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Abstract

An efficient method for simulating the reionization history of the Universe
in very large boxes (≥ 500 Mpc/h comoving) while resolving very small
mass halos has been developed. The method has two main steps: Firstly,
a large number of points, that satisfy a given correlation function, are dis-
tributed in space using the Mandelbrot prescription for such a point pro-
cess. Secondly, a mass is assigned to each point using the Press-Schechter
formula as a probability distribution function (PDF). As an outcome the
method gives the halo list positions and masses as well as the large scale
density and velocity within the box. This method makes it possible to
quickly explore a multitude of reionization scenarios for the LOFAR Epoch-
of-Reionization key science project data. Here we demonstrate the method
by creating a comoving 500 Mpc/h box at redshift 10 with halo mass reso-
lution of 108M� resulting in ∼ 6 × 109 halos needed to get the box to the
average density of the Universe and the point process to converge. We also
run, as an example, a radiative transfer code to create an ionization box at
z=10.
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1 Introduction

1.1 Epoch of Reionization

At about 400,000 years after the Big Bang ions and electrons were able to re-
combine to neutral hydrogen and helium (abundances of heavier elements are
negligible at this early time) as the Universe’s density and temperature had
dropped enough by that time. After matter and radiation decoupled the Uni-
verse entered the so called Dark Ages which ended about 400 Myrs later when
the first radiation emitting objects have formed. The first objects, e.g., Pop
III stars and mini-quasars, started to emit UV photons thus creating ionized
bubbles of hydrogen around themselves. After some time enough ionizing
sources have formed to almost completely ionize the Universe. The time be-
tween which the gas went from entirely neutral to almost entirely ionized is
called the Epoch of Reionization (EoR). Figure 1 illustrates the various stages
that gas in the Universe went through since recombination.

Studying this epoch can give us insight on many important topics in cos-
mology, such as galaxy formation and the formation of quasars and metal poor
stars (such as Pop III stars). Though a lot of theoretical effort is put into under-
standing the physical processes that drive the EoR there is little observational
evidence most of which is either indirect or dependent upon the model being
used. However in the coming years a number of projects plan to probe this very
important cosmological epoch, among which are LOFAR (LOw Frequency AR-
ray), MWA (Murchison Wide Array) and SKA (the Square Kilometer Array).

Currently, there are two main observational constraints on the EoR, the
CMB and the Lyman-alpha forest, the other observational evidence is either
to weak and/or model dependent. The first of the strong constraints comes
from the Cosmic Microwave Background (CMB) temperature and polarization
which have been measured by the WMAP satellite. This can be used to ob-
tain the Thomson scattering of CMB photons off free electrons which are being
produced in the ionization processes during the EoR along the line of sight,
known as the Thomson optical depth. From this optical depth it can be in-
ferred that the Universe was mostly neutral until about 400 million years after
the Big Bang, after this the ionization started. The second constraint comes
from the Lyman-alpha forest measurements found along the spectra of distant
quasars. The Lyman-alpha forest appears due to neutral hydrogen, so these
measurements can give us some information about reionization. It tells us that
the Universe is almost completely ionized at low redshift, only about 1 hydro-
gen atom in 10,000 is neutral. It also tells us the reionization process finished
at about a redshift of 6.5.

These constraints tell us between which times the Universe should have
been ionized, but it does not tell us anything about the process itself; how
long it took to ionize the Universe, what source(s) ionized the Universe or
how it spread through the Universe (will dense clusters or voids be ionized
the fastest?). These are questions which we hope to answer with the next gen-
eration of radio telescopes mentioned earlier (Jelić et al. 2008, Labropoulos et
al. 2009, Zaroubi, 2009 to be published).

One of these next generation radio telescopes is LOFAR which is being
build in The Netherlands, which will soon be starting to observe the EoR. The
next subsection will deal with LOFAR and its specialized EoR project.
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Figure 1: We see the Universe is completely neutral until about 400 million
years after the Big Bang when the first objects are being formed and start to cre-
ate ionized bubbles in the otherwise neutral Universe. The amount and sizes
of the sources increases with redshift until about a billion years after the Big
Bang when they fill the entire Universe meaning that it is almost completely
ionized at this point.
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1.2 LOFAR

Early radio telescopes were large dishes that collected the signal that was then
processed and analyzed. However to get better and better resolution one would
need to build bigger and bigger dishes, which would simply be unaffordable,
so another approach is required. LOFAR gets around this problem by using
a new technology; it consist of an array of antennas spread over a large area
instead of using a single giant dish. The signals received by these antennas are
fed into a central processor which then emulates a ’standard’ telescope. This
central processor is the Blue Gene/P supercomputer located at the ’Rijksuni-
versiteit Groningen’. The end goal is to have an array of about 19000 antennas
spread over an area with a diameter of 350 km with the core area located near
Exloo, The Netherlands1.

LOFAR can be used for many applications in astronomy, such as looking at
the Epoch of Reionization (EoR) and the dark ages and looking at massive high
redshift galaxies. But because LOFAR can also be turned into a more generic
Wide Area Sensor Network it can be used for non-astronomical applications as
well, such as geographical and agricultural applications. The project of interest
here, is the EoR-project. The primary scientific goals of which are: 2

• To arrive at a statistical estimate of the variation in the 21-cm neutral
hydrogen signal as a function of redshift.

• To determine the spatial-frequency power spectrum of the brightness
temperature fluctuations on angular scales of 3 arc-minutes to 5 degrees
and frequency scales of 0.01 MHz to 10 MHz.

• To image Strömgren bubbles around bright sources and to make targeted
observations to detect the 21-cm forest, which is so far undetected.

• Cross-correlation of the 21-cm data set from the EoR with astronomical
surveys in other wavebands like the near-infrared and also with the new
CMB observations.

This can be done by comparing the signal we receive to ionization simulations.
Though this might sound easy and straightforward there are a lot of difficul-
ties involved, for example the removal of foregrounds from the relatively weak
EoR signal (Jelić et al. 2008) as well as the large number of free parameters
involved in creating a single reionization scenario. This second point is ad-
dressed by BEARS, the reionization code written by R. M. Thomas (Thomas et
al. 2009) which can explore a large part of the parameter space in an efficient
way. But there is a related problem with this, the large field of view of LOFAR
(∼ 5◦ × 5◦) requires big simulation boxes of the order of 1 Gpc3. Which brings
us to the goal of this project.

1http://www.lofar.org/p/geninfo.htm
2Adopted from R. M. Thomas’ thesis; Cosmological reionization simulations for LOFAR
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1.3 Goal of this project

As stated above it is necessary to simulate big reionization boxes to use for LO-
FAR, because of the large field of view, but there are also other reasons why this
is required. The first reason has to do with the analysis of the power spectrum.
We know the power spectrum peaks at about a scale of 120 Mpc, to analyze
the power spectrum on this scale one needs to look at very larges volumes; at
least 400-500 Mpc to make sure that one is not constrained to just one mode in
the simulation box. The second is to be able to compare the simulations with
the large-scale CMB data, for example when looking at the polarization of the
CMB. And the third has to do with reducing the amount of repetition when one
creates a simulated datacube. The way one usually creates such a datacube is
by stacking the same box at different times behind eachother to create an ion-
ization history, but this causes the structures in that box to repeat themselves.
If one increases the box sizes the amount of boxes one has to stack reduces,
thus reducing the amount of repetition.

While in theory it is doable to create such a large simulation box with stan-
dard N-body simulations it is not very practical, as in order to simulate the
reionization process one needs to resolve the bulk of the halo masses (Mhalo ≈
109M�) in which ionization sources reside which makes such simulations prac-
tically impossible to obtain as it requires a huge amount of active memory as
well as storage capacity. The second reason is that N-body simulations take a
long time to run, part of this is that they include a lot of different effects as well
as that they keep information on all the cells in the grid even if most are empty.
This causes a lot of memory to be needed if one would like to simulate a big
box (for reference we want to get a box with sides of 500 comoving Mpc/h)
with a reasonable degree of accuracy. Especially, if one takes in to account that
we do not typically have a single box, but rather a series of boxes at different
redshifts to be able to simulate the ionization history of the Universe.

Therefore, it becomes clear that we will need a different method of creating
large simulation boxes while resolving the halos responsible for reionization.
Here we propose an approximate method which circumvent the memory, stor-
age and running time issues by keeping only the positions and masses of the
halos responsible for reionization while roughly estimating the IGM density
and velocity fields.

The halo list and IGM density are created by randomly distributing points
(halos) in the simulation box that satisfy a given correlation function, the masses
of these points are then assigned using the Press-Schechter mass function as a
PDF. This process is very simple and greatly reduces the amount of memory
and run time needed for these simulations. This method also helps us with the
second issue as we just need to have a list with the halo positions and masses
instead of keeping information on the entire grid, thus also greatly reducing
the storage space required.

Of course this method sweeps a lot ’under the carpet’ when compared to
N-body simulations, but it is good enough for our purpose as well as a lot
faster than using a N-body simulation. The goal of this project is to create the
aforementioned method to use with the BEARS ionization code allowing us
to obtain different reionization histories on very large scales in a time, storage
and memory efficient manner.

The rest of the report is structured in the following way: Section 2 will
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outline the steps taken to realize the method followed by an explanation of each
step in more detail. In section 3 we will present results obtained by using the
method. After that there will be a summary of the BEARS ionization code along
with some ionization maps it produced after plugging in the data obtained
with this method in section 4 followed by the conclusion and a look at possible
future work in section 5.
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2 The method

2.1 Outline

As mentioned in the previous section we want to create a list of halos which
contains their masses and their positions. First we would like to obtain posi-
tions for theses halos. Of course we can not just assign random positions to
these halos as we know that in the real Universe objects are clustered due to
clustering of the primordial matter distribution, hence their positions have to
reflect that. Our starting point is choosing a certain correlation function which
we assume the halos adhere to; obviously this correlation function will change
as a function of redshift. It will also change as a function of halo mass, how-
ever, this effect we ignore as it complicates the simulation method; although
we note that even then our method could be modified to include this effect. To
obtain such positions we use the Mandelbrot prescription (Mandelbrot 1975,
1977). In this prescription the clustering properties of the objects are taken into
account.

Secondly, we need a way to assign masses to the halos we generated with
the Mandelbrot prescription. To do this we need a PDF that gives the proba-
bility for a halo to have a certain mass M at redshift z. This function can then
be used to assign masses to the halos in our box. For this we choose to use the
Press-Schechter formalism (Press & Schechter, 1974), this formalism predicts
the mass distribution of bound objects at a certain redshift z.

In the following subsections a more detailed description of how this works
exactly is given. Here we just outline the steps we follow to obtain a very
large box simulation: First, we calculate the PDF of the mass distribution at a
given redshift as predicted by the Press-Schechter formalism. Next, we limit
the number of halos we use for populating our box such that the total mass
in our simulation box is equal to the average mass such a volume would have
in the real Universe. Furthermore we make sure that the number of halos is
enough for the Mandelbrot point process to converge. Throughout the report
we adopt the value for the energy content of the Universe found by WMAP,
9.9 · 10−30g cm−3 and an ΩM of 0.27.

Furthermore we need to introduce a minimum mass (Mmin) the halos we
are accepting must have. We can not go all the way down to very small masses,
because that would require an enormous amount of halos. This would in-
crease the amount of memory and storage space needed dramatically, which
goes against the purpose of creating a time efficient method to obtain these
boxes. Of course we need to balance this against the fact that one would like
a reasonable degree of sensitivity. The minimum mass we decided upon is
(Mmin = 108M�), for reference this results in about 6× 109 halos.

We are also interested in cresting the cosmological density field, which one
must have in order to apply the radiative transfer code, BEARS. The density
field is used to determine the ionization profile around a given source. Since we
already obtained the masses and positions of the halos getting the density field
from this is quite straightforward. The only thing we need to do is grid our
box, calculate the density inside each cell and smooth the field afterwards to
prevent huge jumps in the density between gridcells. We can take a reasonably
large gridscale here as we mostly care for the density on large scales.

The last thing we would like to have is the velocity field, the reason for
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this is the redshift distortions that will be in the observations done by LOFAR.
The biggest effect of this for our purpose is the Kaiser effect (Kaiser, 1987).
This effect is only observable on large scales, it is caused by infalling motions
along the line of sight which will cause the structure in redshift space to be
’squashed’. The effect that this will have on real space is that the contrast be-
tween overdense and underdense regions appears larger than it in reality is,
i.e. overdense regions appear to be even more overdense while underdense
regions appear to be even more underdense. To be able to simulate the LOFAR
observations with our method redshift distortions must be included. This can
be accomplished by using the velocity field, which can be created, in the linear
case, from the density field by using the mass conservation formula.

Once we have obtained these four quantities; masses, positions, density
field and velocity field, we can use the BEARS radiative transfer code to create
ionization maps out of this for different reionization scenarios, for example
using different ionization sources (Pop III stars, QSO’s). BEARS will create
ionized bubbles around the most massive halos (M ≥ 1010M�), which we
assume to have the strongest ionizing sources. Especially for the case in which
QSO’s play a role in ionization you expect them to be in the most massive halos,
because smaller halos are unlikely to be able form such an object.

The entire process is depicted in the flow chart given in figure 2. The last
block in the figure is the observable EoR, which can be simulated by combining
the ionization maps with the redshift distortions which we can obtain using the
velocity field. Due to the fact that at the time of writing we have only created
one box we can not say much about this yet, but we plan to do this in the future
(see also section 5).

To summarize: the steps described above are as follows:

• Obtain positions for the halos using the Mandelbrot prescription

• Assign masses to these halos using the Press-Schechter formalism

• Use the above two to get a large scale density field

• Obtain the velocity field using the density field

Next we will describe the steps outlined in more detail, specifically how the
various quantities we need for the simulations are obtained.
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Figure 2: Flowchart showing the various steps of the method and how they
relate
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2.2 Halo positioning: the Mandelbrot prescription

More than three decades ago Mandelbrot (1975, 1977) proposed an elegant way
to determine positions of galaxies that follow a certain correlation function.
His prescription uses a Rayleigh-Lévy random walk, at every step of the walk
a galaxy is placed. One starts at one of the galaxies and then chooses a random
direction and a distance l which is drawn from a probability distribution func-
tion which has a higher chance to assign a short distance than a long distance.
As previously said, one needs to do this because we know objects are clustered
and not just randomly distributed in space. The correlation function ξ is then
given by:

ξ(r) =
{

(r/r0)−α if r ≥ r0;
1 if r < r0.

Which leads to a cumulative pdf as follows (Peebles 1980):

P (> l) =
{

(l0/l)α if l ≥ l0;
1 if l < l0.

where α > 0 always. This process is repeated a large number of times each time
choosing a random and independent direction. One needs to do this often to
make sure that the distribution of drawn points converges to the desired pdf.
Since we have on the order of 6×109 halos this is not a big worry, still we verify
that the distribution has the correct correlation function (see section 3). For our
box we took l0 = 2 Mpc and α = 1.5. But we need to include the dependence
of this on redshift by multiplying with a factor D2(z), where D(z) is the linear
growth factor of density, which we need to include to take the (linear) growth
of density fluctuations into account.

2.3 Press-Schechter formalism

In 1974 the Press-Schechter formalism was developed (Press & Schechter 1974),
it predicts the mass distribution of objects formed through hierarchical cluster-
ing. Hierarchical clustering is the formation mode of structures in the Universe
according to cold dark matter scenarios. Hierarchical clustering tells us that
small objects merge to form bigger objects, which form bigger objects again
themselves and so on. What this means is that it predicts that there are a lot
of small structures (or halos in the context of this project) compared to larger,
more massive, structures. Although this method has some limitations it is in
remarkable agreement with N-body simulations.

The Press-Schechter formalism is based on assuming a Gaussian random
field for the density perturbations, linear gravitational growth and spherical
collapse. To determine the amount of halos at redshift z the density field
smoothed on a mass scale M is used, δM . Using that we know that δM is dis-
tributed as a Gaussian variable with a mean of zero and a standard deviation
σ(M) we can write the probability that δM is larger than some δ as (White 1995):∫ ∞

δ

dδM
1√

2πσ(M)
exp[− δ2

M

2σ2(M)
] =

1
2
erfc(

δ√
2πσ(M)

) (1)
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The ansatz is to identify the above probability with the fraction of particles
enclosed in collapsed halos of mass M or greater at a redshift z. Then there are
two more things needed. The first is that the value used for δ is δcrit(z), which
is the critical density found for a spherical top-hat extrapolated to the present.
δcrit(z) is given by:

δcrit(z) =
1.686
D(z)

(2)

Where D(z) is the linear density growth factor, with D(z = 0) = 1. The
second is that the fraction of matter in halos above a mass M should be mul-
tiplied by a factor 2 to make sure that every particle ends up in a halo with a
mass M > 0. Using this we can write the formula for the mass fraction in halos
above mass M at redshift z as (White 1995):

F (> M |z) = erfc(
δcrit(z)√
2πσ(M)

) (3)

The factor 2 is necessary to make sure we are not only including positive
fluctuations of δM . However this factor of 2 was also found from the “cloud-
in-cloud” problem as described in Bond et al. (1991). If we differentiate the
fraction of matter in halos above mass M we obtain the mass distribution. Let
dn be the comoving density of halos between masses M and M + dM we find
(White 1995):

dn

dM
=

√
2
π

ρm

M

−d(lnσ)
dM

νce
−ν2

c /2 (4)

With νc = δcrit(z)/σ(M). Later on numerical simulations showed that the
standard Press-Schechter function over-estimates the number of high mass ha-
los while underestimating the low mass ones as predicted by Peacock and
Heavens (1990). To remedy this Sheth & Tormen (1999) developed a new mass
function, which we use here.

First let ν ≡ [δcrit(z)/σ(M)]2, for initially scale-free spectra in models with
Ω0 = 1 and Λ0 = 0 we get (Sheth & Tormen 1999):

νf(ν) = M2 n(M, z)
ρm

d log m

d log ν
(5)

When fitting to numerical simulations Sheth and Tormen found the follow-
ing fit, which is a modification to the Press-Schechter function:

νf(ν) = A(1 +
1

ν′p
)(

ν′

2
)1/2 e−ν′/2

√
π

(6)

With ν′ = aν, with a = 0.707, p = 0.3 and A ≈ 0.322, which follows from
the requirement that the integral of f(ν) over all ν equals 1. For reference the
original Press-Schechter formula has values of a = 1, p = 0 and A = 0.5 (Sheth
& Tormen 1999).

We used the Sheth and Tormen mass function to create the probability dis-
tribution functions from which we have drawn the masses to fill the box. The
halo mass which contributes the most mass in total is called M∗. Note that
M∗ is not the mass which most of the halos have, rather halos with mass M∗
contribute the most to the total mass in a given volume.
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2.4 Density field

Once a list of halo positions and masses is obtained we can use it to create an
underlying density field. The density field is needed for three reasons. The
first is that we need it for the radiative transfer code to determine the required
ionization profiles for the ionizing sources. The second reason is that we need
the density field to be able to obtain the velocity field, which we need in turn to
simulate redshift distortions. The last reason is that we need it to calculate the
differential brightness temperature from our simulations, which is the quantity
that is observable with LOFAR.

To obtain the density field we grid the box and calculate the average den-
sity in every gridcell, a 5123 grid was used for this. After that the field was
smoothed using a Gaussian smoothing filter with a smoothing radius of 2 Mpc.
This means every point gets smoothed by taking a weighted average of the
surrounding points. This is necessary to make sure that there aren’t big differ-
ences in density on the ’borders’ between neighboring gridcells, i.e. to prevent
’jumps’ in the density, but instead to make it a smooth transition from one cell
to the other.

2.5 Velocity field

The velocity field can be obtained by using the density field, since the two are
coupled. Particles move away from underdense regions and towards over-
dense region because of gravitational attraction. In Fourier-space there is an
easy relation between density and velocity field (Coles & Lucchin 2002):

δ(x) = −O · V
aHf

(7)

To get the velocity field we need to transform our density field to Fourier-
space. Once we have that we can use the above relation to obtain the velocity
field in Fourier-space. After that we can transfrom back to real space to get
the real velocity field. Note that we will in fact get three velocity fields from
this since V = {Vx, Vy, Vz}. We normally pick one of these as the line of sight
direction.
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3 Results

This section will be devoted to showing some results obtained by using the
method described above. The first result is shown in figure 3. It shows the
Sheth & Tormen mass function for a number of redshifts, it was obtained from
the code which creates the pdf for the mass function. The pdf shown here for
redshift z = 10 is the one the masses that fill the box have been drawn from (at
the moment of writing only one box has been created for a redshift of 10, but
this will surely be extended in the near future). As we can see the chances of
picking a halo of mass M decreases fast with halo mass. Also we can see that
for increasing redshift the chances of picking a high mass halo drops as well
as the maximum mass that can be assigned to a halo. This is what one would
expect based on hierarchical clustering, the lower redshift one takes the more
time the halos have had to merge to bigger structures. At a higher redshift
there has not been enough time yet for the most massive objects we see today
to have formed.
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Figure 3: Showing the PDF according to the Sheth & Tormen mass function
for a number of redshifts, obtained by using the code that calculates the mass
function at different redshifts.

Coupled to this is figure 4, which shows the total mass in halos of mass M
versus halo mass M. First of all we can see it has the expected knee-shape, the
maximum in this plot is the aforementioned M∗. As expected the cutoff at the
high mass end as well as the value for M∗ shifts to lower masses as the redshift
increases, as we already saw in the previous figure as well. The last thing to
note about this figure is that at redshift z = 10 the value for M∗ is about 109M�,
this is above the minimum mass we used for our halos (108M�). Which is
comparable to the halo resolution obtained in small scale N-body simulations.
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Figure 5 shows the positions of halos coupled to masses drawn from the
Sheth & Tormen mass function. The figure only shows the heaviest halos (M >
1010M�), which are the ones used for the ionization code. The points in the
figure represent the halos, the point size is scaled with the mass of that halo
in a linear way. Again we see that the number of halos with mass M drops
dramatically with increasing mass.

Figure 6: The dashed line is the correlation function estimated using the Landy
& Szalay estimator for a sample of 100,000 data points and 5,000,000 ran-
dom points, the dot-dashed line is the correlation function estimated using the
Landy & Szalay estimator but for samples 10 times as big. The solid line is the
input correlation function.

We also checked whether the points are actually correlated to see if the code
produces the correct distribution for the halo positions. For this we used the es-
timator for the correlation function suggested by Landy & Szalay (1993), which
can be written as:

ξLS = 1 + (
Nrand

Ndata
)2

DD(r)
RR(r)

− 2
Nrand

Ndata

DR(r)
RR(r)

(8)

Where DD(r) are points from the data compared to other points from the
data, DR(r) are points from the data compared with points from a random
sample, RR(r) are points from a random sample compared with other points
from this sample, Ndata is the number of data points and Nrand is the number
of points in the random sample. However, this formula assumes one compares
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every pair of points in the two samples, but this is not possible due to run
time issues for the large samples we need to make the distribution converge to
the desired PDF. In our case we only took a small number of points from the
entire sample and compared all other points to those, because of this a factor
of (Nrand

Ndata
) drops out and we need a slightly different formula to estimate the

correlation function:

ξLS = 1 + (
Nrand

Ndata
)
DD(r)
RR(r)

− 2
DR(r)
RR(r)

(9)

The result of this is plotted in figure 6. In this figure the correlation func-
tion estimator has been plotted for two samples of different sizes as well as
the input correlation function as given in section 2.2. Due to time constraints
we were unable to make a plot of this for the latest box we ran while having
a reasonable samplesize, but this plot still serves to show that we obtain the
desired correlation function. We can see that for the smaller of the two samples
the estimator of the correlation function has not converged to the correlation
function we put in. The larger sample is already much closer to the correlation
function that was put in, it has not entirely converged to it yet but it is much
better compared to the smaller sample. It should be noted that the larger sam-
ple still only contained 106 points while the simulation box has about 6 × 109

points. From this it is save to assume that for such a large sample we obtain
the correlation function we initially put in.

Finally we can look at the density and velocity fields, in figure 7 a slice of the
density field has been plotted along with the corresponding slice from the ve-
locity field. The density field shows over- and underdensities, i.e. ρ/ρmean − 1.
The black contours are at an overdensity of 0, the red contours show overden-
sities and the blue ones underdensities, the spacing between the contour levels
is 0.05. As we can see they match very well, at the positions of overdensities we
see velocity vectors pointing towards it and at underdense sites we see velocity
vectors pointing away as expected.

Figure 7 shows the density field without redshift distortions, for compar-
ison we included a plot of a density field with and a density field without
redshift distortions (figure 8). The colors and level spacing in this plot are the
same as for figure 7. We see the expected differences, overdense regions appear
to be even more overdense then they are in reality while underdense regions
appear to be even more underdense. This results in a much larger observed
contrast between overdense regions, such as clusters and underdense regions,
such as voids, which in reality is a lot shallower. We can see the effect is quite
large confirming again the need to include this effect in our simulations.
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Figure 7: The top panel shows the density field, the bottom panel shows the
corresponding velocity field
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Figure 8: The top panel shows a slice of the density field before redshift distor-
tions are taken into account, the bottom panel shows the same slice including
the redshift distortions. Due to time constraints this plot is from an older box,
but it still serves to show the large effect redshift distortions have on the den-
sity field.
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4 Ionization simulations

When the LOFAR EoR-project is going to start collecting data it will be neces-
sary to have algorithms that can extract the signal from this. To test whether
these algorithms are stable and reliable one has to simulate a large range of
reionization scenarios (Thomas et al. 2009). Due to the large number of sim-
ulations that need to be run it is inefficient to use a full 3-D radiative transfer
code as these take a long time to run. To solve this a new 1-D radiative trans-
fer code, BEARS (Bubble Expansion Around Radiative Sources) (Thomas et al.
2009), was created. Here a short summary will be presented of how this works,
for the full treatment see Thomas et al. (2009).

4.1 Ionization code

Instead of using a full 3-D radiative transfer code BEARS assumes the ioniz-
ing bubbles around radiation sources to be spherically symmetric, the ionized
fraction and temperature profiles for these bubbles are derived from a pre-
made catalogue using the 1-D radiative transfer code developed by Thomas &
Zaroubi (2008). This is done by solving a set of rate equations at every gridcell
as a function of time. The time-evolution of the following species is followed:
HI , HII , HeI , HeII and HeIII as well as the temperature. The code used for
this is modular, making it a straightforward process to put in different spectra
corresponding to different ionization sources (stars, qso’s).

Using the 1-D radiative transfer code a number of ionization profiles are
computed which are stored in a table to ensure faster execution. Once one
knows the positions and masses of the halos, their velocities, the underlying
density field and the ionizing luminosity if the simulation also contains gas the
following steps are taken to create ionization bubbles around the sources:

• Given the redshift, the ionizing luminosity (if there is gas) and the type
of source an ionization profile is chosen from the previously generated
catalogue of profiles.

• The source is usually in an overdense region with a certain profile, which
varies from source to source. Therefore the following approximation is
used: the overdensity within a certain radius Rod of the source is com-
puted. It is then assumed this source is in a uniform density field with a
density equal to the average overdensity within Rod. Which translates to
taking the same ionization profile but at a higher redshift.

• Then a correction is made for overlapping ionized regions (becomes espe-
cially important at lower redshifts). The photons which ionize the over-
lapping region are redistributed in other regions which are still neutral,
thus conserving the amount of ionizing photons.

• When computing the ionization history, ionized regions are mapped one-
to-one from the current simulation snapshot to the next.

The averaging radius Rod is calibrated by taking one point and calculating the
ionization profile using radiative transfer. Then a very small Rod around one
calibration point is taken which is increased until the extent of the ionization
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profile for this Rod is equal to the radiative transfer calculation done before.
After this all the other points can be scaled to this calibrated point.

Finally the correction for overlapping ionization regions, which is espe-
cially important for lower redshifts where the ionizing sources become more
numerous as well as heavier. A region of overlap is a region which is being
ionized by more then one source, which results in unused photons in this re-
gion. What is done to compensate for this is that all the bubbles which are
overlapping in this particular region are increased in size until the increased
volume equals that of the overlap. This makes sure that the amount of ion-
izing photons is conserved as well as ensuring that all the previously unused
photons are homogeneously distributed among the entire region.

These simulations have proven to be a lot more time efficient then a full
3-D radiative transfer code, while still maintaining a good degree of accuracy
as shown in Thomas et al. (2009).

4.2 Ionization map

Using the ionization code on the created box produces a box with ionized bub-
bles around the heaviest halos (M ≥ 1010M�). This box gives a snapshot of
the reionization history of the Universe at a redshift z = 10 Figure 9 gives an
example of a slice taken from this box. For this box the reionization scenario
assumes that the Universe was ionized by QSO’s, but due to the way the code
is written it is easy to probe other scenarios as well. Because of the fact that
we only have one snapshot of the reionization history we can not say much
about it yet, we know that at high redshift all the hydrogen is neutral and that
at low redshift nearly everything is ionized with just one image in between.
So to get a better understanding on how this process has developed through

Figure 9: Shows a slice from the box with ionized bubbles around the heaviest
halos
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time we need to have more snapshots, which will be addressed in future work
(see next section). What we can see in this picture is that at redshift z = 10 for
this particular scenario we expect there to be a number of ionization sources
already which are creating ionized bubbles around them. What we can also
see is that at this redshift the bubbles are far from volume filling as one would
expect them to be.

4.3 Observable quantity: differential brightness temperature

In radio astronomy, where the Rayleigh-Jeans law is usually valid, the radi-
ation intensity, I(ν) is expressed in terms of the brightness temperature, as
follows (Zaroubi & Silk 2005):

I(ν) =
2ν2

c2
kTb, (10)

where ν is the radiation frequency, c is the speed of light and k is Boltzmann’s
constant (Rybicki & Lightman 1979). This can only be observed differentially as
a deviation from the cosmic microwave background TCMB . The predicted dif-
ferential brightness temperature deviation from the cosmic microwave back-
ground radiation is given by (Field 1958; 1959; Ciardi & Madau 2003),

δTb = 20 mK (1 + δ)
(xHI

h

) (
1− TCMB

Ts

) (
Ωbh

2

0.0223

) [(
1 + z

10

) (
0.24
Ωm

)]1/2

.

(11)
Here Ts is the spin temperature and Ωm and Ωb are the mass and baryon den-
sity in units of critical density and δ is the overdensity (ρ/ρmean − 1) (Thomas,
2009, PhD thesis). In this report we take Ts to be much larger than TCMB . The
differential brightness temperature is the physical quantity that LOFAR will
observe.

In the figure below (figure 10) we plotted the differential brightness tem-
perature as defined above, there xHI is the neutral fraction of hydrogen, which
is zero inside the bubbles and one everywhere else. In the figure, brighter col-
ors mean higher temperatures and the black circles are the ionization bubbles
around their sources. The differential brightness temperature in these bubbles
is zero because there xHI = 0.
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Figure 10: Shows the differential brightness temperature in the same slice as
depicted in figure 9
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5 Conclusion

In this project we set out to develop a method capable of creating a large box
(500 comoving Mpc/h sides) in a time and memory efficient manner. We used
the Press-Schechter formalism and Mandelbrot prescription to get distribu-
tions for halo masses and positions respectively, from this we obtained a list
of halos which compared to N-body simulations is a very storage space effi-
cient way of simulating. Then we obtained density and velocity fields. We
knew that redshift distortions would be an important effect, so we took those
in to account by using the velocity field. This method is able to fill a box of 500
comoving Mpc/h a side with halos starting from a minimum mass of 108M�,
resulting in ∼ 6 · 109 halos, in a few days time, using ∼ 300− 350 GB of storage
space. While this may seem long it should be noted that to reach this kind of
sensitivity with a traditional N-body simulation would have take a lot longer
as well as take up a lot more storage space. Also of note is that this was not
done on a state of the art supercomputer as opposed to N-body simulations as
well as the likely possibility of further optimizing the method.

Future work

At the moment we created a box with sides of 500 comoving Mpc/h with a
minimum halo mass of 108M�, in the future it might be desirable to go to
lower masses to get a better approximation of reality or to make even larger
boxes. However since the PDF is non-linear going down to a mass of 107M�
would require a lot more halos. We choose not to go down to that mass for the
moment, but it is most likely possible once the code is further optimized

The second point is that so far we only have one box, so the only thing we
can do at the moment is get a ’snapshot’ of the ionization at redshift z = 10.
What we would like to have is a series of boxes at different redshifts to create
entire ionization histories because we could get a lot more information out of
these especially when comparing different scenarios with one another. This
will be done in the very near future, since we have a working method to create
a box at a given redshift it is rather straightforward to create a series of boxes
over a range of redshifts.

The last thing to note is that should one desire this method can also be used
to look at what happens on the smaller scales with the ionization sources, since
both the Press-Schechter formalism and the Mandelbrot prescription are also
valid on small scales.
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