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ABSTRACT

Based on exploratory simulations, Rojas-Niño et al. (2012) have proposed that

triaxiality in the Galactic dark matter halo might cause lumpiness in the velocity

distribution of halo stars in the Solar Neighbourhood through orbital resonances.

Accordingly, they have asserted that detecting the presence of substructures in

velocity space may be a method for diagnosing the shape of the dark matter halo

of the Milky Way. However, this conclusion is based on a somewhat idealized

initial configuration. In the current study, a more realistic set-up for the initial

conditions was used to simulate the kinematic effects of a triaxial NFW halo

(Vogelsberger et al. 2007) on halo stars in a galaxy similar to the Milky Way. We

found the local velocity distributions in our simulations to be relatively smooth.

Although resonances were indeed present and associated with specific regions of

velocity space, they did not leave visible imprints in the form of substructures.

It appears that only the shape of the velocity ellipsoid is significantly affected by

triaxiality. We conclude that a method based on the identification of resonant

orbital families in velocity space will probably not be sensitive enough for testing

triaxiality of the dark matter halo of the Milky Way.

Subject headings: dark matter halo, Milky Way, orbital resonances, stellar kinematics,

triaxiality
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1. Introduction

The cosmological model that currently seems to be the most successful in explaining

the formation of structure in the Universe is the Lambda Cold Dark Matter (ΛCDM) model

(e.g. Cole et al. 2000), in which Λ denotes the infamous cosmological constant representing

dark energy. According to this model the baryonic components of galaxies are embedded

in dark matter halos. Since dark matter particles interact extremely weakly, the evolution

equations of the system are solely determined by gravitational forces. This is a text-book

example of an N -body problem which makes for convenient study of the structure and

properties of dark matter halos with N -body simulations. The Aquarius project (Springel

et al. 2008) conducted one of the largest N -body simulations ever of the formation of a

Milky Way-like halo within the ΛCDM. Their simulations confirmed one characteristic that

has been found earlier in numerical studies within ΛCDM (e.g. Allgood et al. 2006), namely

that the dark matter halos show triaxiality which changes with time and distance from the

halo center (for in-depth analysis on halo shape evolution, see e.g. Vera-Ciro et al. 2011).

Constraining the exact shape of the dark matter halo of our Milky Way and its

orientation relative to the Sun has proven to be a difficult task. For example, one

complication is that the simulations in Vera-Ciro et al. (2011) predict the halo shape

itself to be dependent on radius. Therefore its gravitational effects on baryonic matter

are expected to vary with radius and this complicates pinning down the exact form of the

potential using the still sparsely available data. The largest obstacle right now is the lack

of precision in measuring the positions and velocities of stars in the stellar halo. This is

expected to greatly improve with the upcoming data from the Gaia project (Perryman et

al. 2001).

Nonetheless, several different methods have already been designed to measure the

shape of the dark matter halo of the Milky Way. One that has been extensively applied
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concerns fitting the Sagittarius tidal stream (e.g., Law et al. 2009). By now, results seem

to converge tentatively on an almost fully oblate halo whose minor axis is oriented towards

the Sun (Law & Majewski 2010). However, this form does not correspond with predictions

based on simulations like Aquarius (Vera-Ciro & Helmi 2013) in which dark matter halos

have three different axis scales, i.e. they are triaxial.

A case analogous to that of constraining the halo shape concerns constraining the

parameters of the Galactic bar. According to e.g., Monari et al. (2012), one promising

approach for determining the parameters of the bar is to analyze substructures in the

velocity distributions of stars of the Galactic disk in the Solar Neighborhood. These

substructures can be related to orbital resonances caused by the Galactic bar which

introduces a non-axisymmetric component to the potential. These authors have made

simulations of the Galactic disk which have shown that specific orbital resonances with

the bar give rise to substructure in the velocity space of the disk stars. With thoroughly

detailed information on the velocities of the disk stars, one could constrain the parameters

describing the bar. By analogy, this case of deviation from axial symmetry due to the

Galactic bar can be extended to the deviation from spherical or axial symmetry due to

triaxiality of the Galactic halo. In this way, triaxiality of the dark matter halo might

induce substructure in the local velocity distribution of halo stars which in turn might be

observable.

In search of more ways to constrain the parameters of triaxiality, Rojas-Niño et al.

(2012) have explored this idea which lead to their premise that structure in the local

stellar kinematics might actually be the ‘smoking gun’ for detecting halo triaxiality. Their

simulations showed that triaxiality in the Galactic dark matter halo might indeed induce

substructure in the velocity distribution of stars in the Solar Neighbourhood (SN) due

to orbital resonances. However, for the sake of computational efficiency they did not
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attempt to accurately represent the orbital structure of the Galactic halo and their method

overselected stars populating orbital resonances. Therefore, feasibility of the proposed

strategy remains to be tested with realistic simulations. The question remains whether the

local velocity distribution would be perturbed strongly enough by the orbital resonances to

provide practically useful constraints to the axis ratios of the halo. This is the purpose of

the current study. We outline our procedure in general in Section 2.1. The justifications for

the choice of initial conditions, the used potential, corresponding equations of motion, and

the integrator are treated in Sections 2.2 to 2.5. We discuss the statistical method and the

characterization of the orbital resonances in Sections 2.6 and 2.7. Sections 3.1 and 3.2 are

devoted to the velocity distributions and the results of the corresponding statistical tests.

The orbital analyses are outlined in Sections 3.3 and 3.4. Finally, in Section 4 the findings

will be discussed, compared, and contrasted with those of Rojas-Niño et al. (2012).
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2. Method

2.1. General Procedure

Firstly, we generate initial phase-space coordinates for a spherical distribution of

halo stars. Then we integrate the stars in triaxial, oblate, and prolate NFW-potentials.

After integration, we select stars from five different SN-like regions, located on the major,

intermediate, and minor axes and slightly off-axis for the major and minor directions. For

these stars, we perform statistical tests to determine the significance of substructures in

velocity space. We then use spectral orbit classification to identify the different orbital

resonances and types of orbits. Finally, we link this information back to the velocity

distributions in order to analyze their relationship. All these steps are outlined in more

detail in the following sections.

2.2. Initial Conditions

Initially we construct a stellar halo to resemble the six-dimensional phase-space

structure of the stellar halo of the Milky Way in the idealised case of spherical symmetry.

We choose pure sphericity for the initial potential so that all observed effects can be traced

back to the triaxiality of the imposed potential. Although it is highly unlikely that any

halo will be initially formed in a spherically symmetric potential, this does not reduce

generality since we are interested in investigating the influence of triaxiality by itself on

orbital structure. Since according to the ΛCDM (Cole et al. 2000) most of the mass in

our Milky Way is made up of cold dark matter (CDM), we assume that the mass of the

test-particles themselves does not contribute significantly to the potential. Accordingly,

we choose the potential that has been generally found to be produced in cold dark matter

simulations with ΛCDM. It has been named NFW after the authors of the classic paper in
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which it was proposed (Navarro, Frenk, White, 1997):

ΦNFW (r) = − GM200

rsf(C200)

ln (1 + r/rs)

r/rs
(1)

Here f(u) = ln (1 + u)− u/(1 + u), the scale radius is denoted by rs, and the concentration

parameter C200 = r200/rs, which is taken to be ∼ 10 for a galaxy with a mass similar to

that of the Milky Way (Hayashi et al. 2007). r200 is the virial radius, which is defined as the

radius of a sphere within which the mean density of the distribution is equal to 200 times

the critical cosmological density ρc for closure. M200 is defined as the total mass within this

radius, the virial mass, which is ∼ 8 × 1011MJ for the Milky Way(e.g., Battaglia et al.

2006; Busha et al. 2011; Cautun et al. 2014).

To produce a mock stellar halo similar to that of the Milky Way, we will use the

method of Sanderson et al. (2014). We first assign orbital energies to the stars by selecting

their apocenter distances, ra, in a way that reproduces observed distributions. According to

Kinman et al. (1994), the number density distribution of stars in the primary halo follows

the power law ρ ∝ r−3.5. If we assume that the average mass per star does not vary with

apocenter radius, we find that the mass density and probability density distributions as

functions of ra are linearly related to each other. Therefore p(ra)dV ∝ ρ(ra)dV ∝ r−3.5
a dV .

After setting the inner radius to 0.3 kpc to avoid divergence of the integral and using

dV = 4πr2
adra, we can integrate this equation to find the normalization factor. The resulting

probability distribution for ra is:

p(ra)dra =
1

2

√
rc
r3
a

dra (2)

From this distribution we draw the apocenter radii with the extra condition that 3 kpc

< ra < 100 kpc to avoid the type of orbits that are too close or too far to be relevant

for our analysis which concerns the SN at ∼ 8 kpc from the Galactic center. Due to the

spherical symmetry of the system the spatial angles were distributed uniformly in θ and φ
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(−π < θ < π; 0 < φ < 2π). The resulting density profile is shown in the left panel of Figure

1.

Now that we have set up the spatial coordinates, we are going to generate the initial

velocities which point in the tangential direction since the radial velocities are zero at the

apocenters. Since the gravitational force in the radial direction is given by Fr,g = −dΦ
dr

and

the centrifugal force by Fr,cf = v2c
r

, an expression for the circular velocities can be derived:

v2
c = r

dΦ

dr
. (3)

Therefore, we take the derivative of the NFW potential (1) with respect to r:

dΦ

dr
=

GM200

r3f(C200)

(
ln (1 + r/rs)−

r/rs
(1 + r/rs)

)
(4)

Combining with equation (3) gives us:

v2
c =

GM200

r2f(C200)

(
ln (1 + r/rs)−

r/rs
(1 + r/rs)

)
(5)

We use this relationship to determine the angular momentum of a circular orbit, Lc,

associated with a given r. These values can then be related to the total orbital angular

momenta by choosing the circularity parameter η ≡ L/Lc(ra) from a distribution derived

from simulations by Wetzel (2011). Orbital circularity is defined as the ratio of the total

angular momentum of an orbit to that of a purely circular orbit that has the same energy.

Those authors fitted a function to the circularity distribution of infalling objects which has

the following form:

f(η) = C0η
1.05(1− η)C1 (6)

Functions for the parameters C0 and C1 were also fitted by Wetzel (2011), which for our

case (assuming redshift z ∼ 0) give us C0 = 5.3 and C1 = 0.813. We generate values for the

cumulative probability between 0 and 1 from a uniform probability distribution and then

use it to solve Equation (6) numerically to produce the associated η values. The resulting
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probability distribution for η is shown in Figure 2. After finding these values, the total

orbital angular momenta L can be derived using the definition of η ≡ L/Lc(ra).

Since at their apocenters ra the radial velocities Vr for all test particles are zero, the

only non-zero velocity component is the tangential one and therefore Vt = L/ra. Due to

sphericity of the potential the velocities are uniform in ζ which is defined as the angle in

the tangential plane. Therefore, corresponding velocities in the spherical coordinates are

Vθ = Vt sin ζ and Vφ = Vt cos ζ.

We use this method to produce the six-dimensional phase-space coordinates of two

million test particles. The fact that all orbits are generated at the apocenter distances ra is

not expected to influence the simulation results given that enough integration time is taken

to allow for phase-mixing to take place. After a test integration in the spherical potential,

we fit the number density distribution to confirm that it indeed follows the power law

ρ ∝ r−3.5. This is plotted in the right panel of Figure 1.

We select spherical regions with radii of 2 kpc that could possibly represent our Solar

Neighborhood (within which phase-space coordinates can be determined observationally) at

a distance of 8 kpc from the center of the halo on the three main axes and near the major

and minor axes (∼ 14 degrees off-axis; see Figure 3) of the triaxial NFW-potentials in

which the particles are going to be integrated. The initial velocity distributions within the

volumes from Figure 3 can be seen in Figure 4. The velocity dispersions are the smallest

(σmin = σVr ∼ 5 km/s) in the direction parallel to the radial direction of the centers of

the regions. This is to be expected because the initial radial velocities are zero. This also

means that the velocity dispersions must be the largest in the directions perpendicular to

the radial direction of the centers of the regions, i.e. the tangential direction. This can be

confirmed by looking at Figure 4, where indeed σmax = σVt ∼ 56 km/s. These dispersions

are for the extreme case in which all particles are at their apocenters simultaneously.
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Therefore it is more relevant to check the distribution after phase-mixing the orbits by

integrating them in a spherical NFW-potential. As seen in Figure 5, V̄r = V̄θ = V̄φ ∼ 0

km/s, σVr ∼ 70 km/s, and σVθ = σVφ ∼ 80 km/s. After phase-mixing, we expect σVr to be

larger than its initial value. We see that σVr is slightly smaller than σVθ . One cause of this

might be that the peak of the probability distribution of the circularity (see Figure 2) lies

slightly to the right, i.e. favoring orbits with higher circularity which contribute more to

σVθ than to σVr . The overall velocity dispersions are smaller than the dispersions for halo

stars in the Solar Neighborhood. This is what we expected because we have not included

the disk component of the Milky Way which would increase the velocity dispersions.
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Fig. 1.— The normalized density profile as a function of radius for the initial conditions and

after integrating for 8 Gyr in the triaxial NFW-potential. The defined distribution ρ ∝ r−3.5

is plotted with a red line. Because all stars began at the apocenters of their orbits, it is

expected that the stars will populate more the inner regions after integration which is also

seen in the figure.

Fig. 2.— The probabilty density function for the distribution of the circularity η from Wetzel

(2011), f(η) = 5.3η1.05(1− η)0.813.
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Fig. 3.— The positions of the spherical regions with a radius of 2 kpc resembling the Solar

Neighborhood centered on five different locations, namely along the x-axis (8 kpc; 0; 0), the

y-axis (0; 8 kpc; 0), the z-axis (0; 0; 8 kpc), near the x-axis (7.48 kpc; 2 kpc; 2 kpc), and

near the z-axis (2 kpc; 2 kpc; 7.48 kpc).
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Fig. 4.— The initial velocity distributions in km/s of the particles within the volumes under

study of radius 2 kpc located on the x-, y-, and z-axes and near the x- and z-axis. All radial

velocities of these stars are zero, so the spread in velocity is expected to be the smallest

in the direction that aligns radially with the location of the selections. σ is nowhere zero

because the radial direction is not exactly the same for all stars within each volume (54 km/s

> σ > 8 km/s).

Fig. 5.— The velocity distributions in km/s of the particles within the volumes under study

of radius 2 kpc located on the x-, y-, and z-axes and near the x- and z-axis, after integrating

them in a spherically symmetric NFW-potential for 8 Gyr. V̄r = V̄θ = V̄φ ∼ 0 km/s, σVr ∼ 70

km/s, and σVθ = σVφ ∼ 80 km/s.



– 15 –

2.3. The Triaxial NFW Potential

The Aquarius simulations have shown that Milky Way-like dark matter halos are

expected to have triaxial mass distributions (Vera-Ciro et al. 2011). By definition, triaxial

distributions have three principal axes. This means that the equipotential surface of a

triaxial potential has three principal axis sizes, a main axis a, an intermediate axis b, and

a minor axis c, by decreasing size. Usually these values are summarized by providing the

principal axis ratios b/a and c/a or the triaxiality parameter T which is defined as follows

(Binney & Tremaine 2008):

T ≡ a2 − b2

a2 − c2
(7)

One can see that if T ∼ 0, then a ∼ b � c, which means that the system is oblate. If

T ∼ 1, then a� b ∼ c, which means that the system is prolate. An interesting value T̃ of

the triaxiality of the system occurs when the difference between b and c is exactly equal

to the difference between a and b (i.e. no prolate- or oblateness). This is the case when

(b− c) = (a− b). When we rewrite this and set a equal to unity, we get c = 2b− 1. Since

0 < c < 1, we know that 0.5 < b < 1. Inserting the expression for c into Equation (7) with

a equal to unity, we get after some algebra an expression for T̃ :

T̃ ≡ 1− b2

4(b− b2)
(8)

With the limit that 0.5 < b < 1. Within this range we find that the values of T̃ are in the

range 0.5 < T̃ < 0.75.

Hayashi et al. (2007) showed that the degree of triaxiality in CDM dark matter halos

varies with radius, with the potential becoming increasingly spherically symmetric towards

larger distances from the halo center. The transition from nonsphericity to sphericity was

found to occur on average near the value rα ∼ 1.2rs, where rs is the scale radius in the

NFW profile. While Hayashi et al. (2007) proposed a modification of the NFW that fits

this behavior, Vogelsberger et al. (2007) argued for a different form that lends itself more
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easily for deriving the equations of motion which are important for orbital integration. This

will be the form used here. These authors have provided a generalisation of the NFW which

varies in triaxiality as a function of radius and mirrors the behavior found by Hayashi et

al. (2007) qualitatively. Vogelsberger et al. (2007) proposed to replace the radius r from

Equation (1) with a more generalized radius-like quantity r̃:

r̃ =
(rα + r)rE
(rα + rE)

(9)

Here rα is again the transition scale and rE is a scale that represents the ellipsoidal geometry

of the inner region:

rE =

√
x2

a2
+
y2

b2
+
z2

c2
(10)

Here x, y, and z represent the spatial coordinates along axes that are aligned with,

respectively, the major, intermediate, and minor axes. The condition for normalization is

that a2 + b2 + c2 = 3. This equation is analogous to the generic expression for r:

r =
√
x2 + y2 + z2 (11)

From Equation (9) we can see that if r � rα, r̃ ∼= rE, which means that inside the transition

radius r̃ is mainly defined by the triaxial radius-like quantity. Conversely, if r � rα, r̃ ∼= r,

which means that outside the transition radius r̃ is mainly defined by the spherical radius.

We will consider three sets of axis ratios in our study. Because we are interested in the

detectability of triaxiality, one important case would be that of maximal triaxiality that

would still be realistic on basis of simulations, for example in the Aquarius simulations

under study in Vera-Ciro et al. (2011). Such a degree of triaxiality was used in the paper

of Rojas-Niño et al. (2012), in which the axial ratios were b/a ≈ 0.83, c/a ≈ 0.67 and the

triaxiality parameter T ≈ 0.56. Therefore we also use these axial ratios. Note here that

these are axial ratios for the potential and not for the density distribution which is flatter

and has more extreme axial ratios. Recent modelling of the Sagittarius stellar stream (e.g.,
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Law & Majewski 2010) has suggested an almost completely oblate dark matter halo with

b/a ≈ 0.99 and c/a ≈ 0.72 which means that T ≈ 0.04. Earlier analyses of velocities of

stars in the same stellar stream have shown that the shape of the halo might be prolate

(Helmi 2004) with b/a ≈ c/a ≈ 0.6 which corresponds with T ≈ 1.0. These axial ratios were

found under different assumptions of the exact form of the potential and fitting different

observational sets. Here we will study all three of these parametrizations as summarized in

Table 1. For the sake of consistency in each of the three potentials we align each of the

major axes with the x-axis, the intermediate axes with the y-axis and the minor axes with

the z-axis. Visualizations of their isopotential surfaces are plotted in Figure 6.
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Fig. 6.— Isopotential surfaces for the three different parametrizations (Triaxial, Oblate,

Prolate) are visualized here together with the Solar Neighborhood volumes. The major axes

are aligned with the x-axis, the intermediate axes with the y-axis and the minor axes with

the z-axis.

Table 1: Parametrizations of the different NFW-potentials. The major axes are aligned with

the x-axis, the intermediate axes with the y-axis and the minor axes with the z-axis. This

means that the oblate potential is almost identical on the x- and y-axes and that the prolate

potential is perfectly identical on the y- and z-axes.

Triaxial Oblate Prolate

b/a 0.83 0.99 0.6

c/a 0.67 0.72 0.6



– 19 –

2.4. Derivation of the Equations of Motion

Now that we have a realistic expression for the triaxial NFW potential by combining

Equations (1), (9), and (10), we will use that ~g = −∇Φ to find the vector describing the

gravitational force ~g that acts upon the test-particles in the potential. Using the chain rule

for derivations we arrive at the expressions:

∂Φ

∂x
=

dΦ

dr̃

∂r̃

∂x
(12a)

∂Φ

∂y
=

dΦ

dr̃

∂r̃

∂y
(12b)

∂Φ

∂z
=

dΦ

dr̃

∂r̃

∂z
(12c)

Since the expression dΦ
dr̃

was already derived in Equation (4), we only need to find the

partial derivatives of r̃ with respect to the x-, y-, and z-coordinates. Since the shape of the

equation is similar with regard to all three of the coordinates, it will be sufficient to only

derive the equation with respect to x. Combining the differential product and chain rules

to derive Equation (9) with respect to x, we find:

∂r̃

∂x
=

(
rE

rα + rE

)
∂r

∂x
+

(
rα + r

rα + rE

)(
1− rE

rα + rE

)
∂rE
∂x

(13)

Therefore we need the derivatives of r and rE from Eqs. (11) and (10) with respect to x.

After some algebra, we find:

∂r

∂x
=
x

r
(14)

∂rE
∂x

=
x

a2rE
(15)

These equations hold for y and z if we also replace a by respectively b or c. Then, by

combining Eqs. (13), (14), and (15), we can arrive at the partial derivatives of r̃ with

respect to x, y, and z:

∂r̃

∂x
=

x

rα + rE

[
rE
r

+
1

a2

(
rα + r

rE
− rα + r

rα + rE

)]
(16a)
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∂r̃

∂y
=

y

rα + rE

[
rE
r

+
1

b2

(
rα + r

rE
− rα + r

rα + rE

)]
(16b)

∂r̃

∂z
=

z

rα + rE

[
rE
r

+
1

c2

(
rα + r

rE
− rα + r

rα + rE

)]
(16c)

From this we can obtain the force equations in x, y, and z by multiplying the partial

derivatives of r̃ with respect to x, y, and z in Eq. (16) with the derivative of the potential

with respect to r̃ in Eq. (4) to find the derivative of the potential with respect to x, y, and

z in Eq. (12).

2.5. Leapfrog Integrator

Since the equations of motion have simple analytic forms for our collisionless stellar

system, we use the so-called leapfrog or Verlet integrator for our numerical experiments.

According to Binney & Tremaine (2008), the leap-frog integrator has multiple advantages.

Firstly, it is a second-order integrator but requires essentially the same numerical capacity

as first-order approximations. Secondly, it is time reversible which prevents our numerical

approximations from drifting away systematically in energy. Thirdly, it does not require

saving previous time steps and hence saves memory capacity.

The leap-frog integrator functions best with fixed time steps and for our application

we do not need more flexibility than that. In our case the time steps need to be chosen

small enough to calculate the precise orbits when stars are at their pericenters, but also as

large as possible to avoid wasting numerical capacity when stars are near their apocenters.

As the term leapfrog might be interpreted to imply, the algorithm has a specific method

of handling time steps ∆t in which the changes in spatial and velocity coordinates “jump

across each other” in the sense that the particles are allowed to drift for ∆t/2, then they

are kicked for ∆t, and then again they drift for ∆t/2. Because of this it has also been called

“drift-kick-drift” leapfrog, which can be expressed in the following set of equations for the



– 21 –

position vector ~q and the velocity vector ~p as a function of time t, adapted from Binney &

Tremaine (2008):

~q

(
t0 +

∆t

2

)
= ~q(t0) +

∆t

2
~p(t0) (17a)

~p(t0 + ∆t) = ~p(t0)−∆t∇Φ

[
~q

(
t0 +

∆t

2

)]
(17b)

~q(t0 + ∆t) = ~q

(
t0 +

∆t

2

)
+

∆t

2
~p(t0 + ∆t) (17c)

We use these equations to calculate the changes in ~q and ~p per time step ∆t. One condition

for a particle in a constant potential is conservation of orbital energy. If time steps are

taken too big, numerical errors are expected to occur around the pericenters of the orbits

(where the changes in the forces are the most extreme), which would then result in a

breach of conservation of energy. Therefore we check the conservation of energy along the

trajectory of each particle in order to ensure that the time steps ∆t were not too big. The

orbital energy E at time t is given by:

E(t) = Φ(~q(t)) +
~p(t)2

2
(18)

The condition was that ∆E/E0 < 3×10−3, which means that the difference between the

energy and initial energy is never allowed to become larger than 0.3 percent. We choose

a time step for which this condition is valid as ∆t, namely 0.1Myr. With this time step,

the largest mean deviation from the initial energy is ∆E/E0 = 5×10−5. The positions and

velocities are not given as output for each time step, but only as often as strictly necessary

to achieve a high enough resolution for our analyses of the orbital characteristics of the

particles.
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2.6. Kullback-Leibler Divergence

We aim to test the claim by Rojas-Niño et al. (2012) that the presence of orbital

resonances causes substructures in the velocity distribution of the stars in the Solar

Neighbourhood. Therefore in our numerical experiments we will explore whether there are

any significant substructures, i.e. correlations between the velocity coordinates. To this

end we will apply the Kullback-Leibler Divergence (hereafter: KLD). We use the KLD to

compare a non-correlated distribution Q(i, j, k) of the particles in the three-dimensional

cartesian grid (i, j, k) with the distribution P (i, j, k) found in our simulations. For discrete

probability distributions in three dimensions we define the KLD-α as:

α =
∑
i,j,k

P (i, j, k) ln

(
P (i, j, k)

Q(i, j, k)

)
(19)

Where P (i, j, k) and Q(i, j, k) are respectively the measured and expected numbers of

particles within each bin of the cartesian grid (i, j, k). We loosely tune the bin sizes to the

size of the orbital structures based on the orbital analysis that follows below.

In our case, the null hypothesis H0 is that there is no correlation between Vx, Vy, and

Vz. Therefore we have pH0(Vx, Vy, Vz) = p(Vx)p(Vy)p(Vz), where p(Vx), p(Vy), and p(Vz) are

given by:

pi(Vx) = Ni/Ntot pj(Vy) = Nj/Ntot pk(Vz) = Nk/Ntot (20)

Where Ni, Nj, and Nk are the numbers of particles in one-dimensional bins along Vx, Vy, and

Vz, respectively. Ntot denotes the total number of particles. Then, for all bins denoted by

(i,j,k) the expected uncorrelated counts are given by Q(i, j, k) = pipjpkNtot. Subsequently,

we generate the distribution of the uncorrelated KLD-αH0 by drawing 3500 times P (i, j, k)

from i× j×k Poisson distributions with means Q(i, j, k), each time calculating an αH0-value

using Equation (19). An example of a resulting KLD distribution can be found in Figure 7.

For each test we also bin the velocities found in the numerical experiment, from which we

determine the corresponding experimental value αexp with Equation (19). We evaluate αexp
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with the distribution of αH0 which was generated under the assumption of non-correlated

velocities, like in Figure 7. Finally, we calculate the probability p of finding αH0 as extreme

as or more extreme than αexp, under the null hypothesis. We do this by calculating the

accumulative proportion of the αH0-distribution that falls either on the left of αexp (if

αexp < median of the αH0-distribution), or to the right of αexp (if αexp > median of the

αH0-distribution).
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Fig. 7.— A histogram showing the distribution of the value αH0 generated for the case of the

selection on the x-axis in the triaxial parametrization (binsize 50 km/s). A possible αexp-

value from our numerical experiments is plotted with a red line. The proportion of values

αH0 that lie to the left of the red line would be used to calculate the p-value for this example.
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2.7. Characterization of Orbital Resonances

In a spherically symmetric potential there is no force gradient in either θ or φ and

hence all integrated orbits are expected to be confined to planes (see Figure 8). For our

initial conditions this consistently resulted in loop orbits, for which the orbits are confined

to flat tori around the center. Examples of the trajectories can be seen in Figure 8, where

particles from our initial conditions are shown after integration in a spherical NFW and

shown both face-on and edge-on. However, inside a triaxial NFW the forces vary both with

θ and φ and therefore all integrated orbits are expected to probe three-dimensional regions

of configuration space. In Figure 9 orbits are shown of particles with the same initial

conditions as in Figure 8 but now integrated in a triaxial NFW of the parametrization from

Table 1. As is clear from the figure, it is not possible to find a perfect edge-on view of the

orbits. These orbits are not all loop orbits like in the case of the spherical potential and

they vary in their degree of regularity.

As adapted from Monari et al. (2012), orbits are quasi-periodic when they are regular

in an Nd-dimensional space:

~q(t) =
∞∑
k=1

~ake
iFkt (21)

in which ~q(t) is the vector of the spatial coordinates, ~ak the vector of the complex

amplitudes, and the frequencies Fk are linear combinations of the Nb base frequencies

vectorized in ~Fb. This means that Fk = ~nk · ~Fb, given that Nb ≤ Nd. The Fourier transform

of an orbit that is quasi-periodic according to this definition will consist of a sum of peaks

with amplitudes ~ak. After obtaining the time-series of the orbits through integration, we

select the dominant frequencies Fd by taking the frequencies with the highest amplitudes

ak with the spectral orbit classifier of Carpintero & Aguilar (1998). The dimensions we

use are x, y, and z for all three potentials. Accordingly, we find three groups of dominant

frequencies ~Fx,d, ~Fy,d, and ~Fz,d for each orbit where we consider a maximum of five per
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group. Through a process of subtracting the dominant frequencies and their multiplications

from the power spectra and reanalyzing the spectra, the orbit classifier of Carpintero &

Aguilar (1998) determines the number Nb of fundamental frequencies Fb that describe the

motion of each particle. As seen in Figure 9, most particles in the triaxial potential probe

three-dimensional regions of space and therefore most of them are expected to populate

either orbits with three base-frequencies, Nb = 3, or irregular orbits with Nb > 3. More

than three base frequencies means that Nb > Nd and such orbits do not fulfill the definition

of regularity from Equation (21) which also means that the found frequencies cannot be

properly called base frequencies. The so-called ‘frequency maps’ citepbt08 that are obtained

by plotting F2,b/F3,b versus F1,b/F3,b help to visualize the structure in frequency space.

For orbits with Nb = 3 that are on a resonance we expect the base frequencies to be

coupled in two or three dimensions. We define an orbital resonance as when the ratios

of the base frequencies in two or three dimensions of the orbit of a particle is a rational

number. This can be expressed by:

l1F1,b + l2F2,b + l3F3,b = 0 (22)

In which l1, l2, and l3 are integer values and F1,b, F2,b, and F3,b are the three base frequencies.

Particles on orbital resonances follow Equation (22) and should therefore populate straight

lines in the frequency map. For examples of such resonance lines in frequency maps, see

Figure 13. By fitting the resonance lines with functions of the form A
F1x,b

F3,b
+ B =

F2,b

F3,b
and

imposing the boundary of +/- 0.01, we can specify the integer values l1, l2, and l3 that

define each resonance. By combining with Equation (22), we find through simple algebra

that the ratios of these values are given by:

− l1
l2

= A − l3
l2

= B (23)

Which means that l1 = −nA, l2 = n, and l3 = −nB, in which n is the smallest integer value

for which l1, l2, and l3 are also integer values.
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3. Results

3.1. Overall Local Velocity Distributions

We integrate the orbits of two million particles for a duration of 8 Gyr in the potentials

of the three shapes, i.e. triaxial, oblate, and prolate (see Figure 6 and Table 1). In Figure

10, we show the resulting velocity distributions within the Solar Neighborhood volumes

(SN) located on the three principal axes. Figure 11 shows the distributions for volume close

to the major and minor axes. As expected, all mean velocities are found to be ∼ 0 km/s.

Since the velocity ellipsoids that are located off-axis in the directions of the major and

minor axes are somewhat tilted, we rotate them to align with three new axes that we call

axis 1, 2, and 3 before we can analyze the velocity distributions. We do this by diagonalizing

the covariance matrices of the velocities to determine their eigenvectors (which can be used

to rotate the distributions) and their eigenvalues (the squares of the velocity dispersions

on the axes 1, 2, and 3). We inspect the velocity distributions after rotation to verify

that they are indeed aligned as expected (i.e., not tilted anymore). The dispersions of the

velocities are listed in Table 3.1. For the selections in each parametrization the velocity

dispersions are the smallest in the radial direction (triaxial, oblate, and prolate: σr ∼ 67

km/s). The velocity dispersions are also relatively small in the directions parallel to the

major axes (triaxial: σ‖major ∼ 70 km/s, oblate: σ‖major ∼ 75 km/s, prolate: σ‖major ∼ 66

km/s). The velocity dispersions are the largest in the tangential direction and the direction

perpendicular to the major axes (triaxial, oblate, prolate: σ⊥r,⊥major ∼ 85 km/s).

The described patterns are a direct indication of the shape of the potential, which could

be useful by itself if one would be able to obtain phase-space information of a sufficiently

large volume of stars. The set of equations that are relevant to this problem are the Jeans
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equations (Binney & Tremaine 2008):

ν
∂v̄j
∂t

+ νv̄i
∂v̄j
∂xi

= −ν ∂Φ

∂xj
−
∂(νσ2

ij)

∂xi
(24)

Here ν is the probability per unit volume of finding a particular star at location ~x, Φ denotes

the potential, and σij denotes the velocity-dispersion tensor. If we assume that the stellar

halo is in equilibrium, we have that
∂v̄j
∂t

= 0 for all j. In our setup the term v̄i
∂v̄j
∂xi

= 0 for

all j because the particles do not a preferred sense of motion. Using this information and

applying the product rule for differentiation to the second term on the right of Equation

(24), we get:

∂Φ

∂xj
= −

∂(σ2
ij)

∂xi
− σ2

ij

∂ν

ν∂xi
(25)

in which ∂ν
ν∂xi

is the local proportional variation of the number density of the halo stars

across space. Under the assumptions of our setup, measuring this quantity together with

the spatial variation in the velocity-dispersion tensor σ2
ij would give a direct constraint to

the form of the potential Φ using Equation (25).

Besides the changes in the overall velocity distributions there did not seem to be

any clear substructures when comparing with the distribution in a spherical potential in

Fig 5. In the following section, Section 3.2, we present the results regarding the further

investigation of these distributions obtained from statistical tests using the KLD method

(Section 2.6).
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Fig. 10.— Velocity distributions in km/s after integration for 8 Gyr for the triaxial (top

two rows), oblate (middle two rows), and prolate (bottom two rows) for the three different

locations of the Solar Neighborhood volumes: along the x-, y- and z-axis. Everywhere the

major axis is aligned with the x-direction.
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Fig. 11.— Velocity distributions in km/s after integration for 8 Gyr for the triaxial (top two

rows), oblate (middle two rows), and prolate (bottom two rows) for the Solar Neighborhood

volumes near the x-axis (7.48 kpc; 2 kpc; 2 kpc) and near the z-axis (2 kpc; 2 kpc; 7.48 kpc),

∼ 14.7 degrees off-axis. Some distributions are visibily tilted as expected due to the off-axis

positioning of the volumes. Everywhere the major axis is aligned with the x-direction.
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Table 2: Velocity dispersions in km/s after integration in the volumes considered. For all

the on-axis volumes, the velocity ellipsoids are aligned with the x-, y- and z-axes. For the

off-axis volumes, the velocity ellipsoids are somewhat tilted. Therefore these are rotated to

align with their principal axes. This is reflected in the subscripts of the dispersions.

Triaxial

x y z Near Major Near Minor

σx in km/s 68 73 67 σ1 in km/s 68 65

σy in km/s 83 67 74 σ2 in km/s 86 70

σz in km/s 86 82 67 σ3 in km/s 83 74

Oblate

x y z Near Major Near Minor

σx in km/s 66 78 71 σ1 in km/s 66 66

σy in km/s 79 66 71 σ2 in km/s 79 73

σz in km/s 83 85 67 σ3 in km/s 84 72

Prolate

x y z Near Major Near Minor

σx in km/s 64 67 66 σ1 in km/s 66 77

σy in km/s 89 71 79 σ2 in km/s 86 67

σz in km/s 88 79 71 σ3 in km/s 89 70
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3.2. Statistical Tests on Local Velocity Distributions

We apply the KLD as described in Section 2.6 to determine the amount of substructure

in the velocity distribution. We use three different binning sizes, 25 km/s, 50 km/s, and

100 km/s. The binning sizes of 50 km/s and 100 km/s are plotted in Figure 12. The ranges

of the tests are set to span the full ranges of the velocity distributions from the previous

section. For the off-axis selections, we use the same rotations of the velocity distributions as

described in Section 3.1 to align with the principal axes of the velocity ellipsoids. Our null

hypothesis H0 is that there are no correlations between the velocities across the different

dimensions. Since there are three different binning sizes and five different volumes for three

different shapes of the potential, we perform a total of 45 statistical tests. For each of these

tests, we perform the following procedure (more details in Section 2.6).

The null hypothesis H0 determines the expected velocity distribution for a particular

test. With that distribution we randomly generate 3500 velocity distributions. Using

Equation (19), we find 3500 values for αH0 using the non-correlated distributions and we

find one value αexp using the original velocity distribution of the respective test. We then

compare αexp with the distribution of αH0 by calculating the proportion of αH0-values that

are more extreme than αexp (e.g., the proportion of values to the left of the red line in Figure

7). This is the estimated probability pexp of finding a value αH0 more extreme than αexp,

given that the null hypothesis H0 is true. We consider a departure from the null hypothesis

to be significant when pexp < pcutoff . We choose the cutoff probability pcutoff = 0.00003

which is the equivalent of a departure of 4σ from the mean of a normal distribution.

The results of this procedure are listed in Table 3.2. There is variation in the pexp-values

within the range of 0.07-0.50, therefore pexp � pcutoff for all 45 tests. We conclude that all

of the velocity distributions from our numerical experiments do not deviate significantly

from the corresponding non-correlated velocity distributions.
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Fig. 12.— The grids for the KLD method with scales 50 km/s and 100 km/s. On the left

is the velocity distribution in km/s on the y-axis in the oblate potential and on the right a

version in which VY was randomly shuffled.
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Table 3: Summary of the outcome of the statistical analyses using the KLD method with

binsizes of 25 km/s, 50 km/s, and 100 km/s. These values are the estimated probabilities of

obtaining the data of our simulations under the null hypothesis that there are no correlations

between the velocities across the different dimensions.

25 km/s x y z Near Major Near Minor

triaxial 0.27 0.27 0.18 0.21 0.19

oblate 0.36 0.31 0.29 0.48 0.40

prolate 0.47 0.07 0.38 0.47 0.36

50 km/s x y z Near Major Near Minor

triaxial 0.41 0.12 0.22 0.37 0.15

oblate 0.34 0.28 0.25 0.24 0.29

prolate 0.41 0.19 0.47 0.36 0.37

100 km/s x y z Near Major Near Minor

triaxial 0.47 0.28 0.43 0.45 0.34

oblate 0.50 0.41 0.39 0.46 0.48

prolate 0.44 0.37 0.42 0.47 0.47
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3.3. Resonance Populations Identified with Fourier Analysis

After integrating the two million particles for 8 Gyr in the three potentials we select

the particles from the volumes indicated in Figure 3. This results in 15 selections in total

with about three-thousand particles per volume. Subsequently, we analyze the orbits of

these particles in Fourier space using the orbit classifier of Carpintero & Aguilar (1998). To

this end it is necessary that we integrate these particles again but for a very long time to

ensure that the Fourier analysis can be performed adequately. This means in practice that

the orbits should make at least 80 revolutions around the center of the halo (∼ 66 Gyr).

The results of this analysis are shown in Figure 13 where we plot the frequencies

against each other: F1,b/F3,b versus F2,b/F3,b in all three potentials. We use Equation (22)

to identify the particles that populate resonances and the different types of resonances, with

the condition that the particles should be within a range of +/- 0.01 of a resonance line.

The fractional distributions of the orbits over the resonances in each potential are reported

in Table 3.3.

We also use the orbit classifier of Carpintero & Aguilar (1998) to determine which

fractions of the orbits are irregular. According to the definition used here, an orbit is

irregular when it seems to have more than three base frequencies in three dimensions (which

means that these are not real base frequencies). The results of this analysis are listed in

Table 3.3.

In Table 3.3, we see that on and near the major axis (x) in the triaxial potential a

relatively large fraction of the particles populates resonant orbits (∼ 20 percent). About

half of these particles are on orbits that are coupled in three dimensions, they populate the

resonances (l1:l2:l3) = (3:1:6),(1:2:6), and (3:4:24). The other halve of the resonant orbits

are coupled in only two dimensions. On the intermediate and minor axes we see a much

smaller fraction of resonant orbits (∼ 5 percent).
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Regarding the oblate potential, Table 3.3 shows that on the major (x) and intermediate

(y) axes fractions of about 12-15 percent of the particles populate resonant orbits, while it

is only around one percent on the minor axis (z). All the particles on resonant orbits are

coupled in only two dimensions, except for a negligible fraction (0.1-0.2 percent) near the

major and minor axes that populates (l1:l2:l3)= (3:1:6).

Regarding the prolate potential, Table 3.3 shows that on the major axis (x) a fraction

of ∼ 10 percent of the particles populates resonant orbits, while it is only 2.5 percent on

the two minor axes (y and z). All the particles on resonant orbits from all selections are

coupled in only two dimensions. On the two minor axes, in total just a few percent of

the orbits are resonant. Generally, in all three potentials there is a small fraction (a few

percent) of so-called thin orbits, which only have two base frequencies. For the selections

near the major and minor axes the fractional distributions are generally very similar to the

selections on those respective axes.

Table 3.3 summarizes the overall findings regarding the fractional distribution of the

irregular orbits, non-resonant regular orbits, the resonant orbits (coupled in two or three

dimensions) and the thin orbits. We see that in the volumes on the major axes of the

potentials there are consistently larger fractions of irregular orbits as compared with the

minor axes. The contrast is the strongest in the triaxial potential (7 percent versus 25

percent).

In summary, we note that in each volume the fractions of resonant orbits and irregular

orbits are small compared to the fraction of non-resonant regular orbits. The exception is

on and near the major axis of the triaxial potental where there are relatively large fractions

of both resonant and irregular orbits. Only in the triaxial potential we find a notable

fraction of resonant orbits that are coupled in three dimensions.
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Table 5: The fractional distribution of non-resonant orbits (regular and irregular), resonant

orbits (coupled in two or three dimensions) and thin orbits on the x-, y-, and z-axes and

near the major and minor axes in the triaxial, oblate, and prolate potentials. The x-, y- and

z-axes are consistently aligned with the major, intermediate and minor axes of the potentials.

Triaxial x y z Near Major Near Minor

Non-resonant Regular (%) 53.8 90.5 88.1 58.8 85.1

Irregular (%) 25.1 4.9 6.6 23.0 7.8

Resonant 2D-coupled (%) 10.0 1.8 1.0 8.2 1.8

3D-coupled (%) 9.5 0.8 3.5 8.7 4.7

Thin (%) 1.6 2.0 0.8 1.3 0.6

Oblate x y z Near Major Near Minor

Non-resonant Regular (%) 73.9 80.9 97.0 75.5 94.1

Irregular (%) 11.5 7.9 1.4 9.5 2.3

Resonant 2D-coupled (%) 11.5 7.3 0.8 11.8 1.6

3D-coupled (%) 0.1 0.2

Thin (%) 3.1 3.9 0.8 3.1 1.8

Prolate x y z Near Major Near Minor

Non-resonant Regular (%) 84.4 93.5 93.0 84.8 92.5

Irregular (%) 3.7 1.1 1.1 2.9 1.6

Resonant 2D-coupled (%) 11.9 5.4 5.9 12.3 5.9

Thin (%) 2.1 2.9 3.4 2.3 3.5
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3.4. Resonance Populations in Velocity Space

Now we link the information of the resonance groups from Section 3.3 back to the

velocity distributions of the particles for the selected volumes on the axes. The resonance

populations identified in frequency space are shown in velocity space in Figure 14 for the

triaxial potential and in Figure 15 for the oblate and prolate potentials. For the triaxial

potential we see that on and near the major axis x different resonances populate different

cylindrical shells in velocity space, all varying in their orientation. For example, the

resonance (l1:l2:l3) = (1:2:6) forms a small well-defined ring at |Vx,z| ∼ 50 km/s in the

bottom left plot of Figure 14, while the resonance (3:1:6) forms two walls which have the

range of +/- 150 km/s in Vx and Vz which center on Vy = 50 km/s and −50 km/s. The

particles on thin orbits populate mainly the regions of |Vy| > 100 km/s. On the y- and

z-axes much smaller fractions of the particles populate resonances and the patterns are

not as pronounced as on the x-axis. Nevertheless, some features can be distinguished. For

example, the resonance (3:4:24) forms a narrow line at Vx = Vz = 0 km/s on the y-axis and

particles from the resonance (4:6:1) mostly populate a bar-shaped region of thickness 50

km/s centered on Vx = 0 km/s.

For the oblate potential we also see patterns in the velocities of the particles from

the different resonance populations, especially on the x-axis. For example, the resonances

(l1:l2:l3) = (1:0:6), (1:0:9), (5:0:9), (5:0:8) form a slice in the region |Vy| ∼ 25 km/s on the

x-axis. This appears to be caused by the slight difference in the potential between the major

and intermediate axes, because the same structure is not visible on the y-axis. On both of

these axes, the resonances (6:1:0) and (3:0:8) populate similar regions in velocity space as

the thin orbits, while on the x-axis they have |Vy| > 50 km/s and on the y-axis they have

|Vx| > 50 km/s. while in Vx this resonance covers only the range of +/- 50 km/s. On the

minor axis z there are to few particles on resonant orbits to say something concrete about
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their distribution, although they do not seem to follow the overall distribution of particles.

For the prolate potential, the main pattern on the major axis x consists of cylindrical

shells aligned with Vx. For example, the resonance (l1:l2:l3) = (5:0:9) populates both an

inner region of |Vy,z| < 50 km/s and a well-defined, thin cylindrical shell at |Vy,z| ∼ 100

km/s. Within the range 75 km/s > |Vy,z| > 150 km/s, the resonances (6:1:0), (3:0:7),

(3:0:8), (12:0:1), and (28:1:0) form additional cylindrical shells. The only pattern visible on

the minor axes is that of the resonance (3:0:8), although it is not very pronounced because

the fraction of particles that populate it is very small.
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4. Discussion

We conducted numerical experiments with test particles in a Milky Way-like dark

matter halo of three different shapes: triaxial, oblate, and prolate. We generated initial

conditions for these test particles following a smooth distribution function. The goal was

to investigate the assertion of Rojas-Niño et al. (2012) that orbital resonances caused by

the shape of the halo would leave imprints in velocity space of the Solar Neighborhood.

After our simulations the particles within different SN volumes were studied in more detail.

Firstly, we conclude that the only directly observable kinematic differences compared to

a spherical dark matter halo were found in the overall shape of the velocity ellipsoids

of particles. More specifically, the velocity dispersions of particles within the volumes

depended on the locations of the volumes with respect to the axes of the potential and on

the shape of the potential itself. Secondly, while resonances were indeed present and related

to specific regions in velocity space, they were not well populated. Lastly, we found that the

velocity distributions within the Solar Neighborhood volumes did not show any significant

substructures for any of the three potentials. Therefore, our numerical experiments show

that a smooth initial distribution of particles does not favor any particular orbital resonance

that can clearly differentiate the three shapes from each other or from the spherical case.

The second part of our conclusion is in agreement with the findings of Rojas-Niño et

al. (2012), namely that certain regions in the velocity distribution of particles in the Solar

Neighborhood are related to certain resonances defined by the geometry of the dark matter

halo. However, our findings do not support the main claim of these authors that orbital

resonances are imprinted on the kinematics and could be used for constraining the shape of

the Milky Way dark matter halo. The difference in results can be explained by inspecting

the method of these authors in light of our results.

The most significant feature of the method of Rojas-Niño et al. (2012) here is that it
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selected only those particles that would return to the same volume of radius 1 kpc after

12 Gyr. There are two effects of this selection that are relevant. Firstly, it is clear that it

selectively eliminates most of the particles that do not populate any resonance, since those

are less likely to return to the same volume. This is important because in our simulations

the non-resonant particles seemed to fill the gaps between the resonance populations in the

velocity distributions.

Secondly, the method also seems to select only a subgroup of all the resonance

populations. The orbital structure found in our simulations with a complete stellar halo

showed resonance populations that were not clearly present in the final selections from the

simulations of Rojas-Niño et al. (2012). When we compare the top left plot from Figure

14 from our study with the corresponding figure from their paper (bottom plot of Figure

3 from Rojas-Niño et al. 2012), we see for example that the resonance (l1:l2:l3) = (1:0:6)

is not present in their selection. One reason for this could be that this resonance is only

coupled in two of the three dimensions which might cause the particles from this population

to return less often to the same volume defined in x, y, and z as compared to particles

that populate resonances coupled in three dimensions. To explore this interpretation of the

results we reproduced our results while selecting only the resonances that were coupled in

three dimensions. The resulting velocity distribution from Figure 16 indeed contained a

pattern similar to that found by Rojas-Niño et al. (2012), even though the volume from

which we select here is somewhat larger than theirs (radius 1.5 kpc instead of 1 kpc).

As stated in the introduction, Monari et al. (2012) conducted numerical experiments

to study the kinematic effects of the Galactic bar on the stars of the Galactic disc. The

findings of these authors did show substructures in the velocity space of the local disk stars

that could be useful for constraining the exact shape and orientation of the Galactic bar.

We might ask why there would be significant substructures in the velocity distributions of
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the disk stars caused by the Galactic bar, but not in those of the halo stars caused by the

triaxiality of the Galactic halo. The most important difference with our study is probably

that the Galactic disc and the bar have a strong rotation themselves, so the disc particles

already have a strong preferred sense of motion. Hence there is little variation in the orbital

families that result from resonances with the Galactic bar. This subsequently makes them

more pronounced and easier to identify in velocity space. In contrast with this, the halo

stars do not have a strong preferred sense of motion.

Our simulations showed that for a stellar halo that follows a smooth distribution

function it is unlikely that any orbital resonance would be overpopulated in such a way

that it would cause significant overdensities in the corresponding regions of velocity space.

However, it is also known that the number of ‘building blocks’ of the Milky Way’s inner

and outer stellar halos is probably relatively small (e.g., Morrison et al. 2009; Deason et al.

2015). The traces of these accretion events are expected to be visible through substructures

in velocity space (e.g., Helmi 2008). Future simulations could be used to focus on the

development of substructures in the stellar halo formed by relatively few progenitors

in triaxial, oblate, and prolate potentials. There would be substructures which depend

strongly on the infall parameters of the building blocks and which subsequently decrease in

spatial density over a certain duration of time as the particles diffuse away. This diffusion

timescale varies with the regularity of the progenitor orbit since particles on irregular orbits

diffuse away more quickly (Martin Mestre, priv. comm.). Therefore, if within a certain

volume of space large fractions of the orbits are irregular, we expect within that volume to

see denser spatial substructures belonging to the resonant regions of velocity space than

to the non-resonant regions. To investigate this, we also analyzed the fractions of regular

orbits in the non-resonant population.

Our analysis of the irregularity of the orbits showed that the fraction of irregular orbits
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is only relatively large in the volumes located near the major axis in the triaxial potential.

Therefore, under the assumptions that we made in setting up the initial conditions and the

potential, the effects of chaotic diffusion of stream particles are largely limited to the major

axis. In that case, an analysis would not give any definitive information before we can carry

it out on multiple volumes on entirely different locations within the potential (to ensure

that the major axis is included). With so much information it might be much simpler

just to analyze the velocity dispersions as we will discuss shortly. Note that we cannot

say whether this restriction is general enough to extend beyond our chosen setup of initial

conditions and potential. In reality there might be larger fractions of irregular orbits. Due

to the lack of accurate and extensive data very few substructures in velocity space of local

halo stars have been detected thus far (as summarized by Helmi 2008). This information

will come within our reach within the coming two years with the upcoming data from the

Gaia project (Perryman et al. 2001).

The only observable differences that we found were in the overall shape of the velocity

ellipsoids. This means that if we would have six-dimensional phase-space information of

most of the stars within a large region (e.g. ∼ 6 kpc radius around the Sun), this information

could be used to pin down the shape of the potential of the dark matter halo. Data that

might help in this respect will also be made available by the Gaia project (Perryman et al.

2001). For example, it will measure the radial velocities at 10 km/s accuracy of stars down

to magnitudes of V ∼ 16 − 17. Since the method proposed by Rojas-Niño et al. (2012) of

constraining the halo shape through orbital resonances of nearby stars does not seem to be

feasible as shown by our simulations, we conclude that the most promising way to deduce

information about the shape of the Galactic dark matter halo from the kinematics of halo

stars would be to inspect the changes in the velocity ellipsoids across space.
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Fig. 16.— The velocity distribution in km/s of the particles from the Solar Neighborhood

volume of radius 1.5 kpc located 8.5 kpc from the center on the x-axis after selecting only

the particles that populate the resonances (l1:l2:l3) = (3:1:6), (1:2:6), and (1:4:8) because

these might be expected to have been overselected in the study of Rojas-Niño et al. (2012).

Comparison with Figure 3 from the paper of these authors indeed shows correspondence,

even though their selection volume is somewhat different in terms of size (radius 1 kpc).
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