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Primordial Disk Evolution

Summary

To study the formation of structure in primordial disks, we developed a
model of a disk consisting of 75% H and 25% He by mass, that takes into
account gravitational influences, cooling, shearing, photodissociation and
supernova events. Comparing the timescales of the different processes, we
found that the disk can form objects with MJ = 104− 106M� for Lyman-α
cooling dominated regions and MJ = few 102 − 103 M� for H2 dominated
regions. Most of the disk however, from about 200 pc outwards, will not
form objects. The photodissociating UV background is sufficient up to a few
pc from a nearby star. H2 cooling is most efficient in the central 50 pc. The
shearing timescale and supernova timescale do not have a large influence on
star formation.
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Chapter 1

Background

In the very early universe, there were no galaxies or stars. It contained
only hydrogen, helium, trace amounts of lithium, and large amounts of dark
matter. All the heavier elements were synthesized in stars. This means that
the processes in star formation today are not the same as the processes in
the early universe, as star formation now depends strongly on the abundance
of heavier elements.

Following Barkana and Loeb [2001] and Salvadori [2009], I will give an
overview of the formation of the first structures below.

According to the standard model of cosmology, the ΛCDM (lambda cold
dark matter) model, the present structure in the universe originated from
small density fluctuations in the early universe. This theory is supported
by the detection of small temperature fluctuations in the cosmic microwave
background, ∆TCMB

TCMB
= 10−5. This indicates that the universe started out

extremely uniform and simple, see also figure 1.1.

The initial conditions for star formation in the early universe are fully spec-
ified by the power spectrum of the density fluctuations, the mean density of
dark matter, the initial temperature and density of the cosmic gas, and the
primordial composition. There are not yet metals or significant magnetic
fields, and there is not yet feedback from luminous objects [Barkana and
Loeb, 2001].

After the first stars and quasars formed, the universe gradually became ion-
ized, and has remained so ever since. Calculations find that this reionization
happened at a redshift z of ∼ 7 − 12. It is unclear when and how exactly
the first objects formed. Current telescopes cannot reach beyond z ≈ 8 and
have not been able to observe these first (Population III, metal-free) stars.
One possible way to study these first objects is to examine the feedback
effects they had on the current objects.
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Figure 1.1: Milestones in the evolution of the universe, from simplicity to
complexity, taken from Barkana and Loeb [2001].

The ΛCDM model predicts that as the dark matter clustered together, the
baryonic matter fell into the subsequent potential wells. By cooling and con-
densation of the gas in the centers of these dark matter halos, protogalaxies
were formed. These were the first building blocks of the universe.

1.1 Formation of dark matter halos

In the early universe the small density fluctuations (one in 105 as stated
above) were not static. As long as those fluctuations are small, the mix of
dark matter and baryons can be described by linear perturbation theory.
The baryons can be seen as a collisional fluid and the dark matter as a
collision-less one. This mix has an average mass density ρ̄, and this density
can be perturbed at any time and place by a dimensionless density pertur-
bation δ(x, t) = ρ̄(t)

ρ(x,t) − 1. The fluid is then described by the continuity

and Euler equations as stated in paragraph 2.2 of Barkana and Loeb [2001].
For this problem there are in general two solutions: a growing mode and an
oscillatory mode. For small perturbations (δ � 1) the dominant solution
grows with time and dominates the density evolution. This means that the
density perturbation maintains its shape (in comoving coordinates). See
Barkana and Loeb [2001] for a complete treatment of this problem. If the
inward pressure in these perturbations is larger than the outward pressure,
the structure collapses.

When the growing perturbations δ become of order unity, the full non-linear
gravitational problem must be taken into account, as linear perturbation
theory does not apply anymore. This happens with the dark matter at
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early epochs, as the growing dark matter perturbations interact only very
weakly with the rest of the matter and the radiation field. The growth
of these perturbations is not slowed unlike baryonic matter perturbations,
which interact strongly with the radiation field.

The gravitational collapse of such a dark matter density perturbation can
only be solved analytically in particular cases. The simplest case is the ‘top-
hat’ spherical collapse: a spherically symmetric uniform overdensity inside
a sphere of radius r. If the mass shell at this radius r is gravitationally
bound, then the overdensity reaches a maximum radius of expansion and
subsequently collapses to a point. If there is no exact spherical symme-
try, the dark matter halo does not collapse to a point, but reaches virial
equilibrium through the process of violent relaxation.

This, however, is not the complete story. At early times, most of the dark
matter is in small (low-mass) halos, and the theory is that larger halos are
formed by the merging of smaller halos. This is called hierarchical formation.
Such a hierarchical growth puts constraints on the physics of halo formation,
which Navarro et al. [1997] researched. They found that the density profile
of the resulting halos is roughly universal. The abundance of these dark
matter halos was modelled analytically by Press and Schechter in 1974.
This simple model matches most of the numerical simulations. The halo
abundance gives important clues towards the abundances of galaxies and
galaxy clusters.

1.2 Gas infall in dark matter halos

The dark matter halos virialize at a time that baryonic matter cannot yet
form gravitationally bound objects. Before the recombination era the pho-
tons and free electrons interact through Compton drag, which prevents the
growth of density perturbations in the baryonic matter. After the decou-
pling and recombination, however, Compton drag is essentially zero and the
perturbations can grow in the potential wells created by the dark matter
halos.

As gravity becomes stronger, more matter is attracted. This matter will
only fall to the center of the potential well if the associated energy is low
enough. Dark matter cannot dissipate the extra energy to relax into these
potential wells, but baryonic matter can, through cooling. As the gas cools
through either atomic line cooling (the halo reaches M = 108−109 M� and
T = 104 K) or molecular hydrogen H2 (the halo has M = 105 − 106 M�
and T . 700 K), the gas density in the center of the potential wells becomes
much higher than the dark matter density. Therefore in the central few
kpc of a halo dark matter can be ignored. Only in the outer regions it
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becomes the dominant source of gravity. See e.g. Guo et al. [2010] for more
information on the relation between stellar mass and halo mass.

The minimum mass for the bound objects created by these perturbations
is given by the Jeans mass MJ , which is the mass in a given volume that
can collapse through its own gravity. This will only happen when the out-
ward pressure is smaller than the inward (gravitational) pressure. The out-
ward pressure consists mainly of thermal, magnetic, and turbulent pressure.
However, Schleicher et al. [2010] state that the magnetic pressure is about
0.1− 0.5 times the thermal pressure. The largest contributors of turbulence
are supernova events, but at these early times there are not enough to make
a large impact on the total pressure. As the thermal pressure is much higher
than magnetic or turbulent pressure, I have decided to ignore the latter two
for this research.

For the temperature and thus thermal pressure to stay low during collapse,
cooling has to be efficient. The cooling time has to be shorter than the time
it takes for the matter to collapse under its own gravity: tcool < tdyn.

The Jeans mass at z < 200, when the gas temperature declines adiabatically
through Hubble expansion, is given by [Salvadori, 2009]:

MJ = 3.08 · 103

(
Ωmh

2

0.13

)− 1
2
(

Ωbh
2

0.022

)− 3
5
(

1 + z

10

) 3
2

M�, (1.1)

where Ωm is the total matter density, Ωb the baryon matter density, h the
reduced Hubble constant and z the redshift.

Without cooling or heating processes the cooling rate is set by adiabatic
cooling, namely, Hubble expansion. The associated timescale is:

tH = H(z)−1 = H−1
0 [ΩΛ + Ωm(1 + z)3]−

1
2 , (1.2)

where ΩΛ is the dark energy density, and Ωm and z are as above.

During the collapse, the density increases. The Jeans mass is density-
dependent (see section 2.1), and will go down when the density goes up.
Therefore, if the temperature stays low, the collapsing object can fragment
into smaller objects, which each have to satisfy tcool < tdyn to collapse fur-
ther.

1.3 Feedback

As soon as the first stars form in the collapsed halos, the processes in these
stars create so-called ‘feedback’ processes, which dramatically change the
subsequent star formation. These processes are grouped together in three
different classes: radiative, mechanical and chemical feedback.
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1.3.1 Radiative feedback

As soon as the first stars form, they will produce UV radiation: radiation
that excites molecular hydrogen, but cannot ionize it (11.2-13.6 eV, Lyman-
Werner photons) and radiation that ionizes the hydrogen atom (>13.6 eV).
When molecular hydrogen is excited, in about 15% of the cases the molecule
dissociates through the Solomon process:

H2 + γ → H∗2

H∗2 → 2H + γ

As molecular hydrogen is very important in the formation of the earliest
stars, this acts as a negative feedback and reduces the star formation effi-
ciency. When H2 cooling is suppressed, the formation of massive objects is
possible [Begelman et al., 2006].

At energies >13.6 eV, hydrogen atoms are ionized, and molecular hydrogen
can form through the following process:

H + e− → H− + hν

H− + H → H2 + e−

This acts as positive feedback, as more H2 means more cooling and thus
more star formation. If halos contain miniquasars with photon energies
extending to about 1 keV, then these X-rays balance the effects of the UV
background [Haiman et al., 2000].

UV radiation cannot only ionize hydrogen atoms, but can also heat the gas
and photo-evaporate it, thus destroying smaller halos. However, Dijkstra
et al. [2004] have found that in the early universe this is not as effective as
in the present-day universe, because (1) the amplitude of the ionizing back-
ground is lower, (2) the ionizing background turns on only after a substantial
overdensity has formed inside the halo, (3) collisional cooling processes are
more efficient at high redshift, and (4) the atoms can self-shield against the
radiation.

1.3.2 Mechanical feedback

As the first stars are thought to be very massive, these end up mostly as
supernovae. Supernova events (SNe) are so energetic that partial (or even
total) removal of the gas from the galaxy is very likely, thereby reducing
the star formation rate and the impact of the next generation of supernovae
[Heger et al., 2002]. Whalen et al. [2008] found that a single SNe (with mass
15 − 40 M�) is sufficient to blow away all the gas from halos less massive
than 107 M�.
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1.3.3 Chemical feedback

Star formation in the present-day universe relies heavily on the presence of
metals and dust. Gas cooling can take place through collisions (dust and
molecules) and line cooling (individual atoms). As stated before, cooling is
necessary to keep star formation going. As supernovae deposit more metals
and dust into the gas, cooling, and therefore star formation, becomes more
efficient. In figure 1.2 the effect of these SNe is shown. In this simulation,
done by Mori and Umemura [2006], stars more massive than 8 M� explode
as type II supernovae with an explosion energy of 1051 erg, and eject synthe-
sized heavy elements and dust. At first only the immediate neighborhood
is enriched, and higher-metallicity bubbles exist in the otherwise primordial
gas. As the shocks hit lower-density gas, the expansion of the hot, metal-rich
bubbles is accelerated.

H2 can also be made on the surfaces of dust grains. As soon as the dust-to-
gas mass ratio is of the order of 10−3, at z ≥ 3, a positive feedback effect
can occur for the abundance of H2 molecules [Cazaux and Spaans, 2004].
This result depends strongly on the dust and gas temperatures.

Figure 1.2: Spatial distribution of the stellar number density, gas number
density and oxygen abundance of a protogalaxy with total mass 1010 M�,
taken from Mori and Umemura [2006].
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1.4 This research

This research will focus on the star and black hole forming capacities of a
disk at a redshift 10 < z < 15. As matter settles into a potential well, due
to conservation of angular momentum it will have to form a rotating disk. A
seed black hole has already formed through singular collapse [Johnson et al.,
2011]. The matter near the black hole will be attracted and rotate faster,
flattening the disk. The lower limit for the redshift is chosen such that the
disk is not yet a full-blown galaxy. However, it has had time to form the
first stars, through which the metallicity is increased up to the limit needed
for Salpeter-like star formation.
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Chapter 2

Timescales

By looking at the timescales of different processes in a rotating gaseous disk,
one is able to constrain the outcome of these dynamical processes. Important
processes are gravitational collapse, the amount of cooling reached through
H2-cooling, HI- and HeII-Lyα-cooling, and viscous effects.

R=1kpc

r

2l

Ω(r)

(a) seen from above

Hg

Σ

(b) seen from the side

Figure 2.1: Physical structure of the disk.

Our toy model disk has a total radius R, a scaleheight Hg, a surface density
Σ(r), and, following the relation Magorrian et al. [1998] found, a central mass
roughly 0.006 times the total mass of the disk. Here the surface density is
taken as the volume number density integrated over the total height of the
disk. To find the speed |v| of the gas at a certain radius, we must first
calculate the enclosed mass at that radius:

Mc =

∫ r

0
mΣ(r)2πrdr (2.1)

where m is the mean mass of a primordial particle, with a primordial mixture
of 75% H and 25% He by mass. We assume that Σ(r) ∝ 1

rp . This means
that Mc is proportional to r2−p. For this disk we take the surface density to
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be 1023 cm−2 at 10 pc and 1021 cm−2 at 1 kpc, therefore for this case p = 1
and Mc ∝ r. We can now see how this influences the speed of the gas, by
balancing the gravitational and centripetal force:

GMcm

r2
=
mv2

r
. (2.2)

G is the gravitational constant. From this we find that |v| =
√

GMc
r , which

is constant if there is no large central mass, and we also find the angular
frequency Ω(r), as Ω = 2π

T = |v|
r . Thus

Ω(r) =

√
GMc

r3
∝ 1

r
. (2.3)

If there is a large mass present in the center of the disk, for example a massive
black hole, the enclosed mass will be dominated by this object. This means
that the enclosed mass can be seen as a constant, and the speed and angular
frequency of the gas change accordingly:

|v| =
√
GMc

r
, Ω(r) =

√
GMc

r3
, Mc is constant. (2.4)

This is called Keplerian motion.

2.1 Dynamical time

Information from one part of the disk to another will travel with the sound-
speed cs. This means that the gas pressure can react to changes in the cloud
with that speed. If the pressure can react fast enough to density fluctuations,
the gas is smoothed out, but if the density fluctuations have such a large
wavelength that they are compressed faster by gravity than the pressure can
damp them out, the gas will collapse. One can express this instability also
as 4πGρ0 > k2c2

s, with ρ0 the inital density and k the wavenumber. This
means that there is a wavelength for which the pressure and gravity react
equally fast: the Jeans length λJ .

λJ =

(
πc2

s

Gρ0

) 1
2

. (2.5)

The total mass contained within this wavelength is ∼ ρ0λ
3
J and is called the

Jeans mass [Clarke and Carswell, 2007, Frieswijk, 2008]:

MJ =

(
πc2

s

G

) 3
2

ρ
− 1

2
0 ∝ T

3
2 ρ
− 1

2
0 ' 7.5

(
T

10 K

) 3
2 ( n

104 cm−3

)− 1
2
M�. (2.6)
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When λ > λJ , or equivalently when the mass contained in this volume λ3
J

is increased, the cloud can collapse. The time it takes to collapse under its
own gravity (also known as self-gravity) is called the dynamical (or free-fall)
time.

Using dimensional analysis on 4πGρ0 > k2c2
s, one can construct this cor-

responding timescale, because in cgs-units: G = [cm3 g−1 s−2] and ρ0 =
[g cm−3]. The dynamical time in years then is:

tdyn ∝
1√
Gρ0

' 7.2 · 105
( n

104 cm−3

)− 1
2

[yr]. (2.7)

2.2 Cooling time

The temperature of the gas is important in the formation of structure. As
we have seen before, the Jeans mass depends on the temperature as T

3
2 . By

cooling the gas, the Jeans mass is also lowered and fragmentation of the gas
during collapse is a possibility.

In primordial gas cooling can take place through atomic hydrogen HI, molec-
ular hydrogen H2, hydrogen deuteride HD and ionic helium HeII. Of these,
the only low-temperature coolants are H2 and HD. These can bring the tem-
perature down to a few hundred K. It is believed that the very first objects
in the Universe were cooled primarily by H2, which is effective at temper-
atures T & 200 K and at gas number densities n < 104 cm−3 [Glover and
Abel, 2008]. HD can cool to lower temperatures at higher densities (up to
106 cm−3), thus bringing about lower characteristic masses, but it will only
do so if enough is formed to cool efficiently. This does not happen when the
virial temperature Tvir < 104 K, but gas cooling from an initially ionized
state will form enough HD to cool to very low temperatures [Glover and
Abel, 2008]. This is possible because in hot gas that is cooled, more and
more H2 is formed, and more and more cooling takes place. Then only the
reaction H2 + D+ → HD + H+ (exothermic) is possible, because its en-
dotherm equivalent, HD + H+ → H2 + D+, only takes place above 462 K.
Through this process enough HD can form to dominate the cooling.

At temperatures 104 . T . 105 K cooling is primarily done through the
HI-Lyman-α line [Haiman et al., 2000]. The radiative cooling rate is defined
as n2Λ with units erg cm−3 s−1. For Lyman-α cooling this rate is given by:

n2ΛLyα ' 7.3 · 10−19nenHI exp(−118, 400/T ) erg cm−3s−1,

with ne and nHI the electron and hydrogen atom number densities [Tielens,
2005]. In temperatures of 106 to 108 K cooling is due to free-free transitions
[Latif et al., 2011]. In figure 2.2 the efficiency of the different cooling mech-
anisms is shown. For molecular hydrogen, atomic hydrogen, ionic helium
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Figure 2.2: Cooling function for zero metallicity, taken from Latif et al.
[2011]. The stripe-dotted line is cooling due to molecular hydrogen, the
striped line shows the atomic cooling.

and free-free emission we can get values at certain temperatures from this
graph:

Λfree-free ' 10−24 erg cm3 s−1 at T = 106 K,

ΛLyαHeII ' 10−23 erg cm3 s−1 at T = 104.8 K,

ΛLyαHI ' 10−22 erg cm3 s−1 at T = 104 K,

ΛH2 ' 10−28 erg cm3 s−1 at T = 700 K,

ΛH2 ' 10−30 erg cm3 s−1 at T = 200 K,

ΛHD ' 10−30 erg cm3 s−1 at T = 100 K.

The hydrogen deuteride (HD) number at around 100 K is an estimate, taken
from the fact that HD-cooling takes over from H2 for temperatures lower
than 200 K.

The radiative cooling function Λ has units erg cm3 s−1. To get rid of the en-
ergy and volume components, we multiply by n and divide by kT , the num-
ber density and characteristic energy. We then get the following timescale:

tcool =
kT

nΛ
. (2.8)

The cooling timescale is dependent on the dominant cooling mechanism.
H2 and HD are only abundant enough to cool the gas in places with n >
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dominant cooling Λ [erg cm3 s−1] T [K] n [cm−3] tcool [yr]

free-free emission 10−24 106 10−1 4 · 107

HeII Lyman-α 10−23 104.8 100 3 · 104

HI Lyman-α 10−22 104 100 5 · 102

H2 (700 K) 10−28 700 103 3 · 104

H2 (200 K) 10−30 200 103 9 · 105

HD 10−30 100 103 4 · 105

Table 2.1: Cooling times for the different cooling mechanisms, taking into
account the necessary temperatures and number densities for those mecha-
nisms to be dominant.

103 cm−3. Lyman-α is most effective when the temperature is 104 − 106 K
and free-free emission is the dominant cooling mechanism when T > 106 K
[Latif et al., 2011]. Now we can calculate the corresponding cooling times,
arranged in table 2.1.

2.3 Photodissociation time

In a cloud consisting of primordial gas, at low temperatures the only way
for the gas to cool efficiently is the collisional excitation of H2 molecules:
hydrogen atoms collide with the molecules and excite them. When the
molecule falls back to the ground state, the photon emitted is of such energy
that it is not again absorbed by the gas, and thus its energy is lost. In other
words, the H2 cooling lines are mostly optically thin. H2 molecules are very
susceptible to photon absorption in the 912-1108 Å range (Lyman-Werner
photons). These photons are produced by young stars in the neighbourhood
and form the so-called ‘UV background’ G0 which is usually expressed in
terms of the equivalent one-dimensional average interstellar radiation field
flux of 1.6 · 10−3 erg cm−2 s−1 [Tielens, 2005]. In the Milky Way, G0 = 1.
After absorption of the photon, the electron then falls back to the ground
electronic state, which in 10-15% of the time connects to the vibrational
continuum [Tielens, 2005]. In this case, the molecule dissociates. Tielens
[2005, p. 288] gives the photodissociation rate for H2 for a plane-parallel,
constant density slab, illuminated from one side:

kUV(H2) = βss(Σ(H2))e−τdkUV(0) [s−1]. (2.9)

Here kUV(0) is the unshielded photodissociation rate (' 4 × 10−11G0 s−1),
Σ(H2) is the H2 column density into the cloud, τd is the dust optical depth
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at 1000 Å and βss is the self-shielding factor. This last factor can be ap-
proximated by:

βss =

(
Σ(H2)

Σ0

)− 3
4

, (2.10)

where Σ0 = 1014 cm−2 for the column density range 1014 . Σ(H2) . 1021

cm−2.

For our disk e−τd ' 1 as the dust content is less than 10−3 times the galactic
value [Cazaux and Spaans, 2004], and the molecular hydrogen fraction is
about 1 in 103 particles. Because the disk’s total surface density is in the
range of Σ = 1021 − 1023 cm−2, Σ(H2) = 1018 − 1020 cm−2, which keeps
it in the range of applicability for βss. Modifying the rate equation to get
the photodissociation timescale, dependent on the total surface density Σ,
gives:

tpd =
1

kUV(H2)
=

1

βsskUV(0)
' 4.5 · 106

(
Σ

1022 cm−2

) 3
4 1

G0
[yr]. (2.11)

The assumption that the gas is illuminated ‘from one side’ comes from the
fact that stars are also formed within the disk. Those stars have a far larger
contribution to the background radiation than stars from far outside the
disk. If such a star is formed close to where one is looking in the disk, then
it outshines everything else and that region is effectively illuminated from
one side. See section 4.1 for more elaboration on these stars.

2.4 Shearing time

The gas does not necessarily flow with the same angular speed at every
distance from the central black hole. On a scale relatively small to the
size of the disk and sufficiently far from the center, the gas flow can be
approximated by an infinite straight flow in one spatial direction. To find
the time it takes for shear to tear apart a cloud of gas, we can utilize the
example of a two-dimensional flow between two parallel plates, where the
plates are represented by the ‘rings’ of gas just outside of the cloud.

With the cloud a size of 2l, the ‘plates’ are a distance 2l apart and stretch out
very far to both sides. The bottom of the cloud has a relative velocity u with
respect to the top, which means that there is a velocity gradient between top
and bottom, represented by v(y). The flow is only in the direction parallel to
the plates; only vx is non-zero, and constant. This situation is steady-state,
as the fluid looks the same at every moment.
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2l

vr

vr+2l

x

y

z

Figure 2.3: Cloud in a velocity field. The −y-direction is towards the center.

Is the fluid incompressible? Incompressible fluids have the quality that they
are divergence free, ∇ · v = 0, which would enable us to use the Navier-
Stokes equation. As we assume that there are no shocks in the gas, we can
say that the gas is indeed incompressible.

To estimate the shear time for a given cloud, we first need to find the shear
rate. This rate is defined as γ̇ = ∂v

∂y [ cm s−1

cm ], where v is the (non-constant)
fluid velocity between the plates. See again figure 2.3. This means we
actually have to find the velocity difference between the points of the cloud
closest to and farthest from the center to know the shear time. Therefore
we take the Navier-Stokes equation:

ρ
∂v

∂t
+ ρ(v · ∇)v = −∇p+ f + η∇2v, (2.12)

where ρ is the gas density, v the three-dimensional gas velocity, p the pres-
sure, f is the external body force, and η the viscosity of the fluid. For
simplicity, η = 1. There is no external body force, which means that f = 0.
Now we look at the different components. In the z-direction everything is
0, because by assumption there is no velocity or pressure gradient in that
direction (the fluid is two-dimensional).

In the y-direction:

ρ
∂v

∂t
= ρ

∂vy
∂t

= 0,

ρ(v · ∇)v = ρ(vx
∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z
)vy = 0,

−∇p = −∂p
∂y
,

∇2v = (
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)vy = 0,

because vy = 0. This means that

−∂py
∂y

= 0.
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And in the x-direction:

ρ
∂v

∂t
= ρ

∂vx
∂t

= 0,

ρ(v · ∇)v = ρ(vx
∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z
)vx = ρvy

∂vx
∂y

= 0,

−∇p = −∂p
∂x

= 0,

∇2v = (
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)vx =

∂2

∂y2
vx,

because vx is constant. This means that:

η
∂2

∂y2
vx = 0.

With the boundary conditions that v = 0 at y = 0 and v = u at y = 2l, we
find a linear equation v = ay + b = u

2ly. With the shear rate γ̇ = ∂v
∂y , and

u =

√
GMc,(r−l)

r − l
−

√
GMc,(r+l)

r + l
, (2.13)

we have the shear time:

tshear =
1

γ̇
=
∂y

∂v
=

2l

u
= 2l ·

√GMc,(r−l)

r − l
−

√
GMc,(r+l)

r + l

−1

. (2.14)

In figure 2.4 the gas velocity is plotted against the disk radius. Because the
enclosed mass (not counting the black hole) is proportional to the radius, and
the disk is about 1/0.006 ' 170 times as heavy as the black hole (following
the relation found by Magorrian et al. [1998]), at large distances the velocity
difference approaches zero.
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(a)

(b)

Figure 2.4: Gas velocities at different radii from the center. Plot (a) shows
the whole disk; the central black hole has a distinct influence on the gas
velocity in the inner 10 pc. Plot (b) shows radii from 10 pc outwards: the
black hole has negligible influence.
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Chapter 3

Disk Stability Influences

To assess whether disks are gravitationally stable, one can look at the
Toomre stability parameter Q [Ormel, 2008]. Q is defined as

Q =
cgΩ

πGΣ
≈ 4 · 10−4

(
T

104 K

) 1
2
(

Σ

1022 cm−2

)−1( r

100 pc

)− 3
2

, (3.1)

with cg the soundspeed, Ω the angular frequency and Σ the surface density.
Instability sets in when Q . 1. The numerator gives the stability part
in the form of support through pressure (cg) and through rotation (Ω).
The denominator is the instability: GΣ = GM

R2 = agrav, the gravitational
acceleration.

3.1 Gas collapse

As can be deduced from the Toomre stability parameter, in places with
low temperatures, high surface densities and/or far away from the center,
the disk becomes (locally) unstable. When instability sets in, the gas can
collapse to form bubbles of higher densities than the surrounding medium.
These bubbles can eventually form stars, but this will only happen if the
disruptive processes remain more efficient than the stabilizing processes.
When cooling is the most efficient process in that part of the disk, tcool <
tdyn, the gas can cool fast enough to fragment the gas into smaller bubbles
that are the progenitors of stars. When tdyn < tcool, however, gas cooling
cannot keep up with the infall and the temperature will stay high. This
means that there is no fragmentation and thus no star formation at that
point in the disk. At other points collapse is still possible.
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3.2 Star formation

The clouds can be prevented from collapsing if enough disrupting energy
from supernovae is injected into the disk. However, it is unknown with what
mass distribution the first stars formed, and therefore how many supernovae
exploded with what energy at a given time. To understand more of stellar
evolution and the star formation history, we can look at the Initial Mass
Function (IMF), which quantifies the distribution of masses at birth. Many
attempts have been made to find this function (e.g. Salpeter [1955] and
Chabrier [2003]) and to find out whether or not a universal IMF exists.

3.2.1 Salpeter IMF

Salpeter [1955] found an empirical expression for the distribution of stars
as a function of mass. After several corrections (e.g. Kroupa [2001]) the
function is now ξ(m)dm ∝ m−2.35, valid for 0.3 6 M� 6 100, and for the
stars currently seen in the Milky Way. This IMF favors small stars over
massive stars.

It is likely that for the very early Universe this IMF is not correct, but that a
very top-heavy IMF existed [Schneider et al., 2002], as there were no means
yet to produce stars with masses much smaller than 30M�. However, we
do not know what this top-heavy function would look like and when exactly
it would be valid. We do know that the first objects (Population III) must
have produced enough metals to allow a transition from this primordial star
formation to the current star formation (Population I/II) [Aykutalp and
Spaans, 2011].

3.2.2 PopIII to PopII

The very first stars were likely very massive and short-lived. It is thought
that these primordial stars evolved into either supernovae or pair instability
supernovae (PISN, which leave no remnant), dependent on their initial mass
[Schneider et al., 2002, Heger et al., 2002]. These SNe then enriched the
surrounding medium until the IMF changed from top-heavy to Salpeter-
like. Wise et al. [2012] state that a single PISN is sufficient to enrich the
host halo to a metallicity of 10−3 Z�. This metallicity is in the same range
as the critical metallicity Zcr ' 10−6− 10−3.5Z� for which the transition to
Population II star formation takes place. [Schneider et al., 2002] use a value
of Zcr ' 10−4Z� above which atomic cooling is driven by OI, CI and CO
line emission for low densities. Dust cooling, however, is already effictive
for Zcr ' 10−5Z� [Dopcke et al., 2011]. This means that for 10−5 . Z .
10−4Z� dust cooling is already efficient, but metal line cooling is not, so we
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can ignore the metals. Dust cooling has the advantage over H2 cooling that
it is effective at lower temperatures and higher densities, because it cools by
collisions. This mechanism can therefore fragment the larger clouds made
by Lyman-α cooling or H2 cooling.

3.3 Supernova impact

Having established that we can take a Salpeter IMF ξ(m)dm = αm−2.35 for
our case, we can deduce how many stars will end as supernovae. Normalizing
this function gives α = 0.266 and integrating from 8M� to 50M�, the range
in which stars end up as supernovae [Heger et al., 2002], we find that about
1.1% of the formed stars do so.

Figure 3.1: The final fate of stars, dependent on mass. Taken from Heger
et al. [2002].

Adopting a star formation rate of 0.01M� per year, which is roughly equiv-
alent to 1M� per year for the Milky Way, we see that there occur 1.1 · 10−4

SNe per year. The mechanical energy per supernova is 1 · 1051 erg, of which
about 10% is added to the medium as a velocity dispersion increase. There-
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fore the energy added to the medium per year is 1.1 · 1046 erg. On average,

every particle gets an added velocity of v =
√

2E
m .

Tot calculate the total number of particles in a disk with radius R = 1 kpc
and a surface density Σ(r) = 1024·3.086·1018

r cm−2, we use formula 2.1:∫ 1 kpc

0
3.086 · 1018m

1024

r
2πrdr = 6.0 · 1064. (3.2)

The factor 3.086 · 1018 is there because r is in cm, not in pc. Now we can
find the associated energy per particle per year:

E =
total energy

# particles
=

1.2 · 1046

6.0 · 1064
= 1.8 · 10−19 erg y−1. (3.3)

This corresponds to a velocity increase of v = 3.5 · 102 cm s−1, or

v = 3.5

(
t

106 yr

) 1
2

km s−1, (3.4)

with m = 2.92 · 10−24 g (75% H and 25% He by mass).

To dynamically restructure the disk, an energy dU =
GMringMdisk

r is needed,
where Mring = 2πrΣ(r)mdr and Mdisk =

∫ r
0 2πrΣ(r)mdr. Filling in for Σ(r)

and m: Mdisk = 5.662 · 1019r g and Mring = 5.662 · 1019 dr g. Therefore:

U =

∫ R

0

GMringMdisk

r
= 6.6 · 1053 erg. (3.5)

So after tSN = 6.6 · 107 yr supernova events will have deposited enough
energy in the disk to restructure it. This is with the assumption that every
particle in the disk will get exactly as much energy as its neighbor.
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Results, Discussion and
Conclusions

A disk with surface density Σ = 1023 cm−2 at r = 10 pc and Σ = 1021 cm−2

at r = 1 kpc has a total mass Mtot = 8.8 · 107M� (filling in formula 2.1).
The central black hole therefore has a mass MBH = 5 · 105 M� (following
the work of [Magorrian et al., 1998]). This black hole has effect on the gas
motion in the inner regions, up to r ' 10 pc. From there on the enclosed
disk mass is much greater than the black hole mass, and the orbital time
will not change much.

The orbital time To = 2π
Ω(r) ∝ r is found by filling in formula 2.3 for Ω(r).

At r = 10 pc, we find that To = 3 ·106 yr. This is longer than a typical time
tdyn = 7 · 105 yr for a collapsing cloud (formula 2.7). As the orbital time
increases with radius, we can conclude that the disk is effectively static on
the timescale for collapse from 10 pc outwards.

Can the disk collapse? For that we have to look at Toomre’s stability pa-
rameter Q, formula 3.1. The disk is unstable where Q . 1. r has the largest
influence on Q, so looking at low r will give the largest Q for this disk.
Assuming the most stable parameters for Q, which gives Lyman-α cooling
at T = 104 K, Q = 1.3 · 10−3 for r = 10 pc. This means that the disk
is globally unstable, but it is possible to have regions of stability when the
temperature is high and the surface density is low. This can for example
happen in the region from the center up to 10 pc: if the surface density
is around 1022 cm−2 at 1 pc, the disk becomes marginally stable. For this
research, however, it means that we can look for star formation everywhere
in the disk from r = 10 pc to r = 1 kpc.
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4.1 H2 and Lyman-α cooling

The photodissociation timescale (formula 2.11) is dependent not only on
the local (surface) density, but also on the local UV background G0. This
UV background can come from other galaxies in the neighborhood, but
near stars in the disk it will be completely dominated by the UV radiation
emitted by those stars. For H2 cooling to be important, the H2 cooling time
tcool,H2

= 3 · 104 yr should be shorter than the local photodissociation time
tpd. What value of G0 is needed to photodissociate all H2 molecules in the
same time that these cool the medium? Filling in values for 10 pc, 100
pc and 1 kpc, and putting tcool = tpd, we find that G0(10 pc) = 8.4 · 102,
G0(100 pc) = 1.5 · 102, and G0(1 kpc) = 27. The influence of a PopIII star
on its surroundings is quantifiable by approximating it to an O star with a
surface temperature of 3.3 · 104 K. Almost all photons emitted by this star
are UV photons, so the total UV flux can be approximated by the Stefan-
Boltzmann equation F∗ = σT 4 = 6.72·1013 erg cm−2 s−1. As G0 = 1.6·10−3

erg cm−2 s−1, at the surface of this star F∗ = 4.22 · 1016G0. We take the
radius of this star 10 times the solar radius: d∗ = 2.2 · 10−7 pc. Then we
find the needed G0 at distance d from the star with:

d = d∗

(
F∗
G0

) 1
2

. (4.1)

This radius d gives the sphere of influence for this star. Up to d from the star
the UV background is high enough to destroy all H2. In table 4.1 the results
are conveniently arranged. Again, this is assuming the UV background from
outside the disk is much lower than the flux from the star. From these values
we can see that the influence of a star is very local, as the disk would need
its own mass in stars to keep up the UV background for the whole disk.

r G0 d
[pc] [erg cm−2 s−1] [pc]

10 8.4 · 102 1.6
100 1.5 · 102 3.7
1000 27 8.8

Table 4.1: The minimum UV background in G0 needed to prevent H2 cool-
ing, at different radii from the center of the disk. The distance d is the
maximum distance from an O star, with surface temperature T = 3.3 ·104 K
and radius d∗ = 10R�, where no H2 can exist.
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4.2 Collapse

Having established that we can look for possible star formation at radii
r = 10 pc and outwards, we can now try to find the products. Comparing
the different timescales tdyn, tcool, tpd, tshear and the time it takes for SNe to
dynamically restructure the disk tSN, star formation is only possible when
one of these scenarios happen:

1. tcool, H2
< tdyn < tpd, tdyn < tshear, and tdyn < tSN,

2. tcool,Lyα < tdyn < tshear, and tdyn < tSN.

In table 4.2 the results from computations at different radii are listed. The
shearing time is computed up to 100 pc, but only for the largest clouds. For
smaller clouds and clouds farther from the center this time only gets longer.
For reference: tcool, H2

(200 K) = 9 · 105 yr, tcool, H2
(700 K) = 3 · 104 yr, and

tcool,Lyα = 5 · 102 yr.

Clouds can collapse when the Jeans radius is sufficiently small compared
to the disk, i.e. l = λJ

2 . 10 pc. Therefore from r ' 200 pc outwards,
the disk will very probably not form any structure. This can also be seen
from the fact that tdyn → tSN for large radii. For the region between 10 pc
and 50 pc, however, it is very much possible to form stars of a few 102 −
103M�, if the UV background is low enough. Near already formed stars
only MJ = few 104 − 105M� can collapse, which can directly form black
holes (singular collapse). These could be seed black holes [Spaans and Silk,
2006]. The region between 50 pc and 200 pc is another potential hotbed for
black holes, with masses of 104 − 106M�. If there is still H2 present, these
seeds could, when their density has grown a bit and H2 cooling becomes
effective, fragment into smaller chunks of a few 103M�, potentially forming
very massive stars. If there is also enough dust present, the fragments could
fragment even further to a few 102M� stars. Lastly, the central 10 pc will
probably not have much star formation, as the densities there (105 − 106

cm−3) are too high for H2 cooling and the dynamical time is too short for
HD or dust cooling. H2 cooling is not effective above a few 104 K, because
after the thermalization of the lowest-lying rotational levels in the molecule,
cooling becomes less efficient [Bromm and Loeb, 2003]. The central black
hole will have too much influence on the surrounding gas to form separate
objects. The gas can however be accreted by the black hole. Supernovae can
influence the accretion rate, but as tSN = 6.6 · 107 yr, which is comparable
to an Eddington accretion timescale of 108 yr, the accretion is not much
hampered.
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4.3 Future work

A lot of assumptions have been made during this research. The central
object is now taken to be a ‘dead’ object which does not radiate energy. In
reality a 5 · 105M� object radiates very much energy up to a few keV. This
will alter the physical structure of the disk, as the wings will flare instead
of grow linearly, and the radiation from the central object can hit the wings
from the side.

Another assumption is that the disk is optically thin for Lyman-α radiation.
However, as number densities go up, the disk will become optically thick and
cooling becomes inefficient. More information can be found in e.g. Latif
et al. [2011].

The metallicity is conveniently chosen between 10−6 . Z . 10−3, for which
the dust content is negligible in the photodissociation processes and line
cooling for metals can still be ignored in clouds, but is high enough to form
PopII stars. This is not a stable solution, as every SNe will add more metals
to the medium.

Only the initial Jeans mass has been considered. Fragmentation is very
much possible for many clouds between 10 pc and 100 pc, but there is no
knowing with these approximations what the end result might be. As this
topic is still widely studied and no definitive conclusions have been drawn,
this is hardly a problem singularly for this research. However, as this is still
an open question, it should be noted.

These assumptions limit this research. For an in-depth quantitative analy-
sis, these calculations should be done hydrodynamically and linked to each
other. The supernova rate for example will generate negative feedback, for
as the disk becomes more ‘puffed up’, the star formation rate will go down,
and in turn less supernovae will form, giving time for the disk to relax again
in the potential well. All these kinds of feedback effects are now glossed
over.
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Figure 4.1: A pufferfish. A disk can puff up as well when enough supernovae
explode, but it will not puff up exactly this way.


