
University of Groningen

Bachelor thesis

Astronomy & Physics

Gamma-Ray Bursts as Source of High
Energy Cosmic Neutrinos

Author:
Folkert Nobels

Supervisors:
Dr. Olaf Scholten

Dr. Mariano Méndez

7 July, 2015

Abstract
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high energy neutrinos. In the first part of this thesis basic concepts and observational
constraints of GRBs are discussed. We find that the production of 10 TeV neutrinos
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GeV neutrinos and the γ-rays.
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1 Introduction

Gamma-ray bursts are short intense bursts of photons with energies of 100 keV to 1 MeV.
When Gamma-ray bursts (GRBs) were discovered in the end of the 1960, it was unclear what
causes GRBs and numerous theories were proposed, most involving events in our galaxy like
bursts on galactic neutron stars. When the BATSE detector was launched in spring of
1991, BATSE observed an uniform distribution. This meant that GRBs should have an
extra-galactic origin. This idea is confirmed by BeppoSAX, that measured the redshift of
multiple GRBs and confirmed that they have an extra-galactic origin and have cosmological
distances[1]. The fact that GRBs have cosmological distances makes them the most luminous
objects in the universe. GRBs are able to release an energy of 1051−1054 ergs in a few seconds
or less. Because of these high luminosity, GRBs are rare events in our universe. At the time
that BATSE was observing GRBs, it observed an average of one burst per day. This implies
that, using a very simple model, that a GRB happens once every million year in a galaxy[1].

Multiple models were proposed to explain GRBs in the past of which many have been
disproven by BATSE (models that say that GRBs are produced in our galaxy or because
they do not produce short intense bursts)[1]. Nowadays we have a good idea what can
produce GRBs and right now there are two popular models that together can explain the
observed GRBs, this will be discussed in section 2. After this in section 3, a look is taken at
observational constraints on GRBs like the distribution on the sky, typical spectra of GRBs,
timing structure, observed energy of GRBs and the redshift distribution of GRBs.

After the observational part we introduce the basics of shock physics in section 4 plane
shock waves and spherical blast waves are explained. After this we will study ultrarelativistic
blast waves known as fireballs, and their deceleration phase in section 5.

In section 6 we look at the energetics of GRBs and how much energy is converted to
radiation and how much is converted to low energy neutrinos produced due to annihilation
of electrons and positrons. Subsequently a look is taken at neutrino production due to
internal collisions which are promissing candidates for high energy cosmic neutrinos (section
7). Next a look is taken at the time difference between the detection of γ-rays and neutrinos,
which is highly interesting for neutrino telescopes like Icecube (see section 9).

Still today gamma-ray bursts and neutrinos are not completely understood, because
of this the combining neutrinos and gamma-ray burst is quite challenging. Besides this,
combining the two, brings together two extremes, neutrinos which are by far the lightest
particles of the standard models and gamma-ray burst which are by far the most energetic
events in the univsers. This combination makes high energy neutrino production by gamma-
ray bursts one of the most challenging and beautiful topics in astronomy and astrophysics
right now.
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2 GRB models

In this section we look at various models that can produce a GRB, but first we look at
general accepted ingredients of GRB models.

2.1 Ingredients of GRB models

Gamma-ray Burst are rare violent phenomena, with variabilities on time scales of less than
a second. These GRBs are the result of the forming or merging of compact objects releasing
energies of the order of 1051 erg to 1054 erg, which is as much energy as the rest mass of
our own sun or a neutron star E ≈ M�c

2. This results in the formation of a relativistic
shock wave with a Lorentz factor γ > 100. The existence of the relativistic shock wave is
observationally confirmed and results in the fact that the photons of the GRB are blueshifted
in the observer’s frame. Besides this due to relativistic beaming only a fraction 1/γ of the
source is observed. In most cases, the bursts are not spherically symmetric, but they have
jets. This means that observed GRBs are pointing towards us. During the evolution of a
GRB the jet consists of multiple shock waves which propagate all with a slightly different
speed resulting in internal collisions in the jet which dissipate energy. Besides this, also
energy is dissipated after the initial explosion when the jets of the GRB are slowed down
and collide with the interstellar medium, this is called the afterglow. In almost all models of
the evolution of GRBs, the initial formation of the relativistic shock wave is not important for
the evolution of the GRB, which means that determining the origin of GRBs is challenging
work[2, 1].

2.2 The 2 types of GRBs

Observationally it is very clear that there are two distinct types of GRBs, hard short bursts
and long hard bursts. Of these two, the detection of the short bursts is more difficult but
recent progress in observations have result in good detections of short burst and long bursts.
The main differences between long and short burst are the time of the burst and the hardness.
The time of the burst is expressed in a quantity called t90, which is the time it takes for the
detectors to receive 90% of the flux of the GRB. Hardness is an observed property which
basically is the ratio of an high energy band divided by a lower energy band[1, 3]. The fact
that there are two distinguished classes of GRBs was already known before 2000, when two
distinct types of GRBs where clearly visible from the BATSE data as can be seen in figure
1[1]1.

2.3 Binary neutron star mergers

Binary neutron star mergers or neutron star-black hole mergers are among the compact
object mergers the best candidates for GRBs. These mergers happen because binary orbits

1For a more extended explaination on t90 and hardness see appendix 1
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Figure 1: Plot of the hardness against t90 using the BATSE data

of compact objects spiral into each other due to gravitational radiation, when the two neutron
stars or neutron star and black hole merge, large amounts of energy escape in neutrinos and
gravitational radiation. Besides this also a small fraction of the energy escapes as photons
resulting in an observable GRB[1]. The standard model of the merger of compact objects
which result in a GRB is that during the merger a rotating black hole is formed with an
accretion disk, which result in jets in the direction of the rotation axis[3].

Nowadays the observations of neutron stars in our own galaxy using radio and X-ray
suggest that neutron star mergers happen at a rate of around ≈ 10−6 event per year per
galaxy. This rate is quite close to the rate of short GRBs in galaxies. The rate of neutron
star-black hole mergers does also have a comparable rate of around ≈ 10−6 event per year
per galaxy, based on detections in radio and X-ray. This coincidence means that neutron
star-neutron star mergers and neutron star-black hole mergers are good candidates for GRBs
and together can explain the amount of observed short GRBs quite good. Besides this other
compact mergers could also produce GRBs[1, 4].

2.4 Long duration bursts

It seems that the long duration gamma-ray bursts are becoming better understood[5, 4].
These long duration bursts are probably caused by collapsers. These are collapsing low
metallicity Wolf-Rayet stars that have completed all stages of nucleosynthesis. Wolf-Rayes
stars are stars that have a mass in the range of 20 M� − 100 M� and are rapidly rotating.
When these stars complete all stages of nucleosynthesis the core will collapse to a neutron
star, but for these stars the pressure of neutron degeneracy is not strong enough to support
the star so these stars will further collapse to a black hole. When the surrounding material
of the star will be sucked in the black hole much energy is created resulting in a blast of
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γ-rays, along the rotating axis of the black hole with a typical width of 3◦[5, 4]. Wolf-Rayet
stars are massive stars with short lifetimes, this means that they trace star forming regions.
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3 Observational constraints of GRBs

3.1 Distribution of GRBs on the sky

Nowadays it is known that GRBs are distributed uniformly over the whole sky, because
they are at cosmological distances. There is a correlation between GRBs and Abell clusters,
which does not mean that GRBs are associated with Abell clusters but that GRBs trace the
large-scale structure of the universe the same way as Abell clusters do[1]. Besides this, long
GRBs are associated with star formation, this means that long GRBs are formed in galaxies
with a high star formation rate and that the burst distribution in galaxies follows the light
distribution of the host galaxy[2].

Because long GRBs follow the star formation rate this means that GRBs have probably
something to do with stellar deaths like supernovae and hypernovae. The first observational
evidence of this was found in 1998, in this year GRB 980425 took place after which SN
98bw was discovered within the error box of the position of the GRB. These supernova
and GRB were strange. In the GRB there was no high energy spectrum and furthermore
the supernova was exceptionalkly bright compared to other supernova, having an energy 10
times higher then usual supernovae. Besides this SN 98bw also had components expanding
with subrelativistic speeds of around v ∼ 0.3c[2, 4].

On the other hand short GRBs are found more in early type galaxies. This means that
short GRBs correspond to older stars. Furthermore short GRBs are also found to have older
progenitors than type Ia. Some short GRBs are also found to be in in older regions of late
type galaxies, also implying that short GRBs originate from old stars[3].

3.2 Typical spectra

The spectrums of GRBs is non-thermal and differs strongly between different bursts, despite
this there is a fit for the spectra of GRBs, called the Band spectrum. It basically is a spectrum
that consists of 2 power laws which join smoothly at the break energy (α̃− β̃)E0[2, 6], with
the property that the derivatives are continuous[6]. The Band spectrum is given by [2, 6]

N(ν) = N0

{(
hν)α̃ exp(− hν

E0
), for hν < (α̃− β̃)E0;[

(α̃− β̃)E0

](α̃−β̃)(
hν
)β̃

exp(β̃ − α̃), for hν > (α̃− β̃)E0.
(1)

The Band spectrum has the property that it can describe a broad range of spectra. Like
single power laws (E0 =∞), energy exponentials (α̃ = −1, β̃ = −∞) and photon exponential
(α̃ = 0, β̃ = −∞).The Band spectrum is thus able to describe the broad range of spectra
observed in GRBs and even other processes however, it does not provide any relation to the
underlying physical processes of the GRB itself[6].

The Band spectrum is also able to describe a subgroup of bursts called NHE burst (no
high energy burst), in these bursts there is an absence of photons in the high energy part of
the spectra. These burst have the property that they have no hard component and therefore
have a very negative value of β̃[2].
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3.3 Time spectra

For GRBs there seems to be no standard time spectrum, but rather there is an enormous
diversity in the different possible time spectra. Figure 2 shows 4 examples of time spectra
from the BATSE Catalogue. As can be seen there is a huge diversity between these 4, but
what these GRBs all have in common is the existence of spikes with typical times δT and a
chaotic behaviour of the time spectrum. Because of these short time fluctuations an upper
limit can be set on the radius of the source. Often the variable time scale is δT ≈ 10 ms.
This results that the object which produce GRBs have a size of Ei < cδT ≈ 3000km[1].
Furthermore because GRBs have in general a time spectra which consists of short peaks and
is chaotic, explaining this behaviour is quite challenging and can be solved using the fireball
model, which will be explained in section 5.

Figure 2: Total number of counts versus time for several bursts from the BATSE Catalogue.
It can be clearly seen in this plot that there is a huge diversity in the different temporal
structure observed in GRBs[1].
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3.4 Observed energy

The γ-ray detectors that search for GRBs and other γ-ray phenomena detect the flux of the
photons at the different γ-ray energies. When a GRB is seen they immediately look at its
position to accurately measure the flux. Using the observed flux it is possible to calculate
the complete isotropic energy of the burst. The isotropic energy is the energy of the burst
if it is assumed that the burst is completely spherical symmetric, this is called Eiso and is
given by[1]

Eiso = 4πD2F = 1050ergs

(
D

3000 Mpc

)2(
F

10−7ergs/cm2

)
. (2)

In reality some or all GRBs are beamed and as a result the real energy is given by

E =
Ω

4π
Eiso. (3)

Where Ω is the beaming angle[1].

3.4.1 Observed intensity

From the detection of GRBs we know that they have a quite high γ-ray intensity of the
order of 10−7erg cm−3. If this γ-ray intensity is used to calculate the source of the explosion
it results in an totally unrealistic amount of γ-rays in a very small volume. From the
observational fact that GRBs are detected, we know that GRBs are transparent to γ-rays.
But if we assume that the explosion of the GRB is non-relativistic we would predict no γ-rays
at Earth, because of the high density of γ-rays that immidiately make the explosion opaque
for γ-rays (not transparent)[1].

This means that in the case of a nonrelativistic explosion we would not expect any γ-rays
at earth. This problem can be solved by the fireball model if we use Lorentz factors γ ∼ 1000
which implies that the emitting plasma can be transparent for γ-rays and still can observe a
large number of energetic γ-rays at earth[1]. The fireball model will be explained in section
5.
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3.5 Redshift distribution

Gamma-ray bursts are cosmological events and have a distribution which is shown in figure
3[1, 7, 8]. This distribution indicates that GRBs are cosmological with an average redshift
of 2.2.
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Figure 3: Redshift distribution of GRBs[7, 8].

On average short GRBs are closer than long GRBs[3], besides this there is also evidence
that long GRBs have an higher rate in the early universe than at low redshifts in the early
universe the environments of heavy stars was metal-poor[8].
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4 Shock waves

In this section we study non-relativistic shock waves, first we look at boundary conditions
on the shock fronts after which we discuss the spherical blast waves. In this part we assume
that the reader is familiar with basic hydrodynamics, if this is not the case we recommend
the reader to read appendix 2, which explains the basics.

4.1 Shock waves in a simple fluid

To begin our discussion of shock waves we will first consider the case of a planar shock wave
in a polytropic fluid (P = P (ρ)). Without lose of any generality for a planar shock wave, it
can be chosen that the direction of the shock is in the x-direction, and the plane of the shock
is in a fixed place in the y-z plane. Also it will be assumed that the velocity vector lies in
the x-z plane and that derivatives with respect to the y and z axis are zero for all properties
( ∂
∂y

= ∂
∂z

= 0). To get a better illustration of what the shock wave does look like, see figure

4[9].

Figure 4: The geometry of a thin planar shock wave, where the shock wave is traveling to
the right. In this figure the quantities labeled with an 1 are pre-shock and those labeled with
a 2 are post-shock[9].

The fluid equations of hydrodynamics can be rewritten in terms of equations 4, 5, 6 and 72,

2For a detailed derivation see appendix 13.4
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where h is the enthalpy per unit mass and ε is the internal energy per unit mass [9].

∂ρ

∂t
+

∂

∂x

(
ρux

)
= 0, (4)

∂(ρux)

∂t
+

∂

∂x

(
ρu2

x + P
)

= 0, (5)

∂(ρuz)

∂t
+

∂

∂x

(
ρuxuz

)
= 0, (6)

∂

∂t

(
ρ

(
u2

2
+ ε

))
+

∂

∂x

(
ρux

(
u2

2
+ h

))
= 0. (7)

These 4 equations which are the 4 conservation equations for a plane wave in a polytropic
fluid, in this equation it is used that u2 = u2

x + u2
z. Further it can be seen that all the 4

conservation equations have the same general form given by equation 8, where Q is some
quantity and F is the flux of that quantity[9, 10].

∂Q

∂t
+
∂F

∂x
= 0. (8)

Using the assumption of an infinitely small shock equation 8 implies that the flux-density of
this quantity is conserved before and after the shock3. This means that four conserved fluxes
can be obtained and thus 4 equations. These equations are called the Rankine-Hugoniot jump
conditions and are given by equations 9 till 12[9, 10].

ρ1ux,1 = ρ2ux,2, (9)(
ρu2

x + P
)

1
=
(
ρu2

x + P
)

2
, (10)

ρ1ux,1uz,1 = ρ2ux,2uz,2, (11)(
ρux

(
u2

2
+ h

))
1

=

(
ρux

(
u2

2
+ h

))
2

. (12)

These jump conditions give the conditions that a planar shock wave should satisfy. But
what would these equations imply for the conditions in front and behind the shock wave? In
this part we discuss how these equation can be rewritten and what this means. Using these
equations it is convenient to define the constant J = ρiux,i. Using this, the above equations

3For a detailed explanation why this is the case see appendix 13.5

13



can simply be rewritten to the following equations[9, 10].

ρ1ux,1 = ρ2ux,2 ≡ J, (13)

ρ1u
2
x,1 + P1 = ρ2u

2
x,2 + P2, (14)

uz,1 = uz,2, (15)

u2
x,1

2
+ h1 =

u2
x,2

2
+ h2. (16)

Now equation 14 and 16 can be rewritten to obtain what is called the Rayleigh line and
the Rankine-Hugoniot shock adiabat which are given by equation 17 and 18, where a new
quantity called, V is defined, which is the specific volume (V = 1

ρ
)[9, 11].

J2 =
P2 − P1

V1 − V2

, (17)

γ

γ − 1

(
P2V2 − P1V1

)
=

1

2

(
V2 + V1

)(
P2 − P1

)
. (18)

Using the Rayleigh line, the velocity difference between the velocity before and after the
shock can be calculated. Using the fact that u1 − u2 = J(V1 − V2) this results in[11],

∆V = V1 − V2 =
√

(P2 − P1)(V1 − V2). (19)

For this problem it is useful to know what happens to the density of the fluids before and
after the shock wave. We define the compression ratio, which basically is the ratio between
the density after and before the shock (see equation 20). Using this and equation 18 it can
be shown that this reduces to equation 21[9].

r =
ρ2

ρ1

=
V1

V2

=
v1

v2

, (20)

r =

γ+1
γ−1

P2 + P1

γ+1
γ−1

P1 + P2

. (21)

For a GRB and other shock waves it is interesting to look at what happens if there is a
strong shock wave, which means P2 � P1. In this situation the compression ratio can be
rewritten to equation 22[9, 10].

r =
γ + 1

γ − 1
. (22)

In the case of an ideal gas the compression ratio is 4, because γ = 5
3
, on the other hand if

the gas is ultrarelativistic the compression ratio becomes 7 (γ = 4
3
). For a shock wave the

Rankine Hugoniot Jump conditions can be rewritten in terms of the mach number instead
of the velocity[10, 11].
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ρ2

ρ1

=
ux,1
ux,2

=
(γ + 1)M2

1

(γ − 1)M2
1 + 2

, (23)

P2

P1

=
2γM2

1 − (γ − 1)

γ + 1
, (24)

T2

T1

=
(2γM2

1 − (γ − 1))((γ − 1)M2
1 + 2)

(γ + 1)2M1

, (25)

M2
2 =

2 + (γ − 1)M2
1

2γM2
1 − (γ − 1)

. (26)

In the case of the strong shock limit which is of main interest in the case of astrophysical
explosions these equations reduce to

ρ2 =

(
γ + 1

γ − 1

)
ρ1, (27)

∆u = ux,2 − ux,1 =

(
2

γ + 1

)
ushock, (28)

P2 =

(
2

γ + 1

)
ρ1u

2
shock, (29)

T2 =
γ − 1

γ + 1

P2

P1

T1. (30)

4.2 Spherical blast wave in a simple fluid

In explosions plane shock waves are just approximations far from the start of the shock
wave. In this section we look at the most interesting time of the explosion, right after a lot
of energy is realized and the shock wave starts to expand. This can be described as a blast
wave, which is a wave which is formed after a lot of energy is realized in a small area. In this
section spherical symmetry is assumed to understand a blast wave, this results in equation
31 for the continuity equation, equation 32 for the Euler equation, equation 33 for the energy
equation and equation 34 for the adiabaticity of the fluid elements4[10].

4These equations can easily be derived if one takes into account that ∇ · F = 1
r2

∂
∂r (r2Fr) +

1
r sin θ

∂
∂θ (sin θ Fθ) + 1

r sin θ
∂Fφ

∂φ , which reduce to ∇ · F = 1
r2

∂
∂r (r2Fr) in the spherical symmetric case.
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(
∂

∂t
+ ur

∂

∂r

)
ρ = − ρ

r2

∂

∂r
(r2ur), (31)(

∂

∂t
+ ur

∂

∂r

)
ur = −1

ρ

∂P

∂r
, (32)

∂

∂t

(
ρ
(1

2
u2
r + ε

))
= − 1

r2

∂

∂r

(
r2
(1

2
ρu2

r + h
)
ur

)
, (33)(

∂

∂t
+ ur

∂

∂r

)
ln
(
pρ−γ

)
= 0. (34)

The spherical blast wave problem is a self similarity problem, which means that all functions
of the problem can be expressed as a dimensionless function times initial conditions of the
problem which gives them the desired dimension. This means that we can rewrite the density,
velocity and pressure to the following expressions[10].

ρ = ρ0ρ̆(ξ), (35)

u = Ṙŭ(ξ), (36)

P = ρ0Ṙ
2P̆ (ξ). (37)

Because of this the partial differential equation can be rewritten into coupled ordinary
differential equations, this means that the differential equations reduce to the following
dimensionless differential equations[10]

(ŭ− ξ)dρ̆

dξ
= − ρ̆

ξ2

d

dξ

(
ξ2ŭ
)
, (38)

(ŭ− ξ)dŭ

dξ
− 3

2
ŭ = −1

ρ̆

dP̆

dξ
, (39)

(ŭ− ξ)

(
1

P̆

dP̆

dξ
− γ 1

ρ̆

dρ̆

dξ

)
− 3 = 0. (40)

These ordinary differential equations can be solved using the boundary conditions on the
shock front. This means that the shock conditions are valid at radius ξ = 1, where we define
the dimensionless variable ξ = r

R(t)
, and where the strong shock condition is valid at ξ = 1,

resulting in the following boundary conditions at ξ = 1[10].

ρ̆ =
γ + 1

γ − 1
, (41)

v̆ =
2

γ + 1
, (42)

P̆ =
2

γ + 1
. (43)
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Furthermore the total energy is given by equation 44, if for the moment, the energy of the
external medium is ignored[10].

E =

∫ R

0

(
1

2
ρu2 +

P

γ − 1

)
4πr2dr (44)
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Figure 5: The evolution of the scaled velocity (red), scaled mass density (blue) and the scaled
pressure (green) as function of the dimensionless variable ξ for a ultrarelativistic gas[12].

Using the above differential equations and the boundary conditions, the spherical blast wave
problem can be solved numerically or analytically. In this case we use the results from
Cococubed to get an idea of what the solution will look like[12]. The Cococubed simulation
uses an initial density profile of the form of ρ = ρ0r

−ω and besides this the only other
parameter which needs to be known for the problem is the adiabatic index γ. In the case
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of an adiabatic index of γ = 4
3
≈ 1.3, the solutions of the density, pressure and velocity will

look like the curves shown in figure 5. In the case that the gas is ideal, the solutions will
change a little bit and will look like figure 6[12]. As can be seen in these figures the solutions
look similar with little differences for the different situations.
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Figure 6: The evolution of the scaled velocity (red), scaled mass density (blue) and the
scaled pressure (green) as function of the dimensionless variable ξ for a ideal gas[12].

4.2.1 Dimensional analysis on the problem

In the case of a spherical blast wave the solution might depend on the two dimensional pa-
rameters of the problem which are E and ρ0. To make a length-scale of these two parameters
a time dependence needs to be added. This results in equation 45, where α is a constant
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which depends on the initial conditions[10]. In general the initial value for the constant is
determined to be around 1 for an ultrarelativistic as well as for an ideal gas[10, 13].

R = α

(
Et2

ρ0

) 1
5

(45)
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5 Fireball

”A fireball is a large concentration of energy (radiation) in a small region of space in which
there are relatively few baryons” according to Piran[1]. The unavoidable outcome of a fireball
is a relativistic particle flow that eventually will be converted into radiation. There are two
interesting kinds of fireballs: One that is described by pure radiation resulting in a photon-
lepton fireball and one with baryons where the baryons have a large influence on its further
evolution[1]. An important property of a fireball is that is has a high ratio of energy density
to rest mass resulting in ultra relativistic velocities[14].

Initially the fireball has a high opacity due to free electron-positron pairs which means
that the radiation in the fireball cannot escape. This results in an adiabatic expansion of the
fireball which cools down the fireball till the temperature drops below the pair production
temperature resulting in a transparent fireball. In some cases these fireballs also contain
baryonic matter from the start explosion or from the surroundings of the explosion. In the
case of baryons in the fireball the opacity will be higher due to the electrons from the baryonic
matter resulting in a later escape of the radiation and the conversion from radiation energy
into the energy of the bulk motion of the baryons[14].

5.1 Different regimes

In the evolution of fireballs two important transitions take place. The first transition that
takes place is the transition from the optical thick adiabatic expanding phase to the optical
thin phase where the photons and electrons are decoupled and where the γ-rays will escape.
An other important transition in the evolution of a fireball is the change from radiation-
dominated to matter-dominated. In this context radiation is dominant when η > 1 (where
η is given by equation 46) and matter-dominated when η < 1. The total result of a fireball
depends on these two important transitions. When the transition from optical thick to optical
thin happens earlier then the transition from radiation-dominated to matter-dominated most
of the energy will be still in the radiation resulting in huge amounts of γ-rays. If on the
other hand the fireball becomes matter-dominated before it becomes optical thin, most of
the energy of the fireball will be converted to high energy cosmic particles rather then γ-rays,
resulting in fewer photons[14].

η ≡ E

mc2
(46)

How and when these transitions take place depends on the initial ratio of radiation energy to
mass, ηi. Because of this we can separate 4 different kinds of fireballs with different outcomes.
These 4 different regimes can be separated by means of the initial ratio of radiation energy
to mass, ηpair and ηb where these are defined by equation 47 and 48. Ei is the initial energy,
Ri the initial radius, σT the Thompson cross section and a the radiation constant[14].
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ηpair =

√
3σ2

TEiaT
4
p

4πm2
pc

4Ri

≈ 3 · 1010E
1/2
52 R

−1/2
i7 , (47)

ηb =

(
3σTEi

8πmpc2R2
i

) 1
3

≈ 105E
1/3
52 R

−2/3
i7 . (48)

(i) ηi > ηpair. In this type of fireball the effect of baryons can be ignored and therefore the
evolution is that of a pure photon-lepton fireball(τb � 1). When at the end of the evolution
the temperature drops below Tp (pair production temperature) and τp becomes 1, the fireball
is radiation-dominated and most of the energy escapes as radiation[14].

(ii) ηpair > ηi > ηb. In this type of fireball the opacity of the baryons becomes significant
resulting in a temperature that drops much further below Tp before the fireball becomes
transparent. When the fireball eventually becomes transparent, most energy still escapes as
radiation[14].

(iii) ηb > ηi > 1. In this case the fireball becomes matter-dominated before it becomes
optical thin, this has as a result that most of the energy is converted to the bulk kinetic
energy of the baryons, this case is considered the most promising case for GRBs[14].

(iv) ηi < 1. In this regime the fireball behaves Newtonian. Because of the low ηi almost all
the energy is rest energy resulting in an expansion which will never become near relativistic
and can be described by a classical blast wave[14].

5.2 Relativistic scaling laws

Lets consider a spherical symmetric blast wave. In this case the relativistic conservation
equations for baryon number and energy momentum reduce to5

∂

∂t

(
nγ
)

+
1

r2

∂

∂r

(
r2nu

)
= 0, (49)

∂

∂t

(
e

3
4γ
)

+
1

r2

∂

∂r

(
r2e

3
4u
)

= 0, (50)

∂

∂t

((
n+

4

3
e

)
γu

)
+

1

r2

∂

∂r

(
r2

(
n+

4

3
e

)
u2

)
= −1

3

∂e

∂r
. (51)

To get a better feeling for these equations it is useful to transform the equations to an other

5For the relativistic fluid equations see appendix 13.6
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set of variables (r, t)→ (r, s ≡ t− r). The equations then reduce to6[14]

1

r2

∂

∂r

(
r2nu

)
= − ∂

∂s

(
n

γ + u

)
, (52)

1

r2

∂

∂r

(
r2e

3
4u
)

= − ∂

∂s

(
e

3
4

γ + u

)
, (53)

1

r2

∂

∂r

(
r2

(
n+

4

3
e

)
u2

)
=

∂

∂s

((
n+

4

3
e

)
u

γ + u

)
+

1

3

(
∂e

∂s
− ∂e

∂r

)
. (54)

In the situation of a fireball it is interesting to look at what happens if γ � 1. In this case
the the right hand side of equations 52, 53 and 54 become very small compared to the left
hand side. So as a first approximation the right hand side can be set to zero, resulting in
the following conditions[14].

r2nγ = constant, (55)

r2e
3
4γ = constant, (56)

r2
(
n+

4

3
e
)
γ2 = constant. (57)

With these constants it is possible to rewrite equations 52-54 to scaling laws in the different
regimes. In the case of radiation dominated where e � n this reduces to the equations
below, where Tobs ∝ γe

1
4 [14],

γ ∝ r, n ∝ r−3, e ∝ r−4, Tobs ∝ constant. (58)

This can be done for a matter-dominated fireball resulting in the following equations[14]

γ ∝ constant, n ∝ r−2, e ∝ r−
8
3 , Tobs ∝ r−

2
3 . (59)

In general the radiation dominated phase ends when all the internal energy is converted
into kinetic energy of baryons, this happens at the typical radius RL = ηR0, after this radius
the Lorentz factor γ becomes constant[13].
In the case of a fireball it is even possible to write equations 55-57 such that they are valid
in both regimes. For this we define a quantity D, which is given by[14]

1

D
≡ γ0

γ
+

3γ0ρ0

4e0γ
− 3ρ0

4e0

. (60)

In this case the scaling relations can be rewritten to

r =
r0γ

1/2
0 D3/2

γ1/2
, ρ =

ρ0

D3
, e =

e0

D4
. (61)

6For a detailed derivations see appendix 13.8
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5.3 Evolution of fireballs

Using these relations we can make a plot of the different quantities as function of radius,
this results in figure 7 and figure 8[14]. In the first part of the evolution of a fireball, in the
radiation dominated phase, the fireball can be approximated by a pulse of energy with a
frozen radial profile. This approximation helds quite well for the first part of the evolution.
But fastly starts to break down at the biggest and smallest radii. When eventually the
fireball enters the matter dominated phase which is at a radius of RL = ηR0

7(red line). In
this phase the frozen pulse pulse approximation is no longer valid and multiple shells start
to catch up on other shells, which eventually will results in internal collisions which start
to take place at a radius of Rs = η2R0(violet line) till the phase at which the fireball slows
down to its Newtonian phase[1, 13].

To explain the evolution of the fireball we explain the evolution of the multiple physical
parameters one at a time. Initially our fireball starts at a radius which is in figure 7 and 8
given by 106 cm. At this initially radius a lot of energy is concentrated in a small volume
and because of this, electron-positron pairs are created and the fireball starts to expand.
The start of a fireball has a lot in common with our own big bang as will be explained in
the following parts. In the first part of the evolution, the fireball is radiation dominated.
This means that the Lorentz factor of the fireball starts to increase linearly until it reaches
a radius of RL = ηR0 (red line), at which point the radiation dominated phase ends and
the matter dominated phase starts. In this phase the Lorentz factor stays constant till the
fireball starts to deaccelerate due to the interstellar medium around the fireball. This means
that the matter dominated phase ends after the photon sphere, which is given as the green
line in figure 7[1, 13, 14]. The photon sphere indicates after which radius photons can escape,
this means that photons produced before the photon sphere will be reabsorbed by the shock
waves.
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Figure 7: Evolution of the Lorentz factor (γ) and the energy density as function of the radius

Besides the evolution of the Lorentz factor, in figure 7 also the evolution of the energy

7In this equation R0 is the typical radius found from the time spectra, which is defined as R0 = cδt
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density as function of radius is shown. As can be seen at the beginning of the fireball a
huge amount of energy is present. This energy density starts to decrease while the fireball
starts to expand. In the first part of the evolution the expansion is radiation dominated and
this means that the energy density decreases as ∝ r−4, which is the same as the radiation
dominated phase of the Big Bang. After this the radiation dominated phase ends and the
matter dominated phase is reached. In this phase the energy density starts to decrease less
slow and decreases as ∝ r−8/3 which is very close to the matter dominated phase in our big
bang, where the energy density decreases as ∝ r−3. This means that the energy density of a
fireball scales more or less the same way as that of our Big Bang. But besides this it needs
to be noticed that the evolution of the big bang is simpler than the evolution of a fireball.
This is the case because the big bang is homogeneous and isotropic while the fireball model
that describes GRBs is anisotropic which means that the problem becomes mathematical
more complicated[1, 13, 14].

Also the evolution of the density and the energy over mass ratio is quite well understood
and shown in figure 8. It can be seen in the case of density we have two regimes. The first
regime is the radiation dominated phase in which the density scales as ∝ r−3. When the
matter dominated regimes is reached the density starts to scale differently and will decreases
as ∝ r−2[1, 13, 14].
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Figure 8: Evolution of the density and the energy over mass ratio (η) as function of the
radius

Furthermore the energy over mass ratio (η) is also shown in figure 8. As can be seen
η initially is high but will decrease in the first part as ∝ r−1, when almost all energy is
used to obtain the high Lorentz factor, η will drop below 1 and the matter dominated phase
is completely reached, this means that η immediately starts to scale differently and will
decrease further as ∝ r−2/3[1, 13, 14].

The matter dominated phase approximates the evolution of the fireball well but starts to
break down shortly after the photo sphere is reached. The photo sphere can be calculated
using equation 62, and has a typical distance of around 1013 cm. In figure 7 and 8 the photo
sphere is shown as the green line at a radius of around 0.6 · 1013 cm.
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Rphoton =

√
σTE

4πmpc2η
. (62)

5.4 Deceleration phase

After the photosphere is reached the evolution of the fireball starts to enter the deceleration
phase. In this phase of the fireball there are two intrinsic length scales that influence the
further evolution of the spherical shock wave. The first length scale is the width ∆ of the
relativistc shell which is of the order of ∆ ∼ r/γ. the second length scale is the Sedov
length which is given by l = (E/n1mpc

2)1/3 ≈ 1018 cm[15]. Using both these length scales
the further evolution of a GRB can be described. During this stage of the evolution the
shock starts to interact with the interstellar medium, this can be described by two shocks,
a forward and a reverse shock. In this case there are 3 important length radii, that describe
what happens. The first is the radius at which the reverse shock becomes relativistic and
starts to reduce the Lorentz factor of the shock wave. The second radius R∆ is the radius at
which the reverse shock has crossed the shell and the third radius Rγ is the radius at which
the total mass of the ISM is M/η[13].

Table 1: Table of important radii of GRBs
Initial fireball size R0 = cδt[14]
matter dominated RL = R0η[1, 13]
Internal collisions Rs = R0η

2[13]

Photo sphere Rphoton =
√

σTE
4πmpc2η

[1]

External shocks radius (RRS case) R∆ = l3/4∆1/4[1, 13]

External shocks radius (NRS case) Rγ = l/η2/3[13]

Relativistic reverse shock radius l3/2∆−1/2η−2[13]

Sedov length l = (E/n1mpc
2)1/3[15]

Depending on the conditions there are two different cases. The first case is called the
Newtonian reverse shock case and for this case we have Rs < R∆ < Rγ < RN . The spreading
of different shock waves is important and results in the release of a lot of energy. Also this
case experiences a reverse shock wave that is just mildly relativistic compared with the
forward propagating ultrarelativistic shock wave[15, 13].

In the second case, which is called the relativistic reverse shock case, we have that RN <
Rγ < R∆ < Rs. In this case there is reverse shock wave that quickly becomes relativistic
and due to this there is no spreading. This means that internal collisions are unimportant
and a frozen radial profile exists[15].

For the production of neutrinos the Newtonian reverse shock case is of most interest
because of the existence of internal collisions before the photo sphere.
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After r > Rγ in the Newtonian reverse shock case or r > R∆ in the relativistic reverse
shock case, the shock wave enters the regime of the relativistic Blandford-McKee self-similar
deceleration phase that has a decreasing Lorentz factor that scales as γ ∝ (E/ρ)1/2R−3/2, the
Blandford-McKee self-similar solution starts to breaks down when the shock has a volume of
l3 and enteres the nonrelativistic self-similar Sedov-Taylor solution that describes the further
evolution of the shock wave of the GRB[13].

In figure 9 and 10 a plot of the evolution for the Newtonian reverse shock and the
relativistic reverse shock are shown[13].

Figure 9: Evolution of the Lorentz factor γ of a Newtonian reverse shock wave with a low
final Lorentz factor. The thick solid line represents the average value, the thin solid line
represents the value just behind the forward shock, the dotted line represents the maximal
value and the dash-dotted line, the analytical estimate[13].
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Figure 10: Evolution of the Lorentz factor γ of a relativistic reverse shock wave, the thick
solid line represents the average value, the thin solid line represents the value just behind
the forward shock, the dotted line represents the maximal value and the dash-dotted line,
the analytical estimate[13].
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6 Energetics of gamma-ray bursts

In this section we discuss how efficiently the energy of the GRB is converted to radiation,
whereafter we discuss how much energy can be converted as pre-GRB neutrinos due to pair
annihilation. The rest of the energy of the explosion will be converted to higher energy
neutrinos and cosmic rays.

6.1 Radiation

GRBs are famous for their high energy output in γ-rays in the 10 − 103 keV energy band.
The short time variability in many GRBs is believed to arise due to mainly internal shocks in
which multiple ejecta from the collision with different velocities collide producing short time
variability in the γ-ray spectrum. Typical energies of GRBs, assuming isotropic explosions,
is of around 1053 ergs. But this is not the complete story, by far not all energy of a GRB is
converted to radiation. Just a fraction of the total kinetic energy of a GRB is converted to
thermal energy. This thermal energy is shared between protons, neutrons, electrons and the
magnetic field. Of this thermal energy around one-third goes to the electrons which is the
only thermal energy which is able to radiate away as γ-rays[16].

Figure 11: Efficiency for the conversion of the initial energy in a GRB in the energy band
10 − 103 keV, via internal shocks for different duration times of the GRB. The continuous
curve corresponds to a maximum Lorentz factor of 200 and the dotted curve a maximum
Lorentz factor of 500, both with a minimum Lorentz factor of 5. The dashed curve has a
minimum Lorentz factor of 50 and a maximum of 200[16].

As can be seen in figure 11, the efficiency of producing radiation is around 1%-2% for long

28



duration GRBs while for short duration GRBs the efficiency of producing γ-rays is much
lower then 1% in all cases. In this analysis the main contributor is Bremsstrahlung from the
electrons and positrons. This means that the rest of the energy is going somewhere else, the
most likely way of these high energy loss is due to neutrino production in the fireball and
cosmic rays like high energy protons[16].

6.2 Energy loss due to neutrino production from e−− e+ annihila-
tion

In the case of energy loss by e− − e+ annihilation, the energy loss rate is given by[16]

dEn
dt

= −2necσeεe(4πr
2r0ne) (63)

In this equation En = E/N (E, total energy and N, number of shells), ne is the number
density of electrons, εe is the mean thermal energy of the electrons, σe is the cross section
for e− − e+ annihilation to produce neutrinos of all the flavors, which is given by σe =
2×10−44(εe/1MeV )2cm2, further En ≈ 12πr2r0neεeγ, ne = 2.34×1034T 3

10 cm−3 (T10 = T/10
Mev), and εe = 3.15kT . If these equations are combined this results in[16]8

d lnE

dt
= −9.5× 103

γ
T 5

10 (64)

This equation can be integrated to find the total energy loss due to electron-positron anni-
hilation to neutrinos and is given by [16]

ln

[
E(2t0)

E(t0)

]
= −1.9× 103t0

(
T0

10Mev

)5

(65)

In this equation t0 is the largest value of r0/c and the time when the shells become optical
thin to electron neutrinos. Shells become optical thin to electron neutrinos when their
T0 ≤ 10.2MeV[16].

These pre-GRB neutrinos will escape from the GRB with an energy between 10 and
30 MeV. These neutrinos would not be detectable at Earth using todays neutrino telescopes.

8For derivation of this equation see appendix
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7 Neutrinos

Neutrinos are subatomic particles from the standard model which have no charge have a low
mass and are only participating in the weak interaction and gravitational force. Therefore
the neutrino is by far the strangest particle from the standard model. Today neutrinos can
be detected with enormous detectors like Icecube and Super-Kamiokande. Because of this a
new branch of science has appeared. The science that connects the production of neutrinos
with other phenomenons in the universe. Till now it is known that supernovae produce
neutrinos, by a the famous detection of Super-Kamiokande and other neutrino observatories,
they detected neutrinos a pulse of neutrinos just before the light of supernova 1987A reached
the earth[17].

7.1 Neutrino production

There are multiple ways to produce neutrinos. In this thesis we mainly focus on one method
to produce high energy neutrinos but first give a short summary of the multiple ways to
produce high energy neutrinos. One way to produce neutrinos is by means of internal
collisions, in this proces multiple shells are produced that move with Lorentz factors that
are slightly different from each other. Because of this faster shells start to catch up with
slower moving shells causing collisions between shells, producing high energy neutrinos. This
method of internal collisions is the main focus of this thesis. Besides the internal collisions
neutrinos can also be produced due to the reverse shock of the shock wave. Furthermore
the collision of the shock waves with the interstellar medium will result in the production of
neutrinos. This method will probably produce less energetic neutrinos than those generated
by internal shocks because when the shock wave collides with the interstellar medium the
speed of the shock wave is already much lower than initially. The last method is due to jets
drilling through the envelope of the progenitor producing collisions that produce neutrinos[3].

In addition there is production of less energetic neutrinos during a GRB. During the
formation of a GRB probably a lot of energy escapes as low energy neutrinos due to inverse
beta decay. Also during and after the explosion the neutrons in the explosion will decay
to protons and low energy beta decay neutrinos. These low energy neutrinos are not of
our interest, this means that we mainly focus on the most promising candidate, internal
collisions, to produce high energy cosmic neutrinos[1].

7.2 Pp and pn-interaction

pp and pn collisions are different ways to produce high energy neutrinos but they are based
on the same mechanism. What these two interactions have in common is that by this
interaction a proton has an interaction with a neutron or an other proton. As a consequence
of this high energy collisions mesons are produced. After this collision the mesons decay to
lighter elementary particles. In these collisions mainly two types of mesons are produced,
the pions and kaons. After the production the kaons and pions decay to produce γ-rays and
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neutrinos[18]. In our analysis we will assume that there are mainly pions formed and therefore
ignore heavier mesons like kaons which potentially can be produced in shell collisions.

7.2.1 Looking at the available energy

In GRBs multiple shock waves are formed, these are formed shortly after each other resulting
in multiple shock waves that catch up on eachother. This means that between these different
shock waves there is a difference between the Lorentz factor. This means that during the
collisions of protons with photons, neutrons or other protons, there is extra available energy.
In general the distance traveled by different shells is given by

d1 = cβ1t1 = c
(
1− 1

2γ2
1

)
t1, (66)

d2 = cβ2t2 = c
(
1− 1

2γ2
2

)
t2. (67)

Using this, the typical difference between two moving shells can be calculated and the dif-
ference in Lorentz factor can be calculated in the case that the shells are at the same place,

0 = d1 − d2 = (t1 − t2) +
t2

2γ2
2

− t1
2γ2

1

, (68)

= ∆t− t̄

2

(
1

γ2
1

− 1

γ2
2

)
. (69)

This can be rewritten to

∆t =
t̄

2

(
1

γ2
1

− 1

γ2
2

)
, (70)

=
t̄

2

(
1

(γ −∆γ)2
− 1

(γ + ∆γ)2

)
, (71)

=
t̄

2γ2

(
1

(1− ∆γ
γ

)2
− 1

(1 + ∆γ
γ

)2

)
, (72)

=
t̄

2γ2

(
1 +

2∆γ

γ
− 1 +

2∆γ

γ

)
, (73)

=
2t̄∆γ

γ3
, (74)

→ ∆γ =
∆tγ3

2t̄
. (75)

Using this result it is possible to calculate typical differences between Lorentz factors. In
general typical Lorentz factors are around γ = 1000 and average times are of the order of
1013/c ≈ 103

3
s, further typical time differences in GRBs are of the order of ∆t = 10−4. this

means that realistic differences of Lorentz factors can be around ∆γ ≈ 3·10−4109

2·103 ≈ 100. This
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high value means that typical shells can move towards each other in the center of mass with
typical Lorentz factors of γ ≈ 100, which means that during a pp or pn collision there is an
available energy of E = 2γmpc

2, which is around 200 GeV.

7.3 Pion multiplicity

As discussed in the previous subsection, during the collisions there is 200 GeV available
energy to produce particles. So what does this mean for the amount of produced pions and
there energy? To calculate this we look at the pion multiplicity of pp collisions at a different
energies. As shown in figure 12, it can be seen that at 10 GeV in a pp collision around
6 pions are produced. If this is linearly extrapolated, this means that in totally 20 pions
can be produced for an available energy of 200 GeV. Which also means that every pion on
average will get an energy of 10 GeV.

Figure 12: Pion multiplicity per participating nucleon[19]

7.3.1 Pion decay or pion interaction

Once it is known how many pions can be produced in internal collisions we look at the
production of neutrinos which are produced during the decay of pions. Our first assumption
is that during the fireball, the density is such that equation 76 is valid. In equation 76, l is
the mean free path of the particles and τ is the lifetime of the particles[20].

γ =
E

mc2
<

l

cτ
. (76)

If this relation is obeyed it means that the pions will not interact with the shock waves and
will decay, using this condition an upperlimit for the density can be calculated. Because we
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know that the mean free path is given by l = (σn)−1 and the cross section can be written as

σ = 〈m〉
λ

. We can rewrite equation 76 to

ρ <
λ

cτγ
. (77)

Using this equation it can be calculated that in general, if the density is below 1.5·10−4 g cm−3

or 1.5·10−3 g cm−3 the density is such that the pions will decay instead of have an interaction
with the shock waves. For this reasonable values for γ were assumed of between 100 and
1000, and a λ = 120 g cm−2. As can be seen in previous graphs of the density, these values
are reached easily infront of the photon sphere. This means that this production mechanism
of neutrino production is a realistic candidate. It needs to be added that the graphs 7 and
8 have a relative low η which means that the density of this fireball is kind of an upperlimit
for the density, this means that there are also fireballs with a much lower density.

7.3.2 Decay processes

When the previous mentioned conditions are satisfied, pions will decay and produce neutrinos
via the following decay processes for the 3 different pions[21],

π0 → 2γ, (78)

π+ → µ+ + νµ, (79)

π− → µ− + ν̄µ. (80)

As can be seen, the neutral pion decays to 2 photons and the charged particles produce
a neutrino and decay to a muon. After this the muon will also decay, producing 2 extra
neutrinos in the following reactions[21],

µ+ → e+ + ν̄µ + νe, (81)

µ− → e− + νµ + ν̄e. (82)

As can be seen, on average every pion produces two neutrinos, this means that during the
collision on average two neutrinos are produced and in every three collisions two photons
are produced. The neutrinos will escape due to the long mean free path they have, but the
produced γ-rays by π0-decay will be reabsorbed by the shock wave and only escape when
it reaches the photon sphere. Using all this information, it is also possible to estimate the
energy of the neutrinos, which will be 1/4 of the energy of the pion. This means that the
energy of the neutrinos are on average 2.5 GeV.
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7.4 Lorentz boost for neutrinos

During the collision of shells of baryons in a GRB pions are formed. Pions are unstable and
decay to a muon and muon-neutrino. During this decay the direction of the muon-neutrino or
electron-neutrino is arbitrary in the frame that moves with the center of mass. To calculate
the observed energy of a arbitrary neutrino at a large distance, the energy in the frame that
moves with a Lorentz factor (γ ∼ 100− 1000) need to be transformed back to the observer
frame which is not moving. To do this a Lorentz boost tensor is used to calculate the energy
in the observers frame.

The first part of calculating the energy of the neutrino in the observed frame, is calculating
the direction of the neutrino in the moving frame. To do this a random point on a sphere
need to be generated. It is known that the solid angle of a sphere is given by equation 83,
which can be rewritten to equation 84.

dΩ = sin θ dφ dθ, (83)

= dφ d(cos θ). (84)

This means that it is possible to generate random points on a sphere by calculating the
angles φ and θ in the following way, in which R represents a random number between 0 and
1.

θ = arccos(2R− 1), (85)

φ = 2π ·R. (86)

This procedure was used to generate 1000 random points on a sphere. This resulted in the
following 3d plot, it can be seen in this plot that the distribution has no preferred direction.

Because we are interested in the situation shown in figure 14, the direction of the angle
φ does not matter at all. This means that in the simulation, only random angles θ are
generated. After all the random angles θ are generated, the goal is to calculate the energy in
the observers frame. This can be done using a Lorentz boost (pµ′ = Λµ

νp
ν). Using this and

the approximation for neutrinos that E2 − p2 = m2 ≈ 0 → E2 = p2, the four-momentum
can be rewritten to.


E
px
py
pz

 =


E

E cos θ
E sin θ cosφ
E sin θ cosφ

 = E


1

cos θ
sin θ cosφ
sin θ cosφ

 , (87)

Without loss of any generality it can be said that the frame is moving in the x-direction.
This means that the observed energy can be calculated using a Lorentz boost tensor

34



x-axis

0.5
0.0

0.5
y-

axis

0.5

0.0

0.5

z-
a
x
is

0.5

0.0

0.5

Figure 13: Plot of 1000 random points on a sphere

-�
�
�3
θ γ = 1000

Figure 14: Situation of the moving shell and the random angle θ

pµ′ = E


γ βγ 0 0
βγ γ 0 0
0 0 1 0
0 0 0 1




1
cos θ

sin θ cosφ
sin θ cosφ

 = E


γ(1 + β cos θ)
γ(β + cos θ)
sin θ cosφ
sin θ cosφ

 , (88)

In this equation β is given by

√
γ2−1

γ
≈ 1− 1

2γ2 . Using these equations a program was written

that calculated the observed energy in the observed frame (for source code see appendix
13.12.3). In the case of a shock wave with a Lorentz factor of γ = 1000 this results in the
energy spectrum for 1000 neutrinos shown in figure 15.

In general it is also possible to find the energy spectrum by analytical means. Because
of the randomness on a sphere, cos θ varies between 1 and -1 with equal probability. This
directly means that for any energy between E0

(
1

2γ

)
and 2γE0

(
1 − 1

(2γ)2

)
, there is an equal

probability of finding a neutrino in this energy range, from this it can be seen that the
maximum energy of an neutrino is 2γE0.
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Figure 15: Energy spectrum for a GRB with a Lorentz factor of γ = 1000 and 30.000
neutrinos

7.5 Realistic spectrum

Because in practice the energy spectrum of neutrinos in the comoving frame is not equal
to a delta function but often has the shape of a gaussian function with a tail. These kind
of distributions look like the beta function and some χ2-distributions. Because of this sim-
ilarity the standard Python function are used, these function are numpy.random.beta and
numpy.random.chisquare. These function generate random numbers on the domain of these
probability functions. This resulted in the following realistic energy spectrum of neutrinos
produced by internal collisions in a GRB.
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Figure 16: Energy spectrum for a GRB with a Lorentz factor of γ = 1000. Monte Carlo
simulation of 300.000 neutrinos plotting only neutrinos above 1 GeV

As can be seen in figure 16, a lot of high energy neutrinos can be produced of the order of
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103.5 GeV. These neutrinos can potentially be detected by neutrino telescopes.
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8 Icecube

The IceCube Neutrino Observatory is the first detector of its kind, specially designed to
observe the most violent events in space. These observations are done from deep inside the
South Pole ice. IceCube is a cubic-kilometer neutrino detector made of Antartic Ice. It has
a hexagonal shape and extends to a depth of around 2500 meters. IceCube itself consists of
two parts, a surface array, called Icetop and a deeper denser inner detector called deepcore.
Deepcore consists of 86 vertical strings consisting of 60 modules with photomultiplier tubes
(DOMs), these 86 strings are spread equally over a hexagonal grid[22].

Figure 17: Schematic image of Icecube[22]

8.1 Detection

Today IceCube has a detection threshold of around 10 GeV. The detection of neutrinos is
done using the fact that when neutrinos collide with the ice they produce electrons, muons or
tauons. This depends on the initial flavor of the neutrinos9. When these electrons, neutrinos
or tauons are produced, they are detected using the produced Cherenkov radiation of the
charged leptons. This Cherenkov radiation is detected using the DOMs in the deepcore
of IceCube which measure the different arrival times of the Cherenkov light. Using this a
difference can be seen between electrons, muons and tauons. Using this it can be determined
what flavor the detected neutrinos has[22].

9for detailed reactions see appendix 13.11
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Figure 18: Example of an interaction of a neutrino with the ice[22]

8.2 Astrophysical neutrinos above 1 TeV

Between 2010 and 2012, IceCube has detected numerous events with energies of more than
1 TeV. Using these events IceCube is able to set constraints on the energy spectrum of the
astrophysical neutrino flux. This was done using the fact that at IceCube they detect a flux
which consists of two components, an atmospheric component and a part that consists of
high energy neutrinos from astrophysical origin. Because today it is unknown what exactly
produces the high energy neutrinos and the fact that there is a limited number of detected
neutrinos events, icecube can only test very simple models.[23]

For the models of the high energy neutrinos, it is assumed that they are distributed
isotropically on the sky, follow a power-law energy distribution and arrive at the Earth
in equal amounts of νe, νµ and ντ due to neutrinos oscillations. This all means that the
astrophysical neutrino flux can be approximated by equation 89. In which Φ0 is the neutrino-
antineutrino flux for each flavor at the energy E0 = 105 GeV, Φ0 is given in the units
GeV−1 cm−2 sr−1 s−1[23]10.

10In which the units of sr−1 stands for the steradians of the detector and not the steradians of neutrinos
sources
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Φastro = Φ0

(
E

E0

)−γ
(89)

Between 2010 and 2012 IceCube had detected 388 events, of which 106 had more than
10 TeV of energy and 9 had even an energy above 100 TeV. This resulted in the following
constraint of the neutrino flux[23]

Φν = 2.06+0.4
−0.3 × 10−18

(
Eν

105 GeV

)−2.46±0.12

GeV−1 cm−2 sr−1 s−1, 25 TeV < Eν < 1.4 PeV

(90)

This analysis did not take into account any correlation with astrophysical events[23]. After
this 1 year later a new analysis was done, resulting in a more accurate constraint on the
astrophysical energy flux of neutrinos which is given by 10−8 GeV cm−2 s−1 sr−1[24].

8.2.1 Neutrinos as unique probe

In many astrophysical events, we expect that pions are produced in the interaction of cosmic-
rays with radiation or gas or in the most violent events itself in the universe. These produced
neutrinos can travel long distances, during which they barely interact and reach their final
destiny undisturbed compared to high energy photons which are often absorbed by gas clouds
or interact with the CMB photons (GZK effect), and charged particles which are deflected
by magnetic fields. This makes neutrinos an unique probe for studying violent events in the
universe[24].

8.3 GRB limits Icecube

To explain the detected astrophysical neutrino flux detected by IceCube, multiple sources for
high energy neutrinos were proposed. One of the most promosing candidates to explain the
astrophysical neutrino flux are GRBs. The models of GRBs have proposed certain neutrino
fluxes, but today these fluxes seems to be too high. IceCube has found an upperlimit on the
neutrino flux from GRBs which is 2.06+0.4

−0.3 × 10−8 GeV cm−2 s−1 sr−1. Using the available
data IceCube was able to set a limit on the neutrino energy flux which resulted in figure 19.
As can be seen in this plot, the model of Ahlers et al can be ruled out, because it expects a
too high neutrino flux[25].

At IceCube one is presently investigating if this non-observance of neutrinos is due to
inadequate modelling of the flux or due to a time delay between the emission of neutrinos
and gamma rays from a GRB.
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Figure 19: Exclusion plot of energy flux and neutrino break energy[25]
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9 Time difference of the detection of γ-rays and neu-

trinos

Till today IceCube has not detected any prompt neutrinos of GRBs, because of this we are
wondering why this is the case and one of the reasons why we do not detect any neutrinos
could be because there is some kind of time delay between the arrival time of photons and
neutrinos at Earth. In this analysis we only look at the time difference between the detection
of γ-rays and the neutrinos produces in internal collisions.

9.1 Time difference due to the neutrinosphere and photosphere

During the first part of the fireball the neutrinos escape ealier then the photons, because the
neutrinosphere is almost present at the radius at which the neutrinos are produced, which is
smaller than the photosphere. This means that neutrinos built up a time difference between
photons because they escape earlier than the photons. Produced photons are only able to
escape after they have passed the photonsphere which is a few orders of magnitude bigger
than the neutrinosphere.

In the most general case the internal collisions take place between distances of 1011 cm−
1014 cm. At the time of the first collisions the photons are not able to escape yet, this means
that neutrinos are detected before the detection of the γ-rays. The photons escape at a
typical distance of (σTE/4πmpc

2η)1/2 ≈ 1013 cm[1].
Using these typical distances it is possible to estimate the time difference between the

detection of the neutrinos and photons. Assuming that neutrinos already travel with the
speed of light and the photons will escape at the photonsphere and will be produced by
thermal photons in the shock wave, we obtain

∆t =
s

c

( 1

β
− 1
)

=
s

c

( γ√
γ2 − 1

− 1
)

=
s

2cγ2
. (91)

Using the typical distance of s ≈ (1013−1012) cm = .9·1013 cm and typical Lorentz factors
of Γ ∼ 100 − 1000 the expected time difference is between ∆t = 15 µs and ∆t = 1.5 ms.
This is not a significant time difference between the detection of neutrinos and γ-rays.

9.2 Time difference due to the stellar wind of the stars

Possible candidates of long GRBs are heavy stars of around 20M� − 100M�, these stars
produce during their lifetime stellar winds, these stellar winds form a hydrogen cloud around
the star. If during a GRB the photons and neutrinos escape, the neutrinos will travel
unhindered to the earth. The light will travel a bit slower then the speed of light because it
has a refraction index due to the intersellar medium it travels through. In general the time
delay of the light and the neutrinos is given by
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dt =
dr

c
(n− 1). (92)

To calculate this, the refraction index need to be calculated for γ-rays. In general the
refraction index is given by[26]

n = 1 + δ(E) + iβ(E) ≈ 1 + δ(E). (93)

In this equation β represents the influence of absorption and this will be ignored, because
only the photons which are not absorbed are interesting for the problem. In general δ is
given by

δ =
ren

2π

(hc
E

)2

f1. (94)

In this equation re is the classical electron radius, n the number density of atoms, E the
energy of the photons and f1 a constant which is approximately equal to Z.
To calculate the time difference one more quantity need to be determined, which is the
number density of the matter around the star, this is given by

µmHn = ρ =
dM

dV
=

dM

4πr2dr
=

dM
dt

4πr2 dr
dt

=
Ṁ(r)

4πr2v(r)
. (95)

This results in,

dt =
dr

c
δ =

dr

c

ren

2π

(hc
E

)2

f1, (96)

=
dr

c

re
2π

(hc
E

)2 Z

µmH

Ṁ(r)

4πr2v(r)
. (97)

This can be integrated to give,

∆t =
re

8π2

h2c

mHE2

∫ rfinal

r0

Z(r)Ṁ(r)dr

µ(r)v(r)r2
. (98)

In most cases it can be assumed that the stellar wind has a constant velocity and mass loss
and consists of pure hydrogen, this means that the above equation can be rewritten to,

∆t =
re

8π2

h2cṀ

mHE2v

∫ rfinal

r0

dr

r2
, (99)

=
re

8π2

h2cṀ

mHE2v

(
1

r0

− 1

rfinal

)
. (100)
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In all most all cases of stellar winds rfinal � r0, this means that the time delay is given by,

∆t =
re

8π2

h2cṀ

mHE2vr0

. (101)

For typical values the equation can be rewritten to,

0.7

(
Ṁ

10−4 M� yr−1

)(
10 keV

E

)2(
100 km s−1

v

)(
1013 cm

r0

)
fs. (102)

This result basically means that the time difference between the detection of neutrinos and
the detections of photons can be ignored.

9.2.1 Comparison with optical light

So the γ-rays have a short time delay compared to the neutrinos. So how does this change if
the photons are optical photons? In this case we know that the refractive index is given by,

n ≈ 1 + eρ. (103)

In which ρ is the density of the medium and e is an emperical constant. In the case of the
air on earth, these values are n = 1.000293 and ρ = 1.2754 · 10−3. Using these values e can
be found to be e = 2.297 · 10−1 cm3 g−1. This means that,

∆t =
dr

c
eρ. (104)

Which immediately reduces to,

∆t =
eṀ

4πcvr0

, (105)

∆t = 3.84 · 102

(
Ṁ

10−4 M� yr−1

)(
100 km s−1

v

)(
1013 cm

r0

)
s. (106)

This difference is significant, but in the case of GRBs there is no optical light from the GRB
but from the afterglow, so this does not matter for the time difference between the neutrinos
and γ-rays.

9.3 Time difference due to mass of neutrinos

Today it is not yet known what the precise mass of neutrinos are. Nowadays there are upper
limits for the neutrinos mass found by looking at decay spectra, this resulted in an upper
limit for the electron neutrino of 2 eV, this low mass can potentially result in a measurable
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time difference between the detection of neutrinos and photons of a GRB at cosmological
distances. The time difference between the photons and neutrinos is given by

dt =
ds

c

( 1

β
− 1
)
, (107)

=
ds

c

( γ√
γ2 − 1

− 1
)
. (108)

In the case that the Lorentz factor is γ � 1, these relations reduce to

dt =
γds

c

( 1√
γ2 − 1

− 1

γ

)
, (109)

≈ γds

c

(1

γ
+

1

2γ3
− 1

γ

)
=

ds

2γ2c
. (110)

This equation can be calculated easily if the gamma factor does not depend on the redshift,
if this is the case. The equation reduces to

∆t =
ltt(z)

2γ2
. (111)

In this equation ltt(z) is the light travel time. The light travel time as function of redshift
is given by figure 20[27].
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Figure 20: lighttraveltime as function of redshift[27].

This means that the time difference between the detection of neutrinos and photons can be
rewriten in terms of LLT(z), where LLT(z) is the light travel time in Gyr and the energy
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and mass of the neutrino (γ = E
mνc2

):

∆t =
π · 1016 · LLT(z)

2 E2

m2
νc

4

= 5π · 10−2LLT(z)

(
mν

1 eV

)2(
10 TeV

E

)2

. (112)
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Figure 21: Time difference as function of redshift, for a neutrino with E = 10 TeV and
E = 10 GeV.

This means that the time difference between the detection of photons and neutrinos is
very small and can in general be ignored. To make the estimates more accurate of the time
difference, lets assume that neutrinos undergo redshift the same way as photons undergo
redshift and thus E ∝ (z + 1)−1, this means that the energy spectrum changes and the
time difference should increase less rapidly with redshift. This means that γ = E

mν
can be

rewritten to γ = E0

mν
(1 + z). In general this means that the time difference is given by

∆t =

∫ z

0

d(llt(z))

2γ2
, (113)

=
m2
ν

2E2
0

1 Gyr

∫ z

0

d(llt(z))

(1 + z)2
, (114)

= 5π · 10−2

(
mν

1 eV

)2(
10 TeV

E

)2 ∫ z

0

d(LLT(z))

(1 + z)2
. (115)

This results in a time difference which is a factor 3 smaller as shown in figure 22
This all basically means that the time difference between the detection of neutrinos and
photons is negligible.
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Figure 22: Time difference as function of redshift, for a neutrino with E = 10 TeV and
E = 10 GeV if it arrives at the earth. This plot also takes into account that the energy of
neutrinos decreases due to redshift.
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10 Summary

In this thesis we have discussed the different progenitor models of GRBs of which the main
candidates are neutron star-neutron star mergers for short GRBs and collapsers for long
GRBs. Also the observational constraints of GRBs and basic shock physics were discussed,
to eventually the physics of relativistic shock waves like fireballs. After this we looked at
the energetics of GRBs, like the photon production efficiency which seems to be quite low of
around 1%, after this also a short look was taken at low energy neutrinos formed due to the
annihilation of electron-positron pairs. As last we looked at neutrino production in GRBs
due to internal collisions and came to the conclusion that 10 TeV neutrinos can be produced
in ordinary GRBs. Besides this we looked at the time difference between the detection of
neutrinos and photons taking into account earlier escape of neutrinos, refractive indices of
clouds around the GRB and a finite mass for neutrinos. This resulted in time differences
of the order of millisecond neutrinos, which is not a significant time difference between the
detection of neutrinos and photons.

11 Discussion

Still there are some open questions that need to be answered. The absolute estimate of
the amount of neutrinos at Earth is a real challenge, and could not be estimated properly
within the scope of this work, This means that it is not possible to look if this GRB model
of the fireball produces a reasonable amount of neutrinos which are not above the limits set
by IceCube. Furthermore in this thesis we only looked at the prompt neutrinos production
and pre-GRB neutrinos. Besides this also neutrinos can be produced in external collisions,
which could have a time delay compared to the γ-rays detected at Earth. Furthermore it
still remains a mystery what can cause the observed γ-rays produced at Earth. These open
questions could be answered in future research.
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13 Appendix

13.1 T90 and Hardness

GRBs are often classified by 2 important quantities, t90 and hardness. t90 is the time
interval in which the γ-ray detectors receive 90% of the flux of the total burst. This means
that in the case of a spectra as shown in figure 23, t90 can be calculated by first subtracting
the γ-ray background shown in blue after which the 90% of the area in this graph is selected
and the coresponding time it takes to receive this flux. How to precisely calculate t90 goes
behond the scope of this thesis, and so we will not discuss that. Furthermore we also have the
property hardness. When in 1991 the BATSE was launched with as main goal to specially
target GRBs it had 4 channels. Hardness is defined on the received flux of channel 2 and 3
of BATSE, This means that Hardness = I3/I2 and in the case of figure 23 this means that
hardness is the blue area divided by the red area[1].

Figure 23: The left plot is a plot of a typical time spectra, blue is the γ-ray background and
red is 90% of the received flux. On the right is a plot of an energy spectra, in which red is
the channel 2 and blue channel 3[1].
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13.2 Basic astrophysical hydrodynamics

Before looking at shocks it is useful to first look at the basics of astrophysical hydrodynamics.
Hydrodynamics is the physics of fluids and knows a long history which goes back till the old
Greeks with Archimedes and Archimedes principle which says that the buoyancy is equal to
the weight of the displaced fluid. After this discovery of Archimedes there was no further
development of hydrodynamics until the seventeenth and eighteenth century. Since this time
with Pascal, Newton and Euler in the seventeenth and eighteenth century and other like Lord
Kelvin and Helmholtz in the nineteenth century the field of hydrodynamics came to its full
form as it is now tought in undergraduate courses on hydrodynamics[28].

Hydrodynamics is a field of physics which has a strong mathematical basis. This basis
is founded on what are called conserved quantities, These conserved quantities are result in
conservation equations which can be derived from the fundamental Boltzmann equation. In
hydrodynamics there are 5 important conservation laws. The first equation is the continuity
equation which says that mass is conserved and is given by equation 116, where ρ is the
density of the fluid and ~u is the bulk velocity[29].

∂ρ

∂t
+ ~∇ · (ρ~u) = 0. (116)

Besides the conservation of mass, it is also assumed that momentum (~p = m~v) is also
conserved. Using the Boltzmann equation this results in what is called the Euler equation
which is given by equation 117. Besides these equations it is usefull to define something
which is called the Lagrangian derivative which is defined by equation 118 which can be
used to rewrite the Euler equation in vector form to equation 119[29].

∂~u

∂t
+ (~u · ~∇) · ~u = −

~∇P
ρ

+~f , (117)(
∂

∂t
+
(
~u · ~∇

))
f =

Df

Dt
, (118)

D~u

Dt
= −

~∇P
ρ

+~f . (119)

Furthermore in hydrodynamics it is assumed that there is conservation of energy, this can
also be derived from the Boltzmann equation and results in equation 120, this one will be
written in Einstein summation form because of the complexity of the equation. In equation
120, ρε is the specific internal energy, πik the viscous stress tensor and Fk the conducting
heat flux [29].

∂

∂t

(
ρ

2
ukuk + ρε

)
+

∂

∂xk

(
ρ

2
uiuiuk + ui(Pδik − πik) + ρεuk + Fk

)
= −ρuk∂kΦ. (120)

53



In the case that a fluid is completely adiabatic we obtain an extra conservation equation in
hydrodynamics for the entropy, which is given by[10]

Ds

Dt
= 0. (121)

13.2.1 Polytropic fluids

Polytropic fluids are fluids for which the pressure is only dependent on the local density,
and so the pressure of these fluids is independent of the temperature and other parameters.
In general a polytropic fluid does satisfy equation 122 where K is a constant and n is the
polytropic index[29].

P = Kρn. (122)

One important application of polytropic fluids is that under adiabatic circumstances all fluids
behave like polytropes because Pρ−γ = constant under these circumstances, in the case of
an adiabatic fluid the polytropic index is given by the adiabatic index (γ = CP

CV
). In the case

of an adiabatic gas like specific enthalpy and the specific internal energy become easier to
calculate and are related by equations 123 and 124, which mean that the enthalpy and the
specific internal energy are related to the pressure over density (P/ρ) by nothing more then
a constant which is a function of the adiabatic index[29].

h =
γP

(γ − 1)ρ
, (123)

e =
P

(γ − 1)ρ
. (124)

Besides this the enthalpy of an adiabatic fluid can also be calculated relatively easy, using
equation 125. This equation can be derived from the first law of thermodynamics11[30].

s = s0 +
kB lnK

µmH(γ − 1)
. (125)

13.2.2 The speed of sound

To understand shock waves first a short introduction to sound waves and the speed of sound
is given. The sound speed is the speed at which small amplitude waves travel through a
medium, we can separate 2 different forms of the speed of sound. The first sound speed
is the adiabatic speed of sound which is the speed of sound for adiabatic fluid, given by

11For a detailed derivation of this equation see appendix 13.3

54



equation 126. The other speed of sound is one at constant temperature and is called the
isothermal speed of sound and is given by equation 127[9].

c2
s =

(
∂P

∂ρ

)
S

, (126)

c2
s,T =

(
∂P

∂ρ

)
T

. (127)

Of these 2 sound speeds, the adiabatic sound speed will be mainly used in calculations
involving shock waves, because shock waves are adiabatic. The adiabatic sound speed can
be rewritten to a different form using the fact that for any adiabatic fluid Pρ−γ = constant,
which results in equation 128[9].

c2
s =

γP

ρ
. (128)

Besides these we will also define what is called the Mach number, this is a number which
indicates the velocity of the flow in units of the speed of sound and this is given by equation
129[9].

Mi =
vi
cs

=


< 1 : subsonic,
= 1 : sonic,
> 1 : supersonic.

(129)
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13.3 Entropy of a polytropic fluid

In this section the specific entropy for a polytropic fluid will be derived. In the case of a
polytropic fluid it is known that equations 123 and 124 are valid. Besides these it is also
known that ρV = M , U = Me and S = Ms. Using these known equations and the first
law of thermodynamics it can be shown that the entropy of a polytropic fluid is given by
equation 125[30].

dU = TdS − PdV (First law of thermodynamics)

dS =
dU

T
+
P

T
dV (rewriting)

Mds =
M

T
de+

ρkB
µmH

dV (using known equation)

µmH

kB
ds =

µmH

kT
de+ ρd

(M
ρ

)
(rewriting)

=
ρ

P
− ρdρ

ρ2
(rewriting)

=
de

(γ − 1)e
− dρ

ρ
(rewriting)

=
1

γ − 1
d ln e− d ln ρ (rewriting)

e =
Kργ−1

γ − 1
(known)

d ln e =
γ − 1

Kργ−1

(
dkργ−1

γ − 1
+

dρργ−2(γ − 1)

γ − 1

)
(calculate d ln e)

=
dk

k
+ (γ − 1)

dρ

ρ

= d ln k + (γ − 1)d ln ρ

µmH

kB
ds =

1

γ − 1
d lnK (substitute in above equation)

s = s0 +
kB lnK

µmh(γ − 1)
(integrate)

13.4 Conservative equations for planar shocks

In this part the conservative equations for a planar shock will be derivated in more detail.
First we start with deriving equation 4, followed by 5, 6 and as last by the derivation of
equation 7.
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13.4.1 Rewriting the continuity equation

∂ρ

∂t
+ ~∇ · (ρ~u) = 0 (Writing out divergence)

∂ρ

∂t
+

∂

∂x

(
ρux

)
+

∂

∂y

(
ρuy

)
+

∂

∂z

(
ρuz

)
= 0 (Derivatives with respect to y and z are zero)

∂ρ

∂t
+

∂

∂x

(
ρux

)
= 0 (4)

13.4.2 Rewriting the Euler equation x-component

In this derivation it is explicit assumed that there is no external force or this external force
is constant.

∂ux
∂t

+ ux
∂

∂x
ux = −1

ρ

∂P

∂x
(Euler equation)

ρ
∂ux
∂t

+ ρux
∂

∂x
ux +

∂P

∂x
= 0 (Rewriting)

ρ
∂ux
∂t

+ ux

(
∂ρ

∂t
+
∂(ρux)

∂x

)
+ ρux

∂

∂x
ux +

∂P

∂x
= 0 (Adding zero)

ρ
∂ux
∂t

+ ux

(
∂ρ

∂t

)
+ ux

(
∂(ρux)

∂x

)
+ ρux

∂

∂x
ux +

∂P

∂x
= 0 (Rewriting)

∂(ρux)

∂t
+

∂

∂x

(
ρu2

x + P
)

= 0 (5)

13.4.3 Rewriting the Euler equation z-component

∂uz
∂t

+ ux
∂

∂x
uz = −1

ρ

∂P

∂z
(Euler equation)

ρ
∂uz
∂t

+ ρux
∂

∂x
uz = 0 (Rewriting)

ρ
∂uz
∂t

+ uz

(∂ρ
∂t

+
∂(ρux)

∂x

)
+ ρux

∂

∂x
uz = 0 (Adding zero)

∂(ρuz)

∂t
+

∂

∂x

(
ρuxuz

)
= 0 (6)
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13.4.4 Rewriting the Energy equation

Assuming agian that the external forces can be assumed constant or not present, no viscousity
and no heat conducting .

∂

∂t

(
ρ

2
ukuk + ρε

)
+

∂

∂xk

(
ρ

2
uiuiuk + ui(Pδik − πik) + ρεuk + Fk

)
= −ρuk

∂Φ

∂xk
(Energy equation)

∂

∂t

(
ρ

2
ukuk + ρε

)
+

∂

∂xk

(
ρ

2
uiuiuk + uiPδik + ρεuk

)
= 0

(Using assumptions)

∂

∂t

(
ρ
(u2

2
+ ε
))

+
∂

∂x

(
ρux
(u2

2
+ ε+

P

ρ

))
= 0 (Rewriting)

∂

∂t

(
ρ
(u2

2
+ ε
))

+
∂

∂x

(
ρux
(u2

2
+ h
))

= 0 (7)

13.5 Conservation in an infinitly small shock

In shock physics a lot of the equations look like equation 8, these equations with Q a quantity
and F the flux of this quantity imply that the flux is conserved. Why that will be shown
in this appendix by integrating and rewriting equation 8. In this analysis it is assumed that
the shock has a thickness ls and that the center of the shock is at x = 0.

∂Q

∂t
+
∂F

∂x
= 0 (8)∫ ls

2

− ls
2

dx
∂F

∂x
= −

∫ ls
2

− ls
2

dx
∂Q

∂t
(Rewriting and integrating)

F2 − F1 = −
∫ ls

2

− ls
2

dx
∂Q

∂t
(calculating left side)

∆F =
ls
2

(
∂Q2

∂t
+
∂Q1

∂t

)
(estimating right side integral)

∆F = 0 (take the limit of ls → 0)

This means that in an infinitly thin shock the fluxes are conserved[9, 10].

13.6 Relativistic hydrodynamics

In this thesis the focus is mainly on gamma-ray burst, these burst realize an energy which
is of the order of E ∼ 1053ergs in just a few seconds. Because of these high energies it is
save to assume that these burst do not behave non-relativistic but rather ultrarelativistic,
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such that typical speeds of the explosion are of the order of v ∼ c, in this situation the fluid
equations need to be adjust to the relativistic case, which results in the relativistic Euler
equation which is given by equation 130, where T µν is the energy momentum tensor given
by equation 131. In these 2 equation uµ is the four-velocity and gµν is the metric12[31, 32].

T µν;ν = 0, (130)

T µν = (ρ+ P )uµuν − Pgµν . (131)

If for the moment the gravity is ignored and it is assumed that space time behaves special
relativistic. Then the above equations reduce to the less complicated equation 132 and
133[31].

∂νT
µν = 0, (132)

T µν = (ρ+ P )uµuν − Pηµν . (133)

13.7 Basic equations and conventions in relativity

In general relativiy one defines things like covariant derivatives, these derivatives are encoun-
tered a lot in relativistic situations like relativistic hydrodynamics. The covariant derivatives
are defined by equation 134, where the Γs are what is called Christoffel symbols these sym-
bols are defined by equation 135 and 136. In the case of special relativity one can easily see
that the Christoffel symbols become zero and so in special relativity the covariant derivative
is equal to the derivative (equation 137)[33].

T µν;ν ≡ ∂νT
µν + ΓµνρT

ρν + ΓννρT
µρ, (134)

Γµνρ =
1

2

(
∂ρgµν + ∂νgµρ − ∂µgνρ

)
, (135)

Γµνρ = gµσΓσνρ, (136)

T µν;ν = ∂νT
µν . (137)

13.8 Change of variables in partial differential equations

In the general case that one wants to change the variables of a partial differential equation
(PDE), from say variables (a, b)→ (c, d) one needs to do calculate the old derivatives in the
new variables. So in this general case that reduces to

12For more information about the covariant derivative see appendix 13.7
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∂

∂a

∣∣∣∣
b

=
∂c

∂a

∣∣∣∣
b

∂

∂c

∣∣∣∣
d

+
∂d

∂a

∣∣∣∣
b

∂

∂d

∣∣∣∣
c

(138)

∂

∂b

∣∣∣∣
a

=
∂c

∂b

∣∣∣∣
a

∂

∂c

∣∣∣∣
d

+
∂d

∂b

∣∣∣∣
a

∂

∂d

∣∣∣∣
c

(139)

These rules can be used. for any general transform of variables.

13.8.1 Rewriting the relativistic fluid equations

In this case a transformation from (r, t) to (r, s ≡ t − s) is made. Using this it is obtained
that the old derivatives become in terms of the new derivatives

∂

∂t

∣∣∣∣
r

=
∂s

∂t

∣∣∣∣
r

∂

∂s

∣∣∣∣
r

+
∂r

∂t

∣∣∣∣
r

∂

∂r

∣∣∣∣
s

=
∂

∂s

∣∣∣∣
r

(140)

∂

∂r

∣∣∣∣
t

=
∂s

∂r

∣∣∣∣
t

∂

∂s

∣∣∣∣
r

+
∂r

∂r

∣∣∣∣
t

∂

∂r

∣∣∣∣
s

= − ∂

∂s

∣∣∣∣
r

+
∂

∂r

∣∣∣∣
s

(141)

Rewriting equation 49 to equation 52

∂

∂t

(
nγ
)

= − 1

r2

∂

∂r

(
r2nu

)
(49)

∂

∂s

(
nγ
)

=
1

r2

∂

∂s

(
r2nu

)
− 1

r2

∂

∂r

(
r2nu

)
(using equation 140 and 141)

1

r2

∂

∂r

(
r2nu

)
=

1

r2

∂

∂s

(
r2nu

)
− ∂

∂s

(
nγ
)

(rewriting)

=
∂

∂s

(
nu− nγ

)
= − ∂

∂s

(
n(γ − u)

)
(reverse taylor expansion)

= − ∂

∂s

(
n

γ + u

)
(52)

Rewriting equation 50 to equation 53

1

r2

∂

∂r

(
r2e

3
4u

)
= − ∂

∂t

(
e

3
4γ
)

(50)

= − ∂

∂s

(
e

3
4γ
)

+
1

r2

∂

∂s

(
r2e

3
4u
)

(using equation 140 and 141)

= − ∂

∂s

(
e

3
4 (γ − u)

)
= − ∂

∂s

(
e

3
4

γ + u

)
(53)
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Rewriting equation 51 to equation 54

1

r2

∂

∂r

(
r2

(
n+

4

3
e

)
u2

)
= − ∂

∂t

((
n+

4

3
e

)
γu

)
− 1

3

∂e

∂r
(51)

= − ∂

∂s

((
n+

4

3
e

)
γu

)
+

∂

∂s

((
n+

4

3
e

)
u2

)
+

1

3

(
∂e

∂s
− ∂e

∂r

)
= − ∂

∂s

((
n+

4

3
e
)
u(γ − u)

)
+

1

3

(
∂e

∂s
− ∂e

∂r

)
(54)

13.9 Pressure in a fireball

P = −

(
∂U

∂V

)
(definition of pressure)

= −
(∂(V e)

∂V

)
= −

(
e+ V

∂e

∂V

)
(Rewriting)

= −
(
e+

4πr3

3

∂e

4πr2∂r

)
= −

(
e+

r

3

∂e

∂r

)
= −

( e0

D4
+
r

3

∂e

∂γ

∂γ

∂r

)
= −

( e0

D4
+
r

3

∂e

∂D−1

∂D−1

∂γ

∂γ

∂r

)
= −

( e0

D4
+
r

3
4e0D

−3∂D
−1

∂γ

∂γ

∂r

)
= − e0

D3

( 1

D
+

4r

3
e0D

−3

(
− γ0

γ2
− 3γ0ρ0

4e0γ2

)
∂γ

∂r

)
=

e0

D3

(4r

3
e0D

−3

(
γ0

γ2
+

3γ0ρ0

4e0γ2

)
∂Γ

∂r
− 1

D

)
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To calculate this we need to calculate ∂γ
∂r

, which is given by

r2γ = r2
0γ0D

3 (known)

0 = r2
0γ0D

3 − r2γ (rewriting)

=
∂

∂r

(
r2

0γ0D
3 − r2γ

)
(Implicit differentiation)

= r2
0γ0

∂D3

∂r
− 2rγ − r2∂γ

∂r

= 3D2r2
0γ0

∂D

∂γ

∂γ

∂r
− 2rγ − r2∂γ

∂r

2rγ =
∂γ

∂r

(
3r2

0γ0D
2∂D

∂γ
− r2

)
∂γ

∂r
=

2rγ

3r2
0γ0D2 ∂D

∂γ
− r2

to calculate this part we need to calculate ∂D
∂γ

, which results in

∂D

∂γ
=

∂

∂γ

(
1

γ0
γ

+ 3γ0ρ0
4e0γ
− 3ρ0

4e0

)
(142)

=
γ0

(
1 + 3ρ0

4e0

)(
γ0

(
1 + 3ρ0

4e0

)
− 3ρ0

4e0
γ

)2 (143)
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13.10 Rewriting equation 63 to equation 64

dEn
dt

= −2necσeεe(4πr
2r0ne) (63)

1

En

dEn
dt

= −2necσeεe(4πr
2r0ne)

En
(Dividing by En)

1

E

dE

dt
= −2necσeεe(4πr

2r0ne)

12πr2r0neεeγ
(Rewriting)

d lnE

dt
= −2

3

σecne
γ

= −2

3

2× 10−44(εe/1 MeV)2 cm2 · 3 · 1010 cm s−1 · 2.34× 1034T 3
10cm−3

γ

= −
2
3
· 2 · 3 · 2.34

γ

(
εe

1 MeV

)2

T 3
10

= −9.36

γ

(
31.5 MeV T10

1 MeV

)2

T 3
10

= −9.29× 103

γ
T 5

10

= −9.5× 103

γ
T 5

10 (64)

13.11 Neutrino reactions for detection

Neutrinos are detected at IceCube by means of that they produce secondary particles, these
are electron, muons or tauons. These particles move with speeds faster than the speed of
light in the ice, with as consequence that they emit Cherenkov radiation. The six main
reactions that produce these secondary particles are the following reactions:

νe + n→ e− + p

ν̄e + p→ e+ + n

νµ + n→ µ− + p

ν̄µ + p→ µ+ + n

ντ + n→ τ− + p

ν̄τ + p→ τ+ + n

63



13.12 Program codes

13.12.1 Evolution of fireball code

Listing 1: Code that calculates the evolution of a fireball

1 #! / usr / bin /env python
2 # made by Fo lker t Nobels
3 from f u t u r e import d i v i s i o n
4 import numpy as np
5 from matp lo t l i b . pyplot import f i g u r e , show , s a v e f i g , ylim , xlim , c l o s e , x labe l

, y labe l , gr id , t i t l e , legend , axv l i n e
6 import s c ipy . opt imize as sco
7 mH = 1.67 e−24 # in grams
8 rad a = 7.5646 e−15
9 kB =1.380658e−16

10 sigmaT = 6.6524 e−25
11

12 import s c ipy . cons tant s as s cc
13 import matp lo t l i b
14 import matp lo t l i b . pyplot as p l t
15 matp lo t l i b . rcParams . update ({ ’ f on t . s i z e ’ : 22})
16

17 c =scc . c
18 pi = scc . p i
19

20 # c a l c u l a t e the a r b i t r a r y constant D
21 de f valueD (gamma, gamma0 , rho0 , e0 ) :
22 over = gamma0/gamma + (3 ∗gamma0∗ rho0 ) /(4 ∗ e0∗gamma) − (3 ∗ rho0 ) /(4 ∗ e0 )
23 re turn 1/ over
24

25 # func t i on to c a l c u l a t e rad iu s
26 de f rad iu s ( r0 , gamma, gamma0 , rho0 , e0 ) :
27 re turn r0 ∗gamma0∗∗ . 5 ∗ valueD (gamma, gamma0 , rho0 , e0 ) ∗∗ 1 .5 /gamma∗∗ . 5
28

29 # func t i on to c a l c u l a t e dens i ty
30 de f rho (gamma, gamma0 , rho0 , e0 ) :
31 re turn rho0 /valueD (gamma, gamma0 , rho0 , e0 ) ∗∗3
32

33 # func t i on to c a l c u l a t e energy dens i ty
34 de f eee (gamma, gamma0 , rho0 , e0 ) :
35 re turn e0/valueD (gamma, gamma0 , rho0 , e0 ) ∗∗4
36

37 # func t i on to c a l c u l a t e the baryonic l oad ing
38 de f b load ing (gamma, gamma0 , rho0 , e0 ) :
39 re turn e0 /( rho0 ∗ valueD (gamma, gamma0 , rho0 , e0 ) )
40

41 # func t i on to c a l c u l a t e the p r e s su r e
42 de f p r e s su r e (gamma, gamma0 , rho0 , e0 , r0 ) :
43 re turn ( e0/valueD (gamma, gamma0 , rho0 , e0 ) ∗∗3 ) ∗ ( 4∗ rad iu s ( r0 , gamma,

gamma0 , rho0 , e0 ) ∗ gamma0/gamma∗∗2 ∗ ( 1 + 3 ∗ rho0 /(4 ∗ e0 ) ) ∗
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d e r r a d i u s (gamma, gamma0 , rho0 , e0 , r0 ) − 1/ valueD (gamma, gamma0 , rho0 , e0 )
)

44

45 # func t i on to c a l c u l a t e the d e r i v a t i v e o f gamma with r e s p e c t to r
46 de f d e r r a d i u s (gamma, gamma0 , rho0 , e0 , r0 ) :
47 re turn (2 ∗ rad iu s ( r0 , gamma, gamma0 , rho0 , e0 ) ∗ gamma ) /(3 ∗ r0 ∗∗2 ∗gamma0

∗valueD (gamma, gamma0 , rho0 , e0 ) ∗∗2 ∗ der D (gamma, gamma0 , rho0 , e0 , r0 ) −
rad iu s ( r0 , gamma, gamma0 , rho0 , e0 ) ∗∗2 )

48

49 # func t i on to c a l c u l a t e the d e r i v a t i v e o f D with r e s p e c t to t gamma
50 de f der D (gamma, gamma0 , rho0 , e0 , r0 ) :
51 b = 3 ∗ rho0 / (4 ∗ e0 )
52 a = gamma0 ∗ (1 + b )
53 re turn a / ( a − b∗ gamma) ∗∗2
54

55 de f p r e s s u r e z e r o (T, rho ,P) :
56 re turn rad a ∗ T∗∗4 / 3 + 2 ∗ rho∗ kB∗ T / mH − P
57

58 eta = 10
59 gamma0=90
60 eee0 = 1 e10
61 rho0 = eee0 / eta
62

63 r00=1e7
64 #gamma arr = np . l i n s p a c e (1 ,1400 ,1000)
65 #rad = rad iu s ( r00 , gamma arr , gamma0 , rho0 , eee0 )
66 loggamma arr = np . l i n s p a c e (0 , np . l og (1288) ,1000)
67 gamma arr=np . exp ( loggamma arr )
68 gamma arr= np . append ( gamma arr , gamma arr [−1])
69

70 rad = rad iu s ( r00 , gamma arr , gamma0 , rho0 , eee0 )
71 gamma arr= np . append ( gamma arr , gamma arr [−1])
72 rad = np . append ( rad ,10 ∗∗ 13)
73 pr in t rad
74

75

76 #raddd = np . l i n s p a c e (1 e6 , 1 e11 , 10 0 )
77 #gamma = [ ]
78 #f o r i in raddd :
79 # pr in t i
80 # gamma. append ( sco . b i s e c t ( r ad iu s f i nd , gamma0, 1 e4 , args=(gamma0 , rho0 , eee0 , r00

, i ) ) )
81

82 # c a l c u l a t i o n o f a l l v a r i a b l e s
83 r ho a r r = rho ( gamma arr , gamma0 , rho0 , eee0 )
84 e e e a r r = eee ( gamma arr , gamma0 , rho0 , eee0 )
85 b l o a d i n g a r r = bload ing ( gamma arr , gamma0 , rho0 , eee0 )
86 p r e s s a r r = pre s su r e ( gamma arr , gamma0 , rho0 , eee0 , r00 )
87

88 #e e e a r r = np . append ( e e e a r r , e e e a r r [−1])
89 r ho a r r = np . append ( rho arr , r ho a r r [−1])
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90 b l o a d i n g a r r = np . append ( b load ing ar r , b l o a d i n g a r r [−1])
91 p r e s s a r r = np . append ( p r e s s a r r , p r e s s a r r [−1])
92

93

94 T = (3 ∗ p r e s s a r r / rad a ) ∗∗ . 25
95 T2 = mH ∗ p r e s s a r r / ( rh o a r r ∗ kB)
96 ’ ’ ’
97 T = [ ]
98 f o r i in xrange (0 , l en ( p r e s s a r r ) ) :
99 T. append ( sco . newton ( p r e s s u r e z e r o , 1e6 , args=( r ho a r r [ i ] , p r e s s a r r [ i ] ) )

)
100

101 pr in t T
102 ’ ’ ’
103 E tot = 1 e49
104 Re = ( sigmaT∗E tot /(4 ∗ pi ∗ 1 .6 e−3∗ eta ) ) ∗∗ . 5
105 pr in t Re
106

107

108 f i g = f i g u r e ( )
109

110 frame = f i g . add subplot (211)
111 frame . s e t x s c a l e ( ” l og ” , nonposx=’ c l i p ’ )
112 frame . s e t y s c a l e ( ” l og ” , nonposy=’ c l i p ’ )
113 pr in t l en ( rad ) , l en ( gamma arr )
114 frame . p l o t ( rad , gamma arr , lw=3)
115 p l t . axv l i n e ( eta ∗ r00 , c=’ r ’ , lw=4)
116 p l t . axv l i n e (Re , c=’ g ’ , lw=4)
117 #p l t . axv l i n e ( eta ∗ eta ∗ r00 , c o l o r=’#BD0BD9 ’ , lw=4)
118 xlim (10 ∗∗ 6 ,10 ∗∗13 )
119 frame . axes . xax i s . s e t t i c k l a b e l s ( [ ] )
120 t i t l e ( ’The Lorentz f a c t o r and energy dens i ty ’ , y=1.14)
121 #x l a b e l ( ’ r ad iu s ’ )
122 g r id ( True )
123 y l a b e l ( ’ $\Gamma$ ’ )
124 p l t . g c f ( ) . s u b p l o t s a d j u s t ( bottom =0.15 , l e f t =0.2 , top =0.85)
125

126

127 ’ ’ ’
128 r ho a r r = rho ( gamma arr , gamma0 , rho0 , eee0 )
129 e e e a r r = eee ( gamma arr , gamma0 , rho0 , eee0 )
130 b l o a d i n g a r r = bload ing ( gamma arr , gamma0 , rho0 , eee0 )
131 p r e s s a r r = pre s su r e ( gamma arr , gamma0 , rho0 , eee0 , r00 )
132 ’ ’ ’
133

134 frame=f i g . add subplot (212)
135 frame . s e t x s c a l e ( ” l og ” , nonposx=’ c l i p ’ )
136 frame . s e t y s c a l e ( ” l og ” , nonposy=’ c l i p ’ )
137 frame . yax i s . s e t t i c k s ( [ 1 0 ∗∗ 14 , 10∗∗ 10 , 10∗∗ 6 , 10∗∗ 2 , 10∗∗−2, 10∗∗ −6])
138 frame . p l o t ( rad [ . 9 e13>rad ] , e e e a r r [ . 9 e13>rad ] , lw=3)
139 xlim (10 ∗∗ 6 ,10 ∗∗13 )
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140 p l t . axv l i n e ( eta ∗ r00 , c=’ r ’ , lw=4)
141 p l t . axv l i n e (Re , c=’ g ’ , lw=4)
142 #p l t . axv l i n e ( eta ∗ eta ∗ r00 , c o l o r=’#BD0BD9 ’ , lw=4)
143 #t i t l e ( ’ Energy dens i ty as func t i on o f r ’ )
144 x l a b e l ( ’ Radius (cm) ’ )
145 g r id ( True )
146 y l a b e l ( ’ Energy dens i ty ’ )
147 p l t . g c f ( ) . s u b p l o t s a d j u s t ( bottom =0.15 , l e f t =0.15 , top =0.85)
148

149

150 ’ ’ ’
151 frame=f i g . add subplot (111)
152 frame . s e t x s c a l e (” l og ” , nonposx=’ c l i p ’ )
153 frame . s e t y s c a l e (” l og ” , nonposy=’ c l i p ’ )
154

155 frame . p l o t ( rad , p r e s s a r r )
156

157

158 t i t l e ( ’ Pres sure as func t i on o f r ’ )
159 x l a b e l ( ’ r ad iu s ’ )
160 g r id ( True )
161 y l a b e l ( ’ Pressure ’ )
162

163 frame=f i g . add subplot (236)
164 frame . s e t x s c a l e (” l og ” , nonposx=’ c l i p ’ )
165 frame . s e t y s c a l e (” l og ” , nonposy=’ c l i p ’ )
166

167 frame . p l o t ( rad ,T)
168 #frame . p l o t ( rad , T2)
169

170 t i t l e ( ’ Temperature as func t i on o f r ’ )
171 x l a b e l ( ’ r ad iu s ’ )
172 g r id ( True )
173 y l a b e l ( ’ Temperature ’ )
174 ’ ’ ’
175

176 show ( )
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13.12.2 Band function code

Listing 2: Band function code

1 #! / usr / bin /env python
2 from f u t u r e import d i v i s i o n
3

4 import s c ipy . cons tant s as s cc
5 import numpy as np
6 from matp lo t l i b . pyplot import f i g u r e , show , s a v e f i g , ylim , xlim , c l o s e , x labe l

, y labe l , gr id , t i t l e , legend , axv l i n e
7 import sys
8

9

10 # import un i t s
11 h = scc . h∗10∗∗7 # h in erg s
12 kevtoerg = 1.6021773 e−9
13

14

15 # Band spectrum func t i on
16 de f bandtot (nu , a , b , E0 , N0) :
17 nu1 = nu [ h∗nu<=(a−b) ∗E0 ]
18 nu2 = nu [ h∗nu>(a−b) ∗E0 ]
19 N1 = N0 ∗ (h∗nu1 ) ∗∗a ∗ np . exp(− h∗nu1/E0)
20 N2 = N0∗ ( ( a−b) ∗E0) ∗∗ ( a−b) ∗ (h∗nu2 ) ∗∗b ∗ np . exp (b−a )
21 re turn np . concatenate ( (N1 , N2) ,0 )
22

23

24

25

26 a = f l o a t ( sys . argv [ 1 ] )
27 b = f l o a t ( sys . argv [ 2 ] )
28 E0kev = f l o a t ( sys . argv [ 3 ] )
29 N0 = f l o a t ( sys . argv [ 4 ] )
30 pr in t 2∗a
31 pr in t ’# Ca lcu la te Band Spectrum #’
32 pr in t ’# a =’ , a
33 pr in t ’# b =’ ,b
34 pr in t ’# E0 =’ , E0kev , ’keV ’
35 pr in t ’# N0 =’ ,N0
36

37

38 Ei = 0 .1 ∗ kevtoerg
39 Ef = 1e5∗ kevtoerg
40

41 E0 = E0kev∗ kevtoerg
42

43 nu = np . l i n s p a c e ( Ei/h , Ef/h ,10000)
44

45 bandnu = bandtot (nu , a , b , E0 , 1 )
46

47 f i g = f i g u r e ( )
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48 frame = f i g . add subplot (121)
49 frame . s e t x s c a l e ( ” l og ” , nonposx=’ c l i p ’ )
50 frame . s e t y s c a l e ( ” l og ” , nonposy=’ c l i p ’ )
51 frame . p l o t (h∗nu/ kevtoerg , bandnu )
52

53

54 t i t l e ( ’Band Spectrum ’ )
55 x l a b e l ( ’ $h \\nu / 1 keV$ ’ )
56 g r id ( True )
57 y l a b e l ( ’$N(\\nu) $ ’ )
58 frame = f i g . add subplot (122)
59 frame . s e t x s c a l e ( ” l og ” , nonposx=’ c l i p ’ )
60 frame . s e t y s c a l e ( ” l og ” , nonposy=’ c l i p ’ )
61 frame . p l o t (h∗nu/ kevtoerg , nu∗∗2∗bandnu )
62 t i t l e ( ’Band Spectrum $\\nu F \\nu $ ’ )
63

64 x l a b e l ( ’ $h \\nu / 1 keV$ ’ )
65 g r id ( True )
66 y l a b e l ( ’ $\\nu F \\nu $ ’ )
67

68

69 s a v e f i g ( ’ p i c t u r e . png ’ )
70 show ( )

13.12.3 Neutrino energy spectrum code

Listing 3: Neutrino energy spectrum code

1 #! / usr / bin /env python
2 # made by Fo lker t Nobels
3 # P h y s i c i s t and Astronomer
4

5 from f u t u r e import d i v i s i o n
6 import numpy as np
7 import numpy . random as rand
8 from matp lo t l i b . pyplot import f i g u r e , show , xlim , ylim , contour , c l abe l , t i t l e
9 import sys

10 from m p l t o o l k i t s . mplot3d import Axes3D
11

12

13 # func t i on that c a l c u l a t e s the observed energy
14 de f obs energy (gamma,E, cos ) :
15 re turn E∗ (gamma + (gamma∗∗2 − 1) ∗∗ . 5 ∗ cos )
16

17 de f obs xmomentum (gamma,E, cos ) :
18 re turn E∗ ( (gamma∗∗2 − 1) ∗∗ . 5 + gamma ∗ cos )
19

20 E0 = f l o a t ( sys . argv [ 1 ] ) ∗1e6
21 Gamma = f l o a t ( sys . argv [ 2 ] )
22 po int = f l o a t ( sys . argv [ 3 ] )
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23 pr in t ’ S ta r t program ’
24 pr in t ’E0 =’ ,E0/1e6 , ’MeV’
25 pr in t ’gamma =’ ,Gamma
26 pr in t ’Number o f po in t s =’ , po int /1e6 , ’ m i l l i o n ’
27

28 # c a l c u l a t e random ang l e s
29 dcos = rand . uniform (1 ,−1 , po int )
30 phi = 2∗np . p i ∗ rand . uniform (1 ,0 , po int )
31

32 # c a l c u l a t e observed energy
33 energy = obs energy (Gamma, E0 , dcos )
34 xmomentum = obs xmomentum (Gamma, E0 , dcos )
35

36 # c a l c u l a t e theta and s i n theta
37 theta = np . a r cco s ( dcos )
38 ds in = np . s i n ( theta )
39

40 ymomentum = E0∗np . s i n ( theta )
41

42 ang le = np . tan (ymomentum/xmomentum)
43

44 # p l o t t i n g part
45 f i g = f i g u r e ( )
46 frame = f i g . add subplot ( 1 , 1 , 1 )
47 frame . h i s t ( energy /1e9 , b ins =100 , c o l o r=’b ’ , alpha =0.8 , normed=1)
48 frame . s e t t i t l e ( ’ D i s t r i b u t i o n o f energy ’ )
49 frame . s e t x l a b e l ( ’ energy ( in GeV) ’ )
50 frame . s e t y l a b e l ( ’ P ro p a b i l i t y ’ )
51

52 frame = f i g . add subplot ( 1 , 2 , 2 )
53 frame . h i s t (np . log10 ( energy ) , b ins =100 , c o l o r=’b ’ , alpha =0.8 , normed=1)
54 frame . s e t t i t l e ( ’ D i s t r i b u t i o n o f energy ’ )
55 frame . s e t x l a b e l ( ’ l og energy ( in log eV) ’ )
56 frame . s e t y l a b e l ( ’ P ro p a b i l i t y ’ )
57

58

59 show ( )
60

61 f i g = f i g u r e ( )
62 frame = f i g . add subplot ( 1 , 1 , 1 )
63 frame . p l o t (np . cos ( phi ) ∗np . s i n ( ang le ) , np . s i n ( phi ) ∗np . s i n ( ang le ) , ’ . ’ )
64 frame . s e t t i t l e ( ’ Angles due to r e l a t i v i s t i c beaming ’ )
65 frame . s e t x l a b e l ( ’ Pro jec ted y−a x i s ’ )
66 frame . s e t y l a b e l ( ’ Pro jec ted z−a x i s ’ )
67 xlim ( − . 05 , . 05)
68 ylim ( − . 05 , . 05)
69 show ( )
70

71

72 # 3d p lo t
73
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74 f i g = f i g u r e ( )
75 frame = f i g . add subplot (111 , p r o j e c t i o n=’ 3d ’ )
76 frame . s c a t t e r ( dcos , ds in ∗np . cos ( phi ) , ds in ∗np . s i n ( phi ) )
77 frame . s e t x l a b e l ( ’ x−a x i s ’ )
78 frame . s e t y l a b e l ( ’ y−a x i s ’ )
79 frame . s e t z l a b e l ( ’ z−a x i s ’ )
80 show ( )
81

82

83

84 f i g = f i g u r e ( )
85 frame = f i g . add subplot ( 1 , 1 , 1 )
86 frame . p l o t ( theta , energy /1e6 , ’ . ’ )
87 frame . s e t t i t l e ( ’ Energy as func t i on o f the ang le ’ )
88 frame . s e t x l a b e l ( ’ $\\ theta$ ( in rad ians ) ’ )
89 frame . s e t y l a b e l ( ’ Energy ( in MeV) ’ )
90 xlim (0 , np . p i )
91 show ( )

Listing 4: Neutrino energy spectrum module

1 #! / usr / bin /env python
2

3 from f u t u r e import d i v i s i o n
4 import numpy as np
5

6 de f obs energy (gamma,E, cos ) :
7 re turn E∗ (gamma + (gamma∗∗2 − 1) ∗∗ . 5 ∗ cos )
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13.12.4 Realistic neutrino energy spectrum code

Listing 5: Realistic neutrino energy spectrum code

1 #! / usr / bin /env python
2 from f u t u r e import d i v i s i o n
3

4 import numpy as np
5 from matp lo t l i b . pyplot import f i g u r e , show , xlim , ylim , contour , c l abe l , t i t l e
6 import numpy . random as rand
7

8

9 from test mod import obs energy
10 import matp lo t l i b . pyplot as p l t
11 import matp lo t l i b
12 matp lo t l i b . rcParams . update ({ ’ f on t . s i z e ’ : 22})
13

14 number = 1e5
15 Gamma=1e3
16

17 # two body decay
18 # working very we l l
19 dcos2 = rand . uniform (−1 ,1 ,number /2)
20 dcos2prime = np . cos (np . a r c co s ( dcos2 ) + np . p i )
21 dcos2 = np . concatenate ( ( dcos2 , dcos2prime ) )
22

23 #np . t ranspose (np . vstack ( ( dcos2 , dcos2prime ) ) ) . reshape ( number , 1 )
24

25

26

27

28 # four body decay
29 dcos1 = rand . uniform (−1 ,1 ,(number , 4 ) )
30 dcos3 = dcos1 [ : , 3 ]
31 dcos4 = dcos1 [ : , 0 : 3 ]
32

33

34 # random e n e r g i e s 4
35 energyrand = rand . uniform ( 0 , 1 , ( number , 4 ) )
36 summ = np . sum( energyrand , a x i s =1)
37

38 summ = np . t ranspose (np . vstack ( (summ,summ,summ,summ) ) )
39 energyrand = energyrand /summ ∗ 1e9
40

41 energyrand2 = 2 .5 e9∗5∗ rand . beta ( 2 , 8 , ( l en ( dcos4 ) ,3 ) )
42 pr in t energyrand2
43 pr in t energyrand2 . max( )
44

45 # energy neut r ino s
46 energy = obs energy (Gamma, energyrand2 , dcos4 )
47

48
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49

50 # energy photons
51 energyp = obs energy (Gamma, 5 e8 , dcos2 )
52 energyp2 = obs energy (Gamma, 2 . 5 e8 , dcos3 )
53

54 # energy photons b e t t e r
55 numbs = ( 2 . 5 e8 + 5e8 ) /5 e5
56

57 dcos5 = rand . uniform (−1 ,1 ,numbs∗number )
58 energyp3 = obs energy (Gamma, 5 e5 , dcos5 )
59

60 energyp = np . concatenate ( ( energyp , energyp2 ) )
61 #energyp [ energyp>1e10 ]
62

63 r a t i o = len ( energyp3 [ energyp3 >2.5 e4 ] ) / l en ( energy [ energy>1e10 ] )
64 #energyp = np . vstack ( ( energyp , energyp2 ) ) . reshape (2 ∗number , 1 )
65

66

67 energy neu = energy . reshape (3 ∗ l en ( energy ) ,1 )
68 energy neu = energy neu [ energy neu>1e10 ]
69

70 pr in t energy neu . max( )
71

72 f i g = f i g u r e ( )
73 frame = f i g . add subplot (111)
74 frame . h i s t (np . log10 ( energy neu /1 e9 ) , l og=True , b ins =50, c o l o r=’b ’ , alpha =0.8 ,

normed=True )
75 frame . s e t t i t l e ( ’ D i s t r i b u t i o n o f energy ( neut r ino s ) ’ , y=1.08)
76 frame . s e t x l a b e l ( ’ Energy ( in l og GeV) ’ )
77 #frame . s e t x s c a l e (” l og ” , nonposx=’ c l i p ’ )
78 #xlim (0 ,1500)
79 p l t . g c f ( ) . s u b p l o t s a d j u s t ( bottom =0.15 , l e f t =0.2 , top =0.85)
80 frame . s e t y l a b e l ( ’ l og ( P r o p ab i l i t y ) ’ )
81 ’ ’ ’
82 frame = f i g . add subplot (222)
83 frame . h i s t ( energyp /1e9 , b ins =100 , c o l o r=’b ’ , alpha =0.8)
84 frame . s e t t i t l e ( ’ D i s t r i b u t i o n o f energy ( photons ) ’ )
85 frame . s e t x l a b e l ( ’ energy ( in l og GeV) ’ )
86 #frame . s e t x s c a l e (” l og ” , nonposx=’ c l i p ’ )
87 frame . s e t y l a b e l ( ’ P ro p a b i l i t y ’ )
88 #xlim (0 ,1500)
89

90 frame = f i g . add subplot (223)
91 frame . h i s t ( energyp3 /1e6 , b ins =100 , c o l o r=’b ’ , alpha =0.8)
92 frame . s e t t i t l e ( ’ D i s t r i b u t i o n o f energy ( photons ) ’ )
93 frame . s e t x l a b e l ( ’ energy ( in l og MeV) ’ )
94 frame . s e t y l a b e l ( ’ P ro p a b i l i t y ’ )
95 ’ ’ ’
96 show ( )
97

98 # c a l c u l a t i o n o f amount o f neut r ino s expected to de t e c t by i cecube
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99 # 1 sec measure
100 counts = 5000
101

102 neutr inocount = counts / r a t i o
103

104 n e u t r i n o i c e = neutr inocount ∗ 1e6
105

106 pr in t n e u t r i n o i c e

13.12.5 Pre-GRB neutrino energy loss code

Listing 6: Pre-GRB neutrino energy loss code

1 #! / usr / bin /env python
2 from f u t u r e import d i v i s i o n
3

4 import numpy as np
5

6 from matp lo t l i b . pyplot import f i g u r e , show , s a v e f i g , ylim , xlim , c l o s e , x labe l
, y labe l , gr id , t i t l e , l egend

7

8 de f p a i r a n n i l a t i o n ( r0 , T0) :
9 # return f r a c t i o n energy l o s s due to product ion o f neut r ino s by pa i r

a n n i l a t i o n
10 # where T0 i s g iven in MeV and t0 in seconds
11 t0 = r0 /(2 .99792458 ∗10∗∗ 10)
12 i f T0>10.2 :
13 ln = 0
14 e l s e :
15 ln = −1.9 ∗ 10∗∗3 ∗ t0 ∗ (T0 / 10 ) ∗∗5
16 re turn 1 − np . exp ( ln )
17

18 de f d e c a y p a r t i c l e ( r0 , T0 , td , Enu ,md) :
19 # return f r a c t i o n energy l o s s due to decay o f p a r t i c l e s that produce

neut r ino s
20 t0 = r0 /(2 .99792458 ∗10∗∗ 10)
21 ln = −t0 / td ∗ Enu / (8 ∗T0) ∗ (md / T0) ∗∗ . 5 ∗ np . exp(−md/T0)
22 re turn 1 − np . exp ( ln )
23

24 #pr in t p a i r a n n i l a t i o n (10 ∗∗ 7 ,10)
25 #pr in t d e c a y p a r t i c l e (10 ∗∗ 7 ,15 , 2 . 2 ∗10∗∗ −6 ,70 ,105.66)
26 #pr in t d e c a y p a r t i c l e (10 ∗∗ 7 ,15 ,2 . 55 ∗10∗∗ −8 ,29 ,139.6)
27

28 T = np . l i n s p a c e ( 0 . 1 , 1 0 . 2 , 1 0 0 0 )
29 T2 = np . l i n s p a c e (0 . 1 , 15 , 1000 )
30 #pa i r = p a i r a n n i l a t i o n (10 ∗∗ 7 ,T)
31 pa i r =[ ]
32 f o r i in T2 :
33 pa i r . append ( p a i r a n n i l a t i o n (10 ∗∗ 7 , i ) )
34
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35 decay1 = d e c a y p a r t i c l e (10 ∗∗ 7 ,T2 , 2 . 2 ∗10∗∗ −6 ,70 ,105.66)
36 decay2 = d e c a y p a r t i c l e (10 ∗∗ 7 ,T2 , 2 . 5 5 ∗10∗∗ −8 ,29 ,139.6)
37 toge the r = decay1 + decay2 + pa i r
38

39 f i g = f i g u r e ( )
40 frame = f i g . add subplot (111)
41 #frame . s e t x s c a l e (” l og ” , nonposx=’ c l i p ’ )
42 #frame . s e t y s c a l e (” l og ” , nonposy=’ c l i p ’ )
43 frame . p l o t (T2 , pair , l a b e l=’ $eˆ{−}− eˆ+$ a n n i h i l a t i o n ’ )
44 frame . p l o t (T2 , decay1 , l a b e l=’muon decay ’ )
45 frame . p l o t (T2 , decay2 , l a b e l=’ pion decay ’ )
46 frame . p l o t (T2 , together , l a b e l=’ t o t a l energy l o s s ’ )
47 ylim (0 , 1 )
48 xlim (0 ,15 )
49 t i t l e ( ’ Energy l o s s due to neutr ino product ion ’ )
50 x l a b e l ( ’ $\\ f r a c {T}{1 \mathrm{MeV}}$ ’ )
51 l egend ( )
52 g r id ( True )
53 y l a b e l ( ’ r e l a t i v e energy l o s s ’ )
54 s a v e f i g ( ’ p i c t u r e . png ’ )
55

56 show ( )
57

58 pr in t 1 .9891 ∗10∗∗33 ∗ 1 .4 ∗ (2 .99792458 ∗10∗∗ 10) ∗∗2
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13.12.6 Time difference due to finite mass neutrino code

Listing 7: Time difference due to finite mass neutrino code

1 #! / usr / bin /env python
2 from f u t u r e import d i v i s i o n
3

4 import numpy as np
5 from matp lo t l i b . pyplot import f i g u r e , show , legend , gr id , s a v e f i g
6 from sc ipy . i n t e r p o l a t e import inte rp1d
7

8 import matp lo t l i b . pyplot as p l t
9 import matp lo t l i b

10 matp lo t l i b . rcParams . update ({ ’ f on t . s i z e ’ : 22})
11

12

13 r e d s h i f t = [ 0 , . 1 , . 2 , . 3 , . 4 , . 5 , . 6 , . 7 , . 8 , . 9 , 1 , 1 . 1 , 1 . 2 , 1 . 3 , 1 . 4 , 1 . 5 , 1 . 6 5 ,
1 . 8 , 2 , 2 . 2 , 2 . 5 , 3 , 3 . 5 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 ]

14 # l i g h t t r a v e l time in Gyr
15 l i g h t t r a v e l t i m e =[0 , 1 . 31 , 2 . 451 , 3 . 448 , 4 . 323 ,

5 . 0 9 3 , 5 . 7 7 3 , 6 . 3 7 5 , 6 . 9 1 1 , 7 . 3 8 9 , 7 . 8 1 7 , 8 . 2 0 2 , 8 . 5 4 9 ,
8 . 8 6 2 , 9 . 1 4 6 , 9 . 4 0 5 , 9 . 7 5 1 , 1 0 . 0 5 5 , 1 0 . 4 0 4 , 10 . 703 ,
1 1 . 0 7 5 , 1 1 . 5 4 9 , 1 1 . 8 9 8 , 1 2 . 1 6 3 , 1 2 . 5 3 4 , 1 2 . 7 7 9 , 1 2 . 9 5 0 , 1 3 . 0 7 5 , 1 3 . 1 6 9 , 1 3 . 2 4 3 ]

16

17 f = inte rp1d ( r e d s h i f t , l i g h t t r a v e l t i m e , kind=’ cubic ’ )
18 newz = np . l i n s p a c e (0 ,10 ,1 e6 )
19 v a l u e s f = f ( newz )
20

21 deltaT = [ ]
22

23 f o r i in xrange (0 , l en ( newz )−1) :
24 i f i ==0:
25 deltaT . append ( ( v a l u e s f [ i +1] − v a l u e s f [ i ] ) ∗ ( newz [ i ]+1)∗∗(−2) )
26 e l s e :
27 deltaT . append ( ( v a l u e s f [ i +1] − v a l u e s f [ i ] ) ∗ ( newz [ i ]+1)∗∗(−2) +

deltaT [ i −1] )
28

29 deltaT . append ( deltaT [−1])
30

31 deltaT = np . array ( deltaT )
32 deltaT = 5∗np . p i ∗1e−2 ∗ deltaT ∗1e6
33

34

35 # plo t i n t e r p o l a t e d accurate r e s u l t
36 f i g = f i g u r e ( )
37 frame = f i g . add subplot ( 1 , 1 , 1 )
38

39 frame . s e t t i t l e ( ’ Light t r a v e l time ’ )
40 frame . p l o t ( newz , f ( newz ) )
41 frame . s e t x l a b e l ( ’ Redsh i f t ’ )
42 frame . s e t y l a b e l ( ’ Light t r a v e l time (Gyr) ’ )
43 g r id ( )
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44 show ( )
45

46

47 d e l t a t = f ( newz ) ∗5∗np . p i ∗1e−2∗1e6
48

49 f i g = f i g u r e ( )
50 frame = f i g . add subplot ( 1 , 1 , 1 )
51

52 frame . s e t t i t l e ( ’Time d i f f e r e n c e ’ )
53 frame . p l o t ( newz , 4∗ de l ta t , l a b e l=’$m {\\ nu e} =$ 2 eV ’ )
54 frame . p l o t ( newz , de l ta t , l a b e l=’$m {\\ nu e} =$ 1 eV ’ )
55 frame . p l o t ( newz , d e l t a t /4 , l a b e l=’$m {\\ nu e} =$ 1/2 eV ’ )
56 frame . s e t x l a b e l ( ’ Redsh i f t ’ )
57 frame . s e t y l a b e l ( ’ time d i f f e r e n c e ( in ns ) ’ )
58 #legend ( )
59 g r id ( )
60 show ( )
61

62 f i g = f i g u r e ( )
63 frame = f i g . add subplot ( 1 , 1 , 1 )
64

65 frame . s e t t i t l e ( ’Time d i f f e r e n c e ’ , y=1.08)
66 frame . p l o t ( newz , 4∗deltaT /1e6 , l a b e l=’$m {\\ nu e} =$ 2 eV ’ , lw=3)
67 frame . p l o t ( newz , deltaT /1e6 , l a b e l=’$m {\\ nu e} =$ 1 eV ’ , lw=3)
68 frame . p l o t ( newz , deltaT /4/1 e6 , l a b e l=’$m {\\ nu e} =$ 1/2 eV ’ , lw=3)
69 frame . s e t x l a b e l ( ’ Redsh i f t ’ )
70 frame . s e t y l a b e l ( ’ time d i f f e r e n c e ( in ms) ’ )
71 p l t . g c f ( ) . s u b p l o t s a d j u s t ( bottom =0.15 , l e f t =0.2 , top =0.85)
72 #legend ( )
73 g r id ( )
74 s a v e f i g ( ’ t i m e d i f f e r e n c e 4 . pdf ’ )
75

76 show ( )
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