example if you need to re-project a map from one projection system
to another, then you need a matching axis pair, representing a spatial system. If you don’t know beforehand what

18.6. Reading data from a FITS file 223

Kapteyn Package Documentation, Release 2.0.3b19

the numbers are of the axes in your FITS file that represent these types, you need a way of checking this. There
are some rules. First, we must be able to create a Projection object according to the WCSLIB rules (i.e. the axes
must have a valid name and extension). For spatial axes, WCSLIB also requires a matching axis pair. So if you
have a FITS file with a R.A. axis and not a Dec axis then module wcs will generate an exception with the message
Inconsistent or unrecognized coordinate axis types.

Finally, if you have a valid header and made a Projection object, then you still have to find the axis numbers that
represent a ‘longitude’ axis and a ‘latitude’ axis (remember: the number of axes in your data could be more than
2) and the latitude axis could be defined earlier than the longitude axis so the order is also important.

In a previous section we discussed the attributes wcs.Projection.lonaxnum and
wcs.Projection.lataxnum. They can be used to find the requested spatial axis numbers (remem-
ber their value is None if the requested axis is not available). In the following script we try to create the Projection
and sub Projection objects with Python’s try/except mechanism. If we have a valid projection and the right axes,
then we check the axes types (and order) with attribute wcs. Projection.types:

#!/usr/bin/env python
from kapteyn import wcs
import pyfits

f = raw_input ('Enter name of FITS file: ')
hdulist = pyfits.open(f)
header = hdulist[0] .header

try:

proj = wcs.Projection (header)

map = proj.sub((proj.lonaxnum, proj.lataxnum))
except:

print "Aborting program. Could not find (valid) spatial map."
raise

Just a check:
print map.types

18.7 Celestial transformations with wcs

18.7.1 Celestial systems

Methods wcs.Projection.toworld () and wcs.Projection.topixel () convert between pixel co-
ordinates and world coordinates. If these world coordinates are spatial, they are calculated for the sky- and
reference system as defined in the header (FITS header, GIPSY header, header dictionary). To compare positions
one must therefore ensure that these positions are all defined in the same sky- and reference system. If such a
position is given in another system (e.g. galactic instead of equatorial), then you have to transform the position
to the other sky- and/or reference system. Sometimes you might find a so called alternate header in the header
information of a FITS file. In an alternate header the WCS related keywords end on a letter A-Z (e.g. CRVALIA).

Usually these alternate headers describe a world coordinate system for another sky system. But because there
could also be different epochs involved, it is worthwhile to have a system that can transform world coordinates
between sky- and reference systems and that can do epoch transformations as well.

For the Kapteyn Package we wrote module celestial. This module can be used as stand alone module if
one is interested in celestial transformations of world coordinates only. But the module is well integrated in
module wcs so one can use it in the context of wcs, with the class wes.Transformation. for conver-
sions of world coordinates between sky-/reference systems and also, if pixel coordinates are involved, meth-
ods wcs.Projection.toworld () andwcs.Projection.topixel () can interpret an alternative sky-
/reference system as the system for which a coordinate has to be calculated. The alternative sky-/reference system
is stored in attribute wcs.projection.skyout.

Note: If you need transformations of world coordinates between any of the supported input sky-/reference system
then you should use objects and methods from class wcs . Transformation.

224 Chapter 18. Tutorial wcs module

Kapteyn Package Documentation, Release 2.0.3b19

If you need to convert pixel coordinates in a system defined by (FITS) header information, then
set the skyout attribute of a Projection object and use methods wcs.Projection.toworld() and
wcs.Projection.topixel ()

The celestial definitions are described in detail in the background information of module celestial. We list
the most important features of a celestial definition:

Supported Sky systems (detailed information in Sky systems):
1. Equatorial: Equatorial coordinates (o, d), see next list with reference systems
2. Ecliptic: Ecliptic coordinates (A, (3) referred to the ecliptic and mean equinox
3. Galactic: Galactic coordinates (111, bII)
4. Supergalactic: De Vaucouleurs Supergalactic coordinates (sgl, sgb)
Supported Reference systems (detailed information in Reference systems):
1. FK4: Mean place pre-IAU 1976 system.
FK4_NO_E: The old FK4 (barycentric) equatorial system but without the “E-terms of aberration”
FK5: Mean place post IAU 1976 system.

ICRS: The International Celestial Reference System.

A

J2000: This is an equatorial coordinate system based on the mean dynamical equator and equinox at epoch
J2000.

Epochs (detailed information in Epochs for the equinox and epoch of observation):

The equinox and epoch of observations are instants of time and are of type string. These strings are parsed
by a function of module celestial called celestial.epochs (). The parser rules are described in the
documentation for that function. Each string starts with a prefix. Supported prefixes are:

1. B: Besselian epoch

2. J: Julian epoch

3. JD: Julian date

4. MID: Modified Julian Day

5. RJD: Reduced Julian Day

6. F: Old and new FITS format (old: DD/MM/YY new: YYYY-MM-DD or YYYY-MM-DDTHH:MM:SS)

Example: Next example is a simple test program for epoch specifications. The function
celestial.epochs () returns a tuple with three elements:

* the Besselian epoch
¢ the Julian epoch
* the Julian date.

#!/usr/bin/env python
from kapteyn import wcs

ep = [’Jz2000", ’3j2000", "3 2000.5", ’B 2000", ”JDb2450123.7'",
"mJD 24034’, ’'MJD50123.2", ’'rJb50123.2’, ’'Rjd 23433',
"¥29/11/57', '"F2000-01-01", ’'F2002-04-04T09:42:42.1"]

for epoch in ep:
B, J, JD = wcs.epochs (epoch)
print " = B%f, J%f, JD " % (epoch, B, J, JD)

The output is:

18.7. Celestial transformations with wcs 225

Kapteyn Package Documentation, Release 2.0.3b19

J2000 = B2000.001278, Jz2000.000000, JD 2451545.000000
j2000 = B2000.001278, J2000.000000, JD 2451545.000000
j 2000.5 = B2000.501288, J2000.500000, JD 2451727.625000
B 2000 = B2000.000000, J1999.998723, JD 2451544.533398
JD2450123.7 = B1996.109887, J1996.108693, JD 2450123.700000
mJD 24034 = B1924.680025, J1924.680356, JD 2424034.500000
MJD50123.2 = B1996.109887, J1996.108693, JD 2450123.700000
rJgbp50123.2 = B1996.108518, J1996.107324, JD 2450123.200000
Rjd 23433 = B1923.033172, J1923.033539, JD 2423433.000000
F29/11/57 = B1957.910029, J1957.909651, JD 2436171.500000
F2000-01-01 = B1999.999909, J1999.998631, JD 2451544.500000
F2002-04-04T09:42:42.1 = B2002.257054, J2002.255728, JD 2452368.904654

The strings that start with prefix ‘F’ are strings read from FITS keywords that represent the date of observation.

18.7.2 The sky definition

Given an arbitrary celestial position and a sky system specification you can transform to any of the other sky
system specifications. Module wcs recognizes the following built-in sky specifications:

wcs.equatorial - wcs.ecliptic - wcs.galactic - wcs.supergalactic
Reference systems are:
wcs.fk4 - wcs.fkd4d_no_e — wecs.fk5 - wes.icrs - wes.j2000

The syntax for an equatorial sky specification is either a tuple (order of the elements is arbitrary):

(sky system, equinox, reference system, epoch of observation)
e.g.: obj.skyout = (wcs.equatorial, "J1983.5", wcs.fk4, "B1960_OBS")

or a string with minimal match:

(equatorial, equinox, referencesystem, epoch of observation"
e.g.: obj.skyout = "equa J1983.5 FK4 B1960_OBS"

18.7.3 Celestial transformations

In this section we check some basic celestial coordinate transformations. Background information can be found
in [Ref2] or in the background information for module celestial.

Two parameters instantiate an object from class Transformation. The first is a definition of the
input celestial system and the second is a definition for the celestial output system. Method
wcs.Transformation.transform() transforms coordinates associated with the celestial input system to
coordinates connected to the celestial output system.

The galactic pole has FK4 coordinates (192.25,27.4) in degrees. If we want to verify this, we need to convert this
FK4 coordinate to the corresponding galactic coordinate, which should be (0,90) within the limits of precision of
the used numbers. The following script shows that this could be true:

from kapteyn import wcs

world_eq = (192.25, 27.4) # FK4 coordinates of galactic pole
tran = wcs.Transformation ("EQ, fk4,B1950.0", "GAL")

world_gal = tran.transform(world_eq)

print world_gal

Output:

226 Chapter 18. Tutorial wcs module

Kapteyn Package Documentation, Release 2.0.3b19

(120.8656324107187, 89.999949251695512)

Closure test:
world_eq = tran.transform(world_gal, reverse=True)
print world_eq

Output:
(192.25, 27.400000000000002)

We added a closure test (parameter reverse=True) to give you some feeling about the accuracy. Closure tests
usually show errors < le-12. We expected the pole at 90 deg., but the difference is about 5e-05 deg. That is too
much so there must be another reason for the difference. The reason is described in the background information of
module celestial. The galactic pole is not a star and the so called elliptic terms of aberration (only for FK4)
are not apply to its position. So in fact the pole is given in FK4-NO-E coordinates. If we repeat the exercise with
the appropriate input celestial definition, we get:

from kapteyn import wcs

world_eq = (192.25, 27.4) # FK4 coordinates of galactic pole
tran = wcs.Transformation ("EQUATORIAL, fk4 _no_e, B1950.0", "galactic")
world_gal = tran.transform(world_eq)

print world_gal

Output:
(0.0, 90.0)

world_eqg = tran.transform(world_gal, reverse=True)
print world_eq

Output:
(192.25, 27.400000000000002)

which gives the result as expected. Note that we used attribute reverse of the Transformation class. The two
previous examples show that the transformation class is very useful to check basic celestial transformations.

As another test of a standard celestial transformation, let’s check the transformation between galactic and super-
galactic coordinates. The supergalactic pole (0,90) deg. has galactic(Il) world coordinates (47.37,6.32) deg. The
conversion program becomes then:

from kapteyn import wcs

world_gal = (47.37, 6.32) # Galactic 1,b (II) of supergalactic pole
tran = wcs.Transformation (wcs.galactic, wcs.supergalactic)

world_sgal = tran.transform(world_gal)

print world_sgal

Output:
(0.0, 90.0)

world_eq = trans.transform(world_sgal, reverse=True)
print world_gal

Output:
(47.369999999999997, 6.3200000000000003)

which agrees with the theory.

The sky system specifications allow for defaults. So if one wants coordinates in the equatorial system with ref-
erence system FKS and equinox J2000 then the specification wes.fk5 will suffice. Below we demonstrate how to
transform a coordinate from the FK4 system to FKS. In fact we want to demonstrate that FK4 is slowly rotating
with respect to the inertial FKS system. We do that by varying the assumed time of observation and convert the po-
sition (R.A.,Dec) = (0,0). This behaviour is explained in the background documentation of module celestial:

18.7. Celestial transformations with wcs 227

Kapteyn Package Documentation, Release 2.0.3b19

#!/usr/bin/env python
from kapteyn import wcs

world_eqgl = (0,0)

s_out = wcs.fk5

epochs = range (1950,2010,10)
for ep in epochs:

s_in = "EQUATORIAL B1950 fk4 " + ’B’+str (ep)
tran = wcs.Transformation(s_in, s_out)
world_eqg2 = tran.transform(world_eql)

print 'B’+str(ep), world_eqg?2

Output:

B1950 (0.64069100057541584, 0.27840943507737015)
B1960 (0.64069761256120361, 0.2783973383470032)
B1970 (0.64070422454697784, 0.27838524161663253)
B1980 (0.64071083653273853, 0.27837314488625808)
B1990 (0.64071744851848544, 0.278361048155880009)
B2000 (0.64072406050421915, 0.27834895142549831)

Usually FK4 catalog values are in equinox and epoch B1950.0, so this program shows an exceptional case.

Note: We are not restricted to the transformation of one coordinate. The input of positions fol-
low the rules of coordinate representations as described for methods wcs.Projection.toworld () and
wcs.Projection.topixel ().

18.7.4 Combining projections and celestial transformations

In previous sections we showed examples how to use methods of an object of class Projection to convert between
pixel coordinates and world coordinates. We added the option to change the celestial definition. If your data is a
spatial map and its sky system is FKS5, then we can convert pixel positions to world coordinates in for example
galactic coordinates by specifying a value for attribute wcs . Projection.skyout. In our case this would be
for a projection object called proj:

>>> proj.skyout = wcs.galactic

In the next example we test (like in one of the previous examples) a conversion between an equatorial system and
the galactic system. The FK4-NO-E coordinates of the galactic pole are the values (CRVALI, CRVAL2) from the
header. First we calculate a couple of world coordinates in the native celestial definition. Then we verify that that
native system is indeed FK4-NO-E and the equinox is B1950. That can be verified with:

>>> proj.skyout = (wcs.equatorial, wcs.fk4_no_e, "B19507)

Finally we test the conversion to galactic coordinates with:

>>> proj.skyout = wcs.galactic

With the output sky set to galactic, we find the galactic pole in galactic coordinates i.e. (90,0) deg. Finally we
want to know what the values of the input pixel coordinates are if the output sky system is supergalactic. The

galactic pole is (90, 6.32) deg. in supergalactic coordinates. Within the limits of the precision of the used numbers
we find the expected output with this script:

from kapteyn import wcs

header = { "NAXIS’ 2,
"NAXIS1’ : 5,
"CTYPE1l’ : 'RA-—-TAN’,
"CRVALL’ : 192.25,
"CRPIX1’ : 5,
"CUNIT1’ : ’'degree’,

228 Chapter 18. Tutorial wcs module

20

21

22

23

24

25

26

27

28

29

Kapteyn Package Documentation, Release 2.0.3b19

'CDELT1’ : -0.01,
"NAXIS2' : 10,
"CTYPE2’ : ’'"DEC--TAN’,
"CRVAL2' : 27.4,
"CRPIX2' : 5,

"CUNIT2’ : ’"degree’,
'CDELT2’ : +0.01,
"RADESYS’ : "FK4-NO-E’,
"EQUINOX’ : 1950.0

proj = wcs.Projection (header)

pixel = [(4,5),(5,5),(6,5)] # List with coordinate tuples

world = proj.toworld(pixel)

print world

[(192.26126360281495, 27.399999547653639), (192.25, 27.399999999999999),

proj.skyout = "Equatorial FK4-NO-E B1950"
world = proj.toworld(pixel)
print world

[(192.26126360281495, 27.399999547653639), (192.24999999999997, 27.400000000000002), ...

proj.skyout = "galactic"

world = proj.toworld(pixel)

print world

[(33.00000000001878, 89.990000000101531), (0.0, 90.0),

proj.skyout = wcs.supergalactic

world = proj.toworld(pixel)

print world

[(90.002497049104363, 6.3296871263660073), (90.000000000000014, 6.319999999999995),

Note that the second tuple on each line of the output represents the world coordinates at CRPIX. Also important
is the observation that the longitude for galactic coordinates shows erratic behaviour. The reason is that close
to a pole, the longitudes are less well defined (and undefined on the pole) and the errors in longitudes become
important because we are calculating with numbers with a limited precision.

18.7.5 Attributes of a Projection object related to celestial systems

There are a number of attributes of an object of class wcs . Projection, related to celestial systems, that can be
used to inspect the parsed FITS header. The native system in the previous example could be derived from attribute
wcs.Projection.skysys:

from kapteyn import wcs

header = { "NAXIS’ 2,
"NAXIS1l" : 5,
"CTYPE1l’ : '"RA-—--TAN’,
"CRVALL’ : 192.25,
"CRPIX1" : 5,
"CUNIT1" : ’"degree’,
"CDELT1’ : -0.01,
"NAXIS2" : 10,
"CTYPE2’ : ’'DEC--TAN’,
"CRVAL2' : 27.4,
"CRPIX2" : 5,
"CUNIT2" : "degree’,
"CDELT2’ : +0.01,
"RADESYS’ : "FK4-NO-E’,
"EQUINOX’: 1950.0,

18.7. Celestial transformations with wcs 229

20

21

22

23

24

25

26

27

28

29

Kapteyn Package Documentation, Release 2.0.3b19

"MJD-0OBS’: 36010.2

proj = wcs.Projection (header)
print "Attributes of ’‘proj’:"
print "skysys: ", proj.skysys
print "equinox: ", proj.equinox
print "epoch: ", proj.epoch
print "dateobs: ", proj.dateobs
print "mjdobs: ", proj.mjdobs
print "epobs: ", proj.epobs

Attributes of ’‘proj’:

skysys: (0, 5, ’"B1950.0")

equinox: 1950.0

epoch: B1950.0

dateobs: None

mjdobs: 36010.2

epobs: MJD36010.2

Below a table with a short explanation of the attributes. More information about epochs and equinoxes can be
found in the documentation of celestial.

Attribute | Explanation

skysys A single value or tuple which defines the native system. Tuples can contain the sky system, the
reference system, the equinox and the date of observation.

equinox equinox is a floating point number. It is read from the FITS header (keyword EQUINOX). The
equinox is a moment in time used for the definition of an equatorial system.

epoch This attribute is the epoch of the equinox. That is the value of the equinox with prefix ‘J” or ‘B’.
The context (a.o. keyword RADESYYS) sets the prefix.

dateobs Date of observation. Floating point number given by FITS keyword DATE-OBS

mjdobs Date of observation. Floating point number given by FITS keyword MJD-OBS

epobs Date of observation as an epoch, i.e. copied from mjdobs or dateobs and prefixed by ‘F’ or
‘MID’

18.7.6 Available functions from celestial

Some of the functions defined in the module celestial are also available in the namespace of wcs. One
of these is celestial.epochs () for which we wrote an example in the previous section. Others are
celestial.lon2hms (),celestial.lon2dms () andcelestial.lat2hms () toformatdegrees into
hours, minutes, seconds or degrees, minutes and seconds. Finally the function celestial.skymatrix () is
also available to wcs; it calculates the rotation matrix to convert a coordinate from one sky system to another
and it calculates the E-terms (see background documentation for celestial) if appropriate. Usually you will only
use this function to compare rotation matrices with matrices from the literature or to do some debugging. Some
examples on the Python command line:

Formatting spatial coordinates:

>>> wcs.lon2hms (45.0)

"03h 00m 0.0s’

>>> wcs.lon2hms (23.453839, 4)
"0lh 33m 48.9214s’

>>> wcs.lon2dms (245.0, 4)
Out[10]: " 245d Om 0.0000s’
>>> wcs.lat2dms (45.0)

"+45d 00m 0.0s”’

>>> help(wcs.lon2hms)

Calculate a rotation matrix:

230 Chapter 18. Tutorial wcs module

Kapteyn Package Documentation, Release 2.0.3b19

>>> wcs.skymatrix (wecs.galactic, wcs.supergalactic)
(matrix ([[-7.35742575e-01, 6.77261296e-01, -6.08581960e-17],
[=7.45537784e-02, -8.09914713e-02, 9.93922590e-011,
[6.73145302e-01, 7.31271166e-01, 1.10081262e-01]]), None, None)

18.8 Spectral transformations

18.8.1 Introduction

The most important documentation about conversions of spectral coordinates in WCSLIB is found paper “Repre-
sentations of spectral coordinates in FITS” (paper III, [Ref3]) In the next sections we show how wcs/WCSLIB
can deal with spectral conversions with the focus on conversions between frequencies and velocities. We discuss
conversion examples shown in the paper in detail and try to illustrate how wcs deals with FITS data from (legacy)
AIPS and GIPSY sources. In many of those files the reference frequencies and reference velocities are not given
in the same reference system (e.g. topocentric vs. barycentric). It is estimated that there are many of these
FITS files and that their headers generate wrong results when they are used to create an object the constructor of
wcs.Projection class unmodified. For FITS files generated with legacy software some extra interpretation
of the FITS header is applied. This procedure is described in more detail in the background information related to
spectral coordinates.

18.8.2 Transformations between frequencies and velocities

We built applications that use WCSLIB to convert grid positions, in an image or a spectrum, to world coordinates.
For spectral axes with frequency as the primary type (e.g. in the FITS header we read CTYPE3="FREQ’), it is
possible to convert between pixel coordinates and frequencies, but also, if the header provides the correct infor-
mation, between pixel coordinates and velocities. WCSLIB expects that in a FITS header the given frequencies
are bound to the same standard of rest (i.e. reference system) as the given reference velocity. In practice however
there are many FITS files that list the frequencies in the topocentric system and a reference velocity in an inertial
system (barycentric, Isrk). In those FITS files the inertial systems are usually abbreviated with ‘HEL’ or ‘LSR’
(Heliocentric, Local Standard of Rest) and the velocities are usually not the true velocities but are either the so
called radio or optical velocities (of which we give the definitions in the background information about spectral
coordinates).

18.8.3 Basic spectral line header example

In “Representations of spectral coordinates in FITS” ([Ref3]) section 10.1 deals with an example of a VLA
spectral line cube which is regularly sampled in frequency (CTYPE3="FREQ’). The section describes how one
can define alternative FITS headers to deal with different velocity definitions. We want to examine this exercise
in more detail than provided in the article to illustrate how a FITS header can be modified. In the background
information you find a more elaborate discussion. Here we summarize some results.

The topocentric spectral properties in the FITS header from the paper are:

CTYPE3= ’FREQ’

CRVAL3= 1.37835117405e9
CDELT3= 9.765625e4
CRPIX3= 32

CUNIT3= ’"Hz'

RESTFRQ= 1.420405752e+9
SPECSYS=’"TOPOCENT’

Usually such descriptions are part of a header that describes a three dimensional data structure where the first two
axes represent a spatial map as function of the third axis which is a spectral axis. This example tells us that the
spatial data corresponding with channel 32 was observed at a topocentric frequency (SPECSYS="TOPOCENT")

18.8. Spectral transformations 231

Kapteyn Package Documentation, Release 2.0.3b19

of 1.37835117405 GHz. The step size in frequency is 97.65625 kHz. A rest frequency (1.420405752e+9 Hz) is
needed to convert frequencies to velocities. The description of standard FITS keywords can be found in [FITS]

The topocentric frequency (for the receiver) was derived from a barycentric optical velocity of 9120 km/s that was
requested by an observer.

We prepared a minimal header to simulate this FITS header and calculate world coordinates for the spectral axis.
The numbers are frequencies. The units are Hz and the central frequency is CRVAL3. The step in frequency is
CDELT3. Our minimal header (here presented as a Python dictionary) shows only one axis so our header items
got axis number 1 (e.g. CRVALI, CDELTI, etc.):

from kapteyn import wcs

header = { ’NAXIS’ 1,
"CTYPE1l’ : 'FREQ’,
"CRVAL1’ : 1.37835117405e9,
"CRPIX1’ : 32,
"CUNIT1’ : ’"Hz',
"CDELT1" : 9.765625e4
}
proj = wcs.Projection (header)

pixels = range (30, 35)

Fwcs = proj.toworldld(pixels)

for p,f in zip(pixels, Fwcs):
print p, £

Output:

30 1378155861.55
31 1378253517.8
32 1378351174.05
33 1378448830.3
34 1378546486.55

The output shows frequency as function of pixel coordinate. Pixel coordinate 32 (=*CRPIX1%*) shows the value
of CRVALI. Now we have a method to find at which frequency a spatial map in the data cube was observed.

18.8.4 WCSLIB velocities from frequency data

Usually similar FITS headers provide information about a velocity. Velocities is what we need for the analysis
of the kinematics and dynamics of the observed objects. But there are several definitions for velocities (radio,
optical, apparent radial).

For the radio interferometer, like the WSRT, an observer requesting for an observation, needs to specify:
* A rest frequency
* A velocity or Doppler shift
* A frame definition (bary or Isrk)
* A conversion type (z, radio, optical)

* A time of observation. This time is needed (together with the location of the observatory) to calculate the
topocentric frequencies needed for the receivers

The observer requests that an observation must correspond to a velocity or Doppler shift (see list below) and a
reference system. Only then topocentric frequencies for the receivers can be calculated.

To convert to another spectral type the constructor from class wcs . Projection needs to know which spectral
type we want to convert to. The translation is set then with wcs .Projection. spectra (). which stands for
spectral translation.

The parameter that we need to set the translation is ctype. Its syntax follows the FITS convention, see note below.

232 Chapter 18. Tutorial wcs module

Kapteyn Package Documentation, Release 2.0.3b19

Note: The first four characters of a spectral CTYPE specify the new coordinate type, the fifth character is ‘-’ and
the next three characters specify a predefined algorithm for computing the world coordinates from intermediate
physical coordinates ([Ref3]).

The following spectral types are supported (from [Ref3]):

Type Name Symbol | Units | Associated with
FREQ | Frequency v Hz v
ENER | Energy E J v
WAVN | Wavenumber K 1/m v
VRAD | Radio velocity A% m/s v
WAVE | Vacuum wavelength A m A
VOPT | Optical velocity z m/s A
ZOPT | Redshift z - A
AWAV | Air wavelength Aa m Aa
VELO | Apparent radial velocity | v m/s v
BETA | Beta factor (v/c) 1) - v

The non-linear algorithm codes are (from [Ref3]):

Code sampled in Expressed as

F2w Frequency Wavelength

F2v Frequency Apparent radial velocity
F2A Frequency Air wavelength

W2F Wavelength Frequency

Ww2v Wavelength Apparent radial velocity
W2A Wavelength Air wavelength

V2F Apparent radial velocity | Frequency

V2w Apparent radial velocity | Wavelength

V2A Apparent radial velocity | Air wavelength

A2F Air wavelength Frequency

A2W Air wavelength Wavelength

A2V Air wavelength Apparent radial velocity

If we want to convert pixel coordinates to optical velocities for our example header, then module wcs needs
to create a new projection object with ctype = VOPT-F2W because VOPT represents an optical velocity and
F2W sets the non linear algorithm which converts from the domain where the step size is constant (frequency)
to a velocity associated with wavelength (see table above). The following script shows how to use the method

wcs.Projection.spectra () to create this new object and how to convert the pixel coordinates:

#!/usr/bin/env python
from kapteyn import wcs

1.37835117405€9,

header = { "NAXIS’ 1,
"CTYPE1l’ : ’"FREQ’,
"CRVAL1’ :
"CRPIX1’ : 32,
"CUNIT1’ : ’Hz’,
"CDELT1’ 9.765625e4,
"RESTFRQ’ : 1.420405752e+9

}
proj = wcs.Projection (header)

spec = proj.spectra (/VOPT-F2W")

pixels =

Vwcs = spec.toworldld(pixels)
print "Pixel, velocity (y"

for p,v in zip(pixels, Vwcs):

print

Output
Pixel,

range (30, 35)

p, v/1000.0

velocity (m/s)

30 9190.68652655
31 9168.7935041

[}

% spec.units

18.8. Spectral transformations

233

23

24

25

20

21

22

23

24

25

26

Kapteyn Package Documentation, Release 2.0.3b19

32 9146.90358389
33 9125.01676527
34 9103.13304757

Some comments about this example:

e It shows how to add the spectral translation to the projection object. For a conversion from fre-
quency to optical velocity one can derive a new object with spec = proj.spectra(‘"VOPT-F2W’) or proj =
wces. Projection(header).spectra(‘VOPT-F2W’).

* The output is a list with pixel coordinates and fopocentric velocities. This explains why we don’t see the
requested velocity (9120 km/s) at CRPIX because that velocity was barycentric.

* When we enter an invalid algorithm code for the velocity, the script will raise an exception.
Why do we need a rest frequency?

To get a velocity, the rest frequency needs to be added (RESTFRQ=) to our minimal header. What you get then is
a list of velocities according to:

Vg — Vv

)\—)\O)ZC(

Z:
C(AO v

) (18.1)

We adopted variable Z for velocities following the optical definition. The frequency as (linear) function of pixel
coordinate is:

V=Upes + (N =N, ,)ov (18.2)

where:
* VUpey is the reference frequency (CRVALI)
* N is the pixel coordinate (FITS definition) we are interested in,

. N,

Vref

is the frequency reference pixel (CRPIX1)
* v is the frequency increment (CDELT1)

Let’s check this with a small script:

from kapteyn import wcs

header = { "NAXIS’ 1,
"CTYPE1l’ : ’"FREQ’,
"CRVAL1"” : 1.37835117405e9,
"CRPIX1’ : 32,
"CUNIT1"” : "Hz',
"CDELT1" : 9.765625e4,

"RESTFRQ’: 1.420405752e+9
}

proj = wcs.Projection (header)
spec = proj.spectra (ctype='VOPT-F2W")
pixels = range (30, 35)
Vopt = spec.toworldld(pixels)
print "Pixel coordinate and velocity (%s) with wcs module:" % spec.units
for p,Z2 in zip(pixels, Vopt):

print p, 7/1000.0

print "\nPixel coordinate and velocity () with documented formulas:" % spec.units
for p in pixels:

nu = header[’CRVAL1"] + (p-header[’CRPIX1’])+header[’CDELT1"]

7 = wcs.c* (header [’ RESTFRQ’] —nu) /nu # wcs.c 1s speed of light in m/s

print p, 7/1000.0

Pixel coordinate and velocity (m/s) with wcs module:

234 Chapter 18. Tutorial wcs module

Kapteyn Package Documentation, Release 2.0.3b19

30 9190.68652655
31 9168.7935041

32 9146.90358389
33 9125.01676527
34 9103.13304757

HH W W H H

Pixel coordinate and velocity (m/s) with documented formulas:
30 9190.68652655

31 9168.7935041

32 9146.90358389

33 9125.01676527

34 9103.13304757

S FH e W H H

More checks are documented in the background information for spectral coordinates. This one should give you
some idea how WCSLIB transforms spectral coordinates. But we still didn’t address the question about the
reference systems. In our code example, this velocity Z is topocentric (defined in the reference system of the
observatory) and is not suitable for comparisons because the Earth is moving around its axis and around the
Sun. Other reference systems are the barycenter of the Solar system and the Local Standard of Rest. During
observations one knows the location of the source, the time of observation and the location of the observatory
on Earth. Software then can calculate the (true) velocity of the Earth with respect to a selected inertial reference
system and we can transform from topocentric velocities to velocities in another system. Usually these correction
velocities (called topocentric correction) are not recorded in the FITS file of the data set. The keyword to look for
is VELOSYS=

In the background information about spectral coordinates we give a recipe how one can change the value of
the reference frequency in CRVALI to a barycentric value. The result is CRVAL1=1.37847121643e+9 If you
substitute this value for CRVALLI in the previous script, the output is:

Pixel coordinate and velocity (m/s) with wcs module:
30 91