
Bachelor Thesis Project

Separating SoFiA’s Sources

An identification and separation module for SoFiA

M.J.F. Versteeg

supervised by
Nadine Giese

Thijs van der Hulst

July 12, 2016

2

Abstract

SoFiA (Source Finding Application) is a flexible piece of software that performs automated 3D
detection and parametrization of sources in H i data cubes. Sometimes, however, the H i of galaxies
that are close together might overlap. SoFiA is then unable to unambiguously assign the H i regions
to a galaxy and thus falsely identifies the galaxies as one source. This paper presents a new module
for SoFiA, capable of identifying ambiguously assigned areas and separating those, in 2D, into their
respective components. By applying a watershed algorithm to a Gaussian-filtered moment-0 map
of the data cube, an initial model is defined for each of the galaxies. These shapes are then dilated
until the SoFiA mask is completely filled, thus separating the mask into its component pieces.

3

1 Introduction

Since the 1930s, radio astronomy has been used to discover and analyze the Universe in ways not
possible through optical astronomy alone. Radio astronomy has given scientists measurements of
the Cosmic Microwave Background (CMB), new types of objects previously unknown to exist, such
as quasars, and much more. In this day and age, with bigger telescopes and telescope arrays, the
amount of data, and thus information, increases as well.

With upcoming H i surveys like WALLABY (with ASKAP) (Duffy et al., 2012), and surveys with
the new APERTIF system on the Westerbork Synthesis Radio Telescope (WSRT) (Verheijen et al.,
2008), a demand for a thorough and flexible automated application for source finding has been
created. SoFiA (Source Finding Application (Serra et al., 2015)), is a modular application that
combines source-finding algorithms in such a way that the user can flexibly select what modules
to use for their specific research. While SoFiA satisfies many of the demands astronomers have, it
is not without flaw. When used to find sources in reduced radio astronomical spectral line data,
SoFiA can wrongfully flag two or more separate galaxies as one source, due to an overlap in their
H i distributions. Because this can lead to less reliable results, it is important to develop a module
for SoFiA that can intercept false source identifications and correct the source finding by separating
the source into its loose components- one for each individual galaxy.

2 Method

Processing the data cubes consist of two primary steps: identification and separation. To identify
the content of the data cube, an automated search in NED (NASA/IPAC Extragalactic Database)
1 is performed to find the galaxies contained within the right ascension (RA), declination (Dec)
and redshift (z) limits of the cube. If multiple galaxies share a source ID in the mask cube (that
has been created by SoFiA), an ambiguously assigned source has been found. In such cases, the
second step of the process, separation, is required. A two-dimensional model of the part of the
sky where the cube is located is created, using a Gaussian-filtered moment-0 map of the galaxy,
to which a watershed algorithm is applied to create models of the galaxies according to their gas
distribution. The models of the galaxies are then ’grown’ using dilation to fit the original mask as
created by SoFiA, ensuring that the original mask is divided between the individual sources.

In order to perform the above process, a module has been developed that can be added to the ex-
isting SoFiA program. The source identification and separation module has been developed in the
Python programming language by the author and makes use of several packages, including NumPy
(Van Der Walt et al., 2011), SciPy (Jones et al., 2001–), Astropy (The Astropy Collaboration et al.,
2013) and Astroquery (Ginsburg et al., 2013). In order to create the images, MatPLotLib (Hunter,
2007) has been used. Ancillary data (See Appendix A) has been used in the development of this
module. The source code identification and separation module can be found in Appendix D and
online at the author’s website.2 At the time of writing, the identification and separation module
requires the user to manually provide the cube, mask cube and moment-0 image. If this module
gets implemented into SoFiA, however, no user interaction will be required and the module will
operate autonomously. The identification and separation process as performed by the module will
be discussed in more detail in sections 3 and 4.

NED has been chosen as the primary database because of its large amount of easily accessible in-
formation and easy-to-use web interface for comparison to the results of the identification to ensure
its proper workings. If necessary, however, any other database accessible through the Astroquery
module could be used by modifying the module.

The module is built up in such a way that it will accept data cubes of all sizes. Its coordinates can
either be in the B1950 or J2000 epoch, as an automated check is built in. It compares the galaxies

1The NASA/IPAC Extragalactic Database (NED) is operated by the Jet Propulsion Laboratory, California Institute
of Technology, under contract with the National Aeronautics and Space Administration.

2www.astro.rug.nl/~versteeg/bscthesis/index.html

www.astro.rug.nl/~versteeg/bscthesis/index.html

4 4 Separation

NED finds within the cube’s limits to the mask of sources that have been identified by SoFiA. A
system message will inform the user of the galaxies found in their cube. The module will then
check for separate galaxies that have been assigned the same source ID. If multiple galaxies share
a source ID, it will print a warning, alerting the user of the shared source IDs.

3 Identification

Automated search query

Using the headers of the data cube, the module can determine the size of the cube. By using the
RA and Dec of the center pixel and the coordinates of the corners to find the radius necessary to
cover the entire cube, the region in which NED must be queried can be found. Using Astroquery,
a NED search can then be conducted: Astroquery returns not only a list of objects, but also their
basic data, including but not limited to coordinates (in RA and Dec), redshift and type of object.
The module filters the resulting list using two criteria: firstly, the redshift limits of the cube itself:
the frequency limits along the line of sight are also saved in the header data and can be used to
determine a maximum and minimum redshift. Secondly, the module filters by type of object, set to
galaxy (’G’). Although it can be set to another type or even to filter by a ’G’ in any part of the type
name, it is advisable to leave it as is. Filtering by type ’G’ ensures that the list does not contain
any duplicate entries. Since the NED query also returns pairs of objects, groups of objects etc.,
the list might not only contain the galaxy the user is looking for, but also the groups/pairs/cluster
it could be a part of.

Mask comparison

Using the basic data of the galaxies, the RA/Dec coordinates obtained from NED of each galaxy
are converted to pixel locations within the cube. The pixel values of the locations of the galaxies
inside the data cube are then used to access the mask cube at that value along the line of sight.
The mask cube is a 3D array filled with zeros, except at the location of the sources, where it will
contain the source ID values. If a source ID is found along the line of sight at the location of
the galaxy, the name, frame number and source ID are added to a list. The program generates
such a list for each individual galaxy. The lists of galaxies can then be compared: if the names of
two galaxies do not match and their source IDs do match, SoFiA has wrongfully assigned a single
source ID to multiple galaxies. An automatically generated warning containing the names of the
galaxies and the source ID is printed to inform the user of the error.

4 Separation

Model array creation

The source separation starts by creating a 2D model of the sky that has the same dimensions
as the cube in RA and Dec. This model is based on the moment-0 image created by SoFiA. A
Gaussian filter (with a variable standard deviation σ) is applied tot the moment-0 image. Initially,
the sigma for the Gaussian filter is set to a minimum of σ = 2. The watershed algorithm can be
then be applied. This is an automated process that removes progressively higher values from the
moment-0 image, until the number of objects is equal to the number of galaxies that share a source
ID. If the watershed does not result in the desired number of objects, the σ of the Gaussian filter
is increased by 0.1 and the watershed is repeated until the correct number of objects is left. The
module stops trying to create a model if σ reaches a limit, currently set at σ = 15.

The next step is to assign the proper identity to the created objects. This is necessary for the next
step (dilation), in which the models are grown to fit the mask. In order to do this, the program
compares the optical centers of the galaxies (from the NED query) to the centers of mass of each
object and assigns identities via a simple distance comparison. In some cases, this will lead to an
object being doubly assigned. The watershed is then deemed unsuccessful.

5

It is important to note that even with a variable standard deviation, not all moment-0 maps can be
watershed to a correct model. If the program cannot watershed the filtered moment-0 map to the
desired amount of objects or if it cannot properly assign identities to the objects, the watershed
model creation is deemed impossible. In this case, the program will automatically switch to an
alternative way of model creation: using diameter data from a NED query to create elliptical
models of the galaxies. For the galaxies for which NED does not provide diameter data, generic
circular models are created. If the models overlap, the module cannot separate the mask into
individual components. If this happens, the model is recreated using objects that are half the
original size, after which another attempt at separation will be made.

2D source separation

In order to perform the separation in 2 dimensions, the mask cube that has been created by SoFiA,
is reduced to a 2D array by adding all frames along the line of sight. Within the model containing
the ellipses (the overlay), the galaxy arrays are dilated using SciPy’s built-in dilate function (see
appendix C). Each galaxy array is dilated individually by an elliptical kernel with a size dependent
on the size of the galaxy in question and its gas distribution. This information is stored in the
moment-0 map. This method ensures that galaxies that contain more gas ’grow’ faster than the
ones that contain less gas. Furthermore, comparison to the moment-0 image allows for a more ac-
curate separation: as the average amount of gas around a galaxy decreases, the dilation footprint
reduces to a minimum size as well.

It is important to note that NED does not provide diameter data for all objects. For objects
that have no diameter data available, the module creates a generic circular kernel, currently set to
r =
√

5 pixels.

For optimization reasons, a subarray that encloses the 2D mask is defined to create boundaries in
which the dilation takes place. The dilation fills up the subarray, ensuring that the galaxies do
not overlap: only elements that have not yet been assigned a value in the subarray are added to
the newly dilated ellipse. After every dilation step, the array (that now contains a region of only
non-zero values, one value for each galaxy) is multiplied with the 2D mask (that contains only
ones where the mask is defined and zeros elsewhere), resulting in a mask that is divided between
the galaxies in question.

5 Results

In order to demonstrate the workings of the module, a selection of three cubes has been made.
These cubes are part of the WHISP survey (van der Hulst et al., 2001) and are publicly available
at WoW (Westerbork on the Web) 3. The masks as well as the moment-0 images that are used
have been generated by SoFiA, publicly available at GitHub 4.

UGC 1256

This cube contains not only UGC 1256, but also its companion UGC 1249. When this cube is used
as input for the identification and separation module, the user will be alerted of a shared source
ID:

Galax ies found in your cube : [’ IC 1727 ’ , ’NGC 0672 ’]
WARNING: SoFiA has g iven both IC 1727 and NGC 0672 the same sourceID :

[1 . 0]

SoFiA has assigned source ID 1 to two galaxies, IC 1727 (UGC 1249) and NGC 0672 (UGC 1256).
This means that the module will attempt to separate the 2D mask into two components. Firstly,

3http://wow.astron.nl/
4https://github.com/SoFiA-Admin/SoFiA

http://wow.astron.nl/
https://github.com/SoFiA-Admin/SoFiA

6 5 Results

the module creates a model, using the Gaussian-filtered watershed moment 0 image as a basis, as
shown in figure 1.

Figure 1 – Contours of models superimposed on the moment 0 image. The green contour represents
the model for NGC 0672 (UGC 1256) and the red contour corresponds to the model for IC 1727 (UGC
1249)

This model is then used as a basis for the dilation, the result of which can be seen in figure 2:

Figure 2 – 2D separated mask array superimposed on the moment-0 image.

7

The identification and separation module has been able to separate the mask into two components,
one for each galaxy. Despite being in 2D, this separation can serve as a basis for further analysis.

UGC 2941

The process is not always as successful as demonstrated on cube UGC 1256. In some cases, the
separation will not work properly. In order to demonstrate this, the data cube for UGC 2941 is
used as input for the module. This cube contains not only UGC 2941, but also UGC 2492 and
UGC 2943. While UGC 2941 is given its own source ID, UGC 2942 and UGC 2943 share one:

Galax ies found in your cube : [’CGCG 487−013 ’ , ’ IC 0357 ’ , ’UGC 02942 ’ , ’
UGC 02943 ’ , ’MCG +04−10−020’]

WARNING: SoFiA has g iven both UGC 02942 and UGC 02943 the same sourceID
: [2 . 0]

which means the separation component will attempt to do its job. In this case, however, the
watershed algorithm has been unable to create the right number of models. It thus switches to
NED diameter data to use elliptical models of the galaxies. The NED diameter data, however,
produces two ellipses which already overlap. (shown in figure 3). Since the module cannot separate
galaxies of which the models already overlap, the program attempts to create the model again,
using NED data, but shrinking the ellipses down to half size, leading to figure 4 (both cropped for
clarity).

Figure 3 – NED model contours superimposed on
the moment-0 image

Figure 4 – Half-size NED model contours super-
imposed on the moment-0 image

Using the smaller model, the program is capable of dilating the image in order to fill up the mask.
This, however, does not lead to a desired result, as shown in figure 5:

8 5 Results

Figure 5 – 2D separated mask array superposed on the moment-0 image.

This weird dilation is most likely caused by a very small model having a very high average amount
of gas (leading to a large footprint and thus fast growth, even if the area of one galaxy will thus
’invade’ the area of the other). Even though the separation component does not lead to a two-part
separation in the mask, the user is still informed of a shared source and is given a general idea of
what the region looks like.

UGC 4458

Besides the cases in which the separation component does and does not work, there is also a third
possibility: separation is not required. Even in these cases, the module can be applied. UGC
4458 is an example of a cube in which SoFiA has unambiguously assigned all sources to individual
objects. When this data cube, mask cube and moment-0 map are plugged into the module, the
only system message the user receives is:

Ga lax ies found in your cube : [’NGC 2599 ’ , ’KUG 0829+227B ’]

After this the module stops, because neither of these sources share a source ID. This is confirmed
by superimposing the contour of the flattened mask cube onto the moment-0 image, shown in
figure 6:

9

Figure 6 – 2D mask array contour on top of mom-0 map.

While separation might not be necessary for this cube, the module still provides the user with
information by alerting them of the contents of the cube.

6 Final Remarks

Discussion

For the development of this module, a sample of 15 cubes from the WHISP survey was selected.
These cubes have been chosen because they were at risk of being incorrectly identified by SoFiA.
Of these 15, the program identified 7 as correctly separated (i.e. no galaxies share a source ID).
The remaining 8 cubes required additional separation.

While in some cases the module leads to a simple n-part division of the mask, where n is the
number of galaxies, this is not true for most cases, in which model creation or separation is not
possible, or the separation does not lead to desired results. In order to counter this, multiple ways
of dilating and determining the base model have been attempted. Having the dilation footprint
depend on the average of the added pixels, rather than the average of the ellipse plus the added
pixels, shows little difference with the original method, although the original method, as explained
in section 4, does appear to be somewhat more accurate. While currently implemented to occur
only when the watershed model creation has failed, creating a model using the same diameter data
used for the footprint is a possibility for all cubes, with the added benefit that even if separation is
impossible, the model will provide information about the location and orientation of the galaxies
within the mask. In addition to being more accurate, the use of the watershed moment-0 map
requires fewer dilation steps and thus less computationally intensive.

Other methods, including scikit-image’s built-in watershed function and scikit-learn’s spectral clus-
tering function have not proven to be useful in separating the mask accurately.

Despite the sub-optimal separation, the mask returned by the module will provide more detailed
information than an ambiguously assigned source and can be used as a basis for further analysis.
Furthermore, the results from the identification provide the user with important information about

10 6 Final Remarks

the contents of the cube and SoFiA’s source finding.

One issue that arises in the code is the usage of the exact value of the position angle. By using
NED’s homogenized data, the coordinates as well as the position angle (PA) are given in the J2000
epoch. While coordinates can easily be converted to another epoch using the Astropy package,
the same is not true for the PA, which could lead to the use of a J2000 PA in a cube with a
B1950 coordinate system. While the difference in degrees is only minor at low declination, at high
declination, the accuracy reduces. Using UGC 1249 and UGC 1256 as an example, according to
the coordinate calculator offered on the NED website 5, the difference in PA between J2000 and
B1950 epochs is approximately 0.21 degrees (for UGC 1249) and 0.22 degrees (for UGC 1256). For
an object at a high declination, e.g. 2MASX J22501987+8958232, at a RA of 342.707792 degrees
and a Dec of 89.973222 degrees, the difference in position angle is much larger: over 16 degrees
between J2000 and B1950. For now, the module does not differentiate between J2000 and B1950
position angles and is therefore less effective when used to analyze objects at high declination.
While this is not an issue for the ancillary WHISP data, this could potentially be an issue if this
module were used in the WALLABY survey, which is set to cover 75% of the sky, at a declination
ranging from -90◦ to 30◦ 6. Similarly, with upcoming H i surveys with APERTIF, which are set to
have a Declination of more than 30◦ (Verheijen et al., 2009), the module is capable of separating
those sources at lower declination more accurately than those at a higher declination. However,
despite the offset of the position angle, the module can still provide important information by
identifying observed objects and by providing a basis for separation.

In some cases (for example, the UGC 2941 data cube), there appears to be a small offset (about 2
seconds RA) between the optical center of the galaxy and the center of mass of the H i distribution.
This offset is too small to be an effect of the built-in B1950/J2000 converters not working properly,
and could be caused by a wrong entry in NED. Furthermore, in some cases (like NGC 3786, one of
the galaxies that share a source ID with another), some of the position angles from the diameter
data appear to be incorrect. The value from the SDSS isophotal data deviates from the other
values, even those from other SDSS analyses. According to the SDSS website 7, the publication
of isophotal quantities has stopped since DR8 because of the unreliability of the measurements.
In the case of NGC 3786, NED makes use of SDSS DR6, which does contain isophotal quantities.
Since the module uses the most recently published data, without looking at the names of the pub-
lications, there is a chance the separation component will make use of the SDSS isophotal position
angle, which can lead to an offset in the orientation of the model galaxy and the dilation footprint.

The speed at which the program identifies galaxies is dependent on the internet connection of the
user and of the state of the NED servers and can therefore vary between users. More important,
however, is the object density of the region: in regions that contain many objects, the region query
can be significantly slower than in less densely-populated areas. Therefore, some cubes might take
longer than others, despite a fast and stable internet connection.

At the moment of writing, separation of the 2D mask is only possible if the galaxies in the model
array do not already overlap. Due to the way the dilation in this module is set up, the area in which
the model galaxies overlap will not be dilated, leading to an improperly dilated image. Therefore,
a check is built in: the module will first shrink the models to half their original size. If separation
still is not possible, the user is informed of this via a system message.

In future development, the first obvious improvement is to ensure that separation can not only be
done in 2D, but also in 3D. While SoFiA will correctly identify sources that are far apart along
the line of sight, if the galaxies are close together, the application could assign a single source
to multiple galaxies. Another improvement can be made in the way in which the identification
and separation module handles the separation of very small models with a very high average
gas number. This leads to wrongly separated 2D masks, as has been illustrated in section 5. By

5https://ned.ipac.caltech.edu/forms/calculator.html
6http://www.atnf.csiro.au/research/WALLABY/proposal.html
7http://www.sdss.org/dr12/algorithms/classify/#photo_iso

https://ned.ipac.caltech.edu/forms/calculator.html
http://www.atnf.csiro.au/research/WALLABY/proposal.html
http://www.sdss.org/dr12/algorithms/classify/#photo_iso

11

tweaking variables or building in systems to catch these cases, it is expected that proper separation
is possible.

Conclusion

This article presents the description of a new module for SoFiA (Source Finding Application) that
is capable of identification and separation of ambiguously assigned source IDs. By comparing
the images generated by SoFiA with information available from NED, it is capable of identifying
galaxies within a reduced data cube. The module returns a system message, informing the user
of the galaxies that can be found within the cube’s spatial and redshift limits. Furthermore, it
will recognize source IDs that have been wrongfully assigned to multiple objects and alert the user
of these cases. The module will then attempt to separate them by creating a new mask: a 2D
version of the original mask, divided between all individual sources. The module generates a 2D
model of the region of the sky, using a Gaussian-filtered moment-0 map to which a watershed has
been applied, to use as a basis for the dilation process. By having a gas distribution-dependent
dilation process, the 2D mask is more accurately divided between the individual galaxies. While the
identification provides the user with important information, the separation process is not applicable
to all cubes and masks. It can still, however, provide a useful basis for further analysis.

Acknowledgments

I would like to express my gratitude towards Prof. Dr. van der Hulst and Nadine Giese, without
whom I could not have successfully developed this module. Furthermore, I would like to acknowl-
edge my friends and family for their encouragement and my fiancé for his unwavering support.
This project has made use of the NASA/IPAC Extragalactic Database (NED) which is operated
by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the
National Aeronautics and Space Administration.
I have made use of the WSRT on the Web Archive. The Westerbork Synthesis Radio Telescope is
operated by the Netherlands Institute for Radio Astronomy ASTRON, with support of NWO.

12 References

References

Duffy, A. R., Moss, A., & Staveley-Smith, L. 2012, PASA, 29, 202

Ginsburg, A., Robitaille, T., Parikh, M., et al. 2013, Astroquery v0.1,
http://dx.doi.org/10.6084/m9.figshare.805208.v2, Accessed: 24-05-2016

Hunter, J. D. 2007, Computing In Science & Engineering, 9, 90

Jones, E., Oliphant, T., Peterson, P., et al. 2001–, SciPy: Open source scientific tools for Python,
[Online; accessed 2016-06-21]

Serra, P., Westmeier, T., Giese, N., et al. 2015, MNRAS, 448, 1922

The Astropy Collaboration, Robitaille, Thomas P., Tollerud, Erik J., et al. 2013, A&A, 558, A33

van der Hulst, J. M., van Albada, T. S., & Sancisi, R. 2001, in Astronomical Society of the Pacific
Conference Series, Vol. 240, Gas and Galaxy Evolution, ed. J. E. Hibbard, M. Rupen, & J. H.
van Gorkom, 451

Van Der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, Computing in Science & Engineering,
13, 22

Verheijen, M., Oosterloo, T., Heald, G., & van Cappellen, W. 2009, in Panoramic Radio Astron-
omy: Wide-field 1-2 GHz Research on Galaxy Evolution, 10

Verheijen, M. A. W., Oosterloo, T. A., van Cappellen, W. A., et al. 2008, in American Institute of
Physics Conference Series, Vol. 1035, The Evolution of Galaxies Through the Neutral Hydrogen
Window, ed. R. Minchin & E. Momjian, 265–271

13

7 Appendices

Appendix A: List of cubes

The following cubes have been used in the development of this module. These cubes are part of
the WHISP survey and have been downloaded from Westerbork on the Web 8.

Name Note
UGC 327/2916 Can be found under name: UGC 2916
UGC 1249/1256 Can be found under name: UGC 1256
UGC 1310
UGC 2942/2941 Can be found under name: UGC 2941
UGC 3407
UGC 3422/3426 Can be found under name: UGC 3426
UGC 3642 Can be found under name: UGC 3642
UGC 4458 Can be found under name: UGC 4458
UGC 4862 Can be found under name: UGC 4862
UGC 6016/6024 Can be found under name: UGC 6024
UGC 6621/6623 Can be found under name: UGC 6621
UGC 6944 Can be found under name: UGC 6944
UGC 9648 Can be found under name: UGC 9642
UGC 10497/10502 Can be found under name: UGC 10502
UGC 12808 Can be found under name: UGC 12808

8http://wow.astron.nl/

http://wow.astron.nl/

14 7 Appendices

Appendix B: Watershed

A watershed is an image processing algorithm, most easily visualized as the flooding of a moun-
tainous landscape, where the mountains represent the amount of neutral hydrogen: the higher the
mountain, the more H i there is. As the area is flooded, more and more features are submerged
until only ’islands’ are left. This process is applied to the moment-0 map, which is first converted
to a NumPy array. From this array, low values are set equal to zero, starting with a cap set to
i = 1. After this, the program counts the number of objects left in the array. If this number is
equal to the number of galaxies that share a source ID, the watershed is finished. If not, it raises
the cap with 1 to i = 2 and repeats this process until the desired number of objects is found. If
the desired number of objects cannot be found, the watershed is deemed unsuccessful.

Appendix C: Dilation

Dilation is a morphological operation. When applied to an image (or an array, in this case), a
defined kernel (or structuring element) will ’travel’ along the edges of the area in which the array
is defined (i.e. non-zero values) and add all zero-values within the kernel to the array, by turning
the zero-values into non-zero values. This enlarges the original array. The picture below illustrates
this operation: the dark blue ellipse is enlarged by an elliptical kernel, adding the outer light blue
rim to the image, thus enlarging the original picture. The use of an elliptical kernel with the same
orientation as the original is essential to ensure that the enlarged image retains its elliptical shape
and proper orientation. A kernel of another shape, e.g. circular, would influence the shape of the
original image at a large number of iterations or at a large kernel size, leading to a loss of ellipticity
in the dilated image. A kernel with another orientation (i.e. another position angle) would alter
the orientation of the dilated image.

Figure 7 – Dilation through an elliptical kernel

15

Appendix D: Source code of identification and separation module

1 #!/ usr /bin /env python
2

3 ## EXTERNAL PACKAGES ##
4 from f u t u r e import d i v i s i o n
5 import numpy as np
6 import astropy . un i t s as u
7 from astropy . wcs import WCS
8 from astropy . i o import f i t s
9 from astropy . coo rd ina t e s import SkyCoord

10 from ast roquery . ned import Ned
11 from sc ipy import ndimage
12 from matp lo t l i b . pyplot import imsave
13 from t ime i t import d e f au l t t ime r as t imer
14 import matp lo t l i b . pyplot as p l t
15 from matp lo t l i b . c o l o r s import LogNorm
16 import mu l t i p r o c e s s i ng
17 from kapteyn import maput i l s
18

19

20 ## INPUT ##
21 mask = f i t s . open (’masks/Run1 masku6944 . f i t s ’)
22 maskarray = mask [0] . data
23 f i l e name = ’ cubes / u6944c l . f i t s ’
24 w = WCS(f i l e name , nax i s=2)
25 header = f i t s . getheader (f i l e name)
26 temp mom0 = f i t s . open (’mom0/Run1 mom06944 . f i t s ’)
27 mom0 = np . f l i p ud (temp mom0 [0] . data)
28 mask . c l o s e ()
29 temp mom0 . c l o s e ()
30

31 ## GLOBAL VARIABLES ##
32 s t ru c = np . ones ((3 , 3))
33 e l l i p s e = np . empty ([header [’NAXIS1 ’] , header [’NAXIS2 ’]])
34 i n f o = []
35

36 ## FUNCTIONS ##
37

38 # Searches f o r ob j e c t s in NED with in a g iven rad iu s around a
39 # given po s i t i o n (cen te r o f cube)
40 de f nedFind (ra , dec , r) :
41 c = SkyCoord (ra , dec , un i t = ’ deg ’)
42 i f header [’EPOCH’] == 1950 :
43 s ou r c e s = Ned . que ry r eg i on (c , r ad iu s=r , equinox=’B1950 . 0 ’)
44 e l s e :
45 s ou r c e s = Ned . que ry r eg i on (c , r ad iu s=r)
46 r e turn sour c e s
47

48

49 # Finds the rad iu s nece s sa ry to cover the e n t i r e cube and the coo rd ina t e s o f
50 # the cente r p i x e l us ing the header i n f o
51 de f findRad () :
52 xlen = header [’NAXIS1 ’]
53 ylen = header [’NAXIS2 ’]
54 midpix1 = header [’CRPIX1 ’]
55 midpix2 = header [’CRPIX2 ’]
56 mid = w. a l l p i x 2wo r l d (midpix1 , midpix2 , 1)
57 upp e r l e f t = w. a l l p i x 2wo r l d (0 , ylen , 1)
58 l o w e r l e f t = w. a l l p i x 2wo r l d (0 , 0 , 1)
59 uppe r r i gh t = w. a l l p i x 2wo r l d (xlen , ylen , 1)
60 l owe r r i g h t = w. a l l p i x 2wo r l d (xlen , 0 , 1)
61 RA u l = upp e r l e f t [0]
62 RA l l = l ow e r l e f t [0]
63 RA u r = uppe r r i gh t [0]
64 RA l r = l owe r r i g h t [0]
65 d e c u l = upp e r l e f t [1]
66 d e c l l = l ow e r l e f t [1]
67 dec u r = uppe r r i gh t [1]
68 d e c l r = l owe r r i g h t [1]

16 7 Appendices

69 d1 = np . sq r t (((RA l l−RA u r) ∗np . cos (np . rad ians (d e c l l))) ∗∗2+(d e c l l −dec u r)
∗∗2)

70 d2 = np . sq r t (((RA l r−RA u l) ∗np . cos (np . rad ians (d e c l r))) ∗∗2+(d e c l r−d e c u l)
∗∗2)

71 d = (d1 + d2) /2
72 r = d/2
73 r e turn mid , r
74

75

76 # Finds r e d s h i f t (z−ax i s) l im i t s to f i l t e r NED ob j e c t s by , us ing header i n f o
77 # from the FITS− f i l e
78 de f r ed sh i f tF ind () :
79 c = 2.99792458∗ (10∗∗8) ## Speed o f l i g h t in m/ s
80 wavelength = 0.2110611405413 ## Wavelength o f 21 cm l i n e in m
81 r e s t f r e q = c/wavelength
82 fmax = header [’CRVAL3 ’] − (header [’CRPIX3 ’] ∗ header [’CDELT3 ’])
83 fmin = header [’CRVAL3 ’] + ((header [’NAXIS3 ’] − header [’CRPIX3 ’]) ∗ header [’CDELT3

’])
84 zmin = (r e s t f r e q /fmax) − 1
85 zmax = (r e s t f r e q / fmin) − 1
86 r e turn zmin , zmax
87

88

89 # F i l t e r s l i s t o f NED−found ob j e c t s us ing r e d s h i f t s and type (s e t to galaxy to
90 # avoid dup l i c a t e e n t r i e s o f galaxy groups / pa i r s / e t c and t h e i r l o o s e cou t e rpa r t s)
91 de f f i l t e rZG () :
92 temp gals = []
93 zmin , zmax = red sh i f tF ind ()
94 f o r i in xrange (l en (r e s u l t s)) :
95 i f zmin <= r e s u l t s [i] [6] <= zmax and r e s u l t s [i] [4] == ’G’ :
96 newrow = [r e s u l t s [i]]
97 temp gals . append (newrow)
98 r e turn temp gals
99

100

101 # Determines p i x e l l o c a t i o n in cube o f each NED ob j e c t by i t s coo rd ina t e s
102 de f sourcePixFind () :
103 nedRA = []
104 neddec = []
105 f o r i in xrange (l en (ga l s)) :
106 nedRA . append (ga l s [i] [0] [2])
107 neddec . append (ga l s [i] [0] [3])
108 # Check f o r epoch
109 i f header [’EPOCH’] == 1950 :
110 coords = SkyCoord (nedRA∗u . degree , neddec∗u . degree , frame=’ fk5 ’)
111 newcoords = coords . t rans fo rm to (’ fk4 ’)
112 e l s e :
113 newcoords = SkyCoord (nedRA∗u . degree , neddec∗u . degree , frame=’ fk5 ’)
114 xcoord , ycoord = w. a l l wo r l d 2p i x (newcoords . ra . deg , newcoords . dec . deg , 1)
115 r e turn xcoord , ycoord
116

117

118 # Checks f o r SoFiA−source ID (non−zero value) in the mask at p i x e l s x , y where
119 # NED found a source , c r e a t e s l i s t o f l i s t s with (name , frame number , ID number)
120 # NB: Indexing as mask [z , y , x]
121 de f checkMask () :
122 temp maskl i s t= []
123 t emp f i l t e r e d g a l s = []
124 temp names l i s t = []
125 maskdata = mask [0] . data
126 x coord , y coord = sourcePixFind ()
127 f o r i in xrange (l en (ga l s)) :
128 i f x coord [i] <= header [’NAXIS1 ’] and y coord [i] <= header [’NAXIS2 ’] :
129 t emp g a l s l i s t = []
130 f o r j in xrange (maskdata . shape [0]) :
131 row=[ga l s [i] [0] [1] , j , maskdata [j , y coord [i] , x coord [i]]]
132 t emp g a l s l i s t . append (row)
133 temp maskl i s t . append (t emp g a l s l i s t)
134 t emp f i l t e r e d g a l s . append (ga l s [i])
135 temp names l i s t . append (ga l s [i] [0] [1])

17

136 e l s e :
137 pass
138

139 r e turn temp maskl ist , t emp f i l t e r e d g a l s , t emp names l i s t
140

141

142 # Checks i f s u b l i s t i s not empty and a l l names are equal with in s u b l i s t
143 # NB: Input cu r r en t l y should be ch e c kL i s t I n t e g r i t y (l i s t [i])
144 de f c h e c kL i s t I n t e g r i t y (i n p u t l i s t) :
145 i t e r a t o r = []
146 i f l en (i n p u t l i s t) != 0 :
147 f o r i in xrange (l en (i n p u t l i s t)) :
148 i t e r a t o r . append (i n p u t l i s t [i] [0])
149 t ry :
150 i t e r a t o r = i t e r (i t e r a t o r)
151 f i r s t = next (i t e r a t o r)
152 r e turn a l l (f i r s t == r e s t f o r r e s t in i t e r a t o r)
153 except S t op I t e r a t i on :
154 pr in t i t e r a t o r , ” names with in s u b l i s t are not a l l equal . ”
155 e l s e :
156 pr in t i n p u t l i s t , ” your l i s t i s empty . ”
157

158

159 # Pr int s l i s t o f names found in the cube and compare :
160 # Check i f f i r s t name matches second name . I f names do not match , compare
161 # source IDs . I f source IDs match , p r i n t a warning . Then remove f i r s t va lue
162 # from l i s t and repeat .
163 # Note : c ompa r e l i s t [0] [j] [2] i s f i r s t s u b l i s t (f i r s t NED−found galaxy) , j ’ th
164 # frame number , source ID number at p o s i t i o n 2
165 de f compareSources (mask l i s t , names , f i l t e r e d g a l s) :
166 temp maskl i s t = l i s t (mask l i s t)
167 temp names = l i s t (names)
168 t emp f i l t e r e d g a l s = l i s t (f i l t e r e d g a l s)
169 s h a r e d s ou r c e g a l s = []
170 s h a r e d i d l i s t = []
171 pr in t ’ Galax ie s found in your cube : ’ , temp names
172 whi le l en (temp maskl i s t) > 1 :
173 f o r i in xrange (l en (temp maskl i s t)) :
174 f i r s t s o u r c e l i s t = []
175 s e c o n d s o u r c e l i s t = []
176 i f temp names [0] != temp names [i] :
177 f o r j in xrange (l en (temp maskl i s t [i])) :
178 i f temp maskl i s t [0] [j] [2] != 0 . 0 :
179 f i r s t s o u r c e l i s t . append (temp maskl i s t [0] [j] [2])
180 i f temp maskl i s t [i] [j] [2] != 0 . 0 :
181 s e c o n d s o u r c e l i s t . append (temp maskl i s t [i] [j] [2])
182 sha r ed id=l i s t (s e t (f i r s t s o u r c e l i s t) . i n t e r s e c t i o n (s e c o n d s o u r c e l i s t))
183 i f s ha r ed id :
184 s h a r e d i d l i s t . append (sha r ed id)
185 i f s ha r ed id :
186 i f t emp f i l t e r e d g a l s [0] in s h a r ed s ou r c e g a l s :
187 i f t emp f i l t e r e d g a l s [i] in s h a r ed s ou r c e g a l s :
188 pass
189 e l s e :
190 s h a r e d s ou r c e g a l s . append (t emp f i l t e r e d g a l s [i])
191 e l s e :
192 s h a r e d s ou r c e g a l s . append (t emp f i l t e r e d g a l s [0])
193 s h a r e d s ou r c e g a l s . append (t emp f i l t e r e d g a l s [i])
194 pr in t ’WARNING: SoFiA has g iven both %s and %s the same sourceID : ’%(

temp names [0] , temp names [i]) , s ha r ed id
195 e l s e :
196 pass
197 e l s e :
198 pass
199 temp names . pop (0)
200 temp maskl i s t . pop (0)
201 t emp f i l t e r e d g a l s . pop (0)
202 r e turn sha r ed s ou r c e ga l s , s h a r e d i d l i s t
203

204

18 7 Appendices

205 # Quer ies NED f o r diameter data o f g a l a x i e s that share a source ID in order
206 # to separa te the sour c e s . I f no diameter data ava i l ab l e , s e t g en e r i c c i r c l e
207 # with rad iu s SQRT(5) . (change rad iu s here)
208 de f ax i sFind () :
209 diam data = []
210 f o r i in xrange (l en (s h a r ed s ou r c e g a l s)) :
211 i f s h a r e d s ou r c e g a l s [i] [0] [1 5] :
212 name = sha r ed s ou r c e g a l s [i] [0] [1]
213 diams = Ned . g e t t a b l e (name , t ab l e=” diameters ”)
214 temp diams = np . array (diams)
215 # Sort by most r e c en t publ i shed data
216 newdiams = sor t ed (temp diams , key=lambda l : l [2] , r e v e r s e=True)
217 majaxis = newdiams [0] [1 8]
218 ax i s r a t = newdiams [0] [2 0]
219 pos ang l e = newdiams [0] [2 4]
220 # Use second pub l i c a t i on i f data not a v a i l a b l e
221 i f np . i snan (majaxis) or np . i snan (a x i s r a t) or np . i snan (pos ang l e) :
222 majaxis = newdiams [1] [1 8]
223 ax i s r a t = newdiams [1] [2 0]
224 pos ang l e = newdiams [1] [2 4]
225 semi majax i s = majaxis /2
226 semi minaxis = semi majax i s ∗ ax i s r a t
227 row = [name , semi majaxis , semi minaxis , 90 + pos ang l e]
228 diam data . append (row)
229 e l s e :
230 pr in t ”No diameter data a v a i l a b l e f o r : ” , s h a r e d s ou r c e g a l s [i] [0] [1]
231 pr in t ”Creat ing a c i r c u l a r k e rne l f o r the d i l a t i o n o f : ” , s h a r ed s ou r c e g a l s [

i] [0] [1]
232 rad iu s = 5
233 name = sha r ed s ou r c e g a l s [i] [0] [1]
234 row = [name , rad iu s]
235 diam data . append (row)
236 r e turn diam data
237

238

239 # Uses NED data to f i nd mom0−va lue s at o p t i c a l c en t e r s
240 de f new e l l i p s eOve r l ay () :
241 g l oba l e l l i p s e , i n f o
242 c en t va l u e s = []
243 g r id = np . z e r o s ((header [’NAXIS1 ’] , header [’NAXIS2 ’]))
244 t emp e l l i p s e = np . copy (g r id)
245 f o r i in xrange (l en (s h a r ed s ou r c e g a l s)) :
246 temp x0 = sha r ed s ou r c e g a l s [i] [0] [2]
247 temp y0 = sha r ed s ou r c e g a l s [i] [0] [3]
248

249 i f header [’EPOCH’] == 1950 :
250 coords = SkyCoord (temp x0∗u . degree , temp y0∗u . degree , frame=’ fk5 ’)
251 coord trans form = coords . t rans fo rm to (’ fk4 ’)
252 new temp x0 = coord trans form . ra . deg
253 new temp y0 = coord trans form . dec . deg
254 c en t e r c oo rd s = w. a l l wo r l d 2p i x (new temp x0 , new temp y0 , 1)
255 e l s e :
256 coords = SkyCoord (temp x0∗u . degree , temp y0∗u . degree , frame=’ fk5 ’)
257 new temp x0 = coords . ra . deg
258 new temp y0 = coords . dec . deg
259 c en t e r c oo rd s = w. a l l wo r l d 2p i x (new temp x0 , new temp y0 , 1)
260

261 x0 = in t (c en t e r c oo rd s [0])
262 y0 = header [’NAXIS1 ’] − i n t (c en t e r c oo rd s [1])
263 c en t e r va l u e = mom0[y0] [x0]
264 row = y0 , x0 , c en t e r va lue , s h a r e d s ou r c e g a l s [i] [0] [1]
265 c en t va l u e s . append (row)
266 r e turn c en t va l u e s
267

268

269 # Creates l i s t s o f i n f o r equ i r ed f o r ke rne l c r e a t i on from diameter data
270 de f f i n d I n f o () :
271 i n f o = []
272 f o r i in xrange (l en (diam data)) :
273 i f l en (diam data [i]) == 4 :

19

274 temp a = diam data [i] [1] / 3600
275 temp b = diam data [i] [2] / 3600
276 pos ang l e = diam data [i] [3]
277 x0 = cen t va l u e s [i] [1]
278 y0 = cen t va l u e s [i] [0]
279 a = temp a / header [’CDELT2 ’]
280 b = temp b / header [’CDELT2 ’]
281 row = [(i +1) , diam data [i] [0] , x0 , y0 , a , b , pos ang l e]
282 i n f o . append (row)
283 e l i f l en (diam data [i]) == 2 :
284 rad iu s = diam data [i] [1]
285 row = [(i +1) , diam data [i] [0] , r ad iu s]
286 i n f o . append (row)
287 r e turn i n f o
288

289

290 de f e l l i p s eOv e r l a y (f a c t o r) :
291 x , y = np . mgrid [: header [’NAXIS1 ’] , : header [’NAXIS2 ’]]
292 g r id = np . z e r o s ((header [’NAXIS1 ’] , header [’NAXIS2 ’]))
293 i n f o = []
294 f o r i in xrange (l en (diam data)) :
295 i f l en (diam data [i]) == 4 :
296 temp x0 = sha r ed s ou r c e g a l s [i] [0] [2]
297 temp y0 = sha r ed s ou r c e g a l s [i] [0] [3]
298 temp a = diam data [i] [1] / 3600
299 temp b = diam data [i] [2] / 3600
300 pos ang l e = diam data [i] [3]
301

302 i f header [’EPOCH’] == 1950 :
303 coords = SkyCoord (temp x0∗u . degree , temp y0∗u . degree , frame=’ fk5 ’)
304 coord trans form = coords . t rans fo rm to (’ fk4 ’)
305 new temp x0 = coord trans form . ra . deg
306 new temp y0 = coord trans form . dec . deg
307 c en t e r c oo rd s = w. a l l wo r l d 2p i x (new temp x0 , new temp y0 , 1)
308 e l s e :
309 coords = SkyCoord (temp x0∗u . degree , temp y0∗u . degree , frame=’ fk5 ’)
310 new temp x0 = coords . ra . deg
311 new temp y0 = coords . dec . deg
312 c en t e r c oo rd s = w. a l l wo r l d 2p i x (new temp x0 , new temp y0 , 1)
313

314 x0 = cen t e r c oo rd s [0]
315 y0 = cen t e r c oo rd s [1]
316 a = f a c t o r ∗(temp a / header [’CDELT2 ’])
317 b = f a c t o r ∗(temp b / header [’CDELT2 ’])
318 row = [(i +1) , diam data [i] [0] , x0 , y0 , a , b , pos ang l e]
319 i n f o . append (row)
320 e l l i p s e = (((x−x0) ∗np . cos (np . rad ians (pos ang l e)) + (y−y0) ∗np . s i n (np . rad ians (

pos ang l e))) ∗∗2 / (a ∗∗2)) + (((x−x0) ∗np . s i n (np . rad ians (pos ang l e)) − (y−y0) ∗np .
cos (np . rad ians (pos ang l e))) ∗∗2 / (b∗∗2)) <= 1

321 i f i == 0 :
322 newe l l i p s e = (i +1) ∗ e l l i p s e
323 over l ay = np . add (gr id , n ewe l l i p s e)
324 e l s e :
325 newe l l i p s e = (i +1) ∗ e l l i p s e
326 over l ay = np . add (over lay , n ewe l l i p s e)
327 e l i f l en (diam data [i]) == 2 :
328 temp x0 = sha r ed s ou r c e g a l s [i] [0] [2]
329 temp y0 = sha r ed s ou r c e g a l s [i] [0] [3]
330 rad iu s = f a c t o r ∗(diam data [i] [1])
331

332 i f header [’EPOCH’] == 1950 :
333 coords = SkyCoord (temp x0∗u . degree , temp y0∗u . degree , frame=’ fk5 ’)
334 coord trans form = coords . t rans fo rm to (’ fk4 ’)
335 new temp x0 = coord trans form . ra . deg
336 new temp y0 = coord trans form . dec . deg
337 c en t e r c oo rd s = w. a l l wo r l d 2p i x (new temp x0 , new temp y0 , 1)
338 e l s e :
339 coords = SkyCoord (temp x0∗u . degree , temp y0∗u . degree , frame=’ fk5 ’)
340 new temp x0 = coords . ra . deg
341 new temp y0 = coords . dec . deg

20 7 Appendices

342 c en t e r c oo rd s = w. a l l wo r l d 2p i x (new temp x0 , new temp y0 , 1)
343

344 x0 = cen t e r c oo rd s [0]
345 y0 = cen t e r c oo rd s [1]
346 c i r c l e = (x−x0) ∗∗ 2 + (y−y0) ∗∗ 2 < rad iu s
347 i f i == 0 :
348 newe l l i p s e = (i +1) ∗ c i r c l e
349 over l ay = np . add (gr id , n ewe l l i p s e)
350 e l s e :
351 newe l l i p s e = (i +1) ∗ c i r c l e
352 over l ay = np . add (over lay , n ewe l l i p s e)
353 over l ay = np . rot90 (over l ay)
354 r e turn over lay , i n f o
355

356

357 # Excludes sou r c e s that are not shared , f l a t t e n mask to 2D and g ive uniform value
358 de f f lattenMask () :
359 s h a r e d i d l i s t = compare sources [1]
360 #maskarray = mask [0] . data
361 f o r i in xrange (l en (s h a r e d i d l i s t)) :
362 temp f lat mask = np . where (maskarray == s h a r e d i d l i s t [i] , 1 , 0)
363 sum flat mask = temp f lat mask . sum(ax i s=0)
364 f l a t mask = np . where (sum flat mask != 0 , 1 , 0)
365 f l a t mask = np . f l i p ud (f l a t mask)
366 r e turn f l a t mask
367

368

369 # Finds minimum requ i r ed s i z e f o r d i l a t i o n (opt imiza t i on step)
370 de f subarrayShape () :
371 f l a t mask = f lattenMask ()
372 l o c s = ndimage . f i n d o b j e c t s (f l a t mask)
373 r e turn l o c s
374

375

376 # Finds the ke rne l r equ i r ed f o r d i l a t i o n o f the e l l i p s e s , i f no ke rne l ava i l ab l e ,
377 # de f i n e g en e r i c c i r c l e with r = SQRT(5) (s e t on l i n e 251)
378 de f f indKerne l (f a c to r , i) :
379 i f l en (i n f o [i]) == 7 :
380 a l l z e r o = False
381 a = f a c t o r ∗ i n f o [i] [4]
382 b = f a c t o r ∗ i n f o [i] [5]
383 pos ang l e = 90 + in f o [i] [6]
384 d i l = 1
385 dd = 2∗ d i l+1
386 x , y = np . i n d i c e s ((dd , dd))−d i l
387 f o o t p r i n t = (((x∗np . cos (np . rad ians (pos ang l e)) + y∗np . s i n (np . rad ians (pos ang l e)

)) ∗∗2 / (a ∗∗2)) + ((x∗np . s i n (np . rad ians (pos ang l e)) − y∗np . cos (np . rad ians (
pos ang l e))) ∗∗2 / (b∗∗2)) <= 1) . astype (i n t)

388 top = f o o t p r i n t [0]
389 bot = f o o t p r i n t [dd−1]
390 l e f t = f o o t p r i n t [: , 0]
391 r i g h t = f o o t p r i n t [: , dd−1]
392 whi le a l l z e r o == False :
393 i f np . sum(top) == 0 and np . sum(bot) == 0 and np . sum(l e f t) == 0 and np . sum(

r i gh t) == 0 :
394 a l l z e r o = True
395 d i l = d i l −1
396 new dd = 2∗ d i l+1
397 new x , new y = np . i n d i c e s ((new dd , new dd))−d i l
398 new footpr in t = (((new x∗np . cos (np . rad ians (pos ang l e)) + new y∗np . s i n (np .

rad ians (pos ang l e))) ∗∗2 / (a ∗∗2)) + ((new x∗np . s i n (np . rad ians (pos ang l e)) −
new y∗np . cos (np . rad ians (pos ang l e))) ∗∗2 / (b∗∗2)) <= 1) . astype (i n t)

399 r e turn new foo tpr in t
400 e l s e :
401 d i l = d i l+1
402 new dd = 2∗ d i l+1
403 new x , new y = np . i n d i c e s ((new dd , new dd))−d i l
404 new footpr in t = (((new x∗np . cos (np . rad ians (pos ang l e)) + new y∗np . s i n (np .

rad ians (pos ang l e))) ∗∗2 / (a ∗∗2)) + ((new x∗np . s i n (np . rad ians (pos ang l e)) −
new y∗np . cos (np . rad ians (pos ang l e))) ∗∗2 / (b∗∗2)) <= 1) . astype (i n t)

21

405 top = new footpr in t [0]
406 bot = new footpr in t [new dd−1]
407 l e f t = new footpr in t [: , 0]
408 r i g h t = new footpr in t [: , new dd−1]
409 e l i f l en (i n f o [i]) == 3 :
410 d i l = 3
411 dd = 2∗ d i l+1
412 x , y = np . i n d i c e s ((dd , dd))−d i l
413 c i r c l e = x ∗∗ 2 + y ∗∗ 2
414 f o o t p r i n t = c i r c l e < i n f o [i] [2]
415 r e turn f o o t p r i n t
416

417

418 # Di l a t e s each ob j e c t i n d i v i d u a l l y us ing a ke rne l with a s i z e dependant
419 # on the average o f the amount o f gas in the mom0 image
420 de f new d i l a t e (g r i d i npu t) :
421 d i l a t e d g r i d = np . copy (g r i d i npu t)
422 l o c = subarrayShape () [0]
423 f la tmask = f lattenMask ()
424 prev avg = 1
425 f u l l y d i l a t e d = False
426 whi le f u l l y d i l a t e d == False :
427 pr in t ’ d i l a t i n g . . . ’
428 t emp d i l a t ed g r i d = np . copy (d i l a t e d g r i d)
429 f o r i in xrange (l en (s h a r ed s ou r c e g a l s)) :
430 e l l i p s e = np . where (d i l a t e d g r i d == i +1, 1 , 0)
431 cut out = np . mult ip ly (e l l i p s e , mom0)
432 nonzero = np . nonzero (cut out)
433 avg = np . abso lu t e (cut out [nonzero] . mean ())
434

435 i f avg <= prev avg :
436 f o o t p r i n t = f indKerne l (1 . 5 , i)
437 pr in t i , avg
438 e l i f np . i snan (avg) :
439 f o o t p r i n t = f indKerne l (1 . 5 , i)
440 pr in t i , ’ avg = nan ’
441 e l s e :
442 f o o t p r i n t = f indKerne l (1∗ avg , i)
443 pr in t i , avg
444 prev avg = avg
445

446 d i l a t e d e l i p s e g r i d = ndimage . morphology . b i n a r y d i l a t i o n (e l l i p s e , s t r u c tu r e =
f o o t p r i n t)

447 d i l a t e d e l i p s e g r i d = (i +1)∗ d i l a t e d e l i p s e g r i d
448 f o r x coord in xrange (l en (e l l i p s e)) :
449 f o r y coord in xrange (l en (e l l i p s e)) :
450 i f t emp d i l a t ed g r i d [y coord] [x coord] == 0 :
451 t emp d i l a t ed g r i d [y coord] [x coord] = d i l a t e d e l i p s e g r i d [y coord] [

x coord]
452 t emp d i l a t ed g r i d = np . mult ip ly (t emp d i l a t ed g r id , f la tmask)
453

454 i f np . a r r ay equa l (d i l a t e d g r i d , t emp d i l a t ed g r i d) :
455 f u l l y d i l a t e d = True
456 e l s e :
457 d i l a t e d g r i d = temp d i l a t ed g r i d
458 pr in t ’ done d i l a t i n g ! ’
459 r e turn d i l a t e d g r i d
460

461

462 # Checks f o r matches with watershed−mom0 image at the o p t i c a l c en t e r o f the
g a l a x i e s

463 de f check va lue s (image) :
464 va lue s = []
465 temp model = np . copy (image)
466 f o r i in xrange (l en (c en t va l u e s)) :
467 coord = cen t va l u e s [i] [0] , c en t va l u e s [i] [1]
468 value = temp model [coord]
469 va lue s . append (value)
470 i f any ([v == 0 f o r v in va lue s]) :
471 r e turn Fa l se

22 7 Appendices

472 e l s e :
473 r e turn True
474

475

476 # Watersheds mom0 image . Pr in t s sys−msg i f watershedding impos s ib l e (i . e . i f the
477 # watershed c r e a t e s l e s s ob j e c t s than shared−source g a l a x i e s)
478 de f watershed model (sigma) :
479 f l a t mask = f lattenMask ()
480 image = mom0. byteswap () . newbyteorder ()
481 temp image = np . mult ip ly (image , f l a t mask)
482 array , num = ndimage . measurements . l a b e l (temp image , s t r u c tu r e=s t ruc)
483 temp image = ndimage . g a u s s i a n f i l t e r (temp image , sigma=sigma)
484 new image = ndimage . g a u s s i a n f i l t e r (temp image , sigma=sigma)
485 check = check va lue s (temp image)
486 i = 1
487 whi le num != len (s h a r ed s ou r c e g a l s) :
488 new image = np . where (temp image >= i , 1 , 0)
489 array , num = ndimage . measurements . l a b e l (new image , s t r u c tu r e=s t ruc)
490 i f num < l en (s h a r ed s ou r c e g a l s) :
491 break
492 i += 1
493 check = check va lue s (new image)
494 r e turn new image
495

496

497 # Creates model by watershedding Gauss− f i l t e r e d mom0 image . Uses v a r i a b l e sigma
498 # i f o p t i c a l c en t e r does no co i n c i d e with model be f o r e sigma=15, s tops
499 de f c reate mode l () :
500 new image = watershed model (1)
501 check = check va lue s (new image)
502 i f check == True :
503 r e turn new image
504 e l s e :
505 sigma = 1
506 whi le check == False :
507 new image = watershed model (sigma)
508 check = check va lue s (new image)
509 sigma += 0.1
510 i f sigma >= 15 :
511 pr in t ’ watershedding un su c c e s s f u l (no match /w op t i c a l c en t e r at sigma=15) ’
512 break
513 r e turn new image
514

515

516 # Ass igns c o r r e c t va lue to each i nd i v i dua l object , nece s sa ry f o r d i l a t i o n .
517 de f a s s i g n v a l u e s (input model) :
518 mark e r l i s t = []
519 f o r i in xrange (l en (s h a r ed s ou r c e g a l s)) :
520 mark e r l i s t . append (i +11)
521 model = np . copy (input model)
522 array , num = ndimage . measurements . l a b e l (model , s t r u c tu r e=s t ruc)
523 l o c s = ndimage . f i n d o b j e c t s (array)
524 f o r i in xrange (l en (l o c s)) :
525 f o r j in xrange (l en (ma r k e r l i s t)) :
526 obj = model [l o c s [i]]
527 i f ma r k e r l i s t [j] in obj :
528 value = i n f o [j] [0]
529 model [l o c s [i]] = np . where (obj , value , 0)
530 r e turn model
531

532

533 # Ass igns markers to ob j e c t s f o r c o r r e c t i d e n t i f i c a t i o n o f ob j ec t s , based on
534 # di s t anc e from op t i c a l c en t e r (from NED) to cente r o f mass o f HI ob j e c t .
535 de f a s s i gn ne ighbor marke r (input ob j) :
536 obj = np . copy (input ob j)
537 array , num = ndimage . measurements . l a b e l (obj , s t r u c tu r e=s t ruc)
538 l o c s = ndimage . f i n d o b j e c t s (array)
539 CoMs = []
540 coords = []
541 f o r i in xrange (num) :

23

542 temp obj = np . where (array == (i +1) , 1 , 0)
543 c en t e r o f mas s = ndimage . measurements . c en t e r o f mas s (temp obj)
544 CoMs . append (c en t e r o f mas s)
545 # Find d i s t ance to o p t i c a l c en t e r
546 CoMs array = np . asar ray (CoMs)
547 f o r i in xrange (l en (s h a r ed s ou r c e g a l s)) :
548 coord = [c en t va l u e s [i] [0] , c en t va l u e s [i] [1]]
549 row = coord
550 coords . append (row)
551 coo rds a r ray = np . asar ray (coords)
552 f o r i in xrange (l en (CoMs)) :
553 d i s t an c e s = []
554 f o r j in xrange (l en (coords)) :
555 d i s t = np . l i n a l g . norm(CoMs array [i] − coo rd s a r ray [j])
556 d i s t an c e s . append (d i s t)
557 d i s t a r r a y = np . array (d i s t an c e s)
558 min d i s t i ndex = d i s t a r r a y . argmin ()
559 obj [CoMs [i]] = (min d i s t i ndex+11)
560 r e turn obj
561

562

563 # Checks what type o f model c r e a t i on i s r equ i r ed ; i f o b j e c t s cannot be
564 # i d e n t i f i e d a f t e r a Gaussian f i l t e r /watershed , r e v e r t to NED model
565 de f check ModelCreat ion () :
566 mark e r l i s t = []
567 temp model = create mode l ()
568 model = as s i gn ne ighbor marke r (temp model)
569 f o r i in xrange (l en (s h a r ed s ou r c e g a l s)) :
570 mark e r l i s t . append (i +11)
571 i f a l l (markers in model f o r markers in ma r k e r l i s t) :
572 pr in t ’Watershed s u c c e s s f u l ! ’
573 model = a s s i g n v a l u e s (model)
574 r e turn model
575 e l s e :
576 pr in t ’Watershed unsucce s s fu l , us ing NED model ’
577 model = e l l i p s eOv e r l a y (1) [0]
578 r e turn model
579

580

581 # Checks i f s epa ra t i on i s nece s sa ry . I f necessary , checks i f s epa ra t i on i s
582 # po s s i b l e by comparing number o f ob j e c t s in model to number o f g a l a x i e s
583 # in l i s t . (models that over lap cannot be separated)
584 de f checkSeparat ion () :
585 model = check ModelCreat ion ()
586 f l a t mask = f lattenMask ()
587

588 ##Checks##
589 imsave (’ ws 6944 plak . png ’ , np . add (f lat mask , model))
590 imsave (’ ws 6944 modelL . png ’ , model)
591 imsave (’ws 6944 mom0 . png ’ , mom0)
592 imsave (’ ws 6944 mask . png ’ , f l a t mask)
593 i f s h a r e d s ou r c e g a l s :
594 array , num = ndimage . measurements . l a b e l (model , s t r u c tu r e=s t ruc)
595

596 i f l en (s h a r ed s ou r c e g a l s) == num:
597 pr in t ’ Separat ion nece s sa ry and po s s i b l e . ’
598 pr in t ’ S ta r t i ng s epa ra t i on . . . ’
599 s t a r t 2 = timer ()
600 d i l a t i o n = new d i l a t e (model)
601 imsave (’ ws 6944 d i l . png ’ , d i l a t i o n)
602 over l ay = np . mult ip ly (f lat mask , d i l a t i o n)
603 imsave (’ ws 6944sep . png ’ , ove r l ay)
604 stop2 = timer ()
605 pr in t ’ Separat ion : ’ , (stop2−s t a r t 2) , ’ s ’
606 r e turn over l ay
607 e l s e :
608 pr in t ’Model c r e a t i on f a i l e d , attempting sma l l e r model . . ’
609 new model = e l l i p s eOv e r l a y (0 . 5) [0]
610 imsave (’ ws 6944 plakS . png ’ , np . add (f lat mask , new model))
611 imsave (’ ws 6944 modelS . png ’ , new model)

24 7 Appendices

612 new array , new num = ndimage . measurements . l a b e l (new model , s t r u c tu r e=s t ruc)
613 i f l en (s h a r ed s ou r c e g a l s) == new num :
614 pr in t ’ Separat ion nece s sa ry and po s s i b l e . ’
615 pr in t ’ S t a r t i ng s epa ra t i on . . . ’
616 s t a r t 2 = timer ()
617 d i l a t i o n = new d i l a t e (new model)
618 imsave (’ ws 6944 d i l . png ’ , d i l a t i o n)
619 over l ay = np . mult ip ly (f lat mask , d i l a t i o n)
620 imsave (’ ws 6944sep . png ’ , ove r l ay)
621 stop2 = timer ()
622 pr in t ’ Separat ion : ’ , (stop2−s t a r t 2) , ’ s ’
623 r e turn over l ay
624 e l s e :
625 pr in t ’WARNING: s epa ra t i on not p o s s i b l e . ’
626 e l s e :
627 pr in t ’ Separat ion not r equ i r ed ! ’
628

629

630 # #
631 ## Run code ##
632 ## IDENTIFICATION
633 s t a r t 1 = timer ()
634 # Generate NED data tab l e conta in ing a l l o b j e c t s in cube
635 r = findRad () [1]
636 midCoord = findRad () [0]
637 r e s u l t t a b l e = nedFind (midCoord [0] , midCoord [1] , r ∗u . degree)
638 r e s u l t s = np . array (r e s u l t t a b l e)
639 # F i l t e r r e s u l t s
640 ga l s = []
641 ga l s = f i l t e rZG ()
642 # Compare to mask
643 mask l i s t = []
644 f i l t e r e d g a l s = []
645 names l i s t = []
646 maskl i s t , f i l t e r e d g a l s , n ame s l i s t = checkMask ()
647 # Check l i s t i n t e g r i t y
648 f o r i in xrange (l en (mask l i s t)) :
649 c h e c kL i s t I n t e g r i t y (mask l i s t [i])
650 # Compare found source IDs
651 compare sources = compareSources (mask l i s t , names l i s t , f i l t e r e d g a l s)
652 s h a r e d s ou r c e g a l s = compare sources [0]
653 # Id e n t i f i c a t i o n f i n i s h e d
654 stop1 = timer ()
655 pr in t ’ I d e n t i f i c a t i o n : ’ , (stop1−s t a r t 1) , ’ s ’
656

657 ## SEPARATION
658 # NED query f o r diameter data
659 c en t va l u e s = new e l l i p s eOve r l ay ()
660 diam data = axisFind ()
661 # Generate in fo rmat ion (ax i s length , pos ang l e)
662 i n f o = f i n d I n f o ()
663 # Attempt s epa ra t i on
664 checkSeparat ion ()

	Introduction
	Method
	Identification
	Separation
	Results
	Final Remarks
	Appendices

