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Abstract

This project is based on building a 11 GHz radio telescope, with the goal to measure
the temperature of the Cosmic Microwave Background (CMB). The whole project was
divided among four students which all focussed on different topics. In this thesis the
calibration of the telescope is devised and tested. First a summary is given about the
most important definitions that will be used during the project. Then, I will explain
the importance of the atmosphere, in general and during our observations. In addition,
the calibration before and during the observations is elaborated. The ultimate goal is
measuring the opacity accurate enough to be able to measure the temperature of the
CMB. After the first observation it turned that there has to be made a correction for the
cold load. Because our entire beam was not filled by the liquid nitrogen, the temperature
of the cold load turned out to be 10 K higher than the expected value that should have the
temperature of liquid nitrogen, 77.14 K. After correction, I was able to measure an excess
temperature of the of about 5 K in our system due to the CMB and systematics in the
receiver temperature calibration. Further calibration tests will be needed to determine a
precise value for the CMB.
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1 | Introduction
Nowadays, radio astronomy makes it possible to observe the Universe through the ob-
servation of electromagnetic radiation. In order to obtain information about stars and
the interstellar medium in the Universe, electromagnetic radiation is the most commonly
used source (Wilson et al., 2013).

For many centuries, observations of our Universe were limited. It was until 1931 when
Jansky made the first observation of an astronomical radio source that astronomers only
looked in the visible part of the spectrum. He started building an antenna that could
receive radio signals. As the antenna could turn around, he was able to scan the whole
sky. With these observations, he was able to measure the presence of nearby and distant
thunder storms. Striking was the fact that there was a another unknown signal com-
ing from the sky. Due to the fact that he measured the same signal every day, Jansky
thought that he was measuring the Sun. Later on, he found out that the signal was not
present every day, but every 23 hours, 56 minutes and 4 seconds. This specific period
is also known as a sidereal day, which is the time that stars take to fully rotate around
the Earth. This discovery allowed him to find out that the signal was not coming from
our Solar System. It turned out that the radio signals were coming from the Milky Way.
Due to this discovery, he got the nickname ’Father of Radio Astronomy’.

Figure 1.1: Left stands
Robert Wilson and on the
right is Arno Penzias. They
are standing in front of
the 20-foot Holmdel horn-
reflector antenna.

Another big discovery in the field of radio astron-
omy, was the detection of an isotropic excess radiation.
In 1965, the scientists Arno Penzias and Robert Wilson
used the 20-foot Holmdel horn-reflector antenna in or-
der to make measurements of the effective zenith noise
temperature. They measured a temperature which had
a value of 3.5 ±1 K higher than the expected tem-
perature (Penzias and Wilson, 1965). This unexpected
difference turned out to be the same in every direc-
tion on the sky and independent of seasonal variations.
Therefore, the conclusion could be made that the sig-
nal was not arising from the Earth’s atmosphere or our
Milky Way; it had to be extragalactic (Penzias and
Wilson, 1965). It was and is the cosmic microwave
background radiation. In 1978 the scientists were re-
warded with the Nobel Prize in Physics for this discov-
ery.

Nowadays, we know that the temperature of the Cosmic Microwave Background, is
not 3.5 K but 2.72548± 0.00057 K (Fixsen, 2009).
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The Cosmic Microwave Background

The Cosmic Microwave Background (CMB) is a thermal isotropic radiation that is present
in the entire Universe. It was created at the time of recombination. In this time, after
being hot and dense, the Universe had been cooled down by the adiabatic expansion
of the Big Bang. The temperature that was reached allowed protons and electrons to
’recombine’ into hydrogen atoms. Due to this recombination, photons were released.
These atoms were not able to absorb the thermal radiation any more and therefore finally
the Universe became transparent to light. The photons could therefore travel freely
though out space. As the photons travel, the universe expands causing the photons’
wavelength to red shift. Therefore these photons correspond to a black body having
a cooler temperature. Due to the red shifting, the photons measured today have a
wavelength of about 1 mm, which corresponds to the microwave part of the spectrum.
The CMB radiation contains important information regarding the field of Cosmology.
The existence of the CMB is an important evidence for the ’Big Bang Model’ (White,
1999).

The CMB has the shape of a thermal black body spectrum because the spectrum
follows the Planck function, see equation (3.4), for a temperature of 2.726 K (Fixsen,
2009). Until today, it is the most perfect black body ever measured in nature (White,
1999).

Our radio telescope

This project is based on building a Radio Telescope in order to observe the CMB, the
Sun and other possible sources. The project is implemented by four students, Bram
Lap, Maik Zandvliet, Frits Sweijen and Willeke Mulder (myself). All four have an area
of specialization, which they focus their thesis on. Bram Lap will be focussed on the
designing and building of the Horn antenna (Lap, 2015), Maik Zandvliet will concern
about the construction and the receiver Back-End of the telescope (Zandvliet, 2015) and
Frits Sweijen will develop the software running the telescope and he will observe the Sun
and other possible sources (Sweijen, 2015).

The main purpose of this thesis will be to determine the observational requirements,
influencing the design and construction of the Pickett-Potter Horn antenna, develop a
strategy to remove the contribution of the atmospheric emission, and to measure the
CMB with the telescope.

The highest value for the brightness corresponds to the peak of the spectrum, located
at a frequency of 175 GHz. It would be easiest to observe the CMB with this frequency.
Unfortunately, this is not possible for our telescope. We had the limitations that we could
use the existing leftover filters and amplifiers from SRON, corresponding to a frequency
of 4 to 12 GHz. It seemed obvious to choose a higher frequency, because the brightness
is higher at higher frequencies. Due to the range of our filter, we chose an observing
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frequency of 11 GHz, having a bandwidth of 1 GHz.

This thesis will concentrate on the calibration part of the observation, while taking into
account the Earth’s atmosphere. In Chapters 2 and 3 there will be a review of the ’basics’
behind the Earth’s atmosphere and its atmospheric opacity. Then more details will be
given about measuring the CMB. Where after the design specifications of the telescope
will be established in Chapter 4. To measure a useful temperature, we have to calibrate
the telescope. Concerning the calibration, different aspects of the telescope have to be
taken into account. This will be fully explained in the Chapters 5 and 6. In addition, the
software to determine the temperature of the CMB according to the observational data
will be developed. The Chapters 8 and 9 of the thesis contains the plots, conclusions and
discussion from the observations.
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2 | Atmospheric opacity
In order to observe the Universe, we have to be able to receive signals through the Earth’s
atmosphere. The atmosphere that effects radio waves can be divided into two layers, the
troposphere and the ionosphere. The troposphere is the region just above the Earth’s
surface. The ionosphere is located from about 50 to 400 kilometres, containing many
ions and free electrons.

The radio spectrum goes up to a frequency of 1 THz, but is limited by the ionosphere,
which prevents radio waves of passing through the atmosphere below frequencies of 10
MHz. This is why for the use of ground-based radio telescopes, the Earth’s atmosphere
is of great importance. The atmosphere creates a window defining the frequency range
for radiation in the electromagnetic spectrum that is able to reach the Earth’s surface.
However, having a dry atmosphere, e.g. without clouds, the refractive index for radio
wavelengths is the same as for optical wavelengths (Burke and Graham-Smith, 2010).

In the field of radio astronomy, the Earth’s atmosphere can be considered stable over
a relatively long period. Still some aspects have to be taken into account considering
radio observations. Atmospheric absorption depends on the altitude of the observing
location above sea level, the elevation of the astronomical source and the transparency
of the atmosphere, also called the opacity or optical depth.

2.1 Opacity

Figure 2.1: This figure il-
lustrates the sec z depen-
dence of the optical depth
of the atmosphere τatm with
the assumption of a flat at-
mosphere. Credits: Sasao
and Fletcher, 2009

The opacity along the line of sight will change as a function
of the zenith angle. Here the zenith angle is defined as the
angle from the zenith to the horizon. From now on in this
thesis, each time an angle is mentioned it will be defined to be
a zenith angle being 0◦ at the Zenith and 90◦ at the horizon.
According to Wilson et al. (2013), if the atmospheric physical
parameters are assumed to be independent of position and
only depend on the height in the atmosphere, the opacity
can be written as

τ(z) = τ0 ·X(z) (2.1)

where τ0 is the optical depth at the zenith and X(z) is a
function for the air mass. This function can be expressed as:

X(z) =
1∫∞

0
ρ(h)dh

∫ ∞
0

ρ(h)√
1−

(
R

R+h
n0

n

)2
sin2 z

dh (2.2)
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In equation (2.2), R is defined as the radius of the Earth, ρ as the gas density in the
atmosphere and n as the index of refraction.

According to Burke and Graham-Smith (2010), the atmospheric absorption is small
and sometimes can even be neglected below an observing frequency of 10 GHz. In
addition, clouds absorb and scatter radio waves at frequencies around 6 GHz and the
strong water-vapor line is strongest around 22 GHz. As we have an antenna operating at
11 GHz, we can neglect these effects and are able to encounter an approximately stable
atmosphere. Therefore, the values for the atmospheric temperature and the opacity will
not change a lot during an observing time of several minutes. According to Sweijen (2015)
the temperature can fluctuate a lot during several hours during the day, but taking into
account that a measurement of the CMB will take a minute or two, these variations
would not cause high fluctuations. This enables that by measuring a calibration source
through different air masses, the value for the opacity can be determined, because we can
assume a flat atmosphere. This simplifies the calculations considering the determination
of the value for the opacity in Groningen. The expression for the airmass will be simply
X(z) = sec z and therefore the equation for the opacity becomes

τatm = τ0 sec z. (2.3)

A visual interpretation of this expression is shown in Figure 2.1.
Being able to work with equation (2.3) requires an accurate value of the optical depth

at the zenith. The National Radio Astronomy Observatory has got available data from
the Green Bank Telescope measuring the zenith opacity for different frequencies. Figure
2.2 shows the effects of water vapour for different frequencies. Here it becomes clear that
having an observing frequency that is below ∼ 22 GHz will imply suffering less from the
effects of water vapour on the zenith opacity. However, we also want to observe at as high
a frequency as possible to maximise the brightness of the CMB. This is why we chose to
observe at 11 GHz. This choice of observing frequency was also set by considering the
available equipment.

According to our supervisor, John McKean, we could estimate the zenith opacity in
Groningen to be around a value of 0.05. This is a worst case scenario, but also still a
good approximation taking into account the data from the Green Bank Telescope. The
value for 11 GHz corresponds to a zenith opacity of around 0.01. As we are located
in the Netherlands, being below sea level, the opacity will be a little higher. Thus, a
zenith opacity of 0.05 as a worst case scenario is a good approximation. Therefore, in
the following calculations and plots the value of τ0 = 0.05 is taken into account, starting
with a clear visualization of how the opacity changes as a function of the zenith angle.
As mentioned before, if a flat atmosphere is assumed, the atmospheric opacity follows a
sec function. This can be concluded by looking at equation (2.3). At larger angles, the
function goes to infinity and therefore is not valid. This is shown in Figure 2.3.
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Figure 2.2: Atmospheric opacities at the zenith for a dry
atmosphere, an atmosphere having 5 mm precipitable wa-
ter vapor (pwv), and with 10 mm pwv. The values are
valid for locations near the Green Bank site. Credits:
http://www.gb.nrao.edu/mustang/wx.shtml

2.2 Fluctuations in the zenith opacity

The more obstacles, e.g. clouds and aerosols, radiation has to pass trough the atmosphere,
the more opaque it becomes. This means that the zenith opacity is not a fixed value for
every location and every time. In addition, the zenith opacity differs as a function of
frequency. The Green Bank Telescope provides a forecast representing estimates of the
current and estimated zenith opacity. These forecasts show its dependence on frequency
and for different places, Elkins, Hotsprings, and Lewisburg. The opacities for these
locations, which we will use as a guide are shown in Figure 2.4. Due of the fact that a
low value is an advantage when doing observations with a radio telescope, predictions for
the zenith opacity are made for three days. These get updated every day. An example
for such a forecast is shown in Figure 2.4(b),(d).

From these plots we can clearly see that the value for the Zenith opacity can fluctuate
a lot during the day. During the days in June, the highest value is about 0.03 while most
of the time the zenith opacity is approximately 0.01. The forecast for July shows a
larger fluctuation. Here the opacity peaks at values around 0.05 and the lowest value is
approximately 0.015. For these figures the opacities are derived by using the Millimeter-
Wave Propagation Model (MWP) of Liebe. This model describes various properties,
such as attenuation, of moist air for frequencies up to 1000 GHz. (Liebe, 1985) They are
based on the presence of resonance lines, three of H2O and 40 from O2, the continuum
of H2O and the dry air.
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Figure 2.3: The zenith dependence of the atmospheric opacity is
shown. At larger angles, the larger the distance travelled trough the
atmosphere and therefore the value for the optical depth is higher.
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Figure 2.4: The High Frequency Weather Forecasts are shown. Made by Ronald J
Maddalena on behalf of the National Radio Astronomy Observatory with the Green
Bank Telescope. The plots show the 3.5-Day (NAM) Forecasts of the Zenith Opacity
is calculated and plotted as function of observing frequency (a) and at 10 GHz (b)
for the 12th of June 2015 at 10:00 UT. In addition, the Zenith Opacity as function of
observing frequency (c) and at 10 GHz (d) for the 4th of July 2015 at 09:00 UT are
shown. Credits: http://www.gb.nrao.edu/∼rmaddale/WeatherNAM /opacity.html
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3 | Atmosphere above Groningen
Due to the fact that there is not any data available considering the sky and atmosphere
above Groningen, I made a model in order to get an impression about how precise we
have to measure the opacity of the sky. This model is based on a set of simulations and
requires a good control of and knowledge about the equation of radiative transfer, which
I first review in order to develop the necessary formalism. From the radiative transfer
equation the expression describing the antenna and system temperature will be derived.
These expressions will show the importance of the accuracy and stability of the zenith
opacity in order to be able to measure the temperature of the CMB.

3.1 Radiative transfer

To understand the basics concerning the radiative transfer equation, I first will introduce
the definitions of brightness, flux density and the brightness temperature. As we also
want to understand the CMB’s black body approximation, I will also explain the basics
regarding Planck’s Law.

3.1.1 Brightness and flux density

It is important to recognize the difference between brightness and flux density. When we
measure radiation, we measure the amount of photons falling on a detector. When taking
into account a specific observing solid angle, this number of photons is independent of
distance. This is also known as the brightness. When we are considering the whole sky,
the number of photons does decrease with increasing distance. This is called the apparent
flux (Wilson et al., 2013) .

Brightness

In radio astronomy, we often use the term brightness instead of specific intensity. The
specific intensity Iν can be defined by the quantities ϑ, dσ and dΩ. Here ϑ describes
the angle between the normal vector of the receiver and the incoming radiation, dσ the
surface area of the receiver and dΩ the measured solid angle on the sky. The intensity
is related to the energy E passing a surface area per unit time t, per unit frequency
(ν, ν + dν) by, dE = Iν cosϑdσdΩdtdν. Since the power is defined to be the energy per
unit time, the power can be expressed as

dP = Iν cosϑdσdΩdν. (3.1)

Rewriting equation (3.1), the expression for the specific intensity becomes,

Iν =
dP

cosϑdσdΩdν
. (3.2)
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Flux density

Radio telescopes usually measure the flux density, Sν , of a source. Considering a discrete
radio source, the flux density equals the specific intensity integrated over a solid angle
on the sky dΩ,

Sν =

∫
Ωs

Iν(ϑ, φ) cos(ϑ)dΩ. (3.3)

This flux density is the radiation power collected per unit frequency and area. It is
defined by the specific intensity and therefore characterised by the astronomical source
itself. The powers measured from sources in the Universe are small and will cause small
values for the specific intensity. Eventually, these will lead to fluxes in the order of 10−20

to 10−30 W m−2 Hz−1. To measure these fluxes, the unit Jansky is introduced. One
Jansky (= 1 Jy) is equal to 1× 10−26 W Hz−1 m−2.

3.1.2 Planck ’s law and brightness temperature

To fully understand the concept behind radiation, it is important to know the definition
of a black body. A black body is an object having the ability to absorb radiant energy
at all frequencies. After all available energy is absorbed, the black body will reach an
equilibrium where eventually the body will emit all energy at the same time as it was
absorbed. The shape of the black body intensity spectrum depends on the temperature.

Planck ’s law

The Planck law describes the distribution of the intensity of electromagnetic radiation
radiated by a black body as a function of frequency. It states that

Bν(T ) =
2hν3

c2

1

ehν/kT − 1
, (3.4)

where h is the Planck constant (= 6.62×10−34 J s), c is the speed of light (= 299,792,458
m s−1), ν is the frequency, T is the temperature and k is the Boltzmann constant (=
1.3806488× 10−23 m2 kg s−2 K−1).

The peak of the Planck function is a characteristic of different temperatures. As the
temperature is increasing, the peak will show a higher brightness and lower frequencies.
The shift of the peak is explained though the Wien’s displacement Law. The maxima’s
are found by using ∂Bν/∂ν = 0,( νmax

GHz

)
= 58.789

(
T
K

)
. (3.5)
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Using this expression for the peak of the Planck function, it can be determined that for
the CMB, T = 2.73 K, the peak of the CMB brightness is at a frequency of 160.23 GHz.

If x = hν/kT is far from the maximum, the Planck Function can be simplified. There
can be made a distinction between the two limiting cases x � hν/kT and x � hν/kT
(Wilson et al., 2013).

1. Having x � hν/kT the exponential ehν/kT − 1 dominates the Planck function.
Therefore the expression will become

BW (ν, T ) ≈ 2hν3

c2
e−hν/kT . (3.6)

This limit is called Wien’s Law.

2. Having x � hν/kT the exponential ehν/kT − 1 can be expanded using Taylor
expansion to ehν/kT − 1 ∼= hν

kT
. Therefore the expression will become

BRJ(ν, T ) ≈ 2ν2

c2
kT. (3.7)

This limit is called the Rayleigh-Jeans Law. This approximation for the Planck
Law is most relevant to the radio observations that we will make. It demonstrates
that observing at as high a frequency as possible is important which can be inferred
from B(ν, T ) ∝ ν2.

Brightness temperature

In order to have a practical way of measuring a received intensity, we use the term
and definition brightness temperature. It is defined to be the temperature that a black
body should have in order to emit the received intensity. Therefore, it is an apparent
temperature and not the physical temperature of the source. Being in the low-frequency
regime, we can take into account the Rayleigh-Jeans Law (see equation (3.7)). This
causes Bν to be directly proportional to the temperature.
Often, the specific intensity is also defined in terms of the brightness temperature. Due
to the fact that the brightness temperature is defined by Iν = Bν(TB) for a black body,
the expression for the specific intensity of the CMB becomes

Iν =
2ν2

c2
kTB. (3.8)

3.1.3 The radiative transfer equation

Now I have mentioned the basic definitions, I will elaborate the radiative transfer equation.
According to Wilson et al. (2013), radiative transfer can be described as a mechanism
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of transporting energy in the form of electromagnetic radiation. In free space, photons
simply do not encounter or interact with any obstacles. Therefore, the specific intensity
Iν of radiation remains independent of distance along a path s, meaning dIν

ds = 0. But,
in a medium Iν can change due to the emission or absorption of radiation. These gains
and losses can be expressed through the adsorption, κν , and emission, εν coefficient.

Together, the interaction between radiation and matter are described by the equation
of radiative transfer, stating

dIν
ds

= −κνIν + εν . (3.9)

There are a couple of limiting cases where the radiative transfer equation has got a simple
solution. The solutions for thermodynamic equilibrium (TE) and local thermodynamic
equilibrium (LTE) will be relevant for this thesis.

1. Thermodynamic equilibrium. A system being in mechanical chemical and ther-
mal equilibrium is in thermodynamic equilibrium, meaning the intensity within the
source does not change with distance, ds. In this limiting case, the specific intensity
can be described by the Planck function, depending on the temperature. Having
dIν
ds = 0, equation (3.9) can be written as

Iν = Bν(T ) = εν/κν .

This solution is known as Kirchhoff’s law.

2. Local thermodynamic equilibrium. Local thermodynamic equilibrium implies
independent degrees of freedom in the system to be in equilibrium over time. There-
fore, we can describe a volume of air as having a specific temperature and pressure.
In order to write the solution for the radiative transfer equation in this equilibrium,
we use the optical depth, τν . This is an important term when making observations
with a ground based telescope. Describing the optical thickness and being dimen-
sionless, the optical depth can be defined by

τν(s) =

∫ s

s0

−κν(s)ds. (3.10)

Together with Kirchoff’s law, the equation of radiative transfer can be written as

− 1

κν

dIν
ds

=
dIν
dτν

= Iν −Bν(T ). (3.11)

The solution is determined through multiplying equation (3.11) with the exponent
e−τν(s)

dIν
dτν

e−τν(s) = (Iν −Bν(T )) e−τν(s).
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Integrating over τν from zero to τν(s) will give the following,

Iν(s)e
−τν(s)

∣∣s
0

+

∫ τ(s)

0

Iνe
−τν(s)dτν −

∫ τ(s)

0

Iνe
−τν(s)dτν = Iν(s)e

−τν(s) − Iν(0)e−τν(0).

Under the assumption that τν(0) = 0, being isothermal the temperature stays con-
stant for every value of τ and s. Therefore, if T , T (τ), T (s) is constant, the solution
of equation (3.9) can be written as

Iν(s) = Iν(0)e−τν(s) +Bν(T )
(
1− e−τν(s)

)
(3.12)

For radio astronomy, we often apply the Rayleigh-Jeans Law. This is allowed because we
are are located in the limiting regime of hν � kT . From equation (3.7) it becomes clear
that the brightness temperature is proportional to the dynamic temperature when con-
sidering a black body emitting electro magnetic radiation. Therefore, in the centimetre
wavelength regime, equation (3.9) can be written as,

dTb(s)
dτν

= Tb(s)− T (s), (3.13)

where Tb(s) and T (s) respectively represent the brightness temperature and the thermo-
dynamic temperature of the medium, at location s. Through the same calculations used
in the limiting case for LTE, the solution will become

Tb(s) = Tb(0)e−τν(s) +

∫ τν(s)

0

T (s)e−τdτ. (3.14)

Being isothermal, we can write equation (3.14) as,

Tb(s) = Tb(0)e−τν(s) + T (s)(1− e−τν(s)). (3.15)

This expression for Tb(s) is also known as the antenna temperature.

3.2 Antenna temperature

To explain the definition of an antenna temperature, we consider a receiving antenna.
Aiming at a certain point in the sky, the antenna has got the normalized power pattern
Pn(ϑ, ϕ). At this point the brightness distribution is Bν(ϑ, ϕ). This distribution induces
a power at the antenna output. In this situation, the total power in the antenna, Pν ,
equals

Pν =
1

2
Ae

∫∫
Bν(ϑ, ϕ)Pn(ϑ, ϕ) dΩ, (3.16)

per unit bandwidth, ν, where Ae is the effective aperture. With the use of the Rayleigh-
Jeans approximation and the Nyquist theorem, the antenna temperature, TA, can be
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defined to be Pν = kTA. Substituting equation (3.16) gives the following expression for
the antenna temperature;

TA =
1

2k
Ae

∫∫
Bν(ϑ, ϕ)Pn(ϑ, ϕ) dΩ. (3.17)

By using the beam solid angle instead of the effective aperture, equation (3.16) becomes

TA(ϑ0, ϕ0) =

∫
TB(ϑ, ϕ)Pn(ϑ− ϑ0, ϕ− ϕ0) sinϑ dϑ dϕ∫

Pn(ϑ, ϕ) dΩ
. (3.18)

Another definition for the antenna temperature can be expressed by rewriting equation
(3.15). Measuring the CMB allows us to define TB(s = 0) = Tcmb, T (s) = Tatm and
as mentioned before, Tb(s) equals the antenna temperature TA. Therefore, we get the
expression,

TA = Tcmbe
−τ(s) + Tatm(1− e−τ(s)). (3.19)

This is the equation we must solve in order to determine the temperature of the CMB.

3.2.1 Dependence of the zenith opacity on the antenna temper-
ature

If not mentioned otherwise, the simulations and information expanded in the coming sec-
tions is based on the assumptions that the atmospheric temperature Tatm = 283 K and
the zenith opacity τ0 = 0.05.

The combination of equation (3.19) and equation (2.3), shows the importance of the
accuracy of the value for the zenith opacity. During observations, measurements need to
be carried out as accurate as possible. Simulations show that a small uncertainty in the
value for the zenith opacity already implies larger changes in the antenna temperature
TA, which is shown in Figure 3.1. At larger angles, the uncertainties will cause larger
fluctuations in the antenna temperature than for smaller angles.

To find out more about the temperature fluctuation caused due to a changing value
of the zenith opacity, Figure 3.2 is made.

The plots show that being off by a value of 0.01, 0.005 or 0.001 in τ0 can cause
antenna temperature fluctuations of ∼30 K, ∼14 K and ∼4 K respectively. This shows
the importance of doing a quick observation. A fluctuation in τ0 causes large fluctuation
in the received antenna temperature.

3.3 Uncertainty calculations for the zenith opacity

Our main goal in the building the radio telescope is to measure the CMB. The cold CMB
having a temperature of 2.73 K, makes it difficult to distinguish the contribution from the
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Figure 3.1: The plot shows a simulation of the dependence of the
zenith opacity value to the antenna temperature.

CMB and the contribution of the atmosphere to the antenna temperature. The ultimate
goal is to achieve an uncertainty of a maximum of 10 percent in the CMB temperature
measurement. Via the use of propagation of uncertainties, the local thermodynamic
equilibrium solution of the radiative transfer equation makes it possible to investigate
what should be our maximum uncertainty in the value for the opacity in order to achieve
this precision.

A way of determining the maximum allowed uncertainty in the measurement to obtain
the value for the zenith opacity τ0 is by the use of the Exact Formula of Propagation
of Error, see equation (A.6). Here f stands for the expression of the zenith opacity
extracted from the equation of the system temperature, which will be described in the
following section.

3.4 System temperature

Having a whole system, the antenna temperature but also the receiving part of the
antenna adds uncertainties that have to be taken into account. The system temperature
is a combined temperature, which depends on the antenna and the receiver temperature,
Tsys = TA+Treceiver. The antenna temperature includes Tground, which will be discussed in
Section 5.2.2. In this section the ground temperature contribution is neglected. Again,
the antenna temperature TA is given by equation (3.19). The receiver temperature Trx

can be determined by performing measurements and calculations, which is elaborated in
Section 5.1.2. Together the expression for the system temperature becomes,

Tsys = Tcmbe
−τν(s) + Tatm(1− e−τν(s)) + Trx. (3.20)
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Figure 3.2: In this plot are 100 measurements simulated having random errors for the
value of τ0. They vary between the first, second and third column with the uncertainty
of 0.01, 0.005 and 0.001, respectively. In the upper plots the fluctuations in the antenna
temperature are shown for different fixed angles, blue is 50◦, green is 60◦ and red is
70◦. The lower plots show scaled fluctuations.

In this case τ(s) again depends on the zenith angle by τ(s) = τ0 sec z. Therefore we can
rewrite the expression to

Tsys = Tcmbe
−τ0 sec z + Tatm(1− e−τ0 sec z) + Trx. (3.21)

We want to know how precise we need to measure the zenith opacity in order to
measure the CMB. Therefore τ0 is extracted from equation (3.21),

τ0 = − ln

(
Tsys − Trx − Tatm

Tcmb − Tatm

)(
1

sec z

)
. (3.22)

Due to the fact that we want to measure the CMB temperature of 2.73 K with an
uncertainty of 10 percent, the error in Tsys can have a maximum value of 0.273 K.

Exact formula for propagation of error

στ0 =

√(
∂τ0

∂Tsys

)2

σ2
Tsys

+

(
∂τ0

∂Tcmb

)2

σ2
Tcmb

+

(
∂τ0

∂Tatm

)2

σ2
Tatm

+

(
∂τ0

∂Trx

)2

σ2
Trx

(3.23)
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Using equation (3.22), we are able to calculate the derivatives of τ0 with respect to all
the components, Tsys, Tcmb, Tatm, Trx:(

∂τ0

∂Tsys

)
=

∂

∂Tsys

[
− ln

(
Tsys − Trx − Tatm

Tcmb − Tatm

)(
1

sec z

)]
=

1

Tatm + Trx − Tsys(
∂τ0

∂Tcmb

)
=

∂

∂Tcmb

[
− ln

(
Tsys − Trx − Tatm

Tcmb − Tatm

)(
1

sec z

)]
=

1

Tcmb − Tatm(
∂τ0

∂Tatm

)
=

∂

∂Tatm

[
− ln

(
Tsys − Trx − Tatm

Tcmb − Tatm

)(
1

sec z

)]
=

Tcmb + Trx − Tsys

(Tatm + Tcmb)(Tatm + Trx − Tsys)(
∂τ0

∂Trx

)
=

∂

∂Trx

[
− ln

(
Tsys − Trx − Tatm

Tcmb − Tatm

)(
1

sec z

)]
=

1

(Tsys − Tatm − Trx)

Applying propagation of errors to τ0, while taking into account the whole telescope
system, requires some values for the uncertainties. The expected uncertainty due to
the sensitivity of the used temperature sensor depends on the temperature itself by
σTatm = 0.6 + 0.005 × (Tatm − 273.15) K. We want to achieve σTcmb = 0.273 K and
therefore σTsys = 0.273 K. Regarding the receiver, I assume the values Trx = 200 K and
σTrx = 1 K. Looking at equation (3.23) shows that there is not a dependence on τ0 itself.
Therefore the value for τ0 does not matter in this calculation.

Plotting στ0 as a function of the zenith angle z, gives the plot shown in Figure 3.3.
From this plot we can conclude that we need an uncertainty which can have a maximum
value of ∼0.0075 at the zenith. Since we plan to make measurements until 70◦ we have
to take into account an uncertainty of ∼ 0.0025.

Measurement uncertainties

Until now, I only discussed uncertainties to set constraints for the designing and building
of the telescope. However, these uncertainties are not the only ones that we have to take
into account. During observations we have to take into account that we will encounter
measurement uncertainties. The largest uncertainty is coming from the power meter (see
Sweijen, 2015 for more information about the power meter). To be able to correct as much
as possible for the measurement uncertainties, we have to observe every angle of the sky a
couple of times and integrate over all values. From statistics we know that measuring N
times will reduce the measurement uncertainty with 1/

√
N . To calculate the uncertainty

in our received power, which is being converted to Tsys, we apply propagation of error to
equation (3.21). Therefore the expression to be solved becomes,

σTsys =

√(
∂Tsys

∂Tcmb

)2

σ2
Tcmb

+

(
∂Tsys

∂Tatm

)2

σ2
Tatm

+

(
∂Tsys

∂Trx

)2

σ2
Trx

+

(
∂Tsys

∂τ0

)2

σ2
τ0
. (3.24)
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Figure 3.3: The uncertainty allowed in the value for τ0, in order to
be able to measure the temperature of the CMB with 10 percent
accuracy. This plot takes into account the whole system of the
telescope.

Using equation (3.21), we are able to calculate the derivatives of all the components,
Tcmb, Tatm, Trx, τ0, with respect to Tsys:(

∂Tsys

∂Tcmb

)
=

∂

∂Tcmb

(
Tcmbe

−τ0 sec z + Tatm(1− e−τ0 sec z) + Trx
)

= e−τ0 sec z(
∂Tsys

∂Tatm

)
=

∂

∂Tatm

(
Tcmbe

−τ0 sec z + Tatm(1− e−τ0 sec z) + Trx
)

= (1− e−τ0 sec z)(
∂Tsys

∂Trx

)
=

∂

∂Trx

(
Tcmbe

−τ0 sec z + Tatm(1− e−τ0 sec z) + Trx
)

= 1(
∂Tsys

∂τ0

)
=

∂

∂τ0

(
Tcmbe

−τ0 sec z + Tatm(1− e−τ0 sec z) + Trx
)

= eτ0 sec z sec z(Tatm − Tcmb).

The exact calculations for the uncertainties will be carried out after an observation
using equation (3.24). There is a simplification of equation (3.21) for the optically thin
regime (τ � 1), where e−τ0 sec z ≈ (1− τ0 sec z). This results in

Tsys = Tcmb + (Tatm − Tcmb)τ0 sec z + Trx. (3.25)
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4 | Establishing the telescope design
specifications

The designing of the telescope depends on the available equipment, but in order build
a specific horn antenna to measure the CMB, we have to establish some design specifi-
cations. These specifications are obtained by investigating the influence of the antenna
beam. The first section will clarify the fundamentals of the antenna beam on the received
power pattern and main beam solid angle. Thereafter, I set the requirements for the size
of the main beam and the minimum values for the side-lobes

4.1 The antenna beam

The power pattern

In the field of designing antennas, the power pattern is an often used term. It describes the
directional and angular dependence of the relative distribution of the measured radiation
power. Looking at the case of a transmitting isotropic antenna; if a spectral power 1

(W Hz−1) is fed into the antenna, it would transmit the same power per solid angle.
Therefore the power, P (ϑ, ϕ), is the power per solid angle per unit bandwidth (W Ω−1

Hz−1). Therefore, the total power at a fixed frequency, ν, is 4πPν . The 4π is arising from
an integration over the whole sky.

According to Collin (1985), the directivity of an antenna describes the ratio of the
radiated power to the average radiated power. This is comparable to the emission of an
isotropic antenna. The directive gain of an antenna is about the same as the directivity,
except that the directive gain takes into account the incoming power instead of the total
radiated power. Therefore, the directive gain can be defined to be

G(ϑ, ϕ) = 4π
power radiated per unit solid angle

input power
=

4πP (ϑ, ϕ)∫∫
4π
P (ϑ, ϕ)dΩ

. (4.1)

Usually, the power pattern measured is the normalized power pattern, Pn. This is the
ratio of the power pattern over the maximum power,

Pn(ϑ, ϕ) =
P (ϑ, ϕ)

Pmax
=
G(ϑ, ϕ)

Gmax
. (4.2)

1Spectral power equals, Pν = kT , where T is temperature and k is the Boltzmann constant.
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The (main) beam solid angle

The beam solid angle of an antenna is a parameter used to describe the solid angle on
the sky, sampled by the antenna beam. This angle is defined by

ΩA =

∫∫
4π

Pn(ϑ, ϕ) dΩ =

∫ 2π

0

∫ π

0

Pn(ϑ, ϕ) sinϑ dϑ dϕ. (4.3)

In the case of an isotropic antenna, the whole power pattern is equal to the maximum
of the power pattern. Therefore, from equation (4.2) it can be concluded that for an
isotropic antenna the normalized power pattern Pn is 1 for all ΩA. Unfortunately, this
ideal antenna does not exist. Instead as a function of position on the sky, most antennas
have smaller values for the normalized power pattern. Still for a certain range of ϑ and
ϕ, the normalized power pattern has the largest value. This range is called the main
beam solid angle, also known as the main lobe. Therefore, the mean beam solid angle is
defined to be

ΩMB =

∫∫
main lobe

Pn(ϑ, ϕ) dΩ. (4.4)

To describe the efficiency of the antenna, the term main beam efficiency is introduced. It
is defined to be the ratio of the main lobe and the total beam solid angle. It is described
by,

ηB ≡
ΩMB

ΩA
. (4.5)

Besides the main lobe, there are also areas outside the principle response that are non-
zero. These areas are called side-lobes. As the side-lobes can add a lot to the total
power pattern, it is important to take into account the additional signal received in the
side-lobes of an antenna when astrophysical measurements are being done. In the case
of our telescope, the antenna has been designed in such a way to limit the total power
received in the side-lobes (see Lap, 2015).

4.2 Determining a suitable beam size

In order to determine the value for the atmospheric opacity and the temperature of the
CMB from our observations, a certain number of measurements is needed. However,
pointing an antenna in one angular direction, will not provide a measurement of the
received power in that particular direction only. Due to the power pattern of our antenna,
having a main beam and side-lobes, measuring at a certain angle will take into account
signals from other directions. We have minimised the side-lobe level to -40 dB (see Lap,
2015). This required side-lobe level is discussed in Section 4.3 However, we must also
determine the size of the main lobe. In order to correct for the atmosphere, we measure
the sky in fixed angular steps and integrate over the angle range. The size of this step will
define the size of the horn itself. For example, if we want to measure steps of ten degrees,
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the main beam of the horn has to be less than this. Therefore, this is an important factor
for determining the size of the horn.

4.2.1 Number of measurements needed

Having an error in a determined value can change the whole interpretation of a measure-
ment. For example, this simulation is based on equation (3.15). To show how important
accuracy of a measurement can be, I add an uncertainty of ±5 K to the antenna tem-
perature. This causes already a larger region of the parameter space where a function
can get plotted through. As we want to determine the cold temperature of the CMB,
we want to know how many angles we have to take into account in order to achieve an
accurate value for τ0.

Figure 4.1: The left plot shows a visual interpretation of TA =
Tcmbe

−τ0 sec z+Tatm(1−e−τ0 sec z). The right plot shows σTA = 5 K,
which gives an impression about which values TA can reach having
an uncertainty.

According to the stability of the atmospheric opacity per zenith angle, we can describe
the stability, to check whether it is enough to have e.g. four measurements in order to
reach an accuracy of 10 percent for the CMB temperature. To test this, simulations
are carried out. The simulations are divided into two parts. The first part is to check
how many measurements we need to determine the value for the opacity that is precise
enough. The second part is to check at how many angles we have to measure, before
being able to measure the CMB. During the following simulations, the assumption of
Tatm = 283 K is made. The simulations are based on the scripts shown in Appendix B
and C

Measurements needed to measure the zenith opacity τ0

1. In order to be able to measure the CMB, our biggest concern and difficulty is
measuring the value for the zenith opacity as accurate as possible. To determine
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how many measurements are preferable in order to measure the CMB, we start with
the definition of the antenna temperature, TA = Tcmbe

−τ0 sec z + Tatm(1 − e−τ0 sec z).
First, I simulate a normal distribution to create random errors for τ0 with the
python function numpy.random.normal. Here I use the value τ0 = 0.05 as our µ
and four different values for the σ. Plotting TA with the use of the uncertainties
in τ0 results in the plots shown in Figure (4.2). Note that to be able to plot this
function, the temperature for the CMB is already known and used.

Figure 4.2: Four plots are shown presenting TA for an observation sweep of the sky.
Applying different errors for the value of τ0 results in the bubbly distribution. The
simulations are based on a normal distribution of uncertainties. The angles are plotted
from 0◦ to 90◦ in 9000 steps.

These plots already show that having an uncertainty of 0.005 can result in a tem-
perature uncertainty of more than 2 K. Therefore the next step is looking how
many times we have to measure the sky in order to reach a precision of τ0 that
results in a temperature uncertainty of less than ∼2 K.

2. With the use of the script shown in Appendix B, I simulated a range of measure-
ments of the sky, integrating over each value and then checked how quickly we can
measure the opacity. We already know that we are going to measure a received
power on every angle of the sky in order to determine the zenith opacity. There-
fore I take step sizes of 1◦. My program simulates every measurement for different
values of the uncertainty in τ0 and therefore looks like a real observation.
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3. Running the simulation results in the values shown in Table 4.1. Due to the fact

Measurements ∆τ0 = 0.001 ∆τ0 = 0.002 ∆τ0 = 0.005 ∆τ0 = 0.01

1 0.04789 0.04979 0.05143 0.05281
5 0.04986 0.04973 0.05067 0.04996
10 0.04965 0.04995 0.04992 0.05063
50 0.04983 0.04998 0.04975 0.04942
100 0.05011 0.04999 0.04987 0.04934
500 0.04992 0.04998 0.04981 0.04951

Table 4.1: One example of my simulated data. The numbers represent the value for the zenith
opacity. This allows me to check how many measurements of the sky are needed in order to be
able to determine an accurate value for the zenith opacity τ0.

that the values are generated randomly every time that I run the simulation other
values are shown. Therefore, I can not conclude hard results, only that I know that
doing more measurements on every angle on the sky increases the accuracy of the
measurement. Knowing that the value of τ0 is 0.05 seems promising. Doing one
measurement would be unwise, but is possible. Doing a hundred observations per
angle will give us a very good precision. Therefore, the constraint is being made
that the power meter has to be able to read out data quick enough to measure one
angle on the sky as many times as possible within a second or so.

Measurements needed to measure Tcmb

During the previous simulation Tcmb was known and we wanted to fit a function in order
to obtain the zenith opacity τ0. Now I am going to do that simulation the other way
around. By fixing the value for τ0, I will be able to fit a function in order to obtain a
temperature for the CMB. Same as the previous simulation, the equation for the antenna
temperature TA is used.

1. First, again I plot the values for the TA for every zenith angle. Using the same
uncertainties as done by the previous simulation, the plot shows exactly the same.
Now I fix τ0 when taking into consideration that τ0 has got uncertainties. Using
scipy.plot.optimize I am able to fit for the simulated data. All temperatures are
mentioned in Table 4.2.

2. In Table 4.2 the blue marked data represents the simulated temperatures falling
inside our requirement concerning the Tcmb. From this it can be inferred that
measuring the opacity as good as possible is indeed of importance, but being to
able to make more measurements of the sky is even more important.

From the values presented in Table 4.1 and 4.2 it becomes clear that already two
observations are enough to measure τ0 as accurate to determine Tcmb within 10 percent.
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Measurements Samples ∆τ0 = 0.001 ∆τ0 = 0.002 ∆τ0 = 0.005 ∆τ0 = 0.01

1 sample2 2.3120 K 1.6458 K 0.8834 K 4.8253 K
sample5 2.7640 K 2.2552 K 0.1815 K 8.0604 K
sample10 2.7550 K 2.6646 K 4.5931 K 3.2293 K

5 sample2 2.9303 K 2.3511 K 3.3210 K 1.6164 K
sample5 2.8014 K 2.3807 K 3.0514 K 3.0427 K
sample10 2.7391 K 2.7487 K 2.1482 K 3.5850 K

10 sample2 2.7725 K 2.7599 K 2.5297 K 1.1023 K
sample5 2.7191 K 2.7194 K 2.7661 K 3.8094 K
sample10 2.7430 K 2.7377 K 2.7069 K 2.1324 K

50 sample2 2.7047 K 2.5285 K 2.9365 K 2.5683 K
sample5 2.7712 K 2.7148 K 2.6530 K 2.5892 K
sample10 2.7835 K 2.7497 K 2.7191 K 2.7220 K

100 sample2 2.7279 K 2.7994 K 2.8004 K 2.6549 K
sample5 2.6667 K 2.6633 K 2.9252 K 2.7904 K
sample10 2.7256 K 2.7400 K 2.6152 K 2.5549 K

500 sample2 2.7088 K 2.7415 K 2.8273 K 2.7801 K
sample5 2.7295 K 2.7389 K 2.7364 K 2.7677 K
sample10 2.7167 K 2.7300 K 2.7031 K 2.5519 K

Table 4.2: One example of my simulated data. The numbers represent the value for the measured
Tcmb. The Tcmb having an accuracy of 10 percent or less are marked blue. This allows me to
check how many measurements of the sky and how many samples are needed in order to be
able to determine an accurate value for the temperature of the CMB. There are three different
samples being used; sample2 are two measurements of TA at 22◦ and 67◦, sample5 are five
measurements of TA at 15◦, 30◦, 45◦, 60◦ and 75◦ and sample10 are ten measurements of TA at
7◦, 15◦, 22◦, 30◦, 37◦, 45◦, 52◦, 60◦, 67◦ and 75◦.

Note that this is only a simulation and therefore a theoretical interpretation. During
a real observation we have to take into account the system temperature instead of the
antenna temperature, which adds a value for the receiver temperature. Also the ground
can contribute to the signal coming in to the system. The contribution coming from the
ground is discussed in Section 5.2.2. During a measurement of the opacity we ideally
measure a sky without other sources, e.g. the Sun and Geostationary Satellites, because
we want a clear sky with only signals arising from the atmosphere and CMB. In addition,
we know that our system is not perfect. Therefore, we also need to take the uncertainty
in the system into account.

Looking at the simulations above, we can infer that in order to measure the temperature
of the CMB, we have to be at least able to get two measurement points and therefore at
least a sample of 5 observations in the range from 0◦ till ∼ 70◦. Therefore, an antenna
full width at half maximum of < 14◦ is needed.
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4.2.2 Stability of the atmospheric equations

To attain a favourable value for the opacity, the whole sky has to be taken into account.
Measuring the system temperature on every zenith angle would be preferable but to
determine the amount of measurements we look how fast equation (2.3) changes with the
zenith angle. As we will integrate over a range of angles, this change will be presented
for different angle step sizes. This is done by dividing the values for the angles, going
from 0◦ to 90◦ in steps of 10◦, 20◦, 30◦ and 40◦. The values for τatm are subtracted from
the average τatm value for every step. The results are shown in Figure 4.3. Basically,
we search for the plot that follows the equation the best. We only want to measure the
Zenith angle range from 0◦ till ∼ 70◦, because the 10◦ and the 20◦ step sizes seem usable.
In Figure 4.4 the same script is applied, only for equation (3.15) to see how the antenna
temperature changes.

Figure 4.3: The change of the atmospheric opacity is plotted against
the zenith angle. From this simulation becomes clear that having a
beam of 10◦-20◦ you will be able to measure every 10◦ till 20◦, which
makes it able to avoid the exponential, coming from the ground and
horizon, as long as possible.

My simulations show that having a horn with an angular size of the main beam
between 10◦ and 20◦, and with measurements the zenith angle until ∼ 70◦, we provide
at least four measurements, as been found above, to determine the value for the CMB
temperature.

4.3 Determining a suitable value for the side-lobes

As mentioned in the previous section, it is very important to take into account the beam
during a measurement of the sky. The beam also contains side-lobes, which also measure
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Figure 4.4: The same is plotted as in Figure4.3, but now for Tant.
From this we get the same conclusion that having a beam of 10◦-20◦

you will be able to measure every 10◦ till 20◦, which makes it able
to avoid the exponential, coming from the ground and horizon, as
long as possible.

power from other directions. This is particularly important as the power received from
the ground could strongly contribute to the antenna temperature. Looking at different
types of horn antenna designs, it becomes clear that every specific shape has got different
values representing the first side-lobe levels, for example see Figure 4.5. In order to know
which shape is most ideal for measuring the CMB, some design constraints have to be
set.

At every angle, θ, the power pattern adds an amount of decibels to the total power.
Most of the contribution is coming from the main lobe but there is also a contribution from
the side-lobes. Therefore the side-lobe levels must have a certain value, in order to obtain
an accuracy of 0.1 K. Let’s assume the background contribution of the ground falling into
the whole beam is 300 K. Having an accuracy of 0.1 K implies that a temperature of
less than 0.1 K is not added within the side-lobes. This can be determined though the
calculation of the allowed contribution of the temperature according to the background
temperature. By the use of the Nyquist formula and the definition of Decibel, see equation
(5.6), we can relate the temperature to a power, thus the allowable gain for a 300 K ground
temperature is

Gain = 10× log10

(
0.1K
300K

)
= −34.77 dB.

From the calculations it becomes clear that the first side-lobe levels must have at least
a value of ∼ −35 dB. Also discussed by Lap (2015) concerning different horn shapes, see
Figure 4.6, a circular horn has a first side-lobe levels of ∼ −17 dB, a rectangular horn
∼ −13 dB and the Pickett-Potter horn ∼ −40 dB. Therefore, it becomes clear that in
order to measure a contribution of 0.1 K from spurious off-axis sources like the ground
at 300 K, only the Pickett-Potter horn antenna meets the requirements.
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Figure 4.5: The entire beam of an antenna exists
of one main beam, defining the half power beam
width, and side-lobes. The most important are
the first side-lobe levels, because they contribute
the most of all side-lobes to the total receiving
power. Credits: Sasao and Fletcher, 2009

Testing the final horn after construction found one axis of the antenna beam to have
a side-lobe level of -20 dB. For a ground temperature of 300 K, this would result in a
contribution of 3 K to the system temperature, which would make measuring the 2.73 K
temperature of the CMB challenging. For this reason, it was decided to rotate the horn
in a way that the -20 dB side-lobe level was perpendicular to the direction of the ground.
The side-lobe level in the direction of the ground was found to be -40 dB, which was well
within the design requirement that I determined.
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Figure 4.6: The plots above show the simulations of the power pattern for dif-
ferent shapes for horn antennas. (a) Circular Horn Antenna, (b) Rectangular
Horn Antenna, (c) Pickett-Potter Horn Antenna. Credits: Lap, 2015
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5 | Calibration of the telescope
To be able to measure the zenith opacity of the sky and afterwards the temperature of
the CMB, it is crucial to relate the incoming radio signals, measured in mW, to a system
temperature. Then equation (3.21) can be used to fit the data for τ0 and Tcmb.

5.1 Hot-cold load observation

In order to make calibrated observations of the sky with the radio telescope, we need
to perform a hot-cold load observation. By applying this method we can determine the
values of the receiver noise temperature, the sky temperature and the optical depth.
After applying this method, we are able to set the calibration scale factors and therefore
convert our power measurements to the temperature scale. Note that the power measured
is not directly related to the observed temperature because of the use of amplifiers in the
telescope back-end (see Zandvliet, 2015).

5.1.1 The method

Beams having cold and hot loads will give different power due to the different observed
temperature. The change in the power is measured using a power meter (see Sweijen,
2015). The hot load could be the ambient temperature. This ambient temperature is
measured by the use of an absorber. Below an observing frequency of 230 GHz, we are
able to use liquid nitrogen for the cold load.

5.1.2 Y-factor and receiver temperature

The receiver noise temperature is defined by a function called the Y-factor, which is given
by

Y =
Vhot
Vcold

=
Phot(W)

Pcold(W)
, (5.1)

where V and P are the voltages and powers measured, respectively. Having a receiver,
the outputs given for the hot and the cold loads are related to the receiver gain G(v)
through

Vhot = (Phot + Prx)G, and
Vcold = (Pcold + Prx)G.

(5.2)

The expression and definition of the gain is elaborated in Section 5.1.3. This gives an
equation for the receiver temperature:

Trx =
Phot − PcoldY

Y − 1
. (5.3)
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5.1.3 Gain

One of the definitions of the gain is already mentioned in Section 4.1. It is important to
distinguish the definitions for antenna gain and amplifier gain. Amplifiers, as opposed to
antennas, do have a power source. Therefore the amplifier gain gets the definition

G(mW) =
Phot(mW)− Pcold(mW)
k∆ν(Thot − Tcold)

, (5.4)

where k is the Boltzmann constant and ∆ν the observation bandwidth of the telescope.

Decibels

Amplifiers are electronic devices with the ability to increase the magnitude of an incoming
power or signal. Using these devices, a small received signal from the sky can be amplified
into a measurable signal. Due to the fact that the gain describes a ratio of powers. On
the logarithmic scale it can be described by the unit decibel gain (dB). As we work with
powers, we will use the expression for Power gain, which is given by

GP (dB) = 10 log10

(
Pout(W)
Pin(W)

)
. (5.5)

As we will work with small signals, we will measure mW. Therefore the unit for the power
gain will be dBm instead of dB. Powers can also be converted from mW to dBm and
vice versa though:

P(dBm) = 10 · log10

(
P(mW)

1mW

)
P(mW) = 1mW · 10

(
P(dBm)

10

)
.

(5.6)

5.2 The power pattern of our telescope

Making measurements of the sky involves taking into account the power pattern of the
telescope. According to Section 3.2 and equation (3.18), measuring an antenna temper-
ature of the sky will depend on the normalized power pattern Pn(ϑ, ϕ) of the telescope.
Therefore, the powers coming out of the telescope will be the signals from the sky con-
volved with the power pattern.

5.2.1 Resolution

In order to gain more knowledge about the resolution of the telescope, we have to know
the value for the HPBW of the power pattern. This can be achieved by the determination
of the far field power pattern of the telescope, which can be examined in two ways.
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1. Measuring a source in the near field of the telescope and using Fourier transforma-
tions in order to obtain the far field response of the telescope.

2. Measuring a point source in the far field of the telescope. This could be done using
observations of the Sun (see Sweijen, 2015).

In this section the power pattern measured by Lap (2015) is used. He applied the method
of measuring a source in the near field of the telescope. For more information about the
measurements itself, see Lap (2015).

According to Lap (2015), measurements of the power pattern show that the telescope
has got a half power beam width of 12.78◦ and 10.20◦ on the z- and y-axis respectively.
Furthermore, the side-lobes are located around the -40 dB and -20 dB respectively, see
Figure 5.1.

Figure 5.1: Shown in this plot are the far field power patterns, being a cross-
cut from the points where the maximal amplitude is reached for both y- and
z-axis. For more details see Lap (2015)

5.2.2 Importance of the power pattern

Looking at the results from Lap (2015), we have a relatively large main beam, and small
side-lobes. Here large and small refer to a main beam of 12.78◦ and side-lobes of -40 dB.
Even though, the side-lobes are small, moving the telescope towards higher angles could
have a large impact on the measurements of the antenna temperature, TA. The equation
for the antenna temperature, see equation (3.15), including the secant function, show
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high values for the temperature on higher angles. Therefore, even a small side-lobe can
cause large temperature impacts. To check how much the power pattern contributes to
the incoming signal, a simulation can be used. The simulation will reproduce a plot for
the antenna temperature convoluted with the beam pattern.

Sky simulations including the beam response

I start with equation (3.15) representing the antenna temperature. In previous plots, the
temperature equations were plotted for the zenith angle in the range 0◦ till 90◦. As we
have to convolve every angle in that range with a beam having a size of 139◦, we have to
increase the range of available angles. This can be done by reflecting the equation in the
zenith. Figure 5.2 gives an impression of how the antenna temperature would look like,
when taking into account the whole sky.

In order to be able to convolve the simulated sky signal with the measured beam
pattern, the zenith angles, z, in the range from 0◦ till 90◦, have to multiplied by the
beam pattern having a total angular range of 139◦, defined to be from -69◦ till 69◦. Here
the top of the main beam is located at 0◦. The beam pattern along the z-axis, shown
in Figure 5.1, shows an unexpected peak at the +40◦. Since the peak is only shown on
one side of the pattern, it is likely not a side-lobe. Therefore, it is probably a reflection,
due to bad screening. In order to correct for the reflection when the near-field beam was
being measured, the beam simulation is cut off in the range −37 < Angle y(◦) < 37.

The simulation will multiply the beam by the sky signal by looping over every angle of
the antenna temperature data. If we want to take into account the horizon, z = 90◦, the
data has to be extended by at least 37◦ because we can not multiply the beam without
data.

There is still one practical problem with multiplying the simulation of the sky with
the data of the beam pattern. The simulation of the sky is done in zenith angle steps
of 1◦ The beam pattern is measured in 81 steps, extending over 139 ◦. In order to fit
the beam pattern for every angle in the range −37 < Angle y(◦) < 37, interpolation is
used. This is represented in Figure 5.3. Here the blue lines represent the measured beam
pattern data, and the red line a second order fit to the data. Now the fit can extract
every value for the beam pattern at every angle.

As the signal of the sky will end at z = 90◦, we can add a signal coming from the
ground. Assuming the temperature added by the ground equals the temperature of the
atmosphere, we can simulate the signal coming from the ground. This simulation is based
on setting the values from the sky (−90◦ < z < 90◦) to T = 0 K, and outside this range
the values from the ground to Tground = 293 K. This fit for the ground is shown in Figure
5.4.

Now, knowing we have to take into account the ground when measuring near the
horizon, a simulation is carried out on how the signals coming from TA and Tsys behave
when taking into account a Tground of 293 K at the horizon. The convolved temperature
signals are shown in Figure 5.5 and 5.6 for TA and Tsys respectively.
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No need to de-convolve our beam’s power pattern from sky observations

Convolving a beam power pattern is easy, but de-convolving a power pattern from a
sky power signal will require a lot of time, due to the methods of Fourier transforming,
Fourier shifting, integrating, etc. Therefore, it would be great if we are able to correct
for the ground by just not measuring the ground. Looking at Figure 5.5 and 5.6, we see
that if we are able to do our observations until a zenith angle of about 80◦, we do not
measure a significant temperature contribution from the ground. This makes sense when
looking at the side-lobe positions and levels. The side-lobes having a power level of -40
dB are able to pick up a signal of,

Gain = 10× log10

(
x

Tground

)
= −40 dB. (5.7)

With Tground being 293 K, the formula can be solved for x which gives x = 0.0293 K.
Therefore a side lobe of -40 dB will cause an increase of temperature of ∼0.03 K. Using
the same formula I can create a plot of how the gain looks like when using the values for
Tground. from Figure 5.4 as x and from thereon calculate the associated gain. This result
in the plot on the right in Figure 5.4.

From the plot it becomes clear that the side lobes of the beam are already contributing
at a zenith angle of 60◦. This seems reasonable since we have a large beam extending
over a range of ∼ 76◦. Although the side-lobes occur at an angle of 60◦, they still do
not contribute a lot to the temperature signal coming from the ground. Therefore, if we
want to correct for the ground contribution, we could simply not measure at angles higher
than 80◦. By doing that, we know for sure that we will not suffer from the contributions
coming from the ground.
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Figure 5.2: A simulation of the antenna temperature from the horizon, to the zenith and back
to the horizon.

Figure 5.3: On the left, the beam pattern from the telescope is plotted. Shown in blue is the
data of the beam pattern, measured by Lap (2015), and in red the fit achieved by interpolating
done by myself. Due to the fact that Lap (2015) used 81 measurement points in order to measure
the entire beam pattern, I make use of interpolation to get the values at each degree. I do this
because I want to convolve every angle on the sky with the beam. On the right you see a zoom
in to see how accurate the fit is.

37



F
ig
ur
e
5.
4:

O
n
th
e
le
ft
te
m
pe

ra
tu
re

of
th
e
gr
ou

nd
is
si
m
ul
at
ed

to
ha

ve
a
va
lu
e
of
T

gr
ou

nd
=
29

3
K
.I

as
su
m
e
th
e
gr
ou

nd
te
m
pe

ra
tu
re

to
be

0
fr
om

ho
ri
zo
n
to

ho
ri
zo
n,

re
fe
rr
in
g
to

th
e
an

gl
es

fr
om
−

90
◦
<
z
<

90
◦ .

In
th
e
m
id
dl
e
th
e
le
ft

pa
rt

of
th
e
le
ft

pl
ot

is
co
nv

ol
ve
d
w
it
h
th
e
be

am
pa

tt
er
n
m
ea
su
re
d
by

La
p
(2
01

5)
.
O
n
th
e
ri
gh

t
a
si
m
ul
at
io
n
is

sh
ow

n
w
hi
ch

ill
us
tr
at
es

th
e
be

ha
vi
ou

r
of

th
e
ga

in
if
lo
ok

in
g
to

th
e
re
ce
iv
ed

si
gn

al
of
T

gr
ou

nd

38



Figure 5.5: A simulation of the behaviour of TA when taking into account
the contribution coming from the ground.

Figure 5.6: A simulation of the behaviour of Tsys when taking into account
the contribution coming from the ground.
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6 | Calibration done by observations
During the hot and cold load measurements of the system inside our office in the Kapteyn
building, Zandvliet (2015) made a first estimate of the value for the receiver noise tem-
perature. After I had done the first calibrated observations of the sky (see Appendix K),
I plotted the received powers in dBm per angle on the sky. Two of these observations are
shown in Figure 6.1 and 6.2. All plots showing Tsys per angle are made using the script
shown in Appendix E.

Figure 6.1: Observation made on 06-30-15 at 13:13. The received power
show a contradiction to the formula for the system temperature. The
system temperature is at the angles of 0◦ < Zenith angle < 36◦ and
49◦ < Zenith angle < 78◦ lower than the receiver noise temperature. This
observation measured the powers: Pcold = −23.4783 dBm, Phot = −20.8990
dBm and PZenith = −25.2974 dBm.

During the calibration the assumptions were made that Thot = 300 K, Tcold = 77.15
K and Tatm = 302 K. The numbers are assumptions because we were not able to use
the thermometers yet. The assumptions allow me to calculate a Y-factor (see equation
5.1), the receiver temperature Trx (see equation 5.3), the gain (see equation 5.4) of the
system and therefore the measured system temperature Tsys per angle on the sky. The
system temperature Tsys turned out to be lower than the estimated value for the receiver
noise temperature Trx. As we know that Tsys = Tsky + Trx + Tground, it is not possible to
have a higher receiver noise temperature than system temperature. This statement is in
contradiction with the observations and calibration done.

There are various explanations for the Trx begin higher than the Tsys. The high Trx

could be due to; the telescope measuring the hot and cold load powers wrong, a fault
in the software of system itself, our atmospheric and hot load temperature estimations
being off, a calculation error being made, or the beam is not entirely being filled by the
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Figure 6.2: Observation made on 06-30-15 at 14:16. The received power
show a contradiction to the formula for the system temperature. The system
temperature is at the angles of 0◦ < Zenith angle < 44◦ lower than the
receiver noise temperature. This observation measured the powers: Pcold =
−23.7528 dBm, Phot = −21.2085 dBm and PZenith = −25.4881 dBm.

loads and therefore a part of the beam is measuring a higher temperature when looking
at the cold load.

The simplest explanation is that the beam not entirely filling the load. By measuring
the same loads, but now by getting the horn out of the frame and pointing directly at
the loads, we are able to be certain about the entire beam filling the loads. Thereafter,
the horn was placed back in the system to measure again the hot and cold load. The two
measurements turned out to give two different values for the receiver noise temperature,
which can be explained by the beam missing the cold load. It could not be caused by
measuring the hot load, because the hot load is large and by testing we know for sure
that the whole beam is pointed at the hot load. Using the definitions for the Y-factor
and effective noise temperature, Zandvliet (2015) is able to state that concerning lab
measurements, we effectively measure a cold load temperature of 87.03 K instead of only
the temperature of liquid nitrogen, 77.14 K.

6.1 Correction for the cold load temperature

During an observation the telescope gets calibrated by the hot and the cold load. Due
to of the importance of this calibration, requiring two load measurements, we have to
be sure about the temperature we measure when pointing at our cold load. Zandvliet
(2015) already performed measurements of the hot and cold load of the receiver, but to
get an idea of the calibration during an observation I repeat the measurement in open
air. The following data and plots are obtained by using the script shown in Appendix F.
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6.1.1 A hot- and cold load measurement in open air

Figure 6.3: Observation made on 07-01-15. Shown in this plot is a measurement of the hot and
cold load when the Horn is placed in the frame.

The plots in Figure 6.3 show the powers regarding measuring the hot and the cold
load with the horn placed in the frame. We can see a smooth distribution with not a lot
of fluctuations. The cold load plotted in red seems to be more stable than the hot load
plotted in blue. This could be due to the fact that the hot load temperature will fluctuate
with the temperature of the atmosphere, while liquid nitrogen stays approximately the
same temperature.

Knowing the power that we measure from the cold load of the system, I measure
the power of the cold load by hand to be sure that the entire beam is filled with the
liquid nitrogen inside our cold load. Since the measurements could be varying a lot, I
will repeat the same measurement three times. These results are shown in Figure 6.4.
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For each measurement I calculate the average hot and cold load power together with
the average temperature for the hot load. From these values the y-factor for both the
measurements of the system and measurements by hand can be determined.

The entire beam is filled with liquid nitrogen by our cold load when doing the mea-
surements by hand. Therefore, we can calculate the effective noise temperature from
these values. Knowing these values allows us to determine the effective temperature of
the cold load that the beam of the horn ’sees’ when placed inside the frame. This gives
information about the beam filling factor during our calibration. Using the script shown
in Appendix I applying equation (5.1) and (5.3), the values turned out to be as shown
in Table 6.1. When looking at these values, it immediately strikes that the calculated
temperature is less than the temperature added by the amplifiers (for measurements of
the amplifier temperature, see (Zandvliet, 2015)).

Measurement Average Phot(dBm) Average Pcold(dBm) Y-factor Trx(K) Tcold, sys(K)
System -21.22 -23.73 1.778 — —
Hand 1 -21.10 -23.72 1.827 209.56 84.86
Hand 2 -21.07 -23.70 1.830 208.43 85.36
Hand 3 -21.07 -23.71 1.837 206.15 86.36

Table 6.1: Data from calibration measurements on 07-01-15. The receiver temperatures are to
high, when taking into account that the measured amplifiers were adding a temperature of about
110 K (Zandvliet, 2015) and the received system temperature during observations. Because later
on we will use a different way of calibrating our system, the values given in this table will differ
from the values in the Logbook. The reason for this will be explained in the coming section.
Tcold, sys (K) stands for the new defines temperature of the cold load by using the measurements
of, Hand 1, Hand 2, and Hand 3.

The values for the Tcold seem to match the expectations about a small part of the
beam falling outside the range of the cold load. This means that every time before an
observation is made, there has to be a measurement of the hot and the cold load, to
confirm the beam missing the cold load and applying a correction for the calibration.
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Having an even smaller cold load than expected

As mentioned before, the cold load is to small too fill the entire beam during a calibration
sweep. After the measurement done at 07-01-15 we thought Tcold could be corrected by
getting the horn right in front of the cold load, measuring the load and thereafter placing
it back at the frame and measuring the cold load again from that point of view. To
be sure, at 07-06-15 I performed the same measurement as done on 07-01-15 again, to
check the correction. In the mean time a lot of observations have been done. Therefore,
this would be the ultimate check to be sure about the stability of the cold load and the
receiver temperature of the telescope.

The measurements done with the telescope included in the frame show that the powers
of the hot load and cold load lie at around -20.7 dBm and -23.6 dBm, respectively. This
is concluded from the plots shown in Figure 6.5. The measured power value does differ
a lot from the measurements done earlier.

This matches the expectations, because the system gain will change during the five
days in between the measurements. As I take a look at the measurements done by hand
I notice a problem. When measuring the cold load by taking the horn of the frame,
the power has to be the same every measurement, because we are looking at the same
temperature. It could change a bit because of the changing gain of the telescope itself, but
knowing that the measurements of the system are almost identical to the measurements
made earlier, the measurements done by hand have to be the same as well, which is not
the case. Some difference might be caused by reflections of the horn itself on to the
surface of the liquid nitrogen and back into the horn again. These reflections will add
power to the received power. Putting the horn at an angle confirms the existence of
reflections, because the received power is decreasing by tilting the horn by a little angle.

Comparing Figure 6.4 and 6.6 a cold load power of -23.71 dBm and -23.38 dBm
respectively is measured. This difference of 0.33 dBm seems small, but for comparison;
having an uncertainty of 0.02 dBm in a single power measurement already induces an
uncertainty of 2.27 K in the amplifier noise temperature (see calculations by Zandvliet,
2015).
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6.1.2 The ‘temporary solution′ for the calibration

Due to the fact that the manual measurements and the system measurements differ, I
made the conclusion that we can not trust our cold load enough to measure the power
response due to the telescope beam being entirely filled by the liquid nitrogen. Luckily,
the system response to the cold load stays the same.

The temporary solution for the calibration is measuring again cold load filled with
liquid nitrogen and use this measured power as absolute power value signifying a tem-
perature of 77.14 K. At SRON, Sweijen and I looked for a larger cold load for which we
could be certain about the entire beam being filled during a measurement. The data
taken from the larger cold load are shown in Figure 6.7.

For all observations made earlier, I take into account that a cold load filled with
liquid nitrogen being 77.14 K gives a received power of -23.75546 dBm. According to this
knowledge and the received cold load power, the temperature of our own cold load can
be determined. Thereafter, this temperature and the related power together with the
temperature and received power from the hot load can be used to determine the receiver
noise temperature and gain during an observation.

In the discussion of this thesis, see Section 9, I will try to find a correlation between
the change of the measured cold load temperature, the temperature of the atmosphere
and the method of measuring the calibration loads; manual, in the system or during an
observation.
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Figure 6.4: Observation made on 07-01-15. A power measurement done by de-constructing the
horn from the frame shows the powers measured for the hot load in blue and for the cold load
in red. On the left you see the raw data from the measurements. On the right the hot load and
cold load are filtered as every measurement above and below a value of -21.15 dBm and -23.6
dBm respectively.
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Figure 6.5: Observation made on 07-06-15. Shown in this plot is a measurement of the hot and
cold load when the Horn is placed in the frame.
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Figure 6.6: Observation made on 07-06-15. A power measurement done by de-constructing the
horn from the frame shows the powers measured for the hot load in blue and for the cold load
in red. On the left you see the raw data from the measurements. On the right the hot load and
cold load are filtered as every measurement above and below a value of -21.0 dBm and -23.3
dBm respectively.
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Figure 6.7: Observation made on 07-07-15. Shown in this plot is a measurement of the big
cold load, where Sweijen and I could be for sure measuring the liquid nitrogen when taking into
account the entire beam.
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7 | Observations
The main goal of the thesis was to measure the temperature of the CMB. Due to a few
problems during the designing, building and testing of the telescope, we were not able to
measure Tcmb within an accuracy of 10 percent. However, the observations allowed the
determination of the zenith opacity τ0. This chapter is divided into two main observa-
tions. From Section 4.2 becomes clear that in order to measure values for τ0, it is wise
to measure the sky on every angle, where measuring Tcmb involves measuring every 13◦
in order to correct for the beam size. To illustrate the data coming from the telescope,
I first will describe the first observation of the incoming power coming from the entire
system of our telescope.

7.1 Additional observations

Due to the bad calibration and observing one measurement on every angle causing a large
uncertainty in the measurement of the system temperature (∼ 3 K), I am not able to
state statements requiring temperatures regarding the observations that have been done
before 07-09-15. But to give an idea about the incoming power signal into our telescope,
I use the observation without any form of calibration. By using this observation I am be
able to describe the influence of clouds on our observations.

7.1.1 First on sky test observation

During the day, Monday the 6th of June the telescope saw first light. On the roof
terrace of Kapteynborg1, the radio telescope was set up. It was an unofficial first light,
since the ’hot and cold load’ calibration was not ready yet. Therefore, the out-coming
power could not be converted to a system temperature. As the system temperatures are
needed to determine the temperature of the CMB and the value for the opacity, according
to equation (3.21), the determination of these quantities could not be completed yet.
However, measurements of the Sun could be made to determine the main beam size of
the telescope. During the observation, five measurements of the full sky were done, of
which the details are in Table 7.1.

The out-coming data of the telescope is a ’.txt’ file presenting two columns, one con-
taining the angles and one the measured power in dBm. Using the conversion of dBm to
mW from equation (5.6), plots are made for each of the five observations. Due to the large
steps in angles of the first three observations, the first three plots show a rough line. To
determine the main beam, using the Sun, we need a smooth distribution. Therefore, the
first three observations were useless regarding the main beam determination. However,
the fourth and fifth observation show smooth distributions due to the small sampling size

1Landleven 12, 9747 AD, Groningen
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Time Tatm (K) Measure step size (◦) tobs Remarks
13:00 14 6 0:32
13:02 14 6 0:32
13:05 14 4 0:40
13:08 14 1 1:52 No clouds present
13:12 14 1 1:52 Clouds present

Table 7.1: Details of the five first on sky observations on Monday 06-08-15.

of 1◦, see Figure 7.1. These plots can be used to determine the size of the main beam,
which is done by Sweijen (2015).

Influence of the clouds Although the temperature of the CMB and the value opacity
can not be determined, the influence of the clouds on the incoming power can. Without
the presence of clouds, the incoming signal should be higher than when the signal is
partly restrained by the clouds. Subtracting the data with the cloudless sky from the
cloudy sky, would give the difference, and therefore the dependence of the clouds on the
incoming power. This subtraction is shown in Figure 7.2

The peak of the signal coming from the Sun is clearly visible. The maximum value
for the power of the Sun in Figure 7.1 is 3.53735× 10−3 mW, while the maximum value
for the difference, presented in Figure 7.2, equals 3.65310 × 10−5 mW. This means that
clouds are responsible for one percent of the incoming power signal.

7.2 Opacity observations

7.2.1 Observations 07-09-15

On 07-09-15 the sky was not nice for observations. There were a lot of clouds on the sky.
It had been raining that night, therefore the temperature was better than the previous
days. Due to time pressure, I decided to put the telescope outside. At the beginning of
the observation it was raining a bit. I was standing on the balcony of SRON and was
looking in the direction where the telescope aims directly between the Kapteyn and the
Duisenberg building (see also Appendix K Section 9).

I used my script to determine the value for the opacity, the error in the fit for the
opacity, the uncertainty in the receiver temperature and in addition the uncertainty in the
measurement of the system temperature for this data. The script is shown in Appendix
G. The determined values are shown in Table 7.3.

From the data it can be concluded that we have a total noise of the system tem-
perature of ∼ 1.6 K. This is smaller than Tcmb but still higher than the accuracy that
we wanted to achieve. It could be due to the fact that I have to take into account a

51



Time Measure
size (◦)

N Tatm
(K)

Thot
(K)

Tcold
(K)

Gain
(dB)

Description sky

12:49 1 128 290.0 289.7 73.0 60.54 Cloud appearing on the angles 0◦ <
z < 20◦. Until an angle of 30◦ cloud
become less opaque. Till 80◦ the sky
is blue and again at 80◦ < z < 90◦

there are clouds located.
12:53 1 128 289.5 289.1 96.1 61.52 Cloud appearing on the angles 0◦ <

z < 15◦. Until an angle of 30◦ cloud
become less opaque. Till 80◦ the sky
is blue and again at 80◦ < z < 90◦

there are clouds located.
12:57 1 128 291.1 290.1 99.7 61.61 Cloud appearing on the angles 0◦ <

z < 20◦. In the range 20◦ < z < 75◦

the sky is cloudless. At an angle of
75◦ the sky is cloudy.

13:02 1 256 290.8 292.8 97.0 61.40 Cloud appearing on the angles 0◦ <
z < 15◦. In the range 20◦ < z <
60◦ the sky is cloudless, with every
now and then a little cloud passing
by. Until an angle of 75◦ the sky is
blue and from that angle until the
horizon the sky gets cloudy.

Table 7.2: Data from observations of the sky made in order to determine the zenith opacity on
07-09-15. Every measurement data point can be a sample of measurements, N. Integrating over
these measurements will decrease the uncertainty of the measurement by

√
N. The cold load is

measured after the observation because of the fact that the cold load was too small to fill the
entire beam of the antenna.

measurement error for τ0, when calculating the uncertainty in Tsys. The values repre-
sented in Table 7.3 are determined by first assuming that every measurement has got
an uncertainty of 0.005 in τ0. Then I take into account that the uncertainty of τ0 also
decreases by 1√

N
, I get the values shown in Table 7.4. The values for the uncertainties

shown in Table 7.4 seems to be way more argumentative. The value for τ0 seems high and
variable but expected given the cloud cover. After doing more observations, I expected a
value around 0.01, but today the clouds are responsible for the increased value. However,
these results show that with poor observation conditions a value of τ0 = 0.023− 0.032 is
obtained. This is below the worst case value of 0.05 assumed in the simulations.

To be certain about the measurement accuracy, an other observation is made in order
to compare the received data.
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Time σTrx (K) σTsys (K) τ0 στ0 Remarks
12:49 0.33 1.55 0.0231 0.0002
12:53 0.29 1.73 0.0375 0.0002
12:57 0.29 1.73 0.0368 0.0002
13:02 0.21 1.63 0.0323 0.0002 Done with 256 mea-

surements instead of
128.

Table 7.3: The calculated τ0 for the data concerning the observations of 07-09-15. Note that the
values of στ0 are not the uncertainties in the value of τ0, but the uncertainties regarding the fit
for the determination of τ0.

Time σTrx (K) σTsys (K) τ0 στ0 Remarks
12:49 0.33 0.34 0.0231 0.00004 128 measurements.
12:53 0.29 0.34 0.0375 0.00004 128 measurements.
12:57 0.29 0.34 0.0368 0.00004 128 measurements.
13:02 0.21 0.24 0.0323 0.00003 256 measurements.

Table 7.4: The calculated τ0 for taking into account the amount of measurements for the given
uncertainty in τ0. Note that the values of στ0 are not the uncertainties in the value of τ0, but
the uncertainties regarding the fit for the determination of τ0.

7.2.2 Observations 07-10-15

(See also Appendix K Section 10) The observations on 07-10-15 where made under the
same weather conditions as mentioned in Section 7.2.1. It was the second and last
day where I was able to observe the sky while making more measurements at every
zenith angle. Again it was not a perfect day for zenith opacity and CMB temperature
observations. Although, according to this data I can investigate whether it is possible
to observe a zenith opacity which makes sense, when observing without having ideal
weather conditions. There were a lot of clouds on the sky.Again there was a little breeze
present, and the atmospheric temperature was higher than during the observations of
07-09-15. There was not any rain present. Again, together with Sweijen, I stood on the
balcony of SRON and pointed the telescope in the direction where the telescope aims
directly between the Kapteyn and the Duisenberg building. I used the same direction as
during the observations of 07-09-15 order to be able to investigate whether I will receive a
difference in the system temperature. This should be the case according to the changing
gain of the telescope and my fixed calibration. According to the data of 07-09-15, doing
256 measurements turned out to be enough to determine precise determine temperatures.

Just as for the data obtained on 07-09-15, by the use of my opacity script I was able
to determine the value for the opacity, the error in the fit for the opacity, the uncertainty
in the receiver temperature and in addition the uncertainty in the measurement of the
system temperature for this data. The values are shown in Table 7.6.
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Time Measure
size (◦)

N Tatm

(K)
Thot

(K)
Tcold

(K)
Gain
(dB)

Description sky

13:16 1 256 293.15 295.35 92.0 61.10
13:20 1 256 293.17 295.02 92.3 61.16
13:24 1 256 293.0 294.64 93.5 61.22

Table 7.5: Data from observations of the sky made in order to determine the zenith opacity on
07-10-15. Every measurement data point can be a sample of measurements, N. Integrating over
these measurements will decrease the uncertainty of the measurement by

√
N. The cold load is

measured after the observation because of the fact that the cold load was too small to fill the
entire beam of the antenna.

Time σTrx (K) σTsys (K) τ0 στ0 Remarks
13:16 0.22 0.25 0.0286 0.00003 256 measurements.
13:20 0.22 0.25 0.0295 0.00003 256 measurements.
13:24 0.22 0.24 0.0300 0.00003 256 measurements.

Table 7.6: The calculated τ0 for the data concerning the observations of 07-10-15

From these observations it could also be concluded that we have a very stable system.
The uncertainty in Tsys is small. Making 256 measurements per observation angle even
induce the σTsys being less than 10 percent of Tcmb.
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7.3 CMB observations

Now we know that we are able to get a value for the opacity from the observations, I can
check whether we would be able to measure the temperature of the CMB. During the
same days as the observations described in Section 7.2.1 and 7.2.2, sweeps were made
having a measurement step of 13◦. Therefore I am able to use these observation in order
to measure Tcmb.

7.3.1 Observations 07-09-15

Time Measure
size (◦)

N Tatm

(K)
Thot

(K)
Tcold

(K)
Gain
(dB)

13:06 13 512 290.9 294.9 64.9 64.93
13:07 13 512 290.9 294.9 68.6 60.23
13:09 13 512 291.0 294.5 71.4 60.49
13:10 13 256 290.7 293.0 85.5 60.90
13:12 13 256 289.9 291.2 90.7 61.23
13:13 13 256 290.1 292.0 92.9 61.21
13:15 13 1024 290.7 293.8 84.5 60.93
13:17 13 1024 290.3 292.0 84.9 60.93

Table 7.7: Data from observations of the sky made in order to determine Tcmb with the obser-
vation data of 07-09-15. Every measurement data point can be a sample of measurements, N.
Integrating over these measurements will decrease the uncertainty of the measurement by

√
N.

The cold load is measured after the observation because of the fact that the cold load was too
small to fill the entire beam of the antenna.

By the use of my CMB script I was able to determine the value for the opacity, the
error in the fit for the opacity, the value for Tcmb, the error in the fit for tcmb, the uncer-
tainty in the receiver temperature and in addition the uncertainty in the measurement
of the system temperature for this data. The script is shown in Appendix H.

These observations show that there can be a huge difference in the value for Tcmb

during a day. The best out coming temperature are those of the observations made on
13:12 and 13:13, shown in figure 7.5. Let’s look how they are differ from an observation
causing a real bad estimate for Tcmb. Bad estimates are for example the temperatures
measured during the observation on 13:06 and on 13:07 giving Tcmb=-36.31 K and Tcmb=-
31.06 K respectively. The observations are shown in Figure 7.6.
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Time σTrx (K) σTsys (K) τ0 στ0 Tcmb (K) σTcmb (K) Remarks
13:06 0.19 0.18 0.0345 0.00003 -36.3178 0.0003 512 measurements.
13:07 0.19 0.18 0.0331 0.00003 -31.0554 0.0003 512 measurements.
13:09 0.18 0.16 0.0350 0.00003 -17.4532 0.0003 512 measurements.
13:10 0.25 0.23 0.0338 0.00003 -5.0161 0.0003 256 measurements.
13:12 0.23 0.21 0.0318 0.00003 4.5232 0.0003 256 measurements.
13:13 0.24 0.22 0.0297 0.00003 2.0892 0.0003 256 measurements.
13:15 0.12 0.11 0.0316 0.00003 -7.3708 0.0003 1024 measurements.
13:17 0.24 0.23 0.0312 0.00003 -5.8648 0.0003 1024 measurements.

Table 7.8: The calculated Tcmb and τ0 for the data concerning the observations of 07-10-15

7.3.2 Observations 07-10-15

More measurements are made which can be used to determine the temperature of the
CMB. All observations did make use of different amounts of measurements. Therefore,
I am able to state conclusions about the uncertainty becoming more accurate when
observing more power measurements at one angle.

Time Measure
size (◦)

N Tatm

(K)
Thot

(K)
Tcold

(K)
Gain
(dB)

13:28 13 256 293.82 295.10 93.3 61.19
13:29 13 256 293.79 295.17 92.7 61.20
13:30 13 256 293.28 294.93 93.3 61.20

Table 7.9: Data from observations of the sky made in order to determine Tcmb with the obser-
vation data of 07-10-15. Every measurement data point can be a sample of measurements, N.
Integrating over these measurements will decrease the uncertainty of the measurement by

√
N.

The cold load is measured after the observation because of the fact that the cold load was too
small to fill the entire beam of the antenna.

Just as for the data obtained on 07-09-15, by the use of my CMB script I was able to
determine the value for the opacity, the error in the fit for the opacity, the value for Tcmb,
the error in the fit for tcmb, the uncertainty in the receiver temperature and in addition
the uncertainty in the measurement of the system temperature for this data.

Time σTrx (K) σTsys (K) τ0 στ0 Tcmb (K) σTcmb (K) Remarks
13:28 0.22 0.24 0.0325 0.00003 5.4930 0.0003 256 measurements.
13:29 0.22 0.24 0.0328 0.00003 5.2989 0.0003 256 measurements.
13:30 0.22 0.24 0.0323 0.00003 5.5008 0.0003 256 measurements.

Table 7.10: The calculated Tcmb and τ0 for the data concerning the observations of 07-10-15

The values obtained do match with the expected τ0, but the temperature of the CMB
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is off by about a factor of 2. Although, the Tcmb is off, the zenith opacity turns out
to have a well defined value this observation day. Unfortunately, I have not got data
observed during a day having a clear sky. It might be that we will be able to determine
the temperature of the CMB with a clear sky, because we will suffer less from a variable
atmospheric opacity.
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7.4 Measuring an excess antenna temperature

The results in Section 7.3.1 and 7.3.2 show values for the temperature of the CMB which
are very precise, but not accurate. The temperatures vary between ∼ 5 K until ∼ −37
K. This big difference could be explained by the bad calibration of the data, a fluctuation
in the gain or a fluctuation in the atmosphere. To be sure that the CMB is present in
the data, we can use the same method as used by Arno Penzias and Robert Wilson. As
clarification, they measured a noise temperature from which they knew it was not coming
from the ground, atmosphere, pigeons or their receiver.

Figure 7.8 shows an impression about the contribution of the components adding
temperature to Tsys. From the observations we get the system temperature per angle on
the sky, which is described by Tsys = Tcmbe

−τ0 sec z + Tatm(1 − e−τ0 sec z) + Trx. Repeating
the discovery requires the following subtracting the contributions of, Tatm, Trx and the
atmosphere itself. From the data, which was mainly obtained to find out the value for
τ0 (see Section 7.2.1 and 7.2.2), I subtract the receiver temperature and the atmospheric
contribution. The results obtained show a noise, as can be seen in Figure 7.9 and 7.10.

Looking at the plots, we see two main differences.

1. The dataset of 07-09-15 is smoother than the dataset of 07-10-15. I think this is
due to the fluctuations of the atmosphere itself, because the datasets do look the
same during the same day. The difference between the plots can be explained by
the presence of clouds. Clouds will add to the value for the zenith opacity, and
due to e−τatm(=τ0 sec z) the exponent will become less. Therefore the temperature will
decrease.

2. The peak at the angle of ∼ 85◦. It is an unknown source of ∼ 20 K. The source
stronger looking at Figure 7.10 than shown in Figure 7.9. This is due to the fact
that the source in Figure 7.10 was detected by the main beam and the smaller bump
in 7.9 is measured through falling in the range of the side-lobes of the telescope.

The conclusion is made that with our telescope we indeed measure an excess antenna
temperature, which is not coming from our system or the atmosphere. The value of ∼ 7
K and ∼ 5 K differs from the actual value for Tcmb. This difference is due to a bad
calibration, or because our telescope can not measure the CMB that accurate. I think
the calibration of our telescope definitely is a main factor of the temperature being off
from 2.73 K. To be sure, we have to use a larger cold load in order to be able to calibrate
the system properly.
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Figure 7.1: The upper plots represent the data taken at 16-08-15 13:08. The peaks from left
to right represent the Kapteyn building, John McKean (very small peak), the construction of
the telescope itself, the Sun and again the Kapteyn building. During the sampling the Sun was
visible. The lower plots represent the data taken at 06-08-15 13:12. The peaks from left to right
represent the Kapteyn building, the construction of the telescope itself, the Sun and again the
Kapteyn building. During the sampling the Sun was covered by clouds. The plots on the left
shows the power values in mW and the plots on the right in dBm.
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Figure 7.2: The plot above shows the influence of the clouds. The measurement data from the
observation with clouds is subtracted from the data without.
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Figure 7.3: Observation made on 07-09-15. These observations were made in order to be able to
obtain a value for the opacity. During the observations, it was really cloudy. This could explain
the differences in the plots and later on the differences in the value of τ0

61



Figure 7.4: Observation made on 07-10-15. These observations were made in order to be able to
obtain a value for the opacity. During the observations, the weather conditions were changing
very quickly. This could explain the wobbling of Tsys for the range 0◦ < z < 50◦. Having a clear
sky, this range should show a straight line.
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Figure 7.8: A simulation made to give an impression how the different components will con-
tribute to the system temperature. The assumptions made are Tatm = 283 K, Trx = 145 K and
τ0 = 0.03.
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Figure 7.9: Observation made on 07-09-15. The contribution of the atmosphere, atmospheric
temperature and from the receiver is subtracted resulting in an excess antenna temperature.
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Figure 7.10: Observation made on 07-10-15. These datasets show the results of an excess
antenna temperature as seen in Figure 7.9.

68



8 | Conclusion

8.1 Calibration of the telescope

Regarding the calibration of the telescope, a couple of things were taken into account too
late. The conclusion I can state from the project is the following. Due to the fact that
our calibration is not working properly, we are not able to convert the incoming powers
to temperatures correctly. As we know, our cold load is too small in order to be able to
catch the entire beam. This causes a part of the beam seeing the cold load and the part
missing the beam a relatively high temperature. Therefore, we simply can not calculate
the gain of the telescope, because we do not know which cold load temperature we are
actually looking at. As we know, P = G∆νkT , and the fact that the gain of the telescope
can change, we can not simply fix a specific power to a temperature. Eventually we did
measure an power of liquid nitrogen using a larger cold load in order to be able to correct
for our cold load. This is not a good solution, because by applying this fixed power, we
are not able take into account the changing gain of the telescope. We used this solution
due to time pressure, but ideally we would have used a larger cold load.

To conclude, as we know that applying our absolute cold load temperature does not
work, we know that the gain of the telescope is fluctutation. To be able to measure the
sky including a proper calibration, we need to arrange a larger cold load.

In Section 9 there will be a full explanation of the problems we had to take in to
account during the projects. An overview in the form of a time-line will be given to give
an impression about when we found what went wrong.

8.2 Amount of measurements per angle

Appendix K is a overview of the data of all the observations I have done. The reason
why I can not use them in order to determine Tcmb and τ0 is that until 07-09-15, we did
not know that we had to observe more than one measurement of the incoming power per
angle in order to reduce the measurement uncertainty. Due to this realization, we were
able to observe for two days applying more measurements per angle. Unfortunately, the
whether did not allow us to observe with a clear sky.

8.3 Measurements of the opacity

At the beginning of the project, there was one big question. What is a good estimate for
the value for the zenith opacity, τ0. By studying the literature concerning the Earth’s
atmosphere and taking a look into data obtained by the Green Bank telescope concerning
opacity forecasts, the value for τ0 is estimated to be 0.05. This value applies to the weather
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conditions not being ideal. After the observations done at 07-09-15 and 07-10-15 τ0 could
be obtained from the data. The zenith opacity in Groningen by bad weather conditions
turns out to have a value varying between 0.0297 and 0.0350 for the observations of
07-09-15 and between 0.0323 and 0.0328 for 07-10-15. It would be interesting to observe
again at a day having a clear sky. I expect the value for the opacity to be around 0.01
for these ’ideal’ observing conditions.

8.4 Measurements of the CMB

Due to our bad system calibration, caused by a too small cold load, we were not able to
observe with a well calibrated system. For the value of the opacity this turned out not
to be a big problem. However, according to the observations done to fit a temperature
for the CMB, the observations turn out to be not good enough to achieve a Tcmb with an
accuracy of 10 percent. Each time fitting for Tcmb gives an other value. After correction,
I was able to measure an excess temperature of the of about 5 K in our system due to
the CMB and systematics in the receiver temperature calibration.

Although not every measurement gave the temperature that we had hoped for, we know
for sure that we measure an excess antenna temperature. We know for sure that the CMB
exists! Further calibration tests will be needed to determine a precise value for the CMB.
Further improvements for the coming observations will be discussed in Section 9.
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9 | Discussion

9.1 What went wrong

In this section, I will give a clear overview of what we found out in which stage of the
observing part of our project. This is done by using a time-line.

06-08-15 First observation of the sky. During this first observation the only components
present on the frame of the telescope where the power meter, the motor and the
horn itself. Therefore, we were able to make an first power measurement of the sky.
From the data Sweijen (2015) was able to determine the size of our beam pattern.
It confirmed the power pattern measured in the lab by Lap (2015).

06-24-15 First calibrated observation. During this first calibrated observation, Sweijen
and I were able to observe from the terrace of the Kapteyn building. We tried to aim
in a direction where we were able to reach the horizon without hitting a building.
After the observation plotting the data showed a large power peak at ∼ 70◦ when
observing in the South direction. This turned out to be a Geostationary Satellite.
As we know the satellite has got a fixed location, the only possible clear horizon
point seen from the Kapteyn terrace turned out to have a radio source. We had to
find a new place in order to observe a clear sky without hitting a source or building.

06-30-15 Testing the telescope. During this day we almost had a clear sky. Therefore,
Sweijen and I did a lot of measurements during this day. In the afternoon we found
a spot where we could observe a source- and building-less sky. This was a spot on
the 2nd floor of Kapteyn at the terrace of SRON’s conference room. Unfortunately,
we only noted a few and lost a lot of information regarding the temperatures that
day. During the evening I tried to plot the system temperature of the observations
and found out that while doing the right calculations our receiver temperature
turned out to be higher than the system temperature. This was impossible.

07-01-15 Calibration measurement. We needed to do a calibration measurement inside
and outside to see what was going on. The relative high receiver temperature,
∼ 200 K, turned out to be caused by assuming we were looking at a cold load of
77.14 K, while waving around the cold load confirmed that we were missing a part
of the beam by measuring the cold load. Doing a hot and cold load measurement
inside and outside allowed us to determine a beam filling factor of ∼ 0.9. The other
0.1 part of the beam was filled by the temperature of the room, sky, ground and
atmospheric temperature. Because we could not now for sure which temperature
was contributing to the cold load temperature, we had to figure out another way.
By measuring the hot and the cold load by measuring in- and outside the frame
we detected a temperature and power difference. We stated that by doing the
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measurement by hand allowed us to fill the entire beam with liquid nitrogen in
order to latter calibrate our system using the measured power as reference for the
’real’ cold load. I determined the temperatures of our used cold load using the
script shown in Appendix I

07-04-15 and [07-05-15 ] Daily observations. I decided to measure the sky every day
from on this day in order to observe how the system temperature of the telescope
is changing. Therefore I thought to be able to state a few statements about the
gain of our telescope. The daily observations were based on at least two calibration
sweeps, one in at the beginning and one at the end of the observation, and three
measurements for each determining the opacity and the temperature of the CMB. I
was not able to get on the SRON terrace yet, so that is why all daily measurements
are done from the Kapteyn terrace and contain a source on the sky.

07-06-15 Daily observation and calibration. After doing the daily observations I decides
to do an other calibrational test to check and confirm that our calibration was
working. Instead of confirming I measured a difference of ∼ 0.2 dBm in measuring
the cold load by taking it out of the system. We thought we were catching the
entire beam with the cold load. However, even by pointing the horn straight in
front of the load, we were not able to catch the entire beam with the cold load. By
tilting the horn, the power went down. This confirmed that measuring right above
a load will cause reflections and therefore an increased power load. We had to figure
something out to calibrate the system correctly. At this time it was already to late
to arrange a new frame and bigger cold load.

07-07-15 Daily observation. As I knew we had to correct for the calibration for every
observation done untill now, I went on with the observations as done every day.
During the evening Sweijen and I went to see our supervisor Prof. dr. A. Baryshev
in order to discuss the calibration. We came up with the idea to measure an
’absolute’ power by using a larger cold load and poynting the horn slightly tilted
above the load. This would be our fixed power to a temperature of liquid nitrogen.
From now on, for every measurement we had to calibrate the cold load in our frame
by using this fixed power.

07-08-15 Data reduction. During the day I was busy with the data reduction of all
observations that had been done. While creating plots Sweijen and I again met
our supervisor in order to discuss the measured power the day before. This was
when we found out that during all observations we made one measurement at one
angle. This was why my error calculations turned out to give errors of about ∼ 3
K. Knowing this is higher than the temperature of the CMB itself, it could cause
problems. We figured out how to integrate over more (N = 128, 256, 512 and
1024) measurements per angle in order to reduce the measurement uncertainty of
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the power meter by 0.02 dBm√
N

. We had to make new observations to state anything
relevant about the CMB temperature.

07-09-15 and 07-10-15 Last possible observing days. Due to time pressure and bad
weather conditions, the observations made these days are the only data taking into
account a more precise measurement of the system temperature. This is why I only
used these observations to conclude any thing relevant according Tcmb and τ0

Due to the deadline of the thesis I am not able to give conclusions about observations
having a clear sky without clouds. i will measure the system temperature as soon as
possible. After this project, we will get a larger cold load in order to use the telescope
properly for the coming lectures of the course ’Radio Astronomy’.

9.2 Calibration

9.2.1 Possible explanations for the ’wrong’ cold load measure-
ments

Too small box for the cold load

Due to the observation done on 07-06-2015, it can be stated that we do not measure
a temperature of liquid nitrogen if we point the horn right above the cold load. This
impossibility can be explained by comparing Figure 6.5 and 6.6. Looking at both signals
received for the cold load, the system shows a lower power than the measurement done
by hand. We know from experience that the beam is not entirely filled with the cold load
when placed in the system. The power received by hand shows a higher value than the
one measured by the system. Therefore, we can infer that if we point straight above the
cold load, even a larger part of the beam is ’missing’ the cold load. The conclusion that
can be made: The cold load is too small. This is already one explanation for the wrong
calibration.

Aluminium foil is no good solution

During the last observations included in Appendix K, I saw pieces of the aluminium foil
floating through the liquid nitrogen. This can cause extra undesirable reflections and
therefore had to be removed. Therefore, I can state that making a possible new and
larger cold load, also should take into account to use aluminium plates instead of foil.

Where does the temperature change come from?

Since the time the telescope was ready to use, I made observations concerning the cal-
ibration of the telescope during different weather conditions, temperatures and cloudy
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or non cloudy skies. More information about particular observations can be found in
Appendix K.

Concerning these calibration measurements, all important parameters are mentioned
in Table 9.1.

Figure 9.1: The measurements show a linear relation. This is due to the fact that they all have a
gain which is more or less equal to each other. On the right, all measurements get distinguished
for the method of measuring the hot and the cold load.

I want to investigate, whether I am able to define an expression which calculates the
measured temperature of the cold load by inferring which part of the beam we can not
catch with our load. If my expectations match, we miss the same percentage of the beam
regarding the cold load every time. Because the measurements with hand are made using
different observation angles, I will not take these measurements into account. In Figure
9.1 is shown which method is used during the different measurements.

If the higher cold load temperature is due parts of the beam being exposed to the
atmospheric temperature, we should see a correlation between a higher Tatm and a higher
Tcold. Plotting the values for these parameters against each other would give a quick
view on the dependence of Tatm on Tcold. The following Figures are made using the script
shown in Appendix J.

If we can trust the values and observations, we see from Figure 9.2 that the mea-
surements with a hotter Tatm result in a colder Tcold. This is in contradiction with the
expectations. To confirm that there is no direct relation between Tatm and Tcold, there
should also be no clear solution for

Tcold = (1− x) · Tabs, cold + x · Tatm (9.1)

where x is defined as the part of the beam missing the cold load. If the beam is always
contributing the same percentage to the beam should occur for the data. Plotting all
solutions for equation (9.1) for the data results in Figure 9.3.
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Date Tatm
(K)

Thot
(K)

Tcold
(K)

Phot
(dBm)

Pcold
(dBm)

Trx
(K)

Gain
(dB)

Sort1

06-30-
15

298 300 89.28 -20.97 -23.55 170.49 60.94 1

298 300 79.90 -21.12 -23.71 190.12 60.41 1
298 300 76.41 -21.21 -23.77 203.02 60.14 1
298 300 79.40 -21.13 -23.72 190.78 60.40 1
298 300 81.23 -21.14 -23.69 192.68 60.40 1
298 300 78.18 -21.18 -23.74 198.28 60.25 1

07-01-
15

305.8 314.14 79.20 -21.22 -23.73 222.50 59.90 3

305 311 79.51 -21.10 -23.72 200.50 60.24 2
305 311 80.73 -21.07 -23.70 196.70 60.32 2
305 311 80.21 -21.06 -23.71 195.62 60.33 2

07-04-
15

301.1 301.50 96.29 -21.00 -23.44 175.98 60.99 1

301.1 303.29 93.39 -21.05 -23.49 184.48 60.78 1
07-05-
15

299.1 300.14 97.62 -20.95 -23.41 169.02 61.14 1

298.1 299.21 95.54 -21.00 -23.45 173.80 61.01 1
07-06-
15

294.3 294.79 102.68 -20.78 -23.28 144.53 61.72 1

294.3 294.79 98.11 -20.83 -23.38 153.17 61.43 2
294.3 294.79 98.27 -20.84 -23.38 154.98 61.41 2
294.3 294.79 99.03 -20.84 -23.36 154.79 61.43 2
296.6 298.97 82.98 -20.88 -23.65 159.37 61.01 1
297.3 297.39 84.83 -20.82 -23.61 150.65 61.21 3

07-07-
15

302.1 300.72 97.62 -20.91 -23.33 164.50 61.31 1

300.6 299.69 99.16 -20.92 -23.38 164.03 61.26 1
07-09-
15

289.7 290.14 97.62 -20.92 -23.38 154.55 61.18 1

07-10-
15

293.46 295.49 93.27 -20.77 -23.45 143.48 61.53 1

295.17 295.63 91.97 -20.79 -23.48 146.01 61.45 1

Table 9.1: During the last week of June ’15 and the first two weeks of July ’15, a lot of
measurements are made to look at the calibration of the telescope. All measurements done are
mentioned. For a clear overview see Appendix K.

From this plot we can say that there is no clear solution for equation (9.1). In addition,
we can say that the solution seems to be way more constant during one observation day.
From this discovery I draw the conclusion that the cold load is not only fluctuating due to
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Figure 9.2: The measurements show a linear relation. This is due to the fact that they all have a
gain which is more or less equal to each other. On the right, all measurements get distinguished
for the method of measuring the hot and the cold load.

Figure 9.3: The solutions for the equation are spread over the plot.

the atmospheric temperature, but there will also be a fluctuation caused by a fluctuating
system gain. It would be useful to investigate this fluctuation of the gain in more detail,
but to be able to do that, I need to have a cold load which is for sure stable and big
enough to fill the entire beam.
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9.3 Recommendations

There are a few recommendations for further and better research.

• Being able to observe the sky preferable requires a clear blue sky without clouds.
These days are rare, especially when you live in the Groningen . If a trip to Chile’s
Atacama desert is not one of the options, I should recommend to do the observations
during the winter months when the atmosphere is more dry with respect to the
summer months. In addition, a lower atmospheric temperature will also increase
the quality of the observing data, due to less contribution of the atmosphere in the
system temperature.

• We build a telescope having an observing frequency of 11 GHz. Because of this
frequency and our broad beam pattern, we were able to measure the Sun. At the
same time, due to the broad beam patter, it sometimes became difficult to not
measure the Sun. Observing during the night could be a solution, only during the
night we have to take into account the radiation from the Sun being reflected by
the moon and the radiation coming from the Milky Way which was standing right
above the Groningen sky during the nights in June and July.

• We measure a lot of radiation coming from the buildings. Unfortunately the only
spot on the terrace of the Kapteyn which did not had buildings in the field of view,
was covered by a lot of radiation (even more than the Sun) due to a Geostationary
Satellite. Therefore, the only spot to make a measurement without measuring
buildings or radio sources was on the terrace of SRON. It might be useful to get
the telescope completely wireless if possible. By making it wireless and maybe even
add a battery, we could measure the sky outside the city of Groningen. This will
give for sure better results.

• Due to the heaviness and size of the telescope’s frame, I was not able to transport
the telescope by myself. Because of the sky changing fast, I would recommend to
put the frame on wheels in order to be able to get outside and inside as quickly as
possible.

• Concerning a better calibration, we need to have a larger cold load in order to
be able to catch the entire beam of the horn during the hot and cold load mea-
surements. Only with having a good calibration I would have been able to state
something about the changing gain of the telescope. Now, because of our calibra-
tion problem, we are not able to distinguish a changing gain from an bad calibration
measurement and from a change in the (atmospheric or hot and cold load) temper-
ature.

• Having a larger cold load requires more liquid nitrogen. Our cold load already
needed 10 litres to be entirely filled. Through this, we have used at least an amount
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of 300 litres. This huge amount is mostly due to the fact that we had to throw the
liquid nitrogen what was left away because we were not able to store it again. If
we are able to store, we are able to reduce the amounts of used nitrogen by a lot.
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A | Derivation arithmetic exact formula.
Defining the sample mean and the variance as

x̄ =
1

N

N∑
i=1

xi σ2
x =

1

N − 1

N∑
i=1

(xi − x̄)2 (A.1)

Using a linear approximation of f(x) near x̂ such that f− f̂ ≈ ∂f
∂x (x−x̂). Having this expression,

the true values of x and f(x) lie in the ranges of x = x̂± δx and f(x) = f̂ ± δf , where δf can
be written as δf =

∣∣∣∂f∂x ∣∣∣ δx. Having more variables the expression becomes

f − f̄ =
∂f

∂x
(x− x̄) +

∂f

∂y
(y − ȳ) (A.2)

Using equation (A.2) and the expression for the variance, we find

σ2
f =

1

N − 1

N∑
i=1

(
∂f

∂x
(x− x̄) +

∂f

∂y
(y − ȳ)

)2

(A.3)

The expansion of equation A.3 therefore leads to

σ2
f =

1

N − 1

((
∂f

∂x

)2 N∑
i=1

(x− x̄)2 +

(
∂f

∂y

)2 N∑
i=1

(y − ȳ)2 + 2
∂f

∂x

∂f

∂y

N∑
i=1

(x− x̄)(y − ȳ)

)
(A.4)

Now again using the definition for the variance expressed in equation (A.1), equation (A.4) can
be written as

σ2
f =

(
∂f

∂x

)2

σ2
x +

(
∂f

∂y

)2

σ2
y + 2

∂f

∂x

∂f

∂y
σ2
xy (A.5)

Neglecting the correlation terms, the general formula for the variance can be written as

σf =

√(
∂f

∂x

)2

σ2
x +

(
∂f

∂y

)2

σ2
y +

(
∂f

∂z

)2

σ2
z + . . . (A.6)

(of Maryland, 2006)

Using differentials is a way to propagate uncertainties. In addition, an other way is using a
method called "arithmetic calculations of error propagation". This implies the following expres-
sions, that also could also be used for the uncertainty propagation calculations.

f = a+ b− c σf =
√
σ2
a + σ2

b + σ2
c

f = a× b

c

σf
f

=

√(σa
a

)2
+
(σb
b

)2
+
(σc
c

)2
(A.7)

f = ay
σf
f

= y
(σa
a

)
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B | Simulation to determine an useful
number of measurements regard-
ing opacity.

#!/usr/bin/env python

from __future__ import d i v i s i o n
from matp lo t l i b import pyplot
from matp lo t l i b . pyplot import f i gu r e , show

from s c ipy . opt imize import curve_f i t

import random

from matp lo t l i b . pyplot import ∗

import math
import numpy as np

’’’ Definitions for the variables ’’’
tau_0 = 0.05 #(assumed)

e l e v a t i o n = np . arange ( 0 , 9 0 , 0 . 0 1 )
z = (90 − e l e v a t i o n )
z = np . rad ians ( z )

k = 1.3807 e−23 # J * K^-1

T_cmb = 2.73 #K
T_atm = 283 #K

’’’ Calculating atmosperic opacity ’’’
def s ec ( z ) :

return (1/ np . cos ( z ) )

def tau_atm( z , t_0) :
tau =t_0 ∗ s ec ( z )
return tau

’’’ Calulating oberved temperature according to the opacity ’’’
def T_antenna ( tau , T_atm) :

T = T_cmb ∗ np . exp(−tau ) + T_atm ∗(1−np . exp(−tau ) )
return T

def func ( z , tau_0 ) :
return ( T_cmb ∗ np . exp(− tau_atm( z , tau_0 ) ) ) + ( T_atm ∗ (1 − np . exp(− tau_atm( z ,

tau_0 ) ) ) )

’’’ Generating errors in tau_0 ’’’
tau_0err1 = np . random . normal ( tau_0 , 0 .001 ,9000)
tau_0err2 = np . random . normal ( tau_0 , 0 .002 ,9000)
tau_0err3 = np . random . normal ( tau_0 , 0 .005 ,9000)
tau_0err4 = np . random . normal ( tau_0 , 0 .01 ,9000)

’’’ Calculating T_A for the random generated tau_0s ’’’
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TA1 = T_antenna ( tau_atm( z , tau_0err1 ) , T_atm)
TA2 = T_antenna ( tau_atm( z , tau_0err2 ) , T_atm)
TA3 = T_antenna ( tau_atm( z , tau_0err3 ) , T_atm)
TA4 = T_antenna ( tau_atm( z , tau_0err4 ) , T_atm)

’’’ Plotting ’’’
f i g = f i g u r e ( f i g s i z e =(14 ,9) )
f i g . s u p t i t l e ( ’Dependence of uncertainties in $\\ tau_0$ on $T_A = T_{cmb}e^{-\\ tau_0 \\

sec z} + T_{atm}(1-e^{-\\ tau_0 \\sec z})$’ , f o n t s i z e =18)
frame = f i g . add_subplot ( 2 , 2 , 1 )
frame . s e t_ t i t l e ( ’Uncertainty of $\\ Delta \\ tau_0 = 0.001$’ , f o n t s i z e=’14’ )
frame . p l o t (np . degree s ( z ) , TA1, c o l o r=’blue’ , l a b e l=’$\\tau_{atm}$’ )
pyplot . x l ab e l ( ’Zenith angle $\\ degree$ ’ )
pyplot . y l ab e l ( ’Antenna temperature (K)’ )

frame = f i g . add_subplot ( 2 , 2 , 2 )
frame . s e t_ t i t l e ( ’Uncertainty of $\\ Delta \\ tau_0 = 0.002$’ , f o n t s i z e=’14’ )
frame . p l o t (np . degree s ( z ) , TA2, c o l o r=’blue’ , l a b e l=’$\\tau_{atm}$’ )
pyplot . x l ab e l ( ’Zenith angle $\\ degree$ ’ )
pyplot . y l ab e l ( ’Antenna temperature (K)’ )

frame = f i g . add_subplot ( 2 , 2 , 3 )
frame . s e t_ t i t l e ( ’Uncertainty of $\\ Delta \\ tau_0 = 0.005$’ , f o n t s i z e=’14’ )
frame . p l o t (np . degree s ( z ) , TA3, c o l o r=’blue’ , l a b e l=’$\\tau_{atm}$’ )
pyplot . x l ab e l ( ’Zenith angle $\\ degree$ ’ )
pyplot . y l ab e l ( ’Antenna temperature (K)’ )

frame = f i g . add_subplot ( 2 , 2 , 4 )
frame . s e t_ t i t l e ( ’Uncertainty of $\\ Delta \\ tau_0 = 0.01$’ , f o n t s i z e=’14’ )
frame . p l o t (np . degree s ( z ) , TA4, c o l o r=’blue’ , l a b e l=’$\\tau_{atm}$’ )
pyplot . x l ab e l ( ’Zenith angle $\\ degree$ ’ )
pyplot . y l ab e l ( ’Antenna temperature (K)’ )
f i g . subplots_adjust ( hspace =.3)
f i g . s a v e f i g ( ’Opacityequation.png’ )

sample2 = [2250 , 6750 ]
sample5 = [1500 , 3000 , 4500 , 6000 , 7500 ]
sample10 = [750 , 1500 , 2250 , 3000 , 3750 , 4500 , 5250 , 6000 , 6750 , 7500 ]
sample90 = np . arange (0 , 90 , 1 )

e l e v a t i o n = np . arange (0 , 90 , 1 )
z = (90 − e l e v a t i o n )
z = np . rad ians ( z )

’’’ Calculating the values for the opacity having an amount of samples and measurements
’’’

avtau = [ ]
avuntau = [ ]

for k in range (1 ) :
ang le =[ ]
antenna =[ ]
for i in sample90 :

tau_0err1 = np . random . normal ( tau_0 , 0 .005 ,90)
TA1 = T_antenna ( tau_atm( z , tau_0err1 ) , T_atm)
ang le . append ( z [ i ] )
antenna . append (TA1[ i ] )

avtau . append ( curve_f i t ( func , angle , antenna , maxfev=10000) [ 0 ] )
avuntau . append ( curve_f i t ( func , angle , antenna , maxfev=10000) [ 1 ] )

print ’1 measurement of 90 samples of 0.01’
print np . mean( avtau )
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print np . mean( avuntau )

avtau = [ ]
avuntau = [ ]

for k in range (5 ) :
ang le =[ ]
antenna =[ ]
for i in sample90 :

tau_0err1 = np . random . normal ( tau_0 , 0 .005 ,90)
TA1 = T_antenna ( tau_atm( z , tau_0err1 ) , T_atm)
ang le . append ( z [ i ] )
antenna . append (TA1[ i ] )

avtau . append ( curve_f i t ( func , angle , antenna , maxfev=10000) [ 0 ] )
avuntau . append ( curve_f i t ( func , angle , antenna , maxfev=10000) [ 1 ] )

print ’5 measurements of 90 samples of 0.01’
print np . mean( avtau )
print np . mean( avuntau )

avtau = [ ]
avuntau = [ ]

for k in range (10) :
ang le =[ ]
antenna =[ ]
for i in sample90 :

tau_0err1 = np . random . normal ( tau_0 , 0 .005 ,90)
TA1 = T_antenna ( tau_atm( z , tau_0err1 ) , T_atm)
ang le . append ( z [ i ] )
antenna . append (TA1[ i ] )

avtau . append ( curve_f i t ( func , angle , antenna , maxfev=10000) [ 0 ] )
avuntau . append ( curve_f i t ( func , angle , antenna , maxfev=10000) [ 1 ] )

print ’10 measurements of 90 samples of 0.01’
print np . mean( avtau )
print np . mean( avuntau )

avtau = [ ]
avuntau = [ ]

for k in range (50) :
ang le =[ ]
antenna =[ ]
for i in sample90 :

tau_0err1 = np . random . normal ( tau_0 , 0 .005 ,90)
TA1 = T_antenna ( tau_atm( z , tau_0err1 ) , T_atm)
ang le . append ( z [ i ] )
antenna . append (TA1[ i ] )

avtau . append ( curve_f i t ( func , angle , antenna , maxfev=10000) [ 0 ] )
avuntau . append ( curve_f i t ( func , angle , antenna , maxfev=10000) [ 1 ] )

print ’50 measurements of 90 samples of 0.01’
print np . mean( avtau )
print np . mean( avuntau )

avtau = [ ]
avuntau = [ ]

for k in range (100) :
ang le =[ ]
antenna =[ ]
for i in sample90 :

tau_0err1 = np . random . normal ( tau_0 , 0 .005 ,90)
TA1 = T_antenna ( tau_atm( z , tau_0err1 ) , T_atm)
ang le . append ( z [ i ] )
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antenna . append (TA1[ i ] )
avtau . append ( curve_f i t ( func , angle , antenna , maxfev=10000) [ 0 ] )
avuntau . append ( curve_f i t ( func , angle , antenna , maxfev=10000) [ 1 ] )

print ’100 measurements of 90 samples of 0.01’
print np . mean( avtau )
print np . mean( avuntau )

avtau = [ ]
avuntau = [ ]

for k in range (500) :
ang le =[ ]
antenna =[ ]
for i in sample90 :

tau_0err1 = np . random . normal ( tau_0 , 0 .005 ,90)
TA1 = T_antenna ( tau_atm( z , tau_0err1 ) , T_atm)
ang le . append ( z [ i ] )
antenna . append (TA1[ i ] )

avtau . append ( curve_f i t ( func , angle , antenna , maxfev=10000) [ 0 ] )
avuntau . append ( curve_f i t ( func , angle , antenna , maxfev=10000) [ 1 ] )

print ’500 measurements of 90 samples of 0.01’
print np . mean( avtau )
print np . mean( avuntau )
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C | Simulation to determine an useful
number of measurements regard-
ing CMB.

#!/usr/bin/env python

from __future__ import d i v i s i o n
from matp lo t l i b import pyplot
from matp lo t l i b . pyplot import f i gu r e , show

from s c ipy . opt imize import curve_f i t

import random

from matp lo t l i b . pyplot import ∗

import math
import numpy as np

’’’ Definitions for the variables ’’’
tau_0 = 0.05 #(assumed)

e l e v a t i o n = np . arange ( 0 , 9 0 , 0 . 0 1 )
z = (90 − e l e v a t i o n )
z = np . rad ians ( z )

k = 1.3807 e−23 # J * K^-1

T_cmb = 2.73 #K
T_atm = 283 #K

’’’ Calculating atmosperic opacity ’’’
def s ec ( z ) :

return (1/ np . cos ( z ) )

def tau_atm( z , t_0) :
tau =t_0 ∗ s ec ( z )
return tau

’’’ Calulating oberved temperature according to the opacity ’’’
def T_antenna ( z , tau , T_atm) :

T = 2.73 ∗ np . exp(−tau_atm( z , tau ) ) + T_atm ∗(1−np . exp(−tau_atm( z , tau ) ) )
return T

def func ( z , T_cmb) :
return ( T_cmb ∗ np . exp(− tau_atm( z , tau_0 ) ) ) + ( T_atm ∗ (1 − np . exp(− tau_atm( z ,

tau_0 ) ) ) )

e l e v a t i o n = np . arange (0 , 90 , 1 )
z = (90 − e l e v a t i o n )
z = np . rad ians ( z )

sample2 = [22 , 67 ]
sample5 = [15 , 30 , 45 , 60 , 75 ]
sample10 = [ 7 , 15 , 22 , 30 , 37 , 45 , 52 , 60 , 67 , 75 ]
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def func ( z , T_cmb) :
return ( T_cmb ∗ np . exp(− tau_atm( z , tau_0 ) ) ) + ( T_atm ∗ (1 − np . exp(− tau_atm( z ,

tau_0 ) ) ) )

avcmb= [ ]
avuncmb = [ ]

for k in range (500) :
ang le =[ ]
antenna =[ ]
for i in sample2 :

tau_0err1 = np . random . normal ( tau_0 , 0 .001 ,90)
TA = T_antenna ( z , tau_0err1 , T_atm)
ang le . append ( z [ i ] )
antenna . append (TA[ i ] )

avcmb . append ( curve_f i t ( func , angle , antenna , maxfev=1000) [ 0 ] )
avuncmb . append ( curve_f i t ( func , angle , antenna , maxfev=1000) [ 1 ] )

print ’10 measurements of 2 samples ’
print np . mean(avcmb)
print np . mean(avuncmb)

avcmb= [ ]
avuncmb = [ ]

for k in range (500) :
ang le =[ ]
antenna =[ ]
for i in sample5 :

tau_0err1 = np . random . normal ( tau_0 , 0 .001 ,90)
TA = T_antenna ( z , tau_0err1 , T_atm)
ang le . append ( z [ i ] )
antenna . append (TA[ i ] )

avcmb . append ( curve_f i t ( func , angle , antenna , maxfev=1000) [ 0 ] )
avuncmb . append ( curve_f i t ( func , angle , antenna , maxfev=1000) [ 1 ] )

print ’10 measurements of 5 samples ’
print np . mean(avcmb)
print np . mean(avuncmb)

avcmb= [ ]
avuncmb = [ ]

for k in range (500) :
ang le =[ ]
antenna =[ ]
for i in sample10 :

tau_0err1 = np . random . normal ( tau_0 , 0 .001 ,90)
TA = T_antenna ( z , tau_0err1 , T_atm)
ang le . append ( z [ i ] )
antenna . append (TA[ i ] )

avcmb . append ( curve_f i t ( func , angle , antenna , maxfev=1000) [ 0 ] )
avuncmb . append ( curve_f i t ( func , angle , antenna , maxfev=1000) [ 1 ] )

print ’10 measurements of 10 samples ’
print np . mean(avcmb)
print np . mean(avuncmb)
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D | Propagation of errors

D.1 Y-factor

Having equation (5.1), the expression for the Y-factor having powers in dBm becomes

Y = 10
Phot−Pcold

10 (D.1)

Using this expression, we can apply propagation of errors through

σY =

√(
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∂Phot

)2

σ2
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)
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D.2 Receiver temperature

Using the expression for the receiver temperature, see equation (5.3), propagation of
errors lead to
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E | Script to plot the system temper-
ature per zenith angle for all ob-
servations.

#!/usr/bin/env python
# -*- coding: utf -8 -*-

from __future__ import d i v i s i o n
from matp lo t l i b . pyplot import f i gu r e , show
from matp lo t l i b . pyplot import ∗

import matp lo t l i b . pyplot as p l t
import numpy as np
import os
#-------------------------------------------------------------
’’’ Importing definitions to reduce the data coming from the telescope ’’’

def s ec ( z ) :
return (1/ np . cos ( z ) )

def tau_atm( z , tau_0 ) :
tau =tau_0 ∗ s ec ( z )
return tau

def Power (P_sys ) :
P = (10∗∗ (P_sys/10) )
return P

def Yfac (P_hot , P_cold ) :
y = 10∗∗ ( (P_hot−P_cold ) /10)
return y

def T_e(Y, T_hot , T_cold ) :
t = (T_hot−T_cold∗Y) /(Y−1)
return t

def Gain (Phot , Pcold , T_hot , T_cold ) :
G = ( ( ( Phot−Pcold ) ∗10∗∗−3 ) /(T_hot−T_cold ) ) /(k∗dv )
return G

def Temp(P_sys , G) :
T = (P_sys∗10∗∗−3) / (G ∗ k ∗ dv )
return T

#-------------------------------------------------------------
’’’ Correction for the calibration ’’’

def T_correct ion (P_hotsys , P_coldsys , P_hothand , P_coldhand , T_hot , T_coldhand ) :
Y_hand = 10∗∗ ( (P_hothand−P_coldhand ) /10)
print ’The Y-factor for the measurements done by hand is:’ , Y_hand
Y_sys = 10∗∗ ( ( P_hotsys−P_coldsys ) /10)
print ’The Y-factor for the measurements done by the system is:’ , Y_sys
T_noise = (T_hot−T_coldhand∗Y_hand) /(Y_hand−1)
print ’The T_noise for the measurements done by hand is:’ , T_noise , ’K’
T = −1 ∗ ( T_noise ∗(Y_sys−1) − T_hot) /Y_sys
return T
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#-------------------------------------------------------------
’’’ The values for the knowns ’’’

Temp_hot = [ 3 0 7 . 1 , 3 0 7 . 5 , 3 0 8 . 1 , 3 0 7 . 7 , 3 0 6 . 4 , 3 0 6 . 4 ] #K These are the temperatures of the
hot load for all observations made on 07-04-15

T_cold_real = 77.14 #K This is the real temperature of liquid nitrogen
P_cold_real = −23.7554554 #dBm If the telecope was calibrated correct , this was the

incoming power achieved from measuring the cold load

k = 1.3807 e−23 #JK^-1
dv = 1.05 e9 #Hz Our telescope ’s bandwidth

#-------------------------------------------------------------
’’’ Start Program ’’’

print ’’
print ’ --------------------------------------------------------------------- ’
print ’ Program to calculate the system power according to the incoming power ’
print ’ --------------------------------------------------------------------- ’

#-------------------------------------------------------------
’’’ Input of the data from the telescope ’’’

print ’ Data input ’
print ’ -------------------------------------------------------------------- ’

data = [ ]
for f in os . l i s t d i r ( ’./’ ) :

sk ip = False
if f . s t a r t sw i t h ( ’data’ ) and f . endswith ( ’.txt’ ) :

if ’hotcold ’ in f :
print ’Ignoring ’ + f + ’[hot -cold measurement ].’
sk ip = True

if ’atm’ in f :
print ’Ignoring ’ + f + ’[atmosphere measurement ].’
sk ip = True

if sk ip :
continue

data . append ( f )

i = 0
data = sor t ed ( data , key=s t r . lower )
for datase t in data :

zangle , outpower = np . l oadtx t ( dataset , unpack=True , u s e c o l s =(0 ,1) , dtype=s t r )
hour = datase t [ 4 : 6 ]
minutes = datase t [ 6 : 8 ]

print ’These are the plots conserning the data taken at %s:%s’ %(hour , minutes )

#-------------------------------------------------------------
’’’ Calculating System power on every angle ’’’

ang le = np . array ( [ f l o a t ( x ) for x in zang le ] )
ang le = angle − 90
power = np . array ( [ f l o a t ( x ) for x in outpower ] )
Photrea l = power [ 1 ]
Photsys = power [ 1 ]
Pcoldsys = power [ 0 ]

T_hot = Temp_hot [ i ]

#-------------------------------------------------------------
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’’’ Calculating System temperature on every angle ’’’

T_coldsys = T_correct ion ( Photsys , Pcoldsys , Photreal , P_cold_real , T_hot ,
T_cold_real )

g a i n r e a l = Gain (Power ( Photsys ) ,Power ( Pcoldsys ) , T_hot , T_cold_real )
ga in sy s = Gain (Power ( Photsys ) ,Power ( Pcoldsys ) , T_hot , T_coldsys )

temperature = Temp(Power ( power ) , ga in sys )

Yfactor_system = Yfac ( power [ 1 ] , power [ 0 ] )
Yfactor_cold = Yfac ( power [1 ] , −23 .7554554)
temp_rec = T_e( Yfactor_system , T_hot , T_coldsys )

print ’With the system , we look at a cold load having a temperature of ’ , T_coldsys ,
’K’

print ’According to the measurements , the system Gain equals ’ , 10∗np . log10 ( ga in sy s )
, ’dB’

#-------------------------------------------------------------
’’’ Creating plots for the Power and the System temperature ’’’

print ’ Creating plot from measurements ’
print ’ -------------------------------------------------------------------- ’
f i g 1 = f i g u r e ( f i g s i z e =(14 ,5) )
f i g 1 . s u p t i t l e ( ’Observation of the sky , 07-04-15, %s:%s’ %(hour , minutes ) )

frame = f i g 1 . add_subplot ( 1 , 2 , 1 )
frame . s e t_ t i t l e ( ’Power (dBm) on the sky’ , f o n t s i z e=’10’ )
frame . p l o t ( ang le [ 2 : ] , power [ 2 : ] , ’g’ , l a b e l=’Power (dBm) per angle ($\\ degree$)’ )
p l t . x l ab e l ( ’Zenith angle $\\ degree$ ’ )
p l t . y l ab e l ( ’Power (dBm)’ )

frame = f i g 1 . add_subplot ( 1 , 2 , 2 )
frame . s e t_ t i t l e ( ’System temperature on the sky’ , f o n t s i z e=’10’ )
frame . p l o t ( ang le [ 2 : ] , temperature [ 2 : ] , ’b’ , l a b e l=’System temperature $T_{sys}$’ )
p l t . axh l ine (y=temp_rec , c o l o r=’r’ , l i n e s t y l e=’--’ , l a b e l=’Receiver temperature $T_{

rx}$’ )
p l t . t ex t (10 , temp_rec+3, ’$T_{rx}$= %d K’ %(temp_rec ) , c o l o r=’r’ )
lgd = frame . legend ( l o c="upper left" , bbox_to_anchor=(0 ,1) )
p l t . x l ab e l ( ’Zenith angle $\\ degree$ ’ )
p l t . y l ab e l ( ’System Tenperature (K)’ )

f i g 1 . s a v e f i g ( ’data_07 -04 -15_%s%s-goodcalib.png’ %(hour , minutes ) ,
bbox_extra_art ists=(lgd , ) ) #, bbox_inches=’tight ’)

i = i+1
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F | Script to plot measurements of hot
and cold load for measurements done
by hand and for the horn placed in
the system.

#!/usr/bin/env python
# -*- coding: utf -8 -*-

from __future__ import d i v i s i o n
from matp lo t l i b . pyplot import f i gu r e , show
from matp lo t l i b . pyplot import ∗

import matp lo t l i b . pyplot as p l t
import numpy as np
import os
import math
#-------------------------------------------------------------
’’’ Known values of the antenna ’’’

k = 1.3807 e−23 #JK^-1
dv = 1.05 e9 #Hz Our telescope ’s bandwidth

’’’ Definitions used ’’’

def Power (P_sys ) :
P = (10∗∗ (P_sys/10) )
return P

def Yfac (P_hot , P_cold ) :
y = 10∗∗ ( (P_hot−P_cold ) /10)
return y

def Gain (P_hot , P_cold , T_hot , T_cold ) :
G = ( ( ( P_hot−P_cold ) ∗10∗∗−3 ) /(T_hot−T_cold ) ) /(k∗dv )
return G

def T_correct ion (P_hotsys , P_coldsys , P_hothand , P_coldhand , T_hot , T_coldhand ) :
Y_hand = 10∗∗ ( (P_hothand−P_coldhand ) /10)
print ’The Y-factor for the measurements done by hand is:’ , Y_hand
Y_sys = 10∗∗ ( ( P_hotsys−P_coldsys ) /10)
print ’The Y-factor for the measurements done by the system is:’ , Y_sys
T_noise = (T_hot−T_coldhand∗Y_hand) /(Y_hand−1)
print ’The T_noise for the measurements done by hand is:’ , T_noise , ’K’
T = −1 ∗ ( T_noise ∗(Y_sys−1) − T_hot) /Y_sys
return T

def T_e(Y, T_hot , T_cold ) :
t = (T_hot−T_cold∗Y) /(Y−1)
return t

#-------------------------------------------------------------
’’’ Start Program ’’’

print ’’
print ’ --------------------------------------------------------------------- ’
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print ’ Program to calculate all values usefull for calibration ’
print ’ --------------------------------------------------------------------- ’

#-------------------------------------------------------------
’’’ Input of the data from the telescope for system measurements ’’’

print ’ Data input system ’
print ’ -------------------------------------------------------------------- ’

timeCold , sysco ld , timeHot , syshot , Hottemp , Atmtemp = np . l oadtx t ( ’data175249_hotcold.
txt’ , unpack=True , u s e c o l s =(0 , 1 , 2 , 3 , 4 , 5) )

Atmtemp = np . array ( [ f l o a t ( x ) for x in Atmtemp ] )
Hottemp = np . array ( [ f l o a t ( x ) for x in Hottemp ] )
sy s co ld = np . array ( [ f l o a t ( x ) for x in s y s co ld ] )
syshot = np . array ( [ f l o a t ( x ) for x in syshot ] )
timeHot = np . array ( [ f l o a t ( x ) for x in timeHot ] )− f l o a t ( timeHot [ 0 ] )
timeCold = np . array ( [ f l o a t ( x ) for x in timeCold ] )− f l o a t ( timeCold [ 0 ] )

#-------------------------------------------------------------
’’’ Creating a power plot for the Hot Cold load measurements done with the horn placed

in the frame for the telescope ’’’

print ’ Creating plot from measurements ’
print ’ -------------------------------------------------------------------- ’
f i g 1 = f i g u r e ( f i g s i z e =(14 ,5) )
f i g 1 . s u p t i t l e ( ’Hotload and Coldload Measurement in system , 07-06-15, 17:52 ’ )

frame = f i g 1 . add_subplot ( 1 , 2 , 1 )
frame . p l o t ( timeHot , Power ( syshot ) , ’b’ , l a b e l=’Hotload ’ )
frame . p l o t ( timeCold , Power ( sy s co ld ) , ’r’ , l a b e l=’Coldload ’ )
frame . s e t_ t i t l e ( ’Power per angle in mW’ , f o n t s i z e=’10’ )
p l t . t i ck labe l_fo rmat ( s t y l e=’sci’ , a x i s=’y’ , s c i l i m i t s =(0 ,0) )
p l t . x l ab e l ( ’Time (s)’ )
p l t . y l ab e l ( ’Power (mW)’ )

frame = f i g 1 . add_subplot ( 1 , 2 , 2 )
frame . p l o t ( timeHot , syshot , ’b’ , l a b e l=’Hotload ’ )
frame . p l o t ( timeCold , sysco ld , ’r’ , l a b e l=’Coldload ’ )
frame . s e t_ t i t l e ( ’Power per angle in dBm’ , f o n t s i z e=’10’ )
lgd = frame . legend ( l o c="upper left" , bbox_to_anchor =(0 .05 ,0 . 90 ) )
p l t . x l ab e l ( ’Time (s)’ )
p l t . y l ab e l ( ’Power (dBm)’ )

show ( )
f i g 1 . s a v e f i g ( ’data_07 -06 -15 _1752_HCsystem.png’ , bbox_extra_art ists=(lgd , ) )

’’’ Our fixed calibration values ’’’
T_cold_real = 77 .14 #K This is the real temperature of liquid nitrogen
P_cold_real = −23.7554554 #dBm If the telecope was calibrated correct , this was the

incoming power achieved from measuring the cold load

#-------------------------------------------------------------
’’’ Calculating all values we want to know from the calibration set -up ’’’

aver syshot = np . mean( syshot )
ave r sy s co ld = np . mean( sy s co ld )
averHottemp = np . mean(Hottemp )
averColdtemphand = T_cold_real

averATMtemp = np . mean(Atmtemp)

averColdload = P_cold_real
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Tcoldsys = T_correct ion ( aversyshot , aver sysco ld , aversyshot , averColdload , averHottemp ,
averColdtemphand )

g a i n r e a l = Gain (Power ( aver syshot ) ,Power ( P_cold_real ) , averHottemp , T_cold_real )
ga in sy s = Gain (Power ( aver syshot ) , Power ( averColdload ) , averHottemp , Tcoldsys )

Yfactor_system = Yfac ( aversyshot , ave r sy s co ld )
Yfactor_cold = Yfac ( aversyshot , P_cold_real )

#-------------------------------------------------------------
’’’ Printing all values from the measurement ’’’

print ’In the system we look at a coldload of about’ , Tcoldsys , ’K’
print ’According to the calculations we have a System Gain of’ , 10 ∗ np . log10 ( ga in sy s ) ,

’dB’
print ’The receiver temperature of the system becomes ’ , T_e( Yfactor_system , averHottemp ,

Tcoldsys ) , ’K’
print ’The average Phot of the system =’ , aversyshot , ’dBm’
print ’The average Pcold of the system =’ , ave r sysco ld , ’dBm’
print ’The average Hotload temperature measured by the system equals ’ , averHottemp , ’K’
print ’The average Atmospheric temperature has a value of’ , averATMtemp , ’K’

#-------------------------------------------------------------
’’’ Input of the data from the telescope for manual measurements ’’’

print ’ Data input manual ’
print ’ -------------------------------------------------------------------- ’

data = [ ]
for f in os . l i s t d i r ( ’./’ ) :

sk ip = False
if f . s t a r t sw i t h ( ’data’ ) and f . endswith ( ’.txt’ ) :

if ’hotcold ’ in f :
print ’Ignoring ’ + f + ’[hot -cold measurement ].’
sk ip = True

if ’atm’ in f :
print ’Ignoring ’ + f + ’[atmosphere measurement ].’
sk ip = True

if ’cmb’ in f :
print ’Ignoring ’ + f + ’[cmb measurement ].’
sk ip = True

if sk ip :
continue

data . append ( f )

data = sor t ed ( data , key=s t r . lower )
for datase t in data :

timepower , outpower= np . l oadtx t ( dataset , unpack=True , u s e c o l s =(0 , 1) )
hour = datase t [ 4 : 6 ]
minutes = datase t [ 6 : 8 ]

Hotload = [ ]
timeHot = [ ]
Coldload = [ ]
timeCold = [ ]

for i in range ( l en ( outpower ) ) :
if outpower [ i ] > −21.0:

Hotload . append ( outpower [ i ] )
timeHot . append ( timepower [ i ] )

elif −21.15 >= outpower [ i ] >= −23.3:
pass
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elif outpower [ i ] < −23.3:
Coldload . append ( outpower [ i ] )
timeCold . append ( timepower [ i ] )

#-------------------------------------------------------------
’’’ Calculating all values we want to know from the calibration manual measurements

’’’

aver syshot = np . mean( Hotload )
ave r sy s co ld = np . mean( Coldload )
averHottemp = 298.97

averColdtemphand = T_cold_real
averATMtemp = 296 .6
averColdload = P_cold_real

Tcoldsys = T_correct ion ( aversyshot , aver sysco ld , aversyshot , averColdload ,
averHottemp , averColdtemphand )

g a i n r e a l = Gain (Power ( aver syshot ) ,Power ( P_cold_real ) , averHottemp , T_cold_real )
ga in sy s = Gain (Power ( aver syshot ) , Power ( averColdload ) , averHottemp , Tcoldsys )

Yfactor_system = Yfac ( aversyshot , ave r sy s co ld )
Yfactor_cold = Yfac ( aversyshot , P_cold_real )

#-------------------------------------------------------------
’’’ Printing all values from the measurement ’’’

print ’These values are obtained by the use of data:’ , da ta se t
print ’In the system we look at a coldload of about’ , Tcoldsys , ’K’
print ’According to the calculations we have a System Gain of’ , 10 ∗ np . log10 (

ga in sy s ) , ’dB’
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G | Script to get τ0 and Texcess from
observations.

#!/usr/bin/env python
# -*- coding: utf -8 -*-

from __future__ import d i v i s i o n
from matp lo t l i b . pyplot import f i gu r e , show
from matp lo t l i b . pyplot import ∗

from s c ipy . opt imize import curve_f i t
import matp lo t l i b . pyplot as p l t
import numpy as np

import os
#-------------------------------------------------------------
’’’ Importing definitions to reduce the data coming from the telescope ’’’

def s ec ( z ) :
return (1/ np . cos ( z ) )

def tau_atm( z , tau_0 ) :
tau =tau_0 ∗ s ec ( z )
return tau

def Power ( Psys ) :
P = (10∗∗ ( Psys /10) )
return P

def Yfac (Ph , Pc) :
y = 10∗∗ ( (Ph−Pc) /10)
return y

def T_e(Y, T_hot , T_cold ) :
t = (T_hot−T_cold∗Y) /(Y−1)
return t

def T_correct ion (P_hsys , P_csys , P_hhand , P_chand , Th, T_chand) :
Y_h = 10∗∗ ( (P_hhand−P_chand) /10)
Y_s = 10∗∗ ( (P_hsys−P_csys ) /10)
T_noise = (Th−T_chand∗Y_h) /(Y_h−1)
T_cc = −1 ∗ ( T_noise ∗(Y_s−1) − Th) /Y_s
return T_cc

def Gain (Ph , Pc , Th, Tc) :
G = ( ( (Ph−Pc) ∗10∗∗−3 ) /(Th−Tc) ) /(k∗dv )
return G

def Temp(P_sys , G) :
T = (P_sys∗10∗∗−3) / (G ∗ k ∗ dv )
return T

#-------------------------------------------------------------
’’’ Definitions of for error calculations ’’’

def erP ( ) :
unc = 0.02 / ( (N) ∗∗ ( 0 . 5 ) )
return unc
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def errorY (Ph , Pc) :
erPc , erPh = erP ( ) , erP ( )
di fPh = (np . l og (10) ∗ (10∗∗ ( (Ph − Pc−10) /10) ) ) ∗∗2
d i fPc = (np . l og (10) ∗(−10∗∗((Ph − Pc−10) /10) ) ) ∗∗2
e r r o r = ( difPh ∗ erPh∗∗2 + di fPc ∗ erPc ∗∗2) ∗∗(1/2)
return e r r o r

def errorT_rec (Y, Th, Tc , Ph , Pc) :
erTh = erT (Th)
erTc = erT (Tc)
difTh = (1 / (Y−1) ) ∗∗2
di fTc = (−Y / (Y−1) ) ∗∗2
difY = ( (Tc−Th) / ( (Y−1)∗∗2) ) ∗∗2
erY = errorY (Ph , Pc)
e r r o r = ( difTh ∗ erTh∗∗2 + di fTc ∗ erTc ∗∗2 + difY ∗ erY ∗∗2) ∗∗(1/2)
return e r r o r

def erT (T) :
t = (0 . 6 + 0 .005∗ (T−273.15) ) / ( (N) ∗∗ ( 0 . 5 ) )
return t

#-------------------------------------------------------------
’’’ Calculating the derivatives in order to calculate the uncertainty ’’’

# Derivative in T_cmb
def derT_cmb( tau ) :

d = (np . exp(− tau ) )
return d∗∗2

# Derivative in T_atm
def derT_atm( tau ) :

d = (1 − np . exp(− tau ) )
return d∗∗2

# Derivative in T_rec
def derT_rec ( ) :

d = 1
return d∗∗2

# Derivative in tau
def dertau ( tau ) :

d = ( (T_atm−T_cmb) ∗np . exp(− tau ) )
return d∗∗2

# Uncertainty in T_sys
def uncertT_sys ( z , Y, Th, Tc , Ph , Pc) :

derTcmb = derT_cmb( tau_atm( z , tau_0 ) )
derTau = dertau ( tau_atm( z , tau_0 ) )
derTrec = derT_rec ( )
derTatm = derT_atm( tau_atm( z , tau_0 ) )
unTatm = erT (T_atm)
unTcmb = (0 .00057 ) / ( (N) ∗∗ ( 0 . 5 ) ) # Uncertainty in T_cmb according to the literature
unTau = (0 . 0 05 ) / ( (N) ∗∗ ( 0 . 5 ) ) # I estimated a fluctuation in the opacity of 0.005 as

’worst case scenario ’
unTrec = errorT_rec (Y, Th, Tc , Ph , Pc)
u = ( ( ( derTcmb) ∗ unTcmb∗∗2 ) + ( ( derTatm) ∗ unTatm∗∗2 ) + ( ( derTau ) ∗ unTau∗∗2 ) + ( (

derTrec ) ∗ unTrec ∗∗2) ) ∗∗(1/2)
return u

#-------------------------------------------------------------
’’’ The values for the knowns ’’’

T_cmb = 2.73 #K
Temp_hot = [ 2 9 5 . 3 5 , 2 9 5 . 0 2 , 2 9 4 . 6 4 ] #K These are the temperatures of the hot load for all

observations made on 07-10-15
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T_cold_real = 77.14 #K This is the real temperature of liquid nitrogen
P_cold_real = −23.7554554 #dBm If the telecope was calibrated correct , this was the

incoming power achieved from measuring the cold load

Temp_atm = [ 2 9 3 . 1 5 , 2 9 3 . 1 7 , 2 9 3 . 0 ] #K These are the temperatures of the atmosphere for all
observations made on 07-10-15

k = 1.3807 e−23 #JK^-1
dv = 1.05 e9 #Hz Our telescope ’s bandwidth

N = 256 # The amount of measurements made per angle

#-------------------------------------------------------------
’’’ Start Program ’’’

print ’’
print ’ --------------------------------------------------------------------- ’
print ’ Program to calculate the system power according to the incoming power ’
print ’ --------------------------------------------------------------------- ’

#-------------------------------------------------------------
’’’ Input of the data from the telescope ’’’

print ’ Data input ’
print ’ -------------------------------------------------------------------- ’

data = [ ]
for f in os . l i s t d i r ( ’./’ ) :

sk ip = False
if f . s t a r t sw i t h ( ’data’ ) and f . endswith ( ’.txt’ ) :

if ’hotcold ’ in f :
print ’Ignoring ’ + f + ’[hot -cold measurement ].’
sk ip = True

if ’atm’ in f :
print ’Ignoring ’ + f + ’[atmosphere measurement ].’
sk ip = True

if ’cmb’ in f :
print ’Ignoring ’ + f + ’[cmb measurement ].’
sk ip = True

if sk ip :
continue

data . append ( f )

i = 0
data = sor t ed ( data , key=s t r . lower )
for datase t in data :

zangle , outpower = np . l oadtx t ( dataset , unpack=True , u s e c o l s =(0 ,1) , dtype=s t r )
hour = datase t [ 4 : 6 ]
minutes = datase t [ 6 : 8 ]

print ’These are the values conserning the data taken at %s:%s’ %(hour , minutes )

#-------------------------------------------------------------
’’’ Calculating System power on every angle ’’’

ang le = np . array ( [ f l o a t ( x ) for x in zang le ] )
ang le = angle − 90
power = np . array ( [ f l o a t ( x ) for x in outpower ] )

Photrea l = power [ 1 ]
Photsys = power [ 1 ]
Pcoldsys = power [ 0 ]
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T_hot = Temp_hot [ i ]
T_atm = Temp_atm[ i ]

T_coldsys = T_correct ion ( Photsys , Pcoldsys , Photreal , P_cold_real , T_hot ,
T_cold_real )

g a i n r e a l = Gain (Power ( Photsys ) ,Power ( Pcoldsys ) , T_hot , T_cold_real )
ga in sy s = Gain (Power ( Photsys ) ,Power ( Pcoldsys ) , T_hot , T_coldsys )

temperature = Temp(Power ( power ) , ga in sys )

Yfactor_system = Yfac ( power [ 1 ] , power [ 0 ] )
Yfactor_cold = Yfac ( power [1 ] , −23 .7554554)
temp_rec = T_e( Yfactor_system , T_hot , T_coldsys )

print ’With the system , we look at a cold load having a temperature of ’ , T_coldsys ,
’K’

print ’According to the measurements , the system Gain equals ’ , 10∗np . log10 ( ga in sy s )
, ’dB’

#-------------------------------------------------------------
’’’ Plotting the data for the power and system temperature per angle ’’’

print ’ Creating plot from measurements ’
print ’ -------------------------------------------------------------------- ’
f i g = f i g u r e ( f i g s i z e =(12 ,5) )
f i g . s u p t i t l e ( ’Observation of the sky , looking for $\\tau_0$ , 07-10-15, %s:%s’ %(hour

, minutes ) , f o n t s i z e=’14’ )

frame = f i g . add_subplot ( 1 , 2 , 1 )
frame . p l o t ( ang le [ 2 : ] , power [ 2 : ] )
frame . s e t_ t i t l e ( ’Power per angle in mdB’ , f o n t s i z e=’12’ )
p l t . x l ab e l ( ’Zenith angle $\\ degree$ ’ )
p l t . y l ab e l ( ’Power (mdB)’ )

#-------------------------------------------------------------
’’’ Determining the value for the gainfactor and temperatures ’’’
temperature = Temp(Power ( power ) , ga in sys )

frame = f i g . add_subplot ( 1 , 2 , 2 )
frame . s e t_ t i t l e ( ’System temperature on the sky’ , f o n t s i z e=’12’ )
frame . p l o t ( ang le [ 2 : ] , temperature [ 2 : ] , ’b’ , l a b e l=’System temperature $T_{sys}$’ )
p l t . axh l ine (y=temp_rec , c o l o r=’r’ , l i n e s t y l e=’--’ , l a b e l=’Receiver temperature $T_{

rx}$’ )
p l t . t ex t (10 , temp_rec+3, ’$T_{rx}$= %d K’ %(temp_rec ) , c o l o r=’r’ )
lgd = frame . legend ( l o c="upper left" , bbox_to_anchor=(0 ,1) )
p l t . x l ab e l ( ’Zenith angle $\\ degree$ ’ )
p l t . y l ab e l ( ’System Tenperature (K)’ )

f i g . s a v e f i g ( ’data_07 -10 -15_%s%s-good.png’ %(hour , minutes ) , bbox_extra_art ists=(lgd
, ) )

#-------------------------------------------------------------
’’’ Determining the value for the opacity ’’’

def func ( z , tau_0 ) :
return ( T_cmb ∗ np . exp(− tau_atm( z , tau_0 ) ) ) + ( T_atm ∗ (1 − np . exp(− tau_atm

( z , tau_0 ) ) ) + temp_rec )

popt , pcov = curve_f i t ( func , np . rad ians ( ang le [ 2 : ] ) , temperature [ 2 : ] )
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print ’The value for the opacity is’ , popt [ 0 ]
tau_0 = popt [ 0 ]

unT_rec = errorT_rec ( Yfactor_system , T_hot , T_coldsys , power [ 1 ] , power [ 0 ] )
unT_sys = np . mean( uncertT_sys ( ang le [ 2 : ] , Yfactor_system , T_hot , T_coldsys , power [ 1 ] ,

power [ 0 ] ) )

popt , pcov = curve_f i t ( func , np . rad ians ( ang le [ 2 : ] ) , temperature [ 2 : ] , sigma=(unT_sys∗
np . ones ( l en ( temperature [ 2 : ] ) ) ) , absolute_sigma= True )

print ’The uncertainty in our receiver temperature is’ , unT_rec , ’K’
print ’and therefore , the uncertainty in our system temperature becomes ’ , unT_sys , ’

K’
print ’The error in the fit for tau_0 equals ’ , ( pcov [ 0 , 0 ] ) ∗∗ ( 0 . 5 )

#-------------------------------------------------------------
’’’ Determining the temperature of the CMB as antenna excess temperature ’’’

subtr = ( temperature − temp_rec − (T_atm)∗(1−np . exp(−tau_0 ∗ s ec (np . rad ians ( ang le ) ) )
) )

f i g = f i g u r e ( )
f i g . s u p t i t l e ( ’An excess antenna temperature on the sky , 07-10-15, %s:%s’ %(hour ,

minutes ) , f o n t s i z e=’14’ )

frame = f i g . add_subplot ( 1 , 1 , 1 )
frame . p l o t ( ang le [ 2 : ] , subtr [ 2 : ] , ’b’ , l a b e l=’Axcess antenna temperature?’ )
#lgd = frame.legend(loc="upper left", bbox_to_anchor =(0 ,1))
p l t . x l ab e l ( ’Zenith angle $\\ degree$ ’ )
p l t . y l ab e l ( ’System Tenperature (K)’ )
frame . set_ylim (0 ,25 )
show ( )

f i g . s a v e f i g ( ’excesstemp_07 -10-15_%s%s.png’ %(hour , minutes ) , )
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H | Script to get τ0 and Tcmb from ob-
servations.

#!/usr/bin/env python
# -*- coding: utf -8 -*-

from __future__ import d i v i s i o n
from matp lo t l i b . pyplot import f i gu r e , show
from matp lo t l i b . pyplot import ∗

from s c ipy . opt imize import curve_f i t
import matp lo t l i b . pyplot as p l t
import numpy as np

import os
#-------------------------------------------------------------
’’’ Importing definitions to reduce the data coming from the telescope ’’’

def s ec ( z ) :
return (1/ np . cos ( z ) )

def tau_atm( z , tau_0 ) :
tau =tau_0 ∗ s ec ( z )
return tau

def Power ( Psys ) :
P = (10∗∗ ( Psys /10) )
return P

def Yfac (Ph , Pc) :
y = 10∗∗ ( (Ph−Pc) /10)
return y

def T_e(Y, T_hot , T_cold ) :
t = (T_hot−T_cold∗Y) /(Y−1)
return t

def T_correct ion (P_hsys , P_csys , P_hhand , P_chand , Th, T_chand) :
Y_h = 10∗∗ ( (P_hhand−P_chand) /10)
Y_s = 10∗∗ ( (P_hsys−P_csys ) /10)
T_noise = (Th−T_chand∗Y_h) /(Y_h−1)
T_cc = −1 ∗ ( T_noise ∗(Y_s−1) − Th) /Y_s
return T_cc

def Gain (Ph , Pc , Th, Tc) :
G = ( ( (Ph−Pc) ∗10∗∗−3 ) /(Th−Tc) ) /(k∗dv )
return G

def Temp(P_sys , G) :
T = (P_sys∗10∗∗−3) / (G ∗ k ∗ dv )
return T

#-------------------------------------------------------------
’’’ Definitions of for error calculations ’’’

def erP ( ) :
unc = 0.02 / ( (N) ∗∗ ( 0 . 5 ) )
return unc
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def errorY (Ph , Pc) :
erPc , erPh = erP ( ) , erP ( )
di fPh = (np . l og (10) ∗ (10∗∗ ( (Ph − Pc−10) /10) ) ) ∗∗2
d i fPc = (np . l og (10) ∗(−10∗∗((Ph − Pc−10) /10) ) ) ∗∗2
e r r o r = ( difPh ∗ erPh∗∗2 + di fPc ∗ erPc ∗∗2) ∗∗(1/2)
return e r r o r

def errorT_rec (Y, Th, Tc , Ph , Pc) :
erTh = erT (Th)
erTc = erT (Tc)
difTh = (1 / (Y−1) ) ∗∗2
di fTc = (−Y / (Y−1) ) ∗∗2
difY = ( (Tc−Th) / ( (Y−1)∗∗2) ) ∗∗2
erY = errorY (Ph , Pc)
e r r o r = ( difTh ∗ erTh∗∗2 + di fTc ∗ erTc ∗∗2 + difY ∗ erY ∗∗2) ∗∗(1/2)
return e r r o r

def erT (T) :
t = (0 . 6 + 0 .005∗ (T−273.15) ) / ( (N) ∗∗ ( 0 . 5 ) )
return t

#-------------------------------------------------------------
’’’ Calculating the derivatives in order to calculate the uncertainty ’’’

# Derivative in T_cmb
def derT_cmb( tau ) :

d = (np . exp(− tau ) )
return d∗∗2

# Derivative in T_atm
def derT_atm( tau ) :

d = (1 − np . exp(− tau ) )
return d∗∗2

# Derivative in T_rec
def derT_rec ( ) :

d = 1
return d∗∗2

# Derivative in tau
def dertau ( tau ) :

d = ( (T_atm−T_cmb) ∗np . exp(− tau ) )
return d∗∗2

# Uncertainty in T_sys
def uncertT_sys ( z , Y, Th, Tc , Ph , Pc) :

derTcmb = derT_cmb( tau_atm( z , tau_0 ) )
derTau = dertau ( tau_atm( z , tau_0 ) )
derTrec = derT_rec ( )
derTatm = derT_atm( tau_atm( z , tau_0 ) )
unTatm = erT (T_atm)
unTcmb = (0 .00057 ) / ( (N) ∗∗ ( 0 . 5 ) ) # Uncertainty in T_cmb according to the literature
unTau = (0 . 0 05 ) / ( (N) ∗∗ ( 0 . 5 ) ) # I estimated a fluctuation in the opacity of 0.005 as

’worst case scenario ’
unTrec = errorT_rec (Y, Th, Tc , Ph , Pc)
u = ( ( ( derTcmb) ∗ unTcmb∗∗2 ) + ( ( derTatm) ∗ unTatm∗∗2 ) + ( ( derTau ) ∗ unTau∗∗2 ) + ( (

derTrec ) ∗ unTrec ∗∗2) ) ∗∗(1/2)
return u

#-------------------------------------------------------------
’’’ The values for the knowns ’’’

T_hot = 295.10 #K This is the temperature of the hot load during the observation on
07-10-15 at 13:28

T_cold_real = 77.14 #K This is the real temperature of liquid nitrogen
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P_cold_real = −23.7554554 #dBm If the telecope was calibrated correct , this was the
incoming power achieved from measuring the cold load

T_atm = 293.82 #K This is the temperatures of the atmosphere for the observations on
07-10-15 at 13:28

k = 1.3807 e−23 #JK^-1
dv = 1.05 e9 #Hz Our telescope ’s bandwidth

N = 256 # The amount of measurements made per angle

#-------------------------------------------------------------
’’’ Start Program ’’’

print ’’
print ’ --------------------------------------------------------------------- ’
print ’ Program to calculate the system power according to the incoming power ’
print ’ --------------------------------------------------------------------- ’

#-------------------------------------------------------------
’’’ Input of the data from the telescope ’’’

print ’ Data input ’
print ’ -------------------------------------------------------------------- ’
zangle , outpower = np . l oadtx t ( "data132804_cmb.txt" , unpack=True , u s e c o l s =(0 ,1) , dtype=

s t r )

#-------------------------------------------------------------
’’’ Calculating System power on every angle ’’’

ang le = np . array ( [ f l o a t ( x ) for x in zang le ] )
ang le = angle − 90
power = np . array ( [ f l o a t ( x ) for x in outpower ] )

Photrea l = power [ 1 ]
Photsys = power [ 1 ]
Pcoldsys = power [ 0 ]

T_coldsys = T_correct ion ( Photsys , Pcoldsys , Photreal , P_cold_real , T_hot , T_cold_real )

g a i n r e a l = Gain (Power ( Photsys ) ,Power ( Pcoldsys ) , T_hot , T_cold_real )
ga in sy s = Gain (Power ( Photsys ) ,Power ( Pcoldsys ) , T_hot , T_coldsys )

temperature = Temp(Power ( power ) , ga in sys )

Yfactor_system = Yfac ( power [ 1 ] , power [ 0 ] )
Yfactor_cold = Yfac ( power [1 ] , −23 .7554554)
temp_rec = T_e( Yfactor_system , T_hot , T_coldsys )

print ’With the system , we look at a cold load having a temperature of ’ , T_coldsys , ’K’
print ’According to the measurements , the system Gain equals ’ , 10∗np . log10 ( ga in sy s ) , ’

dB’

print ’ Creating plot from measurements ’
print ’ -------------------------------------------------------------------- ’
f i g = f i g u r e ( f i g s i z e =(17 ,5) )
f i g . s u p t i t l e ( ’Observation of the sky , looking for $T_{cmb}$, 07-10-15, 13:28 ’ , f o n t s i z e=

’14’ )

frame = f i g . add_subplot ( 1 , 3 , 1 )
frame . p l o t ( ang le [ 2 : ] , power [ 2 : ] )
frame . s e t_ t i t l e ( ’Power per angle in mdB’ , f o n t s i z e=’12’ )
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p l t . x l ab e l ( ’Zenith angle $\\ degree$ ’ )
p l t . y l ab e l ( ’Power (mdB)’ )

#-------------------------------------------------------------
’’’ Determining the value for the gainfactor and temperatures ’’’
temperature = Temp(Power ( power ) , ga in sys )

frame = f i g . add_subplot ( 1 , 3 , 2 )
frame . s e t_ t i t l e ( ’System temperature on the sky’ , f o n t s i z e=’12’ )
frame . p l o t ( ang le [ 2 : ] , temperature [ 2 : ] , ’b’ , l a b e l=’System temperature $T_{sys}$’ )
p l t . axh l ine (y=temp_rec , c o l o r=’r’ , l i n e s t y l e=’--’ , l a b e l=’Receiver temperature $T_{rx}$’

)
p l t . t ex t (10 , temp_rec+3, ’$T_{rx}$= %d K’ %(temp_rec ) , c o l o r=’r’ )
lgd = frame . legend ( l o c="upper left" , bbox_to_anchor=(0 ,1) )
p l t . x l ab e l ( ’Zenith angle $\\ degree$ ’ )
p l t . y l ab e l ( ’System Tenperature (K)’ )

#-------------------------------------------------------------
’’’ Determining the value for the opacity and T_cmb ’’’

def func ( z , tau_0 , T_cmb) :
return ( T_cmb ∗ np . exp(− tau_atm( z , tau_0 ) ) ) + ( T_atm ∗ (1 − np . exp(− tau_atm( z ,

tau_0 ) ) ) + temp_rec )

popt , pcov = curve_f i t ( func , np . rad ians ( ang le [ 2 : ] ) , temperature [ 2 : ] )

print ’The value for the opacity is’ , popt [ 0 ]
print ’The value for the temperature of the CMB is’ , popt [ 1 ] , ’K’

tau_0 = popt [ 0 ]
T_cmb = popt [ 1 ]

popt , pcov = curve_f i t ( func , np . rad ians ( ang le [ 2 : ] ) , temperature [ 2 : ] )

unT_rec = errorT_rec ( Yfactor_system , T_hot , T_coldsys , power [ 1 ] , power [ 0 ] )
unT_sys = np . mean( uncertT_sys ( ang le [ 2 : ] , Yfactor_system , T_hot , T_coldsys , power [ 1 ] ,

power [ 0 ] ) )

popt , pcov = curve_f i t ( func , np . rad ians ( ang le [ 2 : ] ) , temperature [ 2 : ] , sigma=(unT_sys∗np .
ones ( l en ( temperature [ 2 : ] ) ) ) , absolute_sigma= True )

print ’The uncertainty in our receiver temperature is’ , unT_rec , ’K’
print ’and therefore , the uncertainty in our system temperature becomes ’ , unT_sys , ’K’
print ’The error in the fit for tau_0 equals ’ , ( pcov [ 0 , 0 ] ) ∗∗ ( 0 . 5 )

#-------------------------------------------------------------
’’’ Plotting a funtion for the system temperature according to the fit made with

curve_fit ’’’

hoek = np . rad ians (np . l i n s p a c e (0 ,90 ,1000) )

frame = f i g . add_subplot ( 1 , 3 , 3 )
frame . p l o t ( ang le [ 2 : ] , temperature [ 2 : ] )
frame . p l o t (np . degree s ( hoek ) , func ( hoek , popt [ 0 ] , popt [ 1 ] ) )
frame . s e t_ t i t l e ( ’System Temperature per angle in K’ , f o n t s i z e=’10’ )
p l t . x l ab e l ( ’Angle $\\ degree$ ’ )
p l t . y l ab e l ( ’Temperature (K)’ )

f i g . s a v e f i g ( ’data_07 -10 -15_1328 -good.png’ , bbox_extra_art ists=(lgd , ) )
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I | Script for Data Reduction and Cal-
culations concerning correction for
the Hot-Cold load Calibration.

#!/usr/bin/env python
# -*- coding: utf -8 -*-

from __future__ import d i v i s i o n
from matp lo t l i b . pyplot import f i gu r e , show
from matp lo t l i b . pyplot import ∗

import matp lo t l i b . pyplot as p l t
import numpy as np
import os
import math
#-------------------------------------------------------------
’’’ Known values of the antenna ’’’

k = 1.3807 e−23 #JK^-1
dv = 1.05 e9 #Hz
T_cold = 77.14 #K

#-------------------------------------------------------------
’’’ Definitions used to calculate the ’real temperature ’ of our cold load ’’’

def Power (P_sys ) :
P = (10∗∗ (P_sys/10) )
return P

def Gain (P_hot , P_cold ) :
G = ( ( ( P_hot−P_cold ) ∗10∗∗−3 ) /(T_hot−T_cold ) ) /(k∗dv )
G = 10∗ np . log10 (G)
return G

def T_correct ion (P_hotsys , P_coldsys , P_hothand , P_coldhand , T_hot , T_coldhand ) :
Y_hand = 10∗∗ ( (P_hothand−P_coldhand ) /10)
print ’The Y-factor for the measurements done by hand is:’ , Y_hand
Y_sys = 10∗∗ ( ( P_hotsys−P_coldsys ) /10)
print ’The Y-factor for the measurements done by the system is:’ , Y_sys
T_noise = (T_hot−T_coldhand∗Y_hand) /(Y_hand−1)
print ’The T_noise for the measurements done by hand is:’ , T_noise , ’K’
T = −1 ∗ ( T_noise ∗(Y_sys−1) − T_hot) /Y_sys
return T

#-------------------------------------------------------------
’’’ Start Program ’’’

print ’’
print ’ --------------------------------------------------------------------- ’
print ’ Program to calculate the system power according to the incoming power ’
print ’ --------------------------------------------------------------------- ’

#-------------------------------------------------------------
’’’ Input of the data from the telescope ’’’

print ’ Data input ’
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print ’ -------------------------------------------------------------------- ’

data = [ ]
for f in os . l i s t d i r ( ’./’ ) :

sk ip = False
if f . s t a r t sw i t h ( ’data’ ) and f . endswith ( ’.txt’ ) :

if ’hotcold ’ in f :
print ’Ignoring ’ + f + ’[hot -cold measurement ].’
sk ip = True

if ’atm’ in f :
print ’Ignoring ’ + f + ’[atmosphere measurement ].’
sk ip = True

if sk ip :
continue

data . append ( f )

data = sor t ed ( data , key=s t r . lower )
for datase t in data :

none , sysco ld , none , syshot , Hottemp , Coldtemp = np . l oadtx t ( ’data153303_hotcold20.
txt’ , unpack=True , u s e c o l s =(0 , 1 , 2 , 3 , 4 , 5) )

timepower , outpower= np . l oadtx t ( dataset , unpack=True , u s e c o l s =(0 , 1) , dtype=s t r )

Hottemp = np . array ( [ f l o a t ( x ) for x in Hottemp ] )
sy s co ld = np . array ( [ f l o a t ( x ) for x in s y s co ld ] )
syshot = np . array ( [ f l o a t ( x ) for x in syshot ] )

timepower = np . array ( [ f l o a t ( x ) for x in timepower ] )
outpower = np . array ( [ f l o a t ( x ) for x in outpower ] )

#-------------------------------------------------------------
’’’ Calculating System power on every angle ’’’

Hotload = [ ]
timeHot = [ ]
Coldload = [ ]
timeCold = [ ]

for i in range ( l en ( outpower ) ) :
if outpower [ i ] > −21.15:

Hotload . append ( outpower [ i ] )
timeHot . append ( timepower [ i ] )

elif −21.15 <= outpower [ i ] <= −23.6:
pass

elif outpower [ i ] < −23.6:
Coldload . append ( outpower [ i ] )
timeCold . append ( timepower [ i ] )

Hotload = np . array ( [ f l o a t ( x ) for x in Hotload ] )
timeHot = np . array ( [ f l o a t ( x ) for x in timeHot ] )
Coldload = np . array ( [ f l o a t ( x ) for x in Coldload ] )
timeCold = np . array ( [ f l o a t ( x ) for x in timeCold ] )

aver syshot = np . mean( syshot )
ave r sy s co ld = np . mean( sy s co ld )
averHottemp = np . mean(Hottemp )
averColdtemphand = T_cold

averHotload = np . mean( Hotload )
averColdload = np . mean( Coldload )

Tcoldsys = T_correct ion ( aversyshot , aver sysco ld , averHotload , averColdload ,
averHottemp , averColdtemphand )

print ’For the data concerning ’ , da ta se t

105



print ’The average value for Phot and Pcold are’ , averHotload , ’dBm and ’ ,
averColdload , ’dBm respectively.’

print ’This will result in a temperature for our cold load being’ , Tcoldsys , ’K.’
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J | Script to check for correlations be-
tween Tcold and Thot.

#!/usr/bin/env python
# -*- coding: utf -8 -*-

from __future__ import d i v i s i o n
from matp lo t l i b . pyplot import f i gu r e , show
from matp lo t l i b . pyplot import ∗

import matp lo t l i b . pyplot as p l t
import numpy as np
import os

from sympy import ∗
import s c ipy . opt imize

#
-----------------------------------------------------------------------------------------------------

#
-----------------------------------------------------------------------------------------------------

T_cold_real = 77.15 #K
P_cold_real = −23.7554554 #dBm

k = 1.3807 e−23 #JK^-1
dv = 1.05 e9 #Hz

’’’ Start Program ’’’

print ’’
print ’ --------------------------------------------------------------------------- ’
print ’ Program to look for correlations regarding the calibration of the telescope ’
print ’ --------------------------------------------------------------------------- ’

’’’ Input of the data from the telescope ’’’

print ’ Data input ’
print ’ --------------------------------------------------------------------------- ’

T_atm, T_hot , T_cold , P_hot , P_cold , T_rec , Gain , Sort= np . l oadtx t ( ’
calabration_equationdata.txt’ , unpack=True , u s e c o l s =(0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ) , dtype=s t r )

#Sort = Sort of measurement (1=daily , 2=hand , 3=sys)

T_atm = np . array ( [ f l o a t ( x ) for x in T_atm] )
T_hot = np . array ( [ f l o a t ( x ) for x in T_hot ] )
T_cold = np . array ( [ f l o a t ( x ) for x in T_cold ] )
P_hot = np . array ( [ f l o a t ( x ) for x in P_hot ] )
P_cold = np . array ( [ f l o a t ( x ) for x in P_cold ] )
T_rec = np . array ( [ f l o a t ( x ) for x in T_rec ] )
Gain = np . array ( [ f l o a t ( x ) for x in Gain ] )
Sort = np . array ( [ f l o a t ( x ) for x in Sort ] )

def y (Tatm , Tcold ) :
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x = Symbol ( ’x’ )
return s o l v e ( ( ( (1 − x ) ∗ T_cold_real ) + (x ∗ Tatm) − Tcold ) , x )

’’’ Plotting the dependence of the sort of measurement ’’’

print ’ Creating plot from measurements ’
print ’ --------------------------------------------------------------------------- ’
f i g = f i g u r e ( f i g s i z e =(14 ,5) )
f i g . s u p t i t l e ( ’Dependence of sort of measurement on the cold load temperature T$_{cold}$’

)

frame = f i g . add_subplot ( 1 , 2 , 1 )
frame . s e t_ t i t l e ( ’T$_{cold}$ vs. P$_{cold}$’ , f o n t s i z e=’10’ )
frame . p l o t (T_cold , P_cold , ’black’ , marker=’.’ , l i n e s t y l e=’’ , l a b e l=’Power (dBm) per

angle ($\\ degree$)’ )
p l t . x l ab e l ( ’Temperature Cold Load (K)’ )
p l t . y l ab e l ( ’Power Cold Load (dBm)’ )

frame = f i g . add_subplot ( 1 , 2 , 2 )
frame . s e t_ t i t l e ( ’Looking for different measurements ’ , f o n t s i z e=’10’ )
T_1, T_2, T_3 = [ ] , [ ] , [ ]
P_1, P_2, P_3 = [ ] , [ ] , [ ]
for i in range (25) :

if Sort [ i ] == 1 :
T_1. append (T_cold [ i ] )
P_1. append (P_cold [ i ] )

elif Sort [ i ] == 2 . :
T_2. append (T_cold [ i ] )
P_2. append (P_cold [ i ] )

elif Sort [ i ] == 3 . :
T_3. append (T_cold [ i ] )
P_3. append (P_cold [ i ] )

frame . p l o t (T_1, P_1, ’r’ , marker=’.’ , l i n e s t y l e=’’ , l a b e l=’Daily measurement ’ )
frame . p l o t (T_2, P_2, ’b’ , marker=’.’ , l i n e s t y l e=’’ , l a b e l=’Manual measurement ’ )
frame . p l o t (T_3, P_3, ’g’ , marker=’.’ , l i n e s t y l e=’’ , l a b e l=’System measurement ’ )
lgd = frame . legend ( l o c="upper left" , bbox_to_anchor=(0 ,1) , numpoints=1)
p l t . x l ab e l ( ’Temperature Cold Load (K)’ )
p l t . y l ab e l ( ’Power Cold Load (dBm)’ )
f i g . s a v e f i g ( ’overall -equationcalibrationsort.png’ , bbox_extra_art ists=(lgd , ) )

T_atm, T_hot , T_cold , P_hot , P_cold , T_rec , Gain , Sort= np . l oadtx t ( ’
calabration_equationdatawithout.txt’ , unpack=True , u s e c o l s =(0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ) , dtype=
s t r )

#Sort = Sort of measurement (1=daily , 2=hand , 3=sys)

T_atm = np . array ( [ f l o a t ( x ) for x in T_atm] )
T_hot = np . array ( [ f l o a t ( x ) for x in T_hot ] )
T_cold = np . array ( [ f l o a t ( x ) for x in T_cold ] )
P_hot = np . array ( [ f l o a t ( x ) for x in P_hot ] )
P_cold = np . array ( [ f l o a t ( x ) for x in P_cold ] )
T_rec = np . array ( [ f l o a t ( x ) for x in T_rec ] )
Gain = np . array ( [ f l o a t ( x ) for x in Gain ] )
Sort = np . array ( [ f l o a t ( x ) for x in Sort ] )

’’’ Plotting the T_atm dependence ’’’

print ’ Creating plot from measurements ’
print ’ --------------------------------------------------------------------------- ’
f i g 1 = f i g u r e ( f i g s i z e =(7 ,7) )
f i g 1 . s u p t i t l e ( ’Dependence of T$_{atm}$ on the cold load temperature T$_{cold}$’ )
frame = f i g 1 . add_subplot ( 1 , 1 , 1 )
frame . s e t_ t i t l e ( ’Looking for different T$_{atm}$’ , f o n t s i z e=’10’ )
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T_1, T_2, T_3, T_4 = [ ] , [ ] , [ ] , [ ]
P_1, P_2, P_3, P_4 = [ ] , [ ] , [ ] , [ ]
for j in range (23) :

if T_atm[ j ] <= 295 :
T_1. append (T_cold [ j ] )
P_1. append (P_cold [ j ] )

elif 295 < T_atm[ j ] < 300 :
T_2. append (T_cold [ j ] )
P_2. append (P_cold [ j ] )

elif 300 < T_atm[ j ] < 305 :
T_3. append (T_cold [ j ] )
P_3. append (P_cold [ j ] )

elif T_atm[ j ] >= 305 :
T_4. append (T_cold [ j ] )
P_4. append (P_cold [ j ] )

frame . p l o t (T_1, P_1, ’g’ , marker=’.’ , l i n e s t y l e=’’ , l a b e l=’T$_{atm}$ < 295 K’ )
frame . p l o t (T_2, P_2, ’r’ , marker=’.’ , l i n e s t y l e=’’ , l a b e l=’295 K < T$_{atm}$ < 300 K’ )
frame . p l o t (T_3, P_3, ’b’ , marker=’.’ , l i n e s t y l e=’’ , l a b e l=’300 K < T$_{atm}$ < 305 K’ )
frame . p l o t (T_4, P_4, ’black ’ , marker=’.’ , l i n e s t y l e=’’ , l a b e l=’T$_{atm}$ > 305 K’ )
lgd = frame . legend ( l o c="upper left" , bbox_to_anchor=(0 ,1) , numpoints=1)
p l t . x l ab e l ( ’Temperature Cold Load (K)’ )
p l t . y l ab e l ( ’Power Cold Load (dBm)’ )
f i g 1 . s a v e f i g ( ’overall -equationcalibrationTvsPtatmos.png’ , bbox_extra_art ists=(lgd , ) )

’’’ Plotting the T_atm dependence ’’’

print ’ Creating plot from measurements ’
print ’ --------------------------------------------------------------------------- ’
f i g 2 = f i g u r e ( f i g s i z e =(6 . 5 , 6 . 5 ) )
f i g 2 . s u p t i t l e ( ’Dependence of T$_{atm}$ on the cold load temperature T$_{cold}$’ )

frame = f i g 2 . add_subplot ( 1 , 1 , 1 )
frame . s e t_ t i t l e ( ’T$_{atm}$ vs. P$_{cold}$’ , f o n t s i z e=’10’ )
frame . p l o t (T_atm, P_cold , ’black’ , marker=’.’ , l i n e s t y l e=’’ , l a b e l=’Power (dBm) per

angle ($\\ degree$)’ )
p l t . x l ab e l ( ’Temperature Cold Load (K)’ )
p l t . y l ab e l ( ’Power Cold Load (dBm)’ )
f i g 2 . s a v e f i g ( ’overall -equationcalibrationTatmvsPtatmos.png’ , bbox_extra_art ists=(lgd , ) )

’’’ Plotting the beam part falling out of the Cold Load ’’’

print ’ Creating plot from measurements ’
print ’ --------------------------------------------------------------------------- ’
f i g 3 = f i g u r e ( f i g s i z e =(6 . 5 , 6 . 5 ) )
f i g 3 . s u p t i t l e ( ’Part of the beam falling out the cold load$ ’ )

frame = f i g 3 . add_subplot ( 1 , 1 , 1 )
frame . s e t_ t i t l e ( ’Using (1-x)*T$_{cold , real}$ + x*T$_{atm}$ = T$_{cold}$’ , f o n t s i z e=’10’

)
for i in range (23) :

s o l u t i o n = y(T_atm[ i ] , T_cold [ i ] )
frame . p l o t ( i , s o lu t i on , ’black’ , marker=’.’ , l i n e s t y l e=’’ )

p l t . x l ab e l ( ’Calibration measurements ’ )
p l t . y l ab e l ( ’x (Part of the beam falling outside the coldload)’ )
f i g 3 . s a v e f i g ( ’overall -equationcalibrationbeamout.png’ )
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Figure 2
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