groningen

university Of faculty of mathematics kapteyn astronomical
/ and natural sciences / institute

Bachelor Thesis Project

Separating SoFiA’s Sources

An identification and separation module for SoFiA

M.J.F. VERSTEEG

supervised by
Nadine GIESE
Thijs van der HULST

July 12, 2016

Abstract

SoFiA (Source Finding Application) is a flexible piece of software that performs automated 3D
detection and parametrization of sources in H1 data cubes. Sometimes, however, the H1 of galaxies
that are close together might overlap. SoFiA is then unable to unambiguously assign the H1 regions
to a galaxy and thus falsely identifies the galaxies as one source. This paper presents a new module
for SoFiA, capable of identifying ambiguously assigned areas and separating those, in 2D, into their
respective components. By applying a watershed algorithm to a Gaussian-filtered moment-0 map
of the data cube, an initial model is defined for each of the galaxies. These shapes are then dilated
until the SoFiA mask is completely filled, thus separating the mask into its component pieces.

1 Introduction

Since the 1930s, radio astronomy has been used to discover and analyze the Universe in ways not
possible through optical astronomy alone. Radio astronomy has given scientists measurements of
the Cosmic Microwave Background (CMB), new types of objects previously unknown to exist, such
as quasars, and much more. In this day and age, with bigger telescopes and telescope arrays, the
amount of data, and thus information, increases as well.

With upcoming H1 surveys like WALLABY (with ASKAP) (Duffy et all[2012), and surveys with
the new APERTIF system on the Westerbork Synthesis Radio Telescope (WSRT) (Verheijen et al.)
2008), a demand for a thorough and flexible automated application for source finding has been
created. SoFiA (Source Finding Application (Serra et al. [2015)), is a modular application that
combines source-finding algorithms in such a way that the user can flexibly select what modules
to use for their specific research. While SoFiA satisfies many of the demands astronomers have, it
is not without flaw. When used to find sources in reduced radio astronomical spectral line data,
SoFiA can wrongfully flag two or more separate galaxies as one source, due to an overlap in their
H1 distributions. Because this can lead to less reliable results, it is important to develop a module
for SoFiA that can intercept false source identifications and correct the source finding by separating
the source into its loose components- one for each individual galaxy.

2 Method

Processing the data cubes consist of two primary steps: identification and separation. To identify
the content of the data cube, an automated search in NED (NASA /TPAC Extragalactic Database)
E| is performed to find the galaxies contained within the right ascension (RA), declination (Dec)
and redshift (z) limits of the cube. If multiple galaxies share a source ID in the mask cube (that
has been created by SoFiA), an ambiguously assigned source has been found. In such cases, the
second step of the process, separation, is required. A two-dimensional model of the part of the
sky where the cube is located is created, using a Gaussian-filtered moment-0 map of the galaxy,
to which a watershed algorithm is applied to create models of the galaxies according to their gas
distribution. The models of the galaxies are then ’grown’ using dilation to fit the original mask as
created by SoFiA, ensuring that the original mask is divided between the individual sources.

In order to perform the above process, a module has been developed that can be added to the ex-
isting SoFiA program. The source identification and separation module has been developed in the
Python programming language by the author and makes use of several packages, including NumPy
(Van Der Walt et al}2011)), SciPy (Jones et al.,[2001-), Astropy (The Astropy Collaboration et al.,
2013) and Astroquery (Ginsburg et al., 2013|). In order to create the images, MatPLotLib (Hunter,
2007)) has been used. Ancillary data (See Appendix A) has been used in the development of this
module. The source code identification and separation module can be found in Appendix D and
online at the author’s websiteE| At the time of writing, the identification and separation module
requires the user to manually provide the cube, mask cube and moment-0 image. If this module
gets implemented into SoFiA, however, no user interaction will be required and the module will
operate autonomously. The identification and separation process as performed by the module will
be discussed in more detail in sections Bland M

NED has been chosen as the primary database because of its large amount of easily accessible in-
formation and easy-to-use web interface for comparison to the results of the identification to ensure
its proper workings. If necessary, however, any other database accessible through the Astroquery
module could be used by modifying the module.

The module is built up in such a way that it will accept data cubes of all sizes. Its coordinates can
either be in the B1950 or J2000 epoch, as an automated check is built in. It compares the galaxies

IThe NASA /TPAC Extragalactic Database (NED) is operated by the Jet Propulsion Laboratory, California Institute
of Technology, under contract with the National Aeronautics and Space Administration.

2www.astro.rug.nl/~versteeg/bscthesis/index.html

www.astro.rug.nl/~versteeg/bscthesis/index.html

4 4 Separation

NED finds within the cube’s limits to the mask of sources that have been identified by SoFiA. A
system message will inform the user of the galaxies found in their cube. The module will then
check for separate galaxies that have been assigned the same source ID. If multiple galaxies share
a source 1D, it will print a warning, alerting the user of the shared source IDs.

3 Identification

Automated search query

Using the headers of the data cube, the module can determine the size of the cube. By using the
RA and Dec of the center pixel and the coordinates of the corners to find the radius necessary to
cover the entire cube, the region in which NED must be queried can be found. Using Astroquery,
a NED search can then be conducted: Astroquery returns not only a list of objects, but also their
basic data, including but not limited to coordinates (in RA and Dec), redshift and type of object.
The module filters the resulting list using two criteria: firstly, the redshift limits of the cube itself:
the frequency limits along the line of sight are also saved in the header data and can be used to
determine a maximum and minimum redshift. Secondly, the module filters by type of object, set to
galaxy (’G’). Although it can be set to another type or even to filter by a ’G’ in any part of the type
name, it is advisable to leave it as is. Filtering by type 'G’ ensures that the list does not contain
any duplicate entries. Since the NED query also returns pairs of objects, groups of objects etc.,
the list might not only contain the galaxy the user is looking for, but also the groups/pairs/cluster
it could be a part of.

Mask comparison

Using the basic data of the galaxies, the RA/Dec coordinates obtained from NED of each galaxy
are converted to pixel locations within the cube. The pixel values of the locations of the galaxies
inside the data cube are then used to access the mask cube at that value along the line of sight.
The mask cube is a 3D array filled with zeros, except at the location of the sources, where it will
contain the source ID values. If a source ID is found along the line of sight at the location of
the galaxy, the name, frame number and source ID are added to a list. The program generates
such a list for each individual galaxy. The lists of galaxies can then be compared: if the names of
two galaxies do not match and their source IDs do match, SoFiA has wrongfully assigned a single
source ID to multiple galaxies. An automatically generated warning containing the names of the
galaxies and the source ID is printed to inform the user of the error.

4 Separation

Model array creation

The source separation starts by creating a 2D model of the sky that has the same dimensions
as the cube in RA and Dec. This model is based on the moment-0 image created by SoFiA. A
Gaussian filter (with a variable standard deviation o) is applied tot the moment-0 image. Initially,
the sigma for the Gaussian filter is set to a minimum of ¢ = 2. The watershed algorithm can be
then be applied. This is an automated process that removes progressively higher values from the
moment-0 image, until the number of objects is equal to the number of galaxies that share a source
ID. If the watershed does not result in the desired number of objects, the o of the Gaussian filter
is increased by 0.1 and the watershed is repeated until the correct number of objects is left. The
module stops trying to create a model if o reaches a limit, currently set at o = 15.

The next step is to assign the proper identity to the created objects. This is necessary for the next
step (dilation), in which the models are grown to fit the mask. In order to do this, the program
compares the optical centers of the galaxies (from the NED query) to the centers of mass of each
object and assigns identities via a simple distance comparison. In some cases, this will lead to an
object being doubly assigned. The watershed is then deemed unsuccessful.

It is important to note that even with a variable standard deviation, not all moment-0 maps can be
watershed to a correct model. If the program cannot watershed the filtered moment-0 map to the
desired amount of objects or if it cannot properly assign identities to the objects, the watershed
model creation is deemed impossible. In this case, the program will automatically switch to an
alternative way of model creation: using diameter data from a NED query to create elliptical
models of the galaxies. For the galaxies for which NED does not provide diameter data, generic
circular models are created. If the models overlap, the module cannot separate the mask into
individual components. If this happens, the model is recreated using objects that are half the
original size, after which another attempt at separation will be made.

2D source separation

In order to perform the separation in 2 dimensions, the mask cube that has been created by SoFiA,
is reduced to a 2D array by adding all frames along the line of sight. Within the model containing
the ellipses (the overlay), the galaxy arrays are dilated using SciPy’s built-in dilate function (see
appendix C). Each galaxy array is dilated individually by an elliptical kernel with a size dependent
on the size of the galaxy in question and its gas distribution. This information is stored in the
moment-0 map. This method ensures that galaxies that contain more gas 'grow’ faster than the
ones that contain less gas. Furthermore, comparison to the moment-0 image allows for a more ac-
curate separation: as the average amount of gas around a galaxy decreases, the dilation footprint
reduces to a minimum size as well.

It is important to note that NED does not provide diameter data for all objects. For objects
that have no diameter data available, the module creates a generic circular kernel, currently set to
r=+5 pixels.

For optimization reasons, a subarray that encloses the 2D mask is defined to create boundaries in
which the dilation takes place. The dilation fills up the subarray, ensuring that the galaxies do
not overlap: only elements that have not yet been assigned a value in the subarray are added to
the newly dilated ellipse. After every dilation step, the array (that now contains a region of only
non-zero values, one value for each galaxy) is multiplied with the 2D mask (that contains only
ones where the mask is defined and zeros elsewhere), resulting in a mask that is divided between
the galaxies in question.

5 Results

In order to demonstrate the workings of the module, a selection of three cubes has been made.
These cubes are part of the WHISP survey (van der Hulst et al., [2001)) and are publicly available
at WoW (Westerbork on the Web) H The masks as well as the moment-0 images that are used
have been generated by SoFiA, publicly available at GitHub El

UGC 1256

This cube contains not only UGC 1256, but also its companion UGC 1249. When this cube is used
as input for the identification and separation module, the user will be alerted of a shared source
ID:

Galaxies found in your cube: [’IC 1727’, 'NGC 0672’]
WARNING: SoFiA has given both IC 1727 and NGC 0672 the same sourcelD:
[1.0]

SoFiA has assigned source ID 1 to two galaxies, IC 1727 (UGC 1249) and NGC 0672 (UGC 1256).
This means that the module will attempt to separate the 2D mask into two components. Firstly,

Shttp://wow.astron.nl/
“https://github.com/SoFiA-Admin/SoFiA

http://wow.astron.nl/
https://github.com/SoFiA-Admin/SoFiA

6 5 Results

the module creates a model, using the Gaussian-filtered watershed moment 0 image as a basis, as
shown in figure 1.

Figure 1 — Contours of models superimposed on the moment 0 image. The green contour represents
the model for NGC 0672 (UGC 1256) and the red contour corresponds to the model for IC 1727 (UGC
1249)

This model is then used as a basis for the dilation, the result of which can be seen in figure 2:

Figure 2 — 2D separated mask array superimposed on the moment-0 image.

The identification and separation module has been able to separate the mask into two components,
one for each galaxy. Despite being in 2D, this separation can serve as a basis for further analysis.

UGC 2941

The process is not always as successful as demonstrated on cube UGC 1256. In some cases, the
separation will not work properly. In order to demonstrate this, the data cube for UGC 2941 is
used as input for the module. This cube contains not only UGC 2941, but also UGC 2492 and
UGC 2943. While UGC 2941 is given its own source ID, UGC 2942 and UGC 2943 share one:

Galaxies found in your cube: [’OGOG 487-013’, 'IC 0357, 'UGC 02942’, °
UGC 02943’, 'MOG +04—-10-020’]
WARNING: SoFiA has given both UGC 02942 and UGC 02943 the same sourcelD
[2.0]

which means the separation component will attempt to do its job. In this case, however, the
watershed algorithm has been unable to create the right number of models. It thus switches to
NED diameter data to use elliptical models of the galaxies. The NED diameter data, however,
produces two ellipses which already overlap. (shown in figure 3). Since the module cannot separate
galaxies of which the models already overlap, the program attempts to create the model again,
using NED data, but shrinking the ellipses down to half size, leading to figure 4 (both cropped for
clarity).

v .

Figure 3 — NED model contours superimposed on Figure 4 — Half-size NED model contours super-
the moment-0 image imposed on the moment-0 image

Using the smaller model, the program is capable of dilating the image in order to fill up the mask.
This, however, does not lead to a desired result, as shown in figure 5:

8 5 Results

Figure 5 — 2D separated mask array superposed on the moment-0 image.

This weird dilation is most likely caused by a very small model having a very high average amount
of gas (leading to a large footprint and thus fast growth, even if the area of one galaxy will thus
‘invade’ the area of the other). Even though the separation component does not lead to a two-part
separation in the mask, the user is still informed of a shared source and is given a general idea of
what the region looks like.

UGC 4458

Besides the cases in which the separation component does and does not work, there is also a third
possibility: separation is not required. Even in these cases, the module can be applied. UGC
4458 is an example of a cube in which SoFiA has unambiguously assigned all sources to individual
objects. When this data cube, mask cube and moment-0 map are plugged into the module, the
only system message the user receives is:

Galaxies found in your cube: ['NGC 2599’, 'KUG 0829+227B’|]

After this the module stops, because neither of these sources share a source ID. This is confirmed
by superimposing the contour of the flattened mask cube onto the moment-0 image, shown in
figure 6:

Figure 6 — 2D mask array contour on top of mom-0 map.

While separation might not be necessary for this cube, the module still provides the user with
information by alerting them of the contents of the cube.

6 Final Remarks

Discussion

For the development of this module, a sample of 15 cubes from the WHISP survey was selected.
These cubes have been chosen because they were at risk of being incorrectly identified by SoFiA.
Of these 15, the program identified 7 as correctly separated (i.e. no galaxies share a source ID).
The remaining 8 cubes required additional separation.

While in some cases the module leads to a simple n-part division of the mask, where n is the
number of galaxies, this is not true for most cases, in which model creation or separation is not
possible, or the separation does not lead to desired results. In order to counter this, multiple ways
of dilating and determining the base model have been attempted. Having the dilation footprint
depend on the average of the added pixels, rather than the average of the ellipse plus the added
pixels, shows little difference with the original method, although the original method, as explained
in section [4 does appear to be somewhat more accurate. While currently implemented to occur
only when the watershed model creation has failed, creating a model using the same diameter data
used for the footprint is a possibility for all cubes, with the added benefit that even if separation is
impossible, the model will provide information about the location and orientation of the galaxies
within the mask. In addition to being more accurate, the use of the watershed moment-0 map
requires fewer dilation steps and thus less computationally intensive.

Other methods, including scikit-image’s built-in watershed function and scikit-learn’s spectral clus-
tering function have not proven to be useful in separating the mask accurately.

Despite the sub-optimal separation, the mask returned by the module will provide more detailed
information than an ambiguously assigned source and can be used as a basis for further analysis.
Furthermore, the results from the identification provide the user with important information about

10 6 Final Remarks

the contents of the cube and SoFiA’s source finding.

One issue that arises in the code is the usage of the exact value of the position angle. By using
NED’s homogenized data, the coordinates as well as the position angle (PA) are given in the J2000
epoch. While coordinates can easily be converted to another epoch using the Astropy package,
the same is not true for the PA, which could lead to the use of a J2000 PA in a cube with a
B1950 coordinate system. While the difference in degrees is only minor at low declination, at high
declination, the accuracy reduces. Using UGC 1249 and UGC 1256 as an example, according to
the coordinate calculator offered on the NED website EL the difference in PA between J2000 and
B1950 epochs is approximately 0.21 degrees (for UGC 1249) and 0.22 degrees (for UGC 1256). For
an object at a high declination, e.g. 2MASX J22501987+8958232, at a RA of 342.707792 degrees
and a Dec of 89.973222 degrees, the difference in position angle is much larger: over 16 degrees
between J2000 and B1950. For now, the module does not differentiate between J2000 and B1950
position angles and is therefore less effective when used to analyze objects at high declination.
While this is not an issue for the ancillary WHISP data, this could potentially be an issue if this
module were used in the WALLABY survey, which is set to cover 75% of the sky, at a declination
ranging from -90° to 30° El Similarly, with upcoming H1 surveys with APERTIF, which are set to
have a Declination of more than 30° (Verheijen et al., |2009)), the module is capable of separating
those sources at lower declination more accurately than those at a higher declination. However,
despite the offset of the position angle, the module can still provide important information by
identifying observed objects and by providing a basis for separation.

In some cases (for example, the UGC 2941 data cube), there appears to be a small offset (about 2
seconds RA) between the optical center of the galaxy and the center of mass of the H 1 distribution.
This offset is too small to be an effect of the built-in B1950/J2000 converters not working properly,
and could be caused by a wrong entry in NED. Furthermore, in some cases (like NGC 3786, one of
the galaxies that share a source ID with another), some of the position angles from the diameter
data appear to be incorrect. The value from the SDSS isophotal data deviates from the other
values, even those from other SDSS analyses. According to the SDSS website EL the publication
of isophotal quantities has stopped since DR8 because of the unreliability of the measurements.
In the case of NGC 3786, NED makes use of SDSS DR6, which does contain isophotal quantities.
Since the module uses the most recently published data, without looking at the names of the pub-
lications, there is a chance the separation component will make use of the SDSS isophotal position
angle, which can lead to an offset in the orientation of the model galaxy and the dilation footprint.

The speed at which the program identifies galaxies is dependent on the internet connection of the
user and of the state of the NED servers and can therefore vary between users. More important,
however, is the object density of the region: in regions that contain many objects, the region query
can be significantly slower than in less densely-populated areas. Therefore, some cubes might take
longer than others, despite a fast and stable internet connection.

At the moment of writing, separation of the 2D mask is only possible if the galaxies in the model
array do not already overlap. Due to the way the dilation in this module is set up, the area in which
the model galaxies overlap will not be dilated, leading to an improperly dilated image. Therefore,
a check is built in: the module will first shrink the models to half their original size. If separation
still is not possible, the user is informed of this via a system message.

In future development, the first obvious improvement is to ensure that separation can not only be
done in 2D, but also in 3D. While SoFiA will correctly identify sources that are far apart along
the line of sight, if the galaxies are close together, the application could assign a single source
to multiple galaxies. Another improvement can be made in the way in which the identification
and separation module handles the separation of very small models with a very high average
gas number. This leads to wrongly separated 2D masks, as has been illustrated in section [} By

Shttps://ned.ipac.caltech.edu/forms/calculator.html
Shttp://wuw.atnf.csiro.au/research/WALLABY/proposal.html
“http://www.sdss.org/dri2/algorithms/classify/#photo_iso

https://ned.ipac.caltech.edu/forms/calculator.html
http://www.atnf.csiro.au/research/WALLABY/proposal.html
http://www.sdss.org/dr12/algorithms/classify/#photo_iso

11

tweaking variables or building in systems to catch these cases, it is expected that proper separation
is possible.

Conclusion

This article presents the description of a new module for SoFiA (Source Finding Application) that
is capable of identification and separation of ambiguously assigned source IDs. By comparing
the images generated by SoFiA with information available from NED, it is capable of identifying
galaxies within a reduced data cube. The module returns a system message, informing the user
of the galaxies that can be found within the cube’s spatial and redshift limits. Furthermore, it
will recognize source IDs that have been wrongfully assigned to multiple objects and alert the user
of these cases. The module will then attempt to separate them by creating a new mask: a 2D
version of the original mask, divided between all individual sources. The module generates a 2D
model of the region of the sky, using a Gaussian-filtered moment-0 map to which a watershed has
been applied, to use as a basis for the dilation process. By having a gas distribution-dependent
dilation process, the 2D mask is more accurately divided between the individual galaxies. While the
identification provides the user with important information, the separation process is not applicable
to all cubes and masks. It can still, however, provide a useful basis for further analysis.

Acknowledgments

I would like to express my gratitude towards Prof. Dr. van der Hulst and Nadine Giese, without
whom I could not have successfully developed this module. Furthermore, I would like to acknowl-
edge my friends and family for their encouragement and my fiancé for his unwavering support.
This project has made use of the NASA /TPAC Extragalactic Database (NED) which is operated
by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the
National Aeronautics and Space Administration.

I have made use of the WSRT on the Web Archive. The Westerbork Synthesis Radio Telescope is
operated by the Netherlands Institute for Radio Astronomy ASTRON, with support of NWO.

12 References

References

Duffy, A. R., Moss, A., & Staveley-Smith, L. 2012, PASA, 29, 202

Ginsburg, A., Robitaille, T., Parikh, M., et al. 2013, Astroquery vO0.1,
http://dx.doi.org/10.6084/m9.figshare.805208.v2, Accessed: 24-05-2016

Hunter, J. D. 2007, Computing In Science & Engineering, 9, 90

Jones, E., Oliphant, T., Peterson, P., et al. 2001—, SciPy: Open source scientific tools for Python,
[Online; accessed 2016-06-21]

Serra, P., Westmeier, T., Giese, N., et al. 2015, MNRAS, 448, 1922
The Astropy Collaboration, Robitaille, Thomas P., Tollerud, Erik J., et al. 2013, A&A, 558, A33

van der Hulst, J. M., van Albada, T. S., & Sancisi, R. 2001, in Astronomical Society of the Pacific
Conference Series, Vol. 240, Gas and Galaxy Evolution, ed. J. E. Hibbard, M. Rupen, & J. H.
van Gorkom, 451

Van Der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, Computing in Science & Engineering,
13, 22

Verheijen, M., Oosterloo, T., Heald, G., & van Cappellen, W. 2009, in Panoramic Radio Astron-
omy: Wide-field 1-2 GHz Research on Galaxy Evolution, 10

Verheijen, M. A. W., Oosterloo, T. A., van Cappellen, W. A., et al. 2008, in American Institute of
Physics Conference Series, Vol. 1035, The Evolution of Galaxies Through the Neutral Hydrogen
Window, ed. R. Minchin & E. Momjian, 265271

13

7 Appendices

Appendix A: List of cubes

The following cubes have been used in the development of this module. These cubes are part of
the WHISP survey and have been downloaded from Westerbork on the Web [

Name Note
UGC 327/2916 Can be found under name: UGC 2916
UGC 1249/1256 Can be found under name: UGC 1256

UGC 1310

UGC 2942/2941 Can be found under name: UGC 2941
UGC 3407

UGC 3422/3426 Can be found under name: UGC 3426
UGC 3642 Can be found under name: UGC 3642
UGC 4458 Can be found under name: UGC 4458
UGC 4862 Can be found under name: UGC 4862

UGC 6016/6024 Can be found under name: UGC 6024
UGC 6621/6623 Can be found under name: UGC 6621

UGC 6944 Can be found under name: UGC 6944
UGC 9648 Can be found under name: UGC 9642
UGC 10497/10502 | Can be found under name: UGC 10502
UGC 12808 Can be found under name: UGC 12808

8http://wow.astron.nl/

http://wow.astron.nl/

14 7 Appendices

Appendix B: Watershed

A watershed is an image processing algorithm, most easily visualized as the flooding of a moun-
tainous landscape, where the mountains represent the amount of neutral hydrogen: the higher the
mountain, the more H1 there is. As the area is flooded, more and more features are submerged
until only ’islands’ are left. This process is applied to the moment-0 map, which is first converted
to a NumPy array. From this array, low values are set equal to zero, starting with a cap set to
i = 1. After this, the program counts the number of objects left in the array. If this number is
equal to the number of galaxies that share a source ID, the watershed is finished. If not, it raises
the cap with 1 to ¢ = 2 and repeats this process until the desired number of objects is found. If
the desired number of objects cannot be found, the watershed is deemed unsuccessful.

Appendix C: Dilation

Dilation is a morphological operation. When applied to an image (or an array, in this case), a
defined kernel (or structuring element) will ’travel’ along the edges of the area in which the array
is defined (i.e. non-zero values) and add all zero-values within the kernel to the array, by turning
the zero-values into non-zero values. This enlarges the original array. The picture below illustrates
this operation: the dark blue ellipse is enlarged by an elliptical kernel, adding the outer light blue
rim to the image, thus enlarging the original picture. The use of an elliptical kernel with the same
orientation as the original is essential to ensure that the enlarged image retains its elliptical shape
and proper orientation. A kernel of another shape, e.g. circular, would influence the shape of the
original image at a large number of iterations or at a large kernel size, leading to a loss of ellipticity
in the dilated image. A kernel with another orientation (i.e. another position angle) would alter
the orientation of the dilated image.

Figure 7 — Dilation through an elliptical kernel

15

Appendix D: Source code of identification and separation module

#!/usr/bin/env python

EXTERNAL PACKAGES

from __future__. import division

import numpy as np

import astropy.units as u

from astropy.wecs import WCS

from astropy.io import fits

from astropy.coordinates import SkyCoord
from astroquery.ned import Ned

from scipy import ndimage

from matplotlib.pyplot import imsave
from timeit import default_timer as timer
import matplotlib.pyplot as plt

from matplotlib.colors import LogNorm
import multiprocessing

from kapteyn import maputils

44 INPUT 4
mask = fits.open(masks/Runl_masku6944.fits)
maskarray = mask [0]. data

file_name = ’cubes/u6944cl. fits’

w = WCS(file_name , naxis=2)

header = fits.getheader(file_.name)

temp_mom0O = fits.open('mom0/Runl_-mom06944. fits)
mom0 = np. flipud (temp_-momO [0]. data)

mask. close ()

temp-mom0. close ()

GLOBAL VARIABLES #4

struc = np.ones((3,3))

ellipse = np.empty ([header ['NAXIS1’], header ['NAXIS2']])
info = []

|44 FUNCTIONS #4

Searches for objects in NED within a given radius around a
given position (center of cube)
def nedFind(ra, dec, r):

¢ = SkyCoord(ra, dec, unit = ’deg’)
if header ['EPOCH’ | 1950:

sources = Ned.query-_region(c, radius=r, equinox=’'B1950.07)
else:

sources = Ned.query-region(c, radius=r)

return sources

Finds the radius necessary to cover the entire cube and the coordinates of
the center pixel using the header info
def findRad () :
xlen = header ['NAXIS1’]
ylen = header ['NAXIS2’]
midpixl = header ["CRPIX1’]
midpix2 = header ["CRPIX2’]
mid = w. all_pix2world (midpixl, midpix2, 1)
upper-left = w.all_pix2world (0, ylen, 1)
lower_left = w.all_pix2world (0, 0, 1)
upper_right = w.all_pix2world (xlen, ylen, 1)
lower_right = w. all_pix2world (xlen, 0, 1)
RA_u.l = upper_left [0]
RA_1.l = lower_left [0]
RA_u_r = upper_right [0
RA_l.r = lower_right [0
dec_u_l = upper_left [1
dec_-1_1 = lower_left [1
dec_u_.r = upper_right |
dec_l_.r = lower_right |

69

90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

110

16 7 Appendices

dl = np.sqrt (((RA_I.1-RA_u_r)#*np.cos(np.radians(dec_-1_1)))**24+(dec_1_1 —dec_u_.r)
*%2)

d2 = np.sqrt (((RA_-1.r—RA_u_l)#*np.cos(np.radians(dec_-1_r)))**24+(dec_-1_-r —dec_-u_-1)
*%2)

d = (d1 + d2)/2

r =d/2

return mid, r

Finds redshift (z—axis) limits to filter NED objects by, using header info
from the FITS—file
def redshiftFind () :

¢ = 2.99792458+(10%x8) ## Speed of light in m/s

wavelength = 0.2110611405413 ## Wavelength of 21 c¢cm line in m

restfreq = c¢/wavelength

fmax = header ['CRVAL3’| — (header [CRPIX3’] % header [CDELT3’])

fmin = header ['CRVAL3’] + ((header [’ NAXIS3’] — header ['CRPIX3’]) x header [’CDELT3

1)

zmin = (restfreq/fmax) — 1

zmax = (restfreq/fmin) — 1

return zmin, zmax

o|# Filters list of NED-found objects using redshifts and type (set to galaxy to

avoid duplicate entries of galaxy groups/pairs/etc and their loose couterparts)
def filterZG():
temp_gals = []

zmin, zmax = redshiftFind ()
for i1 in xrange(len(results)):
if zmin <= results[i][6] <= zmax and results[i][4] = 'G’:
newrow = [results[i]]

temp_gals.append (newrow)
return temp-gals

Determines pixel location in cube of each NED object by its coordinates
def sourcePixFind () :
nedRA = []
neddec = []
for i in xrange(len(gals))
nedRA . append (gals [1][0][2
neddec.append(gals[i][0]]
Check for epoch

1)
3])

if header ['EPOCH’] = 1950:
coords = SkyCoord(nedRAxu.degree, neddec*u.degree, frame=’'fk5 ")
newcoords = coords.transform_to(’fk4 ")
else:
newcoords = SkyCoord (nedRAxu.degree, neddecxu.degree, frame=’'fk5")
xcoord, ycoord = w.all_world2pix (newcoords.ra.deg, newcoords.dec.deg, 1)

return xcoord, ycoord

Checks for SoFiA—source ID (non—zero value) in the mask at pixels x,y where
NED found a source, creates list of lists with (name, frame number, ID number)
NB: Indexing as mask|[z,y,x]
def checkMask () :
temp_masklist= []
temp_filtered_gals = []

temp_names_list = []
maskdata = mask [0]. data
x_coord , y_-coord = sourcePixFind ()

for i in xrange(len(gals)):
if x_coord[i] <= header ['NAXIS1’] and y_coord[i] <= header ['NAXIS2’]:
temp_gals_list = []
for j in xrange(maskdata.shape[0]):
row=[gals[i][0][1], j, maskdata[j, y-coord[i], x_coord[i]]]
temp_gals_list .append (row)
temp_masklist.append(temp_gals_list)
temp_filtered_gals.append(gals[i])
temp_names_list.append(gals[i][0][1])

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

182
183
184
185
186
187
188
189
190
191
192
193

194

195
196
197
198
199
200
201
202
203

204

17

else:
pass

return temp_masklist, temp_filtered_gals, temp_names_list

Checks if sublist is not empty and all names are equal within sublist
NB: Input currently should be checkListIntegrity (list [i])
def checkListIntegrity (input_list):
iterator = []
if len(input_list) != 0:
for i in xrange(len(input-list)):
iterator.append(input_list [i][0])

try:
iterator = iter (iterator)
first = next(iterator)
return all(first = rest for rest in iterator)

except Stoplteration:
print iterator , ” names within sublist are not all equal.”
else:
print input_list , ” your list is empty.”

Prints list of names found in the cube and compare:
Check if first name matches second name. If names do not match, compare
source IDs. If source IDs match, print a warning. Then remove first wvalue
from list and repeat.
Note: compare_list [0][j][2] is first sublist (first NED-found galaxy), j’th
frame number, source ID number at position 2
def compareSources(masklist , names, filtered_gals):
temp_masklist = list (masklist)

temp_names = list (names)
temp_filtered_-gals = list (filtered_gals)
shared_source_gals = []

shared_id_list = []
print ’Galaxies found in your cube:’, temp_names
while len (temp-masklist) > 1:

for i in xrange(len(temp_masklist)):

first_source_list = []
second_source_list = []
if temp-names[0] != temp-_names][i]:
for j in xrange(len(temp_masklist[i])):
if temp_masklist [0][j][2] != 0.0:
first_source_list .append(temp_-masklist [0][j][2])
if temp_masklist[i][j][2] !'= 0.0:

second_source_list .append (temp_-masklist [1][]][2])
shared_id=list (set (first_source_list).intersection(second_source_list))
if shared_id:

shared_id-list .append(shared-id)
if shared_id:
if temp_filtered-gals[0] in shared_-source_gals:

if temp_filtered_gals[i] in shared_source_gals:

pass

else:

shared_source_gals.append(temp_filtered_gals[i])
else:

shared_source_gals.append(temp_filtered_gals [0])

shared_source_gals.append(temp_filtered_gals[i])

print 'WARNING: SoFiA has given both %s and %s the same sourceID: *%(
temp-names [0] , temp-names[i]), shared_id
else:
pass
else:
pass
temp_names . pop (0)
temp_masklist . pop (0)
temp-_filtered_-gals.pop(0)
return shared_source_gals, shared_id_list

205
206
207
208

209

210

18 7 Appendices

Queries NED for diameter data of galaxies that share a source ID in order
to separate the sources. If no diameter data available, set generic circle
with radius SQRT(5). (change radius here)
def axisFind():
diam_data = []
for i in xrange(len(shared_source_gals)):
if shared_source_gals[i][0][15]:

name = shared_source_gals[i][0][1]

diams = Ned. get_table (name, table="diameters”)

temp_diams = np.array (diams)

Sort by most recent published data

newdiams = sorted (temp-diams , key=lambda 1:1[2], reverse=True)
majaxis = newdiams[0][18]

axisrat = newdiams[0][20]

pos_angle = newdiams[0][24]
Use second publication if data not available
if np.isnan(majaxis) or np.isnan(axisrat) or np.isnan(pos_angle):

majaxis = newdiams[1][18]
axisrat = newdiams[1][20]
pos_angle = newdiams[1][24]
semi_majaxis = majaxis/2
semi_-minaxis = semi_-majaxis * axisrat
row = [name, semi.-majaxis, semi_minaxis, 90 + pos_angle]
diam_data.append (row)
else:
print ?No diameter data available for: ” | shared_source_gals[i][0][1]

i

print ”Creating a circular kernel for the dilation of: , shared_source_gals|

i][o][1]

radius = 5
name = shared_source_gals[i][0][1]
row = [name, radius]

diam_data.append (row)
return diam-data

Uses NED data to find mom(O-values at optical centers
def new_ellipseOverlay () :
global ellipse, info
cent_values = []
grid = np.zeros ((header ['NAXIS1’], header[NAXIS2’]))
temp_ellipse = np.copy(grid)
for i in xrange(len(shared_source_gals)):
temp_x0 = shared_source_gals[i][0][2]
temp_y0 = shared_source_gals[i][0][3]

if header ['EPOCH’] = 1950:
coords = SkyCoord(temp_x0*u.degree, temp.yOxu.degree, frame=’fk5")
coord_transform = coords.transform_to (’'fk4 ")
new_temp-x0 = coord_transform .ra.deg
new_temp.y0 = coord_transform .dec.deg
center_coords = w. all_world2pix (new_temp_x0, new_temp-y0, 1)
else:
coords = SkyCoord(temp_x0*u.degree, temp-yOxu.degree, frame=’fk5")
new_temp_-x0 = coords.ra.deg
new_temp.y0 = coords.dec.deg
center_coords = w. all_world2pix (new_temp_x0, new_temp-y0, 1)
x0 = int (center_coords [0])
y0 = header ['NAXIS1’] — int(center_coords[1])
center_value = mom0[y0][x0]
row = y0, x0, center_value, shared_source_gals[i][0][1]

cent_values.append (row)
return cent_values

Creates lists of info required for kernel creation from diameter data
def findInfo ():
info = []
for i in xrange(len(diam_data)):
if len(diam_data[i]) = 4:

306

307

309

310

311

19

temp_a = diam_data[i][1l] / 3600
temp_b = diam_data[i][2] / 3600
pos_angle = diam_data[i][3]
x0 = cent_values[i][1]
y0 = cent_values[i][0]
a = temp.a / header [CDELT2’]
b = temp_-b / header ['CDELT2’ |
row = [(i+1), diam_data[i][0], x0, y0, a, b, pos_angle]
info .append (row)

elif len(diam_data[i]) = 2:
radius = diam_data[i][1]
row = [(i+1), diam_data[i][0], radius]
info .append (row)

return info

def ellipseOverlay (factor):
x, y = np.mgrid [: header ['NAXIS1’], :header[NAXIS2’]]
grid = np.zeros ((header ['NAXIS1’], header['NAXIS2’]))

info =
for i in xrange(len(diam_data)):
if len(diam_data[i]) = 4:

temp_-x0 = shared_source_gals[i][0][2]
temp_y0 = shared_source_gals[i][0][3]
temp_a = diam_data[i][1l] / 3600
temp_b = diam_data[i][2] / 3600
pos_angle = diam_data[i][3]

if header ['EPOCH’] = 1950:
coords = SkyCoord (temp_x0*u.degree, temp-yOxu.degree, frame=’fk5’)
coord_transform = coords.transform_to(fk4’)
new_temp_x0 = coord_transform.ra.deg
new_temp_y0 = coord_transform.dec.deg
center_coords = w.all_world2pix (new_temp_x0, new_temp_y0, 1)
else:
coords = SkyCoord(temp_x0*u.degree, temp.yOxu.degree, frame=’fk5’)
new_temp_x0 = coords.ra.deg
new_temp_y0 = coords.dec.deg
center_coords = w.all_world2pix (new_temp_x0, new_temp_y0, 1)
x0 = center_coords [0]
y0 = center_coords [1]

a = factorx*(temp.-a / header ['CDELT2’])
b = factor*(temp_b / header [CDELT2’])
row = [(i+1), diam_data[i][0], x0, y0O, a, b, pos_angle]
info .append (row)
ellipse = (((x—x0)*np.cos(np.radians(pos_angle)) + (y—y0)s*np.sin (np.radians(
pos_angle)))**2 / (axx2)) + (((x—x0)#*np.sin(np.radians(pos_angle)) — (y—y0)x*np.
cos(np.radians (pos_angle)))*x2 / (bxx2)) <=1
if i = 0:
newellipse = (i+1) * ellipse
overlay = np.add(grid, newellipse)

else:
newellipse = (i+1) * ellipse
overlay = np.add(overlay , newellipse)

elif len(diam_data[i]) = 2:

temp_x0 = shared_source_gals[i][0][2]

temp_y0 = shared_source_gals[i][0][3

radius = factorx(diam_data[i][1])

if header ['EPOCH’] == 1950:
coords = SkyCoord(temp_x0*u.degree, temp.yOxu.degree, frame=’fk5’)
coord_transform = coords.transform_to(fk4’)
new_temp_x0 = coord_transform.ra.deg
new_temp_y0 = coord_transform .dec.deg
center_coords = w.all_world2pix (new_temp_x0, new_temp_y0, 1)

else:
coords = SkyCoord(temp_x0*u.degree, temp.yOxu.degree, frame=’fk5’)
new_temp_x0 = coords.ra.deg

new_temp_y0 = coords.dec.deg

342
343
344
345
346

347

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

366

20 7 Appendices

center_coords = w.all_world2pix (new_temp_x0, new_temp_y0, 1)
x0 = center_coords [0]
y0 = center_coords [1]
circle = (x—=x0) #*x 2 + (y—y0) #*x 2 < radius
if i = 0:

newellipse = (i+1) % circle

overlay = np.add(grid, newellipse)
else:

newellipse = (i+1) % circle

overlay = np.add(overlay , newellipse)

overlay = np.rot90 (overlay)

return overlay , info

Excludes sources that are not shared, flatten mask to 2D and give uniform value
def flattenMask () :

shared_id_list = compare_sources [1]

#maskarray = mask [0]. data

for i1 in xrange(len(shared_id_list)):

temp_flat_mask = np.where(maskarray = shared_id_list[i], 1, 0)
sum_flat_mask = temp_flat_mask.sum(axis=0)
flat_mask = np.where(sum_flat_mask != 0, 1, 0)

flat_mask = np. flipud (flat_mask)
return flat_mask

360|# Finds minimum required size for dilation (optimization step)

389
390
391
392

393

394
395
396
397

398

399
400
101
102
103

104

def subarrayShape():
flat_mask = flattenMask ()
locs = ndimage. find_objects (flat_mask)
return locs

s|# Finds the kernel required for dilation of the ellipses, if no kermnel available ,
7|# define generic circle with r = SQRT(5) (set on line 251)

def findKernel (factor, i):

if len(info[i]) = T:
all_zero = False
a = factorxinfo[i][4]

b = factorxinfo[i][5]

pos_angle = 90 + info[i][6]

dil =1

dd = 2xdil+1

x, y = np.indices ((dd,dd))—dil

footprint = (((x#*np.cos(np.radians(pos_angle)) + y*np.sin(np.radians(pos_angle)
))*%2 / (ax%2)) 4+ ((x*np.sin(np.radians(pos_angle)) — y#*np.cos(np.radians(
pos-angle)))*x2 / (bxx2)) <= 1).astype(int)

top = footprint [0]

bot = footprint [dd—1]

left = footprint [:,0]

right = footprint [:,dd—1]

while all_zero = False:
if np.sum(top) = 0 and np.sum(bot) = 0 and np.sum(left) = 0 and np.sum(

right) = 0:

all_zero = True

dil = dil-1

new_dd = 2xdil+1

new_x, new.y = np.indices ((new.dd,new_dd))—dil

new_footprint = (((new_x*np.cos(np.radians(pos_angle)) + new_y*np.sin(np.

radians (pos_angle)))**2 / (a*%*2)) + ((new_xxnp.sin(np.radians(pos_angle)) —
new_y*np.cos(np.radians (pos_angle)))*x2 / (bxx2)) <= 1).astype(int)
return new_footprint

else:
dil = dil+1
new.dd = 2xdil+41
new_x, new.y = np.indices ((new_-dd,new_dd))—dil
new_footprint = (((new_xx*np.cos(np.radians(pos_angle)) + new_y*np.sin(np.

radians (pos_angle)))**2 / (a*%*2)) + ((new_xxnp.sin(np.radians(pos_angle)) —
new_y#*np.cos(np.radians (pos_angle)))**2 / (b*x%2)) <= 1).astype(int)

105
406
107
108
109
410
411

L

445

21

top = new_footprint [0]
bot = new_footprint [new_dd —1]
left = new_footprint [:,0]
right = new_footprint [: ,new_dd —1]
elif len(info[i]) = 3:
dil = 3
dd = 2xdil+1
x, y = np.indices ((dd,dd))—dil
circle = x *x 2 + y *%x 2
footprint = circle < info [i][2]
return footprint

Dilates each object individually using a kernel with a size dependant
on the average of the amount of gas in the momO image
def new_dilate (grid_input):

dilated_grid = np.copy(grid-input)

loc = subarrayShape () [0]

flatmask = flattenMask ()

prev_avg = 1
fully_dilated = False
while fully_dilated = False:

print ’dilating ...’
temp_dilated_grid = np.copy(dilated_grid)
for i in xrange(len(shared_source_gals)):

ellipse = np.where(dilated_grid = i+1, 1, 0)
cut_out = np.multiply(ellipse , mom0)

nonzero = np.nonzero(cut_out)

avg = np.absolute (cut_out [nonzero|.mean())

if avg <= prev._avg:
footprint = findKernel (1.5, i)
print i, avg

elif np.isnan(avg):
footprint = findKernel (1.5, i)
print i, ’avg = nan’

else:
footprint = findKernel (1xavg, i)
print i, avg

prev_avg = avg

dilated_elipse_grid = ndimage.morphology.binary_-dilation (ellipse , structure
footprint)

dilated_elipse_grid = (i+1)xdilated_elipse_grid

for x_coord in xrange(len(ellipse)):

for y_coord in xrange(len(ellipse)):
if temp_dilated_grid[y-coord][x_coord] = 0:
temp_dilated_grid [y-coord |[x-coord] = dilated_elipse_grid [y-coord]]

x_coord |

temp_dilated_grid = np.multiply (temp_dilated_grid , flatmask)

if np.array_equal(dilated_grid , temp_dilated_grid):
fully_dilated = True
else:
dilated_grid = temp-_dilated_grid
print ’done dilating!”’
return dilated_grid

Checks for matches with watershed—mom0 image at the optical center of the
galaxies
def check_values (image):
values = []
temp_-model = np.copy (image)
for i in xrange(len(cent_-values)):

coord = cent_values[i][0], cent_values[i][1]
value = temp_model [coord]
values.append (value)

if any([v =0 for v in values]):

return False

483
484
485

486

539
540

541

22 7 Appendices

else:
return True

Watersheds mom0 image. Prints sys—msg if watershedding impossible (i.e. if the
watershed creates less objects than shared—source galaxies)
def watershed_model (sigma):

flat_mask = flattenMask ()

image = mom0.byteswap () .newbyteorder ()

temp-image = np.multiply (image, flat_-mask)
array , num = ndimage.measurements.label (temp_image, structure=struc)
temp-image = ndimage. gaussian_filter (temp-image, sigma=sigma)
new_image = ndimage. gaussian_filter (temp_image, sigma=sigma)
check = check_values (temp_image)
i=1
while num != len(shared_source_gals):
new_image = np.where(temp_image >= i, 1, 0)
array , num = ndimage.measurements.label (new_image, structure=struc)
if num < len(shared_source_gals):
break
i4+=1
check = check_values(new_image)

return new_image

Creates model by watershedding Gauss—filtered mom0O image. Uses variable sigma
if optical center does no coincide with model before sigma=15, stops
def create_model () :
new_image = watershed_model (1)
check = check_values (new_image)
if check = True:
return new_image

else:
sigma = 1
while check = False:
new_image = watershed_model (sigma)
check = check_values (new_image)

sigma += 0.1
if sigma >= 15:
print ’watershedding unsuccessful (no match /w optical center at sigma=15)"’
break
return new_image

s|# Assigns correct value to each individual object, necessary for dilation.

def assign_-values (input_-model):
marker_list = []
for i in xrange(len(shared_source_gals)):
marker_list.append(i+11)
model = np.copy (input_model)
array , num = ndimage.measurements.label (model, structure=struc)
locs = ndimage. find_objects (array)
for i in xrange(len(locs)):
for j in xrange(len(marker_list)):
obj = model[locs [i]]
if marker_list[j] in obj:
value = info [j][0]
model [locs [i]] = np.where(obj, value, 0)
return model

Assigns markers to objects for correct identification of objects, based on
distance from optical center (from NED) to center of mass of HI object.
def assign_neighbor_marker (input_obj):

obj = np.copy(input_obj)

array , num = ndimage.measurements.label (obj, structure=struc)

locs = ndimage. find_objects (array)
CoMs = []
coords = []

for i in xrange (num):

588
589
590
591
592
593
594
595
596
597
598
599
600
601

602
603
604
605
606
607
608
609
610

611

23

temp_obj = np.where(array = (i+1), 1, 0)
center_of_mass = ndimage.measurements.center_of_mass (temp_obj)
CoMs. append (center_of_mass)
Find distance to optical center
CoMs_array = np.asarray (CoMs)
for i1 in xrange(len(shared_source_gals)):
coord = [cent_values[i][0], cent_values[i][1]]
row = coord
coords . append (row)
coords_array = np.asarray (coords)
for i in xrange(len (CoMs)):
distances = []
for j in xrange(len(coords)):
dist = np.linalg .norm(CoMs_array[i] — coords_array|[j])
distances .append(dist)
dist_array = np.array (distances)
min_dist-index = dist_array .argmin()
obj[CoMs[i]] = (min_dist_index+11)
return obj

Checks what type of model creation is required; if objects cannot be
identified after a Gaussian filter /watershed, revert to NED model
def check_-ModelCreation () :

marker_list = []
temp_-model = create_model ()
model = assign_neighbor_marker (temp_model)

for i in xrange(len(shared_source_gals)):
marker_list .append (i+11)

if all(markers in model for markers in marker_list):
print ’'Watershed successful!’

model = assign_values (model)
return model
else:

print 'Watershed unsuccessful , using NED model’
model = ellipseOverlay (1) [0]
return model

Checks if separation is necessary. If necessary, checks if separation
possible by comparing number of objects in model to number of galaxies
in list. (models that overlap cannot be separated)
def checkSeparation():

model = check_-ModelCreation ()

flat_mask = flattenMask ()

##Checks##
imsave (’ws_6944_plak.png’, np.add(flat-mask , model))
imsave (’ws_6944_modelL .png’, model)
imsave (’ws_6944_momO.png’, momo0)
imsave (’ws_6944_mask .png’, flat_mask)
if shared_source_gals:
array , num = ndimage.measurements.label (model, structure=struc)

if len(shared_source_gals) == num:
print ’Separation necessary and possible.
print ’Starting separation ...’
start2 = timer ()
dilation = new_dilate (model)
imsave (’ws_6944_dil .png’, dilation)
overlay = np.multiply (flat_mask , dilation)
imsave (’ws_6944sep.png’, overlay)
stop2 = timer ()
print ’Separation: ’, (stop2-start2), ’s’
return overlay

else:
print 'Model creation failed , attempting smaller model..
new_model = ellipseOverlay (0.5) [0]
imsave (’ws_6944_plakS.png’, np.add(flat_mask , new_model))
imsave (’ws_6944_modelS.png’, new_model)

)

)

is

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663

664

24 7 Appendices

new_array , new.num = ndimage.measurements.label (new_model, structure=struc)
if len(shared_source_gals) =— new_num:
print ’'Separation necessary and possible.
print ’Starting separation ...’
start2 = timer ()
dilation = new_dilate (new_model)
imsave (’ws_-6944_dil .png’, dilation)
overlay = np.multiply (flat_mask , dilation)

)

imsave (’ws_6944sep .png’, overlay)
stop2 = timer ()
print ’Separation: ’, (stop2—start2), ’s’
return overlay
else:

print 'WARNING: separation not possible.’
else:
print ’'Separation not required!’

Run code
IDENTIFICATION

startl = timer ()

Generate NED data table containing all objects in cube

r = findRad () [1]

midCoord = findRad () [0]

result_table = nedFind (midCoord[0], midCoord[1], rx*u.degree)

results = np.array(result_table)
Filter results
gals =

(]

gals = filterZG ()
Compare to mask
masklist = []
filtered_gals = []
names_list = []
masklist , filtered_gals , names_list = checkMask ()
Check list integrity
for i in xrange(len(masklist)):

checkListIntegrity (masklist[i])
Compare found source IDs
compare_sources = compareSources (masklist, names_list, filtered_-gals)
shared_source_gals = compare_sources [0]
Identification finished
stopl = timer ()
print ’Identification: ’, (stopl—startl), ’s’

SEPARATION

NED query for diameter data

cent_values = new_ellipseOverlay ()

diam_data = axisFind ()

Generate information (axis length, pos_angle)
info = findInfo ()

Attempt separation

checkSeparation ()

	Introduction
	Method
	Identification
	Separation
	Results
	Final Remarks
	Appendices

