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Abstract

The concept of gravitational lensing describes the deviation of a light ray from a straight line due
to the presence of a gravitational field. This results in distorted and magnified images of distant
object. We perform simulations of gravitational lenses using where we perturb the lens poten-
tial using Gaussian random fields. By subtracting a non perturbed model from the simulations
intensity fluctuations are created that are caused by the potential fluctuations. Using a power
spectrum analysis we determine under which conditions it will be possible to measure the effect
of the potential fluctuations from these residuals. The simulations were performed for several
noise levels, different sizes of the source object and multiple scales of the fluctuations. Finally we
also vary the slope of the power spectrum of the potential fluctuations. Our results show that a
high S/N ratio is required to be able to extract the power spectrum due to the fluctuations from
the noise. Smaller scale fluctuations cause the power spectrum to be more easily dominated by
noise and increasing the source size has a small effect on the amplitude of the measured power
spectrum, but not on the overal shape. The only two situations that produce measurable spectra
with a confidence higher than 90% are for the two largest sources (o, = 0.5 and 0.8) with a noise
level of 6,,0isc = 5.0 intensity units (corresponding to a mean S/N ratio over the image of ~ 7-9).
Increasing the steepness of the potential fluctation power spectrum result in a cut-off at smaller
scales, making noise again dominant there. Multiple observations of lens events will be required
to get a statistically accurate measument of the entire power spectrum. For single observations
only the large scale side of the power spectrum will be measurable. Future work will be necessary
to compare the results with an analytical solution and to determine the optimum observation
strategy for HST, Keck Adaptive Optics, EUCLID or other telescopes.
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Chapter 1

Introduction

The theory of General Relativity has been a stimulation for various areas of science. Its number
of applications in astronomy alone are vast to say the least. One of the results from Albert Ein-
stein’s theory is that the path that light travels can be altered due to gravity. This effect can
cause images of distant objects to be distorted by the presence of a large mass along the line of
sight. The theory describing the distortion of these sources is called ‘Gravitational Lensing’ and
can be useful to determine properties of the Universe and both the objects at high redshifts and
the massive ones (called ‘lenses’) that cause this bending of light[1]. It is the latter that will be
studied and discussed in the research described in this thesis.

Figure 1.1 — The Abell 2218 cluster of galaxies. Lensing events are evident here with ring or arc-like
structures clearly visible.[2]



1.1 Gravitational Lensing In A Nutshell

It has often been wrongly stated that Newton already thought about the bending of light by
gravity. Literature studies have shown that in fact he was referring to diffraction[3]. Nonetheless,
ideas on gravitational lensing began early in history. The first explicit mention of the bending
of light due to gravition was made by Henry Cavendish at the beginning of the 19th century[3].
Around the same time, Soldner also performed calculations of the deflection of light by the Sun[4].
After that, the idea of gravitational lensing was not described much further, until 1911. That
year, Einstein published a detailed prediction of the bending of light, where he used the equiv-
alence principle to derive the result from Cavendish and Soldner to first-order [3]. This result
was confirmed in 1919 with measurements of the shift in the position of stars around the edge of
the Sun[4]. Analysis of notebooks of Einstein at the same time show his derivation of the lensing
equation[3]. Furthermore they also contain sketches of the position of gravitationally lensed im-
ages. Later work by Eddington used an analogy between gravitational deflection and refraction
to derive earlier predictions in simple terms and looked at the possibility of multiple images of
a source[I][3]. His work inspired Link to do some detailed computations, who was confident in
the possibility of observing the effect[3]. In 1936 (nine months after Link’s work was published),
Einstein published his famous paper in which he concluded that the lensing effect of stars by
other stars would not be observable, because the angular separation would be too small[3][I]. The
next year, Zwicky considered the possibility of galaxies to act as lenses. His calculations showed
that the chances of observing a lens event were actually not as low as predicted earlier[4]. Tt still
took more than 40 years for the first true observation of a lensed object to appear (see ﬁgure .

Figure 1.2 — Image of QSO 0957+4561. The first ever oberved lensed quasar, by Walsh, Carswell
& Weymann (1979). The two images have an angular separation of ~ 6” and their redshift was
measured at z = 1.41 [1][5]



In the years that followed, many more lenses were discovered. A lot of them are multiply
imaged systems and some show an arc or ring-like structure. These are strongly distorted images
shaped like a ring or arc around the lens, visible in for example the Abell 2218 cluster seen in
figure [1] Currently, hundreds of lensed objects have been discovered. An incomplete database
of Hubble Space Telescope and radio images of lenses from the CASTLES survey can be found
online [6]. It shows that, there is a large variety of different shapes of images that arise through
gravitational lensing.

Besides giving these kinds of images, the lens events also have some useful applications. They
can help constrain cosmological parameters like the Hubble constant[I]. Furthermore, the deflec-
tion angle due to lensing only depends on the mass distribution of a lens and not on its luminosity.
Therefore lensing by dark matter makes it a useful way to detect this unknown substance[d]. Last,
but not least, the lenses can act as a magnifying glass. Especially galaxy clusters are able to reveal
very distant objects that would normally not be visible with present-day telescopes[4]. Some of the
farthest away galaxies have been observed through gravitational lensing. An example is a redshift
9.6 galaxy in the MACS1149+22 cluster discovered in 2012 [7]. For a more complete summary of
the applications of gravitational lensing, the reader is refered to the article by Schneider (2003)[1],
the article by Treu (2010)[8] and the lectures by Narayan (2008)[4].

1.2 The Goal

The focus of this thesis is on simulating and quantifying the effects of small-scale density fluctua-
tions in lens galaxies using numerical simulations. We perform simulations of lensing events and
add perturbations to the lens with fluctuations of different scales representing different kinds of
small-scale structures. From this we will try to see if it will be possible to accurately measure the
effect of the fluctuations.

The project was performed as a final assignment for the Bachelor in astronomy. We begin with
derivations of the important concepts that are required for the simulations, including the mathe-
matical tools involved. Chapter 3 then goes into the numerical implementation of the model, the
results of which are discussed afterwards. We finish with a conclusion and explain some of the
work that can be done to follow up on this research.



Chapter 2

The Concepts Involved

To understand what happens in the simulations, some basic concepts first need to be introduced.
In the next couple of sections we derive some important relations and give a description of the
mathematical tools that were used. This is done in preparation of the numerical methods intro-
duced in the next chapter.

2.1 The Lens Equation

Gravitational lensing describes how a light ray deviates from a straight line due to the curvature
of space time around a massive object. From General Relativity it follows that the angle by which
a light ray is reflected by the gravitational potential of a point mass is given by the following
relation[4].

4GM
c2¢
Here £ is the closest distance the light ray passes to the object. In general the objects that cause
the lensing are not point masses, but instead are extended and have a certain mass distribution.
To get the deflection angle for such an object we can superpose the angle arising from the indi-
vidual mass elements of the lens.
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Now we integrate over the surface density X(£’) (the integral of the mass density over the line
of sight) and ’5 - 5_7 ‘ gives the impact parameter for interaction with a mass element. This is

only valid under the assumption that the deflection angle is small which requires the lens to be
much smaller than the distances between the source, lens and the observer[I]. The assumption
described here is known as the geometrically thin lens approximation and is in general satisfied
for the objects considered like (clusters of) galaxies.

Using the deflection angle it is possible to derive the lens equation, which relates the position
where the image of a source forms to its actual position. Figure[2:I]gives a schematic representation
of what a basic lens system looks like. Normally light from the source at position 7 in the source
plane would travel in a straight line, where it would reach the observer under an angle /6_” . Because
of the presence of the lens, it is now deflected by an angle & and appears to come to the observer
under an angle 0. In these situations the distances involved are large and the angles will thus be
small. If Dy is the angular diameter distance from the observer to the source, Dy between the
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Figure 2.1 — A schematic representation of a lens system

observer and the lens and Dy, the angular diameter distance from the lens to the source, then by
looking at the geometry it follows that

= p€ - Dui() (23)
and

7=D.f  £=D4b (2.4)
Filling in relations |2.4] into equation then gives the lens equation.

E:éfgfapﬁ) (2.5)

By scaling the deflection angle & over the distances

a(Daf) (2.6)

equation [2.5] can be simplified into

ﬁzéf&(@ (2.7)
This is the final form of the lens equation. In general there is more than one solution of the lens
equation. Therefore multiple images of the same source are able to form.

The deflection angle & can also be written as the gradient of a dimensionless potential.

a=vy (2.8)

We will call ¢ the lens potential and it describes the effect of the lens on the deflection of light
rays coming from the source. In our simulations we will perturb this potential with fluctuations
that are representative of small-scale structure in the lens. In order to get to a description of these
fluctations we will need some knowledge of Fourier theory, which is what will be described in the
next section.



2.2 Fourier Theory

In order to quantify the scales that are involved we use the Fourier transform. In two dimensions
it is defined by

F(R) = / 7 f(F)e— "7 (2.9)

-

The function F(k) denotes the Fourier transform of f(Z). It breaks a function into waves with
wavenumbers k and amplitudes F' (E), which combined would reproduce the original. It is com-

monly used for sound, where the Fourier transform finds the frequencies the signal is composed
of. To give an example, the Fourier transform of a sinusoidal function, or a single tone, would
be a delta-function at the frequency of the wave. The space spanned by the k vector will be
called Fourier space. Here, a k-value represents a certain scale A in real space, where k = 27”
One should keep in mind that the highest k-values correspond to the lowest scales and vice versa.
A similar relation exists to transform back to real space and is called the Inverse Fourier transform.

f(@) = / (dkf(k) (2.10)

Another standard result from the Fourier transform is a block wave which transforms into a sinc
function. The important result that is required for this research however is the transform of a
Gaussian. Take a function f(x) of the form f(x) e~ and insert it into the Fourier transform.
Here a one dimensional example is used, but it does not matter for the end result because the
Fourier transform integrates over each dimension separately.
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The second to last step uses the fact that the integral of an odd function over a symmetric inter-
val equals zero. The cosine term does not suffer this fate and is given by a standard integral[9].
The conclusion is that the Fourier transform of a Gaussian function results in another Gaussian
function.

Another important theorem is Parseval’s theorem.

[1s@raz= [ |r

It relates the power of a function in real space to the power in Fourier space. Equations ,
@D and will be used for the creation of the fluctuations in the lens potential. In chapter
[3] the implementation into a numerical code is discussed, where the relations are changed from
continuous functions to discrete ones.

2
dk (2.11)




2.3 A Description For Fluctuations

In order to add potential fluctuations to the simulation of a lens, we need some way to describe
them and model the appropriate scales. We model the fluctuations using a Gaussian random field.
In its most basic definition, a random field is simply a grid filled with random numbers following
a certain distribution. For the potential fluctuations we assume a Gaussian distribution. Because
we are interested in the overal scales on which the potential fluctuations manifest themselves and
not on the exact shape of it, we need some representation of this. The first thing that comes to
mind is to work from Fourier space, because there the scales are actually represented. A useful
tool to then quantify the scales is called the ‘Power Spectrum’. It is defined as the absolute value
of the field in Fourier space squared (equation )

2

-, -,

P(F) = F(R)F(E) = (F(E)

(2.12)

The power spectrum describes the amount by which scales are present. For a Gaussian random
field, it is related to the auto-correlation function £ through a Fourier transform[I0].

£(7) = / (2‘23213(1;’)6”95 (2.13)

¢ determines the correlation between two points in an image and therefore describes the statistics
of the entire fluctuation field. So if the power spectrum is known, so is the auto-correlation func-
tion and thus the entire random field can be created. For the creation of the potential fluctuations,
the power spectrum will determine the standard deviation of the Gaussian random numbers that
will be generated in Fourier space. Then by Fourier transforming the Fourier space information,
one gets another image with values that are normally distributed due to the properties of the
transform shown earlier. In preparation to this research, from numerical simulations, the typical
powerspectra of fluctuations is described as P o k=" where n is assumed to be either -4 or -6.
Normalization of the powerspectra to a specific fluctuation variance is acquired through Parseval’s
theorem, which will be shown in the next chapter.

2.4 Observational Parameters

Adding the potential fluctuations to the lens potential gives us a representation of a lensing event
we would find in real observations. To look at the alterations the fluctuations make to an image
that would be observed if there would be no noise and no potential fluctuations, we subtract
such a smooth model from the simulations. These acquired residuals then should contain all the
information about the random noise and deviations from the unperturbed potential simulation. We
again use a power spectrum for extracting the scale information. By changing several parameters
(noise level, source size and potential fluctuation size) we try to constrain the requirements for
being able to extract such a power spectrum from real data compared to a smooth model of the
lens system.

How all the above discussed aspects were implemented is described next, where we go through the
numerical code that was used for the simulations.



Chapter 3

Numerical Implementation

When equations don’t look very complicated in the continuous case, chances are that it will be a
lot harder to implement them in a working numerical code. The obvious difficulty is that every-
thing must be calculated using discrete methods. This requires a change in the most important
equations like the definition of the Fourier transform and Parseval’s theorem. For this research,
a code written by Koopmans [IT] (2005) was used to simulate a lensing event. New scripts were
then created in PYTHON for adding fluctuations to the lens potential and for extracting a power
spectrum from a simulation. All the codes that were used can be found in appendices [B] through
[F] and in this chapter we will give a description of the algorithms involved.

3.1 A Brief Overview of the Simulation Code

To begin we will give a short summary of the code used for the simulations written by Koopmans
[I1]. It simulates an Einstein ring lensed image of an elliptical source galaxy on a 4x4 arcsecond
image. It requires a separate file containing a point spread function (PSF) for specific instruments.
For this research a Hubble Space Telescope PSF was provided beforehand, but in principle the
simulation can also run for other telescopes. The simulation consists of three components, namely
the source, the lens and a lensed image of the source.

The source brightness is described by an exponential function with a peak brightness of 100 in-
tensity units and a size parameter og... The units of the flux can be arbitrarily chosen. There
are two ways in which to alter the size of the source. The first is to keep the same intensity in
the middle of the object and broadening or narrowing the rest of the function. A second option is
to give every source the same integrated intesity, which decreases the central intensity when the
source size is increased. Both models were included into the code, but in the end the latter was
not used because sources with the same peak brightness make it easier to compare different signal
to noise levels, whereas increasing the size of a flux normalized model would significantly decrease
the brightness at the center.

The lens galaxy is also modeled as an ellipsoid described by the Singular Isothermal Ellipsoid, or
SIE for short from Kormann et al. [12] (1994). It first determines the lens potential, which is the
part where for this research potential fluctuations were added and then it calulates the deflection
angle at every point and finally creating the image of the source galaxy lensed by the SIE lens
on a grid with 80 x 80 pixels and a size of 4” x 4”. The code also uses a second smaller lens
object, but for this project we set its strength to zero. The final stage of the image creation is to
artificially add noise using a normal distribution random number generator. The maximum level
of the noise is also one of the parameters that was varied. An example of an end product from
the code is given in figure 3.1
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Figure 3.1 — Example from the lensing code. A source of size osr. = 0.25 was used. Gaussian noise
with a maximum level of 3.0 intensity units was added to the final image

Only minor adjustments were made to the script in order for it to use newly created codes to
incorporate potential fluctuations in the lens galaxy model. A more detailed description can be
found in the original article written about the code [II]. The full script is listed in Appendix

3.2 Modeling Fluctuations on the Lens Potential

Substructure in the lens object was modeled using fluctuations on the lens potential. These are
described by the Gaussian random field, whose scales are characterized by a power spectrum. To
generate a random field we started from Fourier space by filling in a grid with normally distributed
random numbers and then Fourier transforming it to get the final image that represents the actual
structure in the lens potential and which can then be added to it. Because we are talking about
real objects, the actual creation of the grid requires the implementation of some special conditions
which will be derived next.

Creating a Grid in Fourier Space

The first challenge that is faced when trying to simulate the fluctuations is how to start with
a grid in Fourier space that produces a real image after it is inverse Fourier transformed. An
inherent property of the definition of the Fourier transform is that it contains complex numbers,
which in most cases would result in a complex function. It should however be possible to create
real images, but that takes different handling of the function in Fourier space. A second condition
that is imposed on the field is that it has to average out to zero, because the fluctuations should
only represent the small-scale structure in the lens and not add to the total mass. How these
conditions are represented in the grid in Fourier space can be derived by looking at the definition
of the Discrete Fourier transform implemented by the NUMPY package in PYTHON [13].

11
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Here Fy; is the Fourier transform of f,,, and this definition is valid for a rectangular MxN grid.
For this simulation we will assume that M and N are equal, but the code can handle alterations
to the shape of the grid without any problems. Note that this definition implies the use of normal
frequencies in stead of angular frequencies (or wavenumbers) and therefore all the Fourier compo-
nents in the code use the parameter [ = %, which is what therefore will be adopted in the rest of
this chapter. PYTHON and its modules have a slightly unnatural way of going through a matrix,
in the sense that it does not recognize the center of the matrix as the origin of the axes and in
stead starts at the top left corner. The Fourier transform module then adds to this difficulty by
adopting its own standard order to place the frequencies along the axes. This should all be taken
into account when filling in the Fourier plane, but first we will derive a couple of special conditions
that will impose the creation of a real image after the transformation.

To look at wat will happen on the other side of the grid, one only has to change the coordi-
nates in the Fourier transform to the following[I4]

k—=M-k and | — N -1

Then the transform changes into

M-1N-1
— mk _nl
FMfk,Nfl: fmn'e 27rz(m At N)
m=0 n=0
M—-1N-1
_ fmn 6+27ri(%1’“+%) . 6727Ti(m+n)

m=0 n=0

The last term is equal to unity, because e 2™ = =277 = 1 for integer m and n. In the above

equation f,, represents the fluctuations in normal space and thus has only real values (imaginary
fluctuations are not very useful physically for this model). Therefore the statement can be reduced
to

Fy—gn—1 = Fy, (3.3)

This is identical to saying F(I) = F*(—I) in the continuous case. So there is a cross-correlation
between points in the grid and thus only half of it has to be generated in order to be able to fill
the entire grid. On the lines on the grid where either £ = 0 or [ = 0 this symmetry turns into

M—-1N-1
. .
Fonoi= 3 3 fmn ™% = F, (3.4)
m=0 n=0
Fy—ko = Fi g (3.5)

The three conditions given in equations (3.3]), (3.4) and (3.5 are the basic requirements of the
grid in Fourier space that are necessary to make the grid real-valued after it has gone through a
Fourier transformation. There are however four special points at the halfway points (also known

12



as the Nyquist frequency[I4]) that need to be taken care of at k = & and I = &

M—1N-1 M—-1N-1

Fyo=2 3 fon e ™™= fun ()" (3.6)
m=0 n=0 m=0 n=0
M—-1N-1 M—-1N-1

— L TEm (_1\"

m=0 n=0 m=0 n=0
M—-1N-1 ) M—-1N-1

Py =33 fun e ™ =373 fon - (~)" (3.8)
m=0 n=0 m=0 n=0
M—-1N-1
m=0 n=0

These four points in the grid are real-valued, because f,, (the function in real space) is as well.
Equation describes an even more special case. For the location in Fourier space where both
k and 1 equal zero, the value of the grid is just the sum of all the values of the field in real space.
This is simply the average of the field (without a factor ﬁ) and so this point can be set to equal
zero. It should be noted that even though these conditions are built into the code, the resulting
imaginary part of the inverse Fourier transformed grid will not be exactly zero. This is due to
numerical errors like the finite number of decimals that can be stored. As long as the imaginary
values are very small, one can assume that it is zero and only use the real part. If the values are
not negligible, then something has gone wrong in the implementation of the conditions for a real
image. For our code the imaginary values were of the order of ~ 10720 and therefore definitely
not significant.

The derived conditions apply to every case where one wants the discrete inverse Fourier transform
to result in a real-valued image but they don’t depend on the physical dimensions of a required
image. The simulation code creates a lens potential with a specific size of the image in arcsec-
onds (4”7 x 4"). The image of the fluctuations that is added to the lens potential should then
also have the same dimensions. There is a relation between the dimensions in the Fourier grid
and the grid in normal space. In order to make sure that a value in Fourier space (l,l,) cor-
responds to the right value in real space (x,y) the Fourier grid should contain these frequencies|[I5]:

-M 1 M 1 -N 1 N 1
— << |[=-1)-= — =<, <(=-1) =
2 L, 2 L. 2 L, 2 L,

Here L, and L, denote the length in the x- and y-direction for the simulated image in physical
units. As was mentioned before, the order of the frequencies along the axes is implemented
differently by NUMPY. It places the | = 0 component first after which the positive frequencies
follow and the negative ones come last. Figure[3.2| gives a graphical summary of how the grid was
constructed.

The Gaussian Random Field

Once the Fourierplane itself has the right dimensions and follows the correct conditions, the grid
can be filled in to create the fluctuations. For the Gaussian random field a power spectrum is
assumed of the following form.

Pk)y=A-1"" (3.10)

13
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positive y frequencies o

negative y frequencies

Figure 3.2 — Graphical representation of how the grid was built in Fourier space. Planes of the same
color are each other’s mirror image and complex conjugate. The three squares that are coloured white
represent the three real valued points of the grid (equations , and ) The gray area
top left is the point equal to zero, representing the mean of the field (see equation (3.9).

The n gives the slope of the spectrum and in this project two different values for it will be tested,
namely -4 and -6. One problem that arrises with this kind of power spectrum is the sharp increase
at low l-values. For 1=0 it becomes infinitely large, which would signify infinite power for the
largest scales and is not physical. Therefore it is set to zero in the code. Another reason to ignore
this frequency is because it represents infinite scale and that is something that cannot be measured
anyway in a finite field of view. The parameter A is a normalization constant and is related to
the variance of the density fluctuations which will be shown later.

The random field is created by using Gaussian random numbers at each point in the grid, where
the square root of the power spectrum at that frequency gives the standard deviation of the distri-
bution. A fast and easy to program method for generating normally distributed numbers is to use
the polar form of the Box-Muller transform[I6]. This generates two independent Gaussian random
numbers. The complex values in the Fourier space grid will be of the form F(I) = f1(I) + i f2(I)
where f; and f; are the numbers generated from the Box-Muller transform. It works by generating
uniformly distributed random numbers u and v with values between -1 and 1. The transform from
a uniform to a Gaussian distribution is then made by the following relations.

h=u —21In(s)
s

T
s

Where s = u? +v? < 1. These relations give a distribution with unit variance, but for the fluctua-
tions a non-unit variance is necessary. To solve this problem one only has to multiply the numbers
by the preferred standard deviation (or the square root of the power spectrum value in this case)

and get[17]

14
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o /PO | 2220 (3.12)

Where f1(1) is used as the real part of the complex number F(1) and f5(l) as the imaginary part.
In order to get a certain size scale of the potential fluctuations, the power spectrum still needs to
be normalized. The constant A is related to the variance of the fluctuations through Parseval’s
theorem. Because of the discrete Fourier transform used in the code, the theorem takes on the
form given below[I8].

M,l N

M-1N-1

Z Z | ] = MN Z Z |Fia|® (3.13)

m=0 n=0

The same relation should then also hold for the variances where we will now call MN = Np;,
which gives the number of pixels of the image. Using Parseval’s theorem, we can derive the relation
between the variance of the potential fluctuations in real space (0 fiuet) and the power spectrum
as follows.

§ /‘ 2 _ E
Omn = Ukl
mn pza:

2
= Npiz " Ofjyer = E o
pzz

1
=N P
prx k 1
2
= Ufluct Z Pkl
pl‘L k 1

In the second line we have used the fact that the variance in real space should always have the
specified value that is desired. Solving for A from the power spectrum then gives the correct
normalization.

o-fluctNgwc (3 14)
2% 0n ’
An extra factor of two is added in the denominator to get the correct outcome. This is needed
because half of the grid is generated and the rest of it is taken to be the be the complex conjugate
of the first part. In Fourier space however, a point and its complex conjugate are not independent.
The result is a factor two increase of the variance for which we need a correction. Also take note
that the power spectrum is set to zero for 1 = 0. Once the complex random numbers are correctly
added to the grid and taking care off relations through , the fluctuations on the lens
potential are obtained through an inverse discrete Fourier transform. It is then added to the lens
potential and will be used in the simulations. The implementation in PYTHON can be found in
Appendix [C] and figure gives two realisations for different power spectra of the fluctuations.
In figure we show an example of a lensed image with noise and potential fluctuations added to
the lens.
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(a) P() = A- 174 (b) P(I) = A-1-6

Figure 3.3 — Examples of Gaussian random fields for two different power spectra for a fluctation
variance a?luct = 1073, The realisation with a steeper spectrum (right) clearly has less structure on
small scales.

If all goes well, the root mean square of the pixel values of the random field should be close
to the square root of the variance in the power spectrum in the normalization constant. A single
realisation of a field will not yet give a real normal distribution. After multiple generations, they
all together should give a Gaussian due to the Central Limit theorem. To check the distribution
of multiple fields, a script was written, which can be found in appendix [F}] A histogram of the
distribution of 100 random fields is given in figure [3.5| for 0%, = 107°.
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75 87

Figure 3.4 — Lensed images with no potential fluctuations (left) and with fluctuation size 0%;,.; =
1073 (right). The source size is 0src = 0.25 and the images have a noise level of 5.0 intensity units.
The fluctuation power spectrum used here has a slope of -4.
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Figure 3.5 — Distribution of 100 Gaussian random fields, with U?luct = 1075, The variance of the
distribution should equal U,%zuct
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3.3 Getting Information From Residuals

After the simulation with potential fluctuations is performed, we would like to see if it is possible
to get some information back on the fluctuations. For this we create residuals by subtracting a
smooth model of the lens system from the simulation data. The smooth model is a simulation
where no noise and no potential fluctuations were added. The lensed images produced by the
smooth model for four separate source sizes are given in figure [3.6]

[ |

8.2 16 25 33 ] 50 58 66 7

(a) osre =0.1

(¢) osre =0.5 (d) osre = 0.8

Figure 3.6 — The four lens models for different source sizes

The resulting residuals can then be Fourier transformed, and from the absolute value squared
we obtain their power spectrum by dividing the image into ten radial bins. In each frequency bin
the mean value is then taken to get the power at that scale. This is done for a hundred potential
fluctuation generations, which will also provide a spread at each scale in the powerspectrum, rep-
resenting the error if one would only extract the powerspectrum from a single observation. The
error in each bin j is calculated using the root mean square deviation from the mean value.

N 2
2 o _ iz (Pij— <P >j)
07 =rms;] = == ;\Jf_ T 1 (3.15)
The more lensing events we can find, the more the power spectrum can be constrained with
increasingly smaller errorbars. The error for N observations is determined by dividing the error
for a single measurement by v N. The reader is reffered to Appendices Iﬁl and |[Ef for the code used

to create residuals and determine power spectra and for the plotting of some of the results.
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To get some idea of the different stages that are excecuted and how the different potential fluctu-
ation scales influence the lensed image and the residuals, we give a schematic overview in figure
Figure 3.8 shows the same but now for the steeper fluctuation power spectrum.

From the figures we see that a smaller a?luct gives the random fields more structure at smaller

scales and also reduces the visibillity of any remnants of the potential fluctuations in the residuals
image. These become completely dominated by noise for the lowest U?luct values.
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Figure 3.7 — Schematic overview of the different codes for a fluctuation power spectrum of P(I) ~ 1~*
and a source size of osrc = 0.25. Each panel is for different fluctuation scales U?‘luct‘ In all panels the
top left image give a lensed image without noise or potential fluctuations. The top right image gives
the Gaussian random field that is added to the lens potential. Then the bottom left image give a
lensed image with the potential fluctuations included and a noise level of 5.0 intensity units. Finally
the bottom right image then gives the residuals from subtracting the top left image from the bottom
left one.
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Figure 3.8 — Schematic overview of the different codes for a fluctuation power spectrum of P(1) ~ 176
and a source size of osrc = 0.25. Each panel is for different fluctuation scales U?luct‘ In all panels the
top left image give a lensed image without noise or potential fluctuations. The top right image gives
the Gaussian random field that is added to the lens potential. Then the bottom left image give a
lensed image with the potential fluctuations included and a noise level of 5.0 intensity units. Finally
the bottom right image then gives the residuals from subtracting the top left image from the bottom
left one.
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Chapter 4

The Simulation results

In this chapter we examine the result of the simulations as described previously. We first check
the residuals that arise from an original fluctuation power spectrum with a slope of -4. Given in
figure are the mean power spectra of 100 residuals for a source with o4, = 0.1, the smallest
source that was modeled. There are several effects that will be varied. Namely the effect of noise
on the measured power spectrum for several potential fluctuation scales. Later we will discuss
how the shape of the spectra changes with an increase in the size of the source and finish with a
steeper input power spectrum.
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Figure 4.1 — Power spectra for a source size o5 = 0.1. Each row represents a different noise
level, from top to bottom 5.0, 12.0 and 100.0 respectively. The horizontal green line gives the power
spectrum expected for that noise level. Every column has the same fluctuation sizes, from left to
right G'chlucts =107%,107*,107° respectively. Blue errorbars give the error for a single measurement,
whereas the red errorbars would be the error after 100 observations. If only an upper limit to the
error is given (a small horizontal blue line), the lower limit extends to negative values and thus cannot
be plot on a logarithmic scale. The fluctuation inputspectrum was P(l) 1~

In some of the datapoints only the upper limit of the error is given. This is due to the lower
limit extending to negative values, which can not be plot on a logarithmic scale.
The errorbars in the plots show an increase for the largest scales and the smallest scales. The
latter will be dominated by errors from the noise. Large scales however have uncertainty due to
sample variance. This is the error that arises due to the finite number of measurements performed
and should decrease with a larger number of simulations. This same trend will be visible in all
the power spectra that were extracted.
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4.1 Effects of Noise

In general every observation will have some influence from noise. Together with the spatial reso-
lution of the telescope noise affects the accuracy with which the power spectra can be measured.
The stronger it fluctuates, the harder it will be to get accurate results. As long as the noise is
truly random, it will converge to a contstant powerspectrum with an amplitude of N, x (0n0i56)2.
Simulations that only contained noise did indeed show an almost constant line with this amplitude.
This noise power spectrum can therefore be added to the plots and is given by the green straight
line.

In figure each row has the same noise level, increasing downwards and all the plots in a sin-
gle column have the same potential fluctuation size, decreasing rightwards. If the power spectra
agree with that expected from the noise within the measurement error, it will be hard to measure
them. As can be seen from the plots, for the highest noise level, where the signal to noise ratio is
lower than unity at every point of the lensed image, obtaining a residual power spectrum will be
near impossible. Also, the smaller the fluctuations are, the closer the spectrum reaches the noise
level which is especially problematic for potential fluctuations of the order J?luct = 1075. For the
higher O']%luct values however, noise poses less of a problem at the intermediate and large scales.
The higher k-values do lie closer to the noise level and the measurement there can be dominated
by noise. Getting a more accurate power spectrum can however be achieved, but multiple obser-
vations will be required.

4.2 Different Source Sizes

In order to get a better understanding of how changing some of the parameters in the simulations
would affect the residuals, we generated spectra for several situations. One of the options is to
alter the size of the source. We tried the four variations already meantioned in section [3.3] The
results for the largest source can be found in figure whereas the ones for the two intermediate
sized source galaxies are given in appendixA]

Overall there does not seem to be any significant change to the shape of the residual power spec-
tra. One might argue that for the smaller sources the spectrum starts to flatten somewhat at
the largest scales, but the effect falls within the errorbars for a single measurement. The errors
can be reduced by measuring the power spectra from more lensing events, represented by the
red errorbars. This however would assume the same level of potential fluctuations for every lens
observed and that does not necessarily have to be true. A larger source does (but only slightly)
increase the amplitude of the power spectra, which might just help raising it above the noise level.

24



2 —3 2 —4 2 —!
‘Uﬂuct =10 ‘ ‘O—fluct =10 ‘ ‘O—ﬂuct =10 5‘

107F 107 107
‘:l—E 106 f Noise level: 5.0 1 106 3 E 106 3
\3‘ i ts f
3 . 4&.&{{ - [—[—}—‘—i—m{-},
R0 t 1100 107}
10%F 104E i 1041
10! 10° 10! 10° 10! 10° 10! 10° 107! 10° 10! 10°
71 71 — Noise level power spectrum | | 71
10 10 ¥ 1 Errorfor N=1 10
Noise level: 12.0 t t Errorfor N=100
—_
| g
3 10°) 106 106 e}
107k . 10 ‘ 10° .
107! 10° 10! 102 1 10° 10! 10° 107! 10° 10! 102
10° 103 1 108
—~
|5
S—
. |
Noise level:|100.0
10! 10° 10! 102 107! 10° 10! 102 10! 10° 10! 102
ZL (LTCSEC_l Zi (ZI,TCSEC_l Zi Off‘CSEC_1
T v w

Figure 4.2 — Power spectra for a source size os, = 0.8. The rows represent different noise levels,
from top to bottom 5.0, 12.0 and 100.0 respectively. The horizontal green line gives the power
spectrum expected for that noise level. Every column has the same fluctuation sizes, from left to
right G'chlucts =1072,107*,107° respectively. Blue errorbars give the error for a single measurement,
whereas the red errorbars would be the error after 100 observations. The fluctuation inputspectrum
was P(l) oc 7%,

4.3 Steeper Input Spectrum

The last alteration that was attempted was to let the potential fluctuations in the lens be described
by a power spectrum with a steeper slope. A steeper spectrum drops faster at high k-values and
therefore basically cuts off small scale density fluctuations. This was also visible in the example
of random fields given in figure The k6 field there is much smoother. This should definitely
influence residuals that we would get. In this section we again give the results for both 4. = 0.1
and o4, = 0.8, but the ones for intermediate values can be found in appendix @

Here we see a flattening of the spectra at the high k end of the spectra. This directly follows
the absence of the smaller scales due to the steepening of the input power spectrum. Now in
stead of structure, the noise dominates at these scales. Therefore fluctuations with a larger slope
power spectrum will give more problems with high noise levels. On the other hand, because they
are larger, the small scale end of the power spectrum would probably not contain a lot informa-
tion about the potential fluctuations, other than giving an idea of the mininum sizes of fluctuations.
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Figure 4.3 — Power spectra with a source size o5 = 0.1. The rows represent different noise levels,
from top to bottom 5.0, 12.0 and 100.0 respectively. The horizontal green line gives the power
spectrum expected for that noise level. Every column has the same fluctuation sizes, from left to
right G'chlucts =107%,107*,107° respectively. Blue errorbars give the error for a single measurement,
whereas the red errorbars would be the error after 100 observations. If only an upper limit to the
error is given (a small horizontal blue line), the lower limit extends to negative values and thus cannot
be plot on a logarithmic scale. The fluctuation inputspectrum was P(l) 1S,
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Figure 4.4 — Power spectra with a source size o5 = 0.8. The rows represent different noise levels,
from top to bottom 5.0, 12.0 and 100.0 respectively. The horizontal green line gives the power
spectrum expected for that noise level. Every column has the same fluctuation sizes, from left to
right G'chlucts =107%,107*,107° respectively. Blue errorbars give the error for a single measurement,
whereas the red errorbars would be the error after 100 observations. If only an upper limit to the
error is given (a small horizontal blue line), the lower limit extends to negative values and thus cannot
be plot on a logarithmic scale. The fluctuation inputspectrum was P(l) 1S,

4.4 Statistics

Although the plots can be very useful to see the overall effect of the different parameters, estimat-
ing if the power spectra are able to be significantly measured requires some statistics. We adopt
the %2 test to fit the residual power spectra to the noise level power spectrum. The x? values were
determined with

N 2
<P >; =P

X2 _ Z ( g : nozse) (41)

- [eps

j=1 J
where < P >; is the mean power spectrum at point j, Posse i the noise power spectrum value
and ajz is the error in the mean given by equation (3.15)). The probability that the measured power
spectrum is a good fit of the noise level was then determined using the CHIDIST function in the
OpenOffice Calc software[I9] with nine degrees of freedom (ten data points minus one and the
noise power spectrum has no fittable parameters). The probability ppot. fiuce. that the measured

mean spectrum is the result of the potential fluctuations is then given by one minus the probability
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Osre = 0.1

O fluct = 1073 O fluct = 1077 O fluet = 1070
X2 Ppot. fluct. X2 l Ppot. fluct. X2 Ppot. fluct.
Onoise = 5.0 9.960 6.462-10"1 | 2.276 1.369-10°2 [ 5.537-10"* | 4.713-10°°
Onoise = 12.0 || 2.778 2.755-10"2 | 6.116-10" T | 7.199-10"° | 3.693-10"2% | 2.974-10"™°
Onoise = 100.0 || 54741072 | 1.734-107° [ 9.895-10° | 8.019-10 ™ | 1.024-10"? | 9.369-10" ™3
Osre = 0.25 :
O fluct = 107° O fluct = 1077 O fluct = 107°
X2 Ppot. fluct. X2 Ppot. fluct. X2 Ppot. fluct.
Onoise = 5.0 1.236 - 10! 8.062-10~" | 2.638 2.306-107% [ 4.131-107 ' [ 1.336-10~°
Onoise = 12.0 || 3.975 8.693-1072 | 6.244-107 1 [ 7.866-10"°> | 2.737-1072 | 7.747-10~ !
Onoise = 100.0 || 6.423-1072 | 3.548-1077 | 1.189-10"2 | 1.830-10 2 | 6.641-10"° | 1.334-10"™®
Osre = 0.5:
Ofluct = 1077 Oftuct = 1077 Ofluct = 107°
X2 Ppot. fluct. X2 Ppot. fluct. X2 Ppot. fluct.
Onoise = 5.0 1.823 - 107 9.674-10"1 | 3.691 6.945-1072 [ 4.121-10" 1 [ 1.322-10°°
Onoise = 12.0 4.496 1.241-107" | 6.886-10"T | 1.190-10~T | 2.495-1072 | 5.112- 10T
Onoise = 100.0 || 5.665-107% | 2.022-10° | 8.370-10° | 3.778 - 10 ™ | 1.516 - 10 2 | 5.454-10 2
Osre = 0.8 :
O fluct = 10732 O fluet = 1077 O fluct = 107°
X | Dot suct. X | Ppot.fiuct. X | Poot.fuct.
Onoise = 5.0 2.323 - 107 9.943-10~" ] 9.030 5.655-10~1 | 1.650 4.127-1073
Onoise = 12.0 || 5.885 2.487-1071 [ 9.630-10"T | 4.818-10"% | 7.946-1072 | 9.186- 107
Onoise = 100.0 || 2.469-1077 | 4.884 .10 [ 1.049-1072 | 1.042-10" 2 | 2.024-10"2 | 2.000- 10~ T

Table 4.1 — y%-values with respect to the noise level and the corresponding probability that the
data is a measurement of the potential fluctuations for the power spectra of different sources, noises
and fluctuation scales. These values are for an input power spectrum of P(I) ~ I~* and a single
measurement of the lens system (blue errorbars).

that it is due to noise.
For all the power spectra in the results, the corresponding x? values and probabilities are given in
tables and These are the values for a single measument of the lens system (blue errorbars).
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Osre = 0.1

O fluct = 1073 O fluct = 1074 O fluct = 1075
X2 Ppot. fluct. X2 l Ppot. fluct. X2 Ppot. fluct.
Onoise = 5.0 1.057 7.050-10"% [5295-10"" [ 3.893-10"° [ 1.849-10""' [ 3.933-10""

Onoise = 12.0 8.848-10"1 [ 3.397-107% [ 2.115-107 % | 7.126-10"" | 1.463-10"2 | 4.649-10" 2

Onoise = 100.0 || 1.794-1072 | 1.162-10"1F | 5.327-107° | 4.952-10~ | 1.774- 1072 | 1.106 - 10~ 1T

Osre = 0.25:

O fluct = 10_3 O fluct = 10_4 O fluct = 10_5

X Ppot. fluct. X l Ppot. fluct. X Ppot. fluct.

Onoise = 5.0 8212-1071 [ 2.492-107% [ 5.463-10"T | 4.447-10~°> [ 1.698-10"' [ 2.702-10~"

Onoise = 12.0 4517-1071 [ 1.965-107° | 2.132-107 ' | 7.380-107 | 1.126-10"2 | 1.436-10" 2

Onoise = 100.0 || 1.736-1072 | 1.003-10"™F | 1.694-10"2 | 8.987-10"2 | 6.141-10° | 9.381- 10~

Osre = 0.5:
Ofluct = 1077 Oftuct = 1077 Ofluct = 107°
X2 Ppot. fluct. X2 Ppot. fluct. X2 Ppot. fluct.
Onoise = 5.0 1.637 4.000-107% [ 5770-10"1 [ 5.621-10"° [ 1.296-10"! [ 8.133-10°5

Onoise = 12.0 5.252-10"1 | 3.757-107° | 1.661-10"T | 2.445-10~" | 2.263-10"2 | 3.297-10" 1!

Onoise = 100.0 || 2.607-1072 | 6.235-10"1T | 4.829-107° | 3.186-10"** | 3.601-10"2 | 8.549-10"1°

Osre = 0.8 :
O fluct = 1073 O fluct = 1077 O fluct = 107°
X | Dot suct. X | Ppot.fiuct. X | Poot.fuct.
Onoise = 5.0 4.921 1.589 1071 [ 2.729 2.593-107% [ 6.205-10"" [ 7.658 -10~°
Onoise = 12.0 1.629 3.928 107 | 3.039-10"T | 3.509-107° | 5.405-1072 | 1.639-10~°

Onoise = 100.0 ]| 1.196-1072 | 1.879-10"2 | 1.219-10" %2 | 2.044-10"2 | 1.778 - 102 | 1.117-10~ T

Table 4.2 — y%-values with respect to the noise level and the corresponding probability that the
data is a measurement of the potential fluctuations for the power spectra of different sources, noises
and fluctuation scales. These values are for an input power spectrum of P(I) ~ 17% and a single
measurement of the lens system (blue errorbars).

For a signal to noise ratio smaller than unity (005 = 100.0), every measurement is insignif-
icant with respect to noise. This is equivalent to what was seen in the plots of the results. The
only powerspectra that can be extracted from the noise with a reasonable certainty are the ones
for the two largest sources with a noise level of 5.0 intesity units and a potential fluctation power
spectrum with a slope of -4. The probability that we would measure the fluctuations under those
conditions are 96.74% and 99.43% for the lowest noise level with o,.. = 0.5 and 0.8 respectively.
These noise levels correspond to a mean S/N ratio over the image of ~ 7-9. A steeper fluctuation
spectrum decreases the probability of measurement, because here the smallest and intermediate
scales are cut off by the steepness of the spectrum, resulting in the flattening to the noise level
seen in the figures.

The only way here to increase the accuracy of measurement is to observe more than one grav-
itational lens event. In the case of one hundred observations, significant measurement will be
possible for many more situations. However, as was mentioned before in this discussion, it will be
problematic to find a hundred lens systems with almost the same properties.

One thing that needs to be taken into account is that the y? statistic is determined for the entire
power spectrum, so all the ten datapoints that were calculated. Even though the data at large
k-values will mostly be dominated by the noise, it should still be possible to measure the low k
part of the spectrum as long as the errorbars don’t extend below the noise power spectrum.
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Chapter 5

Conclusion

The goal of this thesis was to determine if it will be possible under certain conditions to measure
the effect of potential fluctuations on the image of a gravitationally lensed source. We simulated
the lensing of several different source galaxies by an elliptical lens galaxy. The lens potential was
then disturbed by the addition of a Gaussian random field which resembles density fluctuations in
that galaxy. Afterwards we artificially added random noise to the image and subtracted a smooth
model from it to obtain residuals that contain both the noise and the result from lensing the
potential fluctuations. A power spectrum was then generated from the residuals which gives the
amplitude with which certain scales are present in the residuals image.

The different parameters that we varied in order to constrain observations of the residuals power
spectrum were:

e The noise level: We added noise to the observations with three maximum levels (5.0, 12.0
and 100.0 intensity units). The highest noise level gives a signal to noise ratio smaller than
unity on the entire image.

e The scale of the potential fluctuations: Variances of the fluctuations for three different orders
of magnitude were implemented. The values that we used were Ufcluct =10"3,10"* and 107°.

e The size of the source object: An exponential function was used to model the source galaxy
with a peak brightness of 100 intesity units and widths o4 = 0.1,0.25,0.5 and 0.8.

e The slope of the power spectrum of the potential fluctations: We modeled fluctuations with
power spectra with slopes of -4 and -6. The steeper spectrum gives smoother fluctuations
that do not contain many small scales.

From the results we find that noise starts dominating the power spectra at the smallest scales
and that especially the smallest fluctuations will be difficult to measure accurately. Larger source
objects cause the amplitude of the spectra to increase slightly, making measurements of the lens
potential fluctuations better and there does not appear to be a significant change in the shape
of the power spectra. A steeper potential fluctuation power spectrum results in a cut-off of the
smaller scales, which will therefore also result in a reduction of the power at the smaller scales
in the residuals. Furthermore, a x? analysis showed that the accuracy for extracting the power
spectrum due to potential fluctuations from the noise will be problematic. Only the largest sources
combined with the most intens potential fluctuations and a low noise level result in reasonable
probabilities for a deviation from the noise power spectrum. This does not mean that we will
not be able to measure some part of the power spectrum at all, as for the lower noise levels only
smallest scales are completely dominated by noise. Another option is to measure more than one
lens event and combining the results. A hundred observations of the same type of lens system can
increase the accuracy of the measurement, but in general not all real lens systems will have the
same composition.
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5.1 Future Research

There is still a lot of work that can be done to expand upon the research performed for this thesis.
This section gives an overview of some follow-up options.

We only looked at the general characteristics of the power spectra, but a fit of the curve was not
made. One could for example try to see if the power spectra follow a powerlaw and include a
constant noise component. This could then be compared to the input spectrum of the potential
fluctuations, to see if it would be possible to immediately recognize what kind of power spectrum
the fluctuations in the lens follow. Furthermore, a more detailed statistical analysis could be per-
formed to get a clearer view of which parts of the spectrum can be measured significantly. Some
of the data at the larger scales does rise above the noise level and therefore one would expect those
scales to get a higher significance in that measument.

An analytical equation for the power spectrum of the residuals due to the addition of potential
fluctuations to the lens potential was derived in the bachelor thesis by Bus (2012)[20]. To solve it
analytically would be very complicated however. One problem with the relation is that it is only
valid in single images of the source, whereas our simulation models an entire lensing event which
consists of multiple images. Therefore at the lowest k-range, there will be a correlation between
points in separate images and the equation breaks down. So in order to compare their result with
the ones from our simulations, one would have to look at the higher k part of the power spectra. In
some of the plots there is a very small bump present around % = 0.8 — 0.9arcsec™ ! (for instance
in figure [4.2)). From our research we cannot make any conclusion about the cause of this increase
in power. Work is underway nonetheless to solve the equations numerically and therefore future
work might reveal more.

One thing that can help observations is the resolution of the telescope. In our simulation we used
parameters for the Hubble Space Telescope. One could repeat the simulations for Keck Adaptive
Optics (higher resolution, but also more noise) or the future EUCLID telescope (lower resolution,
but also less noise) and see which of the two would be favourable for observations of the residuals
power spectrum. These results could then be used to determine the optimum observing strategy.
To expand upon this, it is also useful to simulate more than one lens system. Our model is typical
lens system, but for real observations we expect to find other geometries of the lens system which
could also affect the results. This can then be used to simulate a sample of real lenses and apply
the same measuments to that to constrain the differences arising from other geometries. The next
step would then be to measure power spectra from real data and using Monte Carlo statistics it
might be possible to constrain which fluctuation scales are present in real lenses.
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Appendix A

Plots For Intermediate Source
Sizes
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Figure A.1 — Power spectra with a source size os.. = 0.25. The rows represent different noise
levels, from top to bottom 5.0, 12.0 and 100.0 respectively. The horizontal green line gives the power
spectrum expected for that noise level. Every column has the same fluctuation sizes, from left to
right U?lucts =1073,10*,107° respectively. Blue errorbars give the error for a single measurement,
whereas the red errorbars would be the error after 100 observations. The fluctuation inputspectrum
was P(l) oc 7%,
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Figure A.2 — Power spectra with a source size os.. = 0.5. The rows represent different noise

levels, from top to bottom 5.0, 12.0 and 100.0 respectively. The horizontal green line gives the power
spectrum expected for that noise level. Every column has the same fluctuation sizes, from left to
right G'chlucts =107%,107*,107° respectively. Blue errorbars give the error for a single measurement,
whereas the red errorbars would be the error after 100 observations. The fluctuation inputspectrum

was P(l) oc 7%,

36




2 —3 2 —4 2 —!
‘Uﬂuct =10 ‘ ‘O—fluct =10 ‘ ‘O—ﬂuct =10 5‘

) 107 107
®
- Noise level: 5.0 3 106 3 ; 106 3
3
% il 1 10°F t— il 1 10° % = g
101} 110t
10° 10! 10° 10! 10° 10! 10° 107! 10°
- 71 — Noise level power spectrum | | 71
10 ¥ 1 Errorfor N=1 10
} Noise level: 12.0 t 1t Errorfor N=100
—l—‘rrmﬂ{ {0 10% }—'r—H+}Hr( 10° [—f—HFH*H{
‘ ‘ . 107k ‘ ‘ . 107 & ‘
10° 10! 102 107! 10° 10! 10° 107! 10°
103 1 108
Noise level: 100.0
10° 10! 102 107! 10° 10! 102 10! 10°
ZL (LTCSEC_l Zi (ZI,TCSEC_l ZL arcsec™
T v w

Figure A.3 — Power spectra with a source size osr = 0.25. The rows represent different noise
levels, from top to bottom 5.0, 12.0 and 100.0 respectively. The horizontal green line gives the power
spectrum expected for that noise level. Every column has the same fluctuation sizes, from left to
right G'chlucts =1072,107*,107° respectively. Blue errorbars give the error for a single measurement,
whereas the red errorbars would be the error after 100 observations. The fluctuation inputspectrum
was P (1) oc 179,
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Figure A.4 — Power spectra with a source size os,. = 0.5. The rows represent different noise

levels, from top to bottom 5.0, 12.0 and 100.0 respectively. The horizontal green line gives the power
spectrum expected for that noise level. Every column has the same fluctuation sizes, from left to
right a?lucts =1073,10"%,1075 respectively. Blue errorbars give the error for a single measurement,
whereas the red errorbars would be the error after 100 observations. The fluctuation inputspectrum
was P(l) oc 175,
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Appendix B

Lensing Code

v #! Jusr/bin/env python

2

s #

1+ # Loading packages
s #

7 #Import standard packages

o import sys

10 import pyfits

1 from numpy.oldnumeric import x

12 import numpy.numarray.random_array as ranlib

13 import math as m

14

15 #Include ‘personal’ packages

16

17 sys.path = sys.path + [’/net/dataserverl/data/student/kooistra/

onderzoek /sparse/lib64 /python/’]

18

19 from pysparse import spmatrix

20 from gaussran2 import x #importing gaussian random field code

21 from residuals import x #importing code for power spectrum creation of
residuals

22 from histogram import x #importing code for creating a distribution of
the random fields

23

24

25 #

26 # Deflection angle for SIE lens + External Shear at position (z,y)
27 #
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28
o def deflect _SIE(lens, x, y):

30

)

31 # SIE lens model

32

33 tr = pix(lens.th/180.0)4+pi/2.0

34

35 sx = x—lens .x0

36 sy = y—lens.y0

37

38 cs = cos(tr)

39 sn = sin(tr)

40

41 SX_T = SX*CS+Sy*sn

42 Sy_-Ir = —SX*SN+Sy*CS

43

m psi = sqrt(lens. fl*%x2.0 % (lens.rc*%2.0 + sx_r*%2.0) + sy._r*%2.0)

45

16 dx_tmp = (lens.blxsqrt(lens.fl)/sqrt(1.0—lens.fl*%2.0))* arctan(
sqrt (1.0—lens. fl *%x2.0)*sx_r /(psi+lens.rc))

a7 dy_-tmp = (lens.blxsqrt(lens.fl)/sqrt(1.0—lens. fl*%2.0))*arctanh (

sqrt(1.0—1lens. fl*%2.0)*sy_r /(psi+lens.rcxlens. flx%2.0))

48

19 dx = dx_tmpx*xcs — dy_tmpsxsn

50 dy = dx_tmpx*sn + dy_tmp=cs

51

52 # external shear

53

54 tr2 = pix(lens.sa/180.0)

55 cs2 = cos(2.0%tr2)

56 sn2 = sin (2.0xtr2)

57

58 dx2 = lens.ss#*(cs2*sx+sn2x*sy)
59 dy2 = lens.ss*(sn2xsx—cs2x*sy)
60

61 return array ([dx+dx2, dy+dy2])
62

63 #

62 # Convergence for SIE + external shear

65 #

66
¢ def convergence_SIE (lens, x, y):

68

69 # SIE lens model

70

7 tr = pix(lens.th/180.0)+pi/2.0
72

73 sx = x—lens.x0

74 sy = y—lens.y0

75
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76
77
78
79
80
81
82
83
84
85
86

87

ss #

cs = cos(tr)

sn = sin(tr)
SX_I = SX*CS+Sy*sn
Sy-Ir = —sX*sn+sy*cs

psi = sqrt(lens. {l1*x2.0 x (lens.rc*%x2.0 + sx_r*x2.0) + sy_rx%2.0)
kappa_-tmp = (0.5%lens.bl*sqrt(lens.fl)/psi)

return kappa_tmp

so # Potential for SIE + extermal shear

90 #

91

o2 def potential(lens, x, y):

93

94

95

96

97

98

99

100

102

103

104

105

107

108

109

# SIE lens model
tr = pix(lens.th/180.0)+pi/2.0

sx = x—lens.x0
sy = y—lens.y0

cs = cos(tr)
sn = sin(tr)

SX_T = SX*CS+Sy*Sn
Sy_r = —SX*SNn+Sy*cCS

psi = sqrt(lens. fl*%2.0 x (lens.rc*%x2.0 + sx_r*%x2.0) + sy_r%2.0)

dx_tmp = (lens.blxsqrt(lens.fl)/sqrt(1.0—1lens.fl*%2.0))* arctan(
sqrt(1.0—1lens. fl *%x2.0)*sx_r /(psi+lens.rc))

dy_tmp = (lens.blxsqrt(lens.fl)/sqrt(1.0—lens.fl*%2.0))*arctanh (
sqrt(1.0—1lens. fl1*%2.0)*sy_r /(psi+lens.rcxlens. flx%2.0))

pot_SIE = sx_rxdx_tmp + sy_r*xdy_tmp — 0.5xlens.blxsqrt (lens. fl1)x
lens.rcxlog ((psit+lens.rc)*%x2.04+(1.0—(lens. fl %x%2.0) ) *(sx_r*%2.0)

)

# external shear

tr2 = pix(lens.sa/180.0)
cs2 = cos(2.0%tr2)

sn2 = sin (2.0%tr2)

pot_exts = lens.ssx*(sn2%sx*sy + 0.5%xcs2x(sx*%2.0—sy*%2.0))
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122

123

124 #

return pot_SIE + pot_exts

125 # Convergence from potential correction

126 #

128 def convergence (gdat,ldatl ,1dat2):

148 #

# poisson equation

gpot_dx = (gdat.gpot.xmax — gdat.gpot.xmin) /(gdat.gpot.diml—1)
gpot_dy = (gdat.gpot.ymax — gdat.gpot.ymin)/(gdat.gpot.dim2—1)

kappa = zeros (gdat.gpot.dimlxgdat.gpot.dim2,’d”)
kappa_-mask = zeros(gdat.gpot.dimlxgdat.gpot.dim2,’d”)

for i in range(0,gdat.gpot.diml):
for j in range(0,gdat.gpot.dim2):

x = gdat.gpot.xmin + ixgpot_dx
y = gdat.gpot.ymin + jxgpot_dy

kappa[i+jxgdat.gpot.diml] = convergence_SIE (1dat2 ,x,y)

return kappa

o # Total (non—corrected) potential grid

150 #

151

152 def pot_grid(gdat,lensl ,lens2 ,gen,src_sig ,noise ,sigpow ,pspec):

gpot_dx (gdat . gpot .xmax—gdat . gpot .xmin) /(gdat.gpot.diml —1.0)
gpot_dy = (gdat.gpot.ymax—gdat.gpot.ymin)/(gdat.gpot.dim2—1.0)

pot_nc = zeros (gdat.gpot.dimlxgdat.gpot.dim2,’d”)

for i in range(gdat.gpot.diml):
for j in range(gdat.gpot.dim2):
xx = ixgpot_.dx + gdat.gpot.xmin
yy = j*xgpot_dy + gdat.gpot.ymin
pot_nc [i+]j*gdat.gpot.diml] = potential (lensl ,xx,yy)+
potential (lens2 ;xx,yy)

pot_nc = pot_nc + n.reshape(substruct(gdat.gpot,gen,gdat.gpot.
fluctsig ,src_sig ,noise ,sigpow ,pspec) ,n.shape(pot_nc)) # adding
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potential fluctuations

167 return pot_nc

168

160 #

10 # Correct t,u for small numerical deviations from either 0.0 or 1.0

111 #

172
173 def corr_x_i(x,i):

174

175 X2 = X

176 i2 =i

177

178 if (abs(x)<=1.0e—8):
179 if (X<0.0)Z

180 i2=i+1

181 x2 = 0.0

182

183 if (abs(x—1.0)<:1.0e—8):
184 if (X<1.0)Z

185 i2=i+1

186 x2 = 1.0

187

188 return x2,i2

189

190 #

w1 # Deflection angle for linear—correction grid

102 #

193

10s def deflect_grid (gdat, xx, yy):

196 gpot_-dx = (gdat.gpot.xmax — gdat.gpot.xmin)/(gdat.gpot.diml—1)
107 gpot_dy = (gdat.gpot.ymax — gdat.gpot.ymin)/(gdat.gpot.dim2—1)
198

199 il = int (floor ((xx—gdat.gpot.xmin)/gpot_dx))

200 j1 = int (floor ((yy—gdat.gpot.ymin)/gpot_dy))

201

202 t = (xx — (ilxgpot_dx+gdat.gpot.xmin))/gpot_-dx

203 u= (yy — (jlxgpot_-dy+gdat.gpot.ymin))/gpot_dy

204

205 # snap to nearest pizel if wvery close

206

207 cxi = corr_x_i(t,il)

208 t = cxi [0]

209 il = CXi[l]

210
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211 cxi = corr_x_i(u,jl)

212 u = cxi [0]

213 Jl = CXi[].]

214

215 # if pizel is inside gpot grid, thenm continue

216

217 dng = 0.0

218 dgdy = 0.0

219

220 if (i1 in range(1l,gdat.gpot.diml1—2) and j1 in range(1,gdat.gpot.

dim2-2)):

221

222 # determine fraction of pizel

223

224 t = (xx — (ilxgpot_dx+gdat.gpot.xmin))/gpot_dx

225 u = (yy — (jlxgpot_dy+gdat.gpot.ymin))/gpot_dy

226

227 # dpot on grid points enclosing the pizel (zz,yy)

228

220 dyldx = (gdat.gpot.data[il4+1+jl*gdat.gpot.diml]—gdat.gpot.data
[i1-1+jlxgdat.gpot.diml]) /(2.0xgpot_dx)

230 dy2dx = (gdat.gpot.data[il4+2+jl*gdat.gpot.diml]—gdat.gpot.data
[il+jl*xgdat.gpot.diml]) /(2.0xgpot_dx)

231 dy3dx = (gdat.gpot.data[il+2+(jl+1)*gdat.gpot.diml]—gdat.gpot.
data[il+(j1+1)*gdat.gpot.diml]) /(2.0xgpot_dx)

232 dyddx = (gdat.gpot.data[il+14+(jl1+1)xgdat.gpot.diml]—gdat.gpot.
data[il —14+(j1+1)*gdat.gpot.diml]) /(2.0* gpot_dx)

233

234 dyldy = (gdat.gpot.data[il+(jl+1)*gdat.gpot.diml]—gdat.gpot.
data[i14(j1 —1)*xgdat.gpot.diml]) /(2.0%gpot_dy)

235 dy2dy = (gdat.gpot.data[il+14+(jl1+1)xgdat.gpot.diml]—gdat.gpot.
data[i1414+(j1 —1)*gdat.gpot.diml]) /(2.0% gpot_-dy)

236 dy3dy = (gdat.gpot.data[il+14+(jl1+2)xgdat.gpot.diml]—gdat.gpot.
data[il+1+jl*gdat.gpot.diml]) /(2.0%gpot_dy)

237 dy4dy = (gdat.gpot.data[il+(jl+2)*gdat.gpot.diml]—gdat.gpot.
data[il4+jlxgdat.gpot.diml]) /(2.0%gpot_dy)

238

239 dgdx = (1.0—t)*(1.0—u)*dyldx + t*(1.0—u)*dy2dx + txuxdy3dx +
(1.0—t)*uxdy4dx

240 dgdy = (1.0—t)*(1.0—u)*dyldy + t*(1.0—u)=*dy2dy + txuxdy3dy +
(1.0 —t)*uxdyddy

241

242 return array ([dgdx,dgdy])

243

214 #

wus # Deflection angle for last change in linear—correction grid

216 #

247
218 def deflect_dpot (gdat, dpot, xx, yy):

249
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279

280

281

282

283

284

285

287

288

290

291

292

gpot_dx = (gdat.gpot.xmax — gdat.gpot.xmin) /(gdat.gpot.diml—1)
gpot_dy = (gdat.gpot.ymax — gdat.gpot.ymin)/(gdat.gpot.dim2—1)

il = int (floor ((xx—gdat.gpot.xmin)/gpot_dx))
j1 = int (floor ((yy—gdat.gpot.ymin)/gpot_dy))

t (xx — (ilxgpot_dx+gdat.gpot.xmin))/gpot_dx
u=yy — (jlxgpot_-dy+gdat.gpot.ymin)/gpot_dy

# snap to nearest pizel if wvery close

cxi = corr_x_i(t,il)
t = cxi[0]
i1 = cxi[1]
cxi = corr_x_i(u,jl)
u = cxi[0]
il = exi|1]

# if pizel is inside gpot grid, then continue

dgdx =

0.0
dgdy = 0.0

if (il in range(l,gdat.gpot.diml—2) and jl in range(l,gdat.gpot.
dim2-2)) :

# dpot on grid points enclosing the pizel (zz,yy)

dyldx = (dpot[il+1+jl*gdat.gpot.diml]—dpot[il—14+jl*gdat.gpot.
dim1]) /(2.0xgpot_dx)

dy2dx = (dpot[il4+2+jl*gdat.gpot.diml]—dpot[il+jlxgdat.gpot.
diml]) /(2.0xgpot_dx)

dy3dx = (dpot[il+2+(jl1+1)*gdat.gpot.diml]—dpot[il+(jl+1)xgdat.

gpot.diml]) /(2.0xgpot_dx)
dy4dx = (dpot[il+1+(jl1+1)*gdat.gpot.diml]—dpot [il —1+(j1+1)x*
gdat.gpot.diml]) /(2.0xgpot_dx)

dyldy = (dpot[il+(jl1+1)*gdat.gpot.diml]—dpot[il+(j1 —1)xgdat.
gpot.diml]) /(2.0xgpot_dy)

dy2dy = (dpot[il+1+(jl1+1)*gdat.gpot.diml]—dpot [il+1+(j1 —1)x
gdat.gpot.diml]) /(2.0xgpot_dy)

dy3dy = (dpot[il+14+(j1+42)*gdat.gpot.diml]—dpot[il+1+jl*gdat.
gpot.diml1]) /(2.0xgpot_dy)

dyddy = (dpot[il+(jl+2)*gdat.gpot.diml]—dpot[il+jlxgdat.gpot.
diml]) /(2.0xgpot_dy)

dgdx = (1.0—t)*(1.0—u)*dyldx + t*(1.0—u)=*dy2dx + txuxdy3dx +
(1.0—t)*xuxdy4dx

dgdy = (1.0—t)*(1.0—u)*dyldy + t*(1.0—u)=*dy2dy + txuxdy3dy +
(1.0 —t)*xuxdyddy

return array ([dgdx,dgdy])
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293

294 #

205 # Deflection matriz data

206 #

297

298

299

300

301

302

304

305

306

307

309

310

311

312

314

315

316

317

318

319

320

321

322

324

325

326

327 #

def deflect_info_grid (gdat, xx, yy):

gpot_dx = (gdat.gpot.xmax — gdat.gpot.xmin) /(gdat.gpot.diml—1)
gpot_dy = (gdat.gpot.ymax — gdat.gpot.ymin)/(gdat.gpot.dim2—1)

il = int (floor ((xx—gdat.gpot.xmin)/gpot_dx))
j1 = int (floor ((yy—gdat.gpot.ymin)/gpot_dy))

t = (xx — (ilxgpot_dx+gdat.gpot.xmin))/gpot_dx
u= (yy — (jlxgpot_-dy+gdat.gpot.ymin))/gpot_dy

cxi = corr_x_i(t,il)
t = cxi[0]
i1 = cxi|1]
cxi = corr_x_i(u,jl)
u = cxi[0]
i1 = cexi[1]

if (il in range(l,gdat.gpot.diml—2) and jl1 in range(1l,gdat.gpot.
dim2—-2)) :

# determine fraction of pizel

return array([—(1.0—t)*(1.0—u), —(1.0—t)*u, —t*(1.0—u), —t*u,
(1.0—t)*(1.0—u), (1.0—t)*u, t*(1.0—u), t*u])/(2.0xgpot_dx),

array ([—(1.0—t)*(1.0—u), —(1.0—t)*u, (1.0—t)*(1.0—u),
(1.0—t)*u, —t*(1.0—u), —t*u, t*(1.0—u), t*xu])/(2.0x
gpot-dy), \

array ([i1,§1])

return array ([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) ,array
(10.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) ,array ([il,j1])

328 # Source position

320 #

330

san def source_pos(ldatl ,ldat2 ,gdat,x,y,fl_dpot):

332

46



if (fl.dpot = 1):
return array ([x,y])—(deflect_SIE (ldatl ,x,y)+deflect_SIE (ldat2,
x,y)+deflect_grid (gdat ,x,y))
else:
return array ([x,y])—(deflect_SIE (1datl ,x,y)+deflect_SIE (ldat2,

x,y))

ass #

330 # Operator to determine source and potential x*xxx simultaneous *x*x

340 #

342

343

344

345

347

348

349

350

358

def source_psi_op(ldatl ,hldat2,gdat,data_mask ,BO,fl_dpot ,fl_corr):

img_dx = (gdat.img.xmax—gdat.img.xmin)
img_dy = (gdat.img.ymax—gdat.img.ymin)

dat.img.diml—1.0
g g
(gdat.img.dim2—1.0)

/

/
src.dx = (gdat.src.xmax—gdat.src.xmin)/(gdat.src.diml—1.0)
src.dy = (gdat.src.ymax—gdat.src.ymin)/(gdat.src.dim2-1.0)

gpot_dx (gdat.gpot.xmax — gdat.gpot.xmin) /(gdat.gpot.diml—1.0)
gpot_dy = (gdat.gpot.ymax — gdat.gpot.ymin) /(gdat.gpot.dim2—1.0)

SPO = spmatrix.ll_mat (gdat.img.diml*gdat.img.dim2, gdat.src.dimlx
gdat.src.dim2 + gdat.gpot.dimlxgdat.gpot.dim2)

lmask = zeros(gdat.img.dimlxgdat.img.dim2,’d”)
smask = zeros(gdat.src.dimlsgdat.src.dim2,’d”)
pmask = zeros (gdat.gpot.dimlxgdat.gpot.dim2,’d”)

# Fill in the lens_operator part

for i in range(gdat.img.diml):
for j in range(gdat.img.dim2):

# (i,7) corresponds to physical scale (zz,yy)
# i —> row
# j —> col

xx = iximg_dx + gdat.img.xmin
yy = jximg.dy + gdat.img.ymin

# get physical position in source plane
sv = source_pos (ldatl ,1dat2 ,gdat ,xx,yy, fl_dpot)
# corresponding pizel in source plane

il = int(floor ((sv[0]—gdat.src.xmin)/src_dx))

47



401

402

403

404

423

424

425

j1 = int (floor ((sv[l]—gdat.src.ymin)/src_dy))

# if pizel is inside source—plane grid,

t = (sv[0] — (il*src_dx+gdat.src.xmin))/src_dx
u= (sv[l] — (jlxsrc_dy+gdat.src.ymin))/src_dy
cxi = corr_x_i(t,il)

t = cxi[0]

il = cxi[1]

cxi = corr_x_i(u,jl)

u = cxil0]

il = exi|1]

if (i1 in range(gdat.src.diml—1) and
j1 in range(gdat.src.dim2-1)):

# determine fraction of pizel

# This is an array,

different

SPO[i+j*gdat.img.diml,
(1.0—t)*(1.0—u)
SPO[i+j*gdat.img.diml,

*(1.0—u)

SPO|i+j*gdat.img.diml,

[
[

SPO[i+j*gdat.img.diml,

(1.0—t)*u

Ilmask [ i+j*gdat.img.dim1] = 1.0

if (data_mask[i+j*gdat.img.diml] = 1.0):
smask [i14+jl*gdat.src.diml] =1.0
smask [i1+1+jlxgdat.src.diml] =1.0
smask [i1+1+(j1+1)*gdat.src.diml] = 1.0
smask [114+(jl+1)*xgdat.src.diml | = 1.0

else:

if ((il = (gdat.src.diml—-1)) and (jl in range(gdat.
src.dim2-2)) and (t = 0.0)):
lmask [ i+j*gdat .img.diml | = 1.0

SPO[i+j*gdat.img.diml, il+jl*gdat.src.diml]

= (1.0—u)

SPO[i+j*gdat.img.diml, il+(jl+1)xgdat.src.diml]
=u

if (data_mask][i+j*gdat.img.diml] = 1.0

not a grid, so indexing

il+jlxgdat.src.diml|

il+l4+jlxgdat.src.diml]
il+14+(j1+1)*gdat . src.diml]

il+(jl+1)xgdat.src.diml]

smask [i14+jlxgdat.src.diml] =

48

then continue



smask [114+(j1+1)*gdat.src.diml] =1.0

if ((jl = (gdat.src.dim2—1)) and (il in range(gdat.
src.diml1-2)) and (u = 0.0)):
Imask [ i+j*gdat .img.diml | = 1.0
SPO[i+j*gdat.img.diml, il4+jlxgdat.src.diml]
= (1.0-%t)
SPO[i+j*gdat.img.diml, il4+I+jlxgdat.src.diml]
=t
if (data_mask[i+j*gdat.img.diml] = 1.0):
smask [i14+jl+gdat.src.diml] = 1.0
smask [i1+14+j1lxgdat.src.diml] =1.0
if ((jl = (gdat.src.dim2—-1)) and (il = (gdat.src.
dim1—-1))\
and (u = 0.0) and (t = 0.0)):
Imask [ i+j*gdat .img.diml | = 1.0
SPO[i+j*gdat.img.diml, il+jl*gdat.src.diml]
= 1.0

443

459

460

461

462

464

465

466

467

469

470

471

472

if (fl.dpot = 1 and fl_corr

in the linear correction part

HH A First determine the source
HHAAAAAAHH

SO = spmatrix.ll_mat (gdat.img.diml*xgdat.img.dim2,2*gdat .img.
dimlxgdat.img.dim2)

= zeros(gdat.src.dimlxgdat.src.dim2,’d’)
= zeros(gdat.src.dimlxgdat.src.dim2,’d")

i in range(gdat.img.diml—1):
for j in range(gdat.img.dim2-1):

SO[(i+j*gdat.img.diml) ,2%(i+j*gdat.img.diml)]
SO[(i+j*gdat.img.diml) ,2%(i+j*gdat.img.diml)+1]=

# (i,j) corresponds to physical scale (zz,yy)
1 —> row

J

if (data.mask[i+j*gdat.img.diml|
smask [i14+j1lxgdat.src.diml]

derivative

i*ximg_dx + gdat.img.xmin
j*img_dy + gdat.img.ymin



473

475

476

477

478

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

498

499

# get physical position in source plane
sv = source_pos (ldatl ,1dat2 ,gdat ,xx,yy, fl_dpot)
# corresponding pizxel in source plane

il = int (floor ((sv[0] —gdat.src.xmin)/src_dx))

j1 = int (floor ((sv[l]—gdat.src.ymin)/src_dy))
t = (sv[0] — (ilssrc_dx+gdat.src.xmin))/src_dx
u= (sv[l] — (jlxsrc.dy+gdat.src.ymin))/src_dy
cxi = corr_x_i(t,il)

t = c¢xi[0]

il = cxi[1]

cxi = corr_x_i(u,jl)

u = cxi|[0]

il = exi|1]

# if pizel is inside source—plane grid, then continue

if (il in range(gdat.src.diml—1) and
j1 in range(gdat.src.dim2-1)):

# This 1s an array, mnot a grid, so indexing is
different

yl = gdat.src.data
y2 = gdat.src.data
v3 gdat.src.data
y4 = gdat.src.data

il+jlxgdat.src.diml]
il+l4+jlxgdat.src.diml]
il4+14+(j1+1)*gdat.src.diml]
il+(jl+1)xgdat.src.diml]

dsdx = ((1.
dsdy = ((1.

—u)*(y2—yl) + ux(y3—y4))/src-dx
—t)*(yd—yl) + tx(y3—y2))/src_dy

dd1[il+jlxgdat.src.diml] = dsdx
dd2[il4+jlxgdat.src.diml] = dsdy

# Minus sign 1s needed!

SO[(i+j*gdat.img.diml) ,2*(i+j*gdat.img.diml)] = —

dsdx
SO[(i+j*gdat.img.diml) ,2*(i+j*gdat.img.diml)+1]= —
dsdy
else:
if ((il = (gdat.src.diml—1)) and (jl1 in range(

gdat.src.dim2—-2)) and (t ==0.0)):

# This is an array, not a grid, so indexing s
different

a0



560

yl = gdat.src.data[il+jl*gdat.src.diml]
y4 = gdat.src.data[il14+(j1+1)*gdat.src.diml]

dsdx = 0.0
dsdy = (y4—yl)/src_dy

ddl[il4+jlxgdat.src.diml] = dsdx
dd2[il+jlxgdat.src.diml] = dsdy

# Minus sign is mneeded!

SO[(i+j*gdat.img.diml) ,2*(i+j*gdat.img.diml)]

= —dsdx
SO[(i+j*gdat.img.diml) ,2*(i+j*gdat.img.diml)
+1]= —dsdy
if ((jl = (gdat.src.dim2-1)) and (il < (gdat.src.

diml—-1)) and (u = 0.0)):

# This is an array, not a grid, so indexing s
different

yl = gdat.src.data[il+jl*gdat.src.diml|
y2 = gdat.src.data[il+1+jl*gdat.src.diml]

dsdx = (y2—yl)/src_dx
dsdy = 0.0

ddl[il+jlxgdat.src.diml] = dsdx
dd2[il+jlxgdat.src.diml] = dsdy

# Minus sign is mneeded!

SO[(i+j*gdat.img.diml) ,2*(i+j*gdat.img.diml)]

= —dsdx
SO[(i+j*gdat.img.diml) ,2x(i+j*gdat.img.diml)
+1]= —dsdy
if ((jl = (gdat.src.dim2—-1)) and (il == (gdat.src
.dim1-1))\

and (u = 0.0) and (t = 0.0)):

SO[(i+j*gdat.img.diml) ,2*(i+j*gdat.img.diml)]
= 0.0

SO[(i+j*gdat.img.diml) ,2*(i+j*gdat.img.diml)
+1)= 0.0

A Second determine the d—potential derivative matriz

HHHAAH AT

ol



565

586

587

591

592

593

594

598

600

DO = spmatrix.ll_mat (2«gdat.img.diml+gdat.img.dim2, gdat.gpot.
dimlxgdat.gpot.dim2)

for i in range(1l,gdat.img.diml-1):
for j in range(1l,gdat.img.dim2-1):

= iximg_dx + gdat.img.xmin
= jximg_dy + gdat.img.ymin

tmp = deflect_info_grid (gdat,xx,yy)

vall=tmp [0]
val2=tmp [ 1]
val3=tmp [2]

val3 [0]
val3 [1]

if (il in range(l,gdat.gpot.diml—2) and

j1 in range(1,gdat.gpot.dim2—2)):

DO[2%(i+]j*gdat.img.diml) ,(il -14+jl*gdat.gpot.diml)]

= vall [0]
DO[2#(i+]j*gdat.img.diml) ,(i1 —1+(j1+1)*gdat.gpot.
dim1) | = vall [1]
DO[2*(i+]j*gdat.img.diml) ,(il4+jl*gdat.gpot.diml) ]
= vall [2]
DO[2x*(i+]*gdat.img.diml) ,(i14(j1+1)*gdat.gpot.diml
)] = vall [3]
DO[2x(i+]j*gdat.img.diml) ,(il+14+jl*gdat.gpot.diml)]
= vall [4]
DO[2x(i+j*gdat.img.diml) ,(il1+1+(j1+1)xgdat.gpot.
dim1) ] = vall [5]
DO[2%(i+]j*gdat.img.diml) ,(il4+24+jl*gdat.gpot.diml) ]
= vall [6]
DO[2*(i+]*gdat.img.dim1) ,(i1+24+(j1+1)*gdat.gpot.
dim1) ] = vall [7]
DO[2x*(i+]j=*gdat.img.diml)+1,(i1+(jl1 —1)*gdat.gpot.
dim1) ] = val2[0]
DO[2x(i+]j*gdat.img.diml)+1,(il+jl*gdat.gpot.diml)]
= val2[1]
DO[2#(i+]j*gdat.img.diml)4+1,(il+(jl1+1)*gdat.gpot.
dim1) ] = val2[2]
DO[2*(i+j*gdat.img.diml)+1,(i14+(j1+2)*gdat.gpot.
dim1) | = val2 [3]
DO[2x*(i+]j*gdat.img.diml)+1,(i1+1+(j1 —1)*gdat . gpot.
dim1) ] = val2[4]
DO[2#(i+]j*gdat.img.diml)+1,(il+14+jl «xgdat.gpot.diml
)] = val2[5]
DO[2*(i+j*gdat.img.diml)4+1,(il+1+(jl+1)*gdat.gpot.
dim1) | = val2 [6]
DO[2x(i+]j*gdat.img.diml)4+1,(i14+1+(j1+2)*gdat.gpot.
dim1) ] = val2[7]
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602

604

605

606

608

609

611

612

613

614

616

617

618

619

620

621

622

623

624

HA A Third matricz—multiply the two matrices #HHAAAHHHA

CO = spmatrix.ll_mat (gdat.img.diml*gdat.img.dim2, gdat.
src.dimlxgdat.src.dim2 4+ gdat.gpot.dimlxgdat.gpot.dim2)
(60) = spmatrix. matrixmultiply (SO,DO)

A Now enter CO in to SPO #AHHAAHAAA

kl=gdat.src.dimlsgdat.src.dim?2
mr=gdat . gpot .dimlxgdat.gpot.dim?2
pg=gdat.img.dimlxgdat.img.dim2

SPO[0:pq, kl:kl+mn] = CO[0:pg,0:mn]

# Determine pmask

for i in range(gdat.gpot.diml):
for j in range(gdat.gpot.dim2):

xx = ixgpot_.dx + gdat.gpot.xmin
yy = j*gpot_dy + gdat.gpot.ymin

= int (floor ((xx—gdat .img.xmin) /img_dx))
= int (floor ((yy—gdat.img.ymin) /img_dy))

— —
|
A A
|

sv = source_pos (ldatl ,1dat2 ,gdat ,xx,yy, fl_dpot)

il = int(floor ((sv[0]—gdat.src.xmin)/src_dx))
j1 = int (floor ((sv[l] —gdat.src.ymin)/src_dy))

t = (sv[0] — (il*gpot_-dx + gdat.gpot.xmin))/src_dx
u= (sv[l] — (jlxgpot_dy + gdat.gpot.ymin))/src_dy
cxi = corr_x_i(t,il)

t = cxi[0]

i1 = cxi[1]

cxi = corr_x_i(u,jl)

u = cxi[0]

jl1 = exi[1]

# if pizel is inside source—plane grid, them continue
# there should also be data!
if (il in range(gdat.src.diml—1) and \
j1 in range(gdat.src.dim2—1) and \
data_mask[i_-d+j-d*gdat.img.diml] = 1.0):

pmask [ i+jxgdat . gpot.diml] = 1.0

33



656 #

657 # The SPO operator has been determine and can be returned

658 #

659

660 SPO_conv = spmatrix.ll_mat (gdat.img.dimlxgdat.img.dim2, gdat.src.
dimlxgdat.src.dim2 \

661 + gdat.gpot.dimlxgdat.gpot.dim2)

662 SPO_conv = spmatrix. matrixmultiply (BO,SPO)

663

664 return SPO, Imask, smask, pmask

665

666

667 #

ecs # Read psf fits files
660 #

orn def read_psf():

672

673 # open psf fits—file

674

675 hdulist = pyfits.open(” psf.fits”)
676 psf_tmp = hdulist [0]. data

677

678 dim1 = psf_tmp.shape[0]

679

680 dim2 = psf_tmp.shape[1]

681

682 tmpdat = psf_tmp

683

684 # read data and array scale

685

686 data_psf = zeros(dimlxdim2,’d”’)
687

688 for i in range(diml):

689 for j in range(dim2):

690 data_psf[i+j*diml]=tmpdat[j,i]
691

692 return data_psf, diml, dim2

693

694

695 #

606 # Convolution Operator

o4



697 #

698

s99 def convop (gdat):

700

702

703

704
705
706

707

709

710
711
713
714
715
716
718
719
721
722
723
724
726
727

728

730

731

732

734

735 #

#print ’'Determining Convolution Operator’

BO = spmatrix.ll_mat (gdat.img.diml+gdat.img.dim2, gdat.img.dimlx
gdat.img.dim2)

sum=0.0

for ii in range(—(gdat.psf.size —1)/2,1+(gdat.psf.size —1)/2):
for jj in range(—(gdat.psf.size —1)/2,1+(gdat.psf.size —1)/2):

sum += gdat.psf.data[ii+gdat.psf.cx+(jj+gdat.psf.cy)*gdat.
psf.diml]
for i in range(gdat.img.diml):
for j in range(gdat.img.dim2):

for ii in range(—(gdat.psf.size —1)/2,1+(gdat.psf.size —1)

/2):

for jj in range(—(gdat.psf.size —1)/2,1+(gdat.psf.size
-1)/2):
il = ii+i
JL = Jj+]

if (il in range(gdat.img.diml) and
j1 in range(gdat.img.dim2)):

# This is an array, not a grid, so indexing 1is
different

BO[i+j*gdat.img.diml, il4+jlxgdat.img.diml] =\
gdat . psf.data[ii+gdat.
psf.cx+\
(jj+gdat.
psf.cy)
xgdat .
psf.
dim1]/
sum

return BO

%)



=6 # Create source

137 #

738
730 def src_img_create (ldatl ,ldat2 ,gdat,fl_dpot ,sig,q,pa,sx0,sy0,sig2,q2,
pa2,sx02 ,sy02,ratio ,BO, flag):

740

741 img_dx = (gdat.img.xmax—gdat.img.xmin) /(gdat.img.diml—1.0)

742 img_dy = (gdat.img.ymax—gdat.img.ymin) /(gdat.img.dim2—1.0)

743

744 # Create source grid

745

746 src.dx = (gdat.src.xmax—gdat.src.xmin) /(gdat.src.diml—1.0)

747 src_.dy = (gdat.src.ymax—gdat.src.ymin)/(gdat.src.dim2-1.0)

748

749 data = zeros(gdat.src.dimlsgdat.src.dim2,’d”)

750 data2 = zeros(gdat.img.diml*gdat.img.dim2,’d”)

751

752 lmask_orig = ones(gdat.img.dimlxgdat.img.dim2,’d"’)

753

754 for i in range(gdat.src.diml):

755 for j in range(gdat.src.dim2):

756

757 # (i,7) corresponds to physical scale (zz,yy)

758 # i —> row

759 # j —> col

760

761 # SRC1

762

763 xx = ixsrc_dx + gdat.src.xmin

764 yy = j*src_dy + gdat.src.ymin

765

766 xx=xx—sx0

767 yy=yy—sy0

768

769 tr = pix(pa/180.0)+pi/2.0

770

7 cs=cos (tr)

772 sn=sin (tr)

773

774 SX_T = XX*CS+yy*sn

775 Sy_Ir = —XX*SN+Yy*CS

776

777 if flag = 0: #standard peak brightness of source

778 data[i+j*gdat.src.diml] = 100.0%exp(—((((sx_r)=*%2.04((
sy-r)/q)*x2.0))/(sig*%2.0))*%0.5)

779 elif flag = 1: #flux mormalized source

780 data[i+j*gdat.src.diml] = (100.0/(2.*m.pix(sig=**2.)))x*
exp(—((((sx_t)*%2.0+((sy_r)/q)*%2.0))/(sig*%2.0))
x%0.5)

781

782 # SRC2

783

o6



784

786
787
788

789

791
792
793
794
795
796

797

799

800

802
803
804

805
807
808

809
810
811
812
813
814

815

s16 #

xXx2

ixsrc.dx + gdat.src.xmin
yy2 = jxsrc_dy + gdat.src.ymin

xx2=xx2—sx02
yy2=yy2—sy02

tr2 = pix(pa2/180.0)+pi/2.0

cs2=cos (tr2)
sn2=sin (tr2)

SX_r2 = XX2%¢s824yy2+sn2
Sy_r2 = —xx2%sn2+yy2+*cs2
data[i+j*gdat.src.diml] = data[i+jxgdat.src.diml] # \

#100.0x ratioxexp (—((((sx-r2)
xx 2.0+ (sy-r2/q2)xx2.0))/(sig2
xx%2.0) )x%0.5)

# create lensed source grid

LO = source_psi-op (ldatl ,1dat2 ,gdat,lmask_orig ,BO, fl_dpot ,0)

vec_tmp = zeros(gdat.src.dimlxgdat.src.dim2+gdat.gpot.dimlxgdat.
gpot.dim2,’d")

vec_tmp [0: gdat.src.dimlxgdat.src.dim2] = data[0:gdat.src.dimlxgdat
.src.dim2]

LO[0]. matvec(vec_tmp ,data2)

# return source and convolved image and image mask

return data,data2 ,LO[1] ,LO[2]

s17 # Add two ll_mat matrices

sis 7

819

s20 def add_ll_mat (A,B):

821

822

823

824

826

827

assert A.shape = B.shape

C = A.copy()
C.shift (1.0,B)

o7



829

#

s30 # Identity matrix

831

833

#

def

def

def

regul_ll_matl(dl,d2,lamb):
I = spmatrix.ll_mat (d1xd2,d1xd2)

for i in range(dlxd2):
I[i,i]=lamb

return I
regul_ll_mat2(dl,d2,lamb):
val = [—1.0, 3.0, —3.0, 1.0]

T = spmatrix.ll_mat (d1xd2,d1*d2)
I = spmatrix.ll_mat (d1xd2,d1xd2)

for i in range(dl—len(val)):
for j in range(d2):
for 1 in range(len(val)):
nl=i+jx*dl
n2=(i+1)+jx*dl
T[nl,n2]=sqrt (lamb)xval[1]

for i in range(dl-len(val),dl):
for j in range(d2):

for 1 in range(len(val)):
nl=itjxdl
n2=(i—1)+j=d1l
T[nl,n2]=sqrt (lamb)xval[1]
I = spmatrix.dot(T,T)
return I
regul_ll_mat3(dl,d2,lamb):
val = [—1.0, 3.0, —3.0, 1.0]

T = spmatrix.ll_mat (d1xd2,d1xd2)
I = spmatrix.ll_mat (d1xd2,d1xd2)

for i in range(dl):
for j in range(d2-len(val)):
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879 for 1 in range(len(val)):

880 nl=i+jxdl

881 n2:1+(J+1)*d1

s82 T[nl,n2]=sqrt (lamb)xval[1]
883

884 for i in range(dl):

885 for j in range(d2—len(val),d2):

886

887 for 1 in range(len(val)):

888 nl:i+j *d1

889 n2:i—|—(j—l)*d1

890 T[nl,n2]=sqrt (lamb)xval[1]
891

892 I = spmatrix.dot(T,T)

893

894 return I

895

896 #

sor # Set up linear system with regularisation —> large sparse matriz SPO”"
T.SPO + R

sos #

900 def sol_matrix (SPO, gdat,lambl_rms,lambl_drv,lamb2_rms,lamb2_drv):
902 # chi"2 matric —> (mn+kl)z(mn+kl)

904 Ml = spmatrix.dot (SPO,SPO) # => SPO"T.SPO

906 kl=gdat.src.dimlsgdat.src.dim2

907 mn=gdat . gpot.dimlxgdat . gpot.dim2

908

909 # regularisation matrices for source

910

o11 rml = regul_ll_matl (gdat.src.diml,gdat.src.dim2,lambl_rms)
912 rm2 = regul_ll_mat2(gdat.src.diml,gdat.src.dim2,lambl_drv)
013 rm3 = regul_ll_.mat3 (gdat.src.diml,gdat.src.dim2,lambl_drv)
914

915 # —> klakl

916

017 Rl = add.-ll_mat (add_-1l_mat (rml,rm2) ,rm3)

918

919 # regularisation matrices for dpot

920

021 rm4 = regul_1ll_matl (gdat.gpot.diml,gdat.gpot.dim2,lamb2_rms)
922 rm5 = regul_ll_mat2 (gdat.gpot.diml, gdat.gpot.dim2,lamb2_drv)
923 rm6 = regul_ll_mat3 (gdat.gpot.diml, gdat.gpot.dim2,lamb2_drv)
924

925 # —> mnzmn

926

927 R2 = add_-ll_mat (add_-11_mat (rm4,rm5) ,rm6)
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941

# Block matriz for regularisation

M2 =

spmatrix.ll_mat (mnt+kl ,mntkl)

# Now substitute RI and R2 as block—diagonal matrizes in to M2

M2[0:
M2[ k1 : kl-4mn, k1 : kl+mn]

K1,0:kl] — R1[0:kl,0:kl]
R2[0:mn, 0:mn]

M = add_ll_mat (M1,M2)

return M

942 #

o3 # Set up linear system, wvector SPO’T.vec(d)
941 #

946

def sol_vector (SPO,data):

temp

= zeros (SPO.shape[1],’d")

SPO. matvec_transp (data ,temp)
return temp

952 #

oss # Fit a plane to three corner points and subtract from grid

954 #

955

956

960

961

962

963

965

966

967

968

970

971

972

973

def fplane(gdat,SS2):

SOL = zeros(gdat.gpot.dimlxgdat.gpot.dim2,’d”)

# three corners that should be zero

psil
psi2
psi3d

p0 =
vl =
v2 =

= SS52[0]
= SS2[(gdat.gpot.diml—1)]
= SS2[(gdat.gpot.dim2—1)xgdat.gpot.diml |

array ([0.0,0.0,psil])
array ([1.0,0.0,psi2—psil])
array ([0.0,1.0,psi3—psil])

for i in range(gdat.gpot.diml):

for j in range(gdat.gpot.dim2):

s = 1.0x1/(gdat.gpot.diml—1.0)
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974

976

977

978

980

981

983

984

985

986

988

989

990

991

993

994

995

996

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

def

t = 1.0x%j/(gdat.gpot.dim2—-1.0)
psi-est = psil + sx*(psi2—psil) + tx(psi3—psil)
SOL[i+j*gdat.gpot.diml] = SS2[i+jxgdat.gpot.diml] —

psi_est

return SOL

fplane_2 (gdat ,pmask,SS2):

gpot_dx = (gdat.gpot.xmax — gdat.gpot.xmin) /(gdat.gpot.diml—1)
gpot_dy = (gdat.gpot.ymax — gdat.gpot.ymin)/(gdat.gpot.dim2—1)

SOL = zeros(gdat.gpot.dimlxgdat.gpot.dim2,’d’)

# determine average x,y gradients

gx = 0.0
gy = 0.0
pt = 0.0
nuls = 0

for i in range(gdat.gpot.diml):
for j in range(gdat.gpot.dim2):

if (pmask[i+j*gdat.gpot.diml] > 0.5):
xx = ikxgpot_dx+gdat.gpot.xmin

yy = jxgpot_dy+gdat.gpot.ymin
da deflect_dpot (gdat, SS2, xx, yy)

if (daf[0]!=0.0 and da[1]!=0.0):
gx = gx + da[0]
gy = gy + da[l]

else:
nuls = nuls + 1

if (nuls != sum(pmask)):
gx = gx/(sum(pmask)—nuls)
gy = gy/(sum(pmask)—nuls)

# three corners that should be zero — psil is on (0,0) as
reference corner

# although any point could have been chosen

psi2 = gx*(gdat.gpot.xmax—gdat.gpot.xmin)
psi3 = gyx(gdat.gpot.ymax—gdat.gpot.ymin)

for i in range(gdat.gpot.diml):
for j in range(gdat.gpot.dim2):

s = (1.0x1)/(gdat.gpot.diml—1.0)

61



1026 t = (1.0xj)/(gdat.gpot.dim2—1.0)

1027 psi_est = sxpsi2 + txpsi3

1028 SOL[i+j*gdat.gpot.diml] = SS2[i+j*gdat.gpot.diml] —
psi_-est

1029

1030 pt = sum(SOL#pmask) /sum (pmask)

1031 SOL = SOL — pt

1032

1083 return SOL

1034

1035

1036 #

137 # Main body
1038 #

1039
140 def main(noi,sigpow ,argv=sys.argv):

1041

1042 class lensdata: # all lens data
1043 pass

1044

1045 class griddata: # all grid(s) data
1046 class psf:

1047 pass

1048 class src:

1049 pass

1050 class img:

1051 pass

1052 class gpot:

1053 pass

1054

1055

1056

1057 ldatl = lensdata ()
1058 ldat2 = lensdata ()
1059 gdat = griddata()

1060

1061

1062

1063 gdat.src.diml = 80
1064 gdat.src.dim2 = 80
1065 gdat.src.xmin = —1.0
1066 gdat.src.xmax = 1.0
1067 gdat.src.ymin = —1.0
1068 gdat.src.ymax = 1.0
1069

1070

1071

1072

1073 # image grid

1074
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1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

gdat
gdat
gdat
gdat
gdat
gdat

.img.
.img.
.img
.img
.img
.img.

diml = 80
dim2 = 80
.xmin = —2.00
.xmax = 2.00
.ymin = —2.00
ymax = 2.00

# potential grid

gdat
gdat
gdat
gdat
gdat
gdat

.gpot
.gpot
.gpot
.gpot
.gpot
.gpot

.diml = 80
.dim2 = 80
.xmin = —2.00
.xmax = 2.00
.ymin = —2.00
.ymax = 2.00

# lens 1 data

ldatl.bl = 0.5
ldatl.th = 0.00
ldatl.fl = 0.85
ldatl.x0 = 0.00
ldatl.y0 = 0.00
ldatl.rc = 1.0e—4
ldatl.ss = 0.000
ldatl.sa = 0.000

# lens 2 data
ldat2.bl = 1.0e-10
ldat2.th = 0.00
ldat2.fl = 0.999
ldat2.x0 = —0.9
ldat2.y0 = —0.4
ldat2.rc = 1.0e—4
ldat2.ss = 0.0
ldat2.sa = 0.0

# get ACS PSF

tmp = read_psf ()
gdat . psf.data=tmp[0]
gdat . psf.diml=tmp[1]
gdat . psf.dim2=tmp [2]
gdat . psf.cx = 37
gdat . psf.cy = 37
gdat . psf.size = 7 #15

# determine convolution operator
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1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

BO = spmatrix.ll_mat (gdat.img.diml+gdat.img.dim2, gdat.img.dimlx
gdat .img.dim2)
BO = convop (gdat)

#Varying parameters

fields = 100 #total number of simulations

gdat.gpot. fluctsig = 10.xx(float (sigpow)) #variance of the random
field fluctuations

noise = noi #setting the mnoise level

gdat.src.sig = 0.25 #source rms

flag = 0 #flag = 0 for same peak brightness of source, flag = 1
for flux mnormalized source

pspec = —4. #potential fluctuations power spectrum slope

for gen in range(fields):
#create empty potential data wvectors
gdat . gpot.data = pot_grid(gdat,ldatl ,ldat2 ,gen,gdat.src.sig,
noise , sigpow , pspec)

#create source and lensed image, parameters:

data_all = src_img_create (ldatl ,ldat2 ,gdat,1,\
gdat.src.sig ,1.0,0.0,0.00,0.20,\
0.0,0.999,0.0,—-0.40,0.25,0.5,BO, flag

)

# add noise to the lensed image
gdat.img.data = data_all [1] +\
array (ranlib.normal (0.0, noise ,[ gdat.img.dim2x
gdat.img.diml]) )—min(data_all [0])

# keep original source and lensed image

imag_orig gdat .img. data
lmask_orig = data_all[2]

# create empty source data vectors
gdat.src.data = data_all [0]

kappa = convergence (gdat,ldatl ;1dat2)

dmask = zeros(gdat.img.dimlxgdat.img.dim2,’d")

for i in range(gdat.img.diml):
for j in range(gdat.img.dim2):
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1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

if (gdat.img.data[i+j*gdat.img.dim2]>=-100000.0): #
3.0xnoise ) :
dmask [ i+j*gdat .img.dim2] = 1.0

pyfits.writeto(’./generations/src_ '+str (gdat.src.sig)+’/10'+
str(sigpow)+’'nois '+str (noise)+’/4sim_Ins +str (gen+1)+’. fits
",reshape(gdat.img.data ,[ gdat.img.diml , gdat.img.dim2]))

pyfits.writeto(’./generations/src_’+str(gdat.src.sig)+’/10°+
str (sigpow )+’ nois '+str (noise )+’ /4sim_pot '+str (gen+1)+’. fits
’,reshape (gdat.gpot.data ,[gdat.gpot.diml, gdat.gpot.dim2]))

histo (fields ,gdat.gpot.fluctsig ,gdat.src.sig ,noise ,sigpow) #
creating distribution of all random fields

residualscreate (fields ,gdat.src.sig ,noise ,sigpow) #creating
residuals

pspecall (fields ,gdat.gpot. fluctsig ,noise ,gdat.src.sig ,sigpow) #
generating power spectra from the residuals

# run this code

uss noises = [5.0,12.0,100.0]
1189 SingW = [—3,—4,—5]

1190

o1 for si in sigpow:

1192

1193

1194

1195

1196

for no in noises:

print ’'using noise = ’,no,’, sigma"2 = 10" ’,si,’, source size =

0.8"°
main (no, si)

nor print ’finished!’
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Appendix C

Gaussian Random Field Code

#! Jusr/bin/env python

1

2

3 import numpy as n

4+ import math as m

5 import random as ran

¢ import pyfits

7 from matplotlib import pyplot as plt
8

9

10 #Power spectrum

12 def powspec(L,variance ,Npix,Psum, power):
13 if L =— 0.0:

14 P=20.0

15 else:

16 A = variancex(Npix*%2.) /(2.+Psum)
17 P = AxLx*x*(power)

18 return P

21 #Sum over the power spectrum

23 def Psum_calculator (dimlx ,dimly ,Lx,Ly, power):

24 lxaxis = n.append(n.arange (0.,(dimlx/2.)/Lx,1./Lx) ,n.arange((—dimlx
/2.)/Lx,0.,1./Lx))

25 lyaxis = n.append(n.arange (0.,(dimly/2.)/Ly,1./Ly) ,n.arange((—dimly
/2.)/Ly,0.,1./Ly))

26

27 1x = list (n.zeros ([dimlx ,1]))

28 ly list (n.zeros ([dimly,1]))

29

3o  for x in range(len(lx)):
31 Ix [x] = lxaxis

32

s for y in range(len(ly)):
34 ly [y] = lyaxis

35

36 1x = n.array(lx)
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37 ly = n.transpose(n.array(ly))
s 1 = n.sqrt(lxxx2. + lyx*2.)
39

40

41 summ = 0.

22 for y in range(n.shape(1l)[0]):
13 for x in range(n.shape(l)[1]):
1 if 1{y][x] = 0.:

45 summ += 0.

16 else:

a7 summ += 1[y][x]**(power)
48 return summ

49

50

s1 #Creating a Fourier grid

52

s3 def fourierplane (a,power):

54

55 j =0+ 1) #redefining complex number 1j for use later on

56

57 plane = n.zeros ([a.dimlx ,a.dimly],dtype=’cfloat’) #Empty matriz to
be filled in for the Fourier Plane

58

so  lxaxis = n.append(n.arange (0.,(a.dimlx/2.)/a.Lx,1./a.Lx) ,n.arange((—
a.dimlx/2.)/a.Lx,0.,1./a.Lx))

6o lyaxis = n.append(n.arange (0.,(a.dimly/2.)/a.Ly,1./a.Ly),n.arange((—
a.dimly /2.)/a.Ly,0.,1./a.Ly))

61

62 Psum = Psum_calculator(a.dimlx ,a.dimly ,a.Lx,a.Ly, power)

63

s« for y in range(n.shape(plane)[0]):

65 for x in range(n.shape(plane)[1]):

66 #Defining coordinates centred at z = N/2, y = N/2

67 il = x — a.dimlx/2

68 J]. :y—a.dimly/2

69

70 #Determining coordinates in Fouriter—space on the grid

) Ix = lxaxis [x]

72 ly = lyaxis|[y]

73 1 =m.sqrt (1x*xx2. + lyxx2.) #Magnitude of l—vector

74

75 #Box—Muller transform , polar form:

76 sigma = m.sqrt (powspec(l,a.varia,a.dimlx*a.dimly ,Psum, power)) #
Width of the Gaussian distribution

77 s = 1.1

78 while s > 1.:

79 u = ran.uniform(—1.,1.)

80 v = ran.uniform (—1.,1.)

81 S = ux*x2. + vxx2.

82 fac = m.sqrt(—2.xm.log(s)/s)

83 z1 = uxfacxsigma

84 z2 = vxfacxsigma

85

86 #Normal Bor—Muller transform
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87 #u = ran.uniform (0,1)

88 #v = ran.uniform (0,1)

89 #fac = m.sqrt(—2.«m.log (u))

90 #21 = facxm.cos (2.xm. pixv)xsigma

91 #22 = facxm.sin (2.xm. pi*xv)xsigma

92

93

94 #Filling in the grid

95

96 if x =0 and y = 0: #Gives the average of the field

o7 plane[y][x] = 0.0

98

99 #Three points that need to be real—valued to get a real image
after FFT:

100 elif x = 0 and y = a.dimly/2:

101 plane [y][x] = zl

102 elif x = a.dimlx/2 and y = 0:

108 plane [y][x] = zl

104 elif x =— a.dimlx/2 and y = a.dimly /2:

105 plane [y][x] = zl

106

107 else:

108 plane [y][x] = 21 + j*z2

109

110

111 #Creating symmetry f(k) = fx(—k)

112

113 y2 = —(Jl + ad1mly/2)

114 X2 = 7(11 + ad1mlx/2)

115 plane [y2][x2] = plane[y][x].conjugate ()

116

117 if y > n.shape(plane)[0]/2.:

118 break #Due to symmetry in grid, only the top half has to be

filled in for completing the full grid

120 return plane

123 #Setting up all the mecessary parameters and running the code

126 def substruct (gpot,gen,sig,src_sig ,noise ,sigpow ,power):

128 class fougrid:
129 pass

130

w1 grid = fougrid ()
132

13 grid.varia = sig #Variance (sigma”2) of the fluctuations
135 #Defining parameters for the grid in Fourier—space

136 grid.dimlx = gpot.diml #Dimensions in x—direction , same as the
original lensed image
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137

138

139

140

141

142

143

144

145

147

148

149

151

153

” ” ” ” ” ”

grid .dimly = gpot.dim2 #Dimension in y—direction ,

2 » ”

grid . deltax = (gpot.xmax—gpot.xmin)/gpot.diml #Pizel size in z—
direction in real space

grid . deltay = (gpot.ymax—gpot.ymin)/gpot.dim2 #Pizel size in y—
direction in real space

grid .Lx = gpot.xmax—gpot.xmin #Size of the image in real space in a—
direction

grid .Ly = gpot.ymax—gpot.ymin #Size of the image in real space in y—
direction

fplane = fourierplane (grid ,power) #Creating the Fourier plane

implane = n. fft.ifftshift (n. fft.ifft2 (fplane)) #Inverse Fourier
transform of the Fourier plane to get the final image

realimplane = implane.real #The final image, still some very small
residuals in the imaginary part after the Fourier transform

pyfits.writeto(’./generations/src_ '+str(src_sig)+’/10 +str (sigpow )+’
nois +str (noise)+’/randomfield +str (gen+1)+ . fits ’,realimplane) #
Saving the image to file

return realimplane
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Appendix D

Residuals and Power Spectrum
Code

v #! Jusr/bin/env python

2

3 import pyfits as pf

4+ import numpy as n

5 import math as m

¢ from matplotlib import pyplot as plt
7» from matplotlib import rc

s rc(’text’, usetex=True)

9

10
n #Subtracting two images from eachother
12
13 def subtr_image (iml,im?2):
14

15 hdul = pf.open(iml)

16 hdu2 = pf.open(im2)

17

18 datal = hdul[0].data

v data2 = hdu2[0].data

20

21 subtr = data2 — datal
22 return subtr

23

24
25 #Create residuals for all simulations
26

27 def residualscreate (fields ,src_sig ,noise ,sigpow):

28

20 imagel = str(’./nofluct/4sim_InsOsrc_'+str(src_sig)+’.fits’) #
Simulation without potential fluctuations

30

a1 for x in range(fields):

32 image2 = str(’./generations/src_’'+str(src_sig)+’/10 +str (sigpow )+’
nois +str (noise )+’ /4sim_lns '+str (x+1)+7. fits )
33 new = subtr_image (imagel ,image2)
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34 pf.writeto(’./generations/src_’+str(src_sig)+’/10 +str (sigpow )+’
nois '+str (noise )+’ /res_'+str (x+1)+’. fits ’ ,new)

35

36
a1 #Determining the power spectra
38
o def pspecall(fields ,noise,src_sig ,sigpow):#determine the desir
40

a1 pspecs = [] #List to be filled with the powerspectra

42

s for b in range(fields):

w

1 hdu = pf.open(’./generations/src_’'+str(src_sig)+’/10 +str (sigpow )+
"nois '+str(noise)+’/res_+str (b+1)+ . fits’) #Open all residuals
files

15 data = hdu[0]. data

46

a7 fouriertf = n. fft. fftshift (n. fft.{ft2(n.fft.ifftshift (data))) #
Fast Fourier transforming the residuals

18 absval2 = fouriertf.real*x2. + fouriertf.imag**2 #Take the

absolute wvalue squared

49

50 steps = 10 #number of bins in which to determine the powerspectrum

51

52 #Dimensions of the Fourier transformed image

53 diml_x = n.shape(absval2)[1]

54 diml_y = n.shape(absval2)[0]

56 #Physical lengths in real space of the image (need to be same as
in lensing code)

57 Lx=14.0

58 L,y = 4.0

59

60 steplist = range(steps+1)

61

62 pspeclist = n.array ([]) #List that will be filled with the

powerspectrum value at every | in the grid

63

64 #Azxes in Fourier space

65 l_xlist = n.arange((—diml_x/2.)/L.x,(diml_x/2)/L.x,1./L_x)

66 l_ylist = n.arange((—diml_.y /2.)/L.y,(diml.y/2)/L.y,1./L_y)

67

68 Imax = m.sqrt (n.max(n.abs(l_xlist))**2. +n.max(n.abs(1_ylist))
*x%2.)

69

70 #Generating the powerspectra

7 for step in range(steps):

72 bin = n.array ([])

73

74 for x in range(diml_x):

75 for y in range(diml_y):

76 Ix = l_xlist [x]

7 ly = 1_ylist [y]

78 I =m.sqrt (Ix*x2. + ly*%x2.)

79
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80

81

82

83

84

85

86

87

if steplist [step]*lmax/steps < 1 <= steplist [step+1]*lmax/
steps:
bin = n.append(bin,absval2[y][x])
pspeclist = n.append(pspeclist ,n.mean(bin)) #Adding each bin
value to pspeclist
pspecs.append ( pspeclist) #Adding the entire powerspectrum to the
list

l1_list = n.linspace (lmax/(2.%steps) ,lmax—lmax /(2. steps) ,steps) #
List for the z—azxis of the plots, wvalues are set halfway each bin

n.save(’1_list ’,1_list) #Saving the z—axis to a file

n.save(’powerspectrasrc_’'+str(src_sig)+’10—"+str (sigpow )+ nois +str (
noise) ,pspecs) #Saving the powerspectra to a file
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Appendix E

Statistics and Plotting Code

import pyfits as pf

import numpy as n

import math as m

from matplotlib import pyplot as plt
from matplotlib import rc
rc(’text’, usetex=True)

#Some general plotting parameters

def plotstuff(flagx ,flagy):
plt.xscale(’log’)
plt.yscale(’log’)

plt . xticks (fontsize=20)
plt . yticks (fontsize=20)

if flagx = 1:
plt . xlabel(r’$\frac{k}{2\pi}$ in $arcsec {—-1}$")
if flagy = 1:

plt.ylabel (r 'P($\frac{k}{2\pi}$)’)

#Calculation of errors and mean spectrum

def datacal(sigpow ,noise ,src_sig):

pspecs = n.load (’powerspectrasrc_’+str(src_sig)+’10—"+str (sigpow )+’
nois '+str (noise)+’.npy’) #Load power spectra from file

means = n.array ([]) #Array that will be filled with the mean power
spectrum

#Array that will be filled with errors
errl = n.array ([])

for 1bin in range(len(pspecs[0])):
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36 mean = n.mean(pspecs [[slice (None) ,|+[1bin]]) #Calculate the mean
value of every bin

a7 means = n.append (means, mean)

38

39 rms2bin = n.sum((pspecs[[slice (None),]+[lbin]] —mean)**2.)/len (
pspecs [0]) #Calculating the rms"2 in a single bin

10 errl = n.append(errl ,m.sqrt (rms2bin))

41

2 errl00 = errl/m.sqrt (100.) #Errors after 100 measurements
43

14 return means, errl, errl100

45

46
a7 #Calculate chi”2 wvalues
48
19 def chi2(noise ,meanspec,errorl):

so  noisespec = n.ones(n.shape(meanspec))*80x80%(noise x%2.)
51 chi2 = n.sum((((meanspec—noisespec)/errorl)x*2.))

52

53 return chi2

54

55

56

s7 #Plotting in subfigures

58

so 1list = n.load(’1_1ist .npy’) #Loading z—axis file for all plots

60

v f_handle = file (’chisquared +str(src_sig)+’.txt’,’a’) #open a
chisquared text file in append mode

62
63 plt.figure ()
64

65 plt.subplot(3,3,1)

66 noise = 5.0 #noise level

67 sigpow = —3 #fluctuation scale: sigma’2 = 10" sigpow

68

69 data = datacal(sigpow ,noise ,src_sig) #get mean power spectrum and
errors

70

n plt.errorbar(llist ,data[0],yerr=data[l],fmt=".", ecolor="b’,label =
"Error for N=1’) #plot with error for single measurement

2 plt.errorbar(llist ,data[0],yerr=data[2],fmt=".", ecolor="r’,label =

"Error for N=100") #plot with error for 100 measurements

73

72 plt.plot(1llist ,n.ones(n.shape(1llist))«80%80%(noisex*x2.),’g—",label=’
Noise level power spectrum’) #plot noise power spectrum

75

76 plt.figtext (0.25,0.8, Noise level: 5.07)

77 plotstuff (0,1)

s plt.ylim (4.%(10.%%3.) ,3.%(10.%%7.))

7o plt.title (r’$\sigma_{fluct} 2 = 10°{-3}$’,fontsize=24)

80

s1 n.savetxt(f_handle,chi2(noise ,data[0],data[l])) #add chi squared
value to file
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86

87

88

89

116

117

119

120

121

122

124

125

126

127

129

plt.subplot(3,3,2)

noise = 5.0

sigpow = —4

data = datacal (sigpow ,noise ,src_sig)

plt .errorbar (1list ,data[0],yerr=data[l],fmt=".", ecolor="b")
plt.errorbar (llist ,data[0],yerr=data[2],fmt=".", ecolor="r")

plt.plot (1list ,n.ones(n.shape(llist))*80%80«(noisexx2.),’g’ ,label=’
Noise level power spectrum’)

#plt. figtext (0.25,0.5, Noise level: '+str(noise))

plotstuff (0,0)

plt.ylim (4.%(10.%%3.) ,3.%(10.%%7.))

plt.title (r’$\sigma_{fluct} 2 = 10°{—4}$’,fontsize=24)

n.savetxt (f_handle ,chi2 (noise ,data[0],data[1]))

plt .subplot (3,3,3)

noise = 5.0

sigpow = —b

data = datacal (sigpow ,noise ,src_sig)

plt .errorbar (1list ,data[0],yerr=data[l],fmt=".", ecolor="b")
plt.errorbar (1llist ,data[0],yerr=data[2],fmt=".", ecolor="r")

plt.plot (1list ,n.ones(n.shape(llist))*«80%80x(noisexx*2.),’g’ label=’
Noise level power spectrum’)

#plt. figtext (0.25,0.5, Noise level: ’+str(noise))

plotstuff (0,0)

plt .ylim (4.%(10.%x3.) ,;3.%x(10.%x%7.))

plt.title (r’$\sigma_{fluct}"2 = 10°{-5}$’ ,fontsize=24)

n.savetxt (f_handle ,chi2 (noise ,data[0],data[1l]))

plt.subplot (3,3 ,4)

noise = 12.0

sigpow = —3

data = datacal (sigpow ,noise ,src_sig)

plt.errorbar (1llist ,data[0],yerr=data[l],fmt=".", ecolor="b")
plt.errorbar(1list ,data[0],yerr=data[2],fmt=".", ecolor="r")

plt.plot (1list ,n.ones(n.shape(llist))*80%80(noisexx*x2.),’g’ label=’
Noise level power spectrum’)

plt.figtext (0.25,0.55, Noise level: 12.07)

plotstuff (0,1)

plt .ylim (9.%(10.%x4.) ;2.%x(10.%x%7.))

n.savetxt (f_handle ,chi2 (noise ,data[0],data[1]))

plt .subplot (3,3,5)

noise = 12.0

sigpow = —4

data = datacal (sigpow ,noise ,src_sig)

plt.errorbar (llist ,data[0],yerr=data[l],fmt=".", ecolor="b’,label =
"Error for N=17)

plt.errorbar (1llist ,data[0],yerr=data[2],fmt=".", ecolor="r’,label =

"Error for N=100")

plt.plot (1list ,n.ones(n.shape(llist))*80%x80«(noisexx2.),’g’ ,label=’
Noise level power spectrum’)

#plt. figtext (0.25,0.5, Noise level: '+str(noise))

plotstuff (0,0)

(0]



plt .ylim (9.%(10.%x4.) ,2.%(10.%%7.))
plt.legend ()
n.savetxt (f_-handle , chi2 (noise ,data[0] ,data[1l]))

plt .subplot (3,3,6)

noise = 12.0

sigpow = —b

data = datacal (sigpow ,noise ,src_sig)

plt .errorbar (1list ,data[0],yerr=data[l],fmt=".", ecolor="b")
plt.errorbar (1llist ,data[0],yerr=data[2],fmt=".", ecolor="r")

plt.plot(1list ,n.ones(n.shape(llist))*80%80x(noisexx*2.),’g’ label=’
Noise level power spectrum’)

#plt. figtext (0.25,0.5, Noise level: ’+str(noise))

plotstuff (0,0)

plt .ylim (9.%(10.%x4.) ;2.%x(10.%x%7.))

n.savetxt (f_handle ,chi2 (noise ,data[0],data[1]))

plt.subplot(3,3,7)
noise = 100.0

sigpow = —3

data = datacal (sigpow ,noise ,src_sig)

plt .errorbar (1list ,data[0] ,yerr=data[l],fmt=".", ecolor="b")
plt.errorbar (llist ,data[0],yerr=data[2],fmt=".", ecolor="r")

plt.plot (1list ,n.ones(n.shape(llist))*80%80«(noisexx2.),’g’ label=’
Noise level power spectrum’)

plt.figtext (0.25,0.15, Noise level: 100.0’)

plotstuff(1,1)

plt.ylim (3.%(10.%x7.) ,1.2%(10.%%8.))

n.savetxt (f_-handle ,chi2 (noise ,data[0],data[1l]))

plt .subplot (3,3,8)
noise = 100.0

sigpow = —4

data = datacal (sigpow ,noise ,src_sig)

plt.errorbar (1llist ,data[0],yerr=data[l],fmt=".", ecolor="b")
plt .errorbar (1llist ,data[0],yerr=data[2],fmt=".", ecolor="r")

plt .plot (1list ,n.ones(n.shape(1llist))*80%80%(noisexx2.), g’ , label=’
Noise level power spectrum’)

#plt. figtext (0.25,0.5, Noise level: ’+str(noise))

plotstuff(1,0)

plt .ylim (3.%(10.%x7.) ,1.2%(10.%x8.))

n.savetxt (f_handle ,chi2 (noise ,data[0],data[1]))

plt.subplot(3,3,9)
noise = 100.0

sigpow = —5

data = datacal (sigpow ,noise ,src_sig)

plt.errorbar (1llist ,data[0],yerr=data[l],fmt=".", ecolor="b")
plt.errorbar (1llist ,data[0],yerr=data[2],fmt=".", ecolor="r")

plt.plot (1list ,n.ones(n.shape(llist))*80x80«(noisexx2.),’g’ label=’
Noise level power spectrum’)

#plt. figtext (0.25,0.5, Noise level: '+str(noise))

plotstuff(1,0)

plt .ylim (3.%(10.%xx7.) ;1.2%(10.x%8.))
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182

183

184

1

©

5

n.savetxt (f_handle ,chi2 (noise ,data[0],data[1l]))
f_handle. close ()

plt .show ()
multiplot (0.1) #run the code for a sigma_src wvalue

7



Appendix F

Code for Getting a Distribution of
Multiple Random Fields

v #! Jusr/bin/env python

3 import math as m

4+ import numpy as n

5 from matplotlib import pyplot as plt

¢ import pyfits as pf

7

s #Plotting a histogram of multiple random fields

9

10 def histo (fields ,sig,src_sig ,noise ,sigpow):

1 fieldslist = n.array ([])

12 for x in range(fields): #Opening all random field files and adding

all data to a list

13 hdu = pf.open(’./generations/src_'+str(src_sig)+’/10 +str (sigpow )+
"nois '+str (noise )+’ /randomfield "+str (x+1)+’. fits ’)

14 data = hdu[0]. data

15 fieldslist = n.append(fieldslist ,data)

1w #Determining the root mean square of the entire distribution
18 su = 0.
19 for a in fieldslist:

20 Su += ax*xx*2.

21 su = su/n.shape(fieldslist)[0]
22 rms = n.sqrt(su)

23 print 'rms = ’ rms

25 #Making the histogram plot

26 plt.figure ()

a7 plt.figtext (0.40, 0.85,r ’rms="+str (rms) ,ha="center’, va=’center’)

2s  plt.hist (fieldslist ,100)

20 plt.title(r’Distribution of all ’+str(fields)+’ random fields
together , for $\sigma"2 = 10" { ’+str (sigpow)+'}$")

3o plt.xlabel(’Value’)

a1 plt.ylabel (’Number’)

a2 plt.savefig(’./generations/src_’+str(src_sig)+’/10 +str (sigpow )+’
nois '+str (noise)+’/disttotalranfield .png’)
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