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Abstract

In the linear regime and at the far observer limit there is a simple relation
between the two point correlation functions of the Gaussian smoothed density-
contrast and peculiar velocity. This relation asserts that the derivative of ve-
locity correlation function with respect to the smoothing scale is equal to the
density contrast correlation function up to some constants. This relation has
been shown to work beyond the linear regime to a certain extent. In this re-
search project we explore, with numerical simulations, down to which (quasilin-
ear) scales this equation holds. We find that this relationship holds down to a
Gaussian smoothing scale of 5 h−1Mpc with 16% error.

The second part of this Klein Onderzoek was to determine whether we could
find an estimate for σ8 from the peculiar velocity data using the same relation
between the correlation functions. For this part we used data from the PSCz
galaxy redshift catalogue and the SEcat galaxy peculiar velocity catalogue. Here
we adopted the WMAP5 Ωm value (0.27) and assumed that the velcity biasing
is negligible. We estimate the value of σ8 using a theoretical estimate for the
density-variance, determined from the standard ΛCDM Model. σ8 is obtained
by fixing all cosmological parameters to the values measured by WMAP5. Using
a chi-squared estimate, we find that σ8 = 0.73±0.12 , a result that is consistent
with that obtained from WMAP.
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1 Introduction

1.1 Cosmological Background

The model that most accurately describes our Universe as we see it today is the
so-called ΛCDM model. It assumes a cosmological constant, the presence of cold
dark matter and a scale-invariant spectrum of primordial density fluctuations.
These pertubations are thought to originate from quantum fluctuations at the
very early universe during the so-called inflationary epoch.
The most accepted explanation for the formation of structure is the gravita-
tional instability theory, also known as Jeans instability. Jeans showed that
minor density and velocity fluctuations with respect to a static, homogenous
and isotropic background, could evolve as a function of time. The density ρ,
full velocity V and the mean gravitational potential ϕ can be seen as a colli-
sionless gas. Their evolution will be according to the fluid equations: the Euler
equation, the continuity equation and the Poisson equation.

∂V
∂t

+ (V · 5)V +
1
ρ
5 p+5ϕ = 0 (1)

δρ

∂t
+5 · (ρV) = 0 (2)

52ϕ− 4πGρ = 0 (3)

It is useful to write these equations in comoving coordinates and express the
cosmological fields in terms of the density-contrast and peculiar velocity. The
density-contrast is defined as:

δ(r) =
ρ(r)− ρ

ρ
(4)

where ρ(r) is the density at position r and ρ is the mean background density of
the universe. The peculiar velocity is defined as:

v = V −Hr (5)

where V is the physical velocity and Hr is the velocity of the expansion of the
universe. The gravitational potential pertubations in comoving coordinates are
ϕ.
The fluid equations in comoving coordinates are:

∂v
∂t

+
1
a
(v · 5)v +

ȧ

a
v +

1
a
5 ϕ = 0 (6)

∂δ

∂t
+

1
a
5 (1 + δ)v = 0 (7)

52ϕ = 4πGa2 p δ (8)

Notice that in (eq. 6), ȧ/a is defined as the Hubble parameter.

In the case of small density and velocity pertubations, the the nonlinear cou-
pling terms in the continuity and Euler equation can be neglected. The set of
fluid equations can be linearezed yielding:

∂v
∂t

+
ȧ

a
v = −1

a
5 ϕ (9)
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∂δ

∂t
+

1
a
5 ·v = 0 (10)

52ϕ = 4πGa2 ρδ (11)

Here a is the cosmological expansion factor and ρ is the cosmological background
density.

1.2 The Cosmological density field

In order to solve the linearized fluid equations for pertubations in the density
field, the time derivative of the linearezed continuity equation (eq. 10) is subsi-
tuted in the divergence of the linearezed Euler equation (eq. 9). The result is
combined with the Poisson equation (eq. 11) to yield:

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
= 4πGρδ (12)

The result is a second-order partial differential equation in time alone. The
solution can be split in a time component and a spatial component:

δ(r, t) = δ1(r)D1(t) + δ2(r)D2(t) (13)

The first part of the solution reflects the growing mode, while the second part
reflects the decaying mode. In this research project, the decaying mode will be
neglected. The subscript is dropped and the solution for the density-contrast
field will be:

δ(r, t) = δ(r)D(t) (14)

It is convient to think of a pertubation as a superposition of plane waves. This
has the advantage that waves evolve independently while the pertubations are
still small. The density pertubations can then be written as:

δ(r1) =
∑

k

δke
ik·r1 (15)

The goal is to find a linear relation between the two-point correlation functions
of the density-contrast and the peculiar velocity. The two-point correlation
function is defined as the probability for finding a typical neighbour at a distance
r. The expectation value of finding δ1 at r1 and δ2 at r2 is defined as:

< δ1(r1) δ2(r2) >=
∫ ∫

δk1e
ik1·r1δk2e

−ik2·r2d3k1d
3k2 (16)

The Wiener-Khinchin-theorem is used, which states that the power spectrum is
the Fourier transform of the expectation function of the density-contrast:

< δk1 δk2 >= Pkδ
3(k1 − k2) (17)

In this formula Pk is the Fourier transform of the power spectrum.This formula
has a solution when k = k1 = k2. The distance between the two points is
defined as r = r1 − r2. Because of isotropic arguments, we can say:

< δ1(r1) δ2(r2) >=
1

(2π)3

∫
P (k)eik·rk2dk sinθdθ dφ (18)
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The result of the angular integral is equal to 4π sin(kr)
kr . In this, the spheri-

cal zero-order Bessel function j0 is recognised. The last step is to replace the
expectation value with the desired two point correlation function.

ξd(r) =
1

2π2

∫
P (k)j0(kr)k2dk (19)

1.3 The Cosmological velocity field

With the solution for our density-contrast field (eq. 14), solutions for the grav-
itational and velocity pertubation field can be derived. The linear relation
between the two-point correlation function of the density-contrast field and the
peculiar velocity field will be found by both coupling them to the gravitational
potential. For the density, this is done in the Poisson equation (eq. 11). In
the linear regime it can be shown that the peculiar velocity is drawn from a
potential which can be coupled to the gravitational potential. (see Appendix
A.1.1)
The density-contrast and the peculiar velocity are now both coupled to the
gravitational potential pertubations, which means they can now be coupled to
each other. The total derivation of this formula will be found in the Appendix
(A.1.2). The final result is:

5 · v = −a · ∂
∂t
δ(r, t) (20)

We found for the solution of the density-contrast δ earlier (eq. 14). This gives:

5 · v = − 1
D
· ∂D(t)

∂t
δ(r) (21)

f is defined as the dimensionless linear velocity growth factor. The derivation
of this formula is shown in the Appendix (A.1.3). The equation will become:

5 · v = −f(Ωm)H0 · δ(r) (22)

The first approximation of the linear growth factor was made in 1980 by Peebles.
He found:

f ≈ Ω0.6
m (23)

This was worked out furhter by Lahav et al. in 1991. They made an estimate
for f in an universe with matter and a cosmological constant of [7]:

f(Ωm,ΩΛ) ≈ Ω0.6
m +

ΩΛ

70
(1 +

Ωm

2
) (24)

This clearly shows that the growth rate f mainly depends on the matter density
Ωm. The estimate of Peebles is therefore adopted in this study.

5 · v = −Ω0.6
m H0 · δ(r) (25)

The divergence of the peculiar velocity is proportional to the density, which
means that also it also is in Fourier space:

5 · vk ∝ δk (26)
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and we find that:
5 · v = H0 5

∫
vke

−ik·rd3k (27)

This means that the peculiar velocity will be:

v(r) =
−iΩ0.6

m H0

(2π)3

∫
k
k2
δke

−ik·rd3k (28)

We define the parameter β to be the ratio between the dimensionless linear
growth factor f(Ωm) (for which Peebles approximation is adopted (eq. 23))
and the bias parameter b. This latter is adopted to be equal to unity. β is
substituted in the above equation:

v(r) =
−iβH0

(2π)3

∫
k
k2
δke

−ik·rd3k ∝ −5 ϕ (29)

The general form of the two-point correlation function is [8]:

ξij(r) = 〈vi(x) vj(x + r)〉 = ξ⊥(r)δij + [ξ||(r)− ξ⊥(r)]rirj (30)

where r = |r|, r = r/r and ξ⊥ and ξ|| are the transverse and the radial correlation
functions. Since in the linear regime the peculiar velocity field is a potential field
(see Appendix A.1.1 eq. 62), the two correlations functions are not independent
from eachother [5]:

ξ||(r) =
d

dr
[rξ⊥(r)] (31)

The peculiar velocity field is adopted to be a Gaussian random field. Under
that assumption the total correlation function ξv(r) = 〈v(x) · v(x + r) is equal
to [5]:

ξv(r) = ξ||(r) + 2ξ⊥(r) (32)

The two point correlation function of the peculiar velocity can be defined in
terms of the density power spectrum.

ξv(r) =
β2H2

0

(2π)3

∫
Pkj0(kr)d3k (33)

where j0 is the zero-order spherical Bessel function and Pk is the Fourier trans-
form of the power spectrum. The above defined two point correlation function is
defined for the total peculiar velocity. Since our simulation data consists of the
line-of-sight peculiar velocity, we find for the line-of-sight two point correlation
function :

vl.o.s. = v · rl.o.s. (34)

So now we get:

ξl.o.s.
v (r) =

β2H2
0

(2π)3
×

∫
(rl.o.s. · k)2

k4
Pkj0(kr)d3k (35)

In the above equation Pk is the Fourier transform of the mass-density power
spectrum, r is the vector seperating the two points, j0 is the zeroth-order Bessel
function and r = |r|. One of the main assumptions in this research project is
that we are working at the far observer limit. This means that rl.o.s. and k
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are parallel. Another assumption of an isotropic field is adopted earlier, which
results in symmetry between the line-of-sight and the two orthogonal directions.
As a consequence of this, the total two point correlation function consists of
three times the line-of-sight two point correlation function.

ξl.o.s.
v (r) =

β2H2
0

3(2π)3
×

∫
Pk

k2
j0(kr)d3k (36)

In this Klein Onderzoek the fields are smoothed by a Gaussian filter. The
pertubations on scales smaller then the smoothing radius will dissapear. The

Fourier transform of the Gaussian smoothing kernel e−
k2R2

s
2 will therefor be

added to the equation. The derivative of the line-of-sight velocity two point
correlation function with respect to the smoothing radius Rs will become:

dξl.o.s.
v (r,RS)
dRs

= −2
3
β2H2

0Rs

∫
Pke

−k2R2
sj0(kr)

d3k
(2π)3

(37)

In the above equation, the two point correlation for the density-contrast is
recognized, which is given bij (eq. 19). The linear relation between the two-
point correlation functions of the density-contrast and peculiar velocity fields
can now be introduced:

dξl.o.s
v (r,Rs)
dRs

= −2
3
β2H2

0Rsξd(r,Rs) (38)

The two point correlation function in the limiting case of r = 0 is defined to
be equal to the variance of the measured quantity. If we use this definition in
above formula, we find the following linear relation between the variances of the
peculiar velocity σ2

v and the density-contrast σ2
d:

dσ2
v(Rs)
dRs

= −2
3
β2H2

0Rsσ
2
δ (Rs) (39)

This is the equation which will be used in this Klein Onderzoek. [15]

1.4 Going nonlinear

A number of assumptions were adopted by finding the relation between the
variance of the density-contrast and the peculiar velocity (eq. 39). The main
assumption is that the density-contrast is small |δ| ¿ 1 and the evolution can
be described by the set of linearezed fluid equations. When the density pertuba-
tions are of the order of unity, the interaction between the different scales can no
longer be neglected. The quasi-linear regime is entered. The Fourier transforms
of the fluctuations in the density-contrast, peculiar velocity and gravitational
potential will be represented by the set of non-linearezed fluid equations:

dv(k)
dt

+
ȧ

a
v(k)− 1

a

∫
dk′

(2π)3
[iv(k′) · (k− k′)]v(k− k′) =

1
a
ik · ϕ(k) (40)

dδ(k)
dt

− 1
a
ik · v(k)− 1

a

∫
dk′

(2π)3
iδk′ · v(k− k′) = 0 (41)

ϕ(k)
a2

= −4πGρu
δ(k)
k2

(42)
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These equations above show that in the general non-linear case, the continuity
equation and the Euler equation contain mode-coupling terms. The evolution
the density-modes k will no longer evolve independently from each other. [12]

The breakdown point of the linear regime is different for the density-contrast
field and the peculiar velocity field. From the relation between the two (eq. 22),
the peculiar velocity can be written as:

v(r) =
f(Ωm)

4π

∫
δ(r)

r′ − r
|r′ − r|d

3r (43)

This relation shows that in contrast to the density, the peculiar velocity is not
a local property. The evolution of the peculiar velocity depends on different
density-scales, which can be either linear or nonlinear. The scale of entering the
quasi-linear regime therefor differs for these two observables.

1.5 σ8 as a power spectrum normalization

The simplest inflationary ΛCDM model predicts a so-called scale invariant pri-
mordial power spectrum for the density, given by P (k) ∝ kn. There is a slight
preference for the value of n = 1, which was predicted by Peebles and Yu (1970),
Harrison (1970) and Zel’dovich (1972).
The power spectrum at the moment of the radiation-matter equality is the one
observed today. In the radiation-dominated era, pertubations on scales smaller
then the horizon can not grow. In the matter-dominated era this is possible,
but the pertubations evolve with different rates. The combination of the two
effects cause a bending in the orginally powerlaw spectrum on the scale of the
horizon at the radiation-matter-equality. The index of the power spectrum will
decrease by four at this bend. This is quantified in terms of the so-called transfer
function, whose square is the quantity by which the primordial power spectrun
is multiplied to obtain the final power spectrum. For linear pertubations it is
defined as the the ratio of the Fourier components at an early time ti and the
the Fourier components at a later time tf .

T (k, tf ) ≡ b(ti)
b(tf )

F (k, tf )
F (k, ti)

(44)

An estimate for the transfer function for an universe dominated by dark matter
over baryonic matter was made by Bardeen et al. [1], drawn from the work
of Bond and Salazy (1983), Bond and Efstathiou (1984), Efstathiou and Bond
(1985) and Bardeen (1985):

T (k) =
ln(1 + 2.34q)

2.34q
[1 + 3.89q + (1.61q)2 + (5.46q)3 + (6.71q)4]−1/4 (45)

where q ≡ k/hΓ Mpc−1. The Γ function was defined by Bardeen et al. to be
equal Γ = Ωmh. This was generalized by Sugiyama in 1995 [11] to:

Γ = Ωmhe
−Ωb(1+

√
2h/Ωm) (46)

The baryonic density is small in the ΛCDM model. It influences the power
spectrum by changing the the steepness of the slope after the turnaround point.
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The main influence on the power spectrum comes from the cosmological param-
eters Ωm, the matter density, and h, which is coupled to the Hubble parameter.
The height of the peak of the power spectrum is determined by the product of
Ωmh. Γ is inverse proportional to the horizon scale at radiation-matter equal-
ity, which scales as 1/Ωmh

2, and thus sets the scale at which the bending takes
place.

Figure 1: A simplified sketch of the powerspectrum

Part of this Klein Onderzoek is aimed at finding an estimate of the cosmologi-
cal parameter σ8 from peculiar verlocity data only. σ8 is defined as the r.m.s.
density variation when smoothed with a tophat-filter of radius of 8h−1 Mpc. [9]
The definition of σ8 in formula-form is given by:

σ2
8 =

1
2π2

∫
W 2

s k
2P (k)dk (47)

where Ws is tophat filter function in Fourier space:

Ws =
3j1(kR8)
kR8

(48)

where j1 is the first-order spherical Bessel function. The parameter σ8 is mainly
sensitive to the power spectrum in a certain range of k-values. For large k, the
filter function will become negligible and the integral will go to zero. For small
k, the factor k2 in combination with the power spectrum factor k−3 will make
sure that the integral is negligible. In other words, σ8 is mostly determined by
the power spectrum within the approximate range 0.1 ≤ k ≤ 2. Since σ8 is
only sensitive to a certain range of k, any difference in the values of the Hubble
uncertaintenty, the baryonic matter density and the total matter density will
influence the found estimate.
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2 The purpose of this research

The first goal of this Klein Onderzoek is to determine to which scale the lin-
ear relation between the density-contrast and the peculiar velocity (eq. 39) is
applicable. This simple relation between the two point correlation functions is
found to work in the linear regime. Using eq. 39, the cosmological parameter
β = Ω0.6

m /b is estimated for different smoothing scales from simulation data.
The results that were found are compared with the simulation parameters.

Also in this Klein Onderzoek, an estimate for the cosmological parameter σ8

is found from peculiar velocity data only. Using the same linear relation (eq.
39) and adopting the WMAP5 value for Ωm, the variance of the density-contrast
is estimated using the SEcat galaxy peculiar velocity catalogue (see section 3
for definition) and a Gaussian smoothing filter (σd,G). A theoretical estimate
for the variance of the density-contrast is made by using the transfer function
determined by Bardeen et al.[1] and Sugiyama [11] (σd,theory). This is done
for different smoothing scales. By multiplying σd,theory with the ratio of a the-
oretical value for σ8,TH and an estimated value σ8, the chi-squared test was
performed.

χ2 =
σ2

d,G − σ2
d,theory

σ2
error

(49)

Using only peculiar velocity data when estimating σ8 at a redshift close to zero
is a favourable method, because the data is a direct probe of the underlying
mass distribution and close to linearity.

3 The data: SEcat catalogue

In the second part of this research project the cosmological parameter σ8 is
determined out of peculiar velocity only. For this purpose, the SEcat galaxy
peculiar velocity catalogue is used.
The SEcat catalogue is actually a combination of two homogeneous peculiar
velocity catalogues: the SFI, a catalogue of peculiar velocities of spiral galaxies
and the ENEAR catalogue, which is a catalogue of peculiar velocities of ellip-
tical galaxies.([16] and references) The first catalogue has around 1300 objects
and the second one around 2000, which are grouped in approximately 750 inde-
pendent objects. [3] In the catalogue the radial velocity and distance are found
for each object, corrected for the Malmquist bias, along with the velocity errors
that mount up to ∼ 19 percent of the galaxy distance. The SEcat catalogue has
a range of 70 h−1 Mpc. The big advantage of this catalogue is that, because it
consists of early-type and late-type galaxies, it samples both the high density
regions and the low density regions. This minimizes the possible biases that
might have affected the analyses based on a single population of objects. More-
over, the number of galaxies and the large sky coverage guarantees an dense
and uniform sampling of the peculiar velocities.[15]

This is not the first time that this catalogue is used to estimate the param-
eter β. This is done earlier, with an estimate of β = 0.51± 0.06. [16] Although
a different method is used in this research project to get to an estimate, the
expectation is that the results are consistent with this earlier estimate.
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To find an accurate estimate of the variance of the peculiar velocity, the galax-
ies that are more then 7000 km/s away are excluded. Also the galaxies that
are closer then 3000 km/s to us are excluded, because they do not fullfill the
far-observer limit.

4 Method

4.1 Different methods

Many scientists have used the peculiar velocities of galaxies and their redshift-
space positions to calculate an estimate of β = Ω0.6

m /b under the assumption
of linear theory and linear biasing. This was mostly done using two different
methods: velocity-velocity comparison and density-density comparison.

4.1.1 Density-density comparison

In density-density analyses a three dimensional velocity field and a density field
are derived from observations of the radial velocity and compared to the galaxy
density field observed at redshift surveys. The estimates done with the density-
density comparison are in general pretty large, close to the order of unity. One
of the examples of this method is the comparison of the mass density field
reconstructed with the POTENT method [2] from the MARK III catalogue of
peculiar velocities [13] with the galaxy density field obtained from the IRAS
PSCz 1.2 Jy redshift catalogue [10]. The result of this research was a rather
large estimate of β, namely 0.89 ± 0.12 at a smoothing scale of 12 Mpc.[10]
Calculations done earlier using the Velmond method [4] with data from the same
catalogi led to a considerable lower estimate of β (∼ 0.5). Another example is
the in 2002 propsed UMV method [16]. This method was used to reconstruct the
density-contrast and peculiar velocity field of the SEcat galaxy peculiar velocity
catalogue and led by comparison with models obtained from the PSCz galaxy
density-contrast survey to a value of β = 0.57+0.11

−0.13. [16]

4.1.2 Velocity-velocity comparison

Here the observed galaxy distribution provides a mass density distribution from
which the peculiar velocities can be calculated. These will then be compared
to the observed ones. This type of comparison has been applied to almost
all the peculiar velocities catalogues that exist and the results are systemati-
cally lower then those of the density-density comparison: around the value of
β = 0.4 − 0.6.[14]. A velocity-velocity comparison is made using the UMV
method with data from the SEcat galaxy peculiar velocity catalogue and the
PSCz galaxy density-contrast catalogue to yield an estimate of β = 0.51± 0.06.
[16]

Velocity-velocity comparisons are generally regarded as more reliable as they
require manipulation of the more homogeneous redshift catalogue data. This in
contradiction to the density-density comparisons, which involve manipulation
of the more noisier velocity data. [16]
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4.2 Our method

In this research, a model-independent and linear relation is derived between the
density-contrast and line-of-sight peculiar velocity variances assuming Gaussian
smoothing:

dσ2
v(Rs)
dRs

= −2
3
f(Ωm)2

b2
H2

0Rsσ
2
d(Rs) (50)

The numerical calculation of the left hand side of the above equation is pretty
straightforward. The derivative is obtained by infinite differencing:

dσ2
v(Rs)
dRs

≈ σ2
v(Rs +4Rs)− σ2

v(Rs)
4Rs

(51)

One advantage of this proposed method is that the contribution of the mea-
surement noise is low. Because of the smoothing involved, the variance is not
greatly influenced by large random noise and because the comparison is done
within the same region of space, the cosmic variance contamination contribution
to the error analysis is avoided. The error itself can be calculated as follows:
the noised associated with particle i is assumed to be ε(ri). Since smoothing is
applied, the noise will get smoothed as well:

εs(ri) =
∑

j

ε(rj)WRs(ri − rj) (52)

Because the derived relation uses the two-point correlation functions, the two-
point correlation function of the noise is calculated. The expectation value
yields:

〈εs(ri) εs(rl)〉 =
∑

j

ε2(rj)WRs(ri − rj)WRs(rl − rj) (53)

where in the last equation the errors are assumed to be statistically uncorrelated.
The derived relation (eq.39) is based on the variances of the parameters, so
ri = rl and the sum over all the data points is required. The result will then be
the variance:

σ2
N (Rs) =

1
N

∑

i,l

〈ε2(rj)〉W 2
Rs

(ri − rj) (54)

So the noise variance that will add to the left hand side of the equation will be:

dσ2
N (Rs)
dRs

≈ σ2
N (Rs +4Rs)− σ2

N (Rs)
4Rs

(55)

The values of the parameters that are used in the program, are based in the
parameters in the ΛCDM Model. For the Hubble constant H and the matter
density contribution Ωm the values of respectively 100h km Mpc−1 s−1 and 0.27
are found.

5 First test: determining β on small scales

5.1 Earlier results

One of the biggest observations from which β can be determined is the WMAP-
data. The results of the WMAP5 have only been recently presented. [6] The

13



main goal of the mission was to estimate the parameters of the ΛCDM Model
out of the observations of the Cosmic Microwave Background. Before any ob-
servations were done bounds were set on the parameters, taken from earlier ob-
servations. The WMAP data is also combined with the distance measurements
from the Type Ia Supernovae (SNIa) and the Baryonic Accoustic Oscillations
(BAO) in the distribution of galaxies. The results of the estimate for Ωm with
the combinations of different data-sets, are given in the table below. [6]

Parameter Range WMAP2008 WMAP2008+ BAO +SNIa
Ωmh

2 0.1308-0.1363 0.1326±0.0063 0.1369±0.0037

Table 1: The estimates of Ωm, calculated with data taken from WMAP2008, com-
bined with other data sets.

The approximation of Peebles (eq. 23), adopted in this research, is discussed in
the introductory chapter. A value of h equal to 0.70 is adopted. From the two
datasets above, the mean of the total matter density is 〈Ωm〉 = 0.2600. When
linear theory and linear biasing are assumed, the estimate for β from WMAP5
data can be calculated:

β =
Ω0.6

m

b
= 0.446 (56)

Another estimation of β was calculated through the analysis of the SEcat cat-
alogue using the UMV-method, with the constructed fields compared to those
of the PSCz galaxy density contrast catalogue. This led to β-values from the
comparison of the density and the velocity field yielding β = 0.57+0.11

−0.13 and
β = 0.51 ± 0.06. [16] These are the most consistent results known, but other
results have been published. (see section 4)

5.2 Testing the method

5.2.1 Parameters of our simulation

The first test done in this Klein Onderzoek, is to see whether β can be esti-
mated through linear theory on small smoothing scales. The data used in this
simulation is from a mock catalogue given by Geraint Harker. The length of
the simulation box is 153.6h−1 Mpc and the simulation was build on a grid of
2563 points. The matter density in this simulation has a value that is equal to
the value in the ΛCDM Model: Ωm ≈ 0.275. This yields a theoretical simula-
tion estimate of β = 0.456, using Peebles (eq. 23). The value of the redshift
is equal to zero. The simulation data provides us with four parameters: the
peculiar velocity in the x-direction, in the y-direction, in the z-direction and the
density-contrast.

5.2.2 Computer program

Our program, written in IDL (see appendix A.2.1), reads in the three velocities
and the density given by the simulation data. These are smoothed with a
Gaussian filter. The smoothing scales are focused on the smaller scales, since this
is the area explored in this research project. For the velocity the same procedure
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is done: the variance of the velocity is calculated at a certain smoothing radius.
But since differentiation is needed, the variance of the velocity at Rs + 4Rs

is also determined. 4Rs is set at 0.01. Now all the parameters of the linear
equation between the variances of the density-contrast and the peculiar velocity
are know:

dσ2
v(Rs)
dRs

= −2
3
β2H2

0Rsσ
2
d(Rs) (57)

σ2
v(Rs)− σ2

v(Rs +4Rs)
4Rs

= −2
3
β2H2

0Rsσ
2
d(Rs) (58)

This simulation is done at a range of smoothing radii and for the different di-
rections of velocities, trying to find a good estimate for β.

5.3 Results & discussion

The simulation yields the following results, found in figure 2 and table 2:
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Figure 2: The results of our simulation. In this graph are the estimates of β plotted
against the smoothing radius for the different velocities. The purple dashed line is the
theoretical estimate for β according to Peebles. This simulation the parameters are:
Ωm=0.27, theoretical simulation estimate = 0.456 and gridsize=2563.

The simulation was done with the value of Ωm equal to 0.27 and linear theory
and linear biasing are still assumed. This will give us a theoretical simulation
value of β, of:

β =
Ω0.6

m

b
= 0.456 (59)

In these results, a few prominent features can been seen. First of all, it is no-
ticed that the value at which the velocities flatten out, is below the theoretical
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Smoothing scale Rs vx vy vz v
2 0.282 0.269 0.276 0.276
3 0.321 0.305 0.314 0.314
4 0.345 0.326 0.337 0.336
5 0.359 0.338 0.353 0.350
6 0.369 0.347 0.365 0.361
7 0.376 0.353 0.376 0.368
8 0.380 0.357 0.386 0.374
9 0.383 0.359 0.395 0.379
12 0.385 0.359 0.421 0.389
15 0.385 0.350 0.444 0.395
20 0.383 0.328 0.474 0.400
25 0.381 0.306 0.496 0.402

Table 2: Different estimates for β for different velocities.This simulation the param-
eters are: Ωm=0.27, theoretical simulation estimate = 0.456 and gridsize=2563.

simulation estimate. The likely reason for this is the way the velocity is nor-
malized in the simulation. The specific simulation we use has an Ωm= 0.1 at
z= 0. To obtain the desired matter over-density, the simulation is analyzed at
the redshift z1 at which Ωm= 0.27, which is not at z= 0. In order to get the
correct simulation properties had it been with Ωm=0/27 at z=0, the density is
re-normalized to obtain σ8=0.8 at redshift z1. This operation is straightforward
for the density. Unfortunatly however, this is not the case for the velocity, since
this has an integral form and therefor depends on many scales. The simulation
that we have, has been supposedly normalized for the velocities but we suspect
that this is not done in a satisfactory way.

If the above is noted, the results can be discussed. It can been seen in the
graph that the estimates of β of the peculiar velocity as a whole and the pecu-
liar velocity in the x-direction nicely flatten out around 0.387. This is assumed
to be ‘the true value’. Down to smaller scales, we see that up till 5 h−1 Mpc
the estimate for β is within 11 % error of the ‘true value’ Even at 4 h−1 Mpc
the estimate is within 15%! This is better than expected.

On large scales, the graph does not flatten out, except for the velocity in the
x-direction and the real peculiar velocity. Although the linear regime holds on
large smoothing scales, the curve is not expected to flatten out completely. This
is because the number of independent cells decreases as a function of smooth-
ing scale,i.e. cosmic variance, so a very accurate estimate can not be obtained.
But even with these remarks, the curves which represent the estimates at the
velocity in the y- and z-direction are not even in the neighbourhood of the ‘true
value’, the value of β where the other two velocity components flatten out. It
was suspected that there was something in the structure influencing the peculiar
velocity in these directions.
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Figure 3: The density at a density-contrast of 5 is plotted in 3D. The density was
smoothed first, with a smoothing scale of 2 Mpc.

When plotting the smoothed density-contrast in 3D, see figure 3, it was
noticed that there were quite some filaments and walls in the simulation. As
you can see in the graph, in the upper right corner, there are some large over-
densities. As we look more closely to graph, it is noted that the bigger structures
in the Cosmic Web are propagating more or less along the x-axis. This means
that the structure will not have a big influence on the peculiar velocity in the x-
direction. On the other hand, the influence of this big structure on the peculiar
velocities in the other two directions is quite big. Because of the gravitational
pull of the filaments and walls, the peculiar velocities in the y- and z-directions
will be changed. This will lead to different estimates of β.

It was noted in the first part of the research that the theoretical simulation
estimate was higher than anticipated because of an error in the scaling of the
simulation data. Instead of the desired matter density value Ωm of 0.27 at z=0,
the simulation had an approximate value of Ωm ≈ 0.1 at this particular redshift.
This gives a theoretical simulation estimate of 0.273. At the redshift z=0, the
peculiar velocities had to be re-scaled as well. This will influence our estimate
of β. The results of this re-scaled data set are found in graph 4 and table 3.
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Figure 4: The results of our simulation. In this graph are the estimates of β plotted
against the smoothing radius for the different velocities. The purple dashed line is the
theoretical estimate for β according to Peebles. In this simulation the parameters are:
Ωm ≈0.1, theoretical simulation estimate=0.273 and N=2563.

Smoothing scale Rs vx vy vz v
2 0.159 0.151 0.156 0.155
3 0.183 0.173 0.180 0.179
4 0.198 0.187 0.195 0.193
5 0.207 0.195 0.205 0.203
6 0.214 0.201 0.213 0.210
7 0.219 0.205 0.220 0.215
8 0.222 0.208 0.226 0.219
9 0.224 0.210 0.232 0.222
12 0.226 0.210 0.249 0.229
15 0.226 0.206 0.262 0.233
20 0.226 0.194 0.280 0.236
25 0.225 0.181 0.294 0.238

Table 3: Different estimates for β for different velocities. In this simulation the
parameters are: Ωm ≈0.1, theoretical simulation estimate=0.273 and N=2563.

The results of the estimates of β of this new simulation are also consistent
with the results obtained from the earlier result. Again, we see that the value
of flattening for the whole and the x-direction peculiar velocity is not near the
theoretical simulation estimate. This is probably because of incapability of the
re-scaling of the peculiar velocities. The estimate of β at which the curves flat-
ten, is assumed to be the ‘true value’. On a smoothing scale of 5 h−1 Mpc, the
estimate of β is within 14% of this so-called ‘true value’. On a smoothing scale
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of 4 h−1 this is within 19 %. The peculiar velocities in the y- and z-direction
still show their deviation from the ‘true value’.

As can been seen in table 3 and graph 4, the simulation data still not flat-
tens out at the theoretical simulation estimate. This could be the case at low
values for Ωm, because the matter distribution is highly clustered. This means
that there are quite some gridpoints in our simulation with a density-contrast
of 0. The way to solve this, is to re-grid our simulation and this time use less
gridpoints. So our simulation-data is re-gridded to a size of 643. The results of
this simulation are found in graph 5 and table 4.
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Figure 5: The results of our simulation. In this graph are the estimates of β plotted
against the smoothing radius for the different velocities. The purple dashed line is the
theoretical estimate for β according to Peebles. In this simulation the parameters are:
Ωm ≈0.27, theoretical simulation estimate=0.488 and N=643.

As can been seen in the graph 5, the flattening of the curves of the whole and
x-direction peculair velocity, is now closer to the theoretical simulation esti-
mate. The fact that these two values do not completely cöıncide, is probably
because of the cosmic variance: the patches choosen are not entirely identical.
The curves of the peculiar velocity in the y- and z-direction still show the large
deviation, as expected. On a smoothing scale of 5 h−1 Mpc the estimate of
β is within 13 % of the flattening value of the whole and x-direction peculiar
velocities. For the smoothing radius of 4 h−1 Mpc this is 19%. All these values
are again consistent with the earlier results.

The most prominent feature of all the above graphs, is that the value at which
the velocities flatten out is (sometimes) quite a bit below the theoretical simula-
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Smoothing scale Rs vx vy vz v
2 0.318 0.305 0.309 0.311
3 0.363 0.346 0.353 0.354
4 0.394 0.373 0.384 0.384
5 0.414 0.391 0.406 0.404
6 0.428 0.404 0.424 0.419
7 0.438 0.412 0.439 0.430
8 0.445 0.418 0.452 0.439
9 0.449 0.422 0.465 0.446
12 0.454 0.422 0.499 0.459
15 0.454 0.413 0.526 0.467
20 0.453 0.387 0.561 0.473
25 0.451 0.361 0.587 0.476

Table 4: Different estimates for β for different velocities. In this simulation the
parameters are: Ωm ≈0.27, theoretical simulation estimate=0.488 and N=643.

tion estimate made using the Peebles approximation. Although the simulation
data sets used are based on the same set, they are fundamently different. It is
therefore a surprise that the curves of the whole and the x-direction velocity do
not flatten out at the theoretical simulation estimate. It is possible that there
is an error in the written computer program. To test this, another data file
was given as input as the program. This simulation data was provided by E.
Romano-Diaz and also used to test the computer program in [15]. The data set
delivered uses the parameters which correspond to an Einstein de Sitter uni-
verse. This beholds that Ωm = 1. The number of the grid points is equal to
128 and the box size is 100 h−1 Mpc. According to the estimate of Peebles for
β (eq. 23), this means that β is equal to 1. The results of the simulation with
the new data for an Einstein de Sitter universe are found below, in graph 6 and
table 5.

Smoothing scale Rs vx vy vz v
2 0.514 0.537 0.515 0.522
3 0.650 0.684 0.650 0.662
4 0.735 0.780 0.732 0.749
5 0.788 0.843 0.778 0.804
6 0.822 0.890 0.802 0.839
7 0.845 0.927 0.814 0.863
8 0.862 0.959 0.818 0.882
9 0.876 0.987 0.820 0.897
12 0.912 1.051 0.816 0.932
15 0.938 1.081 0.813 0.950
20 0.933 1.054 0.806 0.937
25 0.892 0.994 0.792 0.896

Table 5: Different estimates for β for different velocities. In this simulation the
parameters are: Ωm=1, theoretical simulation estimate=1 and N=1283.
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Figure 6: The results of our simulation. In this graph are the estimates of β plotted
against the smoothing radius for the different velocities. The red dashed line is the
theoretical estimate for β according to Peebles. In this simulation the parameters are:
Ωm=1, theoretical simulation estimate=1 and N=1283.

The first thing that is noted, is that the graph again not completely flattens
out at the theoretical estimate. Cosmic variance and the decrease of the number
of independent cells are again the most likely reason for this. When compar-
ing the last two simulations, the last set of results are closer to the theoretical
simulation estimate then the set before that. It is also been seen that this last
set of data does not have this large deviation in the y- and z-direction, so that
also these velocity-curves nicely flatten out as was expected. The mean value
around which flattening takes place is 〈β〉 = 0.930. From the graph above, the
mean estimate at a scale of 5 h−1 Mpc is 0.800. This is 20% of the theoretical
estimate made using Peebles’ assumption and 16% of the mean flattening value.
This is not bad, considering that our simulation estimate at the smoothing scale
of 12, where the linear regime is considered to be valid, is a few percent off of
the theoretical estimate.
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6 Second test: σ8 from peculiar velocity data

6.1 Earlier results

The second part of our Klein Onderzoek constisted of estimating a value for σ8

from peculiar velocity data only. This is done before from the data taken on
the WMAP mission. Again, there are two datasets, built up the same way as
in the last section. [6] The estimates are put in the table below.

Parameter Range WMAP2008 WMAP2008+ BAO +SN
σ8 0.787 - 0.811 0.796±0.036 0.817±0.026

Table 6: The estimates of σ8, calculated with data taken from WMAP5, combined
with other datasets.

The mean estimate of σ8 from the above two data sets is 〈σ8〉 = 0.81.

6.2 Testing our method

To find an estimate for the cosmological parameter σ8, the chi squared test was
used:

χ2 =
N∑

i=1

(yi − fi)2

σ2
i

(60)

In the above formula, yi are the measured values, fi are the theoretical de-
termined values and σi is the error in the standard deviation of the measured
values. For yi, the results of a computerprogram are used, which estimates the
density variance from the SEcat galaxy peculiar velocity catalogue according to
the linear equation derived and used earlier (eq. 39). This is done for a number
of smoothing radii. Since the catalogue consists of a large number of points that
are not all independent of each other, the number of degrees of freedom is ap-
proximated by the number of independent cells N . The number of independent
cells is roughly equal to:

N =
(70h−1)3√
(2π)3R3

s

(61)

where Rs is the smoothing radius. This number is calculated out of the stan-
dard integral of the Gaussian distribution without its normalisation factor. (see
Appendix A.2.2)
A theoretical estimate of the density variance is found by approximating the
transfer function for cold dark matter (Bardeen et al. [1]) with the Sugiyama
estimation. [11] In the chi-squared test, the difference of the theoretical approx-
imation and the measured value is divided by the error in the measured value.
The sum over these steps is called χ2. The point where χ2 has its minimum, is
the best approximation for the parameter σ8.

6.2.1 Parameters

The parameters used are all in the transfer function of cold dark matter [1]. As
has been shown earlier in this report (see section Introduction), this depends
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on the cosmological parameters Ωm, Ωb and h. The values choosen for these
parameters are the ones that are determined by the ΛCDM model and are
respectively 0.27, 0.019/h2 and 0.7. There were we are differing the value for
Ωm, we will point out what the used values are.

6.2.2 Computer program

The computer program that is used to find an estimate for the measured data
calculated the variance of the density under the assumption that Ωm has a value
of 0.27. Using the equation derived earlier, the estimates for the density-variance
on different smoothing radii are found. Also the number of independent cells
are calculated.
The theoretical values used in the chi-squared distribution are the results of
another computer program, with the estimated power spectrum equal to that
of the Cold Dark Matter power spectrum and with the ΛCDM model values for
the cosmological parameters. (see appendix A.2.2)

6.3 Results & discussion

The different results are plotted in a different graphs below:

0 0.5 1 1.5
0

0.5

1

1.5

σ8

χ
2  d

is
tr

ib
ut

io
n

 

 
Rs=9
Rs=12
Rs=15
Rs=18
Rs=20

Figure 7: Estimates of σ8 out of the peculiar velocity data. In the graph is the χ2-
distribution plotted versus the estimate of σ8. This was done for different smoothing
scales.

The estimates at the smoothing scales of Rs = 9 and Rs = 12 are the two that
have within error bars, the estimate of the WMAP5. This was to be expected
because these are the smoothing radii that can be best represented by the lin-
ear regime. As can been seen from the table, the error in the estimate of σ8
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Smoothing scale Rs Estimate for σ8 Number of independent cells
9 0.84 ± 0.09 87
12 0.73 ± 0.12 37
15 0.62 ± 0.14 19
18 0.56 ± 0.17 11
20 0.55 ± 0.19 8

Table 7: Estimates of σ8 out of peculiar velocity data.

increases. The reason for this is that the error in proportional to the square
root of the number of independent cells, which is proportional to the inverse of
the smoothing radius cubed. Because the number of independent cells decreases
with increasing smoothing radius, the estimate of σ8 gets less reliable.
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Figure 8: Estimates for σ8 done on a smoothing scale of Rs = 12 while fixing the
value of Ωm.

The value for the total matter density Ωm = 0.2 and Ωm = 0.3 are again within
error bars of the the value that was found using the WMAP data. This is also a
good indication that the ΛCDM model, the model that is used to describe the
universe as seen today, is pretty accurate. This model has adopted a value of
Ωm = 0.27.

The χ2 probability function is also plotted. From this function the likeliness
that a certain value for σ8 is found. The probability function is a pretty com-
plicated function, but in this case can be represented by only the exponential
part. Because this distribution is a Gaussian function, it can be normalised to
get an estimate for the error in this function. As can been seen in the table, the
errors are particulary low. (within 7% of the measured value of σ8)
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Matter density Ωm estimate for σ8

0.2 0.81 ± 0.14
0.3 0.73 ± 0.12
0.4 0.67 ± 0.11
0.5 0.64 ± 0.11
1 0.54 ± 0.09

Table 8: The estimates for σ8 on smoothing scale Rs=12 with different values for the
matter density Ωm.
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Figure 9: Plotting the χ2 probability distribution function while fixing the smoothing
scale.

7 Summary & Discussion

Looking at the estimates for β calculated from simulation data of the peculiar
velocity and the density-contrast by using the linear relation between the corre-
lation functions of the peculiar velocities and the densities (eq: 39), two regimes
can be discussed.
The purpose of the first part of this Klein Onderzoek was to see whether the
linear relation was applicable to smaller smoothing scales. The results for the
various simulation sets show that the estimate of β down to a scale of 5 h−1

Mpc are in all our simulations within 16 % of the flattening value of the pecu-
liar velocities. This was better than expected on forehand. The reason why the
linear relation works so well on these small smoothing scales could be a function
of our choosen filter. If instead of a Gaussian filter, a top-hat filter was used
with the same volume the range of the smoothing scales extended more towards
the linear regime. On larger scales a small deviation was expected at these
scales because of the decrease of the number of independent cells as a function
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Smoothing radius Rs mean µ error σ
9 0.84 0.06
12 0.73 0.04
15 0.62 0.03
18 0.56 0.02
20 0.55 0.02

Table 9: The specifications of the probability distribution of the chi-squared

of smoothing radius. In a few of the used data sets, a large deviation was found
in the peculiar velocity curves in the y- and z-direction. This is probably be-
cause of a large over-density in the Cosmic Web. The other peculiar velocity
curves flatten out nicely, as expected. Because of the difficulty of re-scaling the
peculiar velocity, not all data sets flatten out at the theoretical estimate made
using Peebles’ approximation. (eq. 23)

The second part of this Klein Onderzoek was to determine an estimate of σ8

from peculiar velocity data only. The data used orginates from the SEcat galaxy
peculiar velocity catalogue. Using the derived linear relation for the two-point
correlation function of the peculiar velocity and the density-contrast (eq. 39), a
calculated variance for the density-contrast is retrieved. A theoretical estimate
was made by integrating the transfer function for a cold dark matter spectrum
(eq. 45) using Gaussian smoothing, multiplied by the ratio of the theoretical
σ8 and the estimated σ8. To compare the two estimates of the density-contrast
variance, the chi squared test was used. First an estimate of σ8 was calculated
for different smoothing scales under the assumption that the matter density was
equal to Ωm = 0.27. The estimates for σ8 on the smooothing scales of Rs = 9
and Rs = 12 conlude within their errorbars the estimate from the WMAP5 data
[6]. The next step is to see what the best estimate is for the matter density Ωm

at the smoothing scale Rs = 12. By adopting the earlier found value for σ8

to be the right one, the resulats showed that the best estimate of the matter
density is roughly Ωm = 0.3. Again, this is in agreement with the WMAP5 data
[6] and good confirmation for the ΛCDM model.

There is also another way to find confirmation for the ΛCMD model. When
the results from the last calculations in the second part of this Klein Onderzoek
are plotted in the combination σ8Ω1.2

m , the following is found:

Matter density Ωm estimate for σ8Ω1.2
m

0.2 0.12
0.3 0.0.17
0.4 0.23
0.5 0.27
1 0.55

Table 10: The estimates for σ8 on smoothing scale Rs=12 with different values for
the matter density Ωm.
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Figure 10: Estimates for σ8 done on a smoothing scale of Rs = 12 while fixing the
value of Ωm. This time the parameter σ8Ω

1.2
m is plotted.

This combination of parameters is plotted because it shows whether the
cosmological parameter σ8 is a good indicator for the matter density. The
expected value is simply the multiplication of the σ8 found earlier in this Klein
Onderzoek with the ΛCDM model value for the matter density Ωm. This gives
us an expected value of 0.152. By varing the matter density, the value of σ8Ω1.2

m

differs significantly. Plotting this combination of parameters is therefore a good
probe for the ΛCDM model.
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A Appendix

A.1 Derivations

A.1.1 Peculiar velocity as potential flow in the linear regime

A velocity v can always be decomposed into a potential flow component v and
a rotational flow component vrot, which creates vorticity. The first one can be
written as a gradient of a scalar potential, while the the second one can been
seen as the curl of some vector potential.

v = 5ψ (62)

vrot = 5×Bv (63)

If this distinction in velocity is entered in the continuity equation for pertuba-
tions, the rotational flow component of the velocity will fall out of the equation:
5·vrot = 5·(5×Bv) = 0. This means that only the potential flow component
of the velocity is coupled to the density pertubations.

5 · v = −a∂δ
∂t

(64)

5 · vrot = 0 (65)

If the above equation is adopted in the linearezed Poisson equation, the potential
flow component of the velocity can be coupled to the gravitational potential.

5 · v = −a5 · ∂
∂t

5ϕ
4πGρua2

(66)

The evolution of the both velocity-components can now be described by the
Euler equation:

∂av
∂t

= −5 ϕ (67)

∂avrot

∂t
= 0 (68)

From (eq. 68) it is seen that the rotational component of the velocity evolves
like a−1. Assuming that there were primordial vorticity primordial flows, it is
shown that they have decayed to zero while the universe expanded. There is no
system that generates vorticity flows, so the assumption that there is no vorticity
in the linear regime can be adopted. This means that the peculiar velocity is
equal to only the gradient of the gravitational potential pertubation. This is
the first step of the relation between the velocity, density and the gravitational
potential.

A.1.2 Dimensionless linear velocity growth factor

1
D

∂D

∂t
=

1
a

a

D

dD

da

da

dt
(69)

= H(t)
a

D

dD

da
(70)

= H(t)
dlnD

dlna
(71)
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= H(t)f (72)

With f is the dimensionless linear velocity growth factor, which depends on the
curvature in our universe (Ω0) and the cosmological constant Λ.

A.1.3 Relation between peculiar velocity and density contrast

5 · v|| = −a5 · ∂
∂t

(
5φ

4πGρa2
) (73)

5 · v|| = a5 · ∂
∂t

g
4πGρa

(74)

5 · v|| = a · ∂
∂t

5g
4πGρa

(75)

5 · v|| = a · ∂
∂t

−4πGρuδa

4πGρa
(76)

5 · v|| = −a · ∂
∂t
δ(r, t) (77)

A.1.4 Number of independent cells

The number of independent cells is equal to:

N =
V

Vcell
(78)

The total volume of a cell can be found according to:

Vcell =
∫ R

0

f(r)r2drdΩ (79)

where f(r) is the density distribution function. The density-contrast is a Gaus-
sian distribution:

Vcell = 4π
∫ R

0

e
−r2

2R2
s r2dr (80)

This is a standard intgral and its result is equal to:

Vcell =
√

(2π)
3
R3

s (81)

This gives a number of indepent cells equal to:

N =
(70h−1)3

√
(2π)

3
R3

s

(82)

This results in, sorted by smoothing radius:
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Smoothing radius Rs Number of independent cells N
9 84
12 36
15 19
18 11
20 8

A.2 Computer programs

A.2.1 Simulating β

pro readPSCz,vx,vy,vz,density,ngrid
; reading in the peculiar velocities and the density-contrast
boxsize=0.0D
omegabox=0.0D
lambdabox=0.0D
hubblebox=0.0D
ngrid=0L

OPENR,Unit,’dohgrid.dat’, /F77\_UNFORMATTED,/GET\_LUN

READU,Unit,boxsize,omegabox,lambdabox,hubblebox,ngrid

density=fltarr(ngrid,ngrid,ngrid)
vx=fltarr(ngrid,ngrid,ngrid)
vy=fltarr(ngrid,ngrid,ngrid)
vz=fltarr(ngrid,ngrid,ngrid)

READU,Unit,density
READU,Unit,vx
READU,Unit,vy
READU,Unit,vz

close,unit
return
end
;

pro calculation
; Writing a program to smooth the density and velocity. Grid of N x N x N
readPSCz,vx,vy,vz,density,ngrid
; defining the different smoothing scales
r=[2,3,4,5,6,7,8,9,12,15,20,25]

; simulation grid scale
N=256l
rc=154./float(N)
n2=N/2
denFT=FFT(density,-1,/double)
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vxFT=FFT(vx,-1,/double)

; Define k-space grid
ii=indgen(N)
zk=fltarr(N)
zk(0:n2)=(ii(0:n2)/double(N))*2.*!pi/rc
zk(n2+1:N-1) = -((N-ii(n2+1:N-1))/double(N))*2.*!pi/rc
xk=zk \& yk=zk
dis=fltarr(N,N,N)
for i=0,N-1 do for j=0,N-1 do dis(i,j,*)=sqrt(xk(i)$^2$+yk(j)$^2$+zk(*)$^2$)

for q = 0,11 do beggin
rs=r[q]

; Fast Fourier Transform of the Gaussian
gfft=exp(-(dis*rs)^2/2.)

; Inverse of the Multiplied Fast Fourier Transform
dens=FFT((gfft*denFT),1,/double)
vxs=FFT((gfft*vxFT),1,/double)

; The velocity is read in row for row
dummy=fltarr(N^3)
dummy(*)=float(vxs)

; Calculation of the smooth velocity variance
sigmv_s=stddev(dummy,/double)

; Calculation of the smooth verlocity variance at r+dr for the differation
dr=0.01
rs1=rs+dr
gfft= exp(-(dis*rs1)^2/2.)
vxs = FFT((vxFT*gfft),1,/double)
dummy(*) = float(vxs)
sigmv_s1 = stddev(dummy,/double)

; Variance of the density
dummy(*)=float(dens)
sigm_d=stddev(dummy,/double)

; Declaration of constants
; H is the Hubble constant

H = 100
beta=SQRT(1.5*((sigmv_s^2-sigmv_s1^2)/dr)*(1./(rs*sigm_d^2*H^2)))
print, rs ,beta

endfor
end

A.2.2 Theoretically finding σd

;unnormalized Power spectrum routine
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function p,k
rs=0.1
xn=1
h=0.71
omegab = 0.019/h^2
omegam = 0.27
; defining the LambdaCDM transferfunction
q = k/(omegam*h*exp(-omegab-sqrt(h/0.5)*(omegab/omegam)))
t = alog(1.+2.34*q)/(2.34*q)
t = t*(1.+3.89*q+(16.1*q)^2+(5.46*q)^3+(6.71*q)^4)^(-.25)
p = (k^(xn))*t^2*exp(-(k*rs)^2)
return,p
end

;====================================================
;sigma 8 Normalization function
function pnorm,k
pi = 3.1415926540
k8 = k*8.
; definition of sigma_8^2 multiplied by the transferfunction of
; the LambdaCDM model
pnorm = k^2*p(k)*(3.*bessel1(k8)/k8)^2/(2.*!pi^2)
return,pnorm
end

;====================================================
;a Spherical Bessel function of order 1
function bessel1,x
eps = 1.e-6
cosx=cos(x)
sinx=sin(x)
if x le eps then begin
bessel1=0.333333333330*x*(1.0-0.10*x*x*(1.0-x*x/28.0))
endif else begin\\
bessel1=(sinx/x-cosx)/x
endelse

return,bessel1
end

;=====================================================
function normfactor,sgm8
; determining of the theoretical sigma_8
factor = qsimp(’pnorm’,1.e-4,1.e1,/DOUBLE)
cnorm=((sgm8)^2/factor)
return,cnorm
end

;=========================================================
function PGSmooth,k
Rs=12.
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; applying Gaussian smoothing
return, k^2*p(k)*exp(-k^2*Rs^2)/(2.*!pi^2)
end

;==========================================================
function GausVar,cnorm
; determining of the theoretical estimate of sigma_d multiplied by
; the ratio of the Sigma_8’s
sigm_d=cnorm*qsimp(’PGSmooth’,1.e-4,1.e1,/DOUBLE)
return,sigm_d
end

pro PSroutine,sgm8arr,chi2arr
f= 0.1327987
error=3.7127365E-03
n=200
sgm8min=0.01
sgm8max=1.5
sgm8arr=findgen(n)*(sgm8max-sgm8min)/float(n)+sgm8min
chi2arr=fltarr(n)
for i=0,n-1 do begin
sgm8=sgm8arr(i)
cnorm=normfactor(sgm8)
sigm\_d=GausVar(cnorm)
chi2arr(i)=((f^2-sqrt(sigm\_d)^2)^2)/error^2
endfor
end
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