
University of Groningen
Kapteyn Astronomical Institute

Bachelor Research Project

Back-end and Mechanics of a
Pickett-Potter Horn Telescope at 11GHz

Author:
Maik Zandvliet

Supervisors:
Prof. Dr. Andrey Baryshev

Dr. Ronald Hesper
Dr. John P. McKean

July 15, 2015

This bachelor thesis covers the design and construction of the back-end and
frame of a Pickett-Potter horn telescope at 11 GHz to observe the cosmic mi-
crowave background. The back-end of the telescope contains two amplifiers and
a band pass filter. The choice of these components is elaborated in the form
of theory and experiments. The main factor in choosing an amplifier relied on
the effective noise temperature. The construction of the frame for the telescope
entailed decisions on functionality, size, positioning of extra devices needed for
power, calibration and slewing to create a fully functional telescope.
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1. Introduction

1.1. The Field of Radio Astronomy

Figure 1.1: Karl Jansky makes adjust-
ments to his antenna, used
to identify radio waves from
beyond the Earth for the
first time. Image source:
https://upload.wikimedia.

org/wikipedia/en/c/ce/

Karl_Guthe_Jansky_radio_

telesacope.jpeg

Radio astronomy is a wide and varied subfield of
astronomy, where celestial objects are studied at
radio frequencies. The first radio observation was
made in the 1930s, when Karl Jansky observed ra-
diation from the Milky Way and today it is seen
as the birth of radio astronomy. In Figure 1.1
Jansky can be seen building his telescope.

Long before Jansky observed the Milky Way,
physicists were already speculating if radio waves
could be observed from celestial objects. It was
not until the discovery of the 21-cm line of hydro-
gen, quasars, pulsars and the cosmic microwave
background (CMB) in the 1950s and 1960s that
the importance of the discovery of Jansky became
apparent.

Today, radio astronomy is a complete field of
astronomy. It opened new detection techniques
to study the cosmos. One of the big discover-
ies made through the detection of electromagnetic
radiation at radio wavelengths is the CMB.

1.2. The Cosmic Microwave Background

The cosmic microwave background is the radia-
tion left over from the epoch of recombination
after the Big Bang. It was first discovered by Arno Penzias and Robert Wilson in 1964. They
accidentally discovered some unknown flux on top of the flux coming from Cassiopeia A, this
flux was later determined to correspond to a temperature of 2.72548 ± 0.00057 K (Fixsen,
2009).

The CMB was considered a landmark test for the Big Bang model of the universe. Radio
astronomy is uniquely suited for observing the CMB and has created virtually a new subject
of precision cosmology.

1.3. The Telescope

The focus of this thesis is the construction of the back-end and the frame of the telescope.
The telescope will be used to observe the CMB at an observing frequency of 11 GHz and
will be part of the course Radio Astronomy given by Dr. John McKean at the Kapteyn
Astronomical Institute of the University of Groningen.

The research project is conducted together with Bram Lap, Willeke Mulder and Frits
Sweijen, each having a different subproject. Bram Lap has designed, optimized and build the
horn of the telescope (Lap, 2015), Willeke Mulder takes into account the atmosphere, how
we have to incorporate it in the observations, has investigated calibration strategies and has
done the data reduction measurements to observe the CMB (Mulder, 2015). Frits Sweijen
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has created the software to operate the telescope and investigated other celestial sources that
could be observed with the radio telescope (Sweijen, 2015). This research project will refer to
their research projects for more detailed information regarding certain phases of the telescope.

2. Horn Design

This chapter will be a brief summary of the horn design. A more detailed description can be
found in Lap (2015).

2.1. Types of Horns

In order to make a horn, it is important to decide what type of horn is suited for the obser-
vation. An important feature is the wavelength of the observation and required field-of-view.
This generally sets the size of the horn. A horn can have several designs; rectangular, diago-
nal, circular and many variations on these. To investigate which design was the best option
for our telescope, a Python script was created that plots beam patterns for different optimal
designs. At this stage we were looking at different observing frequencies, 4, 8 and 11 GHz.
These frequencies were taken into account when creating the optimal beam patterns, they are
created from the theoretical electromagnetic equation for the corresponding design.

The CMB will be the main target of the telescope. To observe the CMB, a higher observ-
ing frequency is more desirable, because it follows a black body whose brightness goes like
Bν ∝ ν2 at low frequencies, also known as the Rayleigh-Jeans limit, more information can
be found in Mulder (2015). For this reason and taking into account the beam patterns, the
design was chosen to be a circular horn and the observing frequency is 11 GHz.

A circular horn design can vary in shape. P. D. Potter presented a new horn design to
be used at ultra high frequencies, that he published in 1963. His horn design featured an
equal beamwidth in all planes, complete phase center coincidence and at least 30 dB sidelobe
suppression in the electric plane. His work can be found in Potter (1963). The horn design
by P. D. Potter is the basis of another variation: the Pickett-Potter horn. This horn design
has a smooth conical shape with a single step at the throat and was presented by Pickett
et al. (1984).

2.2. Our Telescope Design

The design presented by Pickett et al. (1984) is the design used for our telescope, which
features the conical shape with a single step. A more detailed description and optimization
can be found in Lap (2015). A schematic design of the horn can be seen in Figure 2.1.
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Figure 2.1: Blueprint of the horn as designed by Lap (2015).

3. Noise

3.1. Describing Noise

In signal processing, noise is an unwanted, random and general unknown signal always present
in electronic devices. It is the opposite of deterministic signals: a signal whose value at any
future time can be exactly predicted. There are five statistical quantities that are commonly
used to estimate the behavior of random signals, these quantities are: mean, standard de-
viation, probability density function, power spectral density and autocorrelation function
(Bentley, 2005). Noise is sometimes expressed as a equivalent temperature, the noise tem-
perature, which is not necessarily a phyiscal temperature. It is important to first present
these quantities because the noise of our telescope system is what sets the precision of the
measurement of the CMB.

3.1.1. Probability Density Function

The probability density function, p(y), is a function of a continuous random variable which
describes the probability that this variable will take on a given value. For instance, the normal
probability density function:

p(y) =
1

σ
√

2π
exp

[
−(y − ȳ)2

2σ2

]
(1)

where σ is the standard deviation, y is the value, and ȳ is the mean. Equation 1 usually
provides a suitable description of the amplitude distribution of random noise signals. The
function always has to be normalized since the area under the function has to be unity (Bent-
ley, 2005).
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3.1.2. Spectral Density Function

A periodic signal can be represented by a Fourier series, a sum of sine and cosine waves
with frequencies that are harmonics of the fundamental frequency. A random signal is not
periodic and cannot be expressed by a Fourier series but it does contain a large number of
closely spaced frequencies. The power spectral density (PSD), S(f), describes how the power
in a random signal is distributed over these frequencies. Internal noise sources in electrical
circuits can often be regarded as white noise, this has a uniform PSD over an infinite range
of frequencies (Bentley, 2005).

3.1.3. Autocorrelation Function

The autocorrelation function is a method to describe a signal or time series by multiplying it
by a delayed version of itself, resulting in the degree by which its value at one time is similar
to its value at a certain later time. It is a mathematical tool to find repeating patterns.

The input signal y(t) and a delayed signal y(t − β) are multiplied to give the product
waveform y(t)y(t− β). This new waveform is averaged over time and that value is the auto-
correlation coefficient Ryy. When altering the time delay β, the shape of the product changes,
resulting in a different value of Ryy. The relation between Ryy and β is the autocorrelation
function Ryy(β).

If the signal is defined by a continuous function y(t) in the interval 0 to T0, then Ryy(β)
can be evaluated using equation 2, such that,

Ryy(β) = lim
T0→∞

1

T0

∫ T0

0
y(t)y(t− β)dt. (2)

It can be shown that the autocorrelation function of any periodic signal has the same period
as the signal itself.

The autocorrelation function is related to the PSD for random signals, these relations are
the Wiener-Khinchin relations,

Ryy(β) =

∫ ∞
0

S(f) cos(fβ)df,

and S(f) =
2

π

∫ ∞
0

Ryy(β) cos(fβ)dβ,

(3)

(Bentley, 2005).

3.1.4. Summary

To specify a random signal we need to know:

either probability density function

or mean and standard deviation

}
to specify amplitude
behaviour.

(4)

and
either power spectral density

or autocorrelation function

}
to specify frequency
behaviour

(5)
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These quantities can be related by considering the autocorrelation function at zero time delay,
Ryy(0). Using equations 2 and 3 we have,

Ryy(0) = lim
T0→∞

1

T0

∫ T0

0
y(t)2dt =

∫ ∞
0

S(f)df (6)

(Bentley, 2005).

3.2. Classification of Noise

Noise can be classified by its physical properties, there are five different types of noise: shot
noise, thermal noise, flicker noise, burst noise and avalanche noise. These noise types are
difficult to separate, therefore there is an alternative way to describe noise, which is called
color that is statistical property. Many ”colors” are used to describe noise, some having a
real relationship to the real world. White noise is in the middle of a ”spectrum” that runs
from purple, to blue, to white, to pink, and to red/brown. These colors correspond to powers
of the frequency of the power spectrum and when they are modeled they are of the form fα.
The relations between the color and the power of frequency can be seen in Table 3.1.

Color α

Purple 2
Blue 1
White 0
Pink -1
Red/Brown -2

Table 3.1: Noise color and their proportionality with frequency.

Not all classifications of noise will be discussed, since not all noise types are relevant to the
construction of the back-end of our telescope.

3.2.1. White Noise

White noise is a random signal with a constant power spectral density, the signal has equal
amount of power in any band of a given bandwidth. The main physical sources of noise in
electronics (thermal and shot noise), have a white PSD. As that may be, white noise is not
pure white noise, it would require to have infinite energy at infinite frequencies.

3.2.2. Flicker Noise

Flicker noise is also called 1/f noise or pink noise; its origin is one of the unsolved problems
in physics. It is always present in all active and many passive devices and it is found in many
natural phenomena such as nuclear radiation, electron flow through a conductor or even in
the environment. There is no exact mathematical model for flicker noise since it is very
specific for different devices. However, the inverse proportionality with frequency is almost
exactly 1/f for low frequencies, for high frequencies, the noise power is weak but essentially
flat (Mancini, 2002).
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3.2.3. Random Walk Noise

Random walk noise has a dependence of 1/f2, it is the kind of noise produced by Brownian
motion, therefore it is also known as Brownian noise. As a result, Brownian noise has a lot
more energy at lower frequencies than it does at higher frequencies, it decreases power by 6
dB per octave.

3.2.4. Phase and Frequency Noise

Given the different noise sources described above, there is also a distinction between phase
and frequency noise. Phase noise is the rapid, short-term, random fluctuations in the phase
of a waveform. The phase noise is increased by the noise figure of an amplifier, where the
noise figure is the ratio of the input and output signal-to-noise ratios, respectively. An ideal
amplifier would amplify both the signal and noise equally. However, a normal amplifier would
add noise to the signal. The phase noise is directly proportional to the thermal noise at the
input and the noise figure of the amplifier (Dickstein, 2012).

Frequency noise is the noise of the instantaneous frequency (IF). A frequency for a station-
ary, periodic, infinite duration signal can be decomposed into sinusoidal components, all with
frequencies being multiples of the fundamental frequency. However, things are not as simple
in the nonstationary case.

In 1937, Carson and Fry argued that IF is a generalization of the definition of constant
frequency. It is the rate of change of phase angle at time t. In 1946 Van der Pol approached
the problem of finding a definition of IF by analyzing an expression with a time varying
amplitude and phase of a simple harmonic motion. This led to the definition of IF given by
equation 7,

fi(t) =
1

2π

dφ(t)

dt
, (7)

where φ(t) is the phase (Boashash, 1992).

4. Back-end

4.1. Overview of Receiver Components

The back-end of a radio telescope is also called the receiver. Although a receiver will also
contain a horn, in this thesis when a receiver is referred to, it is meant without the horn.
The receiver is a series of components that converts the incoming electromagnetic waves to
a signal that is prepared for processing. Such a series of components is usually shown in a
block diagram, such a diagram can be seen in Figure 4.1.

Not all of these components are always used for building a receiver. For our telescope only
an amplifier and filter are required. These components are explained in more details below.

Mixers are used to lower the frequency of the received signal. This process is useful for two
reason. It avoids feedback of amplified signals back into the front end and it can choose a
frequency which is easier to deal with. A square law detector has an output voltage that is
proportional to the square of the input voltage, therefore making the incoming signal always
a positive signal. After this process the signal is usually again amplified. The integrator
averages a rapidly varying component with the envelope of the signal varying on timescales
that are normally much shorter than on which the average signal power varies. Any unwanted
rapid variations in the signal can be suppressed by taking the mean of the detected envelope
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Figure 4.1: A block diagram of a typical heterodyne receiver.

over some timescale. Finally, the signal is digitalized by a indicator or recorder.

All these components add noise temperature to the overall noise temperature of an antenna
system. The total noise of a entire telescope is called the system temperature, Tsys, which is
the sum of several terms. The atmosphere will emit radiation which will be detected by the
antenna, Tatm. Noise coming from the ground also contributes to the system temperature, for
example buildings and communication devices, Tground. Of course also the radiation coming
from the CMB itself will increase the system temperature, TCMB. Most of the noise is coming
from the receiver system itself, which is called the receiver temperature, TRX . This leads to
the equation for the system temperature,

Tsys = TCMB + Tatm + Tground + TRX . (8)

In this thesis, I discuss the noise coming from the receiver, TRX .

4.1.1. Amplifiers

Amplifiers are devices that increase the power of an input signal. An amplifier takes energy
from a power supply and controls the output signal to match it to the incoming signal only
with an increased amplitude. An important characteristic of an amplifier is its gain. Amplifier
gain is the ratio of the output and the input of the amplifier. There are three different kinds
of amplifier gain: voltage gain, current gain and power gain. This depends on the quantity
that is being measured,

Voltage gain(Av) =
Vout
Vin

Current gain(Ai) =
Iout
Iin

Power gain(Ap) =
Pout
Pin

= Av ·Ai.

(9)
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An important feature of an amplifier is whether it is linear or non-linear. All linear systems
will at some point become non-linear. This moment is referred to as the system going into
compression or beginning to saturate.

When plotting the output power versus the input power, there is a linear relation for linear
amplifiers. However, at some point for all amplifiers a higher input power no longer gives a
linear higher output power. The point where the input power causes the amplifier gain to
decease by 1 dB from the theoretical response is called the 1-dB compression point. Operation
should always happen way below this point in the linear region. The visual concept is shown
in Figure 4.2 (Frenzel, 2013).

Figure 4.2: The point where the input power causes the gain to decrease 1 dB from the
normal expected linear gain is called the 1-dB compression point, corresponding
to a P1db. Image source: Frenzel (2013)

For our telescope we were given four amplifiers that we could use, each amplifying around 30
dB. Two of the amplifiers were leftovers from the Atacama Large Millimeter Array (ALMA)
band 9 receiver design, the other two were found in the laboratoriums of the Space Re-
search Organisation Netherlands (SRON). The four amplifiers can be seen in Table 4.1 and
Figure 4.3.

Amplifier S/N Frequency range (GHz)

AML412LE2411 (ALMA1) 0934-252 4-12
AML412LE2411 (ALMA2) 0934-266 4-12
MITEQ M/N AMF-4S-100120-15 309190 8-12
Amplica Inc AXM554504 103 8-12

Table 4.1: Amplifiers used in experiment, with S/N being the serial number.
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Figure 4.3: The four amplifiers which were an option to use for the telescope. From left to
right: ALMA1, ALMA2, MITEQ and Amplica Inc.

4.1.2. Filters

A filter is a device or process that is designed to remove or reshape all unwanted frequencies
from a signal, it only lets the allowed signal through. Filters can be divided into two distinct
types: active and passive filters. Active filters have an amplifying component, the incoming
signal will be amplified, while a passive filter does not amplify the signal1.

At high frequencies (>1 MHz), almost all filters are usually passive filters. They consist
of passive components such as inductors (L), resistors (R) and capacitors (C) and are also
called LRC filters. In the lower frequency range (1 Hz to 1 MHz), active filters become more
important (Mancini, 2002).

Filters are categorized according to the frequency range that the filter blocks or lets through:

• band pass filter: allows a range of frequencies νmin < ν < νmax to pass through,

• low pass filter: allows a range of frequencies ν < νmax to pass through,

• high pass filter: allows a range of frequencies ν > νmax to pass through,

• band stop filter: eliminates a range of frequencies from the system,

• all pass filter: allows all input frequencies through but changes the phase,

(Wilson et al., 2013).
The telescope is designed to observe at 11 GHz with a bandwidth of 1.05 GHz, this is

achieved by using a band pass filter, with a frequency range of 10.45 GHz < ν < 11.50 GHz.

4.1.3. Attenuators

Attenuators are the opposite of amplifiers. They reduce the power of a signal without dis-
torting its waveform. Attenuators are usually passive devices where the output power is a
fraction of the input power and can appear at many positions in the circuit of a radiometer.

Attenuators have a certain attenuation expressed in decibels. A 3 dB attenuator reduces

1See http://www.electronics-tutorials.ws/

13



the output signal to one half, 6 dB to one fourth, 10 dB to one tenth, 20 dB to one hundredth
and so forth.

During the construction of the telescope, three attenuators were used, having an attenuation
of 6 dB, 10 dB and 20 dB. These attenuators can be seen in Figure 4.4.

Figure 4.4: The attenuators used to check linearity of the system. From left to right: 20 dB,
10 dB and 6 dB.

4.2. Testing the Amplifiers

4.2.1. Back-end Noise temperature

Electrical components create noise, this is an unwanted signal that is always present in com-
ponents. It is usually measured in an equivalent temperature, the noise temperature, which
is not a physical temperature, but a representation of the noise level. For more information
about noise see Section 3.

Noise temperature in a cascade of amplifiers is dominated by the first amplifier. Each
amplifier in the cascade is related to the gain of all previous amplifiers and thus the first
amplifier has the most contribution to the noise temperature, see Equation 10.

Te = Te,1 +
Te,2
G1

+
Te,3
G1G2

+ ...+
Ten

G1G2...Gn−1
(10)

Amplifier noise temperature can be measured using the Y-factor method. The Y-factor
method is a widely used method to determine the internal noise in a device under test (DUT)
and therefore the noise figure or effective noise temperature.

The output power of a DUT with a noise source at one temperature and another temper-
ature can be measured, these two powers are defined as Phot[W] and Pcold[W], respectively.
The ratio of these two powers is defined as the Y-factor, Y (Agilent, 2010),

Y ≡ Phot[W ]

Pcold[W ]
. (11)
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Since the noise power is directly related to the noise temperature through Nyquist’s noise
formula,

Y =
Thot[K]

Tcold[K]
. (12)

The effective noise temperature, Te, of a DUT is given by equation 13.

Te =
Thot − TcoldY

Y − 1
. (13)

The power meter used in this experiment converts the measured power to dBm. In order to
use this we have to rewrite the Y-factor in terms of Phot[dBm] and Pcold[dBm]. This can be
done by using the relation given in equation 14.

P [dBm] ≡ 10 log10

(
P [mW]

1mW

)
. (14)

Therefore,

YdBm = 10 log10

(
Phot

Pcold

)
(15)

= 10 log10 (Phot)− 10 log10 (Pcold) (16)

= Phot[dBm]− Pcold[dBm] (17)

and finally we get for the Y-factor,

Y = 10YdBm/10 = 10(Phot[dBm]−Pcold[dBm])/10 (18)

For this experiment we have that Thot is the room temperature of 293 K and Tcold is the
temperature of liquid nitrogen, 77.15 K. Therefore we get for equation 13,

Te =
Thot − TcoldY

Y − 1
=

293 K− 77.15 K · Y
Y − 1

(19)

where Y is given in equation 18.
Using these formulas the effective noise temperature was determined for various possibilities

of amplifier setups, where the amplifiers that were used can be seen in Section 4.2.
A 50 Ω load is used to have a reference that always gives the same amount of noise power at

a given temperature. The output power is measured when the load is at room temperature,
Phot. The load is then placed in liquid nitrogen and the output power is measured, Pcold.
Following these procedures the effective noise temperature is calculated.

We use a Agilent E4418B Power Meter (Agilent, 2013) to read the output power. The
results of the measurements can be seen in Table 4.2. Where the order of the amplifiers can
be seen in Figure 4.5. We used two amplifiers since the signal with any amplification is around
-85 dB (Sweijen, 2015). To get a signal which is easier to process we want to amplify the
signal. Using two amplifiers we get a signal around -25 dB, this level is strong enough power
to process.
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Amplica Inc ALMA1 ALMA2+1

Phot (dBm) -40.56 ± 0.02 -50.5 ± 0.02 -19.98 ± 0.02
Pcold (dBm) -41.54 ± 0.02 -53.5 ± 0.02 -22.57 ± 0.02
Y-factor 1.25 ± 0.01 1.9 ± 0.01 1.81 ± 0.01
Te (K) 775.53 ± 27.49 139.7 ± 2.83 187.53 ± 3.84

MITEQ + ALMA1 ALMA1 + MITEQ

Phot (dBm) -19.69 ± 0.02 -20.52 ± 0.02
Pcold (dBm) -22.28 ± 0.02 -23.19 ± 0.02
Y-factor 1.81 ± 0.01 1.85 ± 0.01
Te (K) 187.53 ± 3.84 177.01 ± 3.60

Table 4.2: Experimental results for the amplifier noise measurements. ’Phot (dBm)’ is the
output power at room temperature and ’Pcold (dBm)’ is the output power at liquid
nitrogen temperature. With the error being the measurement errors from the power
meter.

Figure 4.5: Schematic overview of the amplifier order during the experiment.

The first entry in Table 4.2 is the amplifier combinations. For example ALMA1+MITEQ
means that the first entry is ALMA1 and the second entry is MITEQ in Figure 4.5. When
only one name is given the second entry was left empty.

Following the ALMA amplifier test, the experimental result was compared to the literature
and it was concluded that the ALMA amplifiers had a much higher noise than expected. The
higher noise was due to a faulty cable connecting the amplifier with the 50 ohm load. After
replacing the cable some measurements were retaken and the results can be seen in Table 4.3.
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ALMA2+1 ALMA2+1 ALMA1+2

Phot (dBm) -19.79 ± 0.02 -19.85 ± 0.02 -19.94 ± 0.02
Pcold (dBm) -22.97 ± 0.02 -22.93 ± 0.02 -22.93 ± 0.02
Y-factor 2.08 ± 0.01 2.03 ± 0.01 1.99 ± 0.01
Te (K) 122.77 ± 2.51 131.93 ± 2.68 140.73 ± 2.85

MITEQ+ALMA1 ALMA1+MITEQ ALMA1+MITEQ

Phot (dBm) -20.20 ± 0.02 -19.75 ± 0.02 -19.75 ± 0.02
Pcold (dBm) -23.52 ± 0.02 -22.85 ± 0.02 -22.83 ± 0.02
Y-factor 2.15 ± 0.01 2.03 ± 0.01 2.02 ± 0.01
Te (K) 110.90 ± 2.29 130.05 ± 2.72 133.84 ± 2.75

Table 4.3: Experimental results for the amplifier noise measurements with a new cable. ’Phot

(dBm)’ is the output power at room temperature and ’Pcold (dBm)’ is the output
power at liquid nitrogen temperature.

4.2.2. Amplifier with DC Block

Amplifiers are designed to work for certain frequency ranges. The frequency ranges of our
amplifiers can be seen in Table 4.1. An amplifier has a capacitor to keep DC voltages away
from the input and output. If the capacitor is not working, then the amplifier will let more
power through than is wanted. This can be tested by placing a DC block at the output of
the amplifier. A DC block works the same as a capacitor, it blocks a signal for a certain
frequency range. The DC block used to measure the amplifier is an INMET 8037 2.

The idea is the following: measure the output power of the system without the DC block,
this is the reference. Then place the DC block at the output of the last amplifier and measure
the output power, do the same for the middle amplifier. If the output powers are different
compared to the reference, the capacitor of the amplifier itself is broken. The results can be
seen in Table 4.4.

Measurement Power output (dBm) Scheme

Reference -6.53 ± 0.02 Figure 4.6
1 -6.88 ± 0.02 Figure 4.7
2 -6.93 ± 0.02 Figure 4.8

Table 4.4: Measurement results for the amplifiers with DC blocks. The schematic schemes
for the various measurements can be seen in Figures 4.6, 4.7 and 4.8.

2see Aeroflex and Inmet Inc
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Figure 4.6: Schematic scheme for the reference measurement.

Figure 4.7: Schematic scheme for measurement 1.

Figure 4.8: Schematic scheme for measurement 2.

Conferring with the specifications of the DC block, we see that it has an insertion loss
of maximal 0.5 dB. From Table 4.4 we see that there is a maximum difference of 0.4 dBm
between a measurement and the reference. Thus we can conclude that the amplifiers are
working correctly.
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4.3. Checking Linearity

In order to test the system for linearity we use an attenuator as described in section 4.1.3.
Linearity is checked by comparing the output power of the system with the attenuator at
the output of the last amplifier and at the input. These powers should be the same for
both measurements if the system is linear. The results of the measurements can be seen in
Table 4.5.

Measurement Power output (dBm) Scheme

Reference -6.29 ± 0.02 Figure 4.9
1 -12.83 ± 0.02 Figure 4.10
2 -12.32 ± 0.02 Figure 4.11
3 -12.29 ± 0.02 Figure 4.12
4 -12.71 ± 0.02 Figure 4.13

Table 4.5: Results for linearity test. The schematic schemes for the various measurements
can be seen in Figures 4.9 to 4.13.

Figure 4.9: Schematic scheme for the reference measurement.

Figure 4.10: Schematic scheme for measurement 1.

Figure 4.11: Schematic scheme for measurement 2.
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Figure 4.12: Schematic scheme for measurement 3.

Figure 4.13: Schematic scheme for measurement 4.

Comparing the output powers of measurements 1 and 2, we see that there is a difference of
0.51 dBm, meaning that the system is not linear. These measurements were done using two
attenuators of 10 dB and 6 dB in the system. In order to get a smaller difference we replaced
the 6 dB attenuator with an 20 dB attenuator and repeated the measurements. These mea-
surements can be seen in Table 4.6.

Measurement Power output (dBm) Scheme

Reference -20.92 ± 0.02 Figure 4.14
1 -27.05 ± 0.02 Figure 4.15
2 -26.87 ± 0.02 Figure 4.16

Table 4.6: Results for linearity test with the replaced 20 dB attenuator. The schematic
schemes for the various measurements can be seen in Figures 4.14, 4.15 and 4.16.

Figure 4.14: Schematic scheme for the reference measurement.
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Figure 4.15: Schematic scheme for measurement 1.

Figure 4.16: Schematic scheme for measurement 2.

Comparing again the output powers of measurement 1 and 2 of Table 4.6, we see that the
difference is now 0.18 dBm. This difference is still too large.

Since we are now amplifying 30 dB and attenuating 30 dB, we decided that we could
remove the attenuators and 1 amplifier. The amplifier with the highest noise temperature
was removed, this is the ALMA1 amplifier. Again the system was checked for linearity and
the results can be seen in table 4.7.

Measurement Power output (dBm) Scheme

Reference -20.92 ± 0.02 Figure 4.17
1 -30.53 ± 0.02 Figure 4.18
2 -30.48 ± 0.02 Figure 4.19

Table 4.7: Results for linearity test with the MITEQ and ALMA2 amplifier. The schematic
schemes for the various measurements can be seen in Figures 4.17, 4.18 and 4.19.

Figure 4.17: Schematic scheme for the reference measurement.
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Figure 4.18: Schematic scheme for measurement 1.

Figure 4.19: Schematic scheme for measurement 2.

These results give a difference of 0.05 dBm, which is small enough to say that the system
is linear.

Given this information we again calculated the noise temperature of the amplifiers, using
the same technique as described in Section 4.2.1 and found a system temperature 110.09 ±
2.28 K. The schematic scheme of the final back-end system can be seen in Figure 4.20.

Figure 4.20: Schematic scheme for the final back-end system for which the system temperature
is calculated.
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4.4. Chain Order

The electronic circuit of the telescope contains the following components: the MITEQ and
the ALMA2 amplifiers and the band pass filter with a frequency bandwidth of 1.05 GHz.
These components were chosen to be the best option following the procedures as described
in Section 4.2. The schematic overview of the component layout can be seen in Figure 4.21.

Figure 4.21: The schematic overview of the final components layout of the telescope.

The amplifiers in the chain have to be cooled by a heat sink. This heat sink is an aluminum
plate on which the amplifiers and other components are placed. The aluminum plate has to
be thin enough to make it not too heavy for the motor to rotate it, but thick enough to make
it not too flexible. For this reason an aluminum plate with a thickness of 3 mm was chosen.

All the components are placed on the aluminum plate in the order as in Figure 4.21. The
amplifiers had to be connected to a power supply cable. This cable was made to fit on the
aluminum plate. The power cable has a connector in order to easily disconnect the amplifiers
from the power supply.

All the components are connected via coaxial RF cables (radio frequency cables). These
cables are designed to work at radio frequencies, the cables are connect via SMA connectors
(SubMiniature version A). These connectors are made to be used on components like amplifiers
and filters. Coaxial cables typically consists of inner conducting copper cable, surrounded by
a dielectric insulator, that is surrounded by a woven copper shield and protected by an
insulating plastic sheath.

The completed circuit can be seen in Figure 4.22, where all the components are connected
along with the power head.
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Figure 4.22: The back-end: the electronic circuit mounted on the aluminum plate, together
with the power head.

5. Allan Variance

5.1. Introduction to Allan Variance

The Allan variance or two-sample variance is a technique that relates the expectation value
of the standard deviation of frequency fluctuations for any finite number of data samples to
the infinite time average value of the standard deviation. Therefore, the Allan variance is
useful for measuring the frequency stability in for example clocks, oscillators and amplifiers
(Allan, 1966).

This technique was postulated by David W. Allan and published in 1966. The general idea
is the following: a data set can be divided into bins based on an averaging time, then take
the average of that bin, then take the average difference of the successive bins and square
this difference and add them all up. This sum is then divided by the total number of bins.
This gives the Allan variance for a given averaging time. The original formula of the Allan
variance, σ2, is:

σ2y(τ) =
1

2(M − 1)

M−1∑
i=1

(yi+1 − yi)2 (20)

where yi is the ith of M fractional frequency values averaged over the measurement sampling
interval, τ .

The Allan variance is much like the normal variance, but has the advantage for more
divergent noise types such as flicker noise and of converging to a value that is independent
on the number of samples. The original Allan variance formula has been largely superseded
by other variations, such as the overlapping Allan variance or the modified Allan variance.

Repeating the calculation of the Allan variance for different averaging times gives you an
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Allan plot, which is usually plotted in a log-log format of the variance versus τ . The Allan
variance is one of the most common time domain measurements of frequency stability.

5.1.1. Time Domain Stability

The stability of a frequency source is based on the fluctuations in phase and frequency as
a function of time. An analysis of the stability uses some type of variance, for example the
Allan variance. The most common way is to create a log-log plot with σ2 versus τ . It shows
the dependence of the stability on the averaging time, the stability value and the type of
noise. The power law noise will have a typical slope, µ, for different type of noise which are
shown in Table 5.1.

Type α µ

White PM 2 -2
Frequency PM 1 ∼-2
White FM 0 -1
Frequency FM -1 0
Random Walk FM -2 1

Table 5.1: Power dependence on σ(τ) and Sy(τ), PM is Phase Modulated and FM is Frequency
Modulated.

The power law dependence given in table 5.1 follows the relation,

σ(τ) ∼ τµ/2, and

Sy(τ) ∼ fα.
(21)

(SIM, 1986). A log-log plot of the Allan variance (or deviation) reveals different regions.
These regions are different noise types. The slope of the Allan deviation line can identify the
amount of averaging needed to remove these noise types. The noise types of an Allan plot
can be seen in Figure 5.1.
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Figure 5.1: Noise types in an Allan deviation plot on a log-log format. Image source: http:

//tf.nist.gov/general/glossary.htm

First we notice that the Allan variance does not make a distinction between white phase
noise and flicker phase noise. To see a distinction between white phase noise and flicker phase
noise another method is useful, the modified Allan variance. However, the distinction between
white phase noise and flicker phase noise is not relevant for our telescope. This is because we
are only interested in the Allan time.

At short averaging times, the Allan variance is dominated by the noise in the power sensor.
When averaging over longer times, the variance decreases. At some point the variance starts
to increase again, this is due to the random walk noise in the sensor. This is the inherent
instability in the output of the sensor and you want your measurements to take place before
the random walk dominates. This point in averaging time where the random walk takes over
is called the Allan time, beyond this point you no longer gain profit with a longer integration
time.

5.2. Allan Variance for the Telescope

There are several ways of calculating the Allan variance, the way it was calculated in this
project is the following,

σ2A(nτ0) =
1

2M

M∑
k=0

(k+1)n∑
i=kn

pi
〈p〉
−

(k+2)n∑
j=(k+1)n

pj
〈p〉

2

(22)

where

〈p〉 =
1

N

N∑
q=0

pq. (23)

Here N is the number of data points in the measurement, n is the size of the bin and it is an
integer, τ0 is the minimum time interval and M is the number of bins. For N, n, M we have
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the boundary condition such that (M+2)n < N. This method was taken from the ALMA
Band 5 Cartridge Output Power Stability Test Procedure (Barkhof, 2015). To simulate the
different integration times we take equidistant samples and bin them differently.

The Allan variance was calculated for the electric components shown in Figure 4.21. After
writing a Python script that can plot the Allan variance vs time, we get an Allan variance
plot which can be seen in Figure 5.2 and the script can be seen in Appendix A.

In Figure 5.2 we see that at first the variance decreases for increasing time, at shorter av-
eraging time the Allan variance is higher. We can see that at a time ∼10 s the variance
is minimum, after that the variance increases again. Thus, the Allan time of the back-end
system is around 10 s. This means that we want to make an observation within or as close as
possible to 10 s. The minimum is not very distinguishable on the top plot of Figure 5.2, but
clearly on the second plot the minimum is at ∼10 s. Whether or not it will be able to achieve
this depends on a lot of variables. The motor used for the telescope will have a limited speed
it can run and the Raspberry PI is limited to the speed it can read and store data. Together
with the efficiency of the software it is hard to get close to the ∼10 s.

The 500 s measurement was the first measurement taken of the Allan variance. To see what
would happen for longer time measurements the other three data sets were acquired, these
plots are shown in Figure 5.2. We can see that the random walk, becomes more clear. All of
the data sets were measured with a τ0 of 50 ms.

On the first two plots we see that for the first ∼10 s the variance decreases as τ−1/2 and for
the latter two plots as τ−1, corresponding to a white frequency noise and white phase and/or
flicker phase noise, respectively. After the first ∼10 seconds the random walk noise dominates
over the other noise types.

With the complete telescope system, it was unfortunately not possible to get an observa-
tion within 10 s due to the speed of the motor and the recording system. For example, an
observation to measure the Sun takes ∼80 s and for the CMB it takes ∼30 s, at the moment of
writing this thesis. However, for this system is does not matter, since the goal is an accuracy
of 10 % for the CMB. When looking at Figure 5.2 we can see that σ2 starts at ∼ 4 · 10−8.
Therefore the integration time of the observations can be longer than 10 s.
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Figure 5.2: Allan variance plot for various time measurements. From top to bottom: 500 s,
1000 s, 3000 s, 6000 s. Different noise regions can be distinguished in these plots,
such as white phase/frequency noise, flicker phase noise and random walk noise.
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6. Mechanics

This chapter will cover the construction of the telescope. It will contain considerations to
ensure functionality in the most efficient way.

6.1. Securing Back-end and Horn

The back-end of the telescope has to be connected to the horn, which needs to be stable
enough to ensure a clean observation. To ensure stability, the horn is attached to the back-
end. The attaching is done by drilling holes in the waveguide and the opening of the horn,
at the opening of the horn a total of four holes were drilled to allow the horn to be rotated
90 degrees if needs be. With a small piece of aluminum the waveguide is attached to the
back-end and the opening of the horn is connected to a thicker piece of aluminum. The two
pieces of aluminum are shown in Figure 6.1a. This way, the horn is stable enough during
rotation, but not too stiff that it cannot move at all. Due to temperature fluctuations it
is possible that the back-end and horn will fluctuate in size. Therefore the aluminum piece
connected to the waveguide is thin and a bit flexible.

(a) Two connecting pieces of aluminum. (b) Electronic circuit and horn.

Figure 6.1: Figure (a): The two pieces of aluminum connecting the horn and the plate with
the components together. Figure (b): The electronic circuit panel and the horn
attached using the two pieces of aluminum.

6.2. Stability of Telescope

6.2.1. Frame of the Telescope: Plan A

The back-end and the horn have to be mounted on a frame. This frame will also house the
hot and cold load, for more information about the hot and cold load see Section 6.3.

The first idea for the frame was based on a cold load that was available to us from the be-
ginning of the constructing. This cold load is a round bucket with dimensions of 200x200x210
mm. The idea was to position the horn in a horizontal orientation instead of downward di-
rectly into the cold load, that way a mirror can be placed in front of it and the beam pattern
will be reflected into the bucket. Below the horn there would be room for the power sup-
plies, power meter and other components. However, this idea results in a long path for the
beam pattern to travel to get from the horn to the cold load. A longer path means a larger
beam pattern projected on the ground. Therefore the bucket should be placed as close to the
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horn as possible to minimize this projection. This resulted in a sketch that can be seen in
Figure 6.2a. In Figure 6.2b we can see the final design for the frame.

(a) Sketch of the first frame design. (b) Final design of the frame.

Figure 6.2: Telescope frame designs. Figure (a): The first design is shown in the form of a
sketch. Figure (b): The final design of the frame is shown, there are vertical bars
in the middle to support the motor. The higher front of the frame is designed to
hold the hot load and the mirror for the cold load.

The telescope itself will be placed in the middle of the frame that is shown in Figure 6.2b.
It will be mounted on the motor and the motor will be supported by two vertical bars in the
middle of the frame.

The frame is made out of aluminum pipes with dimensions of 20x20 mm, that are connected
via joints. However, after the construction of the frame it was concluded that it should have
been ∼ 3 cm higher, in order to allow the horn to rotate a full 360 degrees with enough
spacing. A solution was to mount an extra bar of aluminum on top. The actual frame after
construction can be seen in Figure 6.3.

Figure 6.3: The constructed frame along with the extra piece of aluminum on top to support
the motor and horn.

30



6.2.2. Frame of the Telescope: Plan B

In Section 6.2.1 the main frame design is discussed. After considering the place and size of
the cold load in more detail, it seemed that the cold load was too small to fit the full beam
pattern of the horn. There was another cold load available from SRON, it is shown in Fig-
ure 6.4. The load was at first larger than was anticipated when designing the frame.

Figure 6.4: On the left the cold load available at the beginning of the construction. On the
right the cold load provided by SRON.

Another idea was to make a cold load, this can be done by gluing together a box made out
of some sort of polystyrene. Making the load would allow us to fit the load exactly inside the
frame already constructed. Be that as it may, the telescope will contain devices that need to
be near the frame itself, like power supplies, power meter, Raspberry PI and more. A suitable
place for these devices is under the frame, making the cold load from SRON appealing again.

In order to make the cold load from SRON fit, the frame had to be adjusted. To avoid
constructing an entire new frame, a second frame was designed to fit under the already existing
frame. This under frame would be high enough to allow the cold load to fit under the main
frame. It would also be the housing of the devices described above. A picture of the second
frame is shown in Figure 6.5a.
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(a) The under frame (b) The under frame with components.

Figure 6.5: Figure (a): The under frame that will be placed under the main frame housing
the motor and horn. This frame will house the electronics to operate the tele-
scope. Figure (b): The under frame with the power meter, power supplies and a
thermometer.

6.2.3. Final Frame with Motor and Horn

The entire frame plus the motor and horn is shown in Figure 6.6.

Figure 6.6: The motor and horn are mounted on the frame, the under frame is mounted under
the main frame.

The main and under frame are mounted together using 8 x 40 mm M6 bolts, along with
8 rings to reduce vibration and 8 x M6 washers. Holes were drilled into the under frame to
make room for rivet nuts. For a full list of parts see Table B.1.
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6.3. Hot and Cold Load

6.3.1. Why a Hot and Cold Load?

The telescope needs to have a hot and cold load. Hot loads consists of a piece of absorber, it
has to absorb all of the beam pattern coming from the horn. Cold loads are boxes filled with
liquid nitrogen, just like the hot load, the cold load has to absorb all of the beam pattern.
The pieces of absorber are conical shaped sheets, which have this shape in order to allow the
beam pattern to be reflected as many times as needed before it is completely absorbed.

The hot and cold load are used to measure the receiver temperature of the telescope at
each measurement. The receiver temperature is a measure of the noise power at the output of
the telescope, taking into account all factors that contribute to the noise power. This receiver
temperature is important in order to calculate the system temperature and therefore getting
the CMB temperature.

A measurement of the receiver temperature has to be made every time a measurement is
taken. This is due to the fact that our telescope it not stable enough to ensure a receiver
temperature that is always constant, which will be explained in Section 7.3 and due to the
Allan time explained in Section 5.1.

6.3.2. Making the Hot and Cold Load

As is described in Section 6.2, the hot and cold load will be in front of the horn. A mirror is
placed in front of the horn when the horn is in a horizontal position. However, when placing
the horn horizontal, the mirror had to be placed high enough for the hot load to fit above it.
Therefore, the horn will be tilted an angle of 15 degrees downward. This way the mirror can
be placed lower and the hot load can be placed above. The mirror is placed at an angle such
that the beam will go vertically in the cold load and will be positioned between the frame.
The mirror is an aluminum sheet, which will function well enough to act as a mirror at 11
GHz. The mirror is shown in Figure 6.7.

Figure 6.7: The aluminum sheet to function as a mirror at 11 GHz. On the back an aluminum
bar is placed to attach it onto the frame.

The cold load provided by SRON can again be seen in Figure 6.4. The absorber used for the
hot and cold load were provided by ASTRON, the Netherlands Institute for Radio Astronomy.
These conical shaped absorber sheets were too tall to have them fully submerged in the liquid
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nitrogen for a long period of time. For this reason the conical pyramids were cut one by one
to make them smaller. They are then placed on a piece of polystyrene and this is placed in
the cold load. The inside walls of the cold load are covered with aluminum foil to make sure
all of the beam is getting in the cold load. The completed cold load is shown in Figure 6.8.

Figure 6.8: The completed cold load that goes under the main frame.

The conical sheets are good enough for the hot load. The hot load will be placed above the
cold load. Right after the horn is clear rotating from the cold load it will measure the hot
load.

The first idea was to place the hot load perpendicular to the center axis of the horn.
Although, the hot load would then obstruct the measurement taken when the horn is pointing
at zenith. The zenith measurement is important since the opacity is lowest at zenith, for more
information about taking into account the opacity and atmosphere see Mulder (2015). A tilted
hot load would also be harder to construct than a hot load which is vertical.

After positioning the horn at the correct angle for the hot load, the position for the hot load
was determined. The hot load is a sheet of ∼40 x ∼40 cm of conical absorber and is attached
to the higher part of the main frame. This sheet is first attached to a sheet of aluminum,
which is attached to the frame. In Figure 6.9 the complete telescope is shown.

34



Figure 6.9: The complete telescope with all its components and equipment.
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7. Calibration of the Telescope

7.1. Stability of Hot and Cold Load

To make sure a correct receiver temperature is calculated, we want to know how stable the
hot and cold load are. The hot load will only vary with the ambient temperature, the cold
load will experience fluctuations in the motion and evaporation of the liquid nitrogen. The
stability of the cold load is determined by measuring these fluctuations in output power when
observing the hot and cold load for a long period of time. The output power is plotted versus
time and the plot of the first measurement can be seen in Figure 7.1.

Figure 7.1: The first measurement of the stability of the hot and cold load. The total time of
the measurement was 6000 s. A polynomial has been fitted of order 10 and has
been subtracted from the data to show the residuals.
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We see in Figure 7.1 that the overall fluctuations are at maximum 0.00001 mW of the
total output power and the more frequent fluctuations are due to the random noise in the
electrical components, with the highest contribution coming from the power meter. These
fluctuations are calculated using a fit, this fit is subtracted from the data and the root mean
square is determined. These residuals show the stability of the system. The overall error of
the first measurement of the cold load is 0.068%. The hot load shows an increase in power
after around 3000 s. This is probably due to the temperature changes in the atmosphere
during the measurement.

In Figure 7.1 we can see that the cold load definitely has a sinusoidal function that it follows
after the first ∼1000 s. We see that around the sinusoidal there are small fluctuations. These
fluctuations are again due to the noise fluctuations of the output meter. The cold load also
displays some unexpected behaviour, it does not follow the same shape as the hot load. At
first the output power of the cold load increases up to about 1000 s. This behaviour is not un-
derstood and to see if this was only a one time phenomenon, the measurement was taken again.

The second measurement of the hot and cold load is shown in Figure 7.2.
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Figure 7.2: The second measurement of the stability of the hot and cold load. The total time
of the measurement was 4200 s. A polynomial has been fitted of order 10 and has
been subtracted from the data to show the residuals.

We can see there is a strong difference between Figure 7.1 and 7.2. The second measure-
ment receives more power, hence we measure a different receiver temperature. This already
shows that it is important to measure the hot and cold load at each sky measurement to
measure the receiver temperature. The top plot in Figure 7.2 shows that the output power
is changing after the first ∼1200 s. This could be due to the high room temperature causing
a rapid evaporation of the liquid nitrogen, however, on the middle plot of Figure 7.2 we see
that the output power of the hot load is also changing after ∼1500 seconds. This gives some
indication that the atmospheric temperature is decreasing.

38



Figure 7.3: The third measurement of the stability of the hot and cold load. The total time
of the measurement was 12350 seconds. A polynomial has been fitted of order 10
and has been subtracted from the data to show residuals.

Since there are big differences in the shapes of Figures 7.1 and 7.2 another measurement was
taken. The third measurement is shown in Figure 7.3. This measurement was taken for a
longer period of time. We can see that the shape of the hot and cold load are similar to that
of Figure 7.2. However, when looking closer at the axis, it shows that the output power of
the hot and cold load decreases at different times. Again, the overall changes in the output
powers are probably due to the changes in atmospheric temperature, thereby explaining the
difference in decreasing output power at different times.
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7.2. Receiver Temperature of the Telescope

The receiver temperature of the telescope is calculated via the hot and cold load output pow-
ers. The receiver temperature is plotted for all three measurements, of these measurements
the average temperature is determined along with the scatter around the mean of all the
points. The results of the hot and cold measurements can be seen in Figure 7.4 and the
average output powers with the average receiver temperature are shown in Table 7.1.

Measurement Phot,aver (dBm) Pcold,aver (dBm) TRX,aver(K)

1 -20.93 ± 0.02 -23.39 ± 0.02 207.98 ± 0.64
2 -20.83 ± 0.02 -23.25 ± 0.02 215.72 ± 0.71
3 -20.92 ± 0.02 -23.41 ± 0.02 204.35 ± 0.63

Table 7.1: Experimental results of receiver temperature.’Phot (dBm)’ is the output power at
atmospheric temperature and ’Pcold (dBm)’ at liquid nitrogen temperature of 77.15
K. TRX(K) is the receiver temperature.

From Figure 7.4 we can see that the overall receiver temperature of all the measurements
vary within a few Kelvin. The difference between the maximum and minimum receiver
temperature of the measurements are shown in Table 7.2, along with the mean value of the
receiver temperature and the standard deviation.

Measurement Difference(K) Mean(K) σT (K)

1 3.47 207.98 0.641
2 4.95 215.72 0.714
3 3.84 204.35 0.632

Table 7.2: The difference between the maximum and minimum, the mean and the standard
deviation of the receiver temperature.

The receiver temperatures are higher than expected. This is due to a relative high atmospheric
temperature and due to an error in the cold load that is addressed in Section 7.3. For the
first measurement an atmospheric temperature of 293 K is assumed due to loss of data. For
the second and third measurement an atmospheric temperature of 295 K was measured.

Several data points from the third measurement were corrupted and for that reason the
data set was reduced to a smaller data set. The corrupted data points were probably an error
in the read-out and so those data points could not be used as actual measurements.

In order to calculate the error in the receiver temperature, a fit was applied to the data
points. This fit was then subtracted from the data points and the root mean square was
calculated for these values. The plot with the residuals of the receiver temperatures can be
seen in Figure 7.5.
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Figure 7.4: Using the hot and cold output powers, the receiver temperature is calculated for
all three measurements and plotted as a function of time. A polynomial has been
fitted of order 10 and has been subtracted from the data to show the residuals,
which are shown in Figure 7.5.
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Figure 7.5: The residuals after the fit has been subtracted from the data.

7.3. Error in Receiver Temperature

Following the first couple of measurements of the receiver temperature and the system temper-
ature (for the measurements of the system temperature see Mulder (2015)), it was concluded
that there had to be an error in the receiver temperature. The reason for this was a higher
receiver temperature than system temperature, which is not possible.

The cold load has a higher temperature than we assumed. We assumed that the beam of
the horn looked at a temperature of 77 K. This is however not the case, it looks at a higher
temperature, due to the construction and position of the mirror for the cold load, the beam
was not filling the entire cold load.

To test by how much the temperature of the cold load is higher, we took the horn from
the frame. We then pointed the horn directly in the hot and cold load, this method allowed
us to be sure that the beam was completely filled by the hot and cold load. The output
power of these measurements were read out by the power meter and from the data a receiver
temperature was calculated. The results are shown in Table 7.3.
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Measurement Phot,aver (dBm) Pcold,aver (dBm) TRX,aver(K) Thot,aver(K)

1 (01-07-2015) -20.88 ± 0.02 -23.46 ± 0.02 195.33 ± 3.05 297
2 (06-07-2015) -20.99 ± 0.02 -23.49 ± 0.02 205.77 ± 1.98 298
3 (06-07-2015) -20.98 ± 0.02 -23.49 ± 0.02 204.99 ± 2.10 297.56
4 (06-07-2015) -20.97 ± 0.02 -23.49 ± 0.02 203.88 ± 3.03 297.69

Table 7.3: Measurements of the receiver temperature done by hand.

Then we placed the horn back on the frame and took again the measurements of the hot and
cold load. This will result in a different receiver temperature than previously measured. The
results of the measurements are shown in Table 7.4.

Measurement Phot,aver (dBm) Pcold,aver (dBm) TRX,aver(K) Thot,aver(K)

1 (01-07-2015) -20.91 ± 0.02 -23.33 ± 0.02 219.20 ± 0.33 297
2 (06-07-2015) -20.97 ± 0.02 -23.34 ± 0.02 226.94 ± 0.54 298
3 (06-07-2015) -20.97 ± 0.02 -23.34 ± 0.02 227.51 ± 0.44 297.56
4 (06-07-2015) -20.97 ± 0.02 -23.34 ± 0.02 227.88 ± 0.41 297.69

Table 7.4: Measurements of the receiver temperature done with the complete the system.

From here we can indeed see a relative large difference between the receiver temperatures,
for these measurements a hot load temperature of 298 K is used. By using the receiver
temperatures of the measurements in Table 7.3 and the Y-factor of Table 7.4, we can calculate
what cold load temperature the system is actually seeing instead of the 77 K. This calculation
is just rewriting equation 13 for Tcold. The results can be seen in Table 7.5.

Measurement Tcold, corr(K)

1 (01-07-2015) 87.57
2 (06-07-2015) 85.90
3 (06-07-2015) 86.46
4 (06-07-2015) 87.08

Average 86.75

Table 7.5: Corrections of the temperature for the cold load.

Using these value for the cold load, the receiver temperature is recalculated and the results
are shown in table 7.6.
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Measurement TRX,aver(K)

1 (01-07-2015) 196.60 ± 0.31
2 (06-07-2015) 206.16 ± 0.65
3 (06-07-2015) 204.99 ± 0.50
4 (06-07-2015) 203.88 ± 0.50

Table 7.6: Correct receiver temperature calculated using adjusted Tcold.

Taking field measurements over the course of a couple of days revealed a new problem re-
garding the cold load. It turned out the cold load is not as reliable as we thought. The
measurements in the field showed variations in output power for the cold load of ∼ 1 · 10−4

mW over the course of several days, see Mulder (2015). These variations are large enough
to cause a wrong temperature of the cold load for field measurements. These differences are
from the fact that the beam of the horn is probably not filling the entire cold load. Another
explanation is that reflections from the beam is causing for the effect that the horn is seeing
itself, this is likely to happen, since observing the cold load at an angle shows a different
output power. In the lab this has likely happened as well, but the measurements were always
taken at the same place, resulting in the same contribution of excess output power for all the
measurements and therefore a correct temperature of the cold load.

Due to the deadline of the thesis, this problem could not be directly solved. A temporary
solution is described in Mulder (2015).

8. Improvements

There are improvements to be made regarding the back-end and frame of the telescope,
especially the frame itself.

The back-end of the telescope can be improved by using completely new components, like
the amplifiers and filters. As of now, we are using two different kind of amplifiers of which
one amplifier we do not have any specifications, on for example the 1-dB compression point
of the . Using new amplifiers allows us have a lower receiver temperature. Improvements can
also be made on connecting the components via the SMA cables. Using the same type of
cables and having them as short as possible will reduce the loss of the signal and the overall
noise of the receiver.

The error in the receiver temperature as a result of the beam missing some of the cold
load can be avoided by making sure the complete beam is hitting the cold load. This would
require some adjustments to the frame to allow for a larger mirror and a larger cold load.
Making a new frame for the telescope where the main frame and under frame are constructed
as one piece will allow for a frame which is better suited for a larger cold load. With more
time to make adjustments, a ellipsoidal mirror instead of a flat mirror would also improve the
functionality of the cold load, since a ellipsoidal mirror allows us to focus the beam at the
cold load. Thereby ensuring a beam that is completely filled by the cold load.

A future upgrade would be to make a interferometer and to have it rotate horizontally in
order to make a full sky measurement.
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9. Conclusion

As part of a radio telescope to measure the CMB, a receiver and a frame had to be designed
and constructed. The frame had to be build to function as support for the receiver, horn, hot
load, cold load and equipment. The receiver was constructed from two amplifiers and a band
pass filter with a bandwidth of 1.05 GHz. The back-end noise temperature is around 130 K
(see Table 4.3). The frame consists of two parts, the main part that houses the back-end and
the horn and the under frame which is for the equipment needed to operate the telescope and
store data.

Some unforeseen adjustments had to be made to allow us to complete the telescope, but the
telescope itself works and for the results of the measurements see Mulder (2015) and Sweijen
(2015). However, the telescope definitely needs to be adjusted to be used in the course Radio
Astronomy. The cold load caused an error in the calibration, for this a temporary solution is
used, see Mulder (2015).
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A. Allan Variance Script

#! / usr / bin /env python
from f u t u r e import d i v i s i o n
import numpy as np
import matp lo t l i b
from matp lo t l i b . pyplot import f i g u r e , show , rc

#Reading in the data s e t
x , y = np . l oadtx t ( ’ Data500 . txt ’ , u s e c o l s =(0 ,1) , unpack=True )
x1 , y1 = np . l oadtx t ( ’ Data1000 . txt ’ , u s e c o l s =(0 ,1) , unpack=True )
x2 , y2 = np . l oadtx t ( ’ Data3000 . txt ’ , u s e c o l s =(0 ,1) , unpack=True )
x3 , y3 = np . l oadtx t ( ’ Data6000 . txt ’ , u s e c o l s =(0 ,1) , unpack=True )
x4 , y4 = np . l oadtx t ( ’ hotco ld 19062015 . txt ’ , u s e c o l s =(1 ,3) , unpack=True )
day = 1

de f Al l anvar iance ( data , tau 0 ) :
’ ’ ’
De f in ing input v a r i a b l e s
tau 0 : Minimum sample time o f data s e t
data : 1D array o f the output va lue s

De f in ing program parameters
N: Length o f the complete data s e t
Average : the average value o f the complete data s e t
M: Number o f samples
n : s i z e o f the samples , where n i s an i n t e g e r

’ ’ ’

# Se t t i ng i n i t a l parameters
N = len ( data )
average = np . mean( data )
lengthoutput = 0
Alvar = [ ]
tau = [ ]
time = [ ]
k = 1
whi l e k < N/3 :

’ ’ ’
Determining the s i z e o f the output array ; output array has to be smal l

enough
in order to c a l c u l a t e the l a s t Al lan var iance .
Corresponding to the l enght output , the program c a l c u l a t e s the time

array in
t imes teps o f tau 0 .

’ ’ ’
k += 1
lengthoutput += 1
time . append ( tau 0 ∗k )

f o r q in time :

#Looping through the time array to get mult ip ly va lue s f o r n e . g . the
s i z e o f the sample .

n = i n t ( q/ tau 0 )
k = 0
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M = 1
a lva r = 0

whi l e k < l engthoutput :
# For each n c a l c u l a t e the a l l a n var iance .

i = i n t ( k∗n)
ip = i n t ( ( k+1)∗n)
j = i n t ( ( k+1)∗n)
jp = i n t ( ( k+2)∗n)
i f jp > N:

break
e l s e :

p i = np . mean( data [ i : ip +1 : ] )
p j = np . mean( data [ j : jp +1 : ] )
av = ( ( p i ) − ( p j ) ) ∗∗2 / average ∗∗2

M += 1
a lva r += 0.5∗ av/M

k += 1

Alvar . append ( a lva r )

re turn Alvar , time

alvar , t = Al lanvar iance (y , 0 . 0 5 )
a lvar1 , t1 = Al lanvar iance ( y1 , 0 . 0 5 )
a lvar2 , t2 = Al lanvar iance ( y2 , 0 . 0 5 )
a lvar3 , t3 = Al lanvar iance ( y3 , 0 . 0 5 )
a lvar4 , t4 = Al lanvar iance ( y4 , 1 1 . 8 5 )

# Plo t t i ng code
f i g = f i g u r e ( )
f i g . s u p t i t l e ( ’ Al lan var iance : lab measurement 0%s−07−2015 ’ %day , fontwe ight =’

bold ’ , f o n t s i z e =16)

frame = f i g . add subplot ( 2 , 2 , 1 )
frame . s e t x s c a l e ( ’ l og ’ )
frame . s e t y s c a l e ( ’ l og ’ )
frame . s e t x l a b e l ( ’Time ( s ) ’ )
frame . s e t y l a b e l ( ’ $\ sigma ˆ2 (\\ tau ) $ ’ )
frame . p l o t ( t , a lvar , l a b e l=’ 500 s ’ )
frame . legend ( )
frame . g r id ( )

frame1 = f i g . add subplot ( 2 , 2 , 2 )
frame1 . s e t x s c a l e ( ’ l og ’ )
frame1 . s e t y s c a l e ( ’ l og ’ )
frame1 . s e t x l a b e l ( ’Time ( s ) ’ )
frame1 . s e t y l a b e l ( ’ $\ sigma ˆ2 (\\ tau ) $ ’ )
frame1 . p l o t ( t1 , a lvar1 , l a b e l=’ 1000 s ’ )
frame1 . l egend ( )
frame1 . g r id ( )

frame2 = f i g . add subplot ( 2 , 2 , 3 )
frame2 . s e t x s c a l e ( ’ l og ’ )
frame2 . s e t y s c a l e ( ’ l og ’ )
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frame2 . s e t x l a b e l ( ’Time ( s ) ’ )
frame2 . s e t y l a b e l ( ’ $\ sigma ˆ2 (\\ tau ) $ ’ )
frame2 . p l o t ( t2 , a lvar2 , l a b e l=’ 3000 s ’ )
frame2 . l egend ( )
frame2 . g r id ( )

frame3 = f i g . add subplot ( 2 , 2 , 4 )
frame3 . s e t x s c a l e ( ’ l og ’ )
frame3 . s e t y s c a l e ( ’ l og ’ )
frame3 . s e t x l a b e l ( ’Time ( s ) ’ )
frame3 . s e t y l a b e l ( ’ $\ sigma ˆ2 (\\ tau ) $ ’ )
frame3 . p l o t ( t3 , a lvar3 , l a b e l=’ 6000 s ’ )
frame3 . l egend ( )
frame3 . g r id ( )

f i g . s a v e f i g ( ” A l l anva ra r i ance 0%s 05 2015 . png” %day )
show ( )
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B. List of Parts

Bolts Nuts Washers
Size Length Amount Amount Amount

M2.5 6 mm 2 2 2
M2.5 16 mm 4 4 4
M3 5 mm 2
M3 8 mm 4 2 2
M3 12 mm 2 2
M3 25 mm 2 2
M3 30 mm 2 2 4
M4 30 mm 4 4 4
M5 15 mm 4 4 4
M6 20 mm 4
M6 40 mm 8

Other
8 rings

12 Rivet nuts

Table B.1: A complete list of all parts used to mounted the frame, motor and horn together.
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C. The Script for Data Reduction

#! / usr / bin /env python

from f u t u r e import d i v i s i o n
from matp lo t l i b import pyplot
from matp lo t l i b . pyplot import f i g u r e , show
import numpy as np
import time

#======= Date : 29−06−2015 =======

T cold = 77 #K
T hot19 = 273.15 + 20 #K
T hot26 = 273.15 + 22 #K
T hot29 = 273.15 + 22 #K

erT hot = 0.001 #K
erT co ld = 1 #K
erhot = 0.02
e r c o l d = 0.02

# Reading in data f i l e
t ime co ld19 , power cold19 , t ime hot19 , power hot19 = np . l oadtx t ( ’

hotco ld 19062015 . txt ’ , u s e c o l s =(0 ,1 ,2 ,3) , unpack=True )

t ime co ld26 , power cold26 , t ime hot26 , power hot26 = np . l oadtx t ( ’
data140626 hotco ld . txt ’ , u s e c o l s =(0 ,1 ,2 ,3) , unpack=True )

t ime co ld29 , power cold29 , t ime hot29 , power hot29 = np . l oadtx t ( ’
data140629 hotco ld20 . txt ’ , u s e c o l s =(0 ,1 ,2 ,3) , unpack=True )

#Removing corrupt data
t ime co ld29 = t ime co ld29 [ 8 7 : 4 7 2 : ]
power cold29 = power cold29 [ 8 7 : 4 7 2 : ]
t ime hot29 = time hot29 [ 8 7 : 4 7 2 : ]
power hot29 = power hot29 [ 8 7 : 4 7 2 : ]

# Converting time in data f i l e to r e a l time o f the measurement .
de f Timeconvert ( dataarray ) :

Time = [ ]
j=0
whi l e j < l en ( dataarray ) :

time = dataarray [ j ] − dataarray [ 0 ]
Time . append ( time )
j += 1

return Time

# D e f i n i t i o n f o r the Y−f a c t o r as ca lucated in ( Zandv l i e t (2015) ) .
de f Yfactor ( hot , co ld ) :

Y = 10∗∗ ( ( hot−co ld ) /10)
re turn Y

# D e f i n i t i o n f o r the e f f e c t i v e no i s e temeperature as ca lucated in ( Zandv l i e t
(2015) ) .

de f Tempeff (Y, T hot , T cold ) :
T e f f = ( T hot−T cold ∗Y) /(Y−1)
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re turn T e f f

# Error c a l c u l a t i o n s in the Y−f a c t o r and e f f e c t i v e no i s e temperature .
de f ErrorY (Y) :

e r r o r d i f P = ( e r c o l d ∗∗2 + erhot ∗∗2) ∗∗0 .5
er ror Y = ( (Y ∗ 1/10 ∗ np . l og (10) ∗ e r r o r d i f P ) ∗∗2) ∗∗0 .5
re turn error Y

de f Er ro rT e f f (Y, T hot , T cold ) :
e r rho t = (1/(Y−1) ) ∗∗2 ∗ erT hot ∗∗2
e r r c o l d = (−Y/(Y−1) ) ∗∗2 ∗ erT co ld ∗∗2
errY = ( ( ( T cold − T hot ) / (Y−1)∗∗2) ∗∗2) ∗ ( ErrorY (Y) ) ∗∗2
e r r T e f f = ( e r rho t + e r r c o l d + errY ) ∗∗0 .5
re turn e r r T e f f

# Converting dBm to mW
def mWconvert ( data ) :

r e turn 10∗∗( data /10)

# F i t t i n g polygon to e f f e c t i v e temperature
de f F i t (Time , power , order ) :

c o e f f i c i e n t s = np . p o l y f i t (Time , power , order )
polynomial = np . poly1d ( c o e f f i c i e n t s )
newx = np . l i n s p a c e (0 ,max(Time) , l en (Time) )
newy = polynomial (newx)
re turn newx , newy

# Calcut ing standard dev i a t i on from the f i t t e d polygon
de f stdev ( datanew , power ) :

New = [ ]
f o r k in xrange (0 , l en ( datanew ) ) :

New. append ( datanew [ k ] − power [ k ] )
percentage = np . std (New) / np . mean( power ) ∗ 100
return New, percentage

# Ca l cu l a t ing average sample time between measurements
de f Samplet (Time) :

Aver t = 0
f o r l in xrange (0 , l en (Time)−1) :

Aver t += Time [ l +1] − Time [ l ]
sampletime = Aver t / l en (Time)

re turn sampletime

# Pr int ing out the va lue s .
de f Average ( power1 , power2 , temp , unc ) :

# Se t t i ng i n t i t a l s f o r averag ing
temperature = 0
e r r = 0
hl =0
c l =0
f o r i in xrange (0 , l en ( power1 ) ) :

# Ca l cu l a t ing Averages
c l += power1 [ i ]
aver1 = c l / l en ( power1 )
h l += power2 [ i ]
aver2 = hl / l en ( power2 )
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temperature += temp [ i ]
e r r += unc [ i ]∗∗2
av e r e r r = 1/(( l en ( power1 ) ) ∗∗0 .5 ) ∗ ( e r r ) ∗∗0 .5
aver = temperature / l en ( power1 )

re turn aver1 , aver2 , aver

# Ca l cu l a t e s a l l the va lue s and p l o t s the va lue s
de f C a l cu l a t i o n s ( t ime co ldsys , Power coldsys , t ime hotsys , Power hotsys , T hot ,

order , Datum) :
#C a l c u l a t i on s f o r the system
Ysys = Yfactor ( Power hotsys , Power co ldsys )
Tsys = Tempeff ( Ysys , T hot , T cold )
UncYsys = ErrorY ( Ysys )
UncTsys = Er ro rT e f f ( Ysys , T hot , T cold )

a v e r c l s y s , a ve rh l s y s , aver sys = Average ( Power coldsys , Power hotsys , Tsys ,
UncTsys )

Power co ldsys = mWconvert ( Power co ldsys )
Power hotsys = mWconvert ( Power hotsys )

t i me co ld s y s = Timeconvert ( t ime co ld s y s )
t ime hot sys = Timeconvert ( t ime hot sys )

hxsys , hysys = Fit ( t ime hotsys , Power hotsys , order )
cxsys , cysys = Fit ( t ime co ldsys , Power coldsys , order )
Txsys , Tysys = Fit ( t ime co ldsys , Tsys , order )

New hotsys , pe r c en tage ho t sy s = stdev ( hysys , Power hotsys )
New coldsys , p e r c e n t a g e c o l d s y s = stdev ( cysys , Power co ldsys )
New tempsys , percentage tempsys = stdev ( Tysys , Tsys )

ave r t sy s = Samplet ( t i me co ld s y s )

# Pr in t s r e s u l t s f o r the system measurements
p r i n t ”−−−−−−−−−−−−−−−−−−−−−−Resu l t s : %s−06−2015−−−−−−−−−−−−−−−−−−−−−” %Datum
pr in t ”−−−−−−−−−−−−−−−−−−−−−Measurement by system−−−−−−−−−−−−−−−−−−−−−”
p r in t ”Average P hot (dBm) : ” . l j u s t (50)+ ”%.4 f +− %.4 f ”%( av e r h l s y s , e rhot )
p r i n t ”Average P cold (dBm) : ” . l j u s t (50)+ ”%.4 f +− %.4 f ”%( a v e r c l s y s , e r c o l d )
p r i n t ”Average T e f f (K) : ” . l j u s t (50)+ ”%.4 f +− %.4 f ”%( aver sys , np . std (

New tempsys ) )
p r i n t ”Y−f a c t o r ” . l j u s t (50)+ ”%.2 f +− %.4 f ”%(np . mean( Ysys ) , np . mean( UncYsys ) )
p r i n t ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”
p r in t ”The RMS of the hot load i s ” . l j u s t (50)+ ”%.3e mW” %np . std ( New hotsys )
p r i n t ”The e r r o r in the hot load i s ” . l j u s t (50)+ ”%.3 f %%” %percen tage hot sy s
p r i n t ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”
p r in t ”The RMS of the co ld load i s ” . l j u s t (50)+ ”%.3e mW” %np . std ( New coldsys

)
p r i n t ”The e r r o r in the co ld load i s ” . l j u s t (50)+ ”%.3 f %%” %

p e r c e n t a g e c o l d s y s
p r i n t ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”
p r in t ”The RMS of the r e c e i v e r temperature i s ” . l j u s t (50)+ ”%.3 f K” %np . std (

New tempsys )
p r i n t ”The e r r o r in the r e c e i v e r temperature i s ” . l j u s t (50)+ ”%.3 f %%” %

percentage tempsys
p r i n t ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”
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pr in t ”The average sample time i s ” . l j u s t (50)+ ”%.2 f s ” %ave r t sy s
p r i n t ””

#Plo t t i ng code
#Plot s hot and co ld load ver sus time
f i g = f i g u r e (num=None , f i g s i z e =(10.5 , 10 . 5 ) , dpi =100 , f a c e c o l o r=’w ’ ,

edgeco l o r=’ k ’ )
f i g . s u p t i t l e ( ’ Hot and co ld vs time measurement : %s−06−2015 ’ %Datum ,

fontwe ight =’bold ’ , f o n t s i z e =16)
f i g . s u b p l o t s a d j u s t ( hspace =.6)

frame = f i g . add subplot ( 4 , 1 , 1 )
frame . s e t t i t l e ( ’ P$ { co ld }$ vs time ’ )
frame . s e t x l a b e l ( ’Time ( s ) ’ )
frame . s e t y l a b e l ( ’ P$ { co ld }$ [mW] ’ )
frame . p l o t ( t ime co ldsys , Power coldsys , l a b e l=”Data” )
frame . p l o t ( cxsys , cysys , ’ r ’ , l a b e l=” Fit ” )
frame . legend ( )
frame . g r id ( )

frame = f i g . add subplot ( 4 , 1 , 2 )
frame . s e t t i t l e ( ’ Res idua l s o f P$ { co ld }$ vs time ’ )
frame . s e t x l a b e l ( ’Time ( s ) ’ )
frame . s e t y l a b e l ( ’ P$ { co ld }$ [mW] ’ )
frame . p l o t ( t ime co ldsys , New coldsys , l a b e l=”Data” )
frame . legend ( )
frame . g r id ( )

frame1 = f i g . add subplot ( 4 , 1 , 3 )
frame1 . s e t t i t l e ( ’ P$ {hot}$ vs time ’ )
frame1 . s e t x l a b e l ( ’Time ( s ) ’ )
frame1 . s e t y l a b e l ( ’ P$ {hot}$ [mW] ’ )
frame1 . p l o t ( t ime hotsys , Power hotsys , l a b e l=”Data” )
frame1 . p l o t ( hxsys , hysys , ’ r ’ , l a b e l=” Fit ” )
frame1 . l egend ( )
frame1 . g r id ( )

frame1 = f i g . add subplot ( 4 , 1 , 4 )
frame1 . s e t t i t l e ( ’ Res idua l s o f P$ {hot}$ vs time ’ )
frame1 . s e t x l a b e l ( ’Time ( s ) ’ )
frame1 . s e t y l a b e l ( ’ P$ {hot}$ [mW] ’ )
frame1 . p l o t ( t ime hotsys , New hotsys , l a b e l=”Data” )
frame1 . l egend ( )
frame1 . g r id ( )

#Shows r e s i d u a l s
f i g = f i g u r e (num=None , f i g s i z e =(10.5 , 8 . 5 ) , dpi =100 , f a c e c o l o r=’w ’ , edgeco l o r

=’ k ’ )
f i g . s u p t i t l e ( ’The Data with Subtracted Fit : %s−06−2015 ’ %(Datum) , fontwe ight

=’bold ’ , f o n t s i z e =16)
f i g . s u b p l o t s a d j u s t ( hspace =.6)

frame = f i g . add subplot ( 3 , 1 , 1 )
frame . s e t t i t l e ( ’ P$ { co ld }$ vs time ’ )
frame . s e t x l a b e l ( ’Time ( s ) ’ )
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frame . s e t y l a b e l ( ’ P$ { co ld }$ [mW] ’ )
frame . p l o t ( t ime co ldsys , New coldsys , l a b e l=”Data” )
frame . legend ( )
frame . g r id ( )

frame1 = f i g . add subplot ( 3 , 1 , 2 )
frame1 . s e t t i t l e ( ’ P$ {hot}$ vs time ’ )
frame1 . s e t x l a b e l ( ’Time ( s ) ’ )
frame1 . s e t y l a b e l ( ’ P$ {hot}$ [mW] ’ )
frame1 . p l o t ( t ime hotsys , New hotsys , l a b e l=”Data” )
frame1 . l egend ( )
frame1 . g r id ( )

frame2 = f i g . add subplot ( 3 , 1 , 3 )
frame2 . s e t t i t l e ( ’ T$ {RX}$ vs time ’ )
frame2 . s e t x l a b e l ( ’Time ( s ) ’ )
frame2 . s e t y l a b e l ( ’T(K) ’ )
frame2 . p l o t ( t ime co ldsys , New tempsys , l a b e l=”Data” )
frame2 . l egend ( )
frame2 . g r id ( )
f i g . s a v e f i g ( ” A C o l d h o t s t a b i l i t y r e s %s−06.png” %(Datum) )

#Plot s r e c e i v e r temperatures
f i g = f i g u r e (num=None , f i g s i z e =(10.5 , 8 . 5 ) , dpi =100 , f a c e c o l o r=’w ’ , edgeco l o r

=’ k ’ )
f i g . s u p t i t l e ( ’ Rece iver Temperatures ’ , f ontwe ight=’ bold ’ , f o n t s i z e =16)
f i g . s u b p l o t s a d j u s t ( hspace =.6)

frame = f i g . add subplot ( 1 , 1 , 1 )
frame . s e t t i t l e ( ”Measurement System : %s−06−2015” %(Datum) )
frame . s e t x l a b e l ( ’Time ( s ) ’ )
frame . s e t y l a b e l ( ’T(K) ’ )
frame . p l o t ( t ime co ldsys , Tsys , l a b e l=”Data” )
frame . p l o t ( Txsys , Tysys , ’ r ’ , l a b e l=” Fit ” )
frame . legend ( )
frame . g r id ( )

f i g . s a v e f i g ( ” Rece ivertemps 0%s−06.png” %(Datum) )

#Plot s r e c e i v e r temperatures with subtracted f i t
f i g = f i g u r e (num=None , f i g s i z e =(10.5 , 8 . 5 ) , dpi =100 , f a c e c o l o r=’w ’ , edgeco l o r

=’ k ’ )
f i g . s u p t i t l e ( ’ Rece iver Temperatures Subtracted Fit ’ , f ontwe ight=’ bold ’ ,

f o n t s i z e =16)
f i g . s u b p l o t s a d j u s t ( hspace =.6)

frame = f i g . add subplot ( 1 , 1 , 1 )
frame . s e t t i t l e ( ’ Date : %s−06−2015 ’ %(Datum) )
frame . s e t x l a b e l ( ’Time ( s ) ’ )
frame . s e t y l a b e l ( ’T(K) ’ )
frame . p l o t ( Txsys , New tempsys )
frame . g r id ( )

f i g . s a v e f i g ( ” AColdhot s tab i l i ty varT 0%s−06.png” %(Datum) )
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show ( )
re turn

# Ca l cu l a t ing the va lue s .
C a l c u l a t i on s ( t ime co ld19 , power cold19 , t ime hot19 , power hot19 , T hot19 , 1 0 , 1 9 )
C a l c u l a t i on s ( t ime co ld26 , power cold26 , t ime hot26 , power hot26 , T hot26 , 1 0 , 2 6 )
C a l c u l a t i on s ( t ime co ld29 , power cold29 , t ime hot29 , power hot29 , T hot29 , 1 0 , 2 9 )
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