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Abstract

The relationship between galaxies and the supermassive black holes (SMBHs)
found in their cores, plays a key role in the formation and evolution of both
of these major constituents of the universe, as well as the evolution of the
intergalactic medium. Studies of galaxy and SMBH co-formation and co-
evolution are now among the central topics of research in cosmology. Yet
the very origin, and the early growth phases of the SMBH are still not firmly
established.

In this paper, we report on our investigations concerning the origin of
the correlation between the mass of a galaxy and the mass of a SMBH,
already found when the universe was only 1 Gyr old, known as the Magorrian
relation (Magorrian et al. 1998). After examining the different physical
processes and mechanisms that are involved with the growth of a galaxy
and its SMBH, we run a series of simulations to emulate the evolution of
the galactic system.

We find that it is possible to simulate the birth of a galaxy with an
SMBH in its core within 1 Gyr, and even the first indications of a Magor-
rian relation. Furthermore, we examine the different physical parameters
involved in the simulations to asses the relative importance of the different
phases in the evolution of the developing galaxy and SMBH.
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Introduction

Imagine a warm and beautiful summer night. Looking out to the stars, one
sees a proper and quiescent night sky that would probably give anybody an
impression of rest and order. One could even easily imagine that ancient
cultures saw the light of the stars as the light of heaven, piercing through
the outer globes of the celestial spheres. Giving a sneak peak to better times
ahead. Could an image be more wrong?

The night sky may seem to be a calm and peaceful place from here, but
in fact all we do see are the results of immense and powerful processes. These
sparkling little stars of ours are in fact giant nuclear reactors, burning their
fuels for billions of years. We see stars dying in enormous explosions. We
see nurseries where stars come to live, blowing away all of their surround-
ings. We see turbulent streams of stars, violently seeking a way through the
billions of stars that form our galaxy. And all of this revolves around one
center; the supermassive black hole in the center of our galaxy.

By now the presence of supermassive black holes (hereafter SMBHs) at
the centers of most galaxies appears to be firmly established. The masses
of these SMBHs are in the range of 106 − 109 Solar Masses (M�, Häring &
Rix 2004) and various correlations have been observed between them and
the properties of the galactic bulge hosting them.

The first of these correlations was between the mass of the SMBH M•

and the mass of the galactic bulge Mbulge; Magorrian et al. 1998 found that
M• ∼ 10−3Mbulge. Laor (2001) pointed out the correlation between M•

and the luminosity of the bulge Lbulge. More recently, a tighter relation
was found between the mass of the SMBH and the bulge velocity dispersion
σbulge, at some fiducial distance from the center, the M• − σbulge relation
(Gebhardt et al. 2000; Merritt & Ferrarese 2001). An equally tight rela-
tion has also been detected between M• and the light profile of the galactic
bulge, quantified by the Sersic index n (Graham et al. 2001). Subsequently,
Marconi & Hunt (2003) showed that the correlation between the bulge lumi-
nosity and the SMBH mass becomes even tighter in the near infrared than
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Figure 1.1: SMBH mass
vs. bulge mass for 30 sampled
galaxies. Two fits were made
to the data showing. The
solid line shows the fit with
a slope of 1.12 ± 0.06 found
by (Häring & Rix 2004). The
dashed line is a fit by Mar-
coni & Hunt (2003) and shows
a slope of 1.06 ± 0.09. Fig-
ure taken from Häring & Rix
(2004).

in the optical.

Because these correlations extend well beyond the direct dynamical influ-
ence of the SMBH, the dominating idea is that there is a close link between
the formation of SMBHs and the formation of their host galaxies. Most
models put forward to account for the link between galaxy and SMBH for-
mation, proceed along either or both of two routes to explain how SMBHs
grow in mass. One way is through growth mainly by gas accretion within
the host bulge. In this case a strong non-gravitational interaction between
the growing SMBH and the bulge has to be invoked. The second route
considers that the SMBH mass increases mainly by the merging of smaller
precursors.

In order to investigate what are the driving mechanisms for achieving
the found correlations, the evolution of both the galaxies and the black holes
have to be examined.

Although most of the SMBHs we see in the galaxies in our local neigh-
borhood - or even the one in our own Milky Way - are not associated with
quasar activity today, presumably they represent the now-dormant coun-
terparts to the quasar-powering engines known to exist at high redshifts
(Fan et al. 2001). Under reasonable assumptions, the luminosity function
of active galactic nuclei (AGN) can be explained by modeling mass accre-
tion on to black holes that have the same mass range as observed in local
spheroids. The standard expectation is that, once a primordial galaxy is
populated with a so called ’seed black hole’ at an early time, the black
hole can grow by accreting the available mass. And it are these AGN that
tell us that most of the SMBHs are already formed (or being formed) very
early in our Universe. The highest redshift of a quasar discovered to date
is zQSO = 6.43, corresponding to QSO SDSS 1148+5251 (Fan et al. 2001).
Accordingly, if SMBHs are the driving force in quasars, they first ones must
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have been formed prior to zQSO, or within t = 0.87 Gyr after the big bang
in the concordance ΛCDM cosmological model. This requirement sets sig-
nificant constraints on seed black hole formation and growth mechanisms in
the early universe.

The barred spiral galaxy NGC 4258 (M 106), located at a distance of
7.2 ± 0.3 Mpc (Herrnstein et al. 1999), presents a well-studied active nu-
clear region, classified as a Seyfert 1.9 (Ho et al. 1997). NGC 4258 is one
of 22 nearby AGNs known to possess nuclear water masers (the microwave
equivalent of lasers). The enormous surface brightness ( ≥ 1012K), rela-
tively small sizes ( ≤ 1014cm) and narrow line-widths (a few kms−1) of
these masers make them ideal probes of the structure and dynamics of the
molecular gas in which they are embedded. Very-long-baseline interferom-
etry (VLBI) observations of the NGC 4258 maser have provided the first
direct image of the disc of material surrounding the SMBH inside an AGN
(Greenhill et al. 1995); revealing a thin, differentially rotating warped disc
in the nucleus, with a radiative efficiency of ε ∼ 0.2 and which extends
roughly between 0.14 and 0.28 pc in relation to the nucleus. The Keplerian
rotation curves traced by the masers require a central binding mass M• of
(3.9 ± 0.1) × 107M� (Herrnstein et al. 1999).

In this work, we analyze the different mechanisms for building a SMBH
within a galactic bulge that satisfy the observations described above, and
ask ourselves the question whether it is possible to make a SMBH with a
mass of 109M� as early as z = 6.43? And if so, are the found correlations
- and with that in particular the Magorrian relation - a logical consequence
of these precesses?
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The underlying physics

In 1798, the French mathematician and astronomer Pierre-Simon Laplace
formulated the following theorem in his book ’Exposition du système du
monde’: “A luminous star, of the same density as the Earth, and whose

diameter should be two hundred and fifty times larger than that of the Sun,

would not, in consequence of its attraction, allow any of its rays to arrive

at us; it is therefore possible that the largest luminous bodies in the universe

may, through this cause, be invisible.“

This is one of the first occurrences of the idea of a black hole. Laplace’s
theorem can be proven quite easily; in order to escape a gravitating object,
like the Earth, a projectile must have a kinetic energy larger than the po-
tential energy that is pulling it towards the surface. In other words, the
velocity of the projectile has to be larger than the escape velocity. Since the
escape velocity is proportional to the radius (when the density is kept the
same), an object with the same density as the Earth has to have a radius
250 times the radius of the Sun, for the escape velocity to become as large
as the speed of light. The corresponding mass of this “black star” would be
∼ 108M�; an immense object that, as we know now, could never exist. Still
it is a beautiful idea, far ahead of its time.

By now we know, thanks to Einstein’s theory of general relativity, that
a black hole is a region of space-time in which gravity is so strong that
nothing, not even light can escape it. Once a certain minimum of mass
(3M�) is put into a small enough volume of space, it must eventually (after
it has exhausted all of its fuel) collapse into a black hole. Where electron-
degenerate or neutron-degenerate gas pressure is able to support a White
Dwarf or a Neutron Star respectively, there is no physical mechanism that
can stop the immense gravity when a black hole is formed. The volume of
the contracting entity will decrease towards zero. Simultaneous, the density
will grow towards infinity. In real physics neither of these phenomena can
be exactly true. That is why the birth of this singularity (a singular point
of zero volume and infinite density) marks the breakdown of the laws of
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physics, as we know them.

2.1. Basic black hole physics

2.1.1 The Schwarzschild radius

For the description of a black hole, the same considerations are still used
as Laplace did two centuries ago. For an object to escape, it has to have a
speed larger than the escape speed of the gravitating object, so the sum of
potential and kinetic energies has to be zero for an object that escapes to
infinity and is in rest with respect to the object there:

(1/2)mv2 − GmM/R = 0,

where v is the speed of the escaping projectile. Since the conservation of
energy requires that this is the escape speed (Vesc) at the moment of launch:

Vesc =

(

2GM

R

)1/2

.

Because nothing can have a speed larger than the speed of light, the max-
imum escape speed is c. The expression for the escape speed then gives us
an equation for the radius of a black hole:

R• =
2GM•

c2
, (2.1)

where M• is the mass of the black hole. This radius is called the event
horizon or the Schwarzschild radius and marks “the point of no return” for
matter on its way into a black hole. In 1915 this expression was worked
out by the German astrophysicist Karl Schwarzschild, shortly after Einstein
published his general theory of relativity.

2.1.2 Space-time around a black hole

To examine the strange structure of space-time around a black hole, let
us do the following Gedankenexperiment. Imagine yourself in a spaceship,
flying around a 10M� black hole on a perfect Keplerian orbit. To do your
experiment you put on your space suit and jump, armed with a laser and a
digital watch, towards the black hole. Sending laser pulses to the spaceship
along the way.

As you are headed for the black hole, nothing strange happens. But as
you get closer and closer, the strong gravity stretches you out from head to
toe, and squeezes you together at the shoulders. The ultimate consequence
of this will be that your feet will be pulled that much harder towards the
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black hole than your head, that you will be torn apart. But since this is
a thought experiment, let us say that you will survive these gravitational
tidal forces. At a certain point you will cross the event horizon, but nothing
happens. There is no significant difference between the “inside” and the
“outside” of a black hole. After this the journey will soon end, as you crash
into the singularity and will (still) be destroyed.

For your colleagues in the spaceship this experiment will be less harmful,
but it will take them a very long time to be witness to your experiences.
And even then, they can only see part of it. As you fall towards the black
hole, the laser pulses you send will be gravitationally red-shifted. The time
between the laser pulses will also increase because of time-dilation effects
described by general relativity. As you come closer to the event horizon the
watches will get more and more out of synchronization. Your flight towards
the black hole will seem to go slower and slower for the spaceship. Time
slows down more and more. Even so much, that a laser pulse send towards
the ship at the moment that you cross the Schwarzschild radius, will take an
infinite amount of time to reach the spaceship; even though the laser pulse
is moving with the speed of light.

2.1.3 Rotating black holes

Karl Schwarzschild described with his equations a theoretical, stationary
black hole. This model works well enough to calculate the distance to the
event horizon, but lacks in describing the real state of a black hole.

When a large star collapses into a neutron star, angular momentum plays
an important role. The original star rotates at a certain rate, perhaps once
every twenty or thirty days. After the collapse, its angular momentum is
transferred into the much smaller neutron star, which now spins around
many times a second. In an equivalent way, a black hole must have angular
momentum also. The first basic mathematical solution corresponding to
rotating black holes was discovered by the New Zealand physicist Roy Kerr
and is since then called the Kerr solution. Two years later, Ezra Newman
found the axis-symmetric solution for Einstein’s field equation for a black
hole which is both rotating and electrically charged. This solution is known
as the Kerr-Newman solution:

R• =
G(M• +

√

M2
• − Q2 − a2)

c2
, (2.2)

where Q is the charge, and a is defined as the angular momentum per unit
mass S M−1.

The Kerr-Newman solution recognizes the same basic black hole proper-
ties found in the Schwarzschild solution. However, the rapid spin inherent
to a Kerr black hole creates a considerably more complex and dynamic situ-
ation. First, the singularity is no longer a single point, but a warped area of
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space shaped like a ring. Second, the event horizon, marking the boundary
between the black hole and the ordinary space beyond it, is moving in the
same direction that the singularity is spinning. And as it moves, it drags
part of the nearby region of space along with it - forcing the surrounding
space to rotate in tornado-like manner.

While the frame-dragging only plays a significant role in regions close to
the black hole’s horizon, the spin of a black hole is also responsible an effect
that is visible on far larger scales; due to the spin two narrow but powerful
jets of gas are created that appear to be shooting out of some black holes. In
reality these jets originate in the accretion disk. The mechanism responsible
for the formation of these jets is still open to discrepancy. Some scientists
believe the immense pressures produced by the rapidly rotating gases in
the accretion disk create two vortexes, shooting two jets of hot gas outward
at high speed in opposite directions. Another possible scenario involves a
powerful magnetic field generated by the black hole’s spin. Magnetic field
lines anchored in the accretion disk and sticking out of it will be forced
to spin along with the disks orbital motion. The electrical forces capture
hot gas and plasma onto the spinning field lines. As these field lines spin,
centrifugal forces should fling the plasma outward along them to form the
two jets.

2.2. Seed black holes

All SMBHs start out small. With a small black hole that can grow to
become the massive center of the large galaxies we see nowadays. Such a
small starting black hole is called a seed black hole (SBH), with masses in
the range of a few solar masses till even a couple of thousands. SBHs are
formed with the death of a massive star, or because of the singular collapse
of a large molecular cloud.

2.2.1 Forming seed black holes

Stellar collapse

According to recent semi-analytical simulations the very first stars in the
Universe were likely created inside molecular clouds at redshifts well above
z ∼ 20. These clouds fragmented out of the first cores inside dark matter
haloes. For common ΛCDM cosmologies these haloes are found to have
masses of around Mmin ∼ 3 × 105h−1M� and have collapsed at redshift
z ∼ 24. In linear collapse theory this corresponds to a collapse from 3σ den-
sity peaks in the initial matter density field. At these redshifts and in these
regions the free-fall time is larger than the cooling time. Making it possible
for the halo to cool on a timescale shorter than the gravitational infall time-
scale. Since the clouds consist of mainly hydrogen and some deuterium at
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these redshifts, the cooling is less efficient than at present times, so it pro-
ceeds much more slowly. This results in clouds with densities ρ ∼ 105cm−3

and temperatures T ∼ 200K, where the Jeans mass (MJ ∼ T 3/2/ρ1/2) is
relatively high. The fragments that develop under these conditions at z > 20
are thus much bigger than they would be at present, with similar conditions.
Add the fact that the fragments can accrete large amounts of gas from the
cloud without further fragmentation occurring, this eventually leads to the
formation of a protostar.

The only physical phenomena that could halt the accretion process from
the infalling layers is radiation pressure from the protostar. However, due to
the lack of metals the infalling gas has too low an opacity for the radiation
pressure to become significant. Also the effect of winds that could lead to
large mass loss with population I stars, is negligible. As a result this will
lead to very massive stars, some even with masses as large as 103M�. These
stars are known as population III stars.

There is still very little known about the initial mass function of these
early stars. It is known that because of their large mass, most of them will
end up as black holes with almost the same mass. The gravitational field
of these massive stars is so strong that not even its own ejecta can escape.
So we can assume that in each dark matter halo forming at z ∼ 24 with
a mass larger than Mmin ∼ 3 × 105h−1M� a black hole will form with a
mass of ∼ 102M�, acting as the seed for the SMBHs that form the centers
of galaxies seen in present day.

Singular cloud collapse

Another way of forming SBHs in the early universe is by way of singular
cloud collapse. Spaans & Silk (2006) have examined the polytropic equation
of state of an atomic hydrogen gas in primordial halos with baryonic masses
of Mh ∼ 107 − 109M�. For roughly isothermal collapse around 104K they
find that the polytropic index stiffens to values well above unity. Under
the assumptions of zero H2 abundance and very few metals (10−4 solar),
fragmentation is likely to be inhibited for such an equation of state. With
this they argue that - on purely thermodynamic grounds - a single black
hole of ∼ 104 − 107M� can form at the center of a halo for z = 10 − 20.
Given that the free-fall time is less that the time needed for a resonantly
scattered Lyα photon to escape the halo.

2.2.2 Black hole mass density

Considering the initial matter density field, in which a SBH of MSBH ≈
260M� is formed in every halo corresponding to a 3σ density peak, Islam
et al. (2003) calculate the global mass density contained in MBHs in the
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following way:

ρSBH 6
0.0027Ω0ρcritMSBH

105M�Mpc−3
≈ 2.9 × 105M�Mpc−3,

where the values Ω0 = 0.3, ΩΛ = 0.7 and h = 0.7 are used for a ΛCDM
cosmology. Merritt & Ferrarese (2001) obtain an actual mass density for
SMBHs of ρSBH ≈ 5 × 105M�Mpc−3.

A SMBH which has acquired its mass primarily by mergers of lower mass
black holes, requires that the SBHs are ∼ 500M� and all of their mass should
end up in the resulting SMBH. This requirement can be met by the singular
collapse theory of Spaans & Silk (2006), where they find MSBH ∼ 10−3×
mass in the baryonic halo. However, for lower mass SBHs - formed in the
collapse of a population III stars - growth through mergers cannot account
for the observed mass density. Since these SBHs are expected to have masses
< 500M�. This tells us that in this scenario, growth through accretion of gas
must be very important in achieving the mass required for the present-day
SMBH mass density.

2.3. Accretion

Observations of luminous quasars in the Sloan Digital Sky Survey (SDSS,
Fan et al. 2001) give a very strong constraint on the high-redshift evolution
of SMBHs. At redshifts as high as z ∼ 6 already SMBHs are found with
luminosities corresponding to masses ≈ 109M�. This means that when the
Universe was approximately 1 billion years old, the small SBHs with masses
≈ 102M� have already grown to masses on the same order as that of the
giant dominating black hole in the center of our Milky Way.

2.3.1 Eddington accretion

When our SBH is formed, it will start accreting its surroundings right away.
Its strong gravitational field will pull everything on its path towards it.
One of the most fundamental problems with the formation of SMBHs can
already be seen here; the centrifugal barrier. The infalling object has to
lose its angular momentum. Because individual stars have very few ways of
angular momentum transfer, it is very hard for a black hole to accrete entire
stars. If a star gets caught by a black hole, it will most likely be placed
on an orbit around the black hole. From there it could be thrown into the
black hole due to collision effects with encountering stars. But these effects
are very rare, and are thus of minor importance for the process of accreting
mass. Let alone be the sole mechanism for the growth of a SMBH.

So even though it is very difficult to accrete very massive objects like
stars, it is very well possible to accrete gas. Gas will also be pulled onto
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an orbit around the black hole, and can dissipate its angular momentum
more easily by turbulent viscosity inside the formed differentially rotating
accretion disc. The effective kinematic viscosity of a turbulent process is
usually written in the form ν ∼ d · v, where d is the size and v is the
turnover velocity of the largest eddies. For turbulence in an accretion disc
we may surmise that the scale of the eddies is less that the scale height (or
disc thickness) H, and that the turbulence is subsonic. Thus, the viscosity
ν in an accretion disc may be written as

ν = αcsH = αc2
s/Ω,

where cs is the speed of sound, Ω is the angular velocity and α is the alpha
viscosity parameter (Shakura & Syunyaev 1973, Pringle 1981). When r is
the radius of the disc, an accretion disc is a thin disc (H � r) where α < 1.
This gives the accretion disc a low hydrodynamic turbulent viscosity; a
mechanism that can transfer angular momentum outwards, and thus makes
it possible for the gas to contract into the black hole.

Even though the idea that turbulence accounts for the viscosity dates
back almost to the conception of the accretion disc model. There is no ade-
quate demonstration that discs are hydrodynamical turbulent. Simulations
show that hydrodynamic turbulence does not develop spontaneous within
the disc, and if the turbulence is provided by some means (e.g. convection),
there is no net outward transport of angular momentum (Hawley & Balbus
1998).

Balbus & Hawley (1991) therefor proposed a magnetohydrodynamic
(MHD) turbulent model that does give a decent description of a viscous
accretion disc. The reason that MHD turbulence does succeed, is because
the magnetic field fundamentally alters the the linear stabilizing properties
of a differentially rotating flow. Weakly magnetized discs are dynamically
unstable if the angular velocity decreases outward. This magnetorotational
instability (MRI) model makes the presence of disc turbulence no more fun-
damentally mysterious than that of the convective turbulence which develops
in the outer layers of low mass stars. In both cases a local linear stability
criterion is violated.

In the meanwhile, the gas that is spiraling towards the black hole will
gain kinetic energy and heats up, becomes ionized and emits electromag-
netic radiation. This mechanism gives us an upper limit for the amount of
matter that the black hole can accrete over a period of time: the Eddington
accretion rate (Haiman 2004; Shapiro 2005). The Eddington luminosity is
defined as

Ledd =
4πGMcmH

σT
, (2.3)

in which G is Newton’s gravitational constant, M is the mass of the at-
tracting object, c is the speed of light, mH is the mass of an hydrogen atom
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Figure 2.1: Simulations of
the growth of a black hole ac-
creting at its Eddington limit
(η = 1), for different radiative
efficiencies. On the vertical
axis the dimensionless mass
of the black hole M/MSBH is
plotted, where MSBH is the
mass of SBH. The simulations
show that the radiative effi-
ciency needs to be ε � 1, for
a SBH of ∼ 102M� to grow to
the observed SMBH masses of
≈ 107

−109M� (Häring & Rix
2004).

and σT is the Thompson cross section. Equation 2.3 describes the balance
between the amount of radiation that the accretion disc produces, and the
gravitational attraction of the black hole. So when the luminosity of an
accretion disc is Ledd, it accretes on its maximum accretion rate. When the
luminosity exceeds Ledd the infalling gas will be blown away by radiation
pressure.

Since the mass of the accreting object is the only variable quantity in
the equation above, it is very easy and convenient to rewrite it in terms of
Solar masses:

Ledd = 1.25 × 1038 erg s−1(M/M�). (2.4)

Now that we know the luminosity of the accretion disc, it is possible to
derive the accretion rate with the help of Einstein’s most famous equation
E = Mc2 and the knowledge that the luminosity is a time derivative of
energy:

dM

dt
= Ṁ =

Ledd

εc2
, (2.5)

where ε is the radiative efficiency. The radiative efficiency gives the fraction
of Mc2 that is radiated away. In practise ε will be on the order of 0.1, because
most of the energy is lost as heat and entropy in dissipative processes inside
the disc.

When we define η as the Eddington luminosity efficiency:

η = L/Ledd,

we get an expression for the efficiency at which the black hole is accreting
its surrounding matter. In most conventional models η < 1: the black hole
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is accreting with a sub-Eddington accretion rate. For η = 1 the black hole
accretes on its Eddington limit. Subsequently, there are models where η > 1
where the accreted material is forced to withstand the radiation pressure.
In this scenario the black hole is accreting with a super-Eddington accretion
rate.

Combining equations 2.4 and 2.5 then gives us our expression for the
Eddington accretion:

ṀEdd =
ηαeddM

εM�c2
, (2.6)

where the factor αedd is defined as αedd ≡ 1.25 × 1038 erg s−1.
We can now also define the mass independent characteristic Eddington

accretion timescale (or Salpeter timescale);

τedd ≡
Mc2

Ledd
≈ 0.45 εη−1 Gyr. (2.7)

Figure 2.1 shows simulations of the evolution of SBHs accreting at their
Eddington limit, for different radiative efficiencies. It is possible to reach
M• ∼ 106 − 109, and thus equal to the observed quantities (Häring & Rix
2004), given that ε � 1 and the accretion has to be at the Eddington limit.
Recent research done on NGC 4258 suggests a radiative efficiency of ε ∼ 0.2
(Herrnstein et al. 2005), which strengthens our conclusion. However, the
condition that accretion has to be at the Eddington limit for such a long
period of time, with only the mass of the SBH to account for some range,
describes a very strict picture. So even though Eddington accretion can give
a SMBH a substantial part of its mass, it is to be questioned whether it is
the single mechanism responsible for the growth of black holes.

2.3.2 Bondi accretion

Another way of looking at the formation of a SMBH is from a more ther-
modynamical point of view. Consider a SBH in a very high density region.
Since we assume that most SBHs are formed at redshifts z > 20 in rare 3σ
density peaks in the initial matter density field, this is not such a strange
assumption. From there the gas could fall in via a radial manner.

This spherical inflow leads to a rapid growth of the SBH with highly
super-Eddington accretion rates, and can therefor be used to explain the
SMBHs at high redshifts. This form of accretion is called Bondi accretion
(Bondi 1952; Volonteri & Rees 2005), and leads to accretion rates ṀBondi �
ṀEdd.

To evaluate this Bondi accretion we consider a steady state in which the
velocity v is radial, and v, p and ρ are functions of r only. We assume the
following polytropic equation of state:

p

p∞
=

(

ρ

ρ∞

)γ

, (2.8)
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where p∞ and ρ∞ are evaluated at infinite r. This equation is valid for an
adiabatic flow and gives a useful approximation for a radiating gas, provided
that the polytropic index γ has a value of 1 ≤ γ ≤ 5/3.

Mass conservation gives us an accretion rate:

dM

dt
= Ṁ = 4πr2ρv. (2.9)

Integrating equation 2.8 with Bernoulli’s equation;

v2

2
+

∫ ρ

ρ∞

dP

ρ
−

GM

r
= 0,

yields
v2

2
+

c2

γ − 1

[(

ρ

ρ∞

)γ−1

− 1

]

=
GM

r
, (2.10)

where cs is the sound speed:

c2
s =

γp∞
ρ∞

. (2.11)

In order to obtain a single equation relating v and r (a relation now given
by equations 2.9 and 2.10), we introduce the non-dimensional variables x, y
and z, to replace r, v and p respectively:

r = xGM/c2,

v = ycs, (2.12)

ρ = zρ∞.

Equations 2.9 and 2.10 then take the form

x2yz = λ, (2.13)

and
y2

2
+

z(γ−1) − 1)

γ − 1
=

1

x
. (2.14)

Where λ is given by
Ṁ = 4πλ(GM)2c−3ρ∞. (2.15)

After substituting the Mach number M = yz−(γ−1)/2 into equation 2.13,
and multiplying this by (x2/λ)2(γ−1)/(γ+1) , it takes the form of

f(M) =
1

λα
g(x). (2.16)

Where

f(M) ≡
M

2α/(γ−1)

2
+

1

(γ − 1)Mα
,

g(x) ≡
x2α

γ − 1
+

1

x1−2α
(2.17)
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and

α ≡
2(γ − 1)

γ + 1
. (2.18)

We now have an equation that relates the Mach number of infalling
material to the distance of the surface of the accreting object. Because
g(x) is the sum of one positive and one negative power of x, it must have
a minimum. The corresponding minimum value of x is xm = (5 − 3γ)/4.
Since we are looking at the sound speed defined in equation 2.11, xm can
be substituted into equation 2.9. This results in the final expression for the
Bondi accretion rate:

ṀBondi =
4πnHmH(xmGM)2

c3
s

, (2.19)

where ρ is written as nHmH .
The found expression for the Bondi accretion describes a modest accre-

tion rate for a SBH with a mass MSBH of ∼ 10−8MSBH/year for t � Γ,
where Γ ≡ (4πnHmH(xmG)2M�/c3

s)
−1. However, when t approaches Γ,

the accretion rate will display a strong asymptotic behavior, enabling the
black hole to grow extremely rapid. With this behavior, the black hole could
empty its mass reservoir in only a fraction of time. However, even though
this is still a topic of much debate, the overall idea is that in reality this
extreme accretion will only last for a very short period of time (Volonteri &
Rees 2005). During this time the black hole is capable of accreting presum-
ably several time its own mass, before feedback processes stop the accretion,
and force the black hole to accrete with an Eddington accretion rate. The
feedback processes stop the Bondi accretion when the radius of the black
hole reaches the feedback radius, which is defined as:

rf =
r•

rSBH
=

M•

MSBH
, (2.20)

where r• is the radius of the accreting SMBH and rSBH is the radius of the
original SBH.

There is still very little known about the value of rf at which the Bondi
accretion stops. According to Volonteri & Rees (2005) the feedback kicks in
around rf ∼ 5− 50. Furthermore, the sort of feedback is still under debate.
Most likely this will be some sort of outflow which blows away most of the
local radial gas cloud.

2.4. Mergers

The formation of a SMBH via accretion is only one of two complementary
routes that can be followed in the study of SMBH growth; the other is that
of a series of mergers with other black holes.
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In the currently favored cold dark matter cosmogonies (Spergel et al.
2007), present-day galaxies have been assembled via a series of mergers,
from small-mass building blocks which form at early cosmic times. In this
paradigm galaxies experience multiple mergers during their lifetime. If most
galaxies host black holes in their center, and a local galaxy is made up by
multiple mergers, then a black hole binary is a natural evolutionary stage.
After each merger event, the central black hole already present in each galaxy
would be dragged to the center of the newly formed galaxy via dynamical
friction. If the two black holes get close (∼ 0.01 − 0.001 pc) the black
hole binary would coalesce via emission of gravitational radiation (Rees &
Volonteri 2007).

The efficiency of dynamical friction decays as black holes get close and
form a binary; the binary separation for M• ≈ 105−108M� is then ∼ 0.1−1
pc. Emission of gravitational waves becomes efficient at binary separations
about two orders of magnitude smaller. In gas-poor systems, the subsequent
evolution of the binary, while gravitational radiation emission is negligible,
may be largely determined by three-body interactions with background stars
(Begelman et al. 1980). The binary captures stars that pass within a distance
of order of the binary semi-major axis, and ejects them at much higher
velocities (Quinlan 1996, Milosavljević & Merritt 2001, Sesana et al. 2006).
Dark matter particles will be ejected by decaying binaries in the same way
as the stars, i.e. by the gravitational slingshot. The hardening of the binary
modifies the density profile, removing mass interior to the binary orbit,
depleting the galaxy core of stars and dark matter, and slowing down further
decay.

In gas-rich systems, however, the orbital evolution of the central SMBH
is likely dominated by dynamical friction against the surrounding gaseous
medium. The available simulations (Escala et al. 2004, Mayer et al. 2006,
Dotti et al. 2006) show that the binary can shrink to about parsec or slightly
subparsec scale by dynamical friction against the gas, depending on the gas
thermodynamics. The interactions between a black hole binary and an ac-
cretion disc can also lead to very efficient transport of angular momentum,
and drive the secondary black hole to the regime where emission of gravita-
tional radiation forces the black holes to merge (Gould & Rix 2000, Armitage
& Natarajan 2005).

To calculate the total cumulative effect of mergers on the eventual mass
of the SMBH, this hierarchical build-up process is mainly studied by means
of N-body simulations. The evolution of dark matter haloes can be modeled
using merger trees based on the extended Press-Schechter formalism (Press
& Schechter 1974, Lacey & Cole 1993). The fraction of mass f(M, t) in
haloes with mass M , at time t, per interval dM is given by

df

dM
(M, t) =

δc(t)

(2π)1/2σ3(M)

∣

∣

∣

∣

∣

dσ2(M)

dM

∣

∣

∣

∣

∣

exp

[

−
δ2
c (t)

2σ2(M)

]

,
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where δc is the critical threshold value for the amplitude of the density fluc-
tuations, and σ2(M) the variance of the linear density field, when smoothed
with a window function containing mass M . From this the the comoving
number density of haloes of mass M , present at time t, per dM , is

dn

dM
(M, t) =

(

2

π

)1/2
ρ̄

M2

δc(t)

σ(M)

∣

∣

∣

∣

∣

d ln σ

d ln M

∣

∣

∣

∣

∣

exp

[

−
δ2
c (t)

2σ2(M)

]

, (2.21)

where ρ̄ is the present mean mass density of the universe. With equation
2.21 it is possible to follow the merger tree through which a SMBH is formed.

Following the merger tree, it is possible to calculate a minimum multi-
plication factor φ, that accounts for the total mass that is acquired through
mergers. Consider a SBH that grows through both Eddington accretion and
mergers. When we integrate equation 2.6 this gives

Mf = Mi exp

(

ηαedd(t − ti)

εM�c2

)

, (2.22)

where Mf is the final mass, equivalent to M•, and Mi is the initial mass,
equivalent to MSBH .

The right-hand side of equation 2.22 is independent of black hole mass.
This fact makes it possible to disentangle and track separately the ampli-
fication of black hole mass by accretion from the amplification by discrete
mergers. Let Mn(t) be the mass of the black hole at time t, following its
nth merger with another black hole at time tn, where tn ≤ t ≤ tn+1. As-
sume that the duration of a merger is much shorter than the time interval
between mergers, and that the hole continues to accrete steadily throughout
this interval.

Let φn be the mass amplification of the hole following its nth merger with
another black hole: φn = Mn(tn)/Mn−1(tn) > 1. Then we may use equation
2.22 to calculate the total mass amplification from ti to tf according to

Mf

Mi
=

M•

MSBH
=

MN (tf )

M0(ti)

=
M0(t1)

M0(ti)

M1(t1)

M0(t1)

M1(t2)

M1(t1)
. . .

. . .
MN−1(tN )

MN−1(tN−1)

MN (tN )

MN−1(tN )

MN (tf )

MN (tN )

= exp[C(t1 − ti)] × φ1exp[C(t2 − t1)] × . . .

. . . φN−1exp[C(tN − tN−1)] × φNexp[C(tf − tN )]

= φ1φ2 . . . φNexp[c(tf − ti)], (2.23)

where C ≡ ηαedd/εM�c2 and is essentially constant. Comparison of equa-
tions 2.22 and 2.23 reveals that the net mass amplification due to accretion
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Figure 2.2: Models of the
mass history of the SMBH
in QSO SDSS 1148+5251,
according to four different
estimates of gravitational
wave recoil effects, taken
from Yoo & Miralda-Escudé
(2004). The upper curve
(thick solid line) shows
the mass of the main halo
progenitor. MSBH = 10M�,
and the recoil velocities are
of order 1000, 1000, 400
and 50 km s−1 for Fitchett,
Kidder and Favata upper and
lower models, respectively.

can be treated as a single multiplicative factor that is independent of the
net amplification factor due to mergers:

φ = φ1φ2 . . . φN . (2.24)

Thus for the simple scenario envisioned here, a black hole can grow through
Eddington accretion, even when this steady growth by accretion is inter-
rupted by discrete, stochastic black hole mergers.

Note that it is possible that black hole mergers completely eject black
holes from halo centers owing to gravitational wave recoil and thereby turn
off accretion altogether (Hut & Rees 1992, Merritt et al. 2004, and Madau
& Quataert 2004). Whenever the recoil velocity is larger than the escape
velocity of the halo, the black hole is ejected form that halo. However, Yoo
& Miralda-Escudé (2004) conclude from the most recent recoil calculations
into simple models of dark halo mergers, that the kick velocities are not
sufficiently large to impede black hole growth significantly. Haiman (2004)
states that the kick velocities are large enough for relatively small black holes
to be ejected from the halo, but that this could be left out of account when
the black hole are formed relatively recent, with super-Eddington accretion
times.

Figure 2.2 shows the mass history of the SMBH in the z = 6.43 quasar
SDSS 1148+5251, taken from the models of Yoo & Miralda-Escudé (2004).
The upper thick solid line shows the mass of the main halo progenitor in
one realization of the merger tree, obtained by always choosing the branch
of the most massive progenitor at every merger. The lower four lines show
the mass of the black hole in this main halo progenitor, according to four
different prescription for the gravitational wave recoil (or kick) velocity. The
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first prescription is a quasi-Newtonian calculation of nonspinning black holes
by Fitchett (1983). Secondly, Kidder (1995) added a post-Newtonian spin-
orbit correction to Fitchett’s work that depends on the black hole spins.
And finally, Favata et al. (2004) and Merritt et al. (2004) obtained a new
estimate using black hole perturbation theory, and they provided an upper
and a lower limit on the gravitational wave kick velocity. These limits are
a compromise to the uncertainty due to the final plunging state that gives
the dominant contribution. These two limits are shown as two separate
estimates.

The mass of the SBHs is fixed at MSBH = 10M�, and they start growing
as soon as they are formed, over an Eddington time of τedd = 4 × 107yr
(with η = 1, and ε ∼ 0.1). At every merger, the mass of the two black
holes is added when the recoil velocity is smaller than the escape velocity.
This results in the sudden mass increase seen in the figure. Growth by
gas accretion is presumed to continue immediately after mergers. whenever
the recoil velocity exceeds the escape velocity, the black hole is removed
and replaced by a new seed with MSBH = 10M�. Figure 2.2 shows that
many black holes are ejected at high redshifts when they reside in low-mass
haloes. However, when the mass of the haloes increases, fewer black holes
are ejected. The mass accretion is forced to stop when the black holes are
10−3 the mass of the progenitor halo.

Figure 2.3 shows a histogram of the final number of black holes that
have merged into the final SMBH, as a function of their formation redshift
(upper panel), and their contribution to the total mass of the final SMBH
(lower panel). In other words, the number shown in the upper panel is

Figure 2.3: Composition of
the final SMBH. Upper panel :
Number of SBHs that merged
into the final SMBH, as a
function of their formation
redshift. Lower panel : con-
tribution to the final mass
of the SMBH from the SBHs
as a function of their forma-
tion redshift (Yoo & Miralda-
Escudé 2004).
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the amplification factor φ form equation 2.24, and the lower panel shows
the contribution of the total mass of all the SBHs to the final mass of the
SMBH.

Figures 2.2 and 2.3 show that Yoo & Miralda-Escudé (2004) find an
amplification factor of φ ∼ 104 in the evolution of their SMBHs. Combining
a continued mass growth of black holes from Eddington-limited (η = 1)
gas accretion at a radiative efficiency of ε = 0.1 with black hole mergers,
they can easily account for the presence of SMBHs with M• ∼ 109M�, at
z = 6.43 (the redshift of quasar SDSS 1148+5251), starting from stellar
mass SBHs of 10M�. With recoil velocities according to the Favata upper
model, the simulations can even account for SMBHs with M• ∼ 109 at
z ∼ 10 already. Typically, these black holes are formed by 104 black hole
mergers, and subsequently grow by a factor of 104 in mass by gas accretion.

When a number of variations to the basic model are examined, Yoo &
Miralda-Escudé (2004) show that increasing MSBH from 10 to 100M� causes
a very small increase of the redshift (∼ +1 z) at which a mass of ∼ 109M�

can be achieved. Introducing the requirement that haloes will only merge
with haloes of which their mutual mass ratio lies between 0.1 and 1, makes
it difficult to reach a final SMBH of ∼ 109M�. The Fitchett and Kiddler
models reach a mass of only 108M�. For the upper limit of the Favata model
it is also very hard to reach the required 4× 108M�, but for the lower limit
to the recoil velocities the required mass can still be reached at z = 9.

Nevertheless, it is important to keep in mind that the amplification factor
φ can only be regarded as a crude estimate of the total influence of black
hole mergers, since it can only be applied with constant Eddington accretion
models. It is reasonably safe, however, to say that black hole mergers can
account for an amplification factor of φ ∼ 103.

2.5. Star Formation

Now that we have a plausible representation for the growth of the massive
black holes, it is time to look at the growth of the galactic bulges in which
these SMBHs are located.

To model the star formation history (SFH) of a galaxy, we use the em-
pirical Kennicutt-Schmidt law (Kennicutt 1998; Schmidt 1959) to describe
the rate at which gas is converted into stars. In a simple self-gravitational
halo, the large-scale star formation rate (SFR) is presumed to scale with the
growth rate of perturbations in the gas reservoir. The Kennicutt-Schmidt
law states that the surface density of star formation scales with the surface
density of gas. From this it can easily be derived, that also the volume
densities of star formation and gas scale with each other:

ρ∗ ∝ ρ1.5
gas, (2.25)
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Figure 2.4: Normalized density profiles for pseudo-isothermal spheres with different
core radii r0. The density profiles start out fairly flat, and proceeds to a slope of −2 when
r >> r0.

where ρ∗ and ρgas are the volume densities of star formation and gas, re-
spectively. Even though its origins are not yet fully understood and it is
just beginning to be tested at high redshift, the Kennicutt-Schmidt law is
widely used to interpret and describe star formation in galaxies (Erb 2007).

2.5.1 The pseudo-isothermal sphere

As a model of the halo, we adopt a body of gas with a constant tempera-
ture and an equation of state corresponding to equation 2.8, known as an
isothermal sphere; which has a density profile that decreases as ρ(r) ∝ r−2.

The general solution for the isothermal sphere is given by

ρ(r) =
σ2

2πGr2
,

and this solution describes a model known as the singular isothermal sphere

(Binney & Tremaine 1987).
Unfortunately, the singular isothermal sphere has infinite density at

r = 0. To obtain a density profile that is well behaved at the origin, it
is convenient to make use of the pseudo-isothermal sphere, which is given
by:

ρgas(r) =
ρ0

1 + (r/r0)2
, (2.26)

where ρ0 is the central density of the sphere, r0 is known as the core radius
and r is the distance to the center of the halo. At r0 the density of the
isothermal sphere falls to half of its central value, and it is called the core
radius in analogy to the observational definition.

Figure 2.4 shows normalized density profiles for pseudo-isothermal spheres
with different core radii r0. The density profiles start out fairly flat, and
proceed to a slope of −2, similar to the singular isothermal sphere, when
r >> r0.
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In order to find the central density ρ0, we integrate equation 2.26 over
volume at t0:

Mgas =

∫ R

0
4πρgasr

2dr

= 4πρ0

[

1 − r̃ tan−1(r̃)
]

Rr2
0,

where Mgas and R are the total mass and the total radius of the halo,
respectively, and r̃ is the dimensionless variable defined as

r̃ ≡
R

r0
. (2.27)

The central density can then be written as

ρ0 =
Mgas

4π
[

1 − r̃ tan−1(r̃)
]

Rr2
0

. (2.28)

From equation 2.25 we know that ρ∗ = Kρ1.5
gas, where K is the Kennicutt-

Schmidt constant. When we integrate this using equation 2.26 and the
volume integral we get an expression for the SFR:

SFR =

∫ R

0
4πρ∗r

2dr

= 4πKρ1.5
0

[

log
(

r̃ +
√

1 + r̃
)

− 1/2
√

2
]

r3
0. (2.29)

The factor K can be used to scale the SFR to empirical values, and is of
order K ∼ 102 − 103 cm3/2 kg−1/2 yr−1, for starburst galaxies that form
∼ 10 − 100M� per year.

2.5.2 Evolved stars

During the growth of the SMBH, and the accompanying star formation
phase, we have to consider the evolution of the massive stars in the forming
galaxy. The very massive stars can have life times of only ∼ 106 yr. When
they have burned all of their fuel, and come to the end of their life cycle,
they return a substantial part of their mass to the mass of the halo through
supernova’s and stellar winds.

To account for these evolved stars, we return a fraction Υ of the mass
in newly formed stars to the total mass of gas in the halo with each time
step. This can be justified by the fact that the mass fraction of very massive
stars, M ≥ 10M�, in a typical IMF is very small; < 10−2 (Figure 2.5; Scalo
1986; Kroupa et al. 1993). So even though these stars are very massive and
have a very short life time, the total amount of mass affected by this process
is very small, since there are very few stars. At the same time, the major
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Figure 2.5: The stellar
IMF and present-day mass
function (PDMF), taken from
(Kroupa et al. 1993). The
solid line represents the IMF,
and the dot-dashed line rep-
resents the PDMF. The solid
dots show the PDMF derived
by Scalo (1986). The stars
and crosses indicate the Scalo
IMF at a galactic disc age of
9 Gyr and 12 Gyr, respec-
tively.

fraction of stellar mass will be caught in stars that have a life time > 1 Gyr,
and will thus have a life time larger than the time we focus on.

As a consequence, the fraction of massive stars will become smaller over
time, as the IMF evolves towards the present-day mass function (PDMF;
Figure 2.5). With that, the amount of mass that returns to the mass of gas
in the halo will become smaller also; making the stellar feedback even less
significant.

With the incorporation of this stellar feedback, we have a complete model
that describes the evolution of the gas in our galactic halo, the star formation
and the basic stellar evolution that takes place simultaneously with the
growth of the SMBH.
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3

Results

With the mechanisms discussed in the previous chapter, we have the main
ingredients to model the growth of a SMBH in a galactic bulge, and with
that, asses the relative importance of these mechanisms. The evolution of a
black hole is traced, along with its host halo, in a numerical simulation: a
SBH is placed in a halo of gas, where it accretes mass to grow and evolve
into a SMBH. At the same time, the gas in the reservoir is being turned into
stars at a SFR as calculated in section 2.5.

3.1. The simulations

The SBH starts accreting in a radial manner with a Bondi rate, which
is determined by the central density of the isothermal sphere that models
the halo. During this accretion process, the SBH grows in mass and radius,
forcing the accretion rate to increase very rapidly (see section 2.3.2). This
makes it less likely that the super-Eddington accretion rate can be sustained.

As argumented in the previous chapter, feedback processes will thus stop
the Bondi accretion when the radius of the black hole becomes a factor of
5 − 50 larger (Volonteri & Rees 2005). Even though this sort of feedback is
still under debate, this will likely be some sort of outflow which blows away
most of the local gas cloud. After the Bondi accretion phase, the black hole
will go on accreting with an (sub-)Eddington accretion phase, until all the
available gas of the halo is turned into stars or accreted by the SMBH.

The SFR at which gas is turned into stars, simultaneously with the ac-
creting black hole, depends on the density of the gas - and thus the available
mass (M◦) - in the host halo. This SFR is calculated with every step, and
both the mass of the formed stars and the mass of the black hole is then
subtracted from the total mass of the gas in the reservoir. To account for
evolved stars, we return a fraction Υ of the total mass in stars to the gas in
the halo, with each time step.
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Figure 3.1: Time vs. mass.
Simulation of the growth of
the SMBH (solid line), the
mass of the stellar population
(dashed line) and the mass of
the gas in the halo (dotted
line) for out fiducial model:
M◦ = 109M�, R = 102 kpc,
r0 = 10 kpc, MSBH =
2 × 102M�, cs = 106 m/s,
γ = 1, rf = 10, ε = 0.15,
η = 1, Υ = 0.01 and K =
102 cm3/2 kg−1/2 yr−1.

Figure 3.2: Redshift vs.
mass. Simulation of the
growth of the SMBH (solid
line), the mass of the stellar
population (dashed line) and
the mass of the gas in the
halo (dotted line) for our fidu-
cial model, starting at red-
shift z = 24. The same pa-
rameters where used as with
Figure 3.1

Within the simulations, we do not take into account the effects of merg-
ers within our time frame. In section 2.4 we have shown that the total
amount of mass acquired through mergers of our halo with other small
(proto-)galaxies, or through mergers of our SMBH with individual black
holes, can be represented by the multiplication factor φ, which is typically
of order 103 − 104. Therefor, the end masses of the SMBH and bulge in-
cluding the effect of mergers, can be simply found by multiplying the end
masses of the simulations with a factor φ.
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3.1.1 The fiducial model

Figures 3.1 and 3.2 show the results of the simulations. The solid line
represents the mass of the black hole, the dashed line represents the mass of
the stellar population, and the dotted line represents the mass of the gas in
the halo. In Figure 3.1 time is plotted against the mass. Figure 3.2 shows
redshift versus mass.

The Figures are made with the same set of parameters. This set forms
our fiducial model and consists of the most likely parameters: mass of the
halo M◦ = 109M�, radius of the halo R = 102 kpc, core radius r0 = 10 kpc,
MSBH = 2 × 102M�, sound speed cs = 106m/s, polytropic index γ = 1,
feedback radius rf = 10, radiative efficiency ε = 0.15, Eddington luminosity
efficiency η = 1, stellar feedback fraction Υ = 0.01 and the Kennicutt-
Schmidt constant K = 102 cm3/2 kg−1/2 yr−1.

The different stages of accretion by the developing SMBH can be seen in
both Figures. The first epoch of Bondi accretion ends after approximately
108 yr (Figure 3.1) or at z ≈ 23 (Figure 3.2), and is followed by the (sub-
)Eddington accretion phase. This lasts untill the SMBH and the stellar
population (which is steadily growing in the meantime) have captured all of
the available gas, after a few τedd (∼ 109 yr) and at z ≈ 4.5, in Figure 3.1
and 3.2, respectively.

One of the most important results of this study can be seen immediately:
the model is able to produce a SMBH and a bulge of stars which are both
massive enough, and that within a small enough time. A comparison of
these results to the observations used for the Magorrian relation (Figure
1.1) shows that the SMBH is somewhat massive compared to the bulge, but
the mass ratio of the SMBH and the bulge lies within the scatter of the plot.

3.1.2 Tweaking the fiducial parameters

In order to investigate the affect and importance of the different parameters
assigned to the simulations, we have made simulations of the model in which
we change the value of one of the parameters, and thus leave the values of
the other parameters unchanged with respect to the fiducial values. Since
not all parameters are independant, we only change the value of the feedback
radius rf , the core radius r0, the radiative efficiency ε, the mass of the SBH
MSBH , the mass of the halo M◦ and the Kennicutt-Schmidt constant K.
The results are plotted in subplots A through E of Figure 3.3.

In their paper, Di Matteo et al. (2005) stress the importance of a steady
gas flow that feeds the emerging galaxy and its SMBH. This stream of gas
can yield prolonged star formation at a steady rate, and could even fuel the
SMBH in such a manner that it powers the quasar so strong that feedback
processes, resulting from this, quench star formation and further black hole
growth entirely. Subplot G of Figure 3.3 shows the effects of such a mass
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Figure 3.3: Time vs. mass. Simulation
of the growth of the SMBH (solid line), the
mass of the stellar population (dashed line)
and the mass of the gas in the halo (dotted
line). The same fiducial parameters were
used as in Figure 3.1, with the exceptions
as described in the legends. Note: K in

subplot F is in units of cm3/2 kg−1/2 yr−1.
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inflow in five scenario’s. The amount of mass that flows into the system,
Mi, is given in units of the halo mass M◦.

The results shown in Figure 3.3 clearly demonstrate the different impacts
of the altered parameters. In subplot A, we change the feedback radius rf .
This is the radius at which the growing SBH is accreting so fast and extreme,
that feedback processes stop the radial accretion, and force the black hole
to go on via (sub-)Eddington accretion. Since the radius and the mass of a
black hole are related through the Schwarzschild radius (equation 2.1), we
know that R ∝ M•. Therefore we also know that when the radius expands
by a factor rf , the mass increases by the same factor rf ; as shown in subplot
A.

Subplot B shows the influence of the density profile of the pseudo-
isothermal sphere on our model. With a decreasing core radius r0, the
density in the center of the isothermal sphere increases; forcing more gas
onto the SBH. This will significantly advance the time in which the black
hole has reached the feedback radius, and thus its (sub-)Eddington accretion
phase. On the other hand, when the core radius increases, and the density
profile becomes much flatter, more gas will be turned into stars, and the
SBH growth will stagnate.

The largest amount of mass that a SMBH accretes, will be through
(sub-)Eddington accretion. The efficiency of this process plays a major
role in allowing the amount of matter that can be accreted, as shown in
subplot C. Eventhough the influence of the radiative efficiency ε is plotted,
the Eddington luminosity efficiency η plays an equal role since τedd ∝ εη−1

(equation 2.6). The plot shows the immense effect that these parameters
have on the growth of a SMBH and the mass ratio between the SMBH and
the galactic bulge.

When the mass of the SBH is varied (subplot D), this has influence on
the time the Bondi accretion phase lasts. Nevertheless, it has little effect on
the end masses and mass ratio. The massive SBHs used for this simulation
(MSBH = 103M� and MSBH = 103M�), show that black holes formed
through a singular cloud collapse (Spaans & Silk 2006) could still very well
act as a SBH in our model.

In changing the mass of the halo out of which our galaxy forms, as is done
in subplot E, we alter the end mass of our sellar population. Simultaneously,
this changes the density of the gas reservoir, which reflects on the Bondi
phase of the simulation. Still this has, like in subplot B, little influence on
the end mass of the SMBH.

Subplot F shows the implications of the Kennicutt-Schmidt constant.
Changing the rate at which gas is converted into stars affects the growth of
the stellar population. With a large K of 104 cm3/2 kg−1/2 yr−1, the stars
are formed so rapidly that there is no matter to feed the black hole and
there is no SMBH growth. When K is small (K = 1 cm3/2 kg−1/2 yr−1),
the stellar population grows so slowly, that after a couple of Eddington times,
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the SMBH is more massive than the galacitc bulge. Eventhough these two
extreme scenario’s are physically not the most likely ones, the Kennicutt-
Schmidt constant must have a strong influence on the resulting end masses
and mass ratios.

In order to investigate the claims of Di Matteo et al. (2005), subplot G
shows the effects of a steady gas inflow. Other parameters are the same as
in our fiducial model. The simulations show that a very strong inflow (Mi ∼
10M◦) affects the end masses. Furthermore, it is possible that the accreting
SBMH grows for enough Eddington times, and thus will start accreting so
extremely that a feedback process must kick in to halt this phase. However,
more research has to be done to find an adequate description for the manner
in which this feedback process affects the total scenario.

3.1.3 The evolving Magorrian relation

Figure 3.4 shows the manner in which the ratio between the SMBH mass and
the mass of the galactic bulge evolves during the first Gyr, for our fiducial
model. Subplot A shows the time plotted against the mass ratio. Subplot
B shows the mass of the bulge against the SMBH mass.

In the first ∼ 108yr, it is the galactic bulge that grows must faster than
the black hole, and the ratio is too low, compared to the Magorrian relation
(Häring & Rix 2004; Figure 1.1).

After these first 108yr, the (sub-)Eddington accretion lasts for several

Figure 3.4: Evolution of the Magorrian relation plotted as the time versus the mass
ratio of the bulge mass with the SMBH mass (M•/M?), and as the mass of the SMBH
(M•) versus the bulge mass (M?), in subplots A and B respectively. The dotted line in
both plots defines the Magorrian relation (Figure 1.1). Both plots show that the mass
ratio is to low when the system is evolving less than ∼ 2× 108yr. After that, the SMBH
becomes to massive (within a period of ∼ 108yr), before the total amount of gas is
accreted or put into stars and an equilibrium is reached.
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Figure 3.5: SMBH mass vs.
bulge mass for 32 of the 36
end masses from the simula-
tions shown in Figures 3.1, 3.2
(both the fiducial model) and
3.3 (colored dots). The col-
ored area indicates the same
region as Figure 1.1 (Häring
& Rix 2004).

Eddington times and is therefor responsible for a rapid increase in mass,
driving the mass ratio to a value well above the Magorrian relation. There-
after, the system has depleted all of the gas from the halo and turned it into
stars or accreted it onto the SMBH. Eventhough the eventual mass ratio
is larger than the factor 10−3 predicted by the Magorrian relation, it lies
within the scatter of the points of Figure 1.1.

The end masses of 32 out of the 36 simulations shown in Figures 3.1,
3.2 and 3.3 are plotted in Figure 3.5. The four points that were omitted are
those where the SBH did not grow substantially; subplots B (r0 = 80.0 kpc) ,
D (MSBH = 1M� and MSBH = 10M�) and F (K = 104 cm3/2 kg−1/2 yr−1).
The colored area of Figure 3.5 indicates the same region as Figure 1.1.

Note that the masses plotted in Figure 3.5 represent the masses of the
evolving halo without any merging. For the masses of a system with mergers,
both of the result masses have to be multiplied by the multiplication factor
φ (section 2.4), which is typically of order ∼ 103.

The two characteristic paths, that the mass ratio follows during its evo-
lution in Figure 3.4, indicate an evolution in the Magorrian relation. Very
young galaxies (with an age of < 1 Gyr, where stars are still being formed,
and where the black hole is only accreting for ∼ 1 τedd) would have a mass
ratio < 10−3. This could provide a method to falsify this model. However,
the ambition to observe these stages of evolution would be a fairly bold one,
since these processes occur at redshifts very far away from the present day
observable universe (z ' 10).
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3.2. Discussion and Conclusions

The important result of these simulations is the fact that it shows that
it is possible to create a SMBH in a galactic bulge within 1 Gyr (or before
z = 6.43), and - even more important - that this SMBH is massive enough
to fit into the Magorrian relation. This is in accordance with findings by
Volonteri & Rees (2005), Yoo & Miralda-Escudé (2004) and Di Matteo et al.
(2008).

One of the conclusions could even be, that the masses are too high;
overshooting the mass range found by Häring & Rix (2004). However, as
shown in Figure 3.3, it is very well possible that the SMBH becomes less
massive by increasing the radiative efficiency ε (subplot C), or reducing
the Eddington luminosity efficiency η. This would result in a less massive
SMBH, and thus a mass ratio closer towards the Magorrian relation.

In fact, this could very well be in agreement with recent findings. We
use a radiative efficiency of ε = 0.15 (Herrnstein et al. 2005) as a fiducial
parameter. This is an observed value. Secondly, we state that the Eddington
luminosity efficiency η = 1. Pelupessy et al. (2007) find in their simulations
that SBHs grow much to fast with such a low radiative efficiency, and claim
that the accretion goes sub-Eddington; thus η < 1. Which could explain our
too massive SMBH. However, the rate at which the black hole is accreting
is an item which is still very much under debate. Even in the recent review
paper by Djorgovski et al. (2008) the total efficiency of the (sub-)Eddington
accretion phase (that is εη−1) is a controversial parameter. Apart from the
massive SMBH, the total mass of the young galaxy and its central black hole
is fairly high. When the amplification factor due to merging is incorporated,
the mass of the stellar population is ∼ 1012M�. This means that the system
would end up in the right top corner of Figure 1.1. This is perfectly possible.

However, by simply decreasing the mass of the halo M◦ and reducing
the total radius R, it is no problem to produce a bulge of ∼ 107 − 108M�

with a SMBH of ∼ 104 − 105M�, which would still satisfy the Magorrian
relation.

With each time step in our model, we return a fraction Υ of the total
mass in newly formed stars to the total gas mass of the halo (Section 2.5.2).
Because the largest part of the gas is turned into stars with intermediate
masses (M ∼ M�, Figure 2.5), the majority of the gas will be captured in
stars with life times much larger than the time span of our model. There-
fore, we do not account for feedback processes caused by less massive stars.
However, after several Gyr (at z ' 2), when the intermediate mass stars
come at the end of their life cycles, this could very well be a trigger for a
new phase of stellar birth, as well as a new accretion phase for the SMBH.
This could even be an explanation for the AGN peak found at z ∼ 1 − 1.5
(Madau 1998).
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The point at which feedback processes stop the Bondi accretion phase
of the black hole is another element of uncertainty. We use the ambiguous,
but arguable definition of Volonteri & Rees (2005). Since this Bondi accre-
tion phase resembles an adiabatic inflow model, it is an advection dominated

accretion flow, or ADAF (Narayan & Yi 1994). Improved hydrodynamical
simulations of SMBH evolution could shed a light on the different physical
circumstances belonging to this ADAF, or its counterpart (containing also
outflow), the adiabatic inflow-outflow solutions, known as ADIOS (Bland-
ford & Begelman 1999). Nevertheless, the overall picture (a period of ex-
treme inflow followed by an outflow) does not change dramatically. As we
have seen in subplots A and B of Figure 3.3, the point at which the feedback
processes stop the Bondi phase has no large impact on the eventual system
- as long as there is a period of (sub-)Eddington accretion.

3.3. Future work

Even though the work described in this paper shows some very nice
results. There is still a lot of work that can be done.

First of all, the model of the SMBH accretion could be improved in a
number of ways. By including a numerical code that beholds up-to-date
ADAF and ADIOS models (Blandford & Begelman 1999). This should give
a better insight in the different physical processes involved, encompassing eg.
gas cooling, magnetic fields, black hole spin and different feedback processes
resulting from these processes, or resulting in it.

Second, the effect of mergers should be better examined. This would
promote the model to a full size state-of-the-art N-body simulation, espe-
cially if it also includes the recent ADAF and ADIOS models. Still, the
effect of mergers of different masses and proto-galaxies in different stages
of evolution must have played a large role in the evolution of present day
(local) galaxies.

Besides the Magorrian relation, the M• − σbulge (Gebhardt et al. 2000;
Merritt & Ferrarese 2001) and other recent found relations (Section 1) should
be investigated to provide a better understanding of the origin of galaxies
and SMBHs in the very early universe. Or to provide a better understanding
of the link between SMBHs and AGNs or starbursts.

Fortunately, formation and early evolution of galaxies and black holes are
clearly among the most exciting subjects in cosmology today. The synergetic
co-evolution and interplay between the galaxy and its SMBH touch upon
numerous fundamental questions, and there are prospects for surprises and
even detection of new astrophysical phenomena associated with the birth
and growth of SMBHs (Djorgovski et al. 2008).

The subject is growing rapidly, providing both observational and the-
oretical challenges, and will undoubtedly be a fruitful playground for the
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forthcoming generations of large telescopes. Both in space and on ground,
over the full range of wavelengths and especially for the promising field of
gravitational wave astronomy.
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Yoo, J. & Miralda-Escudé, J. 2004, ApJ, 614, L25

37



BIBLIOGRAPHY

� ———
March 28, 2008

38


