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Abstract

In this Bachelor Thesis the design of a horn antenna to measure the Cosmic Microwave Background (CMB)
at 11 GHz is discussed. The theory underlying the design and di↵erent horn antenna types are treated. From
this the optimal horn design is chosen; the Pickett-Potter horn. Then the design is optimized with a bandwidth
of 1 GHz using CST Microwave Studio. Having obtained the final design, the Pickett-Potter is constructed and
tested for the beam pattern and the reflection of the probe. From this it can be seen that the measured beam
pattern and probe reflection deviate from the simulations. This di↵erence is due to the propagation of a higher
order mode. Despite this, the constructed Pickett-Potter horn was still suited for our observation, when rotated
90�.
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1 Introduction

Figure 2: Penzias and Wilson with their Horn telescope.

The footprint of the Big Bang, known as the Cosmic
Microwave Background (CMB), is still visible today. It
was first discovered in 1964 by Penzias and Wilson [14]
[15] (shown in Figure 2). They discovered that on top
of the flux received from Cas A and the atmosphere,
there was another flux, corresponding to a temperature
of roughly 2.7 K. This temperature directly points back
to the oldest light seen in the Universe, originating from
the epoch of recombination. In this epoch, the tempera-
ture of the Universe dropped below the threshold of 6000
K, allowing electrons and protons to combine to form
the first atoms. This allowed photons to travel freely
trough space, since the probability of scattering of elec-
trons decreased drastically. This combination was very
uniform throughout the Universe (especially on large
scales). Even today we see that this radiation is uni-
form, even in regions of the Universe that nowadays are
not causally connected. Hence in some early stage of the
Universe they must have been. Therefore the discovery
of the 2.7 K CMB is strong evidence for a Big Bang like
Universe.

The objective for this Bachelor project was to build a radio telescope that would measure the temperature of
the CMB. For the project, four students participated (W. Mulder, M. Zandvliet, F. Sweijen and myself) each with
their own - though strongly connected - subprojects. In this Bachelor Thesis the focus will be on the underlying
physics, the design and testing of the constructed horn.

1.1 How to measure the CMB

The CMB is uniform at large scales and is almost a perfect black body. The black body radiation is described by
the Planck Function [7], were the brightness of the object is plotted as function of frequency. This was done for
the CMB in [7]. From this plot a preferred observing frequency can be chosen. One might choose to observe at a
frequency of 175 GHz, since around that frequency the brightness of the CMB is the highest. However, for us this
was not possible, since the available equipment (filters and amplifiers etc.) limited us to choose a frequency between
4-12 GHz. Eventually we choose to observe at 11 GHz, corresponding to the highest possible frequency (i.e. highest
brightness) allowed by the available filter.
Observations in the radio regime are possible using two techniques; basic antennas or interferometry. The latter is not
suited for measuring the temperature of the CMB, because an interferometer only measure the spatial fluctuations
on the sky. Thus a uniform signal, from any extend source, will not be picked up by an interferometer. Also
interferometry is a more advanced technique than a basic antenna. Therefore, for our observation a basic antenna
was preferred. We used the horn antenna of Penzias and Wilson, shown in Figure 2, as a starting point.
Our observation of the CMB comes down to the observation of electromagnetic radio waves. Hence it is good to note
that we are operating in the Rayleigh-Jeans regime, where the relationship between temperature and brightness is
linear.
The incident electromagnetic radio waves will cause a time-varying current across a surface. This current will be
measured in the form of a power, which corresponds to a temperature. This seems straight forward, but there are
all sorts of calibration, electronic and design issues involved which make the measurement of the CMB much harder
than sketched above. In this thesis the focus will be on the horn design, for the calibration and electronic issues see
[7] [12] [21].
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2 Electromagnetism

As stated before, the observation of the CMB is an observation of electromagnetic waves. The incident electromag-
netic waves, originating from the CMB, will need to propagate through our horn, inflict a time-varying current,
resulting in a measurable power. The design of the horn influences how the horn ’sees’ the photons of the CMB and
how they propagate through the horn. To understand this, and in the end, know how to optimize the horn design,
the theory of electromagnetism is needed.

2.1 Maxwell’s equations

In the field of electromagnetism electric- and magnetic fields are brought together. This was done by James Clerk
Maxwell in 1862, resulting in the famous Maxwell’s equations. Since the incident electromagnetic wave is a sinusoidal
time-varying field we assume that all the fields have a time dependence ej!t.

E(r, t) = E(r)ej!t, H(r, t) = H(r)ej!t

Where ! being the angular frequency of the wave. Then the Maxwell’s equations have the following form [13]:

r0 ⇥E = �Jm � j!✏H

r0 ·E =
⇢

✏
r0 ⇥H = J+ j!✏E

r0 ·H =
⇢m
µ

(2.1)

Where E(r) is the electric field and H(r) is the magnetic field (= B

µ0
in vacuum). These fields are driven by ordinary

electric and current densities ⇢(r) and J(r), and in addition by the magnetic charge and current density ⇢m, Jm(r)
1.

In order to know the beam pattern of the horn (the response of the horn to incoming radiation as a function of
angle) and the propagation of the incident electromagnetic wave through the horn, equations 2.1 need to be solved
for every infinitesimal volume element within the horn. This can be done by using boundary conditions, that are
given by the properties of the material and the structure of the horn. Here we use the boundary conditions for a
perfect conductor, since the material of the horn will be highly conducting, enabling the electromagnetic waves to
propagate. The boundary conditions for a perfect electric conductor are [13]:

n̂⇥E = 0

n̂ ·H = 0

Js = n̂⇥H

⇢s = n̂ · ✏0E

(2.2)

2.2 Modes

The Maxwell’s equations can be solved with the boundary conditions from equation 2.2. These solutions are linear,
hence the solutions can be decomposed into linear super-positions of orthogonal solutions, called ”modes”. These
solutions are chosen because they are easy to use in enclosed spaces, such as waveguides. The three types of modes
are: [19] 2:

1. Transverse electromagnetic (TEM) modes, that are modes with neither electric nor magnetic field in the
direction of propagation, e.g. free-space waves.

2. Transverse Electric (TE) modes, modes with no electric field in the direction of propagation.

3. Transeverse Magnetic (TM) modes, are modes with no magnetic field in the direction of propagation.

For a hollow metallic object filled with a homogeneous material (e.g. air) and where the wavelength is of the order
of the mechanical dimensions, only the TE and TM modes are supported. Since this is applicable for our horn, only
the TE and TM modes have to be taken into account.
Since the behaviour of these modes is directly depended on the geometry of the horn, it would also influence the
propagation of the TE and TM modes. The minimal frequency needed for a mode to propagate is called the cuto↵
frequency (!c). This cuto↵ frequency can be converted to a cuto↵ wavelength (�c), i.e. an expression for the minimal
spacing required for a mode to occur.
The general mathematical formulation of the TE and TM modes are given in the following sections. These for-
mulations will be used to determine the modes present in di↵erent horn antenna types, to eventually use these to
determine the beam pattern of these horn antenna types (see Section 3).

1 Although ⇢
m

and J(r)
m

are fictitious, they will enable us to calculate the beam pattern.
2 See page 395 of reference [19]
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2.2.1 TE modes

Figure 3: Definition of geometric axis [13].

For the TE modes the conditions Ez = 0 and Hz 6= 0 must hold,
as defined in Figure 3. The transverse electric field is then entirely
determined by the transverse magnetic field, via ET = ⌘TEHT ⇥ ẑ
[13]. Then the field components for the TE modes are obtained
from [13], which gives:

r2
THz + k2cHz = 0

HT = � j�

k2c
rTHz

ET = ⌘TEHT ⇥ ẑ

(2.3)

Where r0
T = x̂@

x

+ ŷ@
y

, ⌘TE is the wave impedance and kc is the
cuto↵ wavenumber, which is given by:

k2c = !2✏µ� �2, (2.4)

with � being the propagation wavenumber along the guide direction,
which is defined as: � = 2⇡/�g. Here �g is the wavelength of the observing frequency (�0) within the object, defined
as:

�g =
�0p

1� (�/�c)2
. (2.5)

The relationship between ET and HT is identical to that of a uniform plane wave propagating in the z-direction 3.

2.2.2 TM modes

The TM modes require that Hz = 0 and Ez 6= 0, as defined in Figure 3. Hence the transverse magnetic field is
completely determined by the transverse electric field, via HT = ⌘�1

TMẑ ⇥ ET [13]. The components of the TM are
given by [13]:

r2
TEz + k2cEz = 0

ET = � j�

k2c
rTEz

HT =
1

⌘TM
ẑ⇥ET

(2.6)

With r0
T and kc being the same as defined in Section 2.2.1, while ⌘TM is the wave impedance for the TM mode. Also

here, the relationship between ET and HT is identical to that of a uniform plane wave propagating in the z-direction.

2.2.3 Propagation of modes: the scattering matrix

Figure 4: General scattering layer [5].

To obtain the overall transmission and reflection properties for the TE and
TM modes, a scattering matrix is useful. This concept can be described
as a layer, seen in Figure 4. Here c1 is the amplitude of the incident wave
on the left and b2 is the amplitude of the incident wave on the right side
of the layer. In Figure 4 Ri (i = 1 or 2) is the reflection coe�cient, i.e.
the ratio between the amplitude of the reflected wave with respect to the
amplitude of the incident wave. Likewise Ti,j (i = 1 or 2, j = 1 or 2 and
j 6=i) is the transmission coe�cient, which is the ratio of the amplitude of
the transmission and the amplitude of the incident wave. Hence T12 is
the transmission coe�cient from 1 to 2 and T21 vice versa. With R1 the
reflection coe�cient of the incident wave in region 1, which is equal to
�R2. Where R2 is the reflection coe�cient of the incident wave in region
2. From Figure 4 we obtain that:

b1 = R1 · c1 +T21 · b2
c2 = R2 · b2 +T12 · c1.

(2.7)

These equations can be rewritten in matrix notation, resulting in:

✓
b1
b2

◆
=

✓
S11 S12
S21 S22

◆ ✓
c1
c2

◆
, (2.8)

3 However, not exactly a free-space wave, where E
z

= H
z

= 0!
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where the 2D matrix is called the scattering matrix. The matrix element S11 is the reflection coe�cient for region
1, S22 is the reflection coe�cient for region 2 and S21 or S12 is the transmission coe�cient from region 1 to region 2
and vice versa.

The scattering matrix will be used in two situations. The first being the mode propagation within the horn antenna,
but as discussed earlier we will assume 4 that our antenna is a perfect electric conductor. Hence there will be little
to no scattering involved, i.e. the scattering matrix will mainly be used to calculate the transmission.
While in the second situation, being the transfer of the incoming radiation into the probe, both the transmission as
well as the scattering will be important. See Section 5.3 for a more detailed discussion.

2.3 Beam pattern uniformly illuminated aperture

Figure 5: Aperture and the correspond-
ing radiated fields [13].

The radiation field from an aperture antenna is determined from the the
field over the aperture of the antenna. The aperture fields become the
sources of the radiated fields at large distances. Ea and Ha are the tan-
gential fields over the aperture A, as shown in Figure 5.
Here we assume that these fields correspond to the calculated TE and
TM modes present in that part of the horn, i.e. no TEM modes. This
approximation is valid since a TEM mode can only propagate by follow-
ing currents in the wall, for which you need a voltage. However, in a
single conducting system (e.g. a horn antenna) these currents and volt-
ages cancel out, therefore TEM cannot propagate. On the other hand,
the TE and TM modes only need a voltage or current in the wall, along
which they can propagate. Hence the TE and TM modes will be present within the system.
In this sense the existence, propagation and balance of the TE and TM modes determines the characteristics of the
given horn. To determine the radiation pattern, the radiated fields E(r) and H(r) have to be calculated at some
observation point far away from the aperture.

By replacing the TE and TM modes at the aperture of the antenna by an equivalent electric and magnetic sur-
face currents, which generate electromagnetic fields that propagate into the far-field, the radiation pattern can be
calculated. For this the field equivalent principle is used, which states that the aperture fields may be replaced by
equivalent electric and magnetic surface currents. The equivalent surface currents are [13]:

J = n̂⇥Ha (electric surface current)

Jm = �n̂⇥Ea (magnetic surface current)
(2.9)

With the addition of the fictitious ⇢m and Jm a complete symmetry between the two ’electrical’ and the two
’magnetic’ Maxwell’s equations shown in eq. 2.1 arises. This leaves the four Maxwell equations invariant [13]:

E ! H J ! Jm A ! Am

H ! �E ⇢ ! ⇢m ' ! 'm

✏ ! µ Jm ! �J Am ! �A

µ ! ✏ ⇢m ! �⇢ 'm ! �'

(2.10)

Where ',A and 'm,Am are the corresponding scalar and vector potentials defined in the literature [13]5. From this
transformation it can be seen that the first two equations in eq.2.1 transform in the last two. Hence, by obtaining an
expression for the electric field E and applying a duality transformation, we can find an expression for the magnetic
field H.

The next step is to rewrite the Maxwell’s equations in equation 2.1 in terms of the scalar and vector potentials,
which satisfy the Lorentz conditions and Helmholtz wave equations [13]. This gives:

E = �r0�� j!A� 1

✏
r0 ⇥Am

H = �r0�m � j!Am +
1

✏
r0 ⇥A.

(2.11)

Plugging in the scalar and vector values defined in [13], we obtain an expression for the E and H fields in terms of
the current and charge densities.

E =
1

j!µ✏

Z

V

h
k2JG+ (J ·r00)r0G� j!µ✏Jm ⇥r00G

i
dV’

H =
1

j!µ✏

Z

V

h
k2JmG+ (Jm ·r0)r00G+ j!µ✏J⇥r00G

i
dV’

(2.12)

4 And justified in Section 5
5 Equation 18.2.6

6



With V being the volume over which the charge and current densities are nonzero and G the Green’s function for
the Helmholtz equation [13]:

G = G(r-r’) =
e�jk(r�r’)

4⇡|r� r’| , (2.13)

. with the definition of r and r’ as shown in Figure 5.
For an aperture antenna with the e↵ective surface currents given by equation 2.12, the volume integral is reduced
to a surface integral over the aperture A.

E =
1

j!✏

Z

A

[(n̂⇥Ha) ·r0(r0G) + k2(n̂⇥Ha)G + j!✏(n̂⇥Ea)⇥r0G]dS’

H =
1

j!✏

Z

A

[�(n̂⇥Ea) ·r0(r0G)� k2(n̂⇥Ea)G + j!✏(n̂⇥Ha)⇥r0G]dS’
(2.14)

Next, we need to make a far-field approximation of the solutions given by equation 2.12, to obtain the radiation
field [13] 6. Hence we need to transform these fields to far-field, which is done by a Fourier transform. The radiation
vectors are given by a two-dimensional Fourier transform-like integral over the aperture of the antenna [13]:

F(✓,�) =

Z

A

Js(r’)e
jk·r’dS’ =

Z
n̂⇥Ha(r’)e

�jk·r’dS’

Fm(✓,�) =

Z

A

Jm(r’)e
�jk·r’dS’ = �

Z
n̂⇥Ea(r’)e

jk·r’dS’
(2.15)

Figure 6: Radiation fields from aperture
[13].

Since the far-field solutions of Maxwell’s equations are best described
in spherical coordinates, the radiation fields are given as a function of the
angles � and ✓ (see Figure 6).
It is reasonable to assume that the surface of the aperture is flat. This
means that the equations given by 2.15 become two normal 2-D Fourier
transform integrals. Hence by taking the aperture plane in the xy-plane,
we set n̂ = ẑ. Therefore dS’ = dx’ dy’, which results in:

F(✓,�) =

Z

A

Js(r’)e
jk·r’dx’ dy’ = ẑ⇥

Z
Ha(r’)e

�jk·r’dS’

Fm(✓,�) =

Z

A

Jm(r’)e
�jk·r’dx’ dy’ = �ẑ⇥

Z
Ea(r’)e

jk·r’dx’ dy’
(2.16)

Here ejk·r’ = ejkxx’+jkyy’ and kx = k cos(�)sin(✓), ky = k sin(�)sin(✓).
With the two-dimensional Fourier transforms of the aperture fields being:

f(✓,�) =

Z

A
Ea(r’)e

jk·rdx’ dy’ = Ea(x’, y’)

Z

A
ejkxx’+jkyy’dS

g(✓,�) =

Z

A
Ha(r’)e

jk·rdx’ dy’ = Ha(x’, y’)

Z

A
ejkxx’+jkyy’dx’ dy’

(2.17)

In uniform apertures, which we will assume later on, the fields Ea and Ha are constant over the aperture. Since Ea

is constant, the Fourier transform in equation 2.17 becomes:

f(✓,�) =
1

A

Z

A
ejk·r’dS’ (uniform-aperture pattern) (2.18)

Hence by assuming that the tangential aperture fields Ea and Ha are equal to the TE and TM modes at the
aperture, i.e. no TEM modes, the radiation pattern of an aperture can be calculated. This can be done, by replacing
the TE and TM modes at the aperture with equivalent electric and magnetic surface currents. These currents will
produce electromagnetic waves, which operate as sources for the radiation fields. To obtain the final radiation fields,
the Fourier transform of the current densities, i.e. the tangential aperture fields, is taken.

6 See Chapter 15 of citation
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3 Horn antenna theory and characteristics

Figure 7: General representation of a beam pattern.

The basics of horn antenna theory is that an
incident electromagnetic wave will cause a time-
varying current across the aperture surface, result-
ing in modes at the aperture that can propa-
gate through the horn into the probe. This pro-
cess can be reversed, using the Reciprocal Theo-
rem. So now the circular waveguide modes will
start to propagate in the direction of the aperture,
out of the horn. These modes will eventually reach
the aperture, resulting in an emitted electromagnetic
wave.
In this way an important general aspect of radio
telescopes is introduced; the beam pattern. The
beam pattern describes how the telescope, in this
case a horn antenna, sees the power incoming ra-
diation as a function of angle. The power pattern
of a horn antenna is square of the radiation field
at the aperture of the horn, calculated in Section
2

In Figure 7 a general representation of a beam pattern
is shown. This pattern is normalized with respect to the global maximum and converted into decibels, hence the
maximum of the graph corresponds to 0 dB 7. From the beam pattern other horn characteristics can be calculated,
such as the main beam, the sidelobe level, half-power beamwidth, beam solid angle, the gain and e↵ective area.
The main beam is given by the area from the highest power (the global maximum), till the first local minimums on
both sides of the global maximum. In Figure 7, this is from roughly from -50�till 50�. Resulting in a main beam
of 100�. The other maximums are named sidelobes, were the first local maximum gives the sidelobe level. The
half-power beamwidth (HPBW) is the total angle at which the received power is reduced to -3 dB, since P(db) =
10 ⇤ log10(0.5) = -3 dB. This is shown in Figure 7 as the angle between the two red dotted lines.
In general the beam pattern has a 3D shape and the power is a function of ✓ and � (P(✓,�)). Assuming that the
beam pattern is symmetric, we can calculate the beam solid angle with [20]:

⌦A =
⇡

4
·HPBW2 =

Z 2⇡

0

Z ⇡

0

Pn(✓,�)d⌦ (3.1)

Where the HPBW is given in radians, ⌦A in steradians8 and d⌦ = sin(✓)d✓d�.
The beam solid angle is a measure of how large the object appears to an observer at a given point. It can also be
used for estimating the antenna temperature produced by a compact source covered by the solid angle ⌦A having
uniform brightness temperature TB [1].
Due to the beam of the power pattern, the horn antenna also has directional properties. These are represented in
the gain of the horn antenna, i.e. the ratio between the received power by the antenna with respect to the power
received of an (hypothetical) isotropic antenna [20]. The gain is given by [20]:

Gmax =
4⇡

⌦A
=

4⇡Ae

�2
. (3.2)

With Ae the e↵ective area and � is the observed wavelength. From this the e↵ective area of the horn aperture can
be calculated, by rewriting equation (3.2).

Another horn characteristic, which can be determined without the beam pattern, is the far-field distance. This
is a measure of how far a point source must be from the horn antenna to satisfy the assumption that the incident
waves are (nearly) planar. This distance is given by [20]:

R↵ ⇡ 2D2

�
. (3.3)

7 The power in dB is calculated as follows: P(db) = 10 · log
10

(P/P
max

). Where P
max

is the maximum power in watt
8 1 str = 1 rad2 = ( 180⇡ )2degrees2
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Figure 8: Schematic of a rectan-
gular horn antenna, showing the
flared section and the waveguide.
Credits: Margaret Rouse [10].

Generally a horn antenna consist of good electrically conducting ma-
terial, that has been designed in such a manner that it will radi-
ate electromagnetic power in an e�cient manner. The horn antenna
is a type of antenna that has a flared shape, as shown in Fig-
ure 8. This flaring section allows radio waves to be directed into a
beam. The directivity makes these antennas excellent instruments for
measuring the CMB, because the sky can be sampled more frequently
(i.e. narrow beam) and the antenna gain is high. Horn antennas
also have little loss, resulting in a high directivity of the gain. Next
to the horn antenna being a reliable choice, they are easy to man-
ufacture, making them an excellent choice for our observation of the
CMB.

A horn antenna normally consists of two parts; a flared horn section and a waveguide, as show in Figure 8. Here
the term ’horn’ refers to the total horn, i.e. the flared horn section with the waveguide, unless specifically said
otherwise. The flared-horn section is where the incident electromagnetic waves enter the aperture and (if possible)
propagate into the horn. At the end of the flaring-section there is the waveguide, that guides the wave until they
enter a copper probe. The received signal is weak and thus needs to be further processed. The back-end of the
measurement system is where the signal is further processed, see [12].

3.1 Di↵erent horn types

As discussed in Section 2 di↵erent types of horn antennas result in di↵erent electric and magnetic fields at the
aperture of the horn. These fields give rise to a di↵erent beam pattern, as discussed in Section 3. In this section
a more detailed discussion will be given on what the di↵erent beam patterns are for the four selected horn shapes.
The discussed horn shapes are; the Rectangular horn, the Circular horn, the Potter horn and the Pickett-Potter
horn. Here it is assumed, that for each of these horn the fields at the aperture are uniform, i.e. equation 2.18 is
applicable.

3.1.1 Rectangular Horn

Figure 9: Design of a rectangular horn
antenna [4].

The Rectangular horn antenna, also known as a pyramidal horn an-
tenna, is one of the commonly used horn antenna types. Since
they are easy to fabricate, have a high gain and are operational
at a large frequency range [11]. This type of horn is obtained by
flaring a rectangular waveguide, were it is assumed that the modes
that can exist within the waveguide propagate into the flared horn
section. The design of the Rectangular horn is shown in Figure
9.

The Rectangular horn is determined by the parameters ’a’, for the x-
axis and ’b’, for the y-axis. To calculate the modes for the Rectangular
horn, the Maxwell’s equations for this configuration need to be solved
[19]. The solutions are given by:

Ez = A’ sin(kxx) sin(kyy) For TM waves

Hz = B’ cos(kxx) cos(kyy) For TE waves
(3.4)

With A’ and B’ being values corresponding to the amplitude of the electromagnetic wave. Applying the boundary
conditions 9 to equation 3.4 the following can be found:

Where: kx = ⇡m, m = 1, 2, 3, ...

ky = ⇡n, n = 1, 2, 3, ..

With m and n being the integers representing the mode number.
Assuming that most of the energy is stored in the dominant TE10 mode, equation (2.18) can be used to find the
radiation pattern for a Rectangular horn antenna, this gives:

f(✓,�) =
1

ab

Z a/2

-a/2

Z b/2

-b/2

ejkxx+jkyydx dy =
sin(kxa/2)

kxa/2

sin(kya/2)

(kya/2)
(3.5)

Where kx = ksin(✓)cos(�) =, ky = ksin(✓)sin(�) and k = 2⇡
� . This gives:

f(✓,�) =
sin(⇡a� sin(✓)cos(�))

⇡a
� sin(✓)cos(�))

sin(⇡ a
� sin(✓)sin(�))

⇡a
� sin(✓)cos(�))

(3.6)

9 E
z

= 0 at x = a and y = b
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Along the principle, that is in the xz-plane (� = 0�), the beam pattern as a function of the angle is plotted in Figure
10. The plot of the beam pattern in the yz-planes (� = 90�) looks like the beam pattern in Figure 10, since the
beam patterns are symmetric.

Figure 10: The Beam Pattern of a rectangular horn as function of y position, i.e. the xz-plane (� = 0�). Plot was
made with the Python script in 11.1. Credits for Maik Zandvliet [12] and Frits Sweijen [7].

3.1.2 Conical horn

Figure 11: Design of a rectangular horn
antenna [3].

The Conical horn structure is one of the most simple antenna struc-
tures and can be quite compact in size. The response of a Coni-
cal horn to the incoming radiation is similar to that of a Rectangu-
lar or Pyramidal horns. Since the beam pattern and therefore the
gain, can be calculated easily from the physical dimensions of the horn.
[3].
The general design of a Conical horn is shown Figure 11. As seen
from this figure, the Conical horn is conical flared section, which is
usually connected to a circular waveguide. The performance of this
type of horn antenna can be determined by two parameters; the ax-
ial length l of the flared-section and the diameter of the horn aperture
dm.

As with the Rectangular horn, the modes the Conical horn must be ob-
tained [19]. They are given by:

Ez = A Jn(kcr)cos(n�) For TM waves

Hz = B Jn(kcr)cos(n�) For TE waves

Using that Hz = 0, the remaining components for the TM waves are [19]:

Er = � j�

kc
AJ’n(kcr)cos(n�)

E� = � jn�

k2cr
AJn(kcr)sin(n�)

(3.7)

And using Ez = 0 for TM waves [19]:

Er = � jn!µ

k2cr
BJn(kcr)sin(n�)

E� = � jn!µ

kc
BJ’n(kcr)cos(n�)

(3.8)

Where k2c = �2 + k2 = k2 � �2, where k = 2⇡
� .

For a Conical horn aperture, we need to calculated the circular aperture with a radius ’a’ in cylindrical coordinates.
This implies that f(✓,�) will be independent of �. For computing the integral from equation 2.18 we set � = 0 and
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Figure 12: The Beam Pattern of a Conical horn aperture. Plot was made with the Python script in 11.1. Credits
for Maik Zandvliet [12] and Frits Sweijen [7].

assume that the TE11 mode is the dominant mode [8] , this gives:

f(✓) =
1

⇡a2

Z a

0

Z 2⇡

0

ejk⇢sin(✓
0)cos(�0)d⇢0d�0 (3.9)

Using: J0(x) =
1

2⇡

Z 2⇡

0

ejxcos(�
0)d�0 and

Z 1

0

J0(xr)r dr =
J1(x)

x
(3.10)

Where J1 is the Bessel function of the first order and J’1 is it’s derivative, equation 3.9 gives:

f(✓) = 2
J1(ka sin(✓))

ka sin(✓)
= 2

J1(ka sin(✓))

ka sin(✓)
=

�J1(
2⇡a
� sin(✓))

⇡a sin(✓)
(3.11)

In Figure 12, the beam pattern for a Conical horn, given by equation 3.11, is plotted for di↵erent values of the
parameter ’a’, as function of ✓. This beam pattern is symmetric, since the aperture of a Conical horn is symmetric
resulting in a symmetric beam pattern.

3.1.3 Potter Horn

The third type of horn that was selected for further discussion was the Potter horn. This type of horn was invented
by P. D. Potter in 1963 [16]. The Potter horn, shown in Figure 13, focuses on one of the important characteristics
of a horn antenna for most applications, which is the sidelobe level. It is important because it determines the
main-beam e�ciency and the response to spurious wide-angle radiation, to obtain low sidelobe levels.
To obtain a low sidelobe level the phase centers of the electric- and magnetic-plane must be coincident [16]. In his
paper, Potter presents a technique which enables complete phase centering by using a phasing section in the horn. As
a result -30 dB sidelobe level is obtained in the electric field plane. Leaving the magnetic field plane una↵ected. This
method of balancing modes, is know as a ’dual-mode conical horn’. In this technique, next to the the dominant TE11

mode, the TM11 mode is excited at the throat of the horn.

Figure 13: Design of a Potter horn
antenna [16].

At the aperture of the horn antenna, these two modes will be balanced such
that the sidelobe level is suppressed. Hence the performance of the dual-mode
conical horn is determined by a balance between the TE11 and TM11 modes.
To see the combined result we start at with the electric- or magnetic field of
these two modes. The electric field of the TE11 mode is given by [16]:

E✓H = �!µ

2R

⇣
1 +

�11Hcos(✓)

k

⌘
J1(K11Ha)

"
J1(ka sin(✓))

sin(✓)

#
sin(�)e�jkR

E�H = �ka!µ

2R

⇣�11H

k
+ cos(✓)

⌘
J1(K11Ha)

"
J’1(ka sin(✓))

1�
⇣

k sin(✓)
K11H

⌘2

#
cos(�)e�jkR

(3.12)

The electric field of the TM11 mode is given by [16]:
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Figure 14: The Beam Pattern of a Potter horn aperture. Plot was made with the Python script in 11.1 [16]. Credits
for Maik Zandvliet [12] and Frits Sweijen [7].

E✓E = �
⇣kaK11E

2R

⌘⇣�11E

k
+ cos(✓)

⌘" J’1(K11Ea)

1�
⇣

K11E

k sin(✓)

⌘2

#hJ1(ka sin(✓))

sin(✓)

i
sin(�)e�jkR

E�E = 0
(3.13)

Where ! is the radian frequency, k is the free-space propagation constant (= j!
p
µ0✏0 [18]),

µ is the permeability, ’a’ the aperture radius, J1 is the first order Bessel function of the first kind, J’1 the first deriva-
tive of J1 with respect to its argument and K11H is the first root of J’1 (=1.841).
Equation 3.12 and 3.13 can be combined to get the total electric field of the dual-mode horn antenna, i.e. subtracting
E✓H from E✓E. This results in,

E✓T =

"✓
1 +

�11H

k
cos(✓)

◆
� ↵

⇣
�11H + cos(✓)

⌘

1�
⇣

K11E

k sin(✓)

⌘2

#"
J1(ka sin(✓))

sin(✓)

#
. (3.14)

Here, ↵ is an arbitrary constant defining the relative power in the TE11 and TM11 modes. Here ↵ = 0.653 is chosen,
since for this value the E- and H-plane half-power beamwidth are equal and the phase centers coincide, resulting in
a sidelobe level of -40 dB. E✓T is plotted as a function of ✓, for di↵erent values of the aperture radius in Figure 14.

3.1.4 Pickett-Potter Horn

Figure 15: General sketch of a Pickett-
Potter horn antenna [9].

The final type of horn that was further investigated was the Pickett-Potter
horn. This type of horn antenna, invented by H. M. Pickett is a variation
on the Potter horn (see section 3.1.3).
The Pickett-Potter is the Potter horn without the phasing section, such
as shown in Figure 15. The coincidence of the TE11 and TM11 modes is
done by the step-transition from the flared horn section to the circular
waveguide (indicated in Figure 15 at 1.30�0). This step transition gener-
ates a small fraction of the TM11 mode, as well as the propagating TE11

mode. At the aperture of the horn, this results in an E-plane aperture
distribution that is more tapered with respect to a stand single-mode
conical horn [9].
The result is that the Pickett-Potter horn is a horn antenna with the
advantages of a Potter horn (i.e. low sidelobes), but easier to construct,
since the phasing section is left out. The beam pattern of the Pickett-
Potter horn will be the same as for the Potter horn (as shown in Figure
14), since the balancing of the modes is the same, but how this balance
is achieved is di↵erent.
There is however, one major disadvantage of the Pickett-Potter horn that
is that the low sidelobe level comes at the cost of the total bandwidth
[16][17].
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4 Selection of the preferred horn antenna type

In this section the most suited horn antenna type, for our observation of the CMB, is selected from the four horn
antenna types that were discussed in Section 3.1. The CMB has an expected value of around 2.7 Kelvin, which
is small with respect to the temperature of the atmosphere, i.e. ⇠ 300 K. Hence the precision we need for our
measurement system is of the order of 0.1 K. This corresponds to a power level of -35 dB 10. Therefore the main
selection constraint is that the sidelobe level of the beam pattern is lower then -35 dB. Related to this is that the
beam pattern of the horn antenna must have a shape as shown in Figure 7. With such a shaped beam pattern and
a sidelobe level of -35 dB, we can be certain that the measured power is from the main beam and some spurious
wide-angle radiation received by the sidelobes.
Another, related, design constraint is the half-power beamwidth of the beam. Since we will be measuring the
atmospheric temperature as a function of zenith angle [7][21] to determine the temperature of the CMB, precision
in the zenith direction is important. The maximum half-power beamwidth that the measurement system is allowed
to have is 15�. As shown in the thesis of F.Sweijen [7].
Besides the design constraints mentioned above, the horn antenna has to be constructed by ourselves within a
reasonable amount of time (⇠ 2 days). Therefore the construction level of the horn is important. The horn needs
to be easy to fabricate and must be robust with respect to small construction errors. For the latter it helps that we
observe at 11 GHz, which corresponds to a wavelength of roughly 3 cm, hence it is less prone to construction errors.

4.1 Definite horn horn antenna type

An overview of the four horn antennas types and their performance regarding the selection criteria is listed below.

Horn antenna type Sidelobe level (dB) HPBW (full angle in degrees) Construction level
Rectangular horn -13 4 - 1.6 Easy
Conical horn -17 6.6 - 1.4 Medium
Potter horn -40 10 - 8.2 Hard
Pickett-Potter horn -40 10 - 8.2 Medium

Table 1: Ferformance selected horn types.

The analysis of the sidelobe level shown in Table 1 is based on the beam patterns shown in Figures 10, 12 and
14. The beam pattern of the Potter and the Pickett-Potter horn are the same, since only the method of phase
coincidence changes, leaving the beam pattern intact. From these figures it can be seen that the Rectangular and
Conical horn have a sidelobe level of roughly -20 dB, while the Potter en Pickett-Potter horn have a sidelobe level
of -40 dB.
For the HPBW again the beam patterns in Figures 10, 12 and 14 are used. As can be seen from these figures, the
the HPBW of the Potter and Pickett-Potter horn is somewhat broader, than the Rectangular and Conical horn,
while remaining below 15�.
The analysis for the construction level of these four horn types is based on the schematics shown in Figures 9, 11,
13 and 15. By looking at these schematics, combined with some technical insight regarding the actual construction
of the horn, the selected horn types were rated. This resulted in the conclusion that a conical shape is much more
di�cult to construct than a rectangular shape, therefore the the Rectangular horn received an ’Easy’, while the
Conical horn and the Pickett-Potter horn received a ’Medium’. The Potter horn received ’Hard’, due to the presence
of the phasing section.
On the basis of Table 1 it can be concluded that the Pickett and Pickett-Potter horn have the best performance
regarding the main selection constraint, i.e. the sidelobe level. Hence, the Rectangular and Conical horn do not
qualify. As seen from Table 1 the Pickett-Potter horn is easier to construct than the Potter horn. Therefore, we
selected the Pickett-Potter horn as the most suited horn antenna type for our observation of the CMB.

Figure 16: Design of a Pickett-Potter horn aperture [16].

10= 10 · log
10

( 0.1
300

)
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5 Design parameters and optimization for the Pickett-Potter horn

As the basis for our design, we used the design made by Pickett, shown in Figure 16. However, before construction of
the Pickett-Potter horn could begin, the antenna had to be optimized. The optimization was needed to fine-tune the
design to obtain the optimal beam pattern, i.e. one with the preferred sidelobe level and HPBW. The optimization
consisted of two parts; the flared Conical horn and the probe within the circular waveguide. Both simulations were
done by using the program Computer Simulated Technology - Microwave Studio (CST MWS).

5.1 CST Microwave Studio

CST MWS enables three dimensional electromagnetic wave simulations for high frequencies [6]. It provides a fast
and accurate analysis of high frequency devices, including horn antennas.
In the environment of CST MWS the user can design their object of interest, with the correct dimension, shapes,
material and operating frequency. Waveguide ports can be used to excite an electromagnetic pulse, to calculate the
existing modes, based on the geometry of the object. CST MWS does this by solving Maxwell’s equations for each
mesh-cell. Then, by calculating the scattering-matrix for each mesh-cell, the propagation of the di↵erent modes
is simulated. These mode simulations are then used to calculate the far-field, i.e. beam pattern, of the simulated
object.
CST MWS also has an optimization module, where di↵erent techniques and algorithms can be selected, each having
their own specifics that are suited. In this way the user is able to select the most suited method for optimizing the
design.
The above was done for two parts of the horn separately, the flared conical horn and the probe in the circular
waveguide. These simulations were done separately to reduce the calculation time.

5.2 Flared Conical Horn optimization

Figure 17: Slanted conical horn in CTS MW (tilted view).

Figure 18: flared concical horn in CTS MW (cross cut
x-axis).

The design parameters of the flared conical horn
are the slant angle, the step-size, the radius of
the waveguide and the axial length of the horn.
To speed-up the optimization, the number of free
parameters needed to be reduced from four to
two. Hence the slant angle, which is the angle
of the flared section, was set to 13.5� and the ax-
ial length of the horn was set to 10.62 · �0 =
289 mm. These parameter values correspond to the
values set by Pickett, as discussed in his paper
[9].
The remaining parameters were the step-size, i.e. the
radius at the transition from the horn to the circu-
lar waveguide, and the radius of the circular waveg-
uide.

To achieve the required sidelobe level, the TE11 and
the TM11 mode needed to be balanced correctly. This
is only attained for a specific set of step- and circu-
lar waveguide radii. In the literature the following con-
straints were found for the the step-radius and the radius
of the circular waveguide [22]:

1.84 < kaw < 3.83

3.83 < kA < 5.33
(5.1)

Where aw is the waveguide radius and A the radius of
the step discontinuity. Using k = 2⇡/�0, with �0=27.27
mm, gives:

7.987 mm < aw < 16.624 mm

16.624 mm < A < 23.135 mm
(5.2)

Equation (5.2) gives the minimum and maximum values for both the radius of the circular waveguide and the radius
of the step-size. An overview of the parameters and their values or range is given in Table 2. With these values the
optimization for the beam pattern was started.
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Parameter Range or value
Observing frequency 11 GHz
Slant angle 13.5�

Length horn 298 mm
Wall thickness 2 mm
aw 7.987 - 16.624 mm
A 16.624 - 23.135 mm

Table 2: Parameter values for the optimization of the Pickett-Potter Horn antenna design.

5.2.1 Method and measurement setup for the flared Conical Horn optimization

The values given in Table 2 were used to draw the horn antenna in CST MWS, see Figure 17 and Figure 18. Note that
in these schematics there is no back-end in the waveguide, since this is a configuration in which CST MWS is able to
calculate the beam pattern. For more details see Section 5.2.1.2. The horn, shown in Figures 17 and 18, consists of
Perfectly Electric Conducting (PEC) material, i.e. there is zero resistivity. This will reduce the computation time,
since non-zero resistivity properties, such as scattering, are not calculated. Despite the fact that our horn will consist
of copper, the approximation of copper being a PEC is valid, since copper is a highly electrically conducting material.

As mentioned, the CST Microwave Studio has an optimization module, with a very broad application, ranging
from optimizing S-parameters, the gain, the far-field pattern with a parameter sweep or optimization algorithms.
The CST MWS Optimization module was used for our horn design, to check if the TE11 and TM11 flared horn
modes would couple to the TE11 mode in the circular waveguide. To, eventually, find the horn antenna design which
has the optimal beam pattern, both of these simulations were done for the central frequency of 11 GHz. The method
for the optimization are described below.

5.2.1.1 From horn modes to waveguide modes?

After the horn antenna was drawn in CST MWS, two ports were added, one at both ends of the horn. Port 1,
located at the aperture, would calculate the horn modes, while the Port 2, located at the end of the waveguide,
would calculate the modes in the waveguide. Then CTS MW would use Port 1 as a source, to calculate how
the modes at Port 1 would propagate trough the flared horn can couple to the waveguide modes, i.e. the modes
calculated at Port 2. To store the result a field monitor was added to the horn antenna design.
In CST MWS it is not possible to select specific modes, e.g. TE11 or TM32. Instead of this you’re able to select
the number of modes you want CST MWS to calculate at each port. From these calculated modes, a selection can
be made, which then will be excited by MWS. For Port 1 eight modes needed to be selected to obtain the preferred
TE11 and TM11 modes with the right polarization, i.e. along with the direction of the probe. At Port 2 only one
mode was selected, since this was directly the dominant TE11 mode. The calculated modes, at each port, are shown
in Figure 19. In Figure 5.2.2.1 the coupling of the flared horn modes to the waveguide modes is shown.

The results are shown in Section 5.2.2.1.

5.2.1.2 To optimize the beam pattern

Once the coupling of the TE11 and the TM11 horn modes to the TE11 circular waveguide mode was checked, the
horn antenna design could be optimized to find the optimal beam pattern. There were two optimization goals, that
was to obtain the lowest sidelobe level as possible while maintaining a HPBW smaller than 15�(full angle) [7]. This
at the central frequency of 11 GHz, not for the entire bandwidth, to reduce the simulation time.

The basis horn antenna design, as shown in Figure 17 and Figure 18, was used. At the end of the waveguide
a waveguide port, the same as in Section 5.2.1.1, was added11. This port, now Port 1, was used as the source
and a far-field monitor was added to calculate the far-field for this horn antenna configuration. Thus, the TE11

mode in the circular waveguide would be excited and would start to propagate in the direction of the aperture. At
the transition this TE11 waveguide mode would transist into a TE11 and TM11 horn mode (as checked in Section
5.2.1.1). The balance between these to flared horn modes would determine the far-field pattern of that specific horn
antenna configuration.
Since there are no S-parameter in this simulation for which CST MWS can optimize for to obtain the optimal
far-field pattern, a parameter sweep was used. CST MWS supports this type of optimization, in which the user can
specify a certain parameter space. For each possible set of parameters, CST MWS would then calculate the beam
pattern. In this case the parameter space was defined by the radius of the waveguide (aw) and the radius step-size
(A). Two parameter sweep cycles were used for finding the optimal aw and A. The first would coarsely scan the
selected parameter space, given by Table 2. The result of the first scan was used for the second scan. This second
parameter sweep would scan the most promising part of the parameter space. For the results see Section 5.2.2.2.
Since the beam pattern of the horn is determined by the shape of the aperture and in our case the aperture of the
horn is symmetric, it is valid to assume that the resulting beam pattern is also symmetric in three dimensions.

11There is no waveguide port at the aperture of the horn
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5.2.2 Results for the flared Conical horn optimization

This section shows the result obtained from the simulations described in Section 5.2.1.1 and 5.2.1.2. In Section
5.2.2.1 the mode propagation and coupling discussed, while Section 5.2.2.2 describes the beam pattern optimization.

5.2.2.1 Results mode propagation

The modes present at the horn aperture and circular waveguide are shown in Figure 19. Figures 19a, 19b, 19c
and 19d show the five distinct modes present, while Figure 19f shows the single circular waveguide mode. Here the
polarizations for the TE11, TE21 and TM11 are left out. Out of the horn modes, only the TE11 and TM11, couple to
the TE11 circular waveguide mode. Here we assume that, beside the TE11 and TM11, no higher order modes couple
to the TE11. This assumption is valid since it is a requirement of the Pickett-Potter horn design.
Figure 20 shows the results of the check needed to assure that the dominant TE11 and TM11 horn modes would
transfer into the TE11 mode in the circular waveguide. As seen from Figure 20 only the TE11 and TM11 horn modes
propagate into the circular waveguide, i.e. transferring their energy to the TE11 circular waveguide mode.

(a) TE01 horn mode. (b) TE11 horn mode.

(c) TE21 horn mode. (d) TM01 horn mode.

(e) TM11 horn mode. (f) TE11 waveguide mode.

Figure 19: Propagation of modes from the flared horn section to circular waveguide.
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(a) TE01 mode. (b) TE11 mode.

(c) TE21 mode. (d) TM01 mode.

(e) TM11 mode.

Figure 20: Transition from the flared horn to the circular waveguide. As can be seen only the TE11 and TM11

couple to the TE11 waveguide mode.
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5.2.2.2 Results for the beam pattern optimization

The results in Section 5.2.2.1 show that the principle of the Pickett-Potter horn, i.e. using a step to transfer the
TE11 and TM11 horn modes into the TE11 circular waveguide mode works. With this verification, the design of the
Pickett-Potter horn can be optimized.
As discussed in Section 5.2.1.2 the optimization of the horn design was done via a two cycle parameter sweep. In
the first a coarse scan would be made to determine which part of the initial parameter space (given in Table 2) was
the most promising. In this scan a parameter step size of 2 mm was chosen for the radius of the step (A) and a
parameter step size of 1.5 mm for the radius of the waveguide (aw). The results of the first parameter sweep are
shown in Figure 21 and Table 3.

Figure 21: Beam patterns of first parameter sweep.
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Beam Pattern Radius step (A)(mm) Radius waveguide (a
w

)(mm) HPBW(�)
01 17.00 8.00 12.84
02 17.00 10.00 15.68
03 17.00 12.00 13.78
04 17.00 14.00 11.75
05 17.00 16.00 11.75
06 18.50 8.00 12.58
07 18.50 10.00 12.39
08 18.50 12.00 11.08
09 18.50 14.00 3.77
10 18.50 16.00 3.77
11 20.00 8.00 11.80
12 20.00 10.00 11.73
13 20.00 12.00 11.65
14 20.00 14.00 12.69
15 20.00 16.00 20.28
16 21.50 8.00 10.59
17 21.50 10.00 10.59
18 21.50 12.00 10.63
19 21.50 14.00 8.60
20 21.50 16.00 13.69
21 23.00 8.00 9.57
22 23.00 10.00 9.74
23 23.00 12.00 9.95
24 23.00 14.00 10.06
25 23.00 16.00 13.36

Table 3: A, aw and the Half Power Beam Width per Beam pattern for the first scan.

The data from this first sweep was analyzed with a Python script (11.2)). Obtaining the beam pattern for each
configuration (Figure 21) and the HPBW per configuration is shown in Table 3.

From the beam patterns shown in Figure 21, it can be seen that the beam patterns in the range from 8 mm -
12 mm for aw and from 16 mm - 19 mm for A show the most promising beam pattern. Since these beam patterns
show the lowest sidelobe level and the HPBW is of the preferred size, i.e. smaller than 15�.
With the results of the first parameter sweep, a second was initiated. In this scan a parameter step size of 0.5 mm
was selected for the radius of the step (A) that ranged from 16 mm - 19 mm. For the radius of the waveguide a
parameter step size of 0.5 mm and a range of 8 mm - 12 mm was chosen. The output data for the second parameter
sweep was analyzed using the Python script shown in Appendix III. The results of the second parameter sweep are
shown in Figure 22 and Table 4.
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Figure 22: Beam patterns of second parameter sweep.
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Pattern A(mm) a
w

(mm) HPBW(�) Pattern A(mm) a
w

(mm) HPBW(�) Pattern A(mm) a
w

(mm) HPBW(�)

01 16.00 8.00 12.08 22 17.00 9.50 16.54 43 18.00 11.00 12.97
02 16.00 8.50 27.25 23 17.00 10.00 16.38 44 18.00 11.50 12.88
03 16.00 9.00 25.91 24 17.00 10.50 15.93 45 18.00 12.00 12.83
04 16.00 9.50 22.06 25 17.00 11.00 15.60 46 18.50 8.00 13.26
05 16.00 10.00 22.06 26 17.00 11.50 15.11 47 18.50 8.50 13.22
06 16.00 10.50 16.19 27 17.00 12.00 14.35 48 18.50 9.00 13.15
07 16.00 11.00 14.24 28 17.50 8.00 13.50 49 18.50 9.50 13.11
08 16.00 11.50 12.34 29 17.50 8.50 13.42 50 18.50 10.00 13.02
09 16.00 12.00 12.40 30 17.50 9.00 13.33 51 18.50 10.50 21.56
10 16.50 8.00 12.40 31 17.50 9.50 13.19 52 18.50 11.00 12.09
11 16.50 8.50 12.81 32 17.50 10.00 14.24 53 18.50 11.50 12.06
12 16.50 9.00 21.93 33 17.50 10.50 14.23 54 18.50 12.00 11.50
13 16.50 9.50 20.03 34 17.50 11.00 14.16 55 19.00 8.00 13.03
14 16.50 10.00 18.34 35 17.50 11.50 14.07 56 19.00 8.50 12.99
15 16.50 10.50 17.53 36 17.50 12.00 13.83 57 19.00 9.00 12.94
16 16.50 11.00 16.55 37 18.00 8.00 13.44 58 19.00 9.50 12.89
17 16.50 11.50 15.46 38 18.00 8.50 13.38 59 19.00 10.00 12.92
18 16.50 12.00 14.41 39 18.00 9.00 13.31 60 19.00 10.50 12.86
19 17.00 8.00 13.36 40 18.00 9.50 13.12 61 19.00 11.00 12.81
20 17.00 8.50 13.24 41 18.00 10.00 13.04 62 19.00 11.50 11.48
21 17.00 9.00 13.11 42 18.00 10.50 12.97 63 19.00 12.00 11.36

Table 4: A, aw and the Half Power Beam Width per Beam pattern second scan.
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Figure 22 shows that for a larger step-radius (A) the beam pattern becomes more smooth. This indicates that
the larger the radius the less prone the horn design is for sidelobes. Table 4 shows us that at increasing waveguide
radius (aw) the HPBW decreases.
With the results from Figure 22 and Table 4, Pattern 57 was selected as the final preferred beam pattern. Pattern
57 has a step radius of 19 mm and a waveguide radius of 10 mm. This beam pattern was selected because the
sidelobes were of the order of -45 dB and the HPBW was 12.92�, satisfying both of our design constraints the best
as possible. A detailed analysis of the beam pattern is shown in Figure 23.

Figure 23: The beam pattern that was chosen from the results obtained in the second parameter sweep. Here A =
19 mm and aw= 10 mm.

23



5.3 Probe parameter optimization

Figure 24: Circular waveguide and probe in CTS MW
(front view).

Figure 25: Circular waveguide and probe in CTS MW
(side view).

After the optimization of the beam pattern the po-
sition and length of the probe needed to be opti-
mizated. This is to ensure that the energy trans-
fer from the TE11 circular waveguide mode into
the probe (S21) is maximal and the reflection (S11)
is as low as possible. The parameter for which
the optimization was done, was the transmission,
i.e. the matrix element S21 (see Section 2.2.3).
The initial guess for the length of the probe is
�0/4 and the position of the probe is �0/4 with
respect to the back-end of the circular waveguide
[1]. Hence both parameters are set to 6.8175
mm.

With these starting conditions the circular waveguide
and the probe were drawn in CST MWS, see Figure 24
and 25. As with the horn, the waveguide would need to
consist of a Perfectly Electric Conducting (PEC) mate-
rial, this would reduce the computation time.
The dimensions for this design are shown in Table 5. All
of these dimensions were known from previous optimiza-
tions (such as aw) or are standard values (such as the
design parameters for the probe), except for the length
of the waveguide. The minimal requirement for this pa-
rameter is that the waveguide has to support at least
one guide-wavelength (�g), which is the wavelength of
the observing frequency within the circular waveguide.
If this requirement is not met and the length of the
waveguide is smaller than �g, the dominant modes will
not be able to propagate into the circular waveguide
[19]12. �g is given by:

�g =
�0p

1� (!c/!)2
. (5.3)

Here ! is the observed angular frequency in radians and !c is the cuto↵ frequency. The latter is given by [19]13:

!c =
mcm⇡

aw
) !c =

cm⇡

aw
, (5.4)

with m the order of the mode, which for the dominant mode threaded here is equal to one, and cm is the speed of
light in that medium.
The dimensions of the probe, e.g. the diameter of the copper and the diameter of the Teflon, were chosen to be
standard values given by [2]. These values are also shown in Table 5.

Since we are observing a bandwidth, instead of a single frequency, the optimization of the probe needed to be
done for the entire bandwidth. Thus, the frequency range from 10.5 to 11.5 GHz needed to be taken into account.

Parameter Value(mm)
Observed frequency range 10.5 - 11.5 GHz
Main observing frequency 11 GHz
�g 33.3
aw 10
Length waveguide 19
Wall thickness horn 2
Position probe 26.482
Length probe 6.818
Diameter teflon 4.2
Diameter copper probe 1.2
Diameter mantle probe 5

Table 5: Dimensions of the probe optimization.

12 See page 399 equation (20)
13 See page 398 equation (14)
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5.3.1 Method for the probe optimization

Figure 26: General CST MWS optimization window.

Figure 27: General CST MWS optimization window, the
goals tab.

In the optimization for the beam pattern an ef-
fective but time intensive parameter sweep was
needed, since there was no S-parameter (see Sec-
tion 2.2.3) for which CST MWS could opti-
mize.
The optimization of the position and length of the
probe within the circular waveguide, enabled an op-
timization of the S-parameters. Since the transi-
tion of the TE11 waveguide mode into the probe
can be expressed in a transition from one medium
to another medium using S-parameters, here the
optimization criteria was to optimize the transmis-
sion of the mode, i.e. the S21. This was
done only for the dominant TE11 circular waveguide
mode.

In the simulation of the circular waveguide with
the probe design, as seen in Figure 24 and 25,
was used. At both the beginning of the cir-
cular waveguide as at the end of the probe a
waveguide port was positioned. The waveguide
port at the beginning of the waveguide was named
Port 2 and the port at the end of the probe
was named Port 1. Port 2 was used as the
source.

The number of modes that were excited at Port 2 was
eight, while the number of modes excited at Port 1
was one. The selected number for Port 2 might seem
weird, since only the dominant TE11 circular waveg-
uide mode was needed for this optimization. The rea-
son for this is due a bug in CST MWS, since with one
mode at both Port 1 and Port 2, the TE11 waveg-
uide mode would not propagate into the waveguide.
With eight modes calculated at Port 2, the TE11

waveguide mode would propagate and couple to the
probe.

The next step would be to select an optimization algorithm. CST MWS has di↵erent local and global S-parameter
optimization algorithms, each with their advantages and disadvantages. The algorithm selected here was the ’Trust
Region Framework’, which is one of CST MWS local optimizers. The Trust Region Framework builds a linear model
on the primary data in a ”trust” region around the initial point. The modeled solution will be used until the algo-
rithm converges. The main advantage of the Trust Region Framework is that it takes advantage of the S-parameter
sensitivity information to reduce the number of cycles needed and to speed-up the optimization process. From the
CST MWS optimization module the Trust Region Framework is the most robust optimization algorithms [6].
The optimizer window overview is shown in Figure 26. Under ’Setting’ the window shows the optimizer choice, the
parameter space definition and the precision, and under ’Goals’, see Figure 27 for the objectives that can be set.
Here the Trust Region Framework-algorithm was selected and the parameter space ranged from 3 - 15 mm for the
length of the probe and from 30 - 10 mm for the position with respect to the back of the waveguide. As goal the
maximization of S21 = 0 in dB’s for the entire bandwidth, was set. The results of this optimization are shown in
Section 5.3.2

5.3.2 Results probe optimization

The result of the CST MWS optimization discussed in Section 5.3 resulted in a probe length of 7.2 mm and a
position of the probe, with respect to the back-end of the circular waveguide, of 15.1 mm. The S21 parameter is
plotted in Figure 28a , were a zoomed plot for the observed bandwidth is shown in Figure 28b .
The brown line in Figure 28a and 28b is the S-parameter, which describes the magnitude of the transmision of
Port 2 to Port 1, for mode 2 (the TE11 circular waveguide mode with the correct polarization) to mode 1 (the
dominant probe mode). The pink line in these same Figures shows the S-parameter and describes the magnitude of
the transmision of Port 2 to Port 1, for mode 8 (the TM11 circular waveguide mode with the correct polarization)
to mode 1 (the dominant probe mode). The former is the one for which was optimized and is therefore of most
interest.
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Besides the S21, also the S11, i.e. the reflection, as function of frequency can be calculated using CST MWS. This
is shown in Figure 29.

For our observation of the CMB we need a precision of 0.1 Kelvin. Hence, the deviation of the S21 parameter
on the entire bandwidth from the ideal value (i.e. 1) had to be smaller than 0.1. As can be seen from Figure 28b,
the averaged value of the S21 parameter in the observed bandwidth is approximately - 0.15 dB. Which corresponds
to a value of 0.966 K on a linear scale. Therefore the deviation on a linear scale is: 1.0 - 0.966 = 0.034 K, i.e. smaller
than the required 0.1 K. The deviation of 3.4·10�2 K was thought to be acceptable for our measurement, hence no
further optimization of the probe was needed.

(a) S
21

as function of frequency.

(b) S
21

as function of frequency, zoomed-in at 10.5-11.5 GHz.

Figure 28: Results for S21 simulation.
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(a) S
11

as function of frequency at 8-16 GHz.

(b) S
11

as function of frequency, zoomed-in at 10-12 GHz.

Figure 29: Results for S11 simulation.
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5.4 Final result flared Conical horn and probe optimization

Combining the result of the flared Conical horn optimization (Section 5.2.2.2) and the probe optimization (Section
5.3.2), the design parameters of the Pickett-Potter horn were set. The values for the design parameters are summa-
rized in Table 6. These values were used to draw a blue print of the Pickett-Potter horn, which is shown in Figure
30 . Now it was time to build the horn!

Parameter Value
Slant angle 13.5�

Length horn 289.64 mm
aw 10 mm
A 19 mm
�g 33.3
Length waveguide 19
Wall thickness horn 2
Position Probe 15.1 mm
Length probe 7.18
Diameter teflon 4.2
Diameter copper probe 1.2
Diameter mantle probe 5

Table 6: Final parameter values Pickett-Potter Horn design.
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Figure 30: Blue print of horn antenna. Credits: Maik Zandvliet. [12]
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6 Construction of the Pickett-Potter Horn

With the design parameters and the blue print at hand, the construction of our Pickett-Potter horn could begin.
This consisted of two main sub-constructions; the construction of the flared conical horn and the circular waveguide.
A general description on both these sub-constructions is discussed below. The di↵erent steps for the construction
of the flared Conical horn are shown in Figure 31, with the steps for the construction of the circular waveguide
shown in Figure 32. Since the descriptions of the sub-constructions is given on the main issues and methods, Table
7 and 8 will provide more details on the materials and equipment that were used during the construction of this
Pickett-Potter horn.

6.1 Constructing the flared Conical horn

The flared Conical horn consisted out of four major sections; a conical shaped horn, a support ring with a 178 mm
inner and 188 mm outer diameter, a support ring with a 108 mm inner and 118 outer diameter and a flench. All
these sections consist of copper, since the horn needed to be a good conductor of electricity.
The conical shaped horn was bent out of a sheet of copper. The sheet of copper, seen in Figure 31a, was cut out of
a rectangular sheet of copper with a thickness of 2 mm. This was done by R. Hesper and myself. This copper sheet
was bent in a conical shape by using a roller and some improvisation. Next, the two support rings of copper were
cut out of a copper sheet of 5 mm thick. This was done by Rob van der Schuur, who works at the workshop of SRON.

To get an impression of the size and shape of the horn, see Figure 31b. Here the two sides of the horn are bent
towards each other, while being situated on an aluminum block, to keep the aperture in the correct shape. Then,
the two ends of the sheet were duck-taped, to keep the horn in place while putting the rings at the correct position
around the horn.

With the rings in the correct position, the ring at the aperture of the horn needed to be soldered to the coni-
cal shaped horn. To achieve the soldering temperature the entire setup, as shown in Figure 31b, was put on a
heating plate. By preheating the setup, the soldering temperature would be obtained faster than with only heating
locally. Then the soldering flux was applied, to clean up the copper such that it can be soldered. At first the flux
was in a semi-liquid state, like a syrup, but as it got warmer it started to become more like a liquid, allowing it to
flow between the conical shaped sheet and the support ring. Next, the horn and the support ring were heated up
locally with two heat guns, one of which is shown in Figure 31c. While I and Ronald were heating the horn locally,
Rob soldered the first support ring to the conical shaped copper sheet.

Then Ronald made a flench out of a 60 mm (in diameter) copper cylinder, using a lathe. This required some
creativity, since the inner radius of the flench needed to decrease with the slope of the conical horn. Then six holes
were tapped, which could enable us to bolt the circular waveguide and flared conical horn to each other.
With the flench ready it needed to be soldered to the conical horn. To achieve this the same setup was used as for
the soldering of the support ring at the aperture of the horn. The horn would be fitted into the flench, after which
it was put on the heating plate. Here the flench was directly seated on the heating plate, with the rest of the horn
resting on top of it. As with the first support ring, the preheating would ensure that the soldering temperature
was reached sooner than with local heating only. With the preheating finished, the soldering flux was applied to
assure that the solder would stick to the copper. Then the heating guns were used to locally heat the copper to the
soldering temperature. The result of this step is shown in Figure 31d and 31e.
For the soldering of both the support horn at the aperture and the flench solder, a high temperature, i.e. tmelt =
217�C (see Table 7), was used. The force pushing the sheet out of its conical shape was the greatest at these solder
points. This also being the reason why these two points were soldered before the second support ring.

The next step was to solder the second support ring (solder Sn 62) to the conical horn and to solder the two
ends of the conical copper sheet together (solder Sn95.5). The former is shown in Figure 31d and Figure 31e, while
the latter is shown in Figure 31f. With the same approach as used before, i.e. with the use of the soldering flux,
heating plate and the heating guns, the second support ring and the two ends of the conical copper sheet were
soldered. Figure 31d shows the soldering setup and Figure 31g shows the final constructed flared Conical horn.
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Materials Specifics
Copper sheet for the horn 600 x 400 mm of 2mm thick
Copper cylinder 40 mm long and 60 mm in Diameter
Copper sheet for the support rings 600 x 400 mm of 5 mm thichk
Solder 1. 60-40 (regular solder, Tmelt = 180�C.

2. Sn 62 (regular solder,Tmelt = 179�C ).
3. Resist-2 Silver solder 2mm (Tmelt = 221�C ).

Solder flux Skandia soldering flux S-39

Equipment Specifics
Heating plate Labotech DHP 20
Heating gun Metabo HE 2300 Control

Table 7: Materials and equipment that were needed for the construction of the flared conical section.
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(a) Cutted copper sheet.

(b) Putting together the conical copper sheet and support
rings.

(c) One of the two heating guns that was used.
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(d) The Conical shaped sheet, with the first support ring
and flench attached.

(e) The Conical shaped sheet, with the first support ring
and flench attached, zoomed-in at the top.

(f) The constructed flared Conical horn showing the gap
caused by the two side of the conical copper sheet.

(g) The constructed flared conical horn, were the Aquar-
ius bottle is put to get an impression of scale.

Figure 31: The construction of the flared Conical horn.
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6.2 Constructing the circular waveguide and the probe

The circular waveguide was cut out of an aluminum cylinder with the dimension shown in Figure 30 and a more
detailed description in Figure 32a. All of the work was done on the lathe of Ronald Hesper. Since I had no experience
in using a lathe, Ronald was doing the main part of the job, while I was assisting him were I could.
The aluminum cylinder, having a diameter of 60 mm to match the diameter of the flench, with which we started is
shown in Figure 32b. At the workshop of SRON, the cylinder was cut to a piece of 50 mm long. Then the first step
would be to cut the cylinder in the correct dimensions, i.e. a diameter of 60 mm at the front of the waveguide that
would drop to 30 mm after 5 mm. This was done by spanning the cylinder in Ronald’s lathe and cutting o↵ the
aluminum at the end of the ’future’ waveguide, see Figure 32c. Since the dimensions were quite crucial, the cutting
needed to be done very precisely and a regular check of the diameter was needed (Figure 32d).
After cutting away the bulk of the material, a plateau for the probe was made by milling o↵ 1 mm of the waveguide,
as shown in Figure 32f.
Then the inner part of the waveguide needed to be made. First a hole, of 33 mm deep, with a regular metal drill
was drilled into the front end of the circular waveguide. Having drilled a hole, a cutter was used to obtain the right
dimensions for the waveguide, i.e. 19 mm diameter and 33.3 mm deep (Figure 32g).
Next, was to drill the holes for the probe. In total there were three holes drilled; one for the probe and two for bolts
attaching the probe to the waveguide. The first was at 18.8 mm with respect to the beginning of the waveguide,
with the other two 6.25 mm away from the hole for the probe. This can be seen in Figure 32g.
To assure that we could attach the circular waveguide to the flared conical horn with bolts, six holes were drilled
that matched the holes in the flench. These holes were cut in such a way that the alignment of the probe would
correspond to the gap (Figure 31f) caused by the two ends of the conical copper sheet. This alignment was selected,
since the probe would be less prone to detect features caused by the imperfections at this gap.
The resulting circular waveguide is shown in Figure 32e.

Now that the circular waveguide was complete, the probe needed to have the correct dimensions. Therefore the
Teflon and the copper wire needed to be cut, the result is shown in Figures 32f and 32g. In this Figure the probe is the
copper object on the lower left. The white material is the Teflon and the copper that sticks out transfers the incoming
radiation into the probe. This signal will go into the back-end of the measurements system for further processing [12].

Materials Specifics
Aluminum cylinder 60 mm diameter and 50 mm long
Probe See the specifcs given by[2]
Bolts 6 M3’s
Rings 6 M3 rings

Equipment Specifics
Lathe including the milling stage Meco Maximat V10

Table 8: Materials and equipment that were needed for the construction of the circular waveguide.

6.3 Final result

Having completed the construction of the flared conical horn and the circular waveguide with the probe (see Figure
33b), the Pickett-Potter horn was assembled, as shown in Figure 33a and 33d.
The dimension of the circular waveguide and the probe were quite controllable and hence the parameters given in
Table 6 correspond to the true parameter values. The dimension for the flared Conical horn were more di�cult to
control, due to the bending of the copper, hence the true parameter values di↵er, by a few tenth of a millimeter,
from those obtained from the simulation (see Table 6 ). However, these imperfections can be neglected since they
are smaller than the observed wavelength.
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(a) Blue print circular waveguide, detailed. Credits: Ronald Hesper.

(b) The initial aluminum cylinder. (c) Cutting of aluminum with the lathe.
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(d) A regular measurement of the diameter of the waveg-
uide was needed.

(e) The circular waveguide, the probe and connecting
bolts for the flench (3cm).

(f) Circular waveguide with the probe (top view). (g) Circular waveguide with the probe (front view).

Figure 32: The construction of the circular waveguide.
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(a) The assembled Pickett-Potter horn (side view).

(b) The horn, waveguide and probe un-assembled. (c) The assembled Pickett-Potter horn, zoomed-in on the
circular waveguide (front view).
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(d) The assembled Pickett-Potter horn (top view).

(e) The assembled Pickett-Potter horn, seen through the
aperture).

(f) The assembled Pickett-Potter horn, zoomed-in at the
waveguide and the probe.

Figure 33: The Pickett-Potter horn.
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7 Testing the Pickett-Potter horn

Now that the horn antenna was constructed and assembled the performance of the horn needed to be determined.
The performance of the horn is set by two characteristics. The first is the beam pattern, which was discussed in
Sections 2.3 and 3. The other characteristic being the level of reflection by the probe. Both of the characteristics
were measured by using a setup at SRON, as will be discussed below.

7.1 Scanning the beam pattern of the horn

As discussed in Section 3, the beam pattern defines how the horn antenna will responds to the incoming radiation,
i.e. the power as a function of angle. There are multiple methods for determining the beam pattern of a horn
antenna. One method is to position a source that is transmitting a known power, in the far-field of the antenna.
The antenna will then be rotated, such that for each measurement of the power, the power is received under a
di↵erent angle. Plotting the received power as a function of the angle, the beam pattern of the antenna is obtained.
Since the far-field of this antenna is at 1.2 m (see Table 9) this type of measurement would be possible. However, an
easier method for determining the beam pattern was used, i.e. by measuring the near-field and transforming that
to the far-field.

7.1.1 Method for measuring the beam pattern

The near-field is measured by using a known source that transmits radiation onto the horn. The source and the
horn are both connected to a Vector Network Analyzer (VNA, Figure 34k ). The VNA will measure both the power
transmitted by the source as the received power by the horn. Using this as an input, the VNA will calculate the
amplitude and phase. This data will be Fourier transformed to obtain the far-field beam pattern.

Here the source was mounted on a 3D frame that allowed the positon, in the x-, y- and z-direction as defined
in Figure 34b, to be changed automatically. By varying the position of the source in the y- and z-direction, the
amplitude and phase were measured as function of position. After that, the source was shifted in the x-direction by
�0/4 and the same scan done. Then the two data sets were combined as follows:

D =
(d1 � d2 · j)

2
(7.1)

Where d1 is the data from the first measurement, d2 the data from the second measurement and D is the combined
data. This procedure was needed to eliminate for possible standing wave features, due to reflections, e.g. by the
horn or surrounding material.
The combined data set (D) was then transformed to the far-field by using a Fourier Transformation. The normalized
power is obtained by taking the square of the magnitude, while first having normalized the data, i.e. dividing all
the magnitudes by the maximum magnitude. The result will be a 2D plot, were the normalized power is plotted as
a function of angle, which is the beam pattern.
The analysis of the beam pattern, to determine the half-power beamwidth (HPBW) and sidelobe level, was done
with the Python script shown in Appendix IV. With the HPBW, the beam solid angle, the gain and e↵ective area
can be calculated. Thus by obtaining the beam pattern of the horn, we were able to obtain the main specifics our
of Pickett-Potter horn.
The other horn specifics, such as the beam solid angle, maximum gain, e↵ective area and the far-field distance were
calculated with the equations from Section 3.

7.1.2 Measurement setup for the beam pattern scan

For our measurement, a rectangular waveguide with a copper flaring was used as the source, as shown in Figure
34c and 34d. The flaring section was added to assure the radiation from the waveguide didn’t couple to the sides
of the waveguide, allowing a smooth transition out of the rectangular waveguide. This source was placed in the
electronically controlled frame (Figure 34a). Hence the position would be precise and automatically obtained via a
computer. The latter being one of the main reasons for choosing this method. The horn was placed on a platform
to assure that the middle of the aperture was in front of the source, such as shown in Figure 34h. To assure that
only the beam pattern of the horn was measured and to reduce reflections of the horn, absorbing material was used
to cover up the horn, the source and some surrounding materials, as seen in the Figures 34e, 34f, 34g and 34h. Some
iterations were needed to optimized this, with Figures 34j and 34i showing the final measurement setup. With this
setup the near field was scanned. In this scan both y- and the z-axis were scanned from -20 cm till +20 cm with
respect to the middle of the horn, both in 81 steps for the y- and z-axis, resulting in 6561 di↵erent positions. At
each of these 6561 positions, 21 frequencies between 10-12 GHz were sampled. The results and further analysis of
the data is only done for 11 GHz, since this was the main observing frequency.
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(a) Frame for the source. (b) Definition of frame coordinates and coordinates of
measurement. Credits: Willeke Mulder.

(c) Rectangular waveguide and copper flaring section. (d) Rectangular waveguide and copper flaring section as-
sembled.
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(e) The source on the frame. (f) Zoomed-in on the source with absorption material.

(g) The Pickett-Potter horn cover with absorption mate-
rial.

(h) The horn in front of the source.
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(i) Definite setup (back). (j) Definite setup (front).

(k) The Vector Network Analyzed (VNA).

Figure 34: Measurement setup beam pattern.
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7.1.3 Results for the beam pattern scan

The amplitude and phase, for the two independent measurements, were measured by the VNA and stored in a text
file. The data from the text-file was analyzed by the Python script from Appendix IV (11.4)). Resulting in the
near-field power pattern and phase for the central frequency of 11 GHz, shown in Figure 35. Figure 35a shows the
near-field beam pattern, Figure 35b cross cut the beam pattern along the y- and z-direction when the power is at
its maximum, while Figure 35c shows the near-field phase. The Python script also provides the far-field pattern at
11 GHz, which is shown in Figure 36a. The latter is further analyzed (by the Python script in Appendix II), giving
the cross cut the power pattern (Figure 36b) and the calculation of the beam size (Figure 36c).

(a) The near-field power pattern. (b) The near-field power pattern cross cut at maximal
amplitude.

(c) The near-field phase.

Figure 35: Near-field results
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(a) The far-field power pattern. (b) The far-field power pattern cross cut at maximal am-
plitude.

(c) The far-field power pattern cross cut at maximal amplitude for both y- and z-axis. The red lines indicate were the -3 dB
line and the data intercept.

Figure 36: Result for the far-field power pattern or the beam pattern.
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7.2 Reflection of the probe

The reflection of the probe needed to be measured to assure that the graph shown in Figure 28b was correct. This
is used to verify if the optimization was done correctly and to compare a simulation with the measured data. The
reflection of the probe as a function of frequency can be measured by using a Vector Network Analyzer (VNA, Figure
34k). By connecting the end of the probe (see Figure 32f) to the VNA, the VNA will be able to measure the S11
parameter. The VNA does this by sending in a signal with known phase and amplitude, after which is measured
how much of this signal is reflected in a certain frequency band. These values will then be registered by a computer,
which is connected to the VNA.

7.2.1 Measurement setup for measuring the probe reflection

After a calibration procedure of both the VNA ports, the horn was connected to the VNA, as shown in Figures 38a
and 38b. To measure the reflection, the probe had to be pointed in a direction were there was little to no reflection,
i.e. a stealthy area (Figure 38c). Then the computer program ’VNA-grab’, would read out the S11 parameter as a
function of frequency and stored it in a text-file. This data was plotted by using the Python script from Appendix
V. The result is shown in Section 7.2.2.

7.2.2 Results for the measurement of probe reflection

The reflection measured from the probe is shown in Figure 37. Where the red lines indicate the bandwidth we’re
interested in.

Figure 37: Measured reflection of the probe.
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(a) The horn connected to the VNA. (b) The horn connected to the VNA, zoomed-in on the
circular waveguide.

(c) The pointed area.
Figure 38: The measurement setup for measuring the reflection of the probe.
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8 Discussion

In this section, the performance of the constructed Pickett-Potter horn is discussed, based on the results shown in
section 7. As discussed before, the performance of the constructed Pickett-Potter horn is determined by two param-
eters; the beam pattern of the Pickett-Potter horn and the reflection of the probe, each of which will be discussed
below. The measured results are compared with the simulated results, which are shown in Section 5. This is to
verify if the simulation and predictions were a success.

8.1 On the beam pattern of the constructed Pickett-Potter horn

The measured beam pattern for the constructed Pickett-Potter horn is shown in Figure 36a. This figure shows that
the beam pattern is not symmetric, as was expected based on the symmetric shape of the aperture. This can be seen
in more detail when a cross cut along both axis for the maximum amplitude, i.e. the cross cut where the amplitude
reaches 0 db, is taken, as shown in Figure 36b. In this plot the z-axis the beam pattern shows sidelobes at -40
dB, while along the y-axis there are sidelobes at -20 dB. This implies that the beam pattern along the z-axis is as
expected, while along the y-axis additional sidelobes appear.

These sidelobes can be explained by imperfections in the horn, which occur at the transition from the flared conical
horn section to the circular waveguide or at the gap between the two ends of the conical copper sheet. These imper-
fections result in geometrically di↵erent horn modes. Therefore the behaviour from the horn modes to the circular
waveguide modes changes, causing other circular waveguide modes to propagate. However, these imperfections are
much smaller than the observed wavelength and are orientated along the probe, hence are not probable to induce
such prominent sidelobes.
This asymmetry in sidelobes can also be explained by the coupling of a horn mode to a circular waveguide mode
other than TE11 circular waveguide mode. This coupling will cause this higher order mode to propagate into the
waveguide and to enter the probe. This propagation will change the behaviour of the system, since there is energy,
i.e. power, stored in this mode, resulting in the appearance of a sidelobe, causing the beam pattern of the constructed
Pickett-Potter horn to be di↵erent in shape than was expected from the simulations. In our case this additional
sidelobe is expressed in a higher sidelobe level along the y-axis than along the z-axis.
This possibility, that a higher order mode propagates, can also explain the asymmetric shape of the beam pattern,
thus why the sidelobes appear along the y-axis and not along the z-axis. Since this probe would only detect the
polarization of the higher order mode that is in the direction of the probe, i.e. along the y-axis.

From Figure 36b it can also be concluded that the y-axis cross cut is, in general, quite symmetric, while the z-
axis plot isn’t, due to the bumps of -40 dB at 30�and 38�. These peaks in the power along the z-axis can be
explained by reflections due to the measurement setup. The main reflection, with a power of -20 dB, is shown in
Figure 35a at (20 cm,10 cm) till (40 cm,-10 cm). The smaller reflections are next to the main reflection at a level
of - 24 dB. These reflection features are also shown in Figure 35c. When comparing the left side of the plot, were
the phase is nicely distributed in a circular shape (as expected for a circular shaped aperture), with the right side of
the plot, there is a huge di↵erence. At the right side of the plot the phase is not as circularly distributed as at the
left, indicating some form of resonance. Since the left side doesn’t show this feature, it is not a result of the horn.
Therefore it has to be a feature caused by the measurement setup, i.e. reflections. Hence the sidelobe level of -40
dB for the z-axis cross cut described above will be even lower. Namely the z-axis cross cut will have a sidelobe level
of -50 dB.

8.2 On the reflection of the probe

The results for the reflection of the probe are shown in Section 7.2.2. When comparing Figure 37 with Figure 29, it
can be seen that only the predicted shape of the reflection, in the range from 10 - 11.5 GHz, corresponds with the
measured reflection. Both the simulation and the measured data show a lowest point at 11 GHz. This is exactly
what is needed for this horn antenna, since the main observing frequency is 11 GHz, thus at this frequency most of
the energy must be transferred and not reflected. This being the reason why a low reflection at 11 GHz is preferred.
The major di↵erences between Figure 37 and the figures shown in Figure 29 is the measured power levels for the
power and the shape of the graph outside the 10-11.5 GHz. There are two reasons that can explain these di↵erences.

The first being the fact the simulation was done with the horn consisting of Perfectly Electrical Conducting (PEC)
material, while the horn was made of copper. This would imply that the approximation of copper being a PEC
is not entirely correct. Hence despite the fact that copper is, by approximation, a perfectly electrically conducting
material, the material di↵erences with PEC may result in di↵erence regarding the reflections. Even though the
di↵erences will be small, they are visible, since the S11 parameter is shown on a log scale (dB’s), showing a more
drastic e↵ect than on a linear scale.

The second explanation is, as discussed in Section 8.1, that there are horn modes coupling to a higher order circular
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waveguide mode. This propagation will, next to the beam pattern, also influence the behaviour of the system. From
the probe optimization this can be seen in a di↵erent behaviour of the S11 parameter.
An indication for this is given by Figure 37. From this figure it can be seen that there is a cuto↵ of a higher
order mode at 11.55 GHz, shown by the characteristic cuto↵ feature at 11.55-11.6 GHz. This figure also displays
the bandwidth of our system, by the red lines that are drawn in the graph. As a result, it can be seen that the
maximum frequency within our bandwidth is very close to this cuto↵ frequency. Asymmetries in the shape of the
horn and/or the circular waveguide, due to imperfections, might cause the cuto↵ frequency to shift such that it
falls in the observed bandwidth. Hence it will be detected by our measurement system, causing the measured probe
reflection to deviate from the simulated probe reflection.

8.3 Conclussion performance and horn specifics

Since we will be measuring the atmospheric temperature as function of zenith angle [7][21] to determine the temper-
ature of the CMB, precision in the zenith direction is important. In the current orientation the constructed beam
pattern is not suited to observe the CMB, since the sidelobe levels are too high. Therefore we can not make the
distinction between power received by the main beam or by a sidelobe.
Despite the fact that the sidelobes along the y-axis are -20 dB, as discussed in Section 8.1, the constructed Pickett-
Potter horn is still suited for the measurement of the CMB. Since the entire Pickett-Potter horn can be turned 90�,
resulting in a horizontal orientated probe, causing the beam pattern to rotate with 90�. In this way the ’bad’ part
of the beam pattern (the previous y-axis cross cut) will see the same uniform sky, while the ’good’ part of the beam
pattern (the previous z-axis cross cut) will give the desired precision. Hence we can be sure that the power we
measure is from a uniform sky at a certain zenith angle.

The above rotation of the constructed Pickett-Potter horn can be applied if the beam size of the z-axis cross
cut is lower than 15�, otherwise the number of samples that can be measured in one sweep is to low [7][21]. The
design parameters of this horn were chosen such that the beam size would be 12.92�(see Table 4). As seen from
Figure 36c the beam size for the y-axis cross cut is 10.2�and for the z-axis cross cut 12.78�. Thus the beam size
of z-axis cross cut is close to beam size gained from the simulations and smaller than 15�. Hence by placing the
constructed Pickett-Potter horn in a horizontal probe orientation the CMB can still be measured.

An observation of the CMB thus seems feasible. However, the remaining question is whether or not the reflec-
tion of the probe will cause problems for our measurement. As seen from Figure 37 the measured reflection of the
probe has a much lower power level when compared with the simulated reflection of the probe. This means that the
reflection of the probe in reality is lower, which is good. Since there is less reflection o↵ the probe then expected,
i.e. more energy that falls onto the probe will enter the probe. Hence, the reflection of the probe will not cause
problems for our measurement.

With the beam size of the Pickett-Potter horn determined, the other Pickett-Potter horn specifics could be cal-
culated. These specifics are shown in Table 9. For completeness, Table 9 also shows the final result of the design
parameters, which where obtained in Section 5.4.
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Horn specifics Value
Observed frequency 11 GHz
Observed wavelength 27 mm
Bandwidth 1 GHz
Observed bandwidth 10.5 - 11.5 GHz
Half Power Beam Width (HPBW) 11.49�or 0.20 radians 14

Beam Solid angle (⌦A) 0.032 str. See equation 2.1
Maximum Gain 397.86. See equation 2.2
E↵ective Area 235.16 cm2. By rewritting equation 2.2
Aperture Area 249.24 cm2

Farfield distance 2.33 m. See equation 2.3

Design specifics Value
Slant angle 13.5�

Length horn 289.64 mm
aw 10 mm
A 19 mm
�g 33.3 mm
Length waveguide 19 mm
Wall thickness of the flared Connical horn 2 mm
Position Probe 15.1 mm
Length probe 7.18 mm
Diameter teflon 4.2 mm
Diameter copper probe 1.2 mm

Table 9: Specifics constructed Pickett-Potter Horn.

14 Calculated by taking the average of the values obtained in Figure 36c
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9 Conclusion

The objective of this Bachelor Thesis was to design a horn antenna to measure the Cosmic Microwave Background
(CMB) at 11 GHz. With the theory of electromagnetism, shown in Section 2, and the related horn theory and
characteristics (Section 3), four selected horn antenna types were investigated. For each of these horn antennas the
beam pattern was calculated. Next, the performance of each horn antenna type was judged, based on three selection
criteria, i.e. the sidelobe level, HPBW and the construction level. Finally, the Pickett-Potter horn was the selected
horn antenna type.
For this horn antenna type, simulations were done to obtain the preferred beam pattern. A maximum sidelobe
level of -40 dB and a maximum beam size of 15� were used as design constraints. The final horn design parameters
obtained from the optimization was a step-radius (A) of 19 mm and a circular waveguide (aw) radius of 10 mm.
These parameters were used for the Pickett-Potter horn design, which was based on the original design by Pickett
himself. Based on this blueprint (see Figure 30 and Figure 32a), the Pickett-Potter horn was constructed.
After which the reflection o↵ the probe and the beam pattern of the horn were measured. The results from these
measurements show that, for both the reflection of the probe and for the beam pattern of the Pickett-Potter horn,
the measured data deviates from the simulated data, due to the excitation of a higher order mode. Despite the
beam pattern being di↵erent than expected, the constructed Pickett-Potter horn was still suited for the observation
of the CMB, since a horizontal orientation of the probe would provide us with the preferred beam pattern in the
zenith direction.

After the design, construction and testing phase the Pickett-Potter horn was integrated into a measurement system,
as shown in Figure 39.

(a) The constructed Pickett-Potter horn mounted on the
mount.

(b) The constructed Pickett-Potter horn integrated into
the measurement system (side).

Figure 39: The CMB measurement system by: Willeke Mulder, Maik Zandvliet, Frits Sweijnen & Bram Lap.

9.1 Improvements

The objective of this Bachelor thesis is achieved, since a horn antenna type was selected, designed, constructed and
finally integrated in a measurement system to measure the CMB temperature. Despite this, further optimization of
our horn design is possible. The options for this are discussed below.

Clearly improvements can be made regarding the beam pattern, that is to fully understand from which propa-
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gating modes the beam pattern originates. A first check can be done by adding more modes to the simulation in
CST MWS. One possibility is to redo the simulation discussed in Section 5.2.1.1, where the number of modes at
Port 1 and Port 2 is increased. The number of modes in the circular waveguide need to be increased to determine
which mode, other than the TE11, is able to propagate into the circular waveguide.
When the behaviour and the origin of the beam pattern is completely understood, di↵erent options for canceling this
higher order mode propagation can be investigated. The first step would be to redo the simulation of Section 5.2.2.2
(the beam pattern optimization) with these additional modes. This would investigate how a di↵erent step-size and
circular waveguide radius a↵ects the propagation of the higher order mode. The most interesting will be how the
cuto↵ frequency of the other mode behaves, since we would like it to be further away from the bandwidth we’re
observing in, such that is doesn’t a↵ect our beam pattern.
If the propagation can not be canceled by changing the step or circular waveguide radii, other possibilities can be
investigated, such as tapering the circular aperture or adding an object (such as a pin) to the circular waveguide.
When the propagation of the mode can not be canceled, it needs to be minimized, such that the sidelobe level is as
low as possible. The di↵erent possibilties, which are discussed above, can be used to achieve this.
With a higher mode propagating, the behaviour of the system changes. Hence a new optimization of the S21 param-
eter is needed to assure the best possible performance in the observed bandwidth. The first step would be to check
if an optimization of the current circular waveguide design, shown in Section 5.3, still gives the preferred output,
i.e. a S21 parameter that on average deviates from the ideal value by -0.15 dB. When such an optimization is not
possible more degrees of freedom needed to be added to the optimization of the probe. This can be done by selecting
di↵erent probe geometries, adding multiple probes to the waveguide or by adding a di↵erent object to the circular
waveguide. All to obtain the optimal configuration for the transmission of the TE11 circular waveguide mode into
the probe.
With the above checked, the final optimization needs to be done with a flared Conical horn made out of copper,
while the circular waveguide should consist of aluminum. This would make the simulation in CST MWS as realistic
as possible.

Another improvement of our measurement system is the observation of other sources. However, as discussed in
[7], the received brightness has to be increased. For this the performance of our horn antenna in the observed
bandwidth needs to be improved.
A method to increase this is by making the flared conical horn corrugated, where the grooves are approximately
one-quarter of the wavelength deep [17]. But, as it is in most design projects, somewhere a trade o↵ has to be made.
Here the improved performance would result in a horn that is close to impossible to construct by hand. Therefore
improving the bandwidth performance is not realistic.

Besides further optimization of the Pickett-Potter horn, the measurement setup of the near-field scan can also
be improved, since the data in Figure 35 still show reflections due to the measurement setup of the beam pattern.
These reflections can be removed by changing the attachment of the absorption material to the horn or the source
described in Section 7.1.2.

Another improvement that can be made is by using another method to measure the beam pattern of the con-
structed Pickett-Potter horn. For instance by measuring the far-field pattern of the horn directly. The result
obtained from this direct measurement of the far-field pattern, will be used to check the far-field pattern obtained
from the near-field, especially to determine if the beam pattern, shown in Figure 36a, is a result of the horn itself,
e.g. imperfections in the shape of the horn, or originates from the measurement setup, e.g. due to reflections.
To actually do the far-field measurement, one has to travel to ASTRON, since the equipment present at SRON is
not ideal for this type of measurement, i.e. the person preforming this measurement has a good excuse to go to
ASTRON!
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11 Appendices

11.1 Appendix I: Code for plotting the beam patterns

#!/usr/bin/env python

# -*- coding: utf -8 -*-

import numpy as np

import matplotlib.pylab as plt

from scipy import special

nx = 1

ny = nx

wavelength = np.array ([0.075 ,0.0375 ,0.0273])

D = np.linspace (-1,1,1000)

u = 1

x = np.char.lower(raw_input("Which Beam pattern do you want? A: Rectangular , B: Circular

or C: Diagonal? "))

if x == ’a’:

theta = np.linspace(-np.pi/2,np.pi/2 ,1000)

Lx = np.array ([0.2 ,0.4 ,0.6])

Ly = np.linspace(-1,1, 1000)

fig = plt.figure (1)

fig.set_size_inches (15, 10)

P_rectangular1 = (np.sin((np.pi*Lx[0]/ wavelength [2])*np.sin(theta))/ ((np.pi*Lx

[0]/ wavelength [2])*np.sin(theta)) )

P_rectangular2 = (np.sin((np.pi*Lx[1]/ wavelength [2])*np.sin(theta))/ ((np.pi*Lx

[1]/ wavelength [2])*np.sin(theta)) )

P_rectangular3 = (np.sin((np.pi*Lx[2]/ wavelength [2])*np.sin(theta))/ ((np.pi*Lx

[2]/ wavelength [2])*np.sin(theta)) )

ax = plt.subplot (131)

plt.plot(np.degrees(theta) ,10*np.log10(( P_rectangular1/np.amax(P_rectangular1))

**2),’b’,label=’0.2 m’)

plt.xlabel(’Angle $\\ theta$ ($^\ circ$)’)

plt.ylabel(’Power (dB)’)

plt.yticks(np.linspace (-40,0,5))

plt.ylim ([-40,0])

plt.grid(True)

plt.title(’Dx = 0.2 m’)

ax = plt.subplot (132)

plt.plot(np.degrees(theta) ,10*np.log10( (P_rectangular2/np.amax(P_rectangular2)

)**2 ), ’g’,label=’0.4 m’)

plt.xlabel(’Dy $\\ theta$ ($^\ circ$)’)

plt.ylabel(’Power (dB)’)

plt.yticks(np.linspace (-40,0,5))

plt.ylim ([-40,0])

plt.grid(True)

plt.title(’Dx = 0.4 m’)

ax = plt.subplot (133)

plt.plot(np.degrees(theta) ,10*np.log10(( P_rectangular3/np.amax(P_rectangular3))

**2 ),’purple ’,label=’0.6 m’)

plt.xlabel(’Dy (m)’)

plt.ylabel(’Power $\\ theta$ ($^\ circ$)’)

plt.yticks(np.linspace (-40,0,5))

plt.ylim ([-40,0])

plt.grid(True)

plt.title(’Dx = 0.6 m’)

plt.tight_layout ()

plt.savefig(’Rectangular_x_Beam_pattern.png’)

plt.show()
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if x == ’b’:

u = 1.841

r = [0.1 ,0.3 ,0.5]

theta = np.linspace(-np.pi/2,np.pi/2 ,1000)

fig = plt.figure (2)

fig.set_size_inches (15, 10)

P_circular1 = (wavelength [2]/( np.pi*r[0]*np.sin(theta)) ) * special.jn(1 ,((2*np.

pi*r[0]*np.sin(theta))/wavelength [2]))

P_circular2 = (wavelength [2]/( np.pi*r[1]*np.sin(theta)) ) * special.jn(1 ,((2*np.

pi*r[1]*np.sin(theta))/wavelength [2]))

P_circular3 = (wavelength [2]/( np.pi*r[2]*np.sin(theta)) ) * special.jn(1 ,((2*np.

pi*r[2]*np.sin(theta))/wavelength [2]))

ax = plt.subplot (131)

plt.plot(np.degrees(np.linspace(-np.pi/2,np.pi/2 ,1000)) ,10*np.log10(( P_circular1

/np.amax(P_circular1))**2),’b’)

plt.title(’a = ’+str (0.1)+’ m’)

plt.xlabel(’Angle $\\ theta$ ($^\ circ$)’)

plt.ylabel(’Power (dB)’)

plt.grid(True)

plt.ylim ([-60,0])

plt.legend ()

ax = plt.subplot (132)

plt.plot(np.degrees(np.linspace(-np.pi/2,np.pi/2 ,1000)) ,10*np.log10(( P_circular2

/np.amax(P_circular2))**2), ’g’)

plt.title(’a = ’+str (0.3)+’ m’)

plt.xlabel(’Angle $\\ theta$ ($^\ circ$)’)

plt.ylabel(’Power (dB)’)

plt.grid(True)

plt.ylim ([-60,0])

plt.legend ()

ax = plt.subplot (133)

plt.plot(np.degrees(np.linspace(-np.pi/2,np.pi/2 ,1000)) ,10*np.log10(( P_circular3

/np.amax(P_circular3))**2),’purple ’)

plt.title(’a = ’+ str (0.5) +’ m’)

plt.xlabel(’Angle $\\ theta$ ($^\ circ$)’)

plt.ylabel(’Power (db)’)

plt.grid(True)

plt.ylim ([-60,0])

plt.legend ()

#plt.title(’Lambda =’ + str(wavelength[j]))

plt.tight_layout ()

plt.savefig(’Circular_Beam_pattern.png’)

plt.show()

if x == ’d’:

fig = plt.figure (4)

fig.set_size_inches (15, 10)

theta = np.linspace(-np.pi ,np.pi ,1000)

k = (2*np.pi)/( wavelength [2])

r = [0.1 ,0.095 ,0.105]

alpha = 0.653

K11E1 = 3.832/r[0]

K11H1 = 1.841/r[0]

betaH1= np.sqrt(k**2 - K11E1 **2)

betaE1 = np.sqrt(k**2 - K11H1 **2)

P_potter1 = ( ( 1 + (betaH1*np.cos(theta)/k)) - alpha *((( betaE1/k) + np.cos(

theta))/(1-( K11E1/(k*np.sin(theta)))**2))) * (special.jv( 1, (k*r[0]*np.sin(

theta)))/np.sin(theta))

K11E2 = 3.832/r[1]

K11H2 = 1.841/r[1]

betaH2= np.sqrt(k**2 - K11E2 **2)
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print k**2, K11E2 **2

betaE2 = np.sqrt(k**2 - K11H2 **2)

P_potter2 = ( ( 1 + (betaH2*np.cos(theta)/k)) - alpha *((( betaE2/k) + np.cos(

theta))/(1-( K11E2/(k*np.sin(theta)))**2))) * (special.jv( 1, (k*r[0]*np.sin(

theta)))/np.sin(theta))

K11E3 = 3.832/r[2]

K11H3 = 1.841/r[2]

betaH3= np.sqrt(k**2 - K11E3 **2)

print k**2, K11E3 **2

betaE3 = np.sqrt(k**2 - K11H3 **2)

P_potter3 = ( ( 1 + (betaH3*np.cos(theta)/k)) - alpha *((( betaE3/k) + np.cos(

theta))/(1-( K11E3/(k*np.sin(theta)))**2))) * (special.jv( 1, (k*r[0]*np.sin(

theta)))/np.sin(theta))

#P_potter1 = ( 1 - (alpha /(1 - (3.832**2 / ( (k*r[0]*np.sin(theta))**2) ) )))

* (special.jv( 1, (k*r[0]*np.sin(theta)) ) / k*r[0]*np.sin(theta))

#P_potter2 = ( 1 - (alpha /(1 - (3.832**2 / ( (k*r[1]*np.sin(theta))**2) ) )))

* (special.jv( 1, (k*r[1]*np.sin(theta)) ) / k*r[1]*np.sin(theta))

#P_potter3 = ( 1 - (alpha /(1 - (3.832**2 / ( (k*r[2]*np.sin(theta))**2) ) )))

* (special.jv( 1, (k*r[2]*np.sin(theta)) ) / k*r[2]*np.sin(theta))

ax = plt.subplot (131)

plt.plot(np.degrees(theta) ,10*np.log10(( P_potter2/np.amax(P_potter2))**2), ’b’)

plt.title(’a = ’+str(r[1])+’ m’)

plt.ylim ([-60,0])

plt.xlabel(’Angle $\\ theta$ ($^\ circ$)’)

plt.ylabel(’Power (dB)’)

plt.legend ()

ax = plt.subplot (132)

plt.plot(np.degrees(theta) ,10*np.log10(( P_potter1/np.amax(P_potter1))**2),’g’)

plt.title(’a = ’+str(r[0])+’ m’)

plt.xlabel(’Angle $\\ theta$ ($^\ circ$)’)

plt.ylabel(’Power (dB)’)

plt.ylim ([-60,0])

plt.legend ()

ax = plt.subplot (133)

plt.plot(np.degrees(theta) ,10*np.log10(( P_potter3/np.amax(P_potter3))**2),’

purple ’)

plt.title(’a = ’+ str(r[2]) +’ m’)

plt.xlabel(’Angle $\\ theta$ ($^\ circ$)’)

plt.ylabel(’Power (db)’)

plt.ylim ([-60,0])

plt.legend ()

#plt.title(’Lambda =’ + str(wavelength[j]))

plt.tight_layout ()

plt.savefig(’Potter_Beam_pattern.png’)

plt.show()
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11.2 Appendix II: Code for analyzing data from the first parameter sweep

#!/usr/bin/env python

from matplotlib.pyplot import figure , show

import numpy as np

def intersect(value , x, y):

’’’ Find the x left coordinate corresponding to y = value assuming a symmetric

function w.r.t. x.

Intersect fits a straight line through the points just above and just below the

wanted value and then iterpolates the wanted number.

’’’

N = len(y)

# Go halfway

for i in range(N//2 + 1):

if y[i] > value:

y_low = y[i-1]

y_high = y[i]

x_low = x[i-1]

x_high = x[i]

break

# Linear interpolation.

slope = (y_high - y_low) / (x_high - x_low)

x = (value - y_low) / slope + x_low

return x

r_step , r_waveguide , theta , directivity = np.loadtxt(’beampattern1.txt’, usecols =(2, 3,

6, 7), unpack=True)

fig = figure (); fig2 = figure ()

pattern = 0

tikker = 1

fig.set_size_inches (15, 10)

print ’Half Power Beam Width’

print ’===================== ’

print ’Pattern ’.ljust (10) + ’R_step ’.ljust (10) + ’R_wguide ’.ljust (10) + ’HPBW’.ljust (10)

while pattern < 10:

x = theta [73* pattern :73*( pattern +1)]

y = directivity [73* pattern :73*( pattern +1)]

step = r_step [73* pattern]

waveg = r_waveguide [73* pattern]

ax = fig.add_subplot (2, 5, pattern +1)

ax2 = fig2.add_subplot (2, 5, pattern +1)

ax.plot(x, y - np.max(y), ’-’, label=’Pattern %d’ % pattern)

ax.set_xticks(np.linspace (-180 ,180 ,5))

ax.set_xlabel(’Angle ($^\circ$)’)

ax.set_ylabel(’Power (dB)’)

ax.set_title(’Pattern ’ +str(tikker))

ax2.plot(x, y, ’-’, label=’Pattern %d’ % pattern)

ax2.set_xlim (-20, 20)

ax2.set_title(’Pattern %d’ % (pattern +1), fontweight=’bold’)

if pattern != 4 and pattern != 9:

value = np.max(y - 3)

ang = intersect(value , x, y)

ax2.axvline(ang , color=’r’)

ax2.axvline(np.abs(ang), color=’r’)

ax2.axhline(value , color=’g’)

print (’%.2d’%( pattern +1)).ljust (10), (’%.2f’%step).ljust (10), (’%.2f’%waveg).ljust

(10), (’%.2f’%np.abs((ang))).ljust (10)

pattern += 1

tikker += 1

fig.tight_layout ()

fig2.tight_layout ()

show()

fig.savefig(’Beam_patterns_parameter_sweep_1 (1).png’)

fig2.savefig(’Beam_patterns_parameter_sweep_1_beamsize (1).png’)

fig = figure (); fig2 = figure ()

fig.set_size_inches (15, 10)

count = 0
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while pattern < 20:

x = theta [73* pattern :73*( pattern +1)]

y = directivity [73* pattern :73*( pattern +1)]

step = r_step [73* pattern]

waveg = r_waveguide [73* pattern]

ax = fig.add_subplot (2, 5, count +1)

ax2 = fig2.add_subplot (2, 5, count +1)

ax.plot(x, y - np.max(y), ’-’, label=’Pattern %d’ % pattern)

ax.set_xticks(np.linspace (-180 ,180 ,5))

ax.set_xlabel(’Angle ($^\circ$)’)

ax.set_ylabel(’Power (dB)’)

ax.set_title(’Pattern ’ +str(tikker))

ax2.plot(x, y, ’-’, label=’Pattern %d’ % pattern)

ax2.set_xlim (-20, 20)

ax2.set_title(’Pattern %d’ % (pattern +1), fontweight=’bold’)

if pattern != 4 and pattern != 9:

value = np.max(y - 3)

ang = intersect(value , x, y)

ax2.axvline(ang , color=’r’)

ax2.axvline(np.abs(ang), color=’r’)

ax2.axhline(value , color=’g’)

print (’%.2d’%( pattern +1)).ljust (10), (’%.2f’%step).ljust (10), (’%.2f’%waveg).ljust

(10), (’%.2f’%np.abs((ang))).ljust (10)

pattern += 1

count += 1

tikker += 1

fig.tight_layout ()

fig2.tight_layout ()

show()

fig.savefig(’Beam_patterns_parameter_sweep_1 (2).png’)

fig2.savefig(’Beam_patterns_parameter_sweep_1_beamsize (2).png’)

fig = figure (); fig2 = figure ()

fig.set_size_inches (15, 10)

count = 0

while pattern < 25:

x = theta [73* pattern :73*( pattern +1)]

y = directivity [73* pattern :73*( pattern +1)]

step = r_step [73* pattern]

waveg = r_waveguide [73* pattern]

ax = fig.add_subplot (2, 5, count +1)

ax2 = fig2.add_subplot (2, 5, count +1)

ax.plot(x, y - np.max(y), ’-’, label=’Pattern %d’ % pattern)

ax.set_xticks(np.linspace (-180 ,180 ,5))

ax.set_xlabel(’Angle ($^\circ$)’)

ax.set_ylabel(’Power (dB)’)

ax.set_title(’Pattern ’ +str(tikker))

ax2.plot(x, y, ’-’, label=’Pattern %d’ % pattern)

ax2.set_xlim (-20, 20)

ax2.set_title(’Pattern %d’ % (pattern +1), fontweight=’bold’)

if pattern != 4 and pattern != 9:

value = np.max(y - 3)

ang = intersect(value , x, y)

ax2.axvline(ang , color=’r’)

ax2.axvline(np.abs(ang), color=’r’)

ax2.axhline(value , color=’g’)

print (’%.2d’%( pattern +1)).ljust (10), (’%.2f’%step).ljust (10), (’%.2f’%waveg).ljust

(10), (’%.2f’%np.abs((ang))).ljust (10)

pattern += 1

count += 1

tikker += 1

fig.tight_layout ()

fig2.tight_layout ()

show()

fig.savefig(’Beam_patterns_parameter_sweep_1 (3).png’)

fig2.savefig(’Beam_patterns_parameter_sweep_1_beamsize (3).png’)
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11.3 Appendix III: Code for analyzing data from the second parameter sweep

#!/usr/bin/env python

from matplotlib.pyplot import figure , show

import numpy as np

def intersect(value , x, y):

’’’ Find the x left coordinate corresponding to y = value assuming a symmetric

function w.r.t. x.

Intersect fits a straight line through the points just above and just below the

wanted value and then iterpolates the wanted number.

’’’

N = len(y)

# Go halfway

for i in range(N//2 + 1):

if y[i] > value:

y_low = y[i-1]

y_high = y[i]

x_low = x[i-1]

x_high = x[i]

break

# Linear interpolation.

slope = (y_high - y_low) / (x_high - x_low)

x = (value - y_low) / slope + x_low

return x

# 9 * 7 = 63

r_step , r_waveguide , theta , directivity = np.loadtxt(’data_parameter_sweep_2.txt’,

usecols =(2, 3, 6, 7), unpack=True)

fig = figure ()

fig.set_size_inches (15, 10)

pattern = 0

tikker = 1

print ’Half Power Beam Width’

print ’===================== ’

print ’Pattern ’.ljust (10) + ’R_step ’.ljust (10) + ’R_wguide ’.ljust (10) + ’HPBW’.ljust (10)

while pattern < 18:

x = theta [361* pattern :361*( pattern +1)]

y = directivity [361* pattern :361*( pattern +1)]

step = r_step [361* pattern]

waveg = r_waveguide [361* pattern]

ax = fig.add_subplot (2, 9, pattern +1)

ax.set_xticks(np.linspace (-180 ,180 ,3))

ax.set_xlabel(’Angle ($^\circ$)’)

ax.set_ylabel(’Power (dB)’)

#ax2 = fig2.add_subplot (3, 9, pattern +1)

ax.plot(x, y - np.max(y), ’-’, label=’Pattern %d’ % pattern)

ax.set_title(’Pattern ’+str(tikker))

#ax2.plot(x, y, ’-’, label=’Pattern %d’ % pattern)

#ax2.set_xlim (-20, 20)

#ax2.set_title(’Pattern %d’ % (pattern +1), fontweight=’bold ’)

if pattern != 4 and pattern != 9:

value = np.max(y - 3)

ang = intersect(value , x, y)

#ax2.axvline(ang , color=’r’)

#ax2.axvline(np.abs(ang), color=’r’)

#ax2.axhline(value , color=’g’)

print (’%.2d’%( pattern +1)).ljust (10), (’%.2f’%step).ljust (10), (’%.2f’%waveg).ljust

(10), (’%.2f’%np.abs((ang))).ljust (10)

pattern += 1

tikker += 1

fig.tight_layout ()

fig.savefig(’parametersweep2_fig_1.png’)

show()

count = 0

fig = figure ()
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fig.set_size_inches (15, 10)

while pattern < 36:

x = theta [361* pattern :361*( pattern +1)]

y = directivity [361* pattern :361*( pattern +1)]

step = r_step [361* pattern]

waveg = r_waveguide [361* pattern]

ax = fig.add_subplot (2, 9, count +1)

ax.set_xticks(np.linspace (-180 ,180 ,3))

ax.set_xlabel(’Angle ($^\circ$)’)

ax.set_ylabel(’Power (dB)’)

#ax2 = fig2.add_subplot (2, 9, count +1)

ax.plot(x, y - np.max(y), ’-’, label=’count %d’ % pattern)

ax.set_title(’Pattern ’+str(tikker))

#ax2.plot(x, y, ’-’, label=’count %d’ % pattern)

#ax2.set_xlim (-20, 20)

#ax2.set_title(’count %d’ % (pattern +1), fontweight=’bold ’)

if pattern != 4 and pattern != 9:

value = np.max(y - 3)

ang = intersect(value , x, y)

#ax2.axvline(ang , color=’r’)

#ax2.axvline(np.abs(ang), color=’r’)

#ax2.axhline(value , color=’g’)

print (’%.2d’%( pattern +1)).ljust (10), (’%.2f’%step).ljust (10), (’%.2f’%waveg).ljust

(10), (’%.2f’%np.abs((ang))).ljust (10)

pattern += 1

count +=1

tikker += 1

fig.tight_layout ()

fig.savefig(’parametersweep2_fig_2.png’)

show()

count = 0

fig = figure ()

fig.set_size_inches (15, 10)

while pattern < 54:

x = theta [361* pattern :361*( pattern +1)]

y = directivity [361* pattern :361*( pattern +1)]

step = r_step [361* pattern]

waveg = r_waveguide [361* pattern]

ax = fig.add_subplot (2, 9, count +1)

ax.set_xticks(np.linspace (-180 ,180 ,3))

#ax2 = fig2.add_subplot (2, 9, count +1)

ax.plot(x, y - np.max(y), ’-’, label=’count %d’ % pattern)

ax.set_title(’Pattern ’+str(tikker))

ax.set_xlabel(’Angle ($^\circ$)’)

ax.set_ylabel(’Power (dB)’)

#ax2.plot(x, y, ’-’, label=’count %d’ % pattern)

#ax2.set_xlim (-20, 20)

#ax2.set_title(’count %d’ % (pattern +1), fontweight=’bold ’)

if pattern != 4 and pattern != 9:

value = np.max(y - 3)

ang = intersect(value , x, y)

#ax2.axvline(ang , color=’r’)

#ax2.axvline(np.abs(ang), color=’r’)

#ax2.axhline(value , color=’g’)

print (’%.2d’%( pattern +1)).ljust (10), (’%.2f’%step).ljust (10), (’%.2f’%waveg).ljust

(10), (’%.2f’%np.abs((ang))).ljust (10)

pattern += 1

count +=1

tikker += 1

fig.tight_layout ()

fig.savefig(’parametersweep2_fig_3.png’)

show()

fig = figure ()

fig.set_size_inches (15, 10)

count = 0

while pattern < 63:
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x = theta [361* pattern :361*( pattern +1)]

y = directivity [361* pattern :361*( pattern +1)]

step = r_step [361* pattern]

waveg = r_waveguide [361* pattern]

ax = fig.add_subplot (2, 9, count +1)

ax.set_xticks(np.linspace (-180 ,180 ,3))

ax.set_xlabel(’Angle ($^\circ$)’)

ax.set_ylabel(’Power (dB)’)

#ax2 = fig2.add_subplot (2, 9, pattern +1)

ax.plot(x, y - np.max(y), ’-’, label=’Pattern %d’ % pattern)

ax.set_title(’Pattern ’ +str(tikker))

#ax2.plot(x, y, ’-’, label=’Pattern %d’ % pattern)

#ax2.set_xlim (-20, 20)

#ax2.set_title(’Pattern %d’ % (pattern +1), fontweight=’bold ’)

if pattern != 4 and pattern != 9:

value = np.max(y - 3)

ang = intersect(value , x, y)

# ax2.axvline(ang , color=’r’)

# ax2.axvline(np.abs(ang), color=’r’)

# ax2.axhline(value , color=’g’)

print (’%.2d’%( pattern +1)).ljust (10), (’%.2f’%step).ljust (10), (’%.2f’%waveg).ljust

(10), (’%.2f’%np.abs((ang))).ljust (10)

pattern += 1

count +=1

tikker += 1

fig.tight_layout ()

fig.savefig(’parametersweep2_fig_4.png’)

show()
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11.4 Appendix IV: Code for analyzing the far-field data

#!/usr/bin/env python

# -*- coding: utf -8 -*-

import math

import numpy as np

from matplotlib.pylab import *

from mpl_toolkits.mplot3d import Axes3D

’’’ week 11-15 May ’’’

x1, y1 , z1 ,real1 ,imaginary1 = np.loadtxt(’vnascan_20cm_test11 (2).txt’, usecols

=(0,1,2,5,6), unpack=True)

x2, y2 , z2 ,real2 ,imaginary2 = np.loadtxt(’vnascan_20cm_test11 -lambda.txt’, usecols

=(0,1,2,5,6), unpack=True)

Nz = 81

Ny = 81

def sort_by_freq(re , im , Ny , Nz , freq_element):

freq =np.linspace (10 ,12 ,21)

#print "Matrix will be calculated for "+ str(freq[freq_element ])+ " GHz"

matrix = np.zeros ((Nz,Ny),dtype=complex)

real_sorted = []

imaginary_sorted = []

k = freq_element

p = freq_element

while k < len(re):

real_sorted.append(re[k])

k += 21

while p < len(im):

imaginary_sorted.append(im[p])

p += 21

h = 0

for i in range(Nz):

for j in range(Ny):

matrix[i][j] = real_sorted[h] + imaginary_sorted[h]*1j

h += 1

return matrix

def intersect(value , x, y):

’’’ Find the x left coordinate corresponding to y = value assuming a symmetric

function w.r.t. x.

Intersect fits a straight line through the points just above and just below the

wanted value and then iterpolates the wanted number.

’’’

N = len(y)

# Go halfway

for i in range(N//2 + 1):

if y[i] > value:

y_low = y[i-1]

y_high = y[i]

x_low = x[i-1]

x_high = x[i]

break

# Linear interpolation.

slope = (y_high - y_low) / (x_high - x_low)

x = (value - y_low) / slope + x_low

return x

def fieldplots(real1 , imaginary1 , real2 , imaginary2 , Ny , Nz , selected): #Calculate the

field plots.

A1 = np.zeros ((Nz,Ny),dtype=complex)

A2 = np.zeros ((Nz,Ny),dtype=complex)

frequencies = np.arange (10.5 ,11.6 ,0.1)
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A1_fft_sum = 0

lowerfreq = np.round(selected [0], decimals =1)

higherfreq = np.round(selected[len(selected) -1], decimals =1)

for t in range(len(selected)):

A = sort_by_freq(real1 ,imaginary1 ,81,81, selected[t])

B = sort_by_freq(real2 ,imaginary2 ,81,81, selected[t])

A1 += (A + 1j*B)/2

# Nearfield

A1_near_amp = abs(A1)

A1_near_phase = np.arctan2(np.imag(A1),np.real(A1))

theta = np.linspace (-22,22,81)

maximum = 0

for i in range(Nz):

for j in range(Ny):

if A1_near_amp[i][j] > maximum:

maximum = A1_near_amp[i][j]

index_z = i

index_y = j

A1_near_amp_T = A1_near_amp.T

# For one frequency

if lowerfreq == higherfreq:

fig1 = plt.figure ()

fig1.set_size_inches (15, 10)

ax = fig1.add_subplot (111)

ax.set_xlabel(’y (cm)’)

ax.set_ylabel(’z (cm)’)

#ax.set_xticks(np.linspace (-40,40,9))

#ax.set_yticks(np.linspace (-40,40,9))

ax.set_title(’Amplitude near -field for ’+ str(np.round(lowerfreq ,

decimals =0)) +’ GHz’)

cax = ax.imshow (10*np.log10(( A1_near_amp/np.amax(( A1_near_amp)))**2),

vmin=-40,vmax=0,extent =[-40,40,-40,40])

cbar = fig1.colorbar(cax)

cbar.set_label(’Power (dB)’,size =12)

a = str(lowerfreq)

b = ""

for c in a:

if c != ".":

b += c

else:

b +=","

savefig(’Nearfield_amplitude_ ’+ b +’_GHz.png’)

show()

fig1 = plt.figure ()

fig1.set_size_inches (15, 10)

ax = fig1.add_subplot (111)

x = np.linspace (-40,40,81)

plot(x,10*np.log10 (( A1_near_amp[index_z ]/np.amax(A1_near_amp[index_z ]))

**2), label=’maximum along z’,linewidth =2)

plot(x,10*np.log10 (( A1_near_amp_T[index_y ]/np.amax(A1_near_amp_T[index_y

]))**2),label=’maximum along y’,linewidth =2)

title(’Maximum amplitude cross cut near -field for ’+ str(np.round(

lowerfreq ,decimals =0)) +’ GHz’)

ax.set_xticks(np.linspace (-40,40,9))

xlabel("distance from center (cm)")

ylabel("Power (dB)")

legend(loc=’lower center ’)

savefig(’Nearfield_amplitude_crosscut_ ’+b+’_GHz.png’)

show()

fig1 = plt.figure ()

fig1.set_size_inches (15, 10)
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ax = fig1.add_subplot (111)

ax.set_xlabel(’y (cm)’)

ax.set_ylabel(’z (cm)’)

ax.set_title(’Phase near -field for ’+ str(np.round(lowerfreq ,decimals =0)

)+’ GHz’)

cax = ax.imshow(A1_near_phase ,extent =[-40,40,-40,40])

fig1.colorbar(cax)

savefig(’Nearfield_phase_ ’+b+’_GHz.png’)

show()

# For multiple frequencies

else:

a = str(lowerfreq)

b = ""

for c in a:

if c != ".":

b += c

else:

b +=","

a = str(higherfreq)

d = ""

for e in a:

if e != ".":

d += e

else:

d +=","

fig1 = plt.figure ()

fig1.set_size_inches (15, 10)

ax = fig1.add_subplot (111)

ax.set_xlabel(’y (mm)’)

ax.set_ylabel(’z (mm)’)

ax.set_title(’Amplitude nearfield for ’+ str(lowerfreq) + ’-’ + str(

higherfreq) +’ GHz’)

cax = ax.imshow (10*np.log10(( A1_near_amp/np.amax(( A1_near_amp)))**2),

vmin=-40,vmax=0,extent =[-40,40,-40,40])

fig1.colorbar(cax)

cax.set_label("Power (dB)")

savefig(’Nearfield_amplitude_ ’+b+’-’+d+’_GHz.png’)

show()

fig1 = plt.figure ()

fig1.set_size_inches (15, 10)

ax = fig1.add_subplot (111)

x = np.linspace (-40,40,81)

plot(x,10*np.log10 (( A1_near_amp[index_z ]/np.amax(A1_near_amp[index_z ]))

**2), label=’maximum along z’,linewidth =2)

plot(x,10*np.log10 (( A1_near_amp_T[index_y ]/np.amax(A1_near_amp_T[index_y

]))**2),label=’maximum along y’,linewidth =2)

title(’Maximum amplitude cross cut nearfield for ’+ str(lowerfreq) + ’-’

+ str(higherfreq) +’ GHz’)

xticks(np.linspace (-40,40,9))

xlabel(’distance from center (cm)’)

ylabel(’Power (dB)’)

legend(loc=’lower center ’)

savefig(’Nearfield_amplitude_crosscut_ ’+b+’-’+d+’_GHz.png’)

show()

fig1 = plt.figure ()

fig1.set_size_inches (15, 10)

ax = fig1.add_subplot (111)

ax.set_xlabel(’y (cm)’)

ax.set_ylabel(’z (cm)’)

ax.set_title(’Phase nearfield for ’+ str(lowerfreq) + ’-’ + str(

higherfreq) +’ GHz’)

cax = ax.imshow(A1_near_phase ,extent =[-40,40,-40,40])

fig1.colorbar(cax)
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savefig(’Nearfield_phase ’+b+’-’+d+’_GHz.png’)

show()

# Farfield

c = 299792458000 #cm/s

f = 11e9

unit = 400/81

lambda_0 = c/f #mm

element_number1 = np.arange (1,41,1)*( lambda_0 /400) #Hier

moet jij van maken: np.arange (1,41,1)*( lambda_0*D/400) waarbij de D de

afstand tot de spiegel is

element_number2 = -1*np.arange (40,0,-1)*( lambda_0 /400) # Hetzelfde hier

als in regel 295

zero = np.array (0)

x = np.hstack (( element_number2 ,zero ,element_number1))

theta_y = np.degrees(np.arctan(x))

theta_z = np.degrees(np.arctan(x))

A1_far_amp = abs(np.fft.fftshift(np.fft.fft2(A1)))

A1_far_phase = np.arctan2(np.imag(A1),np.real(A1))

theta = np.linspace (-22,22,81)

maximum = 0

for i in range(Nz):

for j in range(Ny):

if A1_far_amp[i][j] > maximum:

maximum = A1_far_amp[i][j]

index_z = i

index_y = j

A1_far_amp_T = A1_far_amp.T

y = 10*np.log10(( A1_far_amp[index_z ]/np.amax(A1_far_amp[index_z ]))**2)

z = 10*np.log10(( A1_far_amp_T[index_y ]/np.amax(A1_far_amp_T[index_y ]))**2)

# For one frequency

if lowerfreq == higherfreq:

a = str(lowerfreq)

b = ""

for c in a:

if c != ".":

b += c

else:

b +=","

fig2 = plt.figure ()

fig2.set_size_inches (15, 10)

ax = fig2.add_subplot (111)

ax.set_xlabel(’y-angle ($^\circ$)’)

ax.set_ylabel(’z-angle ($^\circ$)’)

ax.set_xticks(np.linspace (-70,70,15))

ax.set_title(’Amplitude far -field ’+ str(np.round(lowerfreq ,decimals =0))

+’ GHz’)

cax = ax.imshow (10*np.log10(( A1_far_amp/np.amax(( A1_far_amp)))**2),vmin

=-40,vmax=0,extent =[-70,70,-70,70])

cbar=fig2.colorbar(cax)

cbar.set_label(’Power (dB)’,size =12)

savefig(’Farfield_amplitude_ ’+ b +’_GHz.png’)

show()

ax = fig2.add_subplot (122)

#x = np.linspace (-40,40,81)

plot(theta_y ,z, label=’maximum along y’,linewidth =2)

plot(theta_y ,y,label=’maximum along z’,linewidth =2)

title(’Maximum ampltude cross cut far -field ’+ str(np.round(lowerfreq ,

decimals =0)) +’ GHz’)

legend(loc=’lower center ’)

xlim ([ -70 ,70])
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#xticks(np.linspace (-40,40,9))

xlabel(’Angle ($^\circ$)’)

ylabel(’Power (dB)’)

savefig(’Farfield_amplitude_crosscut_ ’+ b +’_GHz.png’)

show()

# For more than one frequency

else:

a = str(lowerfreq)

b = ""

for c in a:

if c != ".":

b += c

else:

b +=","

a = str(higherfreq)

d = ""

for e in a:

if e != ".":

d += e

else:

d +=","

fig2 = plt.figure ()

fig2.set_size_inches (15, 10)

ax = fig2.add_subplot (121)

ax.set_xlabel(’y (mm)’)

ax.set_ylabel(’z (mm)’)

ax.set_title(’Amplitude farfield ’+ str(lowerfreq) + ’-’ + str(

higherfreq) +’ GHz’)

cax = ax.imshow (10*np.log10(( A1_far_amp/np.amax(( A1_far_amp)))**2),vmin

=-40,vmax =0)

fig2.colorbar(cax)

cax.set_label("Power (dB)")

savefig(’Farfield_amplitude_ ’+b+’-’+d+’_GHz.png’)

show()

ax = fig2.add_subplot (122)

x = np.linspace (-40,40,81)

plot(x,z, label=’maximum along y’,linewidth =2)

plot(x,y,label=’maximum along z’,linewidth =2)

title(’Maximum amplitude cross cut nearfield ’+ str(lowerfreq) + ’-’ +

str(higherfreq) +’ GHz’)

legend(loc=’lower center ’)

xticks(np.linspace (-40,40,9))

xlabel(’distance from center (cm)’)

ylabel(’Power (dB)’)

savefig(’Farfield_amplitude_crosscut_ ’+b+’-’+d+’_GHz.png’)

show()

return z, y, lowerfreq , higherfreq

def beamsize(z,y, Ny , Nz , lowerfreq , higherfreq): # bepalen van de beamsize

c = 299792458000 #cm/s

f = 11e9

unit = 400/81

lambda_0 = c/f #mm

element_number1 = np.arange (1,41,1)*( lambda_0 /400) #Hier

moet jij van maken: np.arange (1,41,1)*( lambda_0*D/400) waarbij de D de

afstand tot de spiegel is

element_number2 = -1*np.arange (40,0,-1)*( lambda_0 /400) # Hetzelfde hier

als in regel 295

zero = np.array (0)

x = np.hstack (( element_number2 ,zero ,element_number1))

theta_y = np.degrees(np.arctan(x))

theta_z = np.degrees(np.arctan(x))

65



# along y-axis

y_min_beamsize = intersect(-3, theta_y , y)

y_min_beamsize_rad = np.radians(y_min_beamsize)

# Half angle in radians

y_min_beamsize_deg = y_min_beamsize

# Half angle in degrees

y_max_beamsize = intersect (-3,-1*theta_y ,y) -4

y_max_beamsize_rad = np.radians(y_max_beamsize)

# Half angle in radians

y_max_beamsize_deg = y_max_beamsize

# Half angle in degrees

y_beamsize_avg_deg = (abs(y_min_beamsize_deg)+abs(y_max_beamsize_deg))/2

y_beamsize_avg_rad = (abs(y_min_beamsize_rad)+abs(y_max_beamsize_rad))/2

print ’Beamsize (full angle) along z-axis: ’, np.round ((2* y_beamsize_avg_deg),

decimals =2), ’ degrees ’

print ’Beam solid angle along z-axis: ’, (y_beamsize_avg_rad **2)*np.pi , ’

steradian ’

# along z-axis

z_min_beamsize = intersect(-3, theta_z , z)+0.1

z_min_beamsize_rad = np.radians(z_min_beamsize)

# Half angle in radians

z_min_beamsize_deg = z_min_beamsize

# Half angle in degrees

z_max_beamsize = intersect (-3,-1*theta_z ,z) -2

z_max_beamsize_rad = np.radians(z_max_beamsize)

# Half angle in radians

z_max_beamsize_deg = z_max_beamsize

# Half angle in degrees

z_beamsize_avg_deg = (abs(z_min_beamsize_deg)+abs(z_max_beamsize_deg))/2

z_beamsize_avg_rad = (abs(z_min_beamsize_rad)+abs(z_max_beamsize_rad))/2

print ’Beamsize (full angle) along y-axis: ’, np.round ((2* z_beamsize_avg_deg),

decimals =2), ’ degrees ’

print ’Beam solid angle along y-axis: ’, (z_beamsize_avg_rad **2)*np.pi , ’

steradian ’

print ’Average beam size ’, (y_beamsize_avg_deg+z_beamsize_avg_deg) , ’ degrees ’

#r_line = np.linspace (-60,0,2)

#theta_line1 = [x_beamsize , x_beamsize]

#theta_line2 = [-x_beamsize+np.pi , -x_beamsize+np.pi]

if lowerfreq == higherfreq:

a = str(lowerfreq)

b = ""

for c in a:

if c != ".":

b += c

else:

b +=","

y_min = y_min_beamsize_deg

y_max = y_max_beamsize_deg

fig3 = plt.figure ()

fig3.set_size_inches (15, 10)

ax = fig3.add_subplot (121)

ax.plot(theta_y ,y, ’b’, label="Measured data",linewidth =2)

ax.vlines(y_min ,-80,0, ’r’, label=’Beamsize: ’+str(np.round ((2*

y_beamsize_avg_deg),decimals =2))+’$^\ circ$’,linewidth =2)

ax.vlines(y_max ,-80,0, ’r’,linewidth =2)

#ax.vlines (4.4,-60,0, ’k’, label=’Theoretical: 8.8$^\ circ$ ’)

#ax.vlines (-4.4,-60,0, ’k’)

ax.hlines (-3,-100,100,’g’,label=" -3 dB line",linewidth =2)
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ax.set_xticks(np.linspace ( -100 ,100 ,11))

ax.xaxis.set_minor_locator(MultipleLocator (5))

ax.set_xlim ([ -70 ,70])

ax.set_xlabel(’Angle y (degrees)’)

ax.set_ylabel(’Power (dB)’)

ax.set_title(’Beampattern along z-axis max. amp ’+ str(np.round(

lowerfreq ,decimals =0)) +’ GHz’)

legend ()

z_min = z_min_beamsize_deg

z_max = z_max_beamsize_deg

ax = fig3.add_subplot (122)

ax.plot(theta_z ,z,label=’Measured data’,linewidth =2)

ax.vlines(z_min ,-80,0, ’r’, label=’Beamsize:’+str(np.round ((2*

z_beamsize_avg_deg),decimals =2))+’$^\ circ$’,linewidth =2)

ax.vlines(z_max ,-80,0, ’r’,linewidth =2)

#ax.vlines (4.4,-60,0, ’k’, label=’Theoretical: 8.8$^\ circ$ ’)

#ax.vlines (-4.4,-60,0, ’k’)

#ax.vlines (-38,-60,0, ’y’, label=’Beam: 74$^\ circ$ ’)

#ax.vlines (36,-60,0, ’y’)

ax.set_xlim ([ -70 ,70])

ax.hlines (-3,-100,100,’g’,label=" -3 dB line",linewidth =2)

ax.set_xticks(np.linspace ( -100 ,100 ,11))

ax.xaxis.set_minor_locator(MultipleLocator (5))

xlim ([ -70 ,70])

ax.set_xlabel(’Angle z (degrees)’)

ax.set_ylabel(’Power (dB)’)

ax.set_title(’Beampattern along y-axis max. amp ’+ str(np.round(

lowerfreq ,decimals =0)) +’ GHz’)

legend ()

tight_layout ()

savefig(’Beamsize_ ’+ b +’_GHz.png’)

show()

else:

a = str(lowerfreq)

b = ""

for c in a:

if c != ".":

b += c

else:

b +=","

a = str(higherfreq)

d = ""

for e in a:

if e != ".":

d += e

else:

d +=","

y_min = y_min_beamsize_deg

y_max = y_max_beamsize_deg

fig3 = plt.figure ()

fig3.set_size_inches (15, 10)

ax = fig3.add_subplot (121)

ax.plot(theta_y ,y, ’b’, label=’beamsize: ’+str(np.round ((2*

y_beamsize_avg_deg),decimals =2))+’$^\ circ$’)

ax.vlines(y_min ,-60,0, ’r’, label=’Script ’)

ax.vlines(y_max ,-60,0, ’r’)

ax.vlines (4.4,-60,0, ’k’, label=’Theoretical: 8.8$^\circ$ ’)

ax.vlines (-4.4,-60,0, ’k’)

ax.hlines (-3,-160,160,’g’)

ax.set_xticks(np.linspace ( -200 ,200 ,21))

ax.xaxis.set_minor_locator(MultipleLocator (5))

ax.set_ylim ([ -60 ,0])

ax.set_xlabel(’Angle y (degrees)’)

ax.set_ylabel(’Power (dB)’)
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ax.set_title(’Beampattern along z-axis max. amp ’+ str(lowerfreq) + ’-’

+ str(higherfreq) +’ GHz’)

legend ()

z_min = z_min_beamsize_deg

z_max = z_max_beamsize_deg

ax = fig3.add_subplot (122)

ax.plot(theta_z ,z,label=’beamsize: ’+str(np.round ((2* z_beamsize_avg_deg)

,decimals =2))+’$^\circ$ ’)

ax.vlines(z_min ,-60,0, ’r’, label=’Script ’)

ax.vlines(z_max ,-60,0, ’r’)

ax.vlines (4.4,-60,0, ’k’, label=’Theoretical: 8.8$^\circ$ ’)

ax.vlines (-4.4,-60,0, ’k’)

ax.vlines (-38,-60,0, ’y’, label=’Beam: 74$^\circ$ ’)

ax.vlines (36,-60,0, ’y’)

ax.hlines (-3,-160,160,’g’)

ax.set_ylim ([ -60 ,0])

#ax.xaxis.set_major_locator ()

ax.set_xticks(np.linspace ( -200 ,200 ,21))

ax.xaxis.set_minor_locator(MultipleLocator (5))

ax.set_xlabel(’Angle z (degrees)’)

ax.set_ylabel(’Power (dB)’)

ax.set_title(’Beampattern along y-axis max. amp ’+ str(lowerfreq) + ’-’

+ str(higherfreq) +’ GHz’)

legend ()

tight_layout ()

savefig(’Beamsize_ ’+b + ’-’ + d+’_GHz.png’)

show()

def resonance(real1 , imaginary1 , real2 , imaginary2 , Ny , Nz , selected):

A1 = np.zeros ((Nz,Ny),dtype=complex)

A2 = np.zeros ((Nz,Ny),dtype=complex)

freq = np.arange (10.5 ,11.6 ,0.1)

A1_fft_sum = 0

lowerfreq = np.round(selected [0], decimals =1)

higherfreq = np.round(selected[len(selected) -1], decimals =1)

for t in range(len(selected)):

A = sort_by_freq(real1 ,imaginary1 ,81,81, selected[t])

B = sort_by_freq(real2 ,imaginary2 ,81,81, selected[t])

A1 += (A - 1j*B)/2

# Nearfield

A1_near_amp = abs(A1)

A1_near_phase = np.arctan2(np.imag(A1),np.real(A1))

fig1 = plt.figure ()

fig1.set_size_inches (15, 10)

ax = fig1.add_subplot (111)

ax.set_xlabel(’y (mm)’)

ax.set_ylabel(’z (mm)’)

ax.set_title(’Standing wave nearfield for ’+ str(lowerfreq) + ’-’ + str(

higherfreq) +’ GHz’)

cax = ax.imshow (10*np.log10(( A1_near_amp/np.amax(( A1_near_amp)))**2),vmin=-40,

vmax =0)

fig1.colorbar(cax)

savefig(’Standing_wave_horn_ ’+str(lowerfreq) + ’-’ + str(higherfreq) +’_GHz.png’

)

show()

selected = np.arange (10.5 ,11.6 ,.1)

field = fieldplots(real1 , imaginary1 , real2 , imaginary2 , Ny , Nz , selected)

z = field [0]

y = field [1]

lowerfreq = field [2]

higherfreq = field [3]
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beamsize(z,y, Ny, Nz, lowerfreq , higherfreq)

#resonance(real1 , imaginary1 , real2 , imaginary2 , Ny , Nz , selected)
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11.5 Appendix V: Code for plotting the probe reflection

#!/usr/bin/env python

# -*- coding: utf -8 -*-

import math

import numpy as np

from matplotlib.pylab import *

from mpl_toolkits.mplot3d import Axes3D

freq , y1 , y2 = np.loadtxt(’short_probe.txt’, usecols =(0,1,2), unpack=True)

fig = plt.figure ()

fig.set_size_inches (15, 10)

plot(freq /10e8 ,10*np.log10(y2**2),’g’,linewidth =2)

xticks(np.linspace (8,16,9))

xlabel("Frequency (GHz)")

ylabel("Power (dB)")

axvline(x=10.5, ymin=10, ymax=-30,color=’r’,linewidth =2)

axvline(x=11.5, ymin=10, ymax=-30,color=’r’,linewidth =2)

grid(b=True , which=’minor ’,color=’k’,linestyle=’-’)

grid(b=True , which=’major ’,color=’k’,linestyle=’-’)

minorticks_on ()

title("$S_ {11}$ for the probe")

savefig("s11_probe.png")

show()
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