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Abstract

A study is performed into the angular extensions and differential number densities of gigahertz-
peaked spectrum (GPS) compact radio sources (CRS) at low flux densities. An introduction is given
into the topics of active galactic nuclei (AGN), CRSs and GPS, followed by a discussion of physical
mechanisms abound in these sources. The selected sample of 45 CRSs is discussed and spectrally
fitted using least squares and Markov-chain Monte Carlo algorithms, finding about half of the sources
to indeed be GPS. Use is made of the K-z relation for radio sources, relating K-band magnitude to
redshift, which is used to obtain redshifts for 14 sources without spectroscopic data, leading to a
redshift completeness level in the sample of 66%. Number counts of redshift, peak flux density and
peak frequency are made, showing no signs of bimodal behaviour. Obtained results are synthesised
with data from Snellen et al. concerning angular size, which is shown to indeed decrease as expected
at low flux densities and high frequencies. An unexpected offset is discovered in the small angular
size-regime, which might hint at unusual behaviour of extremely young CRSs. Differential number
counts of the number density per peak flux are performed, leading to the conclusion that a new
population of unexplored, faint GPS sources may exist at low radio frequencies. Concluding remarks
are provided as to how to proceed on this exploratory path, suggesting additional observations at
differing frequencies, a redo of the Snellen et al. sample and exploration of the extremely high and
low frequency ends of the known CRS range.
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1 Introduction

Before one delves into the subject of compact radio sources, it is imperative to gain a basic understanding
of the physics behind astronomical radio sources in general, and the active galactic nuclei (AGN) that
lie at their roots. To this end, this chapter will discuss the physical and observational backgrounds
regarding cosmic radio sources, gigahertz-peaked spectra and previous research into this topic. At the
end of this chapter a short summary of this thesis will be given.

AGN

——

Radio-quiet Radio-loud

I l |
Sey 1 Sey 2 RGs

RQQS BL Lacs
RLQs

FRII FRI

Unified Scheme

Figure 1: The classification scheme for AGN as presented by P. Kharb in her 2004 thesis. Sey stands for Seyfert
galaxy, RQQs for radio-quiet quasars, RGs for radio galaxies, RLQs for radio loud quasars, BL Lacs for BL
Lacertae objects and FRI and II for Fanaroff-Riley type I and II radio galaxies. Save for the last two types, none
of the above objects will be discussed in much detail. The Unified Scheme refers to the hypothesis put forth by
Barthel in 1989 that unifies radio galaxies with quasars [Kharb, 2004].

1.1 Radio sources & active galactic nuclei

The radio band of the electromagnetic spectrum is generally taken to range from ~100 GHz down to
the MHz regime or lower [Wilson et al., 2012]. It is an important scientific window into the cosmos,
as the atmosphere is transparent to radio waves, thus enabling us to make radio observations from the
Earth’s surface, in contrast to for instance infrared or X-rays. That radio waves are a relevant source
of astronomical knowledge is in part because such a wide array of astrophysical processes emit them, or
emit radiation that by its arrival to Earth has redshifted into the radio regime.

That radio waves had an extraterrestrial origin other than the Sun was first shown by Karl Jansky
in 1931 [Jansky, 1933], who detected Sagittarius A*, the galactic centre, and since then radio astronomy
has taken a prominent place among the ranks of the astrophysical sciences. It has become one of the
premier methods by which astronomers study young, distant and often luminous galaxies and their active
galactic nuclei (termed AGN). These are nuclei of exceptional brightness (luminosities can exceed 104
erg/s) which can outshine the stellar light of their host galaxies. These sources are highly variable, on the
order of days has been observed, and generally extend no further than several astronomical units (AU).
They exhibit continuum emission over a large range of frequencies (low radio regime to X-ray), and their
emission lines are strongly Doppler broadened, indicating rotational velocities of the gas in these AGN
of up to 10* km/s, which orbit a central and highly active supermassive black hole (SMBH). This black
hole powers the AGN by accretion of matter onto it, which by conservation of angular momentum is
then released into perpendicular jets [Kharb, 2004].

There are multiple types of galaxies that house an AGN. Kharb presents a clear-cut scheme in her
2004 thesis which shows the dichotomy between these species (see Figure . As our thesis treats radio-
loud AGN, and in particular radio galaxies, radio-quiet AGN will not be discussed in-depth here. The
division between these two families of active galaxies is due to the difference in radio band output, with
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Figure 2: A quintessential GPS-shaped spectrum, belonging to PKS 1934-638, observed between 300 MHz and
8 GHz. This object is positioned at redshift 0.18, peaking just above 1 GHz. Taken from [Sadler, 2016].

radio-loud galaxies, as the name implies, showing strong emission in radio. AGN are typified by the
presence of a bright, star-like core with prominent emission lines, which are absent in normal galaxies.
Radio-loud galaxies, however, have additional radio emission that can be an order of magnitude larger
than the optical, and possess jets of highly energetic particles and ionized material which can extend
up to hundreds of kiloparsecs perpendicular to the accretion disk around the central SMBH. This radio
emission is commonly interpreted as synchrotron radiation originating from a non-thermal distribution
of relativistic (v ~ ¢) electrons [Kharb, 2004].

1.2 Evolution of compact radio sources

A specific subset of astronomical radio sources is made up by the so-called compact radio sources (CRS).
These sources are often characterised by a small angular size (no larger than 1-2 arcsec), convex spectra
that powerfully peak in the radio band, with a steep thick spectral index below the turnover peak and
a thin spectral index of o ~ 0.7 above it [Orienti, 2016]. We will henceforth refer to sources as ’pure’
if their spectra fit the above description fully, and as such have a form which is most similar to the
theoretical spectrum of synchrotron emission by a homogeneous object showing signs of self-absorption
at the low frequency-end (also known as a ’canonical’ or ’classical’ spectrum) [Mingaliev et al., 2013].

Compact radio sources can be divided into multiple categories, with the main divisions being spectral
and morphological. Over the spectrum range, we find, from high to low frequency [Orienti, 2016]:

1. High-frequency peakers (HFP): these are radio sources with their spectral turnover at the high end
of the GHz-regime. They are considered a sub-population of the gigahertz-peaked spectra.

2. Gigahertz-peaked spectra (GPS): these sources have a spectral turnover, as the name implies, in
the GHz-regime, generally of the order of unity although it can vary from 0.5 to several GHz, as
our sample will show. This thesis will look primarily at objects exhibiting these kind of spectra
(see Figure [2| for a typical example).

3. Compact steep spectra (CSS): this low-end type of radio spectra is typified by a spectral turnover
in the high MHz-regime, typically of the order 100 MHz. As with HFP’s and GPS, CSS show the
same shapes of spectra, but at lower frequencies.
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Figure 3: Examples of morphological classes of CRSs. Taken from [Snellen et al., 2000a].
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(a) Two examples of FRI radio galaxies. Left: 3C 66B, imaged by combining 1.4 GHz VLA and 5 & 8 GHz VLBI
observations, right: 3C 270, imaged by combining 5 GHz VLA and 8.4 & 8 GHz VLBI observations. Notice the
lack of hotspots and the fuzzy appearance of the jets. Taken from [Kharb, 2004].
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(b) Two examples of FRII radio galaxies. Left: 3C452 at 138 MHz, right: 3C223 at 147 MHz. Notice the
prominent hotspots and well defined appearance of the jets. Taken from [Harwood et al., 2016].

Figure 4: Examples of the Fanaroff-Riley dichotomy in radio galaxies.



This division proves useful when one is interested in one particular stage of the evolutionary process
of CRS’s, as it has been implied that all three spectral classes are evolutionary stages a CRS passes
through in the above order as it ages until it has grown enough to no longer be considered compact
[Orienti, 2016]. In addition to this separation of types, there is also a morphological classification scheme
(based on [Snellen et al., 2000b] and [Orienti, 2016]) - in particular order:

1. Compact symmetric objects (CSO): these are objects with a milli-arcsecond scale symmetrical
structure, often characterised by two-sided lobes (although in many cases one of the lobes is far
brighter than the other), extending no larger than 1 kpc. They contain a flat spectrum component
and have steep spectral slopes on either side (see Figure .

2. Medium-sized symmetric objects (MSO): if the source extends up to 10-15 kpe, they are termed
medium-sized. Morphologically they look similar to CSOs.

3. Core-jet sources (CJ): these sources are typified by a compact flat spectral component with a
steeper component on only one side (see Figure [3b)).

4. Compact double (CD): sources showing two approximately equal components with similar spectra,
but no indications of a central flat spectrum component (see Figure .

5. Complex sources (CX): sources possessing spectra that do not fall in any of the above categories.

Because the spectral and morphological divisions are so different in their criteria, selection of sources
judging on the characteristics of one such category results in widely differing samples. However, Snellen
points out that there is significant overlap between particularly GPS and CSOs: most of the GPS that
are identified with galaxies have a mas-scale symmetric structure, and a large majority of CSOs possess
a GHz-peaked spectrum [Snellen et al., 2000Db].

A third division is the Fanaroff-Riley classification (FR), which divides radio galaxies into FRI and
FRII types. The realization that radio galaxies came in two distinct species gave rise to this classification,
which separates sources on the basis of the relation between core and jets: FRI sources show extended,
diffuse tails which do not have clear termination points (see Figure [4al), while the jets of FRII sources
are narrow, well collimated and terminate in hot spots (see Figure harb7 2004]. FRII sources show
bright lobes; FRI, conversely, are centre brightened [Wilson et al., 2012]. An additional category, FRO,
was introduced to indicate a candidate radio source [Sadler, 2016].

Multiple hypotheses were put forth by O’Dea, Baum and Stanghellini in 1991 in one of the first papers
on the topic of GPS ("What are the gigahertz peaked-spectrum radio sources?”,[O’Dea et al., 1991])
about the nature of the sources that produced these spectra. They postulated that they could either
signify that they were ordinary radio sources which were being frustrated by dense ISM, which limited the
growth of the source’s jets, or that they were young radio sources, and that GPS were the progenitors of
type FRI/II radio galaxies, into which they would over time evolve [Orienti, 2016], [Snellen et al., 2000a].
The general consensus is in favour of the latter hypothesis, deduced from dust spectral ageing and
observed expansion speeds, although the frustration theory cannot be ruled out.

It is suspected that the often sharp peak of all these compact sources is due to the high density of
synchrotron emitting electrons in the source, which participate in synchrotron self-absorption. Another
striking feature is their - cosmically speaking - extremely young age, sometimes less than 10 kyr, further
adding to the suggestion that these objects are in fact young radio sources akin to Active Galactic Nuclei
(AGN) which in turn evolve into larger sources [Snellen et al., 1998b]. GPS sources are estimated to
comprise approximately 10% of the bright radio source population, with the CSS sources accounting for
another 30% [Sadler, 2016].

While CSS and GPS sources were long considered the least variable radio sources in the night sky,
but this hypothesis was strongly adjusted when later research found that especially HFP and GPS type
CRS vary strongly over their lifetimes, only displaying the traditional convex steep spectrum during
flaring events. Only ~30% of the HFP/GPS galaxies maintain their convex spectra, while CSS radio
galaxies are rarely, if ever variable. HFP, GPS and CSS quasars, however, do display large variability in
both overall flux density as in their spectrum.



1.3 Previous research

Earlier research into the topic of GPS was carried out by primarily Cristopher O’Dea [O'Dea et al., 1991],
[O’Dea, 1998| and Ignas Snellen, who performed research into the radio properties [Snellen et al., 1998b],
infrared and optical spectrum [Snellen et al., 1998a], classification [Snellen et al., 2000b] and evolution
[Snellen et al., 2000a] of these sources. Compact radio sources however were already known to the
scientific community for more than thirty years [Allen et al., 1962], [Conway et al., 1963], [Blake, 1970],
Blake being the first to suggest that CRS’s were young, and a portion of them had been catalogued by
Peacock and Wall in 1981 and 1982 [Peacock and Wall, 1981] [Peacock and Wall, 1982]. The study of
these objects began in earnest when Rudnick and Jones subjected a sample of CRS’s to a polarization
analysis in 1982 and found that the degree of polarization showed little correlation with the observed
wavelength [Rudnick and Jones, 1982]. The first sample of GPS (in that they had been selected with a
peak flux around 1 GHz) was documented in 1983 as candidates for high redshift objects and radio sources
with a symmetry at the mas scale [Gopal-Krishna et al., 1983] and a second sample was introduced two
years later [Spoelstra et al., 1985].

The first real attempts at explaining the spectra of these sources were made by O’Dea, Baum and
Stanghellini in 1991, who were the first to assume synchrotron self-absorption to be the cause of the
GPS’s unusual shape, and used this inference to draw conclusions about them, further adding that in
at least some sources free-free absorption too plays a role. They also found that these objects lack
prominent jets, instead finding small, parsec scale steep-spectrum emission (dubbed ”micro-lobes”), and
that the sources are tightly confined. Another feature was the nature of the GPS, which were found to
comprise both galaxies and quasars, with the galaxies having a more symmetric mas scale structure and
also often participating in mergers. Further conclusions were made concerning the formation (the young
source versus frustration scenario which is mentioned in the previous section) and the redshift, which
was found to be mainly high (half with a z larger than 3) [O’Dea et al., 1991].

Snellen et al., in their 1998 paper ("A New Sample of Faint Gigahertz Peaked Spectrum Radio
Sources” ), were the first to describe the observed spectra using a synchrotron self-absorbed function of
the frequency. This succeeded in describing typical GPS in a sample ranging in peak frequency from 500
MHz to >15 GHz, but failed to fit power law spectral distributions or combined spectra (different types
of synchrotron spectra will be discussed in the next chapter). They also concluded that GPS sources
have lifetimes of approximately 250 times shorter than a typical large scale radio source, and that source
luminosity must decrease by a factor 10 during its transition from GPS- to radio source. Redshift
distribution in the sample hinders a direct interpretation of the source counts, and it is concluded that
more modelling of radio source evolution is required [Snellen et al., 1998D)].

O’Dea makes several additional arguments for the evolutionary hypothesis in his 1998 paper, including
an inverse relation between linear size and radiated radio power (P oc [7%-%), and the fact that the relation
between number density and linear size is consistent with what one would expect for young, evolving
radio sources. He structures the arguments in favour of the young hypothesis into four parts: that
their morphologies are similar to large-scale sources, that there seems not to be enough gas in their
environments to justify the frustration hypothesis, that in the absence of cold gas these sources can
indeed expand at velocities some ~10% of the speed of light, and that neither GPS nor CSS sources
show a diffusely emitting halo, which is what one would expect were they confined for their lifetimes. He
goes on to conclude that, combining his own data with other literature results, confines can be placed
on the age of these sources, which he estimates to be intermittent on timescales of 10* — 10° yr.

1.4 Motivation for & summary of this thesis

A critical question that should be asked before scientific research is carried out is, quite simply, why?
Why is the to be performed research relevant, and why is it necessary? In the case of this thesis, the an-
swer is similarly straightforward. The earliest stages of AGN are poorly understood, and the mechanism
that leads to their triggering forms an enticing mystery. Although this thesis might not resolve this issue
single-handedly, it remains important, critical even, that thorough examinations of CRSs are carried
out, given that these sources possibly represent the youngest spawns of the cosmic AGN population.
Analysis of these compact sources might point out major flaws in our theoretical framework regarding
the formation of AGN, or instead provide convincing support for the prevailing theories. In the end,
it is the author’s humble hope that this thesis may contribute, even if ever so slightly, to mankind’s



indomitable pursuit of knowledge.

This thesis will first discuss the dominant physical mechanisms in the sources we are studying: syn-
chrotron radiation, free-free absorption and synchrotron self-absorption. The different spectra detected
among our sources will then be explained and analysed. A short discussion of the selected sample will
then be given, specifying locations and criteria, after which a brief introduction to the numerical meth-
ods used - least squares and Markov-chain Monte Carlo - to obtain the spectral fits will be given. This
thesis will proceed by discussing each fit in short and providing the tables with the fitting parameters.
The following chapter will first give an introduction to the K-z relation to obtain redshift from K-band
magnitude, which will then be applied to find the redshifts of 14 members of the sample which do not
have spectroscopic redshifts. Combining spectroscopic and K-z redshifts, number counts will be made
per redshift. Results will then be synthesised to obtain values for luminosity distance, angular size dif-
ferential number count per peak flux band. This thesis will conclude with a discussion of the obtained
results, after which ideas will be opted as to how to continue in this scientific direction and some con-
cluding remarks will be given. Throughout this thesis, a standard cosmological model is assumed, with
Qs = 0.286, Qy = 0.7139 and Hy = 67.80 km s~ Mpc™!, the most precise value from PLANCK data.



2 Radio source emission mechanisms

Radio-band radiation is emitted by a wide array of astrophysical processes, both thermal (blackbody
spectrum) and non-thermal. This chapter will focus on the specific non-thermal mechanism of syn-
chrotron emission and synchrotron self-absorption. In all formulas treated for the rest of this thesis, the
following symbols denote the following quantities unless stated otherwise:

¢ : velocity of light
e : charge of the electron
me : mass of the electron
: energy
: velocity of the electron
: acceleration of the electron
: magnetic field

: flux density

T e o ™

. frequency

B b2\ " 1/2
~ : Lorentz factor, given by v = = <1 — >

2.1 Synchrotron radiation

Synchrotron radiation is non-thermal radiation emitted by electrons in a magnetic field. FElectrons
gyrate around the magnetic field lines of the jets and accretion disk. At velocities of v < ¢, this is
called cyclotron radiation, but if the particles are accelerated to relativistic velocities this is known as
synchrotron radiation. According to the Larmor formula,

_ 2¢2

T 33 -y, (1)

wherein P is the power of the electron and a’ the acceleration of the particle in the comoving electron
frame. Ergo: a particle that moves with some acceleration a’ in its own comoving frame, radiates with
some power P in the rest frame. Following from the Einstein-Planck equations of relativistic motion of
an electron in a (homogeneous) magnetic field,

Sme) = (v B) &)

with v the vector velocity and B the vector magnetic field, we obtain the formula for the acceleration
as a function of the velocity perpendicular to the field lines and the field’s strength for a single electron,

eB . eB
v, with wg = .
YMeC YMeC

aL = (3)

Wherein a is the acceleration perpendicular to the magnetic field, v, the velocity perpendicular to
the direction of B and wp the non-relativistic gyration angular frequency. Therefore, over all emitted
frequencies,

2¢*B%v? 2¢?

— 2172,2
(P) = 3wz ) = 3 BEL (4)
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Wherein all symbols take their aforementioned meanings. So the radiated power of a single syn-
chrotron electron is proportional to the squares of the magnetic field strength, the velocity and the
energy of the particle. Hence the total power emitted by the source is dependent on its magnetic field
and the velocity and energy of the electrons, which in turn are related to their frequency.

The frequency dependence of the radiated electron power is given by,

3 .
e’ Bsin(a v
P(v) :\/:’372()1? () . (5)
MeC Ve
Wherein « is the pitch angle (the angle between the magnetic field and the velocity), F' the dimen-
sionless synchrotron spectral function, v the frequency of the radiation and v, the critical frequency. F
and v, are respectively given by,

v v [
FI(X)Y=2 | Ky
(VC> Ve v/ve 5/3(77) h (6)
3v%eBsin(a) 3 , . ) eB
.= T =57 vesina with vg = . (7)

Here 7 is some arbitrary integration variable, and v is the relativistic gyration frequency. From
empirical evidence - cosmic ray measurements - we know that the number density of electrons N(FE)
behaves like a power law,

N(E)dE = KE™°dE, (8)

in which K is some constant with units of energy to the power —§ per volume, § some power law
index and dE the energy range under investigation, while we know very little about the value of the
pitch angle a’s distribution. However, we also know that,

e(v)dv = % (E)dE = (PYN(E)dE hence ¢(v) <P>N(E)%, )

where € is the volume emissivity and the other symbols take their aforementioned meanings. Substi-
tuting equations [§] and [4] into the above relation, and using the relation given by,

1/2 2,-1/2
dE e
E =ymec? ~ z mec® hence o m €Y , (10)
172
va dv 21/G/

where v is again the relativistic gyration frequency, we obtain as a final result for e(v) for a power
law energy distributed electron population,

2¢t 99 9 _5m6021/_1/2

This is a messy relation which can be more transparently rewritten to the proportionality of frequency,
particle energy and magnetic field strength, given by,

e(v) x B2E?> (v - vg) ™2, (12)
which, because of the relations between energy and frequency (equation and relativistic gyration

frequency and magnetic field strength (equation , then becomes a proportionality of frequency and
magnetic field strength alone given by,

11



v 1-6/2
B? (f) . B)-1/2 & BA+O)/2 . ,(1-0)/2, 13
e(v) x 5 (v-B) x v (13)
If we then define a spectral index o = (1—0)/2 and realize that flux density is proportional to intensity,
which is proportional to volume emissivity, i.e. S(v) < I(r) x €(v), we obtain the proportionality which
forms the cornerstone of this thesis, namely the relation between synchrotron frequency and flux density
of a power law energy distribution for a synchrotron emitting electron population,

S x v, (14)

wherein « is some spectral index, defined separately in different regions of the synchrotron spectrum
[Wilson et al., 2012]. For a purely synchrotron emitting population, the spectrum follows such a power
law distribution, leading to the remarkable conclusion that the spectrum of a power law energy distri-
bution in an electron population is itself a power law.

Synchrotron radiation is also a beamed phenomenon. This is because the electrons, which gyrate
around and experience a net movement in the direction of the magnetic field lines, emit in a cone
towards the propagation direction [Rybicki and Lightman, 1986]. As such, synchrotron emission from
an AGN, which possesses extremely strong magnetic fields, is stronger in the direction parallel to the
magnetic field’s orientation.

2.2 Synchrotron self-absorption

In regions where the synchrotron radiation intensity and density are high, the emitted photons interact
with the emitting electrons via synchrotron self-absorption: they are reabsorbed by the electrons, which
then reach a more excited energy state. This happens in CRS’s and as such in GPS sources. This
phenomenon is called synchrotron self-absorption (SSA) as the synchrotron emitting electrons absorb
their own emission, and no external absorber is in play [Torniainen, 2008]. This behaviour is inversely
proportional to the frequency, meaning that below some frequency vpeqr, SSA dominates over synchrotron
emission and the spectrum decreases sharply with a theoretical spectral index (called the thick spectral
index) of 5/2. This can be proven using the concept of effective temperature of the electron plasma, the
temperature of a theoretical black body source that would emit the same amount of radiation as the
plasma,

F
3k’

Wherein T, is the effective temperature and k is the Boltzmann constant. Using the relation between
energy and frequency and magnetic field strength, this can be rewritten to,

T, = (15)

ymec? v

v 1
3k \B (16)

T.

Wherein all symbols take their usual meaning. The specific intensity, which is the intensity of a
theoretical black body source that would emit the same amount of radiation as the plasma, is defined
when the effective temperature equals the brightness temperature T}, (the temperature the electron
plasma would have if it were a blackbody) of the plasma as,

1) =23, a7)

and as the wavelength )\ is proportional to one over the frequency v, we obtain,

I(v) o v /% = 52B71/2, (18)
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When we then once more recall that S(v) o< I(v), we obtain our final result for the flux density of a
synchrotron self absorbed source,

S(v) o< /2, (19)

[Wilson et al., 2012 In thermal processes, this thick index has the value 2, known as the Rayleigh-
Jeans value, and thus showing that SSA is not a thermal process [Rybicki and Lightman, 1986]. This
value is in theory constant regardless of the electron population’s spectral index above the turnover peak,
although in practice such a steep value has not been observed in previous researclrﬂ [Torniainen, 2008].

As the source ages, the highest energy electrons radiate away their energy first, leading to the overall
flux of the source to drop at high frequencies. This leads to a high-frequency ’ageing cutoff’ where the
spectrum drops sharply. When the energy of the electron plasma drops, so does its frequency threshold
for when SSA starts to dominate, so the peak shifts towards the lower end of the spectrum. This is
one of the main pieces of evidence that supports the hypothesis that HFP’s, GPS and CSS are, in that
order, stages of the evolution of a young radio galaxy, as the peak frequency decreases with each type
[Orienti, 2016]. Additionally, at very low frequencies, below the SSA region, a cutoff has been theorized
because the spectra of individual electrons start to interfere with the synchrotron radiation. This has
not yet been physically observed [Wilson et al., 2012].

Ideal SSA GPS spectrum
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Figure 5: An annotated idealized synchrotron self absorbed GPS spectrum. Peak location at 1.3 GHz, peak flux
535 mJy, which exceeds the sources used in this thesis.

n our sample, two sources (J0103+4322 and J0104+43840) possessed thick spectral indices of approximately 5/2.
However, the author would like to point out that both spectra were notoriously hard to fit with a synchrotron peak, as the
first of these two was almost a flat spectrum and the second one had a very poorly defined optically thick region, which
was entirely described by just two data points, thus giving rise to large uncertainties.
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Figure 6: Examples of the two main types of peaked spectra.

2.3 Free-free absorption

Another process by which a strong turnover in the low GHz regime can be facilitated is free-free absorption
(FFA). While free-free radiation (otherwise known as bremsstrahlung, after the German term for braking
and radiation) is emitted when an electron in a plasma is slowed down and deflected by another charged
particle, thereby losing energy in the form of a photon, during FFA the opposite occurs: the electron
gains energy in its encounter with for instance an ion, absorbing a photon, causing it to jump to a higher
energy state [Wilson et al., 2012]. The equation for FFA is given by,

—2.1

Spra(v) = 5Sp-v* - . (20)

Where Spr4 is the flux at at some frequency, Sy the scale flux density, v the frequency, « the spectral
index and 7¢ the optical depth at the peak. Suggestions have been made that in fact FFA by a thick gas-
and dust disk around the AGN is responsible for the steep turnover in the lower frequency regions of a
CRS spectrum, describing a “cold dense FFA plasma around the lobes of GPS sources” which “could
be a cocoon which smothers expansion of jets and lobes” [Kameno et al., 2003], rather than SSA. If
this were the case, then the degree of FFA, measured by the opacity 7, in equation [20} should vary
with the viewing angle. Although Orienti comments that FFA cannot be completely discarded as an
additional mechanism, because SSA spectra seem to fit the data accurately, more so than FFA, the
scientific consensus leans towards SSA [Orienti, 2016], and as such the fits made in this thesis have been
performed assuming SSA to be the dominant, if not only mechanism in play.

2.4 Synchrotron spectra

Although the quintessential SSA spectrum is given by the spectrum in Figure [5| multiple shapes of
spectra appeared in the data, for which different fitting equations were used. These are discussed below.
2.4.1 Pure GPS spectra

Figure [6a] shows a typical SSA GPS spectrum from our sample, with the shaded region denoting the one
sigma regions around the fit. The fitting formula that we used in case of a typical GPS is given by,

sgps<u>=1501-(”)k- o). 1)

— e~
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Figure 7: Examples of the two main types of power law spectra.

This formula is taken from [Snellen et al., 1998b]. In optically thin regions (above the turnover peak),
the spectral index, denoted by [, is negative, generally between -0.5 and -1. This is because in these
regions the radiation intensity and density are low enough that SSA by the plasma becomes negligible,
and synchrotron emission can escape the source. Below the peak, the equation is dominated by the
thick spectral index k, which as mentioned previously has a theoretical value of 5/2, which represents a
homogeneous, synchrotron self-absorbed radio source, but in practice generally varies between 0.5 and
2. In consultation with Dr. McKean, this is explained by the spectrum being composed of multiple
overlapping SSA components, some with a lower peak frequency and peak flux than the primary source,
thus changing the spectral index k£ and making the increase more gradual in the low frequency regime
(as is done in for instance [Kellermann, 1972]) [Orienti, 2016]. Sy and v are scaling constants which
influence the height and frequency of the peak, but have no further physical meaning.

Spectra with such a thick spectral index (i.e. when it is not exactly 2.5) are interpreted as multiple
synchrotron emitting populations in different regions of the source, like nascent lobes, hotspots or jets.
However, as only six data points were present across the observed band, a model with as many free
parameters as a superposition of multiple synchrotron sources could not be fitted.

2.4.2 Power law spectra

A second subtype of data sets was formed by the power law-fitted sets (Figure . The spectra of these
sources were formed by power laws - or in some cases combinations of power laws - of varying spectral
indices, generally in the same range as the thin spectral index of a synchrotron spectrum. The fit used
for these kind of spectra is given by,

n=1,2 m;
Spl(l/) = Z SO,i'< v ) 3 (22)
i=1 V0,3

in which m; is the spectral index of the i-th power law population, and Sp; and vy ; the scaling
coefficients of the i-th power law which determine the overall height and thus the size and intensity
of that population - more strongly emitting populations have a larger height. The summation is used
because linear combinations of power law spectra did occur, n being the number of power laws involved,
but in only three occurrences where n = 2: in all other cases n was taken as unity. This is interpreted
physically as an aged population of electrons which has passed through a synchrotron phase before
but which has now radiated away most of its energy. Therefore, the turnover has shifted to such low
frequencies that it is no longer within the observed range, and hence in the frequency window we use
only a power law spectrum with n = 1 is observed. SSA no longer plays an important role as synchrotron
emission is no longer dense enough to enable it.
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More than one type of spectrum necessitated a power law fit: The two main types are regular power
laws (Figure and aged spectra (Figure . These have a strong falloff at the high frequency end,
with the data point at 22.49 GHz being offset negatively from the power law trend. Fitting an aged
spectrum would be highly complicated and not required for the results to be obtained, so the decision
was made to fit the remaining five points with a normal power law spectrum, effectively dropping the
last point from the fitting process. These are physically interpreted as highly aged electron populations
that are experiencing a high-frequency falloff as its most energetic electrons (and thus those with the
highest energy) have radiated away.

2.4.3 GPS/Power law combined spectra

Spectra were also encountered wherein the first data point had a flux density offset from the optically
thick part of the spectrum predicted by a simple SSA GPS fit (Figure . These were fitted by assuming
another, older population of electrons that follow a power law-distribution being superposed with the
SSA spectrum, which gives rise to the combined formula,

Sapsipi(V) = Saps(v) + Spi(v). (23)

The physical interpretation of this combined population is a highly aged population of electrons in
the source that have attained a power law distribution with a younger synchrotron component, implying
that it has passed through a period of synchrotron emission before and that the present-day synchrotron
component is not indicative of a young radio galaxy but an older, re-energized radio-loud source.
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3 Fitting the radio spectra

The data sets obtained by McKean, Browne and Jackson showed clear synchrotron or power law be-
haviour but required fitting before any further conclusions could be drawn. This chapter discusses the
methods used to obtain spectral fits to the used datasets and analyse the fit uncertainties. The entire
procedure was carried out in the python programming language.
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Figure 8: The two observed fields. Cyan stars are sources who were proven to possess peaked spectra. Created
using the script in Appendix

3.1 Sample screening and selection

The sample that has been used is drawn from data from observations done with the Very Large Array
(VLA) at 4.86, 8.46, 14.94, 22.46 GHz. Measurements at 325 MHz and 1.4 GHz have been taken from
the Westerbork Northern Sky Survey (WENSS) [Rengelink et al., 1997] and the NRAO VLA Sky Survey
(NVSS) [Condon et al., 1998], respectively. The quasi-simultaneous VLA observations for each source
were performed in 2000 and 2001 in C and D configuration while the WENSS and NVSS data were taken
years before, resulting in in some cases large discrepancies between those data points and the VLA data
and large uncertainty bars.
The sources were selected according to the following criteria:

e The spectral index in equation [14] between 1.4 (NVSS) and 4.85 (GB6) GHz satisfies o > —0.5;

e The flux density at 4.85 GHz according to the GB6 survey [Gregory et al., 1996] satisfies 25 <
S4.85 < 50 mJy;

e The NVSS flux density at 1.4 GHz is measured by summing the radio emission within 70” of the
GB6 position;

e The flux density at 8.46 GHz as measured by CLASS [Myers et al., 2003] satisfies Sg4¢ > 16.7
mJy.

The 45 sources of the complete sample are distributed between two fields: these regions are given
by 17" < a < 18", 55° < § < 60° and 1" < a < 2", 35° < § < 45°, with o and ¢ the right ascension
and declination respectively (see Figure . These two fields were chosen as to coincide with the fields
used by Marlow et al. in his 2000 paper on spectroscopic redshifts [Marlow et al., 2000]: this becomes
relevant in the determination of the K-z relation for this sample. The observation results are listed in
Appendix [A] with the VLA measurements in the second and the others in the first table. Sky areas have
also been computed using the relation,

Asky = (ahigh — alow) . (Sin(éhigh) — Sin((slow).) (24)
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3.2 Least squares fitting and Markov chain Monte-Carlo algorithms

Two numerical methods were used to compute the model parameters and estimate their respective
uncertainties: least squares (LSq) and Markov chain Monte-Carlo (MCMC). These types of algorithm
are shortly discussed in this section, but as most of the mathematical groundwork for these subroutines
was already included in the modules from which the used functions were drawn, we will not go into great
depths.

3.2.1 Least squares

Least squares fitting algorithms are a frequentist approach to model fitting and work by minimizing the
sum of the squares of the differences between data and model over the uncertainty in the data (which
can vary from point to point). Consider a model given by,

flz) =a+ bz (25)

Then the best fit to some data set y, z of size IV is found by minimizing the quantity,

N 2

With oy, the (Gaussian) uncertainty of the i-th data point. This quantity is called chi-squared, and
the model is optimized for the data set when chi-squared is minimal. The advantage of this method is
that numerically it is straightforward and reliable (especially if one is dealing with only six data points),
but a pitfall rests in the fact that the minimum chi-squared obtained is in fact a false minimum: that
is, somewhere else in the parameter space that is being sampled, there is a position with a smaller chi-
squared [Hogg et al., 2010]. The covariances (and the variances, which essentially are simply a special
case of the covariance where the two co-varying parameters are the same) are computed by,

N

CO’U(X, Y) _ Ei:l(m’i ;Vj:)(yt - 27) ) (27)

Wherein X and Y take the place of the parameters. This then constructs the covariance matrix,
which in turn is used to compute the uncertainty in the actual fit. If more free parameters exist than
data points, however, the system is said to be underdefined and no covariance estimates can be made
(This stems from experience with the fitting algorithm, which will be discussed in the following sections).

3.2.2 Markov chain Monte-Carlo

Markov chain Monte-Carlo algorithms follow a more Bayesian approach to model fitting. It employs
random sampling (the Monte-Carlo part) and in that random walking through the parameter space by
a multitude of walkers (Markov chains). As taken from “Handbook of Markov Chain Monte Carlo”:
suppose we have a program of the form,

Initialize x

repeat {
Generate pseudorandom change to x
Output x

b

This is the essence of MCMC: placing a walker in a phase space, performing a pseudo-random Changeﬂ
on that walker, and returning the new value. More exactly, when MCMC is used to fit a model to data,
sampling is performed from an n-dimensional phase space of parameter values, where n is the number
of parameters in the model (in the case of this thesis, this will vary from 2 to 6). To each point in this

2Computer generated data is never truly random.
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Figure 9: An example contour plot for the coefficients of a power law spectrum, in this case J0136+3905.

parameter space is assigned a probability value, and the optimal values for the model’s parameters are
found by maximizing that probability: this maximization is performed by having the walkers return the
probability value from the phase space after every random step. Is the probability value higher than
the one found in the step before, then it is accepted as the new initial position for the next random
iteration. If this is not the case, the walker falls back to its original starting position and attempts a
different change. This continues until the walker finds a maximum from which it cannot escape. As
we use a collective of multiple hundreds of walkers from which we take only the absolute highest value,
the chances of collapsing into a false maximum are reduced. When one takes for instance the model
in equation the phase space of the parameters might look like the contour plot in Figure [9] where
the region within the central isophote delineates the most probable values of the parameters within one
sigma [Brooks et al., 2011].

In our code the emcee and corner python packages are utilized to perform the actual sampling. The
emcee package takes a likelihood (the model) and prior (an indication of prior knowledge about the model,
this can be used to shape the phase space to be biased towards certain values) function, distributes m
walkers in n dimensions, then makes x iterations to their phase space position, eventually returning the
minimum probability value found, which then provides the optimal parameters for the model. corner
in turn uses the accrued walker values to create contour plots from which variances and covariances can
be deduced by determining the full-width half-maximum (FWHM) values of the contours parallel to the
parameter axes and the diagonals.
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Figure 10: The polynomial fit to the spectrum of J0123+3641. This source was chosen to test the fitting
algorithms as it was smooth, continuous and therefore easy to fit.

3.3 Methodology
3.3.1 Polynomial fitting

A preliminary analysis of the spectra was performed by fitting them with a logarithmic polynomial (see
Figure , given by the equation,

n=2,3

Sw) =Y a;-(logy(v)" (28)

=0

This function has no physical significance and does not describe the synchrotron behaviour of the
source’s electron population according to the model for our sources, but can be used as a preliminary
analysis of the data and test the robustness of our code.

The function was described in python and subjected to an LSq algorithm from the scipy.optimize
package to obtain the coefficients a; for the polynomial by minimizing the sum of the squares of the
uncertainties. Dependent on whether or not the data points showed signs of multiple turnovers, a
quadratic (n 2) polynomial was fitted normally and a cubic (n = 3) polynomial in case of two
stationary points. As a polynomial proved substantially more intuitive and easy to fit than an SSA
spectrum, this method was used to obtain a general impression of the sample (i.e. determine which
spectra behaved like typical GPS, power law spectra or combinations of these) and find rough estimates
for the peak frequency and peak flux. Extensive attention was not devoted to the uncertainties in either
the coefficients or the peak, as this was not the final result and only served to give a crude impression of
the spectral shape. This is also why an LSq algorithm was used instead of MCMC: LSq is substantially
lighter and faster in terms of processing power and as the output served only as an estimate the risk of
collapsing into a false minimum chi squared was accepted.

3.3.2 SSA fitting

As a polynomial fit holds no physical meaning, the code was rewritten to fit an SSA spectrum to the
data instead, as would physically be expected in the case of our sources. Although FFA fits to the data
were also an option, the decision was made to focus on SSA. This spectrum is given by equation
In case a second turnover had been registered in the polynomial fit or was abundantly clear from the
data first-hand, a GPS plus power law spectrum was fitted, given by equation In case no turnover
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had been registered, an ageing falloff was detected at the high frequency end or a negative turnover was
detected, either one or multiple power laws were fitted, given by equation

Flux density, flux uncertainty and observation frequency data are read from the table by the algorithm.
These are then plotted to give the user an impression of the set, after which a user prompt enables picking
one of the possible fitting procedures:

e Power law spectrum: This fit is selected if the spectrum does not show signs of curvature in log-log
space. It includes all data points, which are then fitted with equation [22| for n = 1.

o Aged power law spectrum: This fit is used if the final data point shows a strong falloff with respect
to the general trend through the other five data points. It excludes the final data point. The
remaining points are then fitted with equation 22| for n = 1.

e Double power law spectrum: This fit can be selected if the spectrum shows signs of curvature, but
concave instead of convex (which is what one would expect for a GPS). It includes all data points,
which are then fitted with equation [22| for n = 2.

e SSA GPS: This is the type of fit used for stereotypical GPS spectra: convex, with a steep thick
spectral index in the low frequency band and a more gently sloping thin spectral index in the higher
frequency region. It includes all data points, which are then fitted with equation

o SSA+power law GPS: This fit is applied if the spectrum shows a turnover peak, but curves back
upwards in the lower frequency regions, i.e. it has two turnovers. It includes all data points, which
are then fitted with equation

The functions were then fitted using the curve_fit function from the scipy.optimize package, which
applies an LSq algorithm to find the parameter values and estimates the covariances between them (see
Appendix . In case of either a power law or the SSA GPS fitting type, this succeeded. The function
for a power law had to be rewritten for ease of coding to,

2
So,i
Sw) =Y Ai-v™ with A; = V% (29)
i=1 0,2

As the degeneracies between Sy ; and vy ; simply proved too great, leading to the fitting algorithm
to give us results with massive uncertainties. The fitting of a function with simply an amplitude fudge
factor Ap ; proved far more effective, and as the scaling coefficients had no real physical meaning to begin
with this did not lead to non-physical results. The SSA+power law GPS is however deserving of some
extra attention.

As only six data points were given per source, this frustrated efforts to determine the uncertainties
of the parameters in a model with six degrees of freedom. LSq methods failed to account for this, so
attempts were made to resolve this issue by instead performing the fitting procedure with an MCMC. To
this end, the emcee and corner modules were acquired, which perform an MCMC algorithm and create
covariance contour-plots, respectively. An MCMC fitting algorithm was coded (see Appendix using
the values yielded by the LSq method as starting points for the walkers, assuming normal (Gaussian)
prior distributions with small FWHM around these values in case of the spectral indices. 200 Walkers
were used which were distributed randomly around the values estimated by the LSq method and then
iterated over 1000 steps, returning values, uncertainties and a covariance matrix. The uncertainties in
the parameters themselves and the covariances between them were determined by a function from the
numpy package, but which utilizes the same equation as the LSq method (equation [27). To ascertain
that the returned values were correct this was compared to the output of an algorithm that computes
the uncertainties by determining the FWHM of the histogram of the relevant parameter as outputted
by the MCMC. The numpy.cov function proved correct.

The peak and uncertainties in that peak were then found by using a bisection algorithm of a finite
step size on the derivative of the fitting function - if the spectrum was fitted by a power law, then no
peak was computed. The uncertainty in the peak flux was found by classical propagation of uncertainty
(taking partial derivatives, multiplying by relevant covariance, square and sum for all parameters) while
for the uncertainty in the peak frequency the step size of the bisection array was used. The spectrum
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(with a shaded region around the best fit line indicating one sigma), contour plots and, in the MCMC’s
case, parameter histograms were then plotted and saved, as were the source name and index, parameter
values for the best fits, their uncertainties and the peak coordinates, which were saved to a file.

3.3.3 MCMC uncertainty analysis (issues)

Although the MCMC was successful in finding the optimal values for the parameters to obtain the best
fit line, the uncertainty analysis proved problematic. Uncertainties in the parameters for the GPS+power
law fit were on average an order of magnitude in excess of what the LSq method returned, and when
propagated through these uncertainties showed one sigma regions around the fit which exceeded the
uncertainties in the data points themselves, something which was deemed non-physical. Suspicions were
raised that this was due to high degeneracy between the spectral indices m (first power law, low frequency
regime), k (second power law, mid regime) and ! (third power law or exponential falloff, high end). m
Often proved poorly defined by only the two data points at 325 MHz and 1.4 GHz, thus prompting
considerable uncertainties. Additionally, around 1.4 GHz the spectrum should transition from power law
dominance, i.e. the m-regime, to dominance of the SSA component, and specifically the thick spectral
region (the k-regime). This was assumed the culprit.

Attempts were thus made to combat this issue by strongly constraining m, first by taking a Gaussian
prior with an extremely small FWHM, then by fixing it completely in the hopes that by allowing the
program only five free parameters, this would push back uncertainties below the physical threshold of
the data points’ uncertainties. The formula used for fixing m is given by,

o — A0g10(S)] _ 10g19(0.5 - S1.acr2) — logig(So.3256H:) (30)
d|logo (V)] log,((1.4GHz) — log,,(0.3256GHz)

The factor 0.5 by which the flux at 1.4 GHz is multiplied stems from the fact that at in that frequency
band the main contribution to the flux transitions from the power law component to the SSA component:
therefore, at 1.4 GHz, half of the flux is contributed by the power law and half by the SSA spectrum.
This fix proved ineffective. For reasons not discerned, uncertainties in the remaining five parameters
remained an order of magnitude larger than outputted by the LSq method. When the MCMC was
attempted on power law and SSA GPS spectra, with 2 and 4 free parameters respectively, success was
achieved in obtaining uncertainties below the physically allowed values. Analysis of the problem showed
that the mistake was not in the uncertainty propagation but stemmed directly from the MCMC output:
the FWHM of the histograms confirmed the excessive uncertainties in the coefficients. This means that
even after restraining one of the six free parameters, degeneracies between the remaining five remain
too high to provide a reliable result. As parameter uncertainties of the LSq method were of the same
scale as for the MCMC in case of GPS and power law spectra, the LSq algorithm was used for these for
time’s sake and ease of computation. As in the GPS+power law case the MCMC returned non-physical
uncertainties, another LSq algorithm was written to output the results for a GPS+power law fit with
fixed m.

3.4 Results

The sample consisted of 45 sources. 44 Of these sources have flux density data at all six frequencies
(0.325, 1.4, 4.86, 8.46, 14.94 and 22.46 GHz) and could thus be used. 23 spectra were peaked: 13 spectra
were typical GPS and 10 behaved like GPS+power law combined spectra. The remaining 21 sources
showed power law spectra, 5 of which showed signs of spectral ageing, 3 of which were double power
1awsE| (n = 2) while the remaining 13 behaved like regular power laws. Their coefficients and, in the
peaked cases, peak coordinates are listed in the tables below the source-by-source discussion (Tables
to |6]).

@ full list of all the spectrum outputs is provided in Figures [11| and A short discussion of each
separate source will now be given in the same order as the given Figures. Some example corner plots of
the covariance of the fit parameters will be provided to show what constitutes a good or a bad fit.

3The spectra fitted with double power laws were fitted as such as they clearly did not show a straight, power law like
trend, but also lacked a clearly distinguishable peak, instead showing signs of a knee halfway through the frequency range.
The fits here are somewhat arguable, as will become clear from the excessive uncertainties. However, all is not lost as these
sources, being without peaks, are not used in the final results of this thesis.
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. J0103+4322 shows signs of peaking in the high frequency regime, yet has an exceptionally flat

background spectrum which can possibly be attributed to multiple overlapping SSA components.
It took careful manipulation of the MCMC code to fit a GPS+power law spectrum to it as the
thick spectral index k is extremely steep (~ 2.5, the maximum physical value).

J0104+3840 shows clear signs of a peak, but as the thick spectral index k was quite poorly defined
by only the two non-VLA data points, the uncertainties there are rampant. This can be combated
by tightly constraining k, but that would essentially be tampering with the results.

J0105+8533 is an ordinary power law spectrum.
J0106+3522 is an ordinary GPS.

J0106+4422 shows GPS behaviour, but suffers similar issues as J0104+3840 does: a poorly con-
strained k, in addition to an offset final data point, which might be indicative of a second, younger
synchrotron component in the HFP regime.

J0116+4420 is an ordinary power law spectrum.
JO0119+4054 is an ordinary power law spectrum.
J0123+8842 is an ordinary GPS+power law spectrum.
J0123+8806 is an ordinary GPS+power law spectrum.

J0123+8641 is an ordinary GPS. This source was used to test the LSq and MCMC algorithms
because of its typical shape.

J0128+4003 is an ordinary aged power law spectrum. It was the first in our sample to be identified
as such and thus sparked efforts to adapt the code to this kind of behaviour.

J0128+4439 is an ordinary GPS.

J0129+4044 is a double power law. Originally suspected a GPS+power law spectrum, after re-
peated attempts to find a peak failed the double power law solution was applied instead to much
greater success.

JO181+4428 shows GPS+power law like behaviour, but in this case the thin spectral index [ proved
to be under-defined. After adaptation of the code, this spectrum was successfully fitted, although
the thick spectral index was outputted as ~ 2.5, an exceptionally high value.

J0132+4345 is an ordinary power law.

J0134+4018 is an ordinary aged power law spectrum.

J0135+3631 is an ordinary aged power law spectrum.

JO0136+3905 is an ordinary power law.

J0136+83545 is an ordinary aged power law spectrum.

J0136+4401 is an ordinary aged power law spectrum.

J0143+3705 is an ordinary GPS+power law spectrum.

J0151+4332 is an ordinary power law, albeit with large scatter around the power law trend.
J0151+4417 is an ordinary GPS+power law spectrum.

J0103+4322 is a double power law. Attempts have been made to fit it with a GPS+power law
spectrum but as [ is barely defined this was unsuccessful, leading to a double power law with large
uncertainties.
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25.

26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.

38.
39.
40.
41.

42.

43.
44.

J0154+3558 shows a GPS peak, but there are signs of an exceptional falloff in the high frequency
regime. This could possibly be due to a highly aged background electron population overlaid onto
the GPS.

J0154+4433 is an ordinary GPS.

J0156+4459 is an ordinary power law.

JO157+4120 is an ordinary power law.

J0159+4059 is an ordinary GPS+power law.

J0159+4144 is a GPS which shows similar issues to J0154+3558.
J1702+5511 is a GPS which shows similar issues to J0104+3840.
J1702+5812 is an ordinary GPS.

J1711+5803 is an aged power law, with signs of falloff at lower frequencies than usual.
J1715+5724 is an ordinary power law.

J1720+5541 is an ordinary GPS+power law.

J1720+5926 is an ordinary power law.

J1726+5826 is a GPS with small spectral indices. It suffers extreme degeneracies in its parameters
(see Figure , presumably due to its small indices.

J1728+5552 is a GPS with an unusually gently sloping k.
J1735+5650 is an ordinary double power law.
J1746+5659 is an ordinary GPS+power law.

J1747+5902 shows signs of GPS+power law behaviour. However, [ proved under-defined to such
an extent that the spectral peak falls off the observed frequency band. Hence, although fitted with
a GPS+power law model, it does not have a peak.

J1756+5918 is a power law, but with a slightly offset 325 MHz measurement. This can be due
to a small degree of SSA or FFA, but it was not enough for the LSq or MCMC of the SSA GPS
model to pick it up.

J1756+5806 is an ordinary power law.

J1758+5951 is a GPS, but with an unusual amount of scatter in the data around the model’s
trend. As a result uncertainties are considerable.

In total some 10 sources have uncertain spectra, but these uncertainties do not affect later sections
of the results. Therefore we take these spectra as final.
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Figure 11: The first portion of the observed sources. List continues on the next page.
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Figure 12: The second portion of the observed sources.
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Figure 13: The contour plots of J0103+4322. Notice the relatively large uncertainties in k& and [, contributing
to the large final uncertainty in the fit. These contour plots were constructed from the MCMC algorithm (see

Appendix .
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Figure 14: The contour plots of J0104+3840. Notice the major uncertainty in k and exceptionally high degen-
eracy between k and vp1, contributing to the large final uncertainty in the thick spectral region of the fit. These
contour plots were constructed from the LSq algorithm (see Appendix .
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Figure 15: The contour plots of J0123+3842. These contour plots are an acceptable example for SSA GPS+power
law fit contours: roughly circular shapes mean that there is only minor degeneracy, which reflects well in the
uncertainties in the final fit. These contour plots were constructed from the LSq algorithm.
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Figure 16: The contour plots of J0123+3641. Although the degeneracies are not minimal, these plots are an
acceptable example for SSA GPS fits, as the magnitude of the uncertainties is small. These contour plots were
constructed from the LSq algorithm.
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Figure 17: The contour plots of J1726+5826. As is clearly visible the degeneracies in these plots are significant,
yet because of the small magnitude of the uncertainties it has little repercussions for the final fit. These contour
plots were constructed from the LSq algorithm.
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Figure 18: The contour plots of J1758+5951. While the spectral fit displays considerable uncertainties, de-
generacies in these contours are smaller even than in the far more accurate cases of Figures and the
uncertainties in the final fit are substantially larger, mainly due to sizeable magnitude of the uncertainties in the
parameters themselves, leading us to conclude that degeneracies (and thus covariances) hold little to no direct
relation to the quality of the fit. These contour plots were constructed from the LSq algorithm.
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index | Source type A (mJy GHz™™) | m

2 J0105+3533 | regular || 43.4 + 3.5 -0.5 +£ 0.05
5 J0116+4420 | regular || 90.3 £+ 2.6 -0.5 + 0.02
6 J0119+4054 | regular || 75.0 £ 1.9 -0.2 £+ 0.01
10 J0128+4-4003 | aged 69.5 + 3.2 -0.4 £+ 0.03
14 J0132+4345 | regular || 65.5 £+ 3.2 -0.3 + 0.03
15 J0134+4018 | aged 60.9 + 0.9 -0.5 +£ 0.01
16 J0135+3631 | aged 52.3 + 2.9 -0.5 + 0.04
17 J01364-3905 | regular || 66.1 + 1.9 -0.1 + 0.02
18 J0136+3545 | aged 61.2 + 2.1 -0.6 + 0.03
19 J0136+4401 | aged 60.2 + 3.4 -0.5 + 0.04
21 J0151+4332 | regular || 36.4 + 1.0 -0.1 £+ 0.02
26 JO0156+4459 | regular || 89.2 £ 3.5 -0.5 4+ 0.03
27 JO015744120 | regular || 50.8 + 1.2 -0.4 £ 0.01
32 J171145803 | regular || 45.4 + 4.7 -0.6 + 0.06
33 J17154-5724 | regular || 56.3 & 4.6 -0.5 4+ 0.04
35 J1720+5926 | regular || 74.9 + 1.3 -0.5 + 0.01
41 J1756+5918 | regular || 29.0 + 1.4 -0.1 £ 0.02
42 J17564-5806 | regular || 60.9 + 0.6 -0.4 £ 0.01

Table 1: The coefficients and their uncertainties for the 18 power law fits. The first column refers to the number
index of that source within the python program used. The second column gives the source designation, the third
specifies the subtype of power law, the fourth gives the power law amplitude and its uncertainty, the fifth gives
the power law index and its uncertainty.

index | Source | A1 (mJy GHz™™) | my | A2 (mJy GHz™™) | my

12 J0129+4-4044 || 79.6 £ 22.2 -0.69 £ 0.002 || 3.6 + 8.3 0.61 £ 0.064
38 J173545650 || 9.8 £ 170.5 -1.25 £ 0.727 || 43.3 £ 118.9 -0.05 £ 0.007
23 J0153+4146 || 97.0 &+ 432.7 -0.85 £ 0.037 || 1.3 &£ 24.1 1.01 £ 1.379

Table 2: The coefficients and their uncertainties for the 3 power law fits. The first column refers to the number
index of that source within the python program used. The second column gives the source designation, the third
specifies the subtype of power law, the fourth gives the power law amplitude and its uncertainty, the fifth gives
the power law index and its uncertainty. The uncertainties here are exceptionally large - fortunately, spectral
data for the double power laws are irrelevant for the final results of this thesis.
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index | Source So (mJy) | v (GHz) k l

1 J0104+4-3840 || 39.7 £ 6.4 | 0.53 £ 0.42 2.50 £ 4.26 | -0.44 £ 0.09
3 J0106+4-3522 || 41.2 £ 1.7 | 1.03 £ 0.31 1.12 + 0.32 | -0.65 £ 0.07
4 J0106+4422 || 73.7 £ 6.4 | 1.25 £0.77 | 0.94 £ 0.52 | -0.73 £ 0.18
9 JO0123+3641 || 47.8 £ 3.0 | 3.96 £ 0.56 | 0.31 £ 0.07 | -0.99 £ 0.06
11 J0128+-4439 || 40.1 £ 0.5 | 241 + 0.30 | 0.63 £ 0.04 | -0.35 £ 0.03
24 JO154+4-3558 || 29.3 £5.0 | 543 +£1.37 | 0.33 £0.12 | -1.46 £ 0.33
25 J0154+4433 || 48.8 £ 1.6 | 4.96 + 1.24 | 0.53 &+ 0.06 | -0.38 + 0.08
29 J0159+4144 || 52.0 £ 7.8 | 2.37 £0.93 | 0.76 = 0.23 | -1.10 £ 0.33
30 J1702+5511 || 35.5 £ 1.1 | 0.56 £ 0.17 | 2.06 £ 1.11 | -0.35 £ 0.04
31 J1702+-5812 || 41.6 £ 0.8 | 2.37 = 0.33 | 0.59 £ 0.09 | -0.60 £ 0.04
36 J1726+4-5826 || 46.4 £ 3.0 | 0.47 £ 0.22 0.65 £ 0.27 | -0.20 £ 0.04
37 J1728+5532 || 38.6 £ 3.4 | 14.08 + 5.86 | 0.32 &+ 0.09 | -0.65 + 0.23
43 J1758+5951 || 50.0 £ 4.9 | 11.65 4+ 2.04 | 0.43 £ 0.07 | -1.58 £+ 0.44

Table 3: The coefficients and their uncertainties for the 13 SSA GPS fits. The first column refers to the number
index of that source within the python program used. The second column gives the source designation, the third
gives the scale flux and its uncertainty, the fourth gives the scale frequency and its uncertainty, the fifth gives
the thick spectral index and its uncertainty, the sixth gives the thin spectral index and its uncertainty.

index | Source Vmaz (GHZ) | Shmae (nJy)
1 J0104+3840 || 0.79 & 0.02 | 45.3 = 18.6
3 J0106+3522 || 1.13 £ 0.02 | 41.3 + 2.1
4 J0106+4422 || 1.20 &+ 0.02 | 73.7 £ 6.1
9 J0123+3641 || 1.99 £ 0.02 | 55.9 &+ 1.7
11 J0128+4439 || 2.88 & 0.02 | 40.3 £ 0.4
24 J0154+3558 || 3.08 & 0.02 | 35.9 £ 4.3
25 J0154+4433 || 5.01 £0.02 | 48.8 £ 1.6
29 J0159+4144 || 1.86 &= 0.02 | 54.1 + 8.1
30 J170245511 || 0.90 & 0.02 | 40.7 & 3.6
31 J1702+5812 || 1.95 + 0.02 | 42.0 £ 0.6
36 J1726+5826 || 1.04 & 0.02 | 49.1 £ 0.6
37 J1728+5532 || 7.17 = 0.02 | 42.0 £ 1.4
43 J1758+5951 || 7.26 & 0.02 | 59.8 + 5.2

Table 4: The peaks and their uncertainties for the SSA GPS fits. The first column refers to the number index
of that source within the python program used. The second column gives the source designation, the third gives
the peak frequency and its uncertainty, the fourth gives the peak flux and its uncertainty. The peak frequency
was taken as the step size of the bisection algorithm and is thus constant.
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index | Source So (mJy) | v (GHz) k l A m

0 J0103+4322 || 11.5 £ 1.8 | 12.75 £ 1.24 | 2.52 £ 0.20 | -2.18 = 0.10 | 44.6 =+ 1.2 | -0.07

7 JO0123+3843 || 31.4 £ 0.5 | 7.08 £ 041 | 0.95 £ 0.06 | -1.15 £ 0.06 | 9.2 £ 0.3 | -0.46

8 J0123+3806 || 82.8 £ 1.1 | 6.09 + 0.35 1.29 £ 0.06 | -0.80 = 0.04 | 21.2 + 0.6 | -0.63

13 JO131+4428 || 23.2 £ 1.6 | 8.72 + 0.84 1.91 £ 0.35 | -0.31 383 £ 1.0 | -0.47 + 0.01
20 J0143+3705 || 41.6 £ 1.7 | 839 £ 0.85 | 048 £0.06 | -1.24 £ 0.11 | 26.0 £ 1.0 | -0.83

22 JO151+4417 || 72.9 £ 1.0 | 6.01 £ 0.39 | 0.87 £ 0.06 | -0.98 = 0.04 | 31.5 £ 0.7 | -0.64

28 JO0159+4059 || 32.2 £ 1.4 | 4.52 £ 1.36 0.81 £0.28 | -0.7y8 £0.12 | 200 £ 1.4 | -0.74

34 J17204-5541 || 24.9 £ 1.5 | 4.61 + 1.01 193 £0.39 | -0.85 £ 0.17 | 6.3 £0.9 | -1.41

39 J1746+4+-5659 || 32.4 £ 0.2 | 8.80 &+ 0.10 1.10 £ 0.01 | -1.34 £ 0.02 | 74 £ 0.1 -0.72

40 J17474+5902 || 28.2 £ 3.1 | 13.37 £285 | 1.17 £0.02 | -0.12 £ 0.01 | 32.1 £1.9 | -0.33 £ 0.01

Table 5: The coefficients and their uncertainties for the 10 SSA+power law GPS fits. The first column refers to
the number index of that source within the python program used. The second column gives the source designation,
the third gives the scale flux and its uncertainty, the fourth gives the scale frequency and its uncertainty, the fifth
gives the thick spectral index and its uncertainty, the sixth gives the thin spectral index and its uncertainty, the
seventh gives the power law amplitude and its uncertainty, the eighth gives the power law spectral index and its
uncertainty. As m was fixed for most of the sources, it had no uncertainty. In case 13, instead 1 was fixed, and
in case 40 neither was.

index | Source Vmaz (GH2z) | Spaz (mJy)
0 J0103+4322 || 12.07 £ 0.01 | 49.2 = 4.4
7 J01234-3843 || 5.80 + 0.02 36.2 + 0.5
8 J0123+3806 || 6.20 4 0.02 89.6 + 1.0
13 JO0131+4428 || 11.77 & 0.02 | 38.2 = 0.9
20 J0143+3705 || 4.81 4+ 0.02 53.7 £ 1.1
22 JO151+4417 || 4.73 £+ 0.02 85.6 + 0.9
28 J0159+4-4059 || 3.29 + 0.02 40.1 £ 1.5
34 J1720+5541 || 5.18 4+ 0.02 2600+ 14
39 J1746+5659 || 7.49 4+ 0.02 35.0 £ 0.2
40 | J1747+5902 || N/A N/A

Table 6: The peaks and their uncertainties for the SSA GPS fits. The first column refers to the number index of
that source within the python program used. The second column gives the source designation, the third gives the
peak frequency and its uncertainty, the fourth gives the peak flux and its uncertainty. The peak frequency was
taken as the step size of the bisection algorithm, but as in the SSA+power law GPS case the bisection interval
was shorter yet the number of steps constant, this varies slightly. In the case of index 40, this source behaved
like an SSA+power law GPS but lacked a peak on the observed interval, hence the N/A’s.
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4 K-z relation

As not all GPS sources have well defined spectroscopic redshifts, another method has been devised which
relates the K-band magnitude of a source to the redshift z, known as the K-z relation. This chapter
discusses the K-band and subsequent redshift measurements of the sample, as well as the following
calculations of luminosity distance and angular and linear size.

4.1 Introduction to the K-z relation

Light that travels over cosmic distances experiences a redshift z due to the cosmic expansion that causes
the observed frequency of the emitted light to change via the relation,

p = Lemit g o Urad (31)
Vobs c

Wherein v, is the frequency of the emitted light, v, the frequency of the observed light and v,.qq
the radial velocity of the source. This means that light from objects with a positive redshift and thus a
positive radial velocity (i.e. away from us) is shifted towards lower frequencies.

The near-infrared K-band (~ 2.2 um) magnitude of a radio galaxy is dominated by starlight from older
stars and therefore associated with evolved ellipticals, although emission lines that have been redshifted
into the K-band window also contribute to the band flux. The strength of these lines is intrinsically
related to the underlying quasar continuum and hence the radio emission [Jarvis et al., 2001]. In our
sample however, this contribution is negligible as the spectra show no lines.

Lilly and Longair found in 1984 that there was a correlation between the K-band magnitude and
the redshift of radio galaxies. They found that the dispersion around this trend in the K-direction was
approximately constant, Gaussian and quite tight out to redshift z ~ 2. The relation they found was not
entirely in line with the expectations and attempts were made to explain this by assuming a changing
number of red giant stars |Lilly and Longair, 1984]. Over time the dispersion along the K-band was
narrowed down, first by Jarvis et al. to around 0.59, then by Cruz et al. to an improved significance of
0.593 + 0.02 mag [Jarvis et al., 2001], [Cruz et al., 2007], the value used in this thesis as well. Willott
et al. in 2003 found the optimal fit through the data to follow the logarithmic quadratic polynomial
function,

K(z) = 17.37 4 4.53 - log,(2) — 0.31 - logT,(2) (32)

Where K (z) is the magnitude in the K-band. This is the function we use in our study as well.

4.2 Sample selection

In order to obtain as complete a sample in terms of redshifts as possible, for those sources in the original
sample of which a spectroscopic redshift was not known [Marlow et al., 2000], infrared measurements
were taken using the United Kingdom Infrared Telescope (UKIRT) by McKean (2003). A limitation in
the fact that only sources with a right ascension between 017 and 02" could be observed led to a final
completeness of the sample (in terms of redshift by spectroscopy and K-band magnitude, which leads to
K-z relation redshift) for 30/45 sources, or redshift completeness 66.6%. K-band measurements within 5
arcseconds are provided in Table

4.3 Methodology

Using the normal function from the numpy module that draws random numbers from a Gaussian dis-
tribution given some mean and dispersion, five million data points were generated in K,log;,(z)-space.
This was done by first computing the mean in the K-magnitude by generating a wholly random log;,(2)-
value on the interval —1 < log,,(z) < log,((5) using the numpy.random function, plugging this into the
K-z relation and using the output as the mean for the Gaussian random number generator, which then
returned a K-band magnitude. This created five million data points with a random z and a Gaussian
dispersion around the K-z relation of value ox = 0.593, as required (see Figure for the K-z relation
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Figure 19: The K-z relation in log;,(z) space. Yellow stars represent the points of which K-band data is known,
the blue line is the idealized K-z relation according to equation [32]and the green points are the 5 million normally
distributed, simulated data points.
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Figure 20: The K-z relation in linear z space.

in log-space and Figure [20]in linear space).
A sampler was then created which took a K-band magnitude and collected all of the random data

points within a small interval around this K-magnitude (sample size £0.05 mag). Upon plotting the
logo(#)-values within this interval in a histogram, this yielded a set of Gaussian distributions (see Fig-
ure , as one would expect from the near linear trend visible in Figure When translated to linear
z values this reproduced a log-normal distribution as expected (see Figure [22)).

The mean (u,) and dispersion (o) of a Gaussian distribution in log,,(z) = y are given by,
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o I (34)
In which N is the length of the data set and y; the i-th value in the data set. Alternatively, the
corresponding statistics in the subsequent log-normal distribution in the variable x itself, namely the
median and the lower and upper 68% confidence interval limits, are given by,

fy = 10Hv] (35)
Ox.low = 10y ™%y — M (36)

Ox,upp = 10#v oy — M- (37)

Where 04 100 and oy 10, denote the upper and lower uncertainties in x. They can also be computed
directly from the log-normal distribution but this is substantially more convoluted so instead the data in
K,logy((#)-space was used to compute the above statistics in the given sequence. The results were then
outputted to a table and plotted, and the resulting K-band magnitude/redshift values were overlaid onto
the K-z relation plot (see Figures [19| and sources are indicated by yellow stars) (see Appendix .
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Source spectrum | K (mag) log4(2) redshift z
J0103+4322 || GPS+PL | 14.78+0.03 | -0.6+0.14 0.250-39
J0106+3522 || GPS 16.99+0.04 | -0.0874+0.13 | 0.820-39
J0106+4422 || GPS 17.29+40.05 | -0.02+£0.13 | 0.950-32
J0116+4420 || PL 16.33+0.03 | -0.24+0.13 | 0.58)-%}
J0119+4054 || PL 16.2940.03 | -0.25+0.14 | 0.579:2%
J0123+-3843 || GPS+PL | 16.99+0.05 | -0.08740.13 | 0.820-39
J0123+3641 || GPS 18.17+0.08 | 0.17+£0.13 | 1.48)-3%
J0129+4044 || DPL 17.94+0.08 | 0.12+£0.13 | 1.320-43
J0136+4401 || APL 17.79+0.06 | 0.09+£0.13 | 1.230-43
J014343705 || GPS+PL | 17.1740.04 | -0.04840.13 | 0.903-33
J0153+4146 || DPL 16.90+0.04 | -0.114+0.13 | 0.783:3%
J0154+3558 || GPS 17.40+0.05 | 0.0044+0.13 | 1.013:32
J0154+4433 || GPS 15.05+0.03 | -0.53+£0.14 | 0.299-4%
J0159+4144 || GPS 18.05+0.08 | 0.15+£0.13 | 1.400-43
J0123+3806 || GPS+PL 1.656-£0.004
J0128+4003 || APL 3.525+0.003
J0128+4439 || GPS 0.228-+0.001
J013144428 || GPS+PL 1.123+0.001
J0132+4345 || PL 1.8124+0.001
J0136+3545 || APL 1.871+0.001
J0151+4332 || PL 2.192-+0.002
J0151+4417 || GPS+PL 1.9760.003
J0156+4459 || PL 0.214+0.001
J0157+4120 || PL 0.081140.0001
J171145803 || PL 0.1465+0.0001
J17154+5724 || PL 0.0273+0.0001
J1720+5926 || PL 0.5878+0.0003
J1728+5532 || GPS 1.404-+0.002
J17474+5902 || GPS+PL 0.981+0.001
J1756+5806 || PL 0.19240.002

Table 7: The results for the K-z relation fitting of the sources for which K-band magnitude data is known. As
z is log-normally distributed, it has non-Gaussian upper and lower uncertainty boundaries. Sources in the lower
section of the table have been determined spectroscopically (16 by spec., 14 by K-z) by Marlow et al. (2000).
The second column indicates the fit type: GPS is a normal SSA GPS spectrum, GPS+PL is SSA GPS+power
law, PL is regular power law, APL is aged power law, DPL is double power law.
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Figure 21: The log-redshift distributions around the sample K-band measurements. The red line indicates the
mean, the black lines the symmetric dispersion. The red curve is the fitted continuous Gaussian distribution
through the histogram data. The x-axes give the log,,(z)-value, the y-axes the probability in arbitrary units.

40



6

6 .0]703-'_.4322 . 18 . 01|06-||-35|22| 16— 0‘10‘6+‘442|2 . 25 J01l6+442Q
16 14
5) ] 1.4} 1.2 f 2.0+
4l 12| i
5| Lo| 08| 15|
2! 0.6/ 061 M Loy
0.4} dl 0.5}
1) I
1‘ me.\ 8'2’ ‘ hmm\‘ 8'2 | 0
8.0.10.20.0.050 07029 8005 1.0 15202530 *80051.01.520253.035 8.0 05 1.0 15 20 25
s 10119+4054 s 10123+3843  _ |0123+3641 L, 10120+4044
16| Lol
2.0 1.4} 0.8} .
12| 0.8}
1.5 Tol 0.6} o
0.8} :
1.0 o6l 0.4 0.4
0.5} 0.4} ‘ M 0.2 ‘ %ﬁ\ 0.2
0 Tmﬂw‘ . 827 [Tt 0.0 \| 0.0 M .
80 05 10 15 20 25 *80051015202530°%% 1 2 3 2 5 %% 1 2 3 2 s
1.2 0136+4401 1.6 {0143+3705 1.5 10153+4146 1.4 4015443558
1.0} L4t fih L6; 1.2}
1.2} L4y 1.0}
0.8/ 1.0} 12 o8l
0.6] | os| el el
0.4} { oef 0.6} 04l
0.4} 0.4} :
o b, | & 23l |5
0.4 i 0. [ 0. : 0.0 '
bosaneseams “80051.01.520253035 200 05 1.0 15 20 25 30051.01.52.02.53.03.5
45, J0154+4433 12, J0159+4144
39| LOf
30! 0.8}
250 0.6]
1.5 0.4]
o3| o7l ‘ M
3 ! [
085702 0.4 06 08 1.0 1.2 *8.00.51.00.52.02.53.08 54.04.5

Figure 22: The redshift distributions around the sample K-band measurements. The red line indicates the
median, the black lines the lower and upper boundaries of the 68% confidence interval. The red curve is the
fitted continuous log-normal distribution through the histogram data. The x-axes give the z-value, the y-axes
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4.4 Results

The redshift results for the sample that underwent the K-z treatment are provided in the upper section of
Table Combined with the rest of the sample, with spectroscopic redshifts taken from [Marlow et al., 2000]
and NASA Extragalactic Database (NED), we obtain the full table. These values can be translated to
a histogram of number count of sources per redshift bin (Figure . This has also been done for peak
frequency (Figure and peak flux (Figure of the GPS and GPS+power law sources (see Appendix
. While the separate populations of SSA GPS and SSA+power law GPS in the peak-related Figures
add up to their combined counterparts, in Figure 25] this is not the case. This is because the combined
plot also includes power law spectra whose redshift is known.

When studying the redshift number counts it becomes apparent that there is no clear sign of bimodal
behaviour regarding the two separate populations. It was suggested by Dr. McKean that a bimodal
trend might arise between a population at small redshift (radio galaxies) and one at large redshift (radio
quasars), possibly coinciding with the separation between SSA GPS and SSA-+power law GPS sources.
Figure however clearly shows that this is not the case, and from Figure we can continue to
conclude that there is no secondary peak at higher redshift.

A slightly more differentiated situation can be spotted in Figures and In frequency space,
it can be observed that the peak frequency of pure SSA GPS sources is in general lower than those of
their counterparts in the SSA+power law GPS sample, with an exceptional spike between 0 and 2 GHz.
The SSA+power law GPS population shows a preference towards the multi-GHz regime, with sporadic
counts exceeding 10 GHz prompting the suggestion that these would be rather classified as HFPs. In
terms of peak flux, another trend becomes apparent with the SSA+power law GPS possessing an on
average lower peak flux density than their pure SSA GPS counterparts.

Combining all redshifts obtained by using the K-z relation with spectroscopic redshifts from NED
and Marlow et al. (2000) and averaging their squares, then taking the root of this quantity, we obtain a
root mean square (RMS) redshift - the RMS is a useful statistic which gives an impression of the spread
of a quantity in its space. Marlow et al. obtained an RMS of 1.27 with spread of 0.95 for a completeness
level of 64% [Marlow et al., 2000] for the CLASS sample. It is interesting to note, however, that these
values were seemingly obtained by setting those redshift values that Marlow et al. failed to determine
spectroscopically to 0, a practice that this thesis does not follow. Hence the RMS was determined from
the raw Marlow redshift data, which for the sources in Marlow’s sample with known redshifts gave RMS
(z) = 1.77 with an RMS spread of 1.01, rather than the value mentioned in the paper’s abstract. Com-
bining the Marlow et al. CLASS sample with the sources used in this thesis, an RMS of (z) = 1.45
with an RMS spread of 0.87 for a completeness level of 66% was obtained. Sources within this thesis’
sample with unknown redshifts were simply omitted from this computation, rather than taken at z = 0.
This shows that the redshifts determined by this paper using the K-z relation significantly drift the RMS
of the sample towards lower redshifts, indicating that McKean’s observed sources are on average closer
than Marlow’s CLASS sample.
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5 Discussion

This chapter discusses the synthesis of the results so far obtained. Cosmological statistics of the sample
will be provided by combining the results of the spectral fitting and the K-z relation, an analysis and
discussion will be provided regarding these final results and suggestions will be offered for possible next
steps.

5.1 Synthesis of results

Comparing the results for the spectral fitting and the determination of redshift, be it by spectroscopy
or by using the K-z relation, a sub-sample was constructed or those sources with a spectral turnover. In
case a redshift was not known, the mean value of the other redshifts (~1.01) was used as an informed

estimate.

Source redshift z Smaz (MJy) | vobs (GHz) 0 (mas) | D (Mpc) | d (pc) | ve (GHz)
J0104+3840 (1) | 1.00%5 32 45.3 £ 18.6 | 0.79 £ 0.02 | 0.28725% | 6879.0 2.3 1.58
J01064-3522 (1) || 0.821520 413421 | 1.134+0.02 | 0367033 | 5347.5 2.8 2.05
J0106-+4422 (1) || 0.9570-32 73.74+ 6.1 | 1.20 £0.02 | 047050 | 6496.0 | 3.3 2.34
J0123+3641 (1) || 1.48105% 55.9 £ 1.7 | 1.99 £0.02 | 0.22%5%5 | 11201.0 | 1.9 4.94
J0128+4439 0.228 + 0.001 | 40.3 £ 0.4 | 2.88 4+ 0.02 | 202704 | 11749 | 7.6 3.54
J0154-+3558 1011558 3594+ 43 |3.08+0.02 |03 |69474 |25 6.19
J0154+4-4433 0.2970-44 488 +£1.6 | 5.01 +0.02 | 1.83750% | 1553.0 8.3 6.47
J0159+4144 (1) || 1.4070-3% 5414+ 81 | 1.86 £0.02 | 0.237553 | 10426.4 | 2.0 4.45
J17024-5511 (1) || 1.00%555 40.7+3.6 | 0.90+0.02 | 0277550 | 6879.0 2.2 1.80
J17024-5812 (1) || 1.00%532 420+ 0.6 | 1.9540.02 | 0.30751% | 6879.0 2.5 3.89
J17264-5826 (1) || 1.001535 4914 0.6 | 1.04 +0.02 | 0307035 | 6879.0 2.5 2.08
J1728+5532 1.404 + 0.002 | 42.0 + 1.4 | 7.17 £0.02 | 0.267001 | 10486.6 | 2.3 17.25
J1758+5951 1.007930 59.8 £ 5.2 | 7.26 £0.02 | 0471002 | 6879.0 | 3.9 14.53
J0103+4322 0.25700% 49.2 £ 4.4 [ 12.07 £ 0.01 | 2.6970 02 | 1306.2 10.9 | 15.09
J0123+3843 0.827037 36.2+ 0.5 | 580 +0.02 | 0457003 | 5347.5 3.5 10.53
J0123+3806 1.656 4+ 0.004 | 89.6 £ 1.0 | 6.20 £ 0.02 | 0.3700; | 12866.8 | 2.6 16.46
J0131+4428 1.123 £ 0.001 | 38.2 + 0.9 | 11.77 £ 0.02 | 0.36 00 | 7945.6 | 3.1 24.98
J0143+3705 0.907033 53.7+ 1.1 | 481 +£0.02 | 0477505 | 59954 | 3.8 9.11
JO151+4417 1.976 + 0.003 | 85.6 £ 0.9 | 4.73 £ 0.02 | 0.22700} | 15999.0 | 1.9 14.07
J0159+4059 1.00+5:52 401+ 1.5 | 3294002 | 0337000 | 6879.0 | 2.7 6.59
J1720+5541 1.00%552 26.0 £ 1.4 | 5184 0.02 | 0.297005 | 6879.0 2.4 10.37
J17464-5659 1.00%538 35.0 £ 0.2 | 7.49 4+ 0.02 | 0.367001 | 6879.0 3.0 14.98

0.35

Table 8: Cosmological statistics for those 22 sources in the sample with peaks. All objects with redshift 1.001] 5%

had their redshifts estimated by taking the approximate average of all the known redshifts in the sample, namely
(very close to) unity. All symbols take their usual meanings, while 6 denotes the angular extension of the source
(angular diameter in the sky), D the luminosity distance to the source, d the corresponding linear extension
and v, the emitted frequency of the spectral peak. Above the horizontal line are SSA GPS; below are SSA
GPS+power law spectra. Those SSA GPS sources marked with (!) deviate from the expected trend in Figure

B4

5.1.1 Angular size

Given the peak flux, the redshift, the angular size 8 and the magnetic field strength B, the peak frequency
of a source can be computed via,

Vmae = f(k) - BY/5S2/5 9=4/5(1 4 2)1/5, (38)

[Kellermann and Pauliny-Toth, 1981] This can be rewritten for the angular size as,
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Figure 26: Angular size of source versus S9;5. 1,22, This plot is made within the observers frame. Cyan, blue

and green stars are taken from [Snellen et al., 2000a], and designate Snellen’s CSS, bright GPS and faint GPS
samples respectively. The red stars represent the sources of McKean’s very faint SSA GPS sample, while the
yellow stars stand for the SSA GPS+power law sources found by this thesis.

BYAGHZ (1 4 2)1/4
0= f(k)>*. 5/(4 ) . (39)

Vmazx

Wherein v,q. is the GPS peak frequency, f(k) a function that depends weakly on the thick spectral
index, but which is assumed as approximately 8 (the value it takes for k ~ 2), B the magnetic field
strength, Sy, the GPS peak flux density, € the angular size and z the redshift. Furthermore, B is taken
as 50 uG, based on Mingaliev et al. (2013) who used 100 uG for their sample of CRSs: however, as our
sample contains fainter sources than those in Mingaliev’s sample and thus sources with less synchrotron
emission which indicates the presence of a weaker magnetic field, we take a smaller magnetic field strength
- 50 uG was chosen in discussion with Dr. McKean as a sensible value. This led to the computation
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dN ) dN
Smed (mJy) ‘ Spin (mJy) ‘ n ‘ ES;/; (Sr’lJyd/Q) — (Sr7lJyh
30 10.0 5 0.83£0.37 (16.74 £ 7.49) - 10°°
60 20.0 15 | 7.00+1.81 (25.11 + 6.48) - 1075
60 20.0 7(8) | 3.27£1.24 (11.72 +4.43) - 1075
120 40.0 2 2.644+1.87 (1.67 + 1.18) -10-5

Table 9: The values of the bins for McKean’s sample. Sy,eq is the average bin flux density, Sy, the bin’s radius,

n the plain number of sources per bin (in brackets on the third row is provided the number of sources which are
dN

offset from the trend in Figure [26] which are all in the 60 mJy bin), s the number of sources per sky area per

bin and ﬂsﬁ’r{fd

any of the McKean sources and were thus omitted in this table. The second row is duplicated, once taking into
account all sources, and secondly without those sources offset from the trend in Figure

that number density corrected by the average bin flux density. Higher bins did not contain

Smea (mJy) | Spin (mJy) | n %Sﬁ{jd (Sr=1Jy3/2) % (Sr=1Jy~1)

30 10.0 3| 0.08£0.05 (1.62+£0.93) - 100
60 20.0 7 0.53+0.20 (1.89 £0.71) - 10-5
120 40.0 8 | 1.70£0.60 (1.08 £0.38) - 10~°
240 80.0 12 | 7.2342.08 (8.09 £+ 2.34) - 10~6
480 160.0 1 | 1.70£1.70 (3.37+£3.37) - 1077

Table 10: The values of the bins for Snellen’s sample. The columns represent the same quantities as in Table @

of angular size for our sub-sample, which turned out to be in the milli-arcseconds regime as one would
expect for GPS sources. Further statistics (luminosity distance D, linear extension d and peak frequency
corrected for redshift ve,,::) were computed using respectively the source code of a web-based Cosmology
Calculator [Wright, 2006] and equation which were all combined in Table 8l As was done in Snellen
et al. (2000b), angular size was then plotted against a peak convolution given by S5 v 125 regults of
which are shown in Figure 26| (see Appendix .

The majority of the McKean sources line up well with Snellen’s various samples, although a subset
of the sources analysed in this thesis are offset from the trend. These coincidentally also possess large
uncertainty bars in their angular size, while their uncertainty bars in the x-direction do not allow them
to fall within the regime of the other, better fitting sources. There is a strong correspondence between
offset sources and the spectral type: there are no SSA GPS+power law sources in the offset subset. There
also seems to be a correspondence between the large uncertainties and poor spectral fits, although this
is not exclusively the case. This can either indicate that indeed in the fitting procedure some parameter
or function was poorly defined, or that these sources represent a new population of GPS that are not
well understood. The 8 sources which both possess large uncertainties and are offset from the trend are
J0104+-3840, J0106+3522, J0106+4422, J0123+3641, J0159+4144, J1702+5511, J1702+5812 (although
this source is a limit case, having uncertainties that are small compared to the other 7) and J1726+5826.
These are exclusively SSA GPS sources with peak frequencies around 1 GHz, while the SSA GPS+power
law sources line up consistently better with the trend provided by Snellen’s sources. Further inspection
shows that those SSA GPS sources that do line up with the trend all have peak frequencies in excess
of ~2 GHz. This leads us to conclude that the correspondence between peak frequency and angular
size might be different than originally suspected in the low flux-density and small angular size regime.
Another option is that the sources with low-frequency peaks suffer major variability: as the high- and
low-frequency observations were not carried out simultaneously, it is well possible that if they were
repeated in one sitting, the spectra would look markedly different, possibly shifting the peak to higher
regimes.
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dN dN
Smed (Jy) | Spin (mJy) ﬁsiq/fd (Sr=1Jy?/?) 1S (Sr=tJy~1)
30 10.0 8 0.91+0.32 (18.36 +6.49) - 107°
60 20.0 22 | 7.53+1.61 (27.00 £ 5.76) - 107°
120 40.0 10 | 4.34+1.37 (2.75£0.87) - 107°
240 80.0 12 | 7.2242.08 (8.09 £2.33) - 1076
480 160.0 1 1.70£1.70 (3.37£3.37) - 1077
Table 11: The values of the bins for the combined sample. The columns represent the same quantities as in
Table@
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sources, yellow stars are Snellen’s, the cyan star was derived by Snellen from [de Vries et al., 1997]. The green
stars represent the combined sample (bin width indicated by horizontal bar through stars).

1073 1073
—— ——

__1o0* __10*
7 T
= 1 L__+_ = ——
L 10° — , L 10°
u [ ) —+
©n @0
= =
.06 .06
& 10 &y 10
2 ) 2
g 3,

10 10

102 l 102 l

10* 10 10° 10* 10T 10 10° 10*
Snax (MJY) Snazx (MJY)

(a) Separated samples.

(b) Combining both samples.

Figure 28: Plain differential number counts versus the peak flux. Red stars are the McKean sources, yellow
stars are Snellen’s, the cyan star was derived by Snellen from [de Vries et al., 1997]. The green stars represent
the combined sample (bin width indicated by horizontal bar through stars).
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Isotropic predicted spherical distribution of GPS sources
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Figure 30: Predicted population densities of GPS. The red population is 20-40 mJy, yellow 40-60 mJy, cyan
60-80 mJy and blue >80 mJy. Note that the locations are completely arbitrary, and these plots serve only to
give an impression of the observed density of these sources.
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5.1.2 Number density per peak flux density

Snellen, in his 1998 paper, creates a plot of differential number count of GPS sources, i.e. the number
of sources within some bin of peak flux density multiplied by the average flux of the bin to the power
5/2 [Snellen et al., 1998b]. Using the data acquired by this thesis, an expanded version of this plot was
created. Firstly, to obtain compatible density values, sky areas were computed for both the Snellen et al.
(1998) and the McKean sample, using equation This yielded a sky area for Snellen of 0.293 steradians,
while the McKean field extended 0.047 steradians. Snellen’s sources were subjected to the same criteria
used to select the McKean sample (see chapter 3, section 1), namely a spectral index of no steeper than
-0.5 between 1.4 and 4.85 GHz and a flux density of no smaller than 16.7 mJy at 8.46 GHz. These
sources were then combined with McKean’s and divided into in bins (which were maintained of constant
size in log;,-space) dependent on peak flux density to create Figures[27|and 28] (see Appendix. The
bin values, both in terms of number of sources, and the plotted values before and after multiplication by

SS{fm, are presented in Tables @ and

These Figures show a clear deviation from the trend expected from the Snellen and De Vries data
alone. Even when one does not correct the Snellen data via the selection criteria set by McKean,
resulting in more sources in the Snellen bins, his data still does not connect directly to the McKean
sample and a discrepancy between Snellen’s lowest and McKean’s highest entry remains. This contradicts
expectations, as what one would intuitively expect to see is the populations to i) link up directly to make
a continuous curve and ii) the population at low flux density to shrink. This could hint at an unexplored,
large population of low-flux density GPS, but it can also be due to, as previously mentioned, sources
which are highly variable and which, due to non-simultaneous measurements of their high- and low-
frequency regimes, show falsely peaked spectra and as such should therefore not even be included in these
number density graphics. Further investigation (Figure however shows that even after the removal of
those possibly non-peaked variable sources masquerading as GPS, there is a considerable discrepancy of
almost an order of magnitude at most between the McKean and Snellen samples, necessitating another
explanation for the remaining difference.

One can use the number density algorithm developed for these plots to make a prediction of the
amount of sources within some flux bin in the night sky. This is displayed in Figure[30] The positions of
these sources are arbitrary, but the density impression that it gives is found by McKean’s data, further
giving us a predicted amount of sources satisfying McKean’s criteria of approximately ~13000. The
40-60 mJy population clearly dominates (see Appendix .

5.2 Conclusions regarding the evolution of radio sources

Combining all results so far obtained, the following can be stated about this sample of very faint GPS
sources: that they are small, both in angular (~1 mas) and linear (several pc) terms, and that their
emitted peaks are generally within the multi-GHz regime. We can also state that SSA GPS+power law
sources in general have higher peak frequencies, which is sensible taking into account that the power law
dominates the lower frequency regions of the spectrum, but there does not seem to be either a linear
extension nor a redshift division between the two populations. In addition, we can conclude that during
their evolution from very faint GPS (McKean’s sample) to bright CSS (Snellen’s sample), the relation
between angular extension and S9% -v;,1-2% remains approximately constant (see Figure[39), although an
interesting subsection of pure SSA GPS sources seem offset from this trend. This implies that pure GPS
sources that have just been energized increase in angular size quite explosively in the first stage of their
evolution, by approximately an order of magnitude, before suffering changes in their peak flux density or
peak frequency and joining the trend set out by Snellen’s sample. It is also possible that during this early
phase, S5 and v}:25 change inversely proportionally, i.e. the flux goes up as the frequency, as predicted
by CRS evolution models, goes down, leading to an approximately constant quotient over this period.
This is somewhat unexpected as SSA spectra ordinarily see both their flux and their frequency go down
with time. However, the mechanism behind this change, if at all physical, is unknown at the time. It is
also possible that the relation between angular size and peak flux and frequency in fact changes as the
source ages, or that those offset sources are in fact non-peaked but highly variable power law sources
masquerading as GPS. However, analysis done by making number counts per flux bin shows that even
after accounting for this possible issue, there is still a large discrepancy between McKean’s and Snellen’s
samples, raising questions concerning whether there might be a larger than expected population of low
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flux density GPS in the night sky.

This roughly constant behaviour raises suspicions that these sources are indeed of the same nature,
and that, as first hypothesised by O’Dea, Baum and Stanghellini, GPS do in fact over time evolve into
CSS, although further research is required before a definitive conclusion can be reached, particularly into
the transition class between CSS and FRI/II radio galaxies. Despite that, the findings so far presented
provide a tantalizing first glimpse into the very early evolution of cosmic radio sources. In addition, the
discovery of a dense population of low flux-density sources presents an unexpected upturn in the number
count in that regime and will need to be investigated thoroughly in future research, as these objects may
hold the clue to what happens in the earliest days of the life of an AGN. That there are so much more
of these faint objects than brighter ones might imply that not all GPS sources go on to become bright
radio galaxies, instead fading far earlier.

5.3 Next steps

Research is never complete, and this open scientific frontier forms no exception. Advances in this field
can be enabled by several actions. Above all else, observations of both the very faint GPS - possibly even
the HFP - and the CSS-to-FRI/II transition populations would greatly enhance our understanding of the
evolution of cosmic radio sources. The actual triggering of CRSs still remains largely an enigma, as does
the physical transition stage from CSS to a fully-fledged radio galaxy. Observations of these populations
would enable us to study these critical evolutionary stages in unprecedented detail, and although the
McKean sample forms a revolutionary, pioneering first step into the very faint CRS regime, it is hoped
that it is not by far the last.

Additional improvements to our conclusions could be made with additional, more detailed observa-
tions of sources within the Snellen flux density observation window (~40 to ~900 mJy). His observations
stem from 1998, and although they are highly important and his paper ([Snellen et al., 1998b]) has been
more than critical to the completion of this project, until a thorough re-examination of the moderate
GPS population is performed, the option cannot be ruled out that the reason behind the discrepancy in
Figures [27) and 28] is simply due to an incompleteness in the higher flux density samples.

The quality of the spectral fits could also be greatly improved by additional measurements in the
observed band (0.325 - 22.46 GHz), especially on the low end of this range. The majority of fitting issues
stemmed from the fact that either k& (in SSA GPS sources) or m (in SSA GPS+power law sources) was
poorly constrained, often by just two parameters. The upgraded VLA should be able to perform these
observations, which would undoubtedly monumentally increase the quality of the fits, constraining the
parameters more strongly than the six data points given ever could. It would also improve our fits if
the measurements at 325 MHz and 1.4 GHz were redone simultaneously with the VLA measurements,
as the current observations at the low and high ends of the spectrum lie years apart, something which
presents an issue given the variable nature of some GPS sources. In the end, most uncertainties in the
final results can be traced back to uncertainties within the spectral fits, so if they were to be more prop-
erly constrained and informed, so would all following physical results. Finally, spectroscopic analysis
of those sources in the sample that lacked any redshift would greatly improve the completeness level of
the sample, and would shed more light on the nature and shape of the redshift number counts, proving
definitively the existence or non-existence of a bimodal behaviour in terms of redshift between the SSA
GPS and SSA GPS+power law populations. Essentially, more data would be greatly appreciated.

5.4 Summary and concluding remarks

In short: a sample of 45 compact radio sources have been fitted with SSA spectra and/or power laws.
The ratio between peaked and non-peaked spectra proved approximately 1:1, with most peaks in the
multi-GHz regime. Redshifts of a subsample were determined using the K-z relation, while others were
found to have spectroscopic redshifts, resulting in a completeness level of 66.6%. This data was combined
to obtain the following conclusions:

1. there is no sign of bimodal behaviour in terms of redshift number counts between SSA GPS and
SSA GPS+power law spectrum sources;

2. there are weak signs of bimodal behaviour in terms of peak flux and peak frequency number counts
between SSA GPS and SSA GPS+power law spectrum sources;
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3. the angular sizes of sources within the sample were of the scale ~0.5 mas;

4. the linear sizes of sources within the sample were of the scale ~3 pc;

5. the relation between angular size and S92 - v1-25 remains linear at low flux densities for SSA

GPS+power law sources and falls off sharply at low flux densities for SSA GPS sources with respect
to sources at larger flux densities, as obtained by Snellen, for which the origin or mechanism is
unknown;

6. there is an unexpectedly dense population of low flux density sources present, compared to higher
flux density, which may indicate that not all GPS sources become CSS or FRI/II radio galaxies.

In the end, suggestions are given on how to improve future research. These include measurements
at both the extreme high and low frequency ends of the presently known CRS population, a redo of the
sources within Snellen’s observed flux density window, and additional observations at different frequencies
of the sources in this sample to improve spectral fits.
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Appendices

A GPS sample observations

These tables have been taken from [McKean, Browne & Jackson, in prep.]. They list the observations
of the GPS sample used in this thesis. Note that in the second table, the source J01124+3759 is missing.

Table Al. The sample positional information with 1.4, 4.85 and 8.46 GHz radio flux-densities measured from NVSS, GB6 and CLASS, respectively.

Source Right Ascension Declination So.325 S1.a Si.ss Ss.46 afge
Name () ey (mly) (mly) (mly) (mly)
JO103+4322 0103 28.8025 +432259.526 45.0£37 #e6xl6 41.0£50 370x19 —007X£0.10
JO104+43840 0104 222100 +38 40 35.400 < 18.0 405+£27 27040 —-033+0.13
JO105+3533 0105 57.2500 +353329400 66.0+34 430+£13 280+£40 —035+0.12

JO106+3522 0106 14.4844 +352226.786 < 18.0 405+1.3 290+£50 185+09 —-027+0.14
JO106-+4422 0106 21.3985 +44 22 27377 33.0+£4.1 728+£22 470£50 325%16 —0.35£0.09
JO1124-3759 01 12 00.2598 +375931.559 143.0+£37 619+19 370+£50 218+£1.1 =041 £0.11
JO116-+4420 01 16 56.8405 +442059.871 1690+42 696+25 41.0+50 288+15 —043+0.10
JO119+4054 01 19 47.9105 +4054 18586  86.0x40 752+£28 450£50 484%x24 0411009
J01234-3843 0123 23.8308 +38 43 57.900 < 18.0 1854£07 27.0+£40 366+18 +030+£012
JO123+3806 01 23 28.8725 +380636.758 46.0+38 368+15 400+50 634+32 +007+011
JO123+3641 01 23 58,3880 +364145.336  35.0x36 540+£20 31.0+40 289%+15 —045+0.11
J0128+4003 0128 13.6382 +400329866 1160£38 563+£17 470+£50 289+15 —0.15£009
JO128+4439 01 28 41.3396 +44 39 17.982 < 18.0 369+1.2 350+50 608+30 —0044+0.12
J0129-+4044 01 29 59.3005 +4044 02981  1750+£3.6 679+21 380+£50 248x13 —047£0.11
JO131+4428 01 31 03.3632 +44 28 01,883 650%£36 338%14 270+40 244%£15 —018+£012
J0132+4345 01 32 06.0642 +434534428  98.0+37 550417 41.0+£50 301+£15 —-024+40.10
JO134+4018 01 34 40.8057 +401818.619 1040+3.6 507+£1.6 290+40 196+1.0 —045+0.11
J013543631 01 35 25.2841 +363137.572 82.0x4.1 489£15 270X£40 16909 —045x0.12

J01364-3905 01 36 32.5946 +390559.198 84.0+40 606+19 490450 424421 —017+£0.09
JO136+3545 01 36 43.6844 +354531.174  1150+40 537+17 33.0+40 224411 —039+0.10
J0136-+4401 01 3647.3138 +440110216  97.0x39 562+£17 360x£50 21711 —=036=£011

J01434-3705 01 43 02.5385 +370516.090  80.0+37 475415 460+£50 405+£2.0 —003+£009
JO151+4332 01 51 18.3781 +43 3200547 4201411 35011 340+£50 264413 =002+0.12
JO151+4417 01 51 20.8793 +44 1735896 74.0x43  579+22 H0£50 627+31 —-022+010
JO153+4146 01 53 42.2369 +41 4645167 250037 886+£32 490£50 333%17 —0.48 £0.09
J01544-3558 01 54 45.4614 +35 58 04.630 < 18.0 30013 340+£50 209£1.1 <40.10+0.12
JO154-+4433 01 54 54 4682 +44 33 37.969 <18.0 31712 400£50 389+20 +005+0.10
J0156-+4459 01 56 28.5219 +445956.484  15904+43 835430 460+50 286+14 0484009
JO1574+4120 01 57 05.0059 +412030.634 720437 465414 300440 232412 —-035+£011
J0159+4059 01 59 14.4871 +405940403 52.0+39 352+1.1 33.0+£50 270x14 =005+0.12

J0159+4144 01 59 49.3346 +41 44 31.946 < 18.0 516+19 33.0+£50 219+1.1 —0.361+0.13
J17024-5511 1702 34.5570 +55 11 12.432 < 18.0 3B5+1.2 340+40 295£15 —010+0.10
J1702+5812 1702 41.3754 +58 1310082  20.0+42 408+13 380+£50 27.7+14 —006+0.11
J1711+5803 1711 38.1200 +580328200 BOOx37 #1x18 25.0%40 —046+0.13
71545724 17 15 22.9752 +572440312  Bl1.O+38 576+£18 350+£40 260£13 —040+£0.10
J1720+5541 17 20 09.7600 +554127.300 31.0%+35 79+0.5 27.0+5.0 +0.99 +0.16

J17204-5926 1721 00.6468 +592649.442 137037 650+24 410+£50 229+£12 —-037+0.10
J17264-5826 17 26 35.1256 +582647.698  43.0%38 487415 31.0+£40 384419 —036+0.11
J17284-5532 17 28 11.6405 4553230471 21.0+36 289+1.0 420450 333+17 +030+0.10
J1735+5650 17 35 13.7695 +565021.803  B6.0x4.1 492+£21 31.0%£40 332x17 =037£011
J1746+5659 17 46 59.5600 +56 59 11.000 < 18.0 126 £06 27.0+4.0 +0.61 +0.13
J17474-5902 17 47 33.9322 +590247967 47.0+43  319+14 250+£40 21.7£11 —020+0.13
1175645918 17 56 11.8346 +591856.824  26.0x40 30.01+£13 250£40 199%+10 =0.15£0.13
J1756+-5806 17 56 29.1449 +580658.236 100038 51.6+20 380+£50 243+£12 —-025+£0.11
J1758+5951 17 58 12.1100 +39 51 56.100 < 18.0 314+1.0 260440 —0.15+0.13
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Table A2. The flux densities and spectral indices from the VLA observations at 4.86, 8.46, 14.94 and 22.46 GHz. The 325 MHz and 1.4 GHz flux densities
are taken from WENSS and N'VSS, respectively. The letters after the source name correspond to the date of the VLA observations, where a is 2000 June 25, b
is 2001 September 14 and ¢ is 2001 December 31.

Source

Sa.56

Ss.16

S14.04

S23.46

1.4
0 325

8,46
X486

14.94

22.46

a4 g 46 14.94
Name (mly) (mly) (mly) (mly)
J0103+43220 413421 451423 481426 397+32 —001+£007 —006+006 +0.16+0.13 +0.11+£0.13  -0474+024
J0104+43840% 237412 178409 145411 154424 >+056 —0434+006 —-052+0.14 —=0364+016 +0.15+042
JO105+35337 190+ 1.0 12.8x07 93x0.7 8507 -=-029£004 066006 =071x0.14 =056x016 =02210.27
J0106+35227 227412 16.5+£09 123+£038 82107 = +0.56 —047£006 —058+£0.14 —052+0.14 —0.99 +£0.25
JO106444220 434422 269414 180412 191422 +054+£009 —0424+006 —086+013 —-071£015 +0.15£0.32
JO116+4420%  384+19 322416 21.6+14 156120 —061+£004 —048+006 —032+0.13 —070+0.14 —0.80+0.35
JO119+4054%  566+29 544427 476425 438+28 —009+005 0234006 —0074+0.13 -023+013 0204020
JO12343843% 352418 33.0+£17 214412 150409 =+0.02 +0.524+006 —-012+£013 -0764+013 —0.87+0.20
JO12343806° 861443 842442 640433 475429 0154007 +0.68+0.06 —004+0.13 —0484+013 —-0.7340.19
J0123+43641¢ 424+22 297%+15 196=x1.1 12308 +030£0.08 —0.19+006 —064+0.13 =073%£013 —1.14+£021
JOI2844003% 400420 315416 205413 <30 —-049£004 —-027+006 —0434+013 —-076£014 <—4.70
J012844439%  387+20 352+18 31.0+18 266+24 =>+0.49 +0.04£006 —0.17£013 -022+0.13 -0371+0.26
J0129+4044% 358+ 18 305416 329+19 313+26 —065+004 —051+006 —029+0.13 +0.12+£0.13  —-0.121+0.25
JO1314+4428%  300+15 365+19 384+22 339427 —0454+005 —0.10+006 +035+0.14 +009+013 —031+024
JO13244345% 437422 379419 353420 331428 0404004 0184006 —0264013 —0.134+013 —0.16+025
J0134+4018°  305+1.6 228+1.2 18.0£09 <30 -=049x004 —-041x006 —052x£014 —=0421013 <—4.39
J0135+3631% 233412 172409 137407 <30 —=035£005 —060+006 —055+£014 —040+0.13 <—3.73
J0136+3905¢  520+26 483+24 468424 445423 —0221005 —0124+006 —0134£013 —-006£013 —0.12+0.18
JO136+35450  225+12 168+09 139+14 <30 -052+£004 -070x006 —053%+0.14 -033£020 <=3.76
JO136+4401° 203415 187410 147+12 <30 -037+£004 0521006 —081+£014 —-0424017 <-3.90
J014343705% 536427 462423 292419 205430 —0364005 +0.104+£006 —-027+£0.13 —0814+014 0874039
JO151+4332%  339+1.7 344+18 317+1.8 285+24 —012+£008 —0.03£0.06 +0.03+£0.14 —014+£013 —026+0.25
JO15144417%  854+43 723436 483+26 349429 —0.17+0.05 +031 006 —=030%£0.13 =071£013 —0.80x0.24
J0153+4146% 256+£13 325+17 35519 348+19 071004 —1.00 £ 0.06 +0.434+0.14 +0.16 £0.13 —0.05+£0.18
J0154+43558%  303+1.6 19.8+1.0 12.8+13 < 3.0 =>+0.35 +0.01 £0.06 —077£014 —077£0.20 <—3.56
J0154+4433%  486+24 462423 449123 374120 =>+0.51 +020+£006 —-009+£013 —005+013 —-045+0.18
J0156+4459%  405+21 272414 175+12 163420 —044+004 —058+006 —072+0.14 —078+015 —017+035
JO157+4120% 298415 228411 193411 158410 —-030+£005 —-036+006 —048+014 —0294+013 —-049+0.21
J01594+4059%  382+19 30.1+15 218+14 158417 —0.27+0.05 +0.07+006 —0431+0.14 —057£0.14 —0.79£0.30
J0159+4144Y 301£15 230&£1.2 126 £12 <30 =+0.72 —043+£006 —0494+014 —106£018 <—3.52
170245511 253+14 225+1.1 17610 151+08 =>+052 —034+006 —021%0.14 -043£013 -—038+0.19
J170245812¢  342+1.7 280x14 208=x1.1 16.2+09 +049+0.15 —0.14+006 —036%0.13 =052£013 —0.61%£0.19
J1711+45803¢ 2124+ 1.1 124+£07 6406 <30 -041£005 -059+006 —-097+£015 -1.16+020 <—1.86
J171545724° 286415 204+£10 146408 11.7+£07 —-0234£005 -056+006 —-0614+013 —-0594£0.13 —-0544+020
JI720+5541*  258+13 224%£1.2 13.6x09 10808 —0941008 +0.95+0.06 —=025£0.14 —088x0.15 -=-057%0.25
11720453926 32717 21.8%1.1 17.0£ 1.0 136408 —0.51 £0.04 —055+£006 —073+0.13 —0.44£0.13 —0.55 +£0.19
J1726+5826% 4364+£22 3894120 35919 334+18 +0.09+£007 —0.09+£0.06 —021£013 —0.14+013 —0.18+0.18
J1728+45532¢ 427+22 407x20 38.1x20 335x%17 +0.22 +0.12 +031£0.06 —009£0.13 =012+0.13 -032+0.18
JI73545650° 39620 403+20 394+20 356+18 0382005 017006 +003£013 —-0041+0.13 0251018
J174645659° 286415 345417 230412 147408 =>—024 +.66+006 +034+£013 —-0714£013 —1.10£0.19
JI74745902¢ 333417 363418 452423 432422 02742007 +0.03+£0.06 +0.16+£0.14 +0.394£0.13  —0.114+0.18
J1756+5918c 253+13 237x1.2 242+13 240x1.2 +0.10£0.11 —=0.14+0.06 —0.1210.14 +0.04+0.13 -002+0.18
J1756+5806° 313£16 244412 183+£1.0 1537£09 —045£004 —040+£0.06 —0454+0.13 —0.51£0.13 —0.38 +£0.19
J1758+45951¢ 53.5+27 658+33 363x19 265x15 =>+0.38 +0.43 £0.06 +037£0.13 -=-105£013 -0.77£0.19
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B Source code
Relevant source code is listed here.

B.1 Least Squares fitting algorithm
The following script is used to fit all spectral types using an LSq algorithm.

Scripts/Thesis_Sv—omnifit-LSq_v2-1.py

#!/usr/bin/env python

from __future__ import division

import numpy as np

import scipy as sp

import scipy.interpolate as spi

6| import scipy.optimize as spo

import scipy.stats as sps

from matplotlib.pyplot import figure, show, rc, rcParams

###THIS SCRIPT CAN RUN ALL THREE FITS, BUT UNCERTAINTIES HAVE BEEN REPRESSED BY SOMEWHAT
ARGUABLE MEANS. ONLY THE SYNCH PLUS POWER LAW SPECTRUM’S UNCERTAINTIES STAND IN MY
PATH TOWARDS POWER, INFINITE POWER!

10| ####This script utilizes a least squares algorithm to obtain the best fit.

S

0

12| #HHH#EPisode 1: Reading Data (or: The Phantom Data).
NI ININININ] ININININ] / Sl /) ) / Sl )] ) / i
T 77T TTT7777T T 17T 17T 7777 T

7 1T
print (”>>> Episode I: The Phantom Data”)

15| #H##Reading relevant data from (mono—axial) datafile. If uncertainties were unknown, they
have been set to 1.0 to prevent code collapse due to divide by zero errors.

6| fulllist = np.genfromtxt(” Janskylist.dat” ,dtype=None, usecols =[0],comments="#")

17| errlist = np.genfromtxt(” Janskylist.dat” ,dtype=None, usecols =[1],comments="#")

o|###H#Splitting the superarray into useful, seperate arrays with relevant data.
20| names , S003 ,S014 ,S048 ,5084,S149,S224 = np.split (fulllist ,7)

21| junkerr ,errS003 ,errS014 ,errS048 ,errS084 ,errS149 ,errS224 = np.split (errlist ,7)
22| names = names. astype(str). flatten ()
23/ S003 = np.asarray (S003.astype(float) )
24/ S014 = np.asarray (S014.astype( ) )
25| S048 = np.asarray (S048. astype ( ) )
26| S084 = np.asarray (S084.astype(float).flatten ())
27| S149 = np.asarray (S149.astype(float).flatten ())
28] S224 = np.asarray (S224.astype(float).flatten ())

30| ##H#Printing all data in a clear—cut table.

31| print (?\033[1m” ,”index * name * 0.325 % 1.4 % 4.85 % 8.46 % 14.94 % 22.46” ,7\033[0m”,”
<— Frequency bands”)

32| for 1 in range(len(names)):

o print (i,”:7,7\033[1m’ ,names[i],” \033[0m” ,”*” ,S003[i],”*” ,S014[i],”*” ,S048[i],” ",
S084[i],”+” ,S149[i],”+" ,S224[i])

s34ln = int (input (” Pick GPS source: 7))

36| ###Creating the to be used data arrays.

s7|v = [0.325,1.4,4.85,8.46,14.94,22.46]

sc|S = [S003[n],S014[n],S048[n],S084[n],S149[n],S224[n]]

30| Serr = [errS003 [n],errS014 [n],errS048 [n],errS084 [n],errS149 [n],errS224 [n]]

40

41| print (" Source designation:” ;names[n])

12| print (" Frequency bands:” ,np.asarray (v))

43| print ("Flux densities:” ,np.asarray (S))

44| print ("Flux uncertainties:” ,np.asarray (Serr))

a6| ###Plotting the recorded data points for visualisation purposes.
47| fig = figure(figsize=(10,10))

4s| frame = fig.add_subplot(1,1,1,xscale="1log” ,yscale="1log”)
10| frame . errorbar (v,S, yerr=Serr , ecolor="k” ,marker="%" ,mfc="y
{}”.format (names[n]))

o| frame.set_xlabel (’Frequency v (GHz) )

1| frame.set_ylabel (’Flux density S (mly)’)

2| frame . legend ()

9

,ms=10,1s="" ,label="Data from

o o
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53| show ()
55| ###While—loop to allow user—friendly cancelling of code.
56| while True:

57 print (?\033[1m” ,”Do you want to continue?”,”\033[0m”)

8 answer = input(” :7)

59 if answer.lower().startswith(7y”):
60 print (” Roger”)

61 break

62 elif answer.lower ().startswith(”n”):
63 print (”OKDOEI" )

64 exit ()

65

66| ###While—loop to allow user—friendly usage of power law or not, with q the model index,
ndim the amount of free parameters, and os the offset within the naming list for
easier printing of results. For q = 3, the spectrum shows signs of ageing — a final
point that is offset from the power law—like behaviour of its predecessors. Fitting
an ageing component is extremely difficult , so we instead ignore the final point and
plot a power law through the others as spectral ageing is not of interest to our

research .

67| while True:

68 print (?\033[1m” ,”What kind of fit would you like to wuse?”,”\033[0m")

69 print (?0 = power law, 1 = synchrotron spectrum, 2 = synchrotron + power law, 3 =
ageing power law spectrum, 4 = synchrotron + underdefined power law (i.e. only
through first two points), 5 = double power law.”)

70 answer = input(” 7

71 if answer.lower ().startswith(70”):

72 q=20 ; ndim = 2 ; os=4

73 print (" Roger: power law online”)

74 break

75 elif answer.lower ().startswith(”1”):

76 q=1; ndim =4 ; os=0

77 print (" Roger: synch fit online”)

78 break

79 elif answer.lower().startswith(727):

80 q =2 ; ndim =6 ; os=0

81 print ("Roger: synch fit and power law online”)

82 break

83 elif answer.lower ().startswith(”3”):

84 q =3 ; ndim = 2 ; os=4

85 print (”Roger: ageing fit online. Final datapoint will be ignored”)

86 break

87 elif answer.lower ().startswith(74”):

88 q=4 ; ndim =5 ; os=0

89 print (" Roger: synch fit and undef power law online. A fudgy powerlaw will be
drawn.”)

90 break

91 elif answer.lower().startswith(”5”):

92 q =5 ; ndim = 4 ; os=4

93 print (" Roger: double power law online.”)

94 break

95| modelname = [”power law” ,”synchrotron” ,”synchrotron/power law” ,”ageing spectrum”,”

synchrotron/undef power law” ,”double power law” ]
oc| print (7 Number of free parameters:” ndim)

97
98
oo| #HH###Episode II1: Creating fitting functions and derivatives (or: Attack of the Functions
).
wo| print (”>>> Episode II: Attack of the Functions”)
101
102| #H##Defining the fits.

13| def Sfitpl(v,A,m):

104 fl = Axvssxm ##HH#+First power law
105 return f1

106

17| def Sfitplpl(v,Al,ml,A2 m2):

108 fl = Alsxvx*xml #HH#First power law
109 f2 = A2xv*x*xm2 ##H£First power law
110 return f1+4+f2

111
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12| def Sfitffa (v,A,m,t):

113 fl = Axvsxm #HHFirst power law
114 f2 = np.ex*x(—t*xvxx—2.1) ###Exponential fall —off
115 return fl*f2

117| def Sfitsyn(v,S01,v01,k,1):

118 fl = SO01x(v/v0l)=*xk ####First power law

119 f2 = (1—np.exx(—(v/v0l)*x(l=k)))/(1—np.ex*x*(—1)) ###Second power law (exponential
fall —off)

120 return flxf2

122| def Sfitplsyn (v,S01,v01,k,1,Am):

123 f1 = S01x(v/v01l)x*xk ###First power law

124 f2 = (1—np.ex*x(—(v/v0l)*x(l-k)))/(1—np.e*x*(—1)) #H+Second power law (exponential
fall —off)

125 f3 = Axvxxm ###Third power law (only when two
turnovers are present) Wherein A=S02/(v02"m)

126 return fl1xf2 + 3

127

12s| def derSfitsyn (v,S01,v01,k,1): ##+#Derivative of synchrotron fit

129 E = np.exx(—(v/v0l)=*x(1-k))

130 C = S01/(v0lx(1—1/np.e))

131 fl = Cxkx((v/v0l)**(k—1))*(1-E)

132 f2 = Cx(1-k)*((v/v0l)*x(1—-1))«E

133 return f1 + f2

134

135 def derSfitplsyn(v,S01,v01,k,1,A m): ###Derivative of power law/
synchrotron combined fit

136 E = np.exx(—(v/v0l)*x(1-k))

137 C = S01/(v0lx(1—1/np.e))

138 fl = Cxkx*((v/v0l)*x(k—1))*(1-E)

139 f2 = Cx(1-k)* ((v/v0l)*x(1—1))*E

140 f3 = Asmsvsksk (m—1)

141 return f1 + f2 4+ f3

142

143| #H#H#Array spanning the fitting space.
144| vfit = np.linspace (0.3,23,1000)

145
46| ###List that names the coefficients for the synchfit.

1a7| coeflist = [”S_{01}”,7v_{01}”,”k”,”1” [7A1” ;”ml” ,” A2” ["m2" |

1as| ###With S_{01} the scale flux of the synchrotron model, v_{01} the scale frequency of
the synchrotron model, k the optically thick spectral index (before the peak), 1 the
optically thin spectral index (after the peak), A = S_{02}/(v-{02}"m) the fudged
constant for the power law, combining the power law scale flux and scale frequency (
S_{02} and v_{02}, respectively) with the power law spectral index k=l —> m (
otherwise known as Jesper’s Fudge Factor), and m the power law spectral index for a
spectrum wherein k=1.

151 | HH##Episode II1: Computing uncertainties in fits. (Revenge of the Uncertainties).

152| print (”>>> Episode III: Revenge of the Uncertainties”)

154 def errSfitpl(v,A,m,cov): ###Finding uncertainties function in power law

155 dsdA = vs**m

156 dsdm = Ax(vxxm)*np.log(v)

157 dsdx = np.asarray ([dsdA,dsdm])

158 Svar = 0

159 for i in range(ndim):

160 for j in range(ndim):

161 Svar = Svar + dsdx[i]*dsdx[j]*cov[i,]]

162 return np.sqrt(Svar)

163

64| def errSfitplpl(v,Al,ml,A2,m2,cov): #####Finding uncertainties function in
power law.

165 dsdAl = vxx*ml

166 dsdml = Alx(vs*ml)=*np.log(v)

167 dsdA2 = vx*m2

168 dsdm2 = A2x (vx*m2)s*np.log(v)
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print (”>>> Episode IV: A New Fit”)

dsdx = np.asarray ([dsdAl,dsdml,dsdA2,dsdm2])
Svar = 0
for i in range(ndim):
for j in range(ndim):
Svar = Svar + dsdx[i]*dsdx[j]*cov[i,]]
return np.sqrt(Svar)

errSfitffa (v,A,m,t,cov): ###Finding uncertainties function in power law

dsdA = (vxxm)+*np.es*(—t*xvix—2.1)
dsdm = Ax(vxsm)*np.log (v)*np.ekxx(—t*xvxx —2.1)

dsdt = —Ax(v#*(m—2.1) ) *np.exx(—t*xvsx—2.1)
dsdx = np.asarray ([dsdA,dsdm,dsdt])
Svar = 0

for i in range(ndim):
for j in range(ndim):
Svar = Svar + dsdx[i]*dsdx[j]*cov][i,j]
return np.sqrt(Svar)

errSfitsyn (v,S01,v01,k,1 cov): ####Finding uncertainties function in synch fit

C = S01/(np.e—1)
C2 = S01/(1—1/np.e)
E = np.exx—((v/v0l)*x(1-k))
E2 = np.exx(1—((v/v0l)x**(1-k)))
dsdS01 = Sfitsyn(v,S01,v01,k,1)/S01
dsdv0l = (—((C2x(1—-E)) ) skxv* ((v/v0l)xx(k—1)))/(v0l*%2) — (C2x(1—k)*v«Ex((v/v01l)x*x*(1
—1)))/(v0l%x%2)
dsdk = C2%(1—E)«*((v/v0l)xxk)*np.log(v/v0l) — C2x((v/v01l)**(1))*np.log(v/v0l)=E
dsdl = Cx((v/v0l)xx1)*np.log(v/v0l)*xE2
dsdx = np.asarray ([dsdS01,dsdv01l,dsdk,dsdl])
Svar = 0
for i in range(ndim):

for j in range(ndim):

Svar = Svar + dsdx[i]*dsdx[j]*cov[i,]]

return np.sqrt(Svar)

errSfitplsyn (v,S01,v01,k,1,A;m,cov): ###Finding uncertainties function in synch fit
plus power law.
C = S01/(np.e—1)

C2 = S01/(1—1/np.e)

E = np.exx—((v/v0l)=*x(1-k))

E2 = np.exx(1—((v/v0l)**(1-k)))

dsdS01 = Sfitsyn (v,S01,v01,k,1)/S01

dsdv0l = (—((C2%(1—-E)))skkv*((v/v0l)xx(k—1)))/(v0l*%2) — (C2x(1—k)*v+Ex((v/v01l)s*x* (1
—1)))/(v0l%x%2)

dsdk = C2%(1—E)* ((v/v0l)=*x*k)*np.log(v/v0l) — C2%((v/v0l)*%(1))=*np.log(v/v0l)*E
dsdl Cx ((v/v0l)x+1)*np.log(v/v0l)*E2

dsdA = v**m

dsdm = Ax(vxxm)*np.log(v)

dsdx = np.asarray ([dsdS01,dsdv01l,dsdk, dsdl,dsdA,dsdm])

Svar = 0

for i in range(ndim):

for j in range(ndim):
Svar = Svar + dsdx[i]xdsdx[]]*cov[i,]]
return np.sqrt(Svar)

HH##Episode IV: Least squares fitting the data (or: A New Fit).

/L /L /L /L /L /L A
T 7 7 7 7 T T T

####Creating some new, useful arrays and indices.

S2 = [S[1],8([2],S([3],S[4],S[5]]
Serr2 = [Serr[1],Serr[2],Serr[3],Serr[4],Serr [5]]
v2 = [v[1],v[2],v[3],v[4],v[5]]
S3 = [S[0],S[1],S8[2],S[3],5[4]]
Serr3 = [Serr[0],Serr[1],Serr[2],Serr[3], Serr[4]]
v3 = [v[0],v[1],v[2],v[3],v[4]]

Smi

= S.index (max(S))
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Smi2 = S2.index (max(S2))
SI = [S[0],S[1],5[2]]
vl = [v[0],v[1],v[2]]
Smil = Sl.index (max(Sl))
Sh = [S[3],8[4],S[5]]
vh = [v[3].v[4] v [5])
Smih = Sh.index (max(Sh))

####Monstrous, hulking , hideous if—loop that creates the fit by first estimating and then
least squaring parameters.

if q = 0:
SOguess max(S)
vOguess = v[Smi]
mguess = (np.logl0(S[5])—np.logl0(S[0]))/(np.logl0(v[5])—np.logl0(v[0]))
Aguess = SOguess/(v0Oguessx*mguess)
estimates = [Aguess,mguess]
p, pcov = spo.curve_fit (Sfitpl ,v,S,[ Aguess,mguess],sigma=Serr ,bounds

=([0,—-10],[500,10]) ,**{ max_nfev’:1000000})
fitfun = Sfitpl(vfit ,p[0],p[1])

fitmax = fitfun + errSfitpl(vfit ,p[0],p[1],pcov)
fitmin = fitfun — errSfitpl(vfit ,p[0],p[1],pcov)

elif q = 1:
SOguess = max(S)
vOguess = v[Smi]

while True:
print (”\033[1m” ,”Do you want to constrain k narrowly to 2.3—2.57” ,7\033[0m”)

answer = input(” :7
if answer.lower ().startswith(7y”):
klow = 2.3

kguess = 2.4
print (”Roger: k constrained to 2.3—2.57)

break
if answer.lower ().startswith(”n”):
klow = 0.0

if S[1] > S[0]:
1 kguess = (np.logl0(S[1])—np.logl0(S[0]))/(np.loglO(v[1])—np.loglO(v[0]))
else:
if S[2] > S[0]:
o)) kguess = (np.logl0(S[2])—np.logl0(S[0]))/(np.logl0(v[2])—np.loglO(v
else:
kguess = 2.0
print (”Roger: k not narrowly constrained.”)
break
if S[5] < S[4]:
| lguess = (np.logl0(S[5])—np.logl0(S[4]))/(np.logl0(v[5])—np.loglO(v[4]))
if S[5] < S[3]:
lguess = (np.logl0(S[5])—np.logl0(S[3]))/(np.loglO(v[5])—np.logl0(v[3]))

else:
lguess = —1.0
estimates = [SOguess,vOguess , kguess,lguess]
p, pcov = spo.curve_fit (Sfitsyn ,v,S,[SOguess,vOguess ,h kguess,lguess],sigma=Serr,

bounds=([0,0.3,klow, —5.0],[500,23,2.5,0]) ,**{ max_nfev’:1000000})
fitfun = Sfitsyn(vfit ,p[0],p[1l],p[2],p[3])

fitmax = fitfun + errSfitsyn(vfit ,p[0],p[1],p[2],p[3],pcov)
fitmin = fitfun — errSfitsyn (vfit ,p[0],p[1],p[2],p[3],pcov)

elif q = 2:
SOguess = max(S2)
vOguess v2[Smi2]
kguess = (np.logl0(S2[Smi2])—np.logl0(S2[Smi2—1]))/(np.logl0(v2[Smi2])—np.logl0 (v2]
Smi2 —1]))

if S[5] < S[4]:
| lguess = (np.logl0(S[5])—np.logl0(S[4]))/(np.logl0(v[5])—np.logl0(v[4]))
if S[5] < S[3]:
1 lguess = (np.logl0(S[5])—np.logl0(S[3]))/(np.logl0(v[5])—np.logl0(v[3]))
iguess = —1.0
Aguess = max(S)
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343

360

if S[1] < S[0]:
mguess = (np.logl0(S[1])—np.logl0(S[0]))/(np.logl0O(v[1])—np.loglO(v[0]))
else:
if S[2] < S[0]:
mguess = (np.logl0(S[2])—np.logl0(S[0]))/(np.logl0(v[2])—np.logl0(v[0]))
else:
mguess = —1.0
estimates = [SOguess,vOguess ,h kguess,lguess , Aguess, mguess]
p, pcov = spo.curve_fit (Sfitplsyn ,v,S,[SOguess,vOguess ,h kguess, lguess , Aguess, mguess],
sigma=Serr , bounds=([0,0.3,0,—-5.0,0,—-10],[500,23,2.5,0,500,10]) ,**{ max_nfev’
:1000000})
fitfun = Sfitplsyn(vfit ,p[0],p[1],p[2],p[3],p[4],P[5])
fitmax = fitfun 4+ errSfitplsyn (vfit ,p[0],p[1],p[2],p[3],p[4],p[5],pcov)
fitmin = fitfun — errSfitplsyn (vfit ,p[0],p[1],p[2],p[3],p[4].p[5],pcov)
elif q = 3:
SOguess = max(S)
vOguess = v[Smi]
mguess = (np.logl0(S[4])—np.logl0(S[0]))/(np.logl0(v[4])—np.logl0O(v[0]))
Aguess = SOguess/(v0Oguess*+*mguess)
estimates = [Aguess,mguess]
p, pcov = spo.curve_fit (Sfitpl ,v3,S3,[Aguess,mguess]|,sigma=Serr3 ,bounds
=([0,—-10],[500,0]) ,**{ max_nfev’:1000000})
fitfun = Sfitpl(vfit ,p[0],p[1])
fitmax = fitfun + errSfitpl(vfit ,p[0],p[1l],pcov)
fitmin = fitfun — errSfitpl(vfit ,p[0],p[1],pcov)
elif q = 4:
SOguess = max(S2)
vOguess = v[Smi2]
if S2[1] > S2[0]:
kguess = (np.logl0(S2[1])—np.logl0(S2[0]))/(np.logl0(v2[1])—np.logl0(v2[0]))
else:
if S2[2] > S2[0]:
kguess = (np.logl0(S2[2])—np.logl0(S2[0]))/(np.logl0(v2[2])—np.logl0(v2[0]))
else:
kguess = 2.0
if S2[4] < S2[3]:
lguess = (np.logl0(S2[4])—np.logl0(S2[3]))/(np.logl0(v2[4])—np.logl0(v2[3]))
else:
if S2[4] < S2[2]:
lguess = (np.logl0(S2[4])—np.logl0(S2[2]))/(np.logl0(v2[4])—np.logl0(v2[2]))
else:
lguess = —1.0
M = (np.logl0(0.5%S[1])—np.logl0(S[0]))/(np.logl0(v[1])—mp.loglO(v[0]))
Aguess = S[0]/(v[0] *=M)
estimates = [SOguess,vOguess , kguess,lguess , Aguess ,M]
def Sfitplsyn2(v,S01,v01,k,1 A):
fl = S01x%(v/v0l)s*xk ##H#First power law
f2 = (1-np.exx(—(v/v01l)xx(1-k)))/(1—np.ex*x(—1)) ###Second power law (
exponential fall —off)
f3 = AxvxsxM ##Third power law (only when two
turnovers are present) Wherein A=S02/(v02"m)
return fl«f2 + {3
p, pcov = spo.curve_fit (Sfitplsyn2 ,v,S,[SOguess, vOguess ,h kguess,lguess , Aguess],sigma=
Serr , bounds=([0,0.3,0,-5.0,0],[500,50,2.5,0,500]) ,**{ max_nfev’:1000000})
fitfun = Stitplsyn (vfit,p[0],p[1],p[2],p[3],pl4] M)
fitmax = fitfun + errSfitplsyn (vfit ,p[0],p[1],p[2],p[3],p[4],M, pcov)
fitmin = fitfun — errSfitplsyn (vfit ,p[0],p[1],p[2],p[3],p[4],M,pcov)
if q = 5:

S0lguess = max(Sl)

vOlguess = v1[Smil]

S02guess = max(Sh)

v02guess = vh[Smih]

mlguess = (np.logl0(0.5%S[2])—np.logl0(S[0]))/(np.logl0O(v[1l])—np.loglO(v[0]))
Alguess = SOlguess/(v0lguess**xmlguess)

m2guess = (np.logl0(S[5])—np.logl0(0.5%xS[3]))/(np.logl0(v[5])—np.logl0(v[3]))
A2guess = S02guess/(v02guess**m2guess)

estimates = [Alguess,mlguess, A2guess, m2guess]

p, pcov = spo.curve_fit (Sfitplpl ,v,S,[Alguess,mlguess,A2guess, m2guess],sigma=Serr
bounds=([0, 10,0, —10],[500,10,500,10]) ,**{ ’max_nfev’:1000000})

fitfun = Sfitplpl(vfit ,p[0],p[1],p[2],p[3])
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fitmax = fitfun + errSfitplpl(vfit ,p[0],p[1],p[2],p[3],pcov)
fitmin = fitfun — errSfitplpl(vfit ,p[0],p[1l].,p[2],p[3],pcov)

###Printing loop outputs, i.e. values of free parameters by least squares fitting.
print (? Parameter estimates are:” ,estimates)
print (?\033[1m"+” >>> Using scipy.optimize.curve_fit on {} model:”.format(modelname[q
1) ,”\033[0m)
for i in range(ndim):
print (7 Coefficient” ,coeflist [itos],”equals” ,p[i])
print (?  Uncertainty of coefficient” ,coeflist [i4os],” equals” ;np.sqrt(pcov[i,i]))
if q = 4:
print (7 Coefficient m (fixed) equals” M)

#HHH#Episode V: Finding the maximum of the fit (or: The Maximum Strikes Back).

print (”>>> Episode V: The Maximum Strikes Back”)

#4##1f loop that bisects the function if it has one or more peaks.
if q =0 or q = 3 or q = 5:

vmax = 0
Smax = 0

elif q=—=1 or q = 2 or q =— 4:
if q =2 or q = 4:

if S[2] > S[1]:
inc = (v[2]+v][1])/2

else:
if S[3] > S[2]:
inc = (v[3]+v][2])/2
else:
inc = v[3]
def bisector (v): ###Function of one variable used by the

bisection algorithm.
return derSfitplsyn (v,p[0],p[1],p[2],p[3],p[4] M)

elif q = 1:
inc = v[0]
def bisector (v): ##H+Function of one variable used by the

bisection algorithm.
return derSfitsyn (v,p[0],p[1],p[2],p[3])
vfitbis = np.linspace(inc,23,1000)
for i in range(len(vfitbis)—1):
if bisector (vfitbis[i+1]) < 0 and bisector (vfitbis[i]) > O0:
ma = vfitbis [i+1]

mi = vfitbis[i]
vmaxerr = (23—inc) /1000  #Stepsize of fitting space.
vmax = spo.bisect (bisector ,mi,ma, xtol=vmaxerr)
if q = 1:

Smax = Sfitsyn (vmax,p[0],p[1],p[2],p[3])
Smaxerr = errSfitsyn (vmax,p[0],p[1],p[2],p[3],pcov)
elif q = 2:
Smax = Sfitplsyn (vmax,p[0],p[1],p[2],p[3],p[4],p[5])
Smaxerr = errSfitplsyn (vmax,p[0],p[1],p(2],5[3],p[4],p[5] , peov)

elif q =— 4:
Smax = Sfitplsyn (vmax,p[0],p[1],p[2],p[3],p[4] . M)
Smaxerr = errSfitplsyn (vmax,p[0],p[1],p[2],p[3],p[4] .M, pcov)
###Printing peak coordinates.
print (?\033[1m” ,” >>> Using scipy.optimize.bisect on {} model gives peak coordinates:
7 . format (modelname[q]) ,” \033[0m”)
if q =0 or q = 3 or q ==5:

print (” A peak could not be determined, for a power law model is without one.”)
else:

print (7 Fit frequency of peak is:” vmax,”GHz")
print (” Uncertainty of frequency peak is:” ,vmaxerr,”GHz")
print (7 Fit flux density of peak is:”  Smax,”mlJy”)

(

Uncertainty of flux peak is:” ,Smaxerr,”mlJy”)

###Episode VI: Creating pdf’s from coeff’s found in Ep.IV (or: Return of the Pdf).
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126 print (”>>> Episode VI: Return of the Pdf”)

427

128| def mpdf(ml,m2,s11,s12,s821,822 ,x): ##Multivariate pdf maker function.
429 y = sps.multivariate_normal ([ml,m2] ,[[s11,s12],[s21,s22]])

430 return y.pdf(x)

431

132 def mpdfax (ml,m2,s11,s22): ###Multivariate pdf grid maker function.
433 upl = (ml+3*np.sqrt(sll)) ; up2 = (m24+3xnp.sqrt(s22))

434 lowl = (ml-3%np.sqrt(sll)) ; low2 = (m2-3xnp.sqrt(s22))

435 x1,x2 = np.mgrid [lowl:upl:(upl-lowl) /1000, low2:up2:(up2—low2)/1000]
436 pos2 = np.empty(x1l.shape + (2,))

137 pos2[:, :, 0] = x1 ; pos2[:, :, 1] = x2

438 return x1,x2,pos2

439

140

aa1 | #HH#HH#EDPisode VII: Plotting all results (or: The Pyplot Awakens).

s12| print (">>> Episode VII: The Pyplot Awakens”)

1aa| ###Plotting data, least squares fits and peaks (Episodes I, IV & V).
415 figl = figure(figsize=(40/2.54, 40/2.54))

16| framel = figl.add_subplot(1,1,1,xscale="1og” ,yscale="log”)

7| framel . set_title (7 {}”.format (names[n]) ,fontsize=30)

1as| framel . set_xlim ([0.25,30])

110| framel . errorbar (v,S, yerr=Serr , ecolor="k” ;marker="%" ;mfc="y” ,ms=10,1s="" ,label="Recorded
data”)

450/ if ¢ = 0 or q =3 or q = 5:

451 print (”Power law has no peak: no peak has been plotted.”)

152] else:

453 framel . errorbar (vmax,Smax, xerr=vmaxerr , yerr=Smaxerr, ecolor="k” ;marker="0" ,mfc="b" ,

ms=15,1s="" Jalpha=0.5,label="Peak”)

454| framel . plot (vfit , fitfun ,”b” ;label="Fitted function (least squares)”)

a5 if q = 2:

456 framel. plot (vfit , Sfitsyn (vfit ,p[0],p[1],p[2],p[3]),"r”,label="Fitted function, power
lawless”)

57| framel . fill_between ( vfit ,fitmax , fitmin , facecolor="blue” ;alpha=0.15)

55| framel . set_xlabel (’Frequency v (GHz)’ ,fontsize=25)

50| framel.set_ylabel (’Flux density S (mlJy)’,fontsize=25)

wo| framel . tick_params (labelsize=25)

s62| ###Plotting 2d multivariate pdf results (Episode VI).
13| fig2 = figure(figsize=(40/2.54, 40/2.54))

164| if q = 0:

465 al,a2,pospos = mpdfax(p[0],p[1],pcov[0,0],pcov([l,1])

466 frame2 = fig2.add_subplot(1,1,1)

167 frame2.contourf(al,a2,mpdf(p[0],p[1],pcov[0,0],pcov[0,1],pcov|[l,0],pcov|[l,1l],pospos)
)

168 frame2.set_xlabel (’coefficient ${}$’.format(coeflist[0+o0s]))

169 frame2.set_ylabel (’coefficient ${}$’.format(coeflist[l+os]))

a70| elif ¢ =1 or q = 5:

471 k=0

472 for i in range(ndim):

473 for j in range(ndim):

474 if j > i:

al,a2, pospos = mpdfax(p[i],p[§],peov[i,i],peov[i,j])

476 frame2 = fig2.add_subplot (2,3 ,k+1)

477 k=k+1

178 frame2.contourf(al,a2,mpdf(p[i],p[j],pcov[i,i],pcov[i,j],pcov][]j,i],pcov]

j»Jl,pospos))
479 frame2.set_xlabel (’coefficient ${}$’.format(coeflist[ifos]))

180 frame2.set_ylabel (’coefficient ${}$’.format(coeflist[j4os]))

is1) elif q = 2:

482 print (? Multivariate pdf’s could not be plotted because of the limitations of
detestable frequentist statistics.”)

s3] elif q = 3:

484 al,a2,pospos = mpdfax(p[0],p[1l],pcov[0,0],pcov[l, 1])

485 frame2 = fig2.add_subplot(1,1,1)

486 frame2 . contourf(al,a2 ,mpdf(p[0],p[1l],pcov[0,0],pcov[0,1],pcov|[l,0],pcov|[l,1],pospos)
)
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487 frame2.set_xlabel(’coefficient ${}$’.format(coeflist[0+os]))

188 frame2.set_ylabel (’coefficient ${}$’.format(coeflist[l+os]))

as0| elif q = 4:

190 k=20

491 for i in range(ndim):

492 for j in range(ndim):

493 if j > i:

s al,a2, pospos = mpdfax(p[i],p[§],peov[i,i],peov[i,j])

495 frame2 = fig2.add_subplot (3,4, ,k+1)

496 k = k + 1

197 frame2.contourf(al,a2 ,mpdf(p[i],p[j],pcov[i,i],pcov[i,j],pcov][]j,i],pcov]
j,il,pospos))

198 frame2.set_xlabel (’coefficient ${}$’.format(coeflist[ifos]))

499 frame2.set_ylabel (’coefficient ${}$’.format(coeflist[j+os]))

500

501 | show ()

502

503| while True:

504 print (?\033[1m” ,”Do you wish to save the data and figures?”,”\033[0m”)

505 answer = input(” :7)

506 if answer.lower().startswith(7y”):

507 print (” Roger”)

508 break

509 elif answer.lower ().startswith(”n”):

510 print (?OKDOEI” )

511 exit ()

512

sis| ###Saving figures to folder.

s14| figl .savefig (7 /Users/users/tjoa/Downloads/ Thesis/Pics/Partl/Synchfits/Synfit{0}_-{1}.png”

.format(n,q))

515 if q = 2:

516 print (?No multivariate pdf’s were made and thus none were saved to directory.”)

517| else:

518 fig2 .savefig(”/Users/users/tjoa/Downloads/Thesis/Pics/Partl/Contourplots/Conplt{0}
{1}.png” .format(n,q))

519

520 ###WTriting values to file.

s21| if @ = 0:

522 with open(” ThesisTable_powerlaw0.dat”, 7a”) as myfile:

523 myfile.write ({0} {1} {2} {3} {4} {5} {6}”.format(n,names[n],p[0],pcov[0,0],p
[1],peov[1,1],” regpls”))

524 myfile. write (7\n")

s250 elif q = 1:

526 with open(” ThesisTable_synchrotron0.dat”, ”a”) as myfile:

527 myfile. write(” {0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13}”.
format (n,names[n],p[0],pcov[0,0],p[1l],pcov[l,1],p[2],pcov[2,2],p[3],pcov([3,3],vmax,
vmaxerr ,Smax , Smaxerr ,) )

528 myfile. write(”\n”)

s20| elif q = 2:

530 with open(” ThesisTable_synch—powlaw0.dat”, 7a”) as myfile:

531 myfile. write ({0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14}
{15} {16} {17} {18}”.format(n,names[n],p[0],pcov[0,0],p[1],pcov(1,1],p[2],pcov[2,2],
p[3],pcov[3,3],p[4],pcov[4,4],p[5],pcov[5,5],vmax, vmaxerr ,Smax, Smaxerr , "MCMC" ) )

532 myfile. write (”\n”)

533 elif q = 3:

534 with open(” ThesisTable_powerlaw0.dat”, 7a”) as myfile:

535 myfile . erte(”{O} {1} {2} {3} {4} {5} {6}”.format (n,names[n],p[0],pcov[0,0],p
[1] ,pcov[1l,1],” agepls”))

536 myfile.write(”\n”)

s37| elif q = 4:

538 with open(” ThesisTable_synch—powlaw0.dat”, 7a”) as myfile:

539 myfile. write ({0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14}
{15} {16} {17} .format (n,names[n],p[0] ,pcov[0,0],p[1],pcov(1,1],p[2],pcov(2,2],p(3],
pcov[3,3],p[4],pcov[4,4] ,M0,vmax, vmaxerr ,Smax, Smaxerr) )

540 myfile. write (”\n”)

sa1| elif q = 5:

542 with open(” ThesisTable_double—powlaw0.dat”, "a”) as myfile:

543 myfile. write (7 {0} {1} {2} {3} {4} {5} {6} {7} {8} {9}”.format(n,names[n],p[0],
pcov[0,0] ,p[1],pcov[l,1],p[2],pcov[2,2],p[3],pcov[3,3]))

544 myfile. write (”\n”)
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B.2 Markov-chain Monte Carlo fitting algorithm

The following script is used to fit SSA GPS+power law spectra with fixed index m using an MCMC
algorithm.

Scripts/Thesis_Sv—-MCMCfit_synpl14-3.py

5| print

#!/usr/bin/env python

from __future__ import division

import numpy as np

import scipy.optimize as spo

import emcee as mc

import corner as co

from matplotlib.pyplot import figure , show

###THIS SCRIPT CAN RUN MCMC ON SYNCHROTRON PLUS POWER LAW SPECTRA ONLY, FOR FIXED m.

#HHHH+Episode 1: Reading Data (or: The Phantom Data).

/ L
1717 117 7

L

L 7

T 7T 7T
print (”>>> Episode I: The Phantom Data”)

###Reading relevant data from (mono—axial) datafile. If uncertainties were unknown, they
have been set to 1.0 to prevent code collapse due to divide by zero errors.

fulllist = np.genfromtxt(” Janskylist.dat” ,dtype=None, usecols =[0],comments="#")

errlist = np.genfromtxt(” Janskylist.dat” ,dtype=None, usecols =[1],comments="#")

####Splitting the superarray into useful , seperate arrays with relevant data.
names, S003,S5014,S048,5084,S149,5224 = np.split (fulllist ,7)
junkerr ,errS003 ,errS014 ,errS048 ,errS084 ,errS149 ,errS224 = np.split (errlist ,7)
names = names. astype (str).flatten ()
S003 = np.asarray (S003.astype(float).flatten ())
S014 = np.asarray (S014.astype( ) )
S048 = np.asarray (S048.astype ( ) )
S084 = np.asarray (S084.astype(float).flatten ())
S149 = np.asarray (S149.astype(float).flatten ())
S224 = np.asarray (S224.astype(float).flatten ())
####Printing all data in a clear—cut table.
print (”\033[1m” ,”index * name * 0.325 % 1.4 % 4.85 x 8.46 % 14.94 % 22.46” ,”\033[0m” ,”
<— Frequency bands”)
for i in range(len (names)):
print (i,”:”7,7\033[1m” ,names[i],”\033[0m” ,”*” ,S003[i],”«” ,S014[i],”*”,S048[i],”*",
SO084[i],”*” ,S149[i],” " ,S224[i])
n = int (input(” Pick GPS source: 7))

####Creating the to be used data arrays.
v000 = [0.325,1.4,4.85,8.46,14.94,22.46]

1 S000 = [S003[n],S014[n],S048 [n],S084[n],S149[n],S224 [n]]

Serr000 = [errS003 [n],errS014[n],errS048 [n],errS084 [n],errS149 [n],errS224 [n]]

v = np.asarray (v000)

S = np.asarray (S000)

Serr = np.asarray (Serr000)

print (” Source designation:”

print (” Frequency bands:” ,v)

print ("Flux densities:” ,S)
(”Flux uncertainties:” ,Serr)

,names [n])

####Plotting the recorded data points for visualisation purposes.

fig = figure(figsize=(10,10))

frame = fig.add_subplot(1,1,1,xscale="log”,yscale="log”)

frame.errorbar (v,S, yerr=Serr , ecolor="k” ;marker="x*" ,mfc="y” ;ms=10,1s="" ,label="Data from
{}” .format (names[n]))

frame.set_xlabel (’Frequency v (GHz) )

frame.set_ylabel ('Flux density S (mlJy)’)

frame.legend ()

show ()

####While—loop to allow user—friendly cancelling of code.
while True:
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59 print (?\033[1m” ,”Do you want to continue?” ,”\033[0m”)

60 answer = input(” 7

61 if answer.lower().startswith("y”):

62 print (" Roger: synch fit and power law online”)

63 break

64 elif answer.lower ().startswith(”n”):

65 print (?OKDOEI” )

66 exit ()

67

o8| #H##H#Setting model type to synchrotron plus power law.

60]q = 2 ; ndim = 5 ; os=0

70| modelname = [”power law” ,”synchrotron”,”synchrotron/power law” ]

71| print (” Number of free parameters:” ndim)

72|M = (np.logl0(0.5%S[1])—np.logl0(S[0]))/(np.logl0(v[1l])—np.logl0O(v[0]))

73

74

s | #HHH##Episode I1: Creating probability functions (or: Attack of the Functions).

76| print (”>>> Episode II: Attack of the Functions”)

77

73| def Sfitsyn (v,S01,v01,k,1):

79 f1 = S01x(v/v01l)x*xk ###First power law

80 f2 = (1-np.ex*x(—(v/v01l)**(l—k)))/(1—np.ex*x*x(—1)) #H+Second power law (exponential
fall off)

81 return f1xf2

82

s3| def Sfitplsyn(v,S01,v01,k,1,A):

84 fl = S01x(v/v01l)xxk ###First power law

85 f2 = (I1—np.exx(—(v/v0l)xx(1-k)))/(1—np.ex*(—1)) ###Second power law (exponential
fall off)

86 f3 = Ax(v)*+M ###Third power law (only when two turnovers
are present)

87 return fl*f2 4 {3

88

so| def errSfitplsyn (v,S01,v01,k,1,A, cov): ###Finding uncertainties function in synch fit
plus power law.

90 C = S01/(np.e—1)

91 C2 = S01/(1—1/np.e)

92 E = np.exx—((v/v0l)*x(1-k))

93 E2 = np.exx(1—((v/v0l)=**(1-k)))

94 dsdS01 = Sfitsyn(v,S01,v01,k,1)/S01

95 dsdv0l = (—=((C2x(1—E)))xkxvx ((v/v0l)*x(k—1)))/(v0l*%x2) — (C2x(l—k)*v«Ex((v/v0l)x*x(1
—1)))/(v0l%x%2)

96 dsdk = C2x(1—E)* ((v/v0l)*x*k)*np.log(v/v0l) — C2%((v/v0l)*%(1))=*np.log(v/v0l)*E

97 dsdl = Cx((v/v0l)*x*1)*np.log(v/v0l)+E2

08 dsdA = vx+M

99 dsdm = Ax (v*+M)=*np.log(v)

100 dsdx = np.asarray ([dsdS01,dsdv01l,dsdk,dsdl,dsdA,dsdm])

101 Svar = 0

102 for i in range(ndim):

103 for j in range(ndim):

104 Svar = Svar + dsdx[i]xdsdx[]j]*cov[i,]]

105 return np.sqrt (Svar)

106

17| def derSfitplsyn(v,S01,v01,k,1,A): ###Derivative of power law/synchrotron
combined fit

108 E = np.exx(—(v/v0l)*x(1-k))

109 C = S01/(v0lx(1—1/np.e))

110 f1 = Cxk* ((v/v0l)x*x(k—1))*(1-E)

111 f2 = Cx(1-k)*((v/v0l)*x(1—1))=«E

112 f3 = AsMxvsx (M-1)

113 return f1 + f2 + {3

114

15| ###Array spanning the fitting space.

16| vfit = np.linspace (0.3,23,1000)

117

ns|###List that names the coefficients for the synchfit.

19| coeflist = [7S_{01}”,”v_{01}”,7k”,”717 ,7A” ["m” ]

120

121
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180

181
182
183
184
185

186

#HHHHEpisode 111: Computing estimates for free parameters. (or: Revenge of the Estimates

3| print (”>>> Episode III: Revenge of the Estimates”)

###Creating some new, useful arrays and indices.
s2 = [S[1],S[2],S[3],8[4] ,S[5]]

v2 = [v[1].v(2] v[3] v[4] .v[5]]

Smi = S000.index (max(S000))

Smi2 = S2.index (max(S2))

####Finding estimates for free parameters.
SOguess = S[4]
vOguess = v [4]
it s2[1] > S2[0]:
| kguess = (np.logl0(S2[1])—np.logl0(0.5%S2[0]))/(np.logl0(v2[1])—np.logl0(v2[0]))
if s2[2] > S2[1]:
| kguess = (np.logl0(S2[2])—np.logl0(0.5%xS2[1]))/(np.logl0(v2[2])—np.loglO(v2[1]))
else:
kguess = 2.0
it $2[4] < S2[3]:
| lguess = (np.logl0(S2[4])-np.logl0(S2[3]))/(np.logl0(v2[4])—np.logl0(v2[3]))
if s2[4] < s2[2]:
| lguess = (np.logl0(S2[4])—np.logl0(S2[2]))/(np.logl0(v2[4])—np.logl0(v2[2]))
‘ seiguess = —1.0
Aguess = S[0]/(v[0]x*=M)

)| estimates = [SOguess,vOguess , kguess,lguess , Aguess ,M]

print (” Parameter estimates:”)
print (np. asarray (estimates))

pg, pgcov = spo.curve_fit (Sfitplsyn ,v,S,[SOguess,vOguess ,h kguess,lguess ,Aguess],sigma=
Serr ,bounds=([0,0.3,0,—-2.5,0],[500,23,2.5,0,100]) ,**{ max_nfev’:1000000})

for i in range(ndim—1):
print (pgli],pgeov[i,i])

print (M)

Sstd = 2.0 ; Slow = 0.0 ; Supp = 500.0 ##H#+Constraints on SO

vstd = 1.0 ; vlow = v[1] ; vupp = 23.0 ####Constraints on v0

kstd = 0.5 ; klow = 0 ; kupp = 2.5 ###Constraints on k

Istd = 0.5 ; llow = —2.5 ; lupp = 0.0 ##+#Constraints on 1
5| Astd = 2.0 ; Alow = 0.0 ; Aupp = 100.0 ####Constraints on A

def normdist (x,mean,std): ###Normal (Gaussian) distribution

expterm = ((x—mean)*%2)/(2*std**2)
f = (1/(std*np.sqrt(2*np.pi)))=*np.e**s—expterm
return f

)| def lnprior (theta): ###1n of prior

S01,v01,k,1,A = theta
if Slow < S01 < Supp and vlow < v0l < vupp and klow < k < kupp and llow < 1 < lupp
and Alow < A < Aupp:
return np.log(normdist (k,pg[2], kstd)*normdist(l,pg[3],lstd))
return —np.inf

def Inlike (theta,v,S, Serr): ##£In of likelihood
S01,v01,k,1 ,A = theta
f1 = S01x(v/v01l)xxk ##H#First power law
f2 = (1—-np.exx(—(v/v01l)*x(l1-k)))/(1—np.e*x*(—1)) ###Second power law (exponential
fall off)
f3 = Ax(v)=*sM ###Third power law (only when two turnovers are

present )

model = f1xf2+f3

inv_sigma2 = 1.0/(Serr*%2)

return —0.5% (np.sum((S—model)**2xinv_sigma2 + np.log(2*np.pi/inv_sigma2)))

def lnprob(theta,v,S,Serr): ##1n of posterior
Ip = Inprior(theta)
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187 if lp = —np.inf:

188 return —np.inf
189 return lp + Inlike (theta,v,S, Serr)
190

191

102| #HH#H##Episode IV: Performing MCMC. (or: A New Method) .

03| print (”>>> Episode IV: A New Method”)

194
105| #H##Setting dimensions, walkers and mainframe.

106| nwalkers = 300

197| p0 = [pg + le—2xnp.random.randn(ndim) for i in range(nwalkers)]

108] sampler = mc. EnsembleSampler (nwalkers, ndim, lnprob, args=(v,S,Serr))

199

200 | #H#Burn—in & reset .

201| print (” Performing burn—in sequence...”)

202| pos, prob, state = sampler.run-mcmc(p0, 200)
203| sampler . reset ()

204

205|#If Inprob0 and newlnprob BOTH return —inf, then Inpdiff is nan. If Inprob0 ALONE
returns —inf, lnpdiff is inf. If newlnprob ALONE returns —inf, Ilnpdiff is —inf.

206
207| ###Running real MCOMC!
208 print (7 Initiating main MCMC algorithm ...”)

200l nsteps = 1000
210| sampler .run_mcmc (pos, nsteps, rstateO=state)

211
212| ###Generating the cornerplots

213/ print (7 Generating cornerplots...”)

214 burnin = 50

215| samples = sampler.chain[:, burnin:, :].reshape((—1, ndim))
216

217

218| #H#H##Episode V: Finding parameter value & covariance matrix (or: The Parameters Strike
Back) .
210| print (”>>> Episode V: The Parameters Strike Back”)

220

221| resolution = 1000

222

223 def MCs(a,i): ###Sampler function .

224 return a.flatchain [:,1]

225

226 def histo(x): ###Histogram maker.

227 hist = np.histogram (x,resolution)

228 counts = hist [0] ; values = hist [1]

229 values = np.delete (values ,resolution)

230 a = np.asarray ([])

231 for i in range(resolution):

232 appa = np. full (counts[i],values[i])

233 a = np.append(a,appa)

234 return a,counts,values

235

236| ###Creating total probability array from six dimensions, extracting maximum probability
index.

237| Inprobarr = sampler. flatlnprobability

23s| mindex = np.argmax(lnprobarr)

239

240| ###Filling the parameter array and the covariance matrix.
241 phist = []
242/ p = np.zeros (ndim)

243 print (7 \033[1m”"+” >>> Using MCMC on {} model:”.format(modelname[q]) ,” \033[0m”)
244| for 1 in range(ndim):

245 hishis = histo (MCs(sampler ,i))

246 phist .append(hishis [0])

247 p[i] = MCs(sampler,i) [mindex]

248

210| phist = np.asarray (phist)

o| pcov = np.cov(phist)

2| for 1 in range(ndim):
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253 print (7 Coefficient” ,coeflist [itos],” equals” ,p[i])

254 print (” Uncertainty of coefficient”,coeflist [i+os],” equals” ;np.sqrt(pcov[i,i]))
255 print (7 Coefficient m equals:” M)

256

25

s| #H#H###Episode VI: Finding the maximum of the fit (or: Return of the Maxima).

250| print (”>>> Episode VI: Return of the Maxima”)
61| ###Array spanning the bisection space, hence excluding the minimum to get the turnover
as return from scipy.bisect.

262| if S[2] > S[1]:

263 inc = (v[2]+v][1])/2

264| else :

265 if S[3] > S[2]:

266 inc = (v[3]+v][2])/2
267 else:

268 inc = v[3]

270l vfitbis = np.linspace (inc,23,1000)

271

272 def bisector (v): ##HFunction of one variable used by the bisection
algorithm .

273 return derSfitplsyn (v, *p)

274

275| ###1f loop that bisects the function if it has one or more peaks.

27| for 1 in range(len(vfitbis)—1):

277 if bisector(vfitbis[i+41]) < 0 and bisector (vfitbis[i]) > O0:

278 ma = vfitbis[i+1]

279 mi = vfitbis[i]

280/ vimax = spo. bisect (bisector ,mi,ma)

2s1| vmaxerr = (23—inc) /1000 #Range and stepsize of fitting space.

282 Smax = Sfitplsyn (vmax,*p)

283 Smaxerr = errSfitplsyn (vmax, *p,pcov)

284

285 | #H##Printing peak coordinates.

286 print (”\033[1m” ,” >>> Using scipy.optimize.bisect on {} model gives peak coordinates:

7 . format (modelname[q]) ,” \033[0m”)

287 print (7 Fit frequency of peak is:” ,vmax,”GHz”)

oss| print (7 Uncertainty of frequency peak is:” ,vmaxerr,”GHz")
oso| print (7 Fit flux density of peak is:” ,Smax,”mly”)

200| print (” Uncertainty of flux peak is:”,Smaxerr,”mly”)

203| #H#H#H##Episode VII: Plotting all results (or: The Pyplot Awakens).

204| print (">>> Episode VII: The Pyplot Awakens”)

206| fitfun = Sfitplsyn (vfit ,*p)

207| fitfun2 = Sfitplsyn (vfit ,=*pg)

20s| fitmax = fitfun + errSfitplsyn (vfit ,*p,pcov)
200| fitmin = fitfun — errSfitplsyn (vfit ,*p,pcov)
300
so1|###Plotting data, least squares fits and peaks (Episodes I, IV & V).
s02| figl = figure(figsize=(40/2.54, 40/2.54))

303| framel = figl.add_subplot(1,1,1,xscale="1log” ,yscale="log”)

s04| framel. set_title (?{}”.format (names[n]) ,fontsize=30)

305| framel . set_xlim ([0.25,30])

s06| framel . errorbar (v,S,yerr=Serr ,ecolor="k” ;marker="%" ,mfc="y” ,ms=10,1s="" ,label="Recorded
data”)

s07| framel . errorbar (vmax, Smax, xerr=vmaxerr , yerr=Smaxerr, ecolor="k” ;marker="0" ,mfc="b” ;ms
=15,1s="” ,;alpha=0.5,label="Peak”)

s0s| framel . plot (vfit , fitfun ,”b” ,label="Fitted function (MCMG-max)”)

s00| framel . plot (vfit , fitfun2 ,”r” ;label="Fitted function (least squares)”)
s10| framel . fill_between ( vfit ,fitmax , fitmin , facecolor="blue” ,alpha=0.15)
s11| framel . set_xlabel (’Frequency v (GHz)’, fontsize=25)

s12| framel.set_ylabel (’Flux density S (mlJy)’,fontsize=25)

s13| framel . tick_params (labelsize=25)

314

315 | ###Plotting cornerplots
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316| fig2 = co.corner (samples, labels=["$S_{01}$”,”$v_{01}3%”,78k$” ,”$18” ,”$AS$” ,”$m$” ])

sis| ##H#Plotting MCMC results (histograms for each coefficient) (Episode V).
s10| fig3 = figure(figsize=(40/2.54, 40/2.54))
320/ for 1 in range(ndim):

321 frame3 = fig3.add_subplot(3,2,i+1)

322 frame3. hist (MCs(sampler , i) ,normed=True, bins=200,alpha=0.8)
323 frame3.axvline (x=p[i],linewidth=2,color="r")

324 frame3 . axvline (x=pg[i],linewidth=1,color="g")

325 frame3.set_xlabel (" coefficient {}”.format(coeflist [i+os]))
326 frame3.set_ylabel (" walker counts”)

325| show ()

330| while True:

331 print (?\033[1m” ,”Do you wish to save the data and figures?”,”\033[0m”)
332 answer = input(” 7

333 if answer.lower ().startswith(7y”):

334 print (” Roger”)

335 break

336 elif answer.lower().startswith(”n”):

aa7 print (”OKDOEI" )

338 exit ()

s40| ###Saving figures to folder.

sa1| figl .savefig(”/Users/users/tjoa/Downloads/ Thesis/Pics/Partl/Synchfits/Synfit{0}—{1}_{2}.

png” . format (names[n],n,q))

sa2| fig2 .savefig(”/Users/users/tjoa/Downloads/Thesis/Pics/Partl/Contourplots/Conplt{0}—{1}_
{2}.png” . format (names[n],n,q))

fig3.savefig (”/Users/users/tjoa/Downloads/Thesis/Pics/Partl/MCMCHistograms/Histogram
{0}—{1}_{2}.png” . format (names[n],n,q))

s

344
345
346 | ###WTriting values to file.

347| with open(” ThesisTable_synch—powlaw4.dat”, ”7a”) as myfile:

348 myfile.write(”{0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14} {15}
{16} {17}” .format (n,names|n],p[0],pcov[0,0],p[1],pcov[l,1],p[2],pcov[2,2],p[3],pcov
[3,3],p[4],pcov[4,4] ,M,”N/A” ;vmax, vmaxerr ,Smax, Smaxerr) )

349 myfile. write(”\n”)

B.3 K-z relation fitting algorithm

The following script is used to fit the K-z relation and obtain redshifts from our sample.

Scripts/Thesis_Kz-relation_v13—1.py

#!/usr/bin/env python

from __future__ import division

import numpy as np

import scipy.stats as sps

import numpy.random as npr

6| from matplotlib.pyplot import figure , show

7| ##THIS SCRIPT COMPUTES STD IN LOGI10(z) AND z FROM K-BAND MAGNITUDES.

g W N e

10| #HHH#H#Episode 1: Reading Data (or: The Phantom Data) .

11| print (”>>> Episode I: The Phantom Data”)

13| ###Reading relevant data from datafile.

11| datanames = np.genfromtxt (” fulltable .dat” ,dtype=str , usecols =[0],comments="#")

15| zlist = np.genfromtxt (” fulltable.dat” ,dtype=float ,usecols=[1],comments="#")

16| zstdlowlist = np.genfromtxt(” fulltable.dat” ,dtype=float ,usecols =[2],comments="#")
17| zstdupplist = np.genfromtxt(” fulltable.dat” ,dtype=float , usecols =[3],comments="#")
15| Klist = np.genfromtxt (” fulltable.dat” ,dtype=float , usecols =[4],comments="#")

10| Kstdlist = np.genfromtxt(” fulltable.dat” ,dtype=float ,usecols =[5],comments="#")

20

21| ###Printing all data in a clear—cut table.
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64

print (?\033[1m” ,”index =* source * zZ xzstdlow xzstdup * K-mag x K—std””\033[0m’

for i in range(len(datanames)):
print (i,” :7,7\033[1m” ,datanames [i],”\033[0m” ,” {0} {1} {2} {3} {4}7.
format (zlist [1],zstdlowlist [i],zstdupplist [i],Klist[i], Kstdlist[i]))

#HH##Episode I1: Defining the functions and general constants (or: Attack of the
N ININININi /] IINIRINININIEN] /1 L)L) )
Functlons) - A A A A A

print (”>>> Episode II: Attack of the Functions”)

###Function block.
def Klogzrel(logz): ###,log10(z)—relation function
return 17.37 4+ 4.53xlogz + 0.31xlogz*x*2

def Kazrel(z): ##HHK  z—relation function
return 17.37 + 4.53%np.logl0(z) + 0.31%(np.logl0(z))*x2

#HH#Specifying general constants and limits of the fit.
stdK1 = 0.593

logzmin = —4 ; logzmax = np.logl0(10)

ranlen = 5000000

HH#Episode I11: Generating fit line and random data (or: Revenge of the Randomness).

print (”>>> Episode III: Revenge of the Randomness”)

###Generating plain, idealized K-logl0(z) relation.
logzarr = np.linspace (logzmin ,logzmax ,ranlen)
Karr = Klogzrel(logzarr)

###Generating the random points around idealized K-loglO(z) relation.
logzran = (logzmax—logzmin)*npr.random(ranlen)+logzmin
Kran = np.zeros(ranlen)
for i in range(ranlen):
Kran[i] = npr.normal(Klogzrel(logzran[i]) ,stdK1)

#HH##Episode IV: Finding redshift uncertainties in data (or: A New Data).

TININTNIN) TR TININININ) LU 1)) NIRRTy, L1

17 T At A i 11 1 1 1 11 1 11 11 11 1 1 1t 1 1 111111 117

print (">>> Episode IV: A New Data”)

def uberfunctionarr (DATA,DATAerr): ###Function that computes distribution around an
array of Ksamples
#HH#Specifying arrays and values to be used in loglO(z)/z uncertainty computation
loop as empty zero arrays.

Ksample = DATA #HData sample of K points

Kdataerr = DATAerr ###A data uncertainties

dic = {} ###Empty dictionary for loglO(z) values, to be
filled in loop

dic2 = {} ##H##Empty dictionary for z values, to be filled
in loop

logzsample = np.zeros (len (Ksample)) ###Sample of logl0(z) points

zsample = np.zeros(len (Ksample)) ###Corresponding sample of z points
stdK = stdK1l*np.ones(len (Ksample)) ##Array of std_ K values of sample
length

stdlogz = np.zeros (len (Ksample)) ###Empty std_logl0(z) array

stdzlow = np.zeros (len (Ksample)) ###Empty std_-z (lower bound) array
stdzupp = np.zeros (len (Ksample)) ###Empty std_z (upper bound) array

step = 0.05 ###H#+Step size for the loop

###Loop that computes the uncertainty in loglO(z) and z at some z using an algorithm
that takes samples from a small interval , then creates the corresponding
distribution and returns the std in logl0O(z) and z.
for i in range(len(Ksample)):
Kupp = Ksample[i]+step ; Klow = Ksample[i]—step
###Upper and lower interval bounds
dic[”logzdist_{}”.format(i)] = np.asarray ([])
###Creating new logl0(z) dictionary entry
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def

dic2 [ zdist_{}” .format(i)] = np.asarray ([])
###Creating new z dictionary entry
for j in range(ranlen):
if Kran[j] > Klow and Kran[j] < Kupp:
###H#+Acceptance condition
dic[”logzdist_-{}”.format(i)] = np.append(dic[”logzdist_{}”.format(i)],
logzran|[j]) #H#Appending accepted values to corresponding loglO(z) dictionary
entry
dic2[”zdist_{}” .format(i)] = np.append(dic2[” zdist_{}”.format(i)],10x%x*
logzran|[j]) ##H#Appending accepted values to corresponding z dictionary entry
data = dic[”logzdist_{}”.format(i)]
####Renaming dictionary entry for easy handling
data2 = dic2[”zdist-{}”.format(i)]
###Renaming dictionary entry for easy handling

###Fitting a normal distribution to dictionary data.

x = np.linspace (data.min(), data.max(), 100) ###Creating regular
possible value space

param = sps.norm. fit (data) #####Fitting normal parameters
to the data with the mean at the corresponding logl0(z) value.

pdf_fitted = sps.norm.pdf(x, *param) ####Fitting a normal
distribution with said parameters to the interval

prob = pdf_fitted /pdf_fitted .sum() ###Normalizing pdf

##H#Fitting a log—normal distribution to dictionary 2 data.

x2 = np.linspace(data2.min(), data2.max(), 100) ###Creating
regular possible value space

param2 = sps.lognorm. fit (data2) ###Fitting log—mormal
parameters to the data with the mean at the corresponding z value.

pdf_fitted2 = sps.lognorm.pdf(x2, xparam2) ##H#Fitting a log—
normal distribution with said parameters to the interval

prob2 = pdf_fitted2/pdf_fitted2 .sum() ###Normalizing pdf

##Computing required statistics from dictionary data.

logzmu = x.dot(prob) ###Computing mean in loglO(z
)

logzsample [i] = logzmu ###Entering into ex—
loop logz array

zmu = 10%xxlogzmu ##Computing mean in z

zsample[i] = zmu ###Entering into ex—loop =z
array

stdlogzl = np.sqrt (np.power(x,2).dot(prob) — logzmuxx2) ###Computing std
in logl0(z) (sqrt(data_-logz"2 — mu_logz"2))

stdlogz [i] = stdlogzl ###Entering into ex—loop
stdlogz array

stdzlowl = 10x*x*(logzmu—stdlogzl )—zmu ###Computing std lower
bound in z 10" (mu_logz—std_-logz)—mu.z

stdzlow [i] = —lkstdzlowl ###Entering into ex—loop
stdzlow array

stdzuppl = 10x*x*(logzmu+stdlogzl )—zmu ####+Computing std upper
bound in z 10" (mu_logz+std_-logz)—mu_z

stdzupp [i] = stdzuppl ###FEntering into ex—loop

stdzipp array
return (Ksample , Kdataerr ,logzsample ,stdlogz ,zsample , stdzlow , stdzupp , dic ,dic2)

uberfunctionflt (DATA,DATAerr): ###Function that computes distribution around a
single Ksample

##Specifying arrays and values to be used in loglO(z)/z uncertainty computation
loop as empty zero arrays.

Ksample = DATA ###Data sample of K points

Kdataerr = DATAerr ###A data uncertainties

stdK = stdK1 #H#Array of std_ K values of sample length
logzdist = np.asarray ([]) ###Set of logz—values

zdist = np.asarray ([]) ##Set of z—values

step = 0.05 F#H#H#EStep size

###Computing the uncertainty in loglO(z) and z at some z using an algorithm that
takes samples from a small interval , then creating the corresponding distribution
and returing the std in loglO(z) and z.

Kupp = Ksamplet+step ; Klow = Ksample—step ####+Upper and lower
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interval bounds
for j in range(ranlen):

if Kran[j] > Klow and Kran[j] < Kupp: ##H#+Acceptance

condition

logzdist = np.append(logzdist ,logzran|[j]) ###Appending accepted
values to corresponding logl0O(z) dictionary entry

zdist = np.append(zdist ,10**xlogzran[j]) ###Appending accepted
values to corresponding z dictionary entry
data = logzdist ###Renaming dictionary entry
for easy handling
data2 = zdist ####Renaming dictionary entry for

easy handling

####Fitting a normal distribution to data.

x = np.linspace (data.min(), data.max(), 100) ###Creating regular
possible value space

param = sps.norm. fit (data) ###Fitting normal
parameters to the data with the mean at the corresponding loglO(z) value.

pdf_fitted = sps.norm.pdf(x, *param) ####Fitting a normal
distribution with said parameters to the interval

prob = pdf_fitted/pdf_fitted .sum() ###Normalizing pdf
###Fitting a log—nmormal distribution to data2.

x2 = np.linspace (data2.min(), data2.max(), 100) ###Creating regular
possible value space

param2 = sps.lognorm. fit (data2) ###Fitting log—normal
parameters to the data with the mean at the corresponding z value.

pdf_fitted2 = sps.lognorm.pdf(x2, xparam?2) ###Fitting a log—
normal distribution with said parameters to the interval

prob2 = pdf_fitted2/pdf_fitted2 .sum() ###Normalizing pdf
###Computing required statistics from data.

logzmu = x.dot (prob) ###Computing mean in loglO(z
)

zmu = 10*xlogzmu ###Computing mean in z
stdlogzl = np.sqrt(np.power(x,2).dot(prob) — logzmux**2) ##H##Computing std in
logl0(z) (sqrt(data_-logz"2 — mu_logz"2))

stdzlowl = 10xx*(logzmu—stdlogzl )—zmu ##H+Computing std lower bound
in z 10" (mu_logz—std_logz )—mu_z

stdzuppl = 10x**(logzmu+stdlogzl )—zmu ##H#+Computing std upper bound

in z 10" (mu_logz+std_logz )—mu_z
return (Ksample , Kdataerr ,logzmu, stdlogzl ,zmu, stdzlowl ,stdzuppl)

newKlist = []

newKerrlist = []
newdatanames = []
for i in range(len(Klist)):
if Klist[i] = 0.0:
print (”Entry” ,i,”has no known K-band magnitude.”)
else:
UBER = uberfunctionflt (Klist [i], Kstdlist[i])
zlist [i] = UBER[4]
zstdlowlist [i] = np.abs(UBER[5])
zstdupplist [i] = UBER[6]
newKlist . append (Klist [i])
newKerrlist . append (Kstdlist [i])
newdatanames . append (datanames[i])
newKarr = np.asarray (newKlist)
newKerrarr = np.asarray (newKerrlist)
fdatab5 = uberfunctionarr (newKarr,newKerrarr)

####Printing all data in a clear—cut table.
print (?\033[1m” ,”index =* source * z xzstdlow xzstdup % K-mag x K—std””\033[0m”

for i in range(len (datanames)):
print (i,” :7,7\033[1m” ,datanames [i],”\033[0m” ,” {0} {1} {2} {3} {4}7.
format (np.round (zlist [i],4) ,np.round(zstdlowlist[i],4) ,np.round(zstdupplist[i],4),
Klist [i], Kstdlist [i]))
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73| #H#H#H##Episode V: Plotting results (or: The Pyplot Strikes Back).

4| print (">>> Episode V: The Pyplot Strikes Back”)

6| ###Plot no.1l: K—band magnitude versus loglO(z) via idealized K,logl0(z)—relation and
simulated data around it.

77| figl = figure(figsize=(40/2.54, 40/2.54))

75| framel = figl.add_subplot(1,1,1)

17o| framel . set_title ("K—band magnitude vs loglO(z)”,fontsize=15)

50| framel . plot (logzran ,Kran, 'g.’ ,alpha=0.1,label="Simulated random distibution”)

1s1| framel . plot (logzarr ,Karr,linewidth=5,alpha=0.5,label="1dealized K,logl0(z)—relation”)
152| framel . errorbar (fdatab [2],fdatab [0] ,xerr=fdatab [3], yerr=fdatab[1l],ecolor="k” ,elinewidth
=3,marker="%" ;mfc="y” ;ms=10,1s="" ,label="Sample K,z")

183 framel . set_xlabel (’Redshift logl0(z)’)

54| framel . set_ylabel ("K—band magnitude K)

1s5] framel . legend (loc=0)

186
187| ###Plot no.2: K—band magnitude versus z via idealized K,z—relation and simulated data
around it .

15| fig2 = figure(figsize=(40/2.54, 40/2.54))

1s0| frame2 = fig2.add_subplot(1,1,1)

00| frame2.set_-title ("K-band magnitude vs 2”7 ,fontsize=15)

101| frame2. plot (10*x*xlogzran ,Kran, 'g.’ ,alpha=0.1,label="Simulated random distibution”)

192| frame2 . plot (10*xlogzarr ,Karr,linewidth=5,alpha=0.5,label="1dealized K,z—relation”)

103 assymerr3 = [fdatab [5],fdatab [6]]

04| frame2 . errorbar (fdatab [4] ,fdatab [0] , yerr=fdatab[1], xerr=assymerr3 ,ecolor="k” ;elinewidth
=3,marker="%" ;mfc="y” ;ms=10,1s="" ,label="Sample K,z")

105| frame2 . set_xlabel (’Redshift z")

96| frame2 . set_ylabel (’K-band magnitude K)

197| frame2 . legend (loc=0)

10| ##Plot no.7: (data, 5 arcsec) loglO(z) samples at some value of K and loglO(z), showing
normal distributions.

o| fig7 = figure(figsize=(40/2.54, 40/2.54))

for i in range(len(fdata5[2])):

)
)1
202 frame7 = fig7.add_subplot(4,4,i+1)
203 data = fdatab [7][”logzdist_{}”.format (i)]
204 x = np.linspace (data.min(), data.max(), 100)
205 param = sps.norm. fit (data, floc=fdatab[2][i])
206 pdf_fitted = sps.norm.pdf(x, *param)
207 frame7.set_title (”{}”.format (newdatanames[i]) ,fontsize=22)
208 frame7.plot (x, pdf_fitted , color="m’)
209 frame7.axvline (x=fdata5 [2][i],linewidth=3,color="r") #HH##HMean
210 frame7.axvline (x=fdatab [2][i]—fdatab [3][i],linewidth=2,color="k’)  ###Std_logz
lower
211 frame7.axvline (x=fdatab [2][i]4+fdatab [3][i],linewidth=2,color="k’)  ###Std_logz
upper
212 frame7. hist (data ,normed=True, bins=50,alpha=0.3)
213 frame7 . tick_params(labelsize=18)

214| fig7 . tight_layout ()
215
216| ###Plot no.8: (data, 5 arcsec) z samples at some value of K and z, showing lognormal
distributions.

17| fig8 = figure(figsize=(40/2.54, 40/2.54))

15| for 1 in range(len (fdatab[4])):

9 frame8 = fig8.add_subplot(4,4,i+1)

0 data = fdatab [8][”zdist_{}”.format(i)]

1

21 x = np.linspace (data.min(), data.max(), 100)

22 param = sps.lognorm. fit (data, floc=0)

23 pdf_fitted = sps.lognorm.pdf(x, *param)

224 frame8.set-title ("{}”.format (newdatanames[i]) ,fontsize=22)

225 frame8. plot (x, pdf_fitted , color="m’)

226 frame8 . axvline (x=fdatab [4][i],linewidth=3,color="1r") #HHMedian

227 frame8 . axvline (x=fdatab [4][i]—fdata5 [5][i],linewidth=2,color="k") ###Std_z lower
228 frame8 . axvline (x=fdatab [4][i]+fdatab [6][i],linewidth=2,color="k’)  ###Std_z upper
229 frame8. hist (data ,normed=True, bins=50,alpha=0.3)

30 frame8. tick_params(labelsize=18)
231| fig8 . tight_layout ()

233| show ()
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B.4 Skymap creator

The following script is used to obtain skymaps of the source positions and predicted densities of GPS.

Scripts/Thesis_synthesis3_v2-4.py

#!/usr/bin/env python

from __future__ import division

import numpy as np

import numpy.random as npr

import scipy.optimize as spo

import fnmatch as fm

from matplotlib.pyplot import figure, show
from mpl_-toolkits.mplot3d import Axes3D
###THIS SCRIPT COMPUTES fun.

H#H#H#Synthesis 1: Reading Data.

print (”>>> Synthesis I7)

5| ###Reading Tjoa&McKean’s name and data (because it’s largely monocolumnar, this takes

some time and messy coding).

;| datOTJOA = np. genfromtxt (7 poslist —McKean. dat” ;dtype=None, usecols =[0] ,comments="#")
7| dat1TJOA = np. genfromtxt (” poslist —McKean. dat” ,dtype=None, usecols =[1],comments="#")

dat2TJOA = np.genfromtxt(” poslist -McKean.dat” ,dtype=None, usecols =[2],comments="#")

namesTJOA ,RAhrsTJOA , decdegTJOA = np.split (datOTJOA,3)
namesTJOA = namesTJOA. astype(str).flatten ()

RAhrsTJOA = np.asarray (RAhrsTJOA . astype(float). flatten ())
decdegTJOA = np.asarray (decdegTJOA . astype(float). flatten ())

poeplTJOA ;RAmMInTJOA, decminTJOA = np.split (datlTJOA,3)
RAmMinTJOA = np.asarray (RAminTJOA. astype (float ). flatten ())
decminTJOA = np. asarray (decminTJOA . astype (float).flatten ())

o| poep2TJOA ;RAsecTJOA , decsecTJOA = np.split (dat2TJOA,3)

RAsecTJOA = np.asarray (RAsecTJOA. astype(float).flatten ())
decsecTJOA = np.asarray (decsecTJOA .astype(float).flatten ())

###Reading Tjoa&McKean’s synch and synch+4powlaw data for spectral peaks.

purenamesTJOA = np.genfromtxt (” ThesisTable_synchrotronNEW .dat” ,dtype=str , usecols=[1],
comments="#")

combinamesTJOA = np.genfromtxt (” ThesisTable_synch—powlawNEW . dat” ,dtype=str , usecols=[1],
comments="#")

;| purevmaxTJOA = np.genfromtxt (” ThesisTable_synchrotronNEW .dat” ,dtype=float ,usecols =[10],

comments="#")

7| combivmaxTJOA = np.genfromtxt (” ThesisTable_synch—powlawNEW . dat” ,dtype=float ,usecols

=[14],comments="#")
vmaxTJOA = np.concatenate ((purevmaxTJOA , combivmaxTJOA))

30| pureSmaxTJOA = np. genfromtxt (” ThesisTable_synchrotronNEW .dat” ,dtype=float , usecols=[12],

comments="#")

combiSmaxTJOA = np.genfromtxt(” ThesisTable_synch-—powlawNEW . dat” ,dtype=float ,usecols
=[16],comments="#")

SmaxTJOA = np.concatenate ((pureSmaxTJOA ,combiSmaxTJOA))

#HH#HH#Synthesis I1: Reloaded. Computation of results.
1

L STSTISINISY, STSTININISY, HETSI,
T 1T T

7 7 7 7

print (”>>> Synthesis II: Reloaded”)

7| def posmaker (RAhrs,RAmin, RAsec,decdeg ,decmin,decsec): ###Function that computes the RA

and dec positions in fractional hours and degrees respectively for plotting purposes
RApos = RAhrs + RAmin/60 + (RAsec/60) /60

decpos = decdeg + decmin/60 + (decsec/60)/60

return RApos, decpos

def hidimpos(RA,dec): ####Function that projects RA and dec
data onto a sphere
x = np.cos(dec*np.pi/180)xnp.sin (15*RA*np.pi/180)
y = np.cos(dec*np.pi/180)*np.cos(15+«RA*np. pi/180)
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55 z = np.sin(dec*np.pi/180)
56 return x,y,z

55| def areacalc (RAlow,RAupp, declow ,decupp):

59 declow = declows*np.pi/180 ; decupp = decupp#np.pi/180

60 RAlow = 15%xRAlowxnp.pi/180 ; RAupp = 15*RAupp*np.pi/180
61 return (RAupp — RAlow)* (np.sin (decupp) — np.sin(declow))

63| ###H#Computing the positions of Tjoa&McKean’s, Marlow’s and Willott’s sources.
64| posTJOA = posmaker (RAhrsTJOA ,RAminTJOA, RAsecTJOA , decdegTJOA ,decminTJOA , decsecTJOA)

66| #H##H#Computing positions of pure and combined samples
67| pureRATJOA = []

63| puredecTJOA = []

6o| for 1 in range(len (purenamesTJOA)):

0 for j in range(len (namesTJOA)):

if fm.fnmatch (purenamesTJOA[i],”{}”.format (namesTJOA[j])) is True:
j
[

1)
ih

pureRATJOA . append (posTJOA [0] |

puredecTJOA . append (posTJOA [1]
pureRATJOA = np. asarray (pureRATJOA)
puredecTJOA = np.asarray (puredecTJOA)

@ N =

combiRATJOA = []
combidecTJOA = []
for i in range(len (combinamesTJOA)):
for j in range(len (namesTJOA)):
if fm.fnmatch (combinamesTJOA[i],”{}”.format (namesTJOA[j])) is True:
combiRATJOA . append (posTJOA [0][]])
combidecTJOA . append (posTJOA [1][j])
combiRATJOA = np. asarray (combiRATJOA)
5| combidecTJOA = np.asarray (combidecTJOA)

0 o 0 0 00 ® N N N N 4 N 4 4N
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o

7| peaknamesTJOA = list (purenamesTJOA)

peaknamesTJOA . extend (combinamesTJOA)

peakSmaxTJOA = np.concatenate ((pureSmaxTJOA , combiSmaxTJOA))
90| peakRATJOA = np.concatenate ((pureRATJOA,combiRATJOA) )
peakdecTJOA = np.concatenate ((puredecTJOA ,combidecTJOA))

0 o
o =

3

9

92
o3| #HH#Computing Mirach and Grumium’s positions as reference material for skymaps.
94| Mirachpos = posmaker (1.0,9.0,43.92388,35.0,37.0,14.0075)

95| Grumiumpos = posmaker (17.0,53.0,31.72962,56.0,52.0,21.5143)

96
or| ###Loop that splits Tjoa&McKean’s data (all of it) into its two component fields of view
(1<RA<2, 35<dec<45 low and 17<RA<18, 55<dec<60 high).

os| RAhigh = [] ; dechigh = []

90| RAlow = [] ; declow = []

00| for 1 in range(len (posTJOA[0])):

101 if posTJOA[O][i] > 2.0:

102 RAhigh . append (posTJOA[0][1i])
103 dechigh . append (posTJOA [1][i])
104 elif posTJOA[O][i] < 2.0:

105 RAlow. append (posTJOA [0][1i])
106 declow . append (posTJOA [1][i])

107
108| ###Loop that splits Tjoa&McKean’s data (only peaked) into its two component fields of
view (1<RA<2, 35<dec<45 low and 17<RA<18, 55<dec<60 high).

100 RAhighp = [] ; dechighp = [] ; Smaxhigh = []

10| RAlowp = [] ; declowp = [] ; Smaxlow = []

11| for 1 in range (len (peakRATJOA)):

112 if peakRATJOA[i] > 2.0:

113 RAhighp . append (peakRATJOA[1i])

114 dechighp .append (peakdecTJOA[1i])
115 Smaxhigh . append (peakSmaxTJOA [i])
116 elif peakRATJOA[i] < 2.0:

117 RAlowp. append (peakRATJOA[i])

118 declowp . append (peakdecTJOA[i])

119 Smaxlow . append (peakSmaxTJOA[i])
120
121 def intnumdensflux (Slow,Sp):
122 k=20
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for i in range(len(Sp)):
if Sp[i] >= Slow:
k=k +1
else:
print (”denied”)
return k

def difnumdensflux (Slow ,Supp,Sp):
k=0
for i in range(len(Sp)):
if Sp[i] >= Slow and Sp[i] <= Supp:
k=k+1
else:
print (”denied”)
return k

###Computing densities for both fields and subsequently computing the total estimated
amount of sources of this calibre.

RAlowhigh = 17 ; RAupphigh = 18 ; declowhigh = 55 ; decupphigh = 60

RAlowlow = 1 ; RAupplow = 2 ; declowlow = 35 ; decupplow = 45

areahigh = areacalc (RAlowhigh,RAupphigh, declowhigh ,decupphigh)
arealow = areacalc (RAlowlow,RAupplow,declowlow ,decupplow)
denshigh = len (RAhigh)/areahigh

;| denslow = len (RAlow) /arealow
densav = (denshigh+denslow) /2
totalsources = 4x*np.pixdensav
print (”Area of high RA field is:” ,areahigh ,”steradians”)
print (”Area of low RA field is:”,arealow,”steradians”)
print (” Source density in high RA field is:”,denshigh,”per steradian”)
print (” Source density in low RA field is:”,denslow,”per steradian”)
print (” Source density average is:” ,densav,”per steradian”)

print (”So total amount of observable sources in the sky with flux at 5 GHz of 750 mly
should be:” totalsources)

###Computing number density per steradian as a function of peak flux (integrated method)

Slowl = np.asarray ([20.0,40.0,60.0,80.0])
nsrinthigh = []
nsrintlow = []
for i in range(len(Slowl)):
x1 = intnumdensflux (Slowl [i], Smaxhigh)
x2 = intnumdensflux (Slowl [i],Smaxlow)
nsrinthigh .append(x1)
nsrintlow .append (x2)
nsrinthigh = np.asarray(nsrinthigh)
nsrintlow = np.asarray (nsrintlow)
densSinthigh = nsrinthigh/areahigh
densSintlow = nsrintlow /arealow

)| densSintav = (densSinthigh+densSintlow) /2

totalSintsources = 4x%np.pixdensSintav
projSintsources = [totalSintsources[0]—totalSintsources[1],totalSintsources[1]—
totalSintsources [2], totalSintsources[2] —totalSintsources[3], totalSintsources [3]]

###Computing number density —peak flux convolution per steradian as a function of peak
flux (differential method).

Smed = np.asarray ([30.0,60.0])

Sbinsize = np.asarray ([10.0,20.0])

Slow = Smed—Sbinsize

Supp = Smed+Sbinsize

nsrdifhigh = []

nsrdiflow = []

for i in range(len(Smed)):
x1 = difnumdensflux (Slow[i],Supp[i],Smaxhigh)
x2 = difnumdensflux (Slow [i],Supp[i],Smaxlow)
nsrdifhigh .append(x1)
nsrdiflow .append(x2)

nsrdifhigh = np.asarray(nsrdifhigh)

nsrdiflow = np.asarray (nsrdiflow)

(0]




nsrdifav = nsrdifhigh+nsrdiflow
densSdifhigh = nsrdifhigh/areahigh

)| densSdiflow = nsrdiflow /arealow
densSdifav = nsrdifav /(areahigh+arealow)
projSdifsources = 4*np.pixdensSdifav

print (nsrdiflow)
print (nsrdifhigh)

##H+Snellen data.

SmedSNEL = np.asarray ([75,150,300])

plotSpeakSNEL = np.asarray ([1.05089459,2.37790302,5.88500972])
SbinsizeSNEL = np.asarray ([25.0,50.0,100.0])

plotSerrSNEL = np.asarray ([0.33232205,0.84071567,2.2243246])

203 | #HHHWENSS data .
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204| SmedVRIES = np.asarray ([4000])

5| plotSpeakVRIES = np.asarray ([22.0])
;| SbinsizeVRIES = np.asarray ([2000.0])
plotSerrVRIES = np.asarray ([10.0])

o| ##Computing 3d positions on sky for star orb.
p3dTJOA = hidimpos(—posTJOA[0] ,posTJOA[1])

o| ###Computing 3d positions of predicted sources (locations are not actually physical but
the density is).

Phi = 2*np. pi*npr.random(size=totalsources)/15%180/np. pi

Theta = np.arccos (2xnpr.random(size=totalsources)—1)*180/np.pi—90

p3dPRED = hidimpos(—Phi, Theta)

Phi0 = 2x*np. pixnpr.random(size=totalsources—totalSintsources [0]) /15%180/np. pi
Theta0 = np.arccos(2xnpr.random(size=totalsources—totalSintsources [0])—1)*180/np.pi—90
p3dPREDO = hidimpos(—Phi0, Theta0)

Phi2 = 2x*np. pi*npr.random(size=projSintsources [0]) /15%x180/np. pi
Theta2 = np.arccos(2+npr.random(size=projSintsources[0]) —1)*x180/np.pi—90
p3dPRED2 = hidimpos(—Phi2, Theta2)

Phi4 = 2xnp. pixnpr.random(size=projSintsources[1])/15%x180/np. pi
Theta4 = np.arccos(2*npr.random(size=projSintsources [1])—1)*180/np.pi—90
p3dPRED4 = hidimpos(—Phi4 , Theta4)

Phi6 = 2xnp.pixnpr.random(size=projSintsources [2])/15%x180/np. pi
Theta6 = np.arccos(2xnpr.random(size=projSintsources[2])—1)x180/np.pi—90
p3dPRED6 = hidimpos(—Phi6, Theta6)

Phi8 = 2xnp.pi*npr.random(size=projSintsources [3]) /15%180/np. pi
Theta8 = np.arccos(2*npr.random(size=projSintsources[3])—1)*x180/np.pi—90
p3dPRED8 = hidimpos(—Phi8 , Theta8)

7| dndS = densSdifav /(Supp/1000—Slow /1000)

plotSpeak = dndS*(Smed/1000)xx*(5/2)

plotSerr = (np.sqrt(nsrdifav)/nsrdifav)splotSpeak
print (plotSpeak)

print (plotSerr)

def fitfun (S,a,b,c):
x = np.logl0(S)
return 10**(a + bxx 4+ c*x*%2)

Sarr = np.arange(10,10000,0.1)

Slst = np.concatenate ((Smed, SmedSNEL, SmedVRIES) )

peaklst = np.concatenate (( plotSpeak ,plotSpeakSNEL , plotSpeakVRIES) )

peakerr = np.concatenate (( plotSerr ,plotSerrSNEL , plotSerrVRIES))

p,pcov = spo.curve_fit (fitfun , Slst , peaklst ,sigma=peakerr ,**{ maxfev’:1000000})
print (p)

;| print (pcov)

function = fitfun (Sarr,*p)

o| S ynthesis I11: Revolutions. Plotting the results.
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;| framel .
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###Plot
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figd =
frame4
frame4 .
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;| frame4 .
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i 7
>>> Synthesis IIT: Revolutions”)

no.1l: number of sources per area.

figure (figsize =(40/2.54, 40/2.54))

= figl.add_subplot(1,1,1)

set_title (?Source position in sky”,fontsize=15)
set_xlim ([ RAlowlow, RAupphigh])

set_ylim ([declowlow ,decupphigh])

axvline (x=RAlowlow, linewidth=1,color="b’) ; framel.axvline (x=RAupplow, linewidth
color="b")

axhline (y=declowlow ,linewidth=1,color="b’) ; framel.axhline (y=decupplow,linewidth

color="b")

axvline (x=RAlowhigh,linewidth=1,color="r’) ; framel.axvline (x=RAupphigh, linewidth
color="r")

axhline (y=declowhigh ,linewidth=1,color="r’) ; framel.axhline (y=decupphigh ,

plot (posTJOA[0] ,posTJOA[1], 'y*’ ,ms=11)

set_xlabel (’Right Ascension (hours) )

set_ylabel (’Declination (deg)’)

invert_xaxis ()

no.2: number of sources per area, closeup low RA.
figure (figsize =(40/2.54, 40/2.54))

= fig2.add_subplot (1,1,1)

set_title (”Source position in sky”,fontsize=15)
set_xlim ([RAlowlow, RAupplow])

.set_ylim ([ declowlow ,decupplow])
.plot (posTJOA[0] ,posTJOA[1], 'y*’ ,ms=15)

plot (peakRATJOA , peakdecTJOA | "cx*’ ,ms=15)

plot (Mirachpos [0] , Mirachpos[1], 'rx’ ,ms=20)

annotate (” Mirach (Beta Andromedae)” ,xy=(Mirachpos[0]+0.05,Mirachpos[1]+0.1))
set_xlabel (’Right Ascension (hours) )

set_ylabel (’Declination (deg)’)

invert_xaxis ()

no.3: number of sources per area, closeup high RA.
figure (figsize =(40/2.54, 40/2.54))
= fig3.add_subplot(1,1,1)

set_title (”Source position in sky”,fontsize=15)
set_xlim ([RAlowhigh , RAupphigh])
set_ylim ([declowhigh ,decupphigh])
plot (posTJOA [0] ,posTJOA[1], 'y*’ ,ms=15)
plot (peakRATJOA , peakdecTJOA | "cx*’ ,ms=15)
plot (Grumiumpos [0] , Grumiumpos [1] , "b*’ ,ms=20)
annotate (" Grumium (Xi Draconis)” ,xy=(Grumiumpos[0]+0.05, Grumiumpos[1] —0.2))
set_xlabel (’Right Ascension (hours) )

set_ylabel (’Declination (deg)’)

invert_xaxis ()

no.4: sources both real and predicted projected on sphere, assuming density
nd from McKean data.

figure (figsize =(40/2.54, 40/2.54))

= fig4 .add_subplot (111, projection=’3d")

plot (p3dPRED [0] ,p3dPRED [1] ,p3dPRED [2], ’y*’, markersize=8)

.plot (p3dTJOA[0] ,p3dTJOA[1] ,p3dTJOA[2], 'r*’ ,markersize=12)

set_title(’Isotropic predicted spherical distribution of GPS sources’)
set_xlabel ("x”)
set_ylabel (7y”)
set_zlabel (72”)

no.5: sources both real and predicted projected on plane.

figure (figsize =(40/2.54, 40/2.54))

= figh5.add_subplot (1, 1, 1)

plot (Phi, Theta, ’y*’ ,markersize=8,label="Predicted source density”)

plot (posTJOA [0] ,posTJOA[1], 'r+’ ,markersize=12,label="Our data”)

set_title (’Isotropic predicted distribution of GPS sources over flattened sky’)
set_xlabel (”Right Ascension (hours)”)

set_ylabel (” Declination (degrees)”)

.invert_xaxis ()
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;| frame8 . plot (p3dPRED6

###Plot no.6: number density as a function of peak flux.

fig6 = figure(figsize=(40/2.54, 40/2.54))

frame6 = fig6.add_subplot (1, 1, 1)

frame6.set_xlim ([0,100])

frame6 . plot (Slowl,densSintav , 'r+’ ,markersize=15,label="averaged sample”)
frame6.set_title (’cumulative number density as a function of peak flux’)
frame6 .set_xlabel (?Smax (mJy)”)

frame6.set_ylabel ("number density with Smax in excess of S—value”)
frame6 . legend ()

)

###Plot no.7: number as a function of peak flux.
fig7 = figure(figsize=(40/2.54, 40/2.54))
frame7 = fig7.add_subplot (1, 1, 1)
frame7.set_x1lim ([0,100])

i| frame7.plot (Slowl, totalSintsources , ’r*’ ,markersize=15,label="predicted sources”)
7| frame7.set_title (’predicted cumulative number as a function of peak flux’)

frame7.set_xlabel ("Smax (mlJy)”)
frame7.set_ylabel ("number with Smax in excess of S—value”)
frame7.legend ()

###Plot no.8: predicted sources separated by peak flux population projected on sphere,
assuming density found from McKean data.

fig8 = figure(figsize=(40/2.54, 40/2.54))

frame8 = fig8.add_subplot (111, projection="3d")

#frame8 . plot (p3dPREDO[0] ,p3dPREDO[1] ,p3dPREDO[2] , 'm* ’ ,markeredgewidth=0, markersize=5,
label="No peak’,alpha=0.5)

frame8 . plot (p3dPRED2[0] ,p3dPRED2[1] ,p3dPRED2[2], ’r*’ ,markeredgewidth=0,markersize=7,
label="20-40 mJy’)

7| frame8. plot (p3dPRED4[0] ,p3dPRED4[1] ,p3dPRED4 (2], 'y*’ ,markeredgewidth=0,markersize=7,

label="40—-60 mJy’)

(0] ,p3dPRED6[1] ,p3dPRED6[2], ’c*’ ,markeredgewidth=0,markersize=7,
label="60—-80 mJy’)

frame8. plot (p3dPREDS [0

label=">80 mlJy’)

frame8.set_title (’Isotropic predicted spherical distribution of GPS sources’)
frame8.set_xlabel ("x”

frame8.set_ylabel (7y”)

frame8.set_zlabel ("z”)

frame8.legend ()

] ,p3dPREDS8[1] ,p3dPRED8[2] , 'b*’ ,markeredgewidth=0,markersize="7,

###Plot no.9: predicted sources projected on plane.

fig9 = figure(figsize=(40/2.54, 40/2.54))

frame9 = fig9.add_subplot (1, 1, 1)

#frame9 . plot (Phi0, ThetaO, 'm+ ', markeredgewidth=0,markersize=5,label="No peak’,alpha=0.5)
frame9 . plot (Phi2 , Theta2, 'r+’ ,markeredgewidth=0,markersize=7,label="20—40 mly’)

frame9 . plot (Phi4 , Theta4 , 'y*’ ,markeredgewidth=0,markersize=7,label="40—-60 mlJy’)

frame9 . plot (Phi6 , Theta6, 'cx’ ,markeredgewidth=0,markersize=7,label="60—-80 mly’)

frame9 . plot (Phi8 , Theta8, 'bx’ ,markeredgewidth=0,markersize=7,label=">80 mlJy’)
frame9.set_title (’Isotropic predicted distribution of GPS sources over flattened sky’)
frame9.set_xlabel (”Right Ascension (hours)”)

frame9.set_ylabel (?” Declination (degrees)”)

frame9 .legend ()

frame9 . invert_xaxis ()

show ()

B.5 Number count calculator

The following script is used to obtain number counts.

Scripts/Thesis_synthesisd_v1-2.py

#!/usr/bin/env python

from __future__ import division
import numpy as np

import scipy as sp

import scipy.stats as sps
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| import fnmatch as fm

7| import numpy.random as npr

s| from matplotlib.pyplot import figure , show

o| ##THIS SCRIPT COMPUTES STD IN LOG10(z) AND z.

10

2| S ynthesis 1: Reading Data.

/
7t 7t 7t 7t iRiaiaini 7t T 7t R 7t 7 7t 7t 77 7t 7t FF 7 7t 7t

7t 7t
1| print (">>> Synthesis 17)

15| #E#EMcKean’s & Tjoa’'s data (K,z)

16| znamesTJOA = np. genfromtxt ("K,z—data—fulltable .dat” ,dtype=str , usecols =[0],comments="#")
17| zdatTJOA = np. genfromtxt ("K,z—data—fulltable .dat” ,usecols =[1],comments="#")

15| zstdlowTJOA = np.genfromtxt ("K,z—data—fulltable.dat” ,usecols =[2],comments="#")

19| zstduppTJOA = np. genfromtxt ("K,z—data—fulltable .dat” ,usecols =[3],comments="#")

0| KdatTJOA = np. genfromtxt ("K,z—data—fulltable.dat” ,usecols =[4],comments="#")

KstdTJOA = np.genfromtxt (”K,z—data—fulltable.dat” ,usecols=[5],comments="#")

purenamesTJOA = np.genfromtxt (” ThesisTable_synchrotronNEW .dat” ,dtype=str , usecols=[1],
comments="#")

24| combinamesTJOA = np.genfromtxt (” ThesisTable_synch—powlawNEW . dat” ,dtype=str , usecols =[1],

comments="#")

25| purevmaxTJOA = np.genfromtxt (” ThesisTable_synchrotronNEW . dat” ,dtype=float , usecols=[10],

comments="#")

26| combivmaxTJOA = np.genfromtxt(” ThesisTable_synch-—powlawNEW . dat” ,dtype=float ,usecols

=[14],comments="#")

27| vmaxTJOA = np.concatenate ((purevmaxTJOA , combivmaxTJOA))

23| pureSmaxTJOA = np.genfromtxt (” ThesisTable_synchrotronNEW . dat” ,dtype=float , usecols =[12],

comments="#")

29| combiSmaxTJOA = np.genfromtxt(” ThesisTable_synch—powlawNEW . dat” ,dtype=float ,usecols

=[16],comments="#")

30| SmaxTJOA = np.concatenate ((pureSmaxTJOA , combiSmaxTJOA))

s3| #HHH#Synthesis II: Reloaded. Computation of results.

34| print (”>>> Synthesis II: Reloaded”)

36| def Kzrel(z): #H#HK , z—relation function
37 return 17.37 + 4.53%np.logl0(z) + 0.31%(np.logl0(z))*x2

38

30| ####Generating plain, idealized K—loglO(z) relation.

40| zarr = np.linspace (0.05,5,10000)

11| Karr = Kzrel(zarr)

13| znamesTJOA2 = []
14| zdatTJOA2 = []
15| zstdlow TJOA2 = []
16| zstduppTJOA2 = []
17| KdatTJOA2 = []
13| KstdTJOA2 = []
40| for 1 in range(len (zdatTJOA)):
if zdatTJOA[i] = 0.0:
print (” This point has a nonexistent redshift.”)
else:
znamesTJOA2 . append (znamesTJOA[i])
zdatTJOA2. append (zdatTJOA[i])
zstdlowTJOA2 . append (zstdlowTJOA [i])
zstduppTJOA2 . append (zstduppTJOA[i])
KdatTJOA2. append (KdatTJOA[1i])
KstdTJOA2 . append (KstdTJOA[1i])
znamesTJOA2 = np. asarray (znamesTJOA2)
zdatTJOA2 = np.asarray (zdatTJOA2)
zstdlowTJOA2 = np.asarray (zstdlowTJOA2)
62| zstduppTJOA2 = np.asarray (zstduppTJOA2)
63| KdatTJOA2 = np.asarray (KdatTJOA2)
61| KstdTJOA2 = np.asarray (KstdTJOA2)
65
66| znamesTJOApure = |[]
i7| zdatTJOApure = |[]
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zstdlowTJOApure = []
zstduppTJOApure = []
KdatTJOApure = []
KstdTJOApure = []
for i in range(len (purenamesTJOA)):
for j in range(len (znamesTJOA2)):
if fm.fnmatch (purenamesTJOA[i],”{}”.format (znamesTJOA2[j])) is True: ###Check
whether the chosen name in z—data matches any known pure spectral peak name
znamesTJOApure . append (znamesTJOA2[]]) ###1f so, append
indices to specnames— and Knames lists.
zdatTJOApure. append (zdatTJOA2([j])
zstdlowTJOApure. append (zstdlowTJOA2[j])
zstduppTJOApure . append (zstduppTJOA2[j])
KdatTJOApure. append (KdatTJOA2[j])
KstdTJOApure. append (KstdTJOA2[j])
znamesTJOApure = np.asarray (znamesTJOApure)
zdatTJOApure = np.asarray (zdatTJOApure)
zstdlowTJOApure = np. asarray (zstdlowTJOApure)
zstduppTJOApure = np. asarray (zstduppTJOApure)
KdatTJOApure = np.asarray (KdatTJOApure)

i| KstdTJOApure = np.asarray (KstdTJOApure)

znamesTJOAcombi = []
zdatTJOAcombi = []
zstdlowTJOAcombi =
zstduppTJOAcombi

(]
KdatTJOAcombi = [}7 .

;| KstdTJOAcombi = []

for i in range(len (combinamesTJOA)):
for j in range(len (znamesTJOA2)):
if fm.fnmatch (combinamesTJOA[i],”{}”.format (znamesTJOA2[j])) is True: ###Check
whether the chosen name in z—data matches any known pure spectral peak name
znamesTJOAcombi. append (znamesTJOA2[j]) ###1f so, append
indices to specnames— and Knames lists.
zdatTJOAcombi. append (zdatTJOA2[j])
zstdlowTJOAcombi. append (zstdlowTJOA2[j])
zstduppTJOAcombi. append (zstduppTJOA2[j])
KdatTJOAcombi. append (KdatTJOA2([j])
KstdTJOAcombi. append (KstdTJOA2[j])
znamesTJOAcombi = np. asarray (znamesTJOAcombi)
zdatTJOAcombi = np.asarray (zdatTJOAcombi)
zstdlowTJOAcombi = np.asarray (zstdlowTJOAcombi)
zstduppTJOAcombi = np.asarray (zstduppTJOAcombi)
KdatTJOAcombi = np. asarray (KdatTJOAcombi)
KstdTJOAcombi = np. asarray (KstdTJOAcombi)

#H#H##Synthesis I11: Revolutions. Plotting the results.
HHHH i i e

7t i i 7
print (”>>> Synthesis III: Revolutions”)

###Plot no.l: K—band magnitude versus z.

figl = figure(figsize=(40/2.54, 40/2.54))

framel = figl.add_subplot(1,1,1)

framel.set_title ("K-band magnitude vs z”,fontsize=20)
framel . plot (zarr ,Karr,”k” ,label="1Idealized K,z—relation”)
assymerrzTJOA2 = [zstdlowTJOA2,zstduppTJOA2]

)| framel . errorbar (zdatTJOA2 ,KdatTJOA2, xerr=assymerrzTJOA2 , yerr=KstdTJOA2, ecolor="k” ,

elinewidth=1,marker="%” ,mfc="y” ,ms=12,1s=
framel.set_xlabel (’Redshift z’,fontsize=20)
framel.set_ylabel (’"K—band magnitude’,fontsize=20)
framel . tick_params(labelsize=20)

”7” label="Our data points (K,z)”)

###Plot no.2: number of sources per redshift bin (pure and combined separately).
fig2 = figure(figsize=(40/2.54, 40/2.54))

frame2 = fig2.add_subplot(1,1,1)

frame2.set_title ("number of sources per $z$” , fontsize=20)

frame2. hist (zdatTJOApure, bins=[0.0,0.5,1.0,1.5,2.0,2.5,3.0],label="GPS’ ;alpha=0.5)

)| frame2 . hist (zdatTJOAcombi, bins=[0.0,0.5,1.0,1.5,2.0,2.5,3.0],label="GPS + power law’,

alpha=0.5)
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#for 1 in zdatTJOApure:

# frame2.axvline (x=i,linewidth=2,color="y ")
#for 1 in zdatTJOAcombi:
# frame2 . axvline (x=i,linewidth=2,color="g")

frame2.set_xlabel (’Redshift $z$°,fontsize=20)
frame2.set_ylabel (’Number of sources’,fontsize=20)
frame2.tick_params(labelsize=20)

###4Plot no.3: number of sources per redshift bin (all of them).
figd = figure(figsize=(40/2.54, 40/2.54))

frame3 = fig3.add_subplot(1,1,1)

frame3.set_title ("number of sources per $z$” ,fontsize=20)
frame3. hist (zdatTJOA2, bins =[0.0,0.5,1.0,1.5,2.0,2.5,3.0])

#for 1 in zdatTJOA2:

# frame3 . axvline (x=i,linewidth=1,color="r")
frame3.set_xlabel (’Redshift $z%’,fontsize=20)
frame3.set_ylabel (’Number of sources’,fontsize=20)

frame3 . tick_params(labelsize=20)

###Plot no.4: number of sources per redshift bin (pure and combined separately).

figd = figure(figsize=(40/2.54, 40/2.54))

frame4 = fig4.add_subplot(1,1,1)

frame4.set_title ("number of sources per z”,fontsize=20)

frame4 . hist (np.logl0 (zdatTJOApure) ,bins=[-2.0,—-1.5,-1.0,—-0.5,0.0,0.5,1.0,1.5,2.0],label=
"GPS’ ,alpha=0.5)

frame4 . hist (np.logl0 (zdatTJOAcombi) ,bins=[-2.0,—-1.5,-1.0,—-0.5,0.0,0.5,1.0,1.5,2.0],label
='GPS + power law’  ,alpha=0.5)

i|#for 1 in zdatTJOApure:

# frame4 . axvline (x=np.logl0(i),linewidth=1,color="y")
#for 1 in zdatTJOAcombi:
# frame4 . axvline (x=np.logl0(i),linewidth=1,color="g’)

)| frame4 . set_xlabel (’Redshift loglOz’,fontsize=20)

frame4 .set_ylabel (’Number of sources’,fontsize=20)
frame4 . tick_params (labelsize=20)

###Plot no.5: number of sources per redshift bin (all of them).

figh = figure(figsize=(40/2.54, 40/2.54))

frameb5 = figh5.add_subplot(1,1,1)

frameb.set_title ("number of sources per z”,fontsize=20)

frame5 . hist (np.logl0 (zdatTJOA2) ,bins=[-2.0,—-1.5,-1.0,—-0.5,0.0,0.5,1.0,1.5,2.0])
#for 1 in zdatTJOA2:

| # frameb . axvline (x=np.logl0(i),linewidth=1,color="r")

frame5.set_xlabel (’Redshift loglOz’,fontsize=20)
frameb.set_ylabel (’Number of sources’,fontsize=20)
frame5 . tick_params (labelsize=20)

###Plot no.6: number of sources per vmax bin (pure and combined separately).

fig6 = figure(figsize=(40/2.54, 40/2.54))

frame6 = fig6.add_subplot(1,1,1)

frame6.set_title ("number of sources per vmax”, fontsize=20)

frame6 . hist (purevmaxTJOA , bins =[0.0,2.0,4.0,6.0,8.0,10.0,12.0,14.0,16.0,18.0,20.0],label=
"GPS’ ;alpha=0.5)

frame6 . hist (combivmaxTJOA, bins=[{0.0,2.0,4.0,6.0,8.0,10.0,12.0,14.0,16.0,18.0,20.0],label
='GPS + power law’,alpha=0.5)

#for 1 in purevmaxTJOA:

# frame6 . axvline (x=i,linewidth=2,color="y"’)
#for 1 in combivmaxTJOA :
# frame6 . axvline (x=i,linewidth=2,color="g’)

frame6 . set_xlabel ("Peak frequency vmax (GHz)’,6 fontsize=20)
frame6.set_ylabel (’Number of sources’,fontsize=20)
frame6 . tick_params (labelsize=20)

###Plot no.7: number of sources per vmax bin (all of them).

fig7 = figure(figsize=(40/2.54, 40/2.54))

frame7 = fig7.add_subplot(1,1,1)

frame7.set_title ("number of sources per vmax’,h fontsize=20)

frame7. hist (vmaxTJOA, bins ={0.0,2.0,4.0,6.0,8.0,10.0,12.0,14.0,16.0,18.0,20.0])
#for 1 in vmaxTJOA:

# frame7.axvline (x=i,linewidth=2,color="r")

frame7.set_xlabel ("Peak frequency vmax (GHz)’,fontsize=20)
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frame7.set_ylabel (’Number of sources’,fontsize=20)
frame7.tick_params(labelsize=20)

###Plot no.8: number of sources per Smax bin (pure and combined separately).

fig8 = figure(figsize=(40/2.54, 40/2.54))

frame8 = fig8.add_subplot(1,1,1)

frame8.set_title ("number of sources per Smax”,fontsize=20)

frame8 . hist (pureSmaxTJOA , bins =[20.0,30.0,40.0,50.0,60.0,70.0,80.0,90.0],label="GPS’,
alpha=0.5)

frame8 . hist (combiSmaxTJOA, bins =[20.0,30.0,40.0,50.0,60.0,70.0,80.0,90.0],label="GPS +
power law’, ,alpha=0.5)

i|#for 1 in pureSmaxTJOA:

# frame8.axvline (x=i,linewidth=2,color="y ")

208|#for i in combiSmaxTJOA:

w oo

S NS BN

~

10
11

12
13
14
15

16

o # frame8 . axvline (x=i,linewidth=2,color="g"’)

frame8.set_xlabel (’Peak flux Smax (mlJy)’,fontsize=20)
frame8.set_ylabel (’Number of sources’,fontsize=20)
frame8 . tick_params(labelsize=20)

1| ###Plot no.9: number of sources per Smax bin (all of them).

fig9 = figure(figsize=(40/2.54, 40/2.54))

i| frame9 = fig9.add-subplot(1,1,1)

frame9.set_title ("number of sources per Smax”,fontsize=20)

frame9 . hist (SmaxTJOA, bins =[20.0,30.0,40.0,50.0,60.0,70.0,80.0,90.0])
#for 1 in SmaxTJOA:

# frame9 . axvline (x=i,linewidth=2,color="r")
frame9.set_xlabel (’Peak flux Smax (mJy)’,fontsize=20)
frame9.set_ylabel (’Number of sources’,fontsize=20)

frame9 . tick_params (labelsize=20)

show ()

B.6 Size & distance cosmological calculator

The following script is used to synthesize results to obtain luminosity distances and angular & linear
sizes.

Scripts/Thesis_synthesis6_v2-3.py

#!/usr/bin/env python

from __future__ import division

import numpy as np

import scipy.optimize as spo

import fnmatch as fm

from cosmodistfun import cosmocalc

from matplotlib.pyplot import figure , show
###THIS SCRIPT COMPUTES STD IN LOG10(z) AND z.

#HH###H#Synthesis I: Reading Data.

print (”>>> Synthesis I7)

####+Reading relevant data from datafiles: McKean&Tjoa data.

znames = np.genfromtxt (”K,z—data—ztable.dat” ,dtype=str , usecols =[0],comments="#")

zdat , zstdlow ,zstdupp ,Kdat,Kstd = np. genfromtxt ("K,z—data—ztable.dat” ,usecols
=[1,2,3,4,5] ,unpack=True, comments="#")

speclnames = np.genfromtxt (” ThesisTable_synchrotronNEW .dat” ,dtype=str ,usecols =[1],
comments="#")

vmaxldat , vimaxlstd ,Smaxldat,Smaxlstd = np.genfromtxt(” ThesisTable_synchrotronNEW .dat”
dtype=float ,usecols=[10,11,12,13],unpack=True,comments="#")

spec2names = np.genfromtxt (” ThesisTable_synch—powlawNEW . dat” ,dtype=str , usecols=[1],
comments="#")

vmax2dat , vimax2std , Smax2dat , Smax2std = np.genfromtxt (” ThesisTable_synch—powlawNEW . dat” ,
dtype=float ,usecols=[14,15,16,17],unpack=True,comments="#")

###Reading relevant data from datafiles: Snellen faint dataset.
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specnamesSNELf = np.genfromtxt(” Snellensample—faint .dat” ,dtype=str , usecols =[0],comments=
77#77)

zdatSNELf , vimaxdatSNELf , SmaxdatSNELf , angmarSNELf = np. genfromtxt (” Snellensample—faint .dat
7 dtype=float ,usecols=[1,2,3,5],unpack=True,comments="#")

###Reading relevant data from datafiles: Snellen bright dataset.

specnamesSNELb = np. genfromtxt (” Snellensample—bright.dat” ,dtype=str , usecols =[0],comments
:17#71)

zdatSNELD , vimaxdatSNELD , SmaxdatSNELD , angmarSNELb = np. genfromtxt (” Snellensample—bright .
dat” ,dtype=float ,usecols =[1,2,3,5],unpack=True,comments="#")

SmaxdatSNELb = SmaxdatSNELb*1000

####Reading relevant data from datafiles: Snellen CSS dataset.
specnamesSNELc = np. genfromtxt (” Snellensample—CSS.dat” ,dtype=str , usecols =[0],comments="#

zdatSNELc , vimaxdatSNELc , SmaxdatSNELc ,angmarSNELc = np. genfromtxt (” Snellensample —CSS.dat” ,
dtype=float ,usecols =[1,2,3,5],unpack=True,comments="#")
SmaxdatSNELc = SmaxdatSNELc*1000

;| angmarSNELc = angmarSNELcx1000

###Concatenating arrays.

typelst = []

for i in range(len
typelst .append

for i in range(len
typelst .append

vmaxldat)):
” GPS77 )
vmax2dat) ) :
” GPPL77 )

o~~~ —~

vmaxdat = np.concatenate ((vmaxldat,vmax2dat)) ; vmaxstd = np.concatenate ((vmaxlstd,
vmax2std) ) ###Concatenating
vmax data and std’s

i| Smaxdat = np.concatenate ((Smaxldat,Smax2dat)) ; Smaxstd = np.concatenate ((Smaxlstd,

Smax2std) ) ###Concatenating
Smax data and std’s

;| specnames = [] ###Creating spectral names array

specnames . extend (speclnames) ###Appending pure synch names
specnames . extend (spec2names) ###Appending synch+powlaw names

####Loop to create an array with the peak data for those sources whose redshift is known:
McKean&Tjoa data.
names = [] #HH#FEmpty names list

Smaxlst = [] #H#H#EmMpty S—peak list
vmaxlst = [] #H#EmMpty v—peak list
Smaxstdlst = [] ###HEmMpty S—peak std list
vmaxstdlst = [] #H#EmMpty v—peak std list
zlst = [] #HHEmMpty z list
zstdlowlst = [] ; zstdupplst = [] #H#H#Empty z lower— and upper boundaries lists
for i in range(len (specnames)):
k=0
names . append (specnames [i]) ###Appending name to name list
Smaxlst . append (Smaxdat [i]) ###Appending relevant entries from
Smax—data
vmaxlst . append (vmaxdat[i]) ###Appending relevant entries from
vmax—data
Smaxstdlst . append (Smaxstd[i]) ###Appending relevant entries from Smax—
std—data
vmaxstdlst . append (vmaxstd [i]) ###Appending relevant entries from vmax—
std—data
for j in range(len (znames)):
if fm.fnmatch(specnames[i],”{}”.format (znames[j])) is True: ###Check
whether the chosen name in z—data matches any known spectral peak name
zlst .append(zdat[j]) ##H#Appending relevant
entries from z—data
zstdlowlst .append (zstdlow [j]) ; zstdupplst.append(zstdupp[j]) FHHE
Appending relevant entries from z lower— and upper boundaries—data
k=k+1
print (specnames[i] k)
if k = 0:

zlst .append (1.0)
###Appending relevant entries from z—data
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zstdlowlst .append (0.26) ; zstdupplst.append (0.36) ###Appending relevant
entries from z lower— and upper boundaries—data
76 else:
77 print ("no randomness for you!”)
78

o| #H#H#Converting lists to arrays: McKean&Tjoa data.

s0| Smaxarr = np.asarray (Smaxlst)

s1| vinaxarr = np.asarray (vmaxlst)

s2| Smaxerr = np.asarray (Smaxstdlst)

s3| vimaxerr = np.asarray (vmaxstdlst)

s1| zarr = np.asarray (zlst)

s5| zerrlow = np.asarray(zstdlowlst) ; zerrupp = np.asarray (zstdupplst)

87
ss| #HHHHH#Synthesis I1: Reloaded. Computation of results.

)
TI7777T 7 7 17T 7 17T TI7777

so| print (”>>> Synthesis II: Reloaded”)
90
91|B = 50e—6 #Gauss ##H#Estimate for magnetic field strength of source

92
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03| def unredshiftinator (z,vmaxobs): ###Function to unshift the redshifted peak
frequencies

94 return (142z)*vmaxobs

95

96| def angsize(S,z,v): ####Function to compute angular size in mas

o7 S = S/1000

98 return ((8*x(5/4) ) (Bxx(1/4) ) (Sxx(1/2))x((14+2)*x(1/4)))/(v*x(5/4))

99

10| def distance(z): #####Function to compute distance in Mpc

101 return np.log(1+2z)%299792.458/67.80

102

103| def linsize (theta ,D): #H##Function to compute linear size in pc

104 theta = (((theta/1000)/60)/60)*np.pi/180

105 return 1000000#*np.tan(theta)=D

106

17| def angerr(S,z,vobs, Serr,zerr ,vobserr): ####Uncertainty function for angular size.

108 C = (8xx(5/4) )= (Bxx(1/4))

109 dadS = Cx((1+z)*x(1/4)) /(2% (vobsxx(5/4) )« (Sxx(1/2)))

110 dadz = Cx(S*x(1/2)) /(4% (vobs*x(5/4))x((14+z)*%(3/4)))

111 dadvobs = —Cx (5% (S (1/2) )% ((14+2z)*x(1/4)))/(4*(vobs*%(9/4)))

112 return np.sqrt ((dadSxSerr)*x2 4+ (dadzxzerr)**2 + (dadvobsxvobserr)*%2)

113

114 def plotx(S,v):

115 return ((S/1000)*%0.5)* (v**—1.25)

116

17| def plotxerr(S,v, Serr,verr):

118 dxdS = (0.5%(1000%S)*% —0.5)* (vs*x —1.25)

119 dxdv = —1.25%((S/1000)*%0.5) % (vx —2.25)

120 return np.sqrt ((dxdS*Serr)**2 + (dxdvxverr)=%2)

121

122| ###H#Computing relevant data arrays using previously defined functions: McKean&Tjoa data.

123| vimaxemit = unredshiftinator (zarr ,vmaxarr)

124 angmar = angsize (Smaxarr, vimaxarr, zarr)

125| angerrlow = angerr (Smaxarr, zarr ,vmaxarr , Smaxerr , zerrlow , vimaxerr)

126] for 1 in range(len (angerrlow)):

127 if angerrlow[i] > angmar[i]:

128 angerrlow [1] = angmar|[i]

120| angerrupp = angerr (Smaxarr, zarr ,vmaxarr , Smaxerr ,zerrupp , vinaxerr)

130| lindist = np.zeros(len (angmar))

131] extdist = np.zeros(len (angmar))

32| for 1 in range(len(zarr)):

133 entry = cosmocalc(zarr[i])

134 lindist [i] = entry[1]

135 extdist [i] = entry [0]

136| linext = linsize (angmar, extdist)

137

38| ####Printing table of relevant statistics: McKean&Tjoa data.

30| print (7\033[1m” ,” Name * z % Lum. Distance % Smax # vmax s*vmax emitkang.
sizexlin.ext. 7 ,7\033[0m")

40| print (7 \033[1m” ,” * * (Mpc) * (mJy) % (GHz) % (GHz) x (mas)
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+ (pe)”,”\033[0nr’)
for i in range(len (angmar)):
print (7 {0} {2} {3} {4} {5} {6} {7} {8}” .format (names[i],” N/A ” np
.round (zarr[i],3) ,np.round(lindist [i],1) ,np.round(Smaxarr[i],1) ,np.round(vmaxarr|[i
1,2) ,np.round (vmaxemit[i],2) ,np.round(angmar[i],2) ,np.round(angerrlow[i],2) ,np.round
(angerrupp[i],2) ,np.round(linext[i],1)))

angmarGPS = []
5| angerrlowGPS = [] ; angerruppGPS = []
i| angmarGPPL = []
angerrlowGPPL = [] ; angerruppGPPL = []

;| for i in range(len(typelst)):

if fm.fnmatch(typelst[i],”GPS”) is True:
angmarGPS . append (angmar[i])
angerrlowGPS . append (angerrlow [i]) ; angerruppGPS.append(angerrupp|[i])
elif fm.fnmatch(typelst[i],”GPPL”) is True:
angmarGPPL . append (angmar [i])
angerrlowGPPL . append (angerrlow [i]) ; angerruppGPPL.append (angerrupp|[i])
angmarGPS = np. asarray (angmarGPS)

;| angerrlowGPS = np.asarray (angerrlowGPS) ; angerruppGPS = np.asarray (angerruppGPS)

angmarGPPL = np. asarray (angmarGPPL)
angerrlowGPPL = np.asarray (angerrlowGPPL) ; angerruppGPPL = np.asarray (angerruppGPPL)

####+Creating the data to be plotted on the x—axis.
plotdatGPS = plotx (Smaxldat,vmaxldat)
plotdatGPPL = plotx (Smax2dat ,vmax2dat)
plotdatSNELf plotx (SmaxdatSNELf, vimaxdatSNELf)
plotdatSNELb = plotx (SmaxdatSNELb , vimaxdatSNELbD)
plotdatSNELc = plotx (SmaxdatSNELc, vmaxdatSNELc)

####Uncertainties in our data.

;| plotstdGPS = plotxerr (Smaxldat,vmaxldat,Smaxlstd, vmax1std)

plotstdGPPL = plotxerr (Smax2dat, vmax2dat , Smax2std , vmax2std)

#HH#HA#Synthesis II1: Revolutions. Plotting the results.

1 /L HH / /1 /L H / /L /L HH 1 /L H- /4 1 /L

print (”>>> Synthesis III: Revolutions”)

###Plot no.2: Peak flux versus angular size.

fig2 = figure(figsize=(40/2.54, 40/2.54))

frame2 = fig2.add_subplot(1,1,1,xscale="log’,yscale="log’)

frame2.set_title ("Peak flux density vs angular size” ,fontsize=20)

assymerryGPS = [angerrlowGPS ,angerruppGPS]

assymerryGPPL = [angerrlowGPPL ,angerruppGPPL]

frame2 . errorbar (plotdatGPS ,angmarGPS, xerr=plotstd GPS , yerr=assymerryGPS , ecolor="k” |

elinewidth=1,marker="%" ;mfc="r" ;ms=12,1s="" ,label="McKean very faint GPS sample”)

frame2.errorbar (plotdatGPPL ,angmarGPPL, xerr=plotstdGPPL , yerr=assymerryGPPL , ecolor="k” ,
elinewidth=1,marker="%" ;mfc="y” ,;ms=12,1s="" ;label="McKean very faint GPS+PL sample”)

frame2.errorbar (plotdatSNELf ,angmarSNELf, ecolor="k” elinewidth=1,marker="x*" ,mfc="g” ,ms
=12,1s="" label="Snellen’s faint GPS sample”)

frame2.errorbar (plotdatSNELD ,angmarSNELb, ecolor="k” elinewidth=1,marker="x*" ,mfc="c¢” ,ms
=12,1s="” ,label="Snellen’s bright GPS sample”)

5| frame2 . errorbar (plotdatSNELc ,angmarSNELc, ecolor="k” Jelinewidth=1,marker="*" ,mfc="b" ,ms

=12,1s="” ,label="Snellen’s CSS sample”)

frame2.set_xlabel ("$S_{max} " {0.5}*v_{max} " {—1.25}% (Jy$ " {0.5}$GHz$"{—1.25}$)’ ,fontsize
=16)

frame2.set_ylabel (’Angular size (mas)’,fontsize=16)
frame2 . tick_params(labelsize=15)
#frame?2 . legend (loc=0)

show ()

B.7 Differential number density calculator

The following script is used to synthesize results to obtain differential number densities.

Scripts/Thesis_synthesis8_v6-3.py
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#!/usr/bin/env python

from __future__ import division
import numpy as np

import numpy.random as npr
import scipy.optimize as spo
import fnmatch as fm

7| from matplotlib.pyplot import figure , show

###THIS SCRIPT COMPUTES DIFFERENTIAL NUMBER COUNTS. SOMETHING IS AMISS!

#H#HH#Synthesis 1: Reading Data.

print (”>>> Synthesis 17)

###Reading McKean&Tjoa’s name and data (because it’s largely monocolumnar, this takes
some time and messy coding).

5| datOTJOA = np.genfromtxt (” poslist —McKean. dat” ,dtype=None, usecols =[0],comments="#")

dat1TJOA
dat2TJOA

np. genfromtxt (7 poslist —McKean. dat” ,dtype=None, usecols =[1],comments="#")
np. genfromtxt (7 poslist —McKean. dat” ;dtype=None, usecols =[2] ,comments="#")

namesTJOA ,RAhrsTJOA , decdegTJOA = np.split (datOTJOA,3)
namesTJOA = namesTJOA. astype(str).flatten ()

RAhrsTJOA = np.asarray (RAhrsTJOA . astype(float). flatten ())
decdegTJOA = np.asarray (decdegTJOA . astype(float). flatten ())

poeplTJOA JRAmMInTJOA , decminTJOA = np.split (datlTJOA,3)
RAminTJOA = np. asarray (RAminTJOA. astype(float ). flatten ())
decminTJOA = np.asarray (decminTJOA . astype (float).flatten ())

poep2TJOA ;RAsecTJOA , decsecTJOA = np.split (dat2TJOA,3)
RAsecTJOA = np.asarray (RAsecTJOA. astype(float).flatten ())
decsecTJOA = np.asarray (decsecTJOA . astype(float). flatten ())

####Reading McKean&Tjoa’s synch and synch4powlaw data for spectral peaks.

purenamesTJOA = np.genfromtxt (” ThesisTable_synchrotronNEW .dat” ,dtype=str ,usecols =[1],
comments="#")

combinamesTJOA = np.genfromtxt (” ThesisTable_synch-—powlawNEW . dat” dtype=str , usecols=[1],
comments="#")

5| purevmaxTJOA = np.genfromtxt (” ThesisTable_synchrotronNEW . dat” ,dtype=float ,usecols=[10],

comments="#")

5| combivmaxTJOA = np.genfromtxt (” ThesisTable_synch-—powlawNEW . dat” ,dtype=float , usecols

=[14],comments="#")

| vmaxTJOA = np.concatenate ((purevmaxTJOA ,combivmaxTJOA))

pureSmaxTJOA = np.genfromtxt (” ThesisTable_synchrotronNEW .dat” ,dtype=float , usecols=[12],
comments="#")

combiSmaxTJOA = np.genfromtxt(” ThesisTable_synch-—powlawNEW . dat” ,dtype=float ,usecols
=[16],comments="#")

SmaxTJOA = np.concatenate ((pureSmaxTJOA ,combiSmaxTJOA) )

####Reading Snellen’s name and data.

rawnamesSNEL = np. genfromtxt (” Snellenfulltab .dat” ,dtype=str , usecols =[0],comments="#")

rawRAhrsSNEL , rawRAminSNEL , rawRAsecSNEL , rawdecdegSNEL , rawdecminSNEL , rawdecsecSNEL = np.
genfromtxt (” Snellenfulltab.dat” ,dtype=float , usecols=[1,2,3,4,5,6],unpack=True,
comments="#")

Sgb5,Svla8 ,Snvssl4 = np.genfromtxt(” Snellenfulltab.dat” ,dtype=float ,usecols=[9,13,16],
unpack=True, comments="#")

####Selecting only Snellen data which satisfy McKean’s criteria.

;| namesSNEL = []
RAhrsSNEL = [] ; RAminSNEL = [] ; RAsecSNEL = []
decdegSNEL = [] ; decminSNEL = [] ; decsecSNEL = []

k = len (rawnamesSNEL)
for i in range(len(Svla8)):
print (?8.4 GHz flux is:”,Svla8[i])
if Svla8[i] > 16.5:
alpha = (np.logl0(Sgb5[i])—np.logl0(Snvssl14[i]))/(np.logl0(5.0)—np.logl0(1.4))
print (” alpha is:”  alpha)
if 10.0 > alpha > —0.55:
k=k -1
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namesSNEL . append (rawnamesSNEL [ i
RAhrsSNEL. append (rawRAhrsSNEL [ i
RAminSNEL. append (rawRAminSNEL | i
RAsecSNEL. append (rawRAsecSNEL [ i
decdegSNEL . append (rawdecdegSNEL [ i |
decminSNEL . append (rawdecminSNEL [ i ])
decsecSNEL . append (rawdecsecSNEL [i])
elif alpha = np.inf:
print (rawnamesSNEL [i],” missed either its 5 or 1.4 GHz entry.”)
else:
print (rawnamesSNEL[i],”had a spectral index between 5 and 1.4 GHz steeper
than —0.5.7)
else:
print (rawnamesSNEL[i],”had a 8.6 GHz flux which was too low to register.”)
print (”Number of rejected entries:” k)
RAhrsSNEL = np.asarray (RAhrsSNEL) ; RAminSNEL = np.asarray (RAminSNEL) ; RAsecSNEL = np.
asarray (RAsecSNEL)
decdegSNEL = np. asarray (decdegSNEL) ; decminSNEL = np.asarray (decminSNEL) ; decsecSNEL =
np. asarray (decsecSNEL)

)
)
)
)
i)

]
]
]
]
[
[
[

###Reading Snellen’s synch data for spectral peaks.

peaknamesSNEL = np.genfromtxt (” Snellenpeaktab.dat” ,dtype=str , usecols =[0],comments="#")
vmaxSNEL = np.genfromtxt (” Snellenpeaktab.dat” ,dtype=float ,usecols =[1],comments="#")
SmaxSNELraw = np.genfromtxt (” Snellenpeaktab.dat” ,dtype=float , usecols =[2],comments="#")

o| #HHHH#Synthesis I1: Reloaded. Computation of results.
/

L H bl 4
T

7 77 7 77 7t 78 7

7t it 71 71 71
print (”>>> Synthesis II: Reloaded”)

5| def posmaker (RAhrs,RAmin, RAsec, decdeg ,decmin, decsec): ###Function that computes the RA

and dec positions in fractional hours and degrees respectively for plotting purposes
RApos = RAhrs + RAmin/60 + (RAsec/60)/60

decpos = decdeg + decmin/60 + (decsec/60)/60

return RApos, decpos

def areacalc (RAlow,RAupp, declow ,decupp) :
declow = declows#np.pi/180 ; decupp = decupp#*np.pi/180
RAlow = 15xRAlowxnp.pi/180 ; RAupp = 15*RAupp*np.pi/180
return (RAupp — RAlow)*(np.sin (decupp) — np.sin(declow))

def difnumdensflux (Slow,Supp,Sp):
k=20
reject =0
for i in range(len(Sp)):
if Sp[i] >= Slow and Sp[i] <= Supp:
k=k+1
return k

###Computing the positions of Tjoa&McKean’s sources.
posTJOA = posmaker (RAhrsTJOA ,RAminTJOA, RAsecTJOA , decdegTJOA ; decminTJOA , decsecTJOA)
####Computing the positions of Snellen’s sources.

posSNEL = posmaker (RAhrsSNEL , RAminSNEL, RAsecSNEL , decdegSNEL , decminSNEL , decsecSNEL)

#H#Computing positions of GPS samples, McKean&Tjoa .
pureRATJOA = []
puredecTJOA = []
for i in range(len (purenamesTJOA)):
for j in range(len (namesTJOA)):
if fm.fnmatch (purenamesTJOA[i],”{}”.format (namesTJOA[j])) is True:
pureRATJOA . append (posTJOA [0][]])
puredecTJOA . append (posTJOA [1][]])
pureRATJOA = np.asarray (pureRATJOA)
puredecTJOA = np.asarray (puredecTJOA)
peaknamesTJOA = list (purenamesTJOA)

combiRATJOA = []

combidecTJOA = |[]
for i in range(len (combinamesTJOA)):
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24 for j in range(len (namesTJOA)):

25 if fm.fnmatch (combinamesTJOA[i],”{}”.format (namesTJOA[]j])) is True:
26 combiRATJOA . append (posTJOA [0][]])

27 combidecTJOA . append (posTJOA [1][j])

25| combiRATJOA = np.asarray (combiRATJOA)

120| combidecTJOA = np.asarray (combidecTJOA)

130| peaknamesTJOA . extend (combinamesTJOA )

132| SmaxTJOA = np. concatenate ((pureSmaxTJOA , combiSmaxTJOA))
133| peakRATJOA = np.concatenate ((pureRATJOA ,combiRATJOA) )
134| peakdecTJOA = np.concatenate ((puredecTJOA ,combidecTJOA))

136 | ##H#Computing positions of GPS samples, Snellen.
137| SmaxSNEL = []

135| peakRASNEL = []

130| peakdecSNEL = []

40| for 1 in range(len (peaknamesSNEL)):

141 for j in range(len (namesSNEL)):

142 if fm.fnmatch (peaknamesSNEL[i],”{}”.format (namesSNEL[j])) is True:
143 SmaxSNEL . append (SmaxSNELraw [ i ])

144 peakRASNEL . append (posSNEL [0][]])

145 peakdecSNEL. append (posSNEL [1][j])
146 SmaxSNEL = np. asarray (SmaxSNEL)

147| peakRASNEL = np. asarray (peakRASNEL)

145| peakdecSNEL = np. asarray (peakdecSNEL)

150 | ###Loop that splits Tjoa&McKean’s data (only peaked) into ists two component fields of
view and computing areas.

151| RAlowhighTJOA = 17 ; RAupphighTJOA = 18 ; declowhighTJOA = 55 ; decupphighTJOA = 60

152| RAlowlowTJOA = 1 ; RAupplowTJOA = 2 ; declowlowTJOA = 35 ; decupplowTJOA = 45

154 RAhighpTJOA = [] ; dechighpTJOA = [] ; SmaxhighTJOA = []
155| RAlowpTJOA = [] ; declowpTJOA = [] ; SmaxlowTJOA = []
i56| for 1 in range (len (peakRATJOA)):

157 if peakRATJOA[i] > 2.0:

158 RAhighpTJOA . append (peakRATJOA[i])

159 dechighpTJOA . append (peakdecTJOA[i])

160 SmaxhighTJOA . append (SmaxTJOA[i])

161 elif peakRATJOA[i] < 2.0:

162 RAlowpTJOA . append (peakRATJOA [i])

163 declowpTJOA . append (peakdecTJOA[i])

164 SmaxlowTJOA . append (SmaxTJOA[i])

166| areahighTJOA = areacalc (RAlowhighTJOA , RAupphighTJOA , declowhighTJOA , decupphighTJOA)
167| arealowTJOA = areacalc (RAlowlowTJOA ,RAupplowTJOA , declowlowTJOA ;| decupplowTJOA)

16s| print (?Our high field:” ,areahighTJOA ,”sr”)

60| print ("Our low field :” jarealowTJOA ,” sr”)

70| print ("Our full field:” jareahighTJOA+arealowTJOA ,” sr”)

1
72| ###Loop that splits Snellen’s data (only peaked) into its two component fields of view
and computing areas.
;| RAlowhighSNEL = 15 ; RAupphighSNEL = 20 ; declowhighSNEL = 58 ; decupphighSNEL = 75
.| RAlowlowSNEL = 4 ; RAupplowSNEL = 8.5 ; declowlowSNEL = 58 ; decupplowSNEL = 75

6| RAhighpSNEL = [] ; dechighpSNEL = [] ; SmaxhighSNEL = []
7| RAlowpSNEL = [] ; declowpSNEL = [] ; SmaxlowSNEL = []
17s| for 1 in range (len (peakRASNEL)) :

179 if peakRASNEL[i] > 9.0:

180 RAhighpSNEL . append (peakRASNEL [ i ])
181 dechighpSNEL . append (peakdecSNEL[i])
182 SmaxhighSNEL . append (SmaxSNEL[ i ])

183 elif peakRASNEL[i] < 9.0:

184 RAlowpSNEL. append (peakRASNEL [ i |)

185 declowpSNEL . append (peakdecSNEL [i])
186 SmaxlowSNEL . append (SmaxSNEL[ i ])

187
155| areahighSNEL = areacalc (RAlowhighSNEL , RAupphighSNEL , declowhighSNEL , decupphighSNEL)
150| arealowSNEL = areacalc (RAlowlowSNEL , RAupplowSNEL, declowlowSNEL , decupplowSNEL)

10| print (” Snellen’s high field:” jareahighSNEL,” sr”)

01| print (" Snellen ’s low field:” jarealowSNEL,” sr”)
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print (” Snellen’s full field:”  areahighSNEL+arealowSNEL ,” sr”)

Smed = np.asarray ([30,60,120,240,480])

5| ###Computing number density —peak flux convolution per steradian as a function of peak

flux (differential method).

;| def peakconvo (Smaxhigh,Smaxlow, areatot):

Sbinsize = Smed/3 ####Binsize for number counts

Slow = (2/3)*Smed ###Lower bound of bin

Supp = (4/3)*Smed ###Upper bound of bin

nsrdifhigh = []

nsrdiflow = []

for i in range(len(Smed)): ###Loop that uses function to differentially count

number of sources per bin
nsrdifhigh .append(difnumdensflux (Slow[i],Supp[i],Smaxhigh))
nsrdiflow .append(difnumdensflux (Slow[i],Supp[i],Smaxlow))
nsrdifhigh = np.asarray(nsrdifhigh) ###Converting counts in high field to array

nsrdiflow = np.asarray (nsrdiflow) ####Converting counts in low field to array
nsrdiftot = nsrdifhigh+nsrdiflow ###Calculating total amount of sources per bin
densdiftot = nsrdiftot/areatot #H#Computing source density per bin in total
dndS = nsrdiftot /((Supp—Slow) /1000) ###dn/dS —> density over binwidth
plotypeak = (dndS/areatot)* ((Smed/1000)x*x*(5/2)) ###Plotted values on y—axis
plotyerr = (np.sqrt(nsrdiftot)/nsrdiftot)*plotypeak ###Poissonian uncertainties
in y—axis values

HHH 0 1 2 3 4

return Sbinsize ,nsrdiftot ,densdiftot ,plotypeak ,plotyerr

o| #H#McKean&Tjoa data .

TJOA = peakconvo (SmaxhighTJOA , SmaxlowTJOA ; areahighTJO A+arealowTJOA)
SbinsizeTJOA = TJOA[O0]

plotypeakTJOA = TJOA[3]

plotyerrTJOA = TJOA[4]

plotypeak2TJOA = plotypeakTJOA /(Smedxx(5/2))

plotyerr2TJOA = plotyerrTJOA /(Smedx*x*(5/2))

print (TJOA[1])

s|#H##Snellen data .

SNEL = peakconvo (SmaxhighSNEL , SmaxlowSNEL, areahighSNEL+arealowSNEL)
ShinsizeSNEL = SNEL[0]

plotypeakSNEL = SNEL[3]

plotyerrSNEL = SNEL[4]

plotypeak2SNEL = plotypeakSNEL /(Smedx*x* (5/2))

plotyerr2SNEL = plotyerrSNEL /(Smedx*x*(5/2))

print (SNEL[1])

###Combined data

SbinsizeCOMB = SbinsizeTJOA

nsrCOMB = TJOA[1]+SNEL[1]

plotypeakCOMB = plotypeakSNEL + plotypeakTJOA
plotyerrCOMB = (np.sqrt (nstCOMB) /nstCOMB) *plotypeak COMB
plotypeak2COMB = plotypeak2SNEL 4+ plotypeak2TJOA
plotyerr2COMB = (np. sqrt (nscCOMB) /nsrCOMB) *plotypeak2COMB
print (nsrCOMB)

| ###De Vries data.

SmedVRIES = 4000

Sbinsize VRIES = 2000.0

plotypeakVRIES = 22.0

plotyerrVRIES = 10.0

plotypeak2VRIES = plotypeakVRIES /(SmedVRIESx*x* (5/2))
plotyerr2VRIES = plotyerrVRIES /(SmedVRIES*x(5/2))

with open(” ThesisTable_numdifdensTJOA2.dat”, "a”) as myfile:
for i in range(len (nsrCOMB)) :
myfile. write (" {0} & {1} & {2} & {5}$\pm${6} & {11}$\pm${12} \\\\”.format (Smed]i
],Smed[i]/3,TJOA[1][i],SNEL[1][i],nstCOMB]J1i],np.round(plotypeakTJOA[i],3) ,np.round
plotyerrTJOA[i],3) ,np.round (plotypeakSNEL[i],3) ,np.round(plotyerrSNEL[i],3) ,np.round
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(plotypeakCOMB[i],3) ,np.round (plotyerrCOMB|[i],3) ,np.round(plotypeak2TJOA[i],10) ,np.
round (plotyerr2TJOA[i],10) ,np.round (plotypeak2SNEL [i],10) ,np.round (plotyerr2SNEL [ i
]1,10) ,np.round (plotypeak2COMB|[i],10) ,np.round (plotyerr2COMB[i],10)))

myfile. write(”\n”)

| #HHHA#H#Synthesis 111: Revolutions. Plotting the results.

/f S ] S /f /f S /f ] /f
71 71 Tt 71 THTTT 71 Tt 71 Tt 71 71 Tt

17
print (”>>> Synthesis III: Revolutions”)

###Plot no.0: number density/peak convolution as a function of peak flux.

fig0 = figure(figsize=(40/2.54, 40/2.54))

frameO = fig0.add_subplot(1,1,1,xscale="log’,yscale="log’)

frame0 . errorbar (Smed, plotypeakTJOA , xerr=SbinsizeTJOA , yerr=plotyerrTJOA , ecolor="k” ,

elinewidth=2,marker="*" ;mfc="r" ;ms=30,1ls="" ,label="McKean’s very faint GPS sample”)
7| frame0 . errorbar (Smed, plotypeakSNEL , xerr=SbinsizeSNEL , yerr=plotyerrSNEL , ecolor="k” |
elinewidth=2,marker="*" ;mfc="y” ;ms=30,1s="" ,label="Snellen’s GPS sample”)
#frame0 . errorbar (Smed, plotypeak COMB , xerr=SbinsizeCOMB , yerr=plotyerrCOMB , ecolor="k” ,
elinewidth=2,marker="%" mfc="g” ;ms=20,ls="",label="Total GPS sample”)

frame0 . errorbar (SmedVRIES, plotypeakVRIES | xerr=Sbinsize VRIES , yerr=plotyerrVRIES , ecolor="k
7 elinewidth=2,marker="%" ;mfc="c¢” ,ms=20,1s="" label="De Vries’ sample”)

frame0.set_xlabel (”$S_{max}$ (mJy)” ,fontsize=35)

frame0.set_ylabel ("$dN(>S)/dS*S"{5/2}$ (Sr$ " {—-1}$Jy$°{3/2}$)” ,fontsize=35)

frameO . tick_params(labelsize=30)

s|####Plot no.1l: number density as a function of peak flux.

figl = figure(figsize=(40/2.54, 40/2.54))

i| framel = figl.add_subplot(1,1,1,xscale="log’,yscale="log’)

framel.errorbar (Smed, plotypeak2TJOA , xerr=SbinsizeTJOA , yerr=plotyerr2TJOA , ecolor="%k" ,

elinewidth=2,marker="%" ;mfc="r" ;ms=30,1s="" ,label="McKean’s very faint GPS sample”)

framel.errorbar (Smed, plotypeak2SNEL , xerr=SbinsizeSNEL , yerr=plotyerr2SNEL , ecolor="k" ,
elinewidth=2,marker="*" ;mfc="y” ;ms=30,1s="" ,label="Snellen’s GPS sample”)

#framel . errorbar (Smed, plotypeak2COMB , xerr=SbinsizeCOMB , yerr=plotyerr2COMB , ecolor="k” |
elinewidth=2,marker="*" ,mfc="g” ;ms=20,1ls="",label="Total GPS sample”)

framel . errorbar (SmedVRIES, plotypeak2VRIES , xerr=Sbinsize VRIES , yerr=plotyerr2VRIES , ecolor=
7k” ;elinewidth=2 marker="%" ,mfc="c¢” ;ms=20,1s="" ,label="De Vries’ sample”)

framel.set_xlabel (”$S_{max}$ (mJy)” ,fontsize=35)
framel.set_ylabel ("$dN(>S)/dS$ (Sr$°{—-1}3Jy$ " {—-1}$)” ,fontsize=35)
framel . tick_params(labelsize=30)

show ()
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