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Abstract

Gamma-Ray Bursts (GRBs) are very energetic explosions. Probably they are the most
energetic events in our universe following the Big Bang. A GRB is characterized by an
intense flash of γ-radiation, in which ∼ 1051 − 1053 ergs is released in a few seconds,
followed by an afterglow in all parts of the electromagnetic spectrum. Although not
observed yet, theory suggests that the first generation of stars is a likely candidate for
providing the progenitors of GRBs. In this article we will derive the GRB-rate for a dark
matter halo at a redshift z. By using the Press-Schechter formalism we ask ourselves
the question what the probability is that such a halo existed at that particular redshift.
We will also derive a luminosity function for the afterglow following the actual GRB.
The latter luminosity function will be compared with the sensitivities of the near infrared
(NIR) camera on the upcoming James Webb Space Telescope (JWST). Finally we will
try to infer whether we expect to find a GRB afterglow in a random field of the latter
telescope.

1 Introduction

In 1963, during the cold war, a Nuclear Test Ban Treaty (NTBT) was signed by the gov-
ernments of the USSR, the USA and the UK. This treaty prohibited the testing of nuclear
devices in the atmosphere as well as in space. The USA wanted to make sure that the other
countries involved did not violate the treaty and therefore they launched the Vela-satellites.
These were satellites equipped with γ, X-ray and neutron detectors. In this way nuclear
activities in the atmosphere or in space would certainly be detected. However, the fourth
version of the satellites detected a serie of γ-flashes that did not have the characteristics of
nuclear activities on earth. It was only later on, when the satellites were able to determine
directions for the events, that these γ-flashes turned out to have a cosmic origin.

The discovery of GRBs in the late sixties was declassified in the beginning of the seventies.
This lead to a burst of publications by astronomers wondering what was causing these γ-
flashes. For a long time astronomers could not agree whether these flashes had a cosmological
or a galactic origin.

In 1990 the Compton Gamma-Ray Observatory was launched. This satellite was equipped
with the Burst And Transient Source Experiment (BATSE), an instrument that was able
to monitor almost the entire sky for γ-flashes. It turned out that GRBs were randomly
distributed across the sky, strongly favoring the theory of a cosmological origin. However, a
lot of astronomers still believed that GRBs had their origin in the galactic halo because there
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were no events known that could be linked to the energies involved when a GRB is placed at a
cosmological distance. The final answer to this question had to wait until 1997. In this year the
BeppoSax satellite discovered X-Ray counterparts of GRBs. A fairly accurate position could
be determined from these observations. This enabled astronomers to search for counterparts
in other parts of the spectrum, finally leading to the first redshift determination of z = 0.8 for
a GRB. This was clearly the end of the galactic scenario: GRBs have a cosmological origin.
And moreover, there was a lot of work to do for theoretical astrophysicists.

There are two classes of GRBs: short duration (< 2s) and long duration (> 2s) bursts.
The physical mechanisms underlying these two classes are thought to be different. It turns
out that the short bursts tend to have a lower redshift distribution than the long bursts.
Therefore the energies involved in the short bursts are probably less than for the long bursts.
The physics behind the short bursts is still unknown. Theory suggests the merger of two
neutron stars or a neutron star and a black hole. In the context of this article we are,
however, mostly interested in the long duration bursts, visible up to high redshifts. At this
moment the collapsar model provides us with the best explanation of long GRBs as well as
their afterglows in other parts of the spectrum.

Within the collapsar model (see section 2), there are strong arguments to think that a
relatively large fraction of the first generation of stars ended their lifes as a GRB. The first
population of stars is formed at high redshifts and because of the enormous luminosity of a
GRB we should be able to detect GRBs up to these high redshifts. By now, the highest redshift
that has been determined for a GRB is z = 6.29. However, a good spectrum from which a
redshift can be derived requires more than the ability of detecting the source. Therefore
making a good spectrum is easier for the nearby, apparently more luminous GRBs, than for
the GRBs at higher redshifts. This might introduce a bias towards lower redshift GRBs.

In this article we will try to infer whether it is likely that we will in the near future detect
the afterglow of a GRB at high redshift that can be connected to the first stars. By now,
such an observational connection has not been made yet. When such observations become
available, they will probably reveal a wealth of information about the formation of the first
stars at the end of the dark ages.

The outline of this article is as follows. First the theoretical basis of the model will be
discussed. This involves the collapsar model in section 2, the cosmology that is used in section
3 and the formation of stars and population III stars in section 4. Then we will discuss the
actual model for the expected number of GRBs in a particular halo that has just started to
form stars out of zero metallicity gas. This will include a model for the star formation rate
in section 5 and a model for the evolution of the metallicity in section 6. In section 7 we will
use these two models to derive the total number of GRBs that is expected to occur in the
particular halo. We will use the Press-Schechter formalism in section 8 and a model for the
afterglow spectrum in section 9 to determine in section 10 whether it is likely that we will
be able to use JWST to make an observational connection between GRBs and population III
stars.
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Theoretical basis of the model

2 The collapsar model

2.1 Recipe for a gamma-ray burst

The collapsar model, as put forward in [22], is at the moment the most attractive theory
explaining long duration GRBs as well as their afterglows. The starting-point of this model is
a rapidly rotating massive star at the end of its life that has lost its hydrogen envelope. Such
a star can lose its hydrogen envelope when, during its lifetime, it undergoes a Wolf-Rayet
(WR) phase. A star can undergo such a WR phase when the radiation pressure of the star at
some moment exceeds the gravitational force acting on the envelope of the star. This will only
happen when the opacity of the outer layers of the star is sufficiently high. Since hydrogen
alone does not provide such an opacity, the hydrogen envelope should at least contain a certain
fraction of metals for a WR phase. Furthermore the fact that the star is massive ensures that
its radiation pressure can become high enough to overcome the gravitational binding energy.
A star that satisfies these two conditions is able to lose its hydrogen envelope. But why do
we actually want the star to do this?

We will find the answer to the previous question if we take a closer look at another
important aspect of the collapsar scenario. One of the assumptions that this scenario makes
it that some sort of inner engine in the star produces a relativistic jet of particles. On its way
out of the star, the relativistic jet collides with stellar material. Because of the high energy of
the relativistic jet, these collisions produce a lot of high energy γ-photons: a γ-flash. At the
moment that the relativistic shock breaks through the stellar surface it propagates further
into to the surrounding interstellar medium (ISM). Collisions of this external blast wave with
gas and dust in the ISM are thought to be responsible for the afterglow in other parts of the
spectrum. A typical massive star with a hydrogen envelope has a radius of hundreds to a
thousand lightseconds whereas a naked helium star has a radius of only a few light seconds.
If at the moment of the burst, when the relativistic jets are produced, the star has not lost
its hydrogen envelope the inner engine will cease its activities before the jet can break out.
In this case the star will not produce a GRB. It is for this reason that a GRB progenitor is
thought to have a Wolf-Rayet phase during its life.

But what is the inner engine that produces these jets? According to the collapsar scenario,
a GRB is a ”failed supernova type Ib”. A supernova type Ib is the phenomenon that happens
at the end of the life of a massive star, when an iron core has formed and nuclear burning is not
able to produce a more stable element. The internal pressure caused by this nuclear burning
falls away and the star starts to collapse under its own gravity, resulting in an enormous
pressure and high temperature in the stellar core. The physical processes that play a role
under these circumstances allow the formation of a neutron star. This sudden collapse creates
an energetic shock wave, releasing an energy of about 1051 ergs. However, when the mass of
the star is high enough it is possible for the star to collapse directly into a black hole. In
this case a shock wave as in supernova type Ib is not produced, since such a wave simply
cannot escape the black hole. What happens next to the failed supernova depends on a third
important ingredient of a GRB: angular momentum.

When there is not enough angular momentum present, the newly formed black hole in
the stellar core will collect all the surrounding stellar material: nothing happens, at least so
it will look like for an observer. When the angular momentum of the surrounding material
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and the black hole is however high enough, it is possible to form a centrifugally supported
system. Although material that is closest to the rotational axis of the system will still fall into
the black hole, material in the equatorial plane has enough angular momentum to withstand
the gravitational attraction of the black hole. A disk-like configuration is formed, in which
particles in the disk are swept up to relativistic speeds. The easiest way to escape for these
relativistic particles is along the rotational axis: a relativistic pair jet is formed, giving rise
to a GRB followed by its afterglow.

2.2 The influence of metallicity

There are several ways in which the metallicity has its influence in the formation of a GRB.
Previously we showed that according to the collapsar scenario there are three important
ingredients for the formation of a GRB:

• a Wolf-Rayet phase in which the star can lose its hydrogen envelope

• angular momentum to form a disk-like configuration

• a massive star that allows the direct formation of a black hole

Each of these ingredients is influenced by the overall metallicity.
A higher metallicity increases the opacity of the outer layers of the star, making it more

easy to produce a radiation-driven wind. So a WR phase that can make a star lose its
hydrogen envelope is more likely to exist at a higher metallicity. However, the lower opacity
of stars at a lower metallicity, makes that their radii are smaller, facilitating the breakout of
a jet. And what we have not considered by now is that a stellar wind implies a loss of both
mass and angular momentum, carried away by the ejected particles. The mass loss can take
away the ability of a star for a direct gravitational collapse of the core into a black hole, an
essential feature of the collapsar model. And a star initially endowed with enough angular
momentum to support a disk, is more likely to retain this at a lower metallicity because of
the reduced angular momentum loss. But what about the hydrogen envelope?

Different suggestions have been made to overcome this problem. It could be that the
rotational velocities are so high that the hydrogen envelope is almost homogeneously mixed
into the core [24]. This makes it possible for a single star to become a rapidly rotating helium
star without the requirement of a strong stellar wind and the associated loss of mass and
angular momentum. Another possibility is that the progenitor evolves in a binary system,
one of the stars stripping off the hydrogen envelope of the other [6].

Finally, as we will see in section 4, the formation of high mass stars is thought to prefer
a low-metallicity environment. The higher the stellar mass, the higher the probability that
its core can gravitationally collapse to a black hole. Since a low-metallicity environment
is thought to produce more massive stars, we may conclude that such an environment is
expected to produce also more GRBs.

Combining all off these issues, we expect that GRBs prefer a low-metallicity environment.
These expectations are confirmed in a model made by Yoon et al. (2006) [25]. The results of
this model are shown in figure 1.

2.3 Reliability of the model

The collapsar model seems to give a good explanation for the long GRBs and its afterglows.
Moreover, this model provides us with the required ∼ 1051 ergs in γ-radiation (assuming the
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Figure 1: Model by Yoon et al. (2006) that clearly shows a metallicity dependence for the
probability of making a GRB. For details on this figure see [25].

emission is not isotropic but beamed into a few percent of the sky). We should, however,
not forget that the collapsar scenario is only a model. A lot of things are still uncertain and
observational evidence of what the inner engine really is, does at the moment not exist.

3 Cosmology and structure formation

In this section the cosmological context that is assumed throughout this article will be dis-
cussed. It would be beyond the scope of this article to derive the formulae in this section.
Therefore, we would like to refer the interested reader unfamiliar with these equations to an
advanced cosmology textbook for a more detailed discussion (e.g. [16] or [19]).

3.1 Concordance model

The cosmology that we are going to use in this article is the standard ΛCDM-cosmology.
This stands for an expanding flat universe that is nowadays dominated by the cosmological
constant Λ and by dissipationless Cold Dark Matter. The relative size of the universe is
described by the dimensionless expansion factor a, such that anow = a0 = 1 and a = 0 at
the time of the Big Bang. The evolution of this expansion factor with time is given by the
Friedmann equation:

ȧ2

a2
= H2 =

8πG

3
ρ− kc2/R2

0

a2
. (1)

In this equation H is de Hubble parameter whereas G is the gravitational constant.
The critical density ρcrit of the Universe is defined as the density for which it is just flat,

in other words the critical density is the density for which k = 0. We can derive the critical
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density through the Friedmann equation. Since for k = 0, we have ρ = ρcrit, the critical
density is given by:

ρcrit =
3H2

8πG
. (2)

Furthermore, the cosmic density is specified in a dimensionless form through the density
parameter Ω:

Ω ≡ ρ

ρcrit
=

8πGρ

3H2
. (3)

A particular choice of universe can be parameterized by the following set of numbers:
{H0,Ω0, Ωrad,0,Ωm,0, ΩΛ,0}. Therefore, it turns out to be convenient to rewrite the Friedmann
equation in terms of these parameters:

dt =
1

H0

da√
Ωrad,0 · a−2 + Ωm,0 · a−1 + ΩΛ,0 · a2 + (1− Ω0)

. (4)

In the ΛCDM-cosmology the universe is specified by H0 = 71 km · s−1 · Mpc−1, Ω0 = 1,
Ωrad,0 = 0, ΩΛ,0 = 0.73 and Ωm,0 = 0.27. This universe is often referred to as the concordance
model.

3.2 Present-day value of the cosmic density ρ0

We can rewrite equation 3 for the density, taking the current values for H, Ω and ρ to obtain:

ρ0 =
3

8πG
Ω0H

2
0 . (5)

For G and H0 we are going to use the following numbers:

• G = 6.673 · 10−11 m3kg−1s−2 = 6.673 · 10−11 ·
(

1
3.086·1016

)3 · 1.989 · 1030 pc3M−1
¯ s−2

• H0 = h · 100 km · s−1 ·Mpc−1 = h · 100
3.086·1019 s−1 = 0.71 · 100

3.086·1019 s−1

Filling in these numbers in equation 5, we find a present-day value of the cosmic density of
ρ0 = 2.775 · 10−7 M¯ pc−3. This cosmic mass density is related to the number density (of
baryons) through:

n0 =
ρ0

µ ·mp
and nb,0 =

Ωb · ρ0

µ ·mp
. (6)

In this µ denotes the reduced mass of the gas particles whereas Ωb is the mass percentage
of baryonic matter. The latter is according to the concordance model 0.04

0.27 = 14.8%. Note
that the first equation is not completely correct, since we do not know anything about the
nature of dark matter (so we can in fact not relate this to a number density). However, for
the formation of stars we will only consider baryonic matter so that this is not an important
issue.
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3.3 Hierarchical clustering

The early universe consisted of an almost homogeneous density field in which some tiny
fluctuations were present. Nowadays the universe reveals a lot of structure, at the smaller
scales being far from homogeneous. How did such a complex variety of structures form out
of the initially simple, almost homogeneous density field? In essence, the answer is simple:
gravity.

The initial overdensity field can be represented by a Gaussian distribution. The only way
in which dark matter can interact is through the always attractive force of gravity. This means
that although the overdensities were very small in the early universe, matter in underdense
regions started to move to overdense regions. When overdensities reach a critical value relative
to the background density, they can decouple from the Hubble flow and may start to collapse.
The smallest halos of dark matter are thought to form first, continuously merging together to
form larger and larger halos: hierarchical clustering. The abundance of halos with a certain
mass Mhalo at a redshift z can be calculated on the basis of a model. In this article we are
going to use a model that is similar to the Press-Schechter formalism [18].

The mass percentage of baryonic matter is according to the concordance model 14.8%.
This means that the amount of baryonic matter is low compared to the amount of dark
matter. The gravitational potential wells in the universe are therefore mainly formed by
the dark matter halos. In the hierarchical clustering scenario, baryonic matter is thought to
follow the potential wells created by the dark matter halos. This baryonic matter inside the
dark matter halos is the material out of which eventually the first stars will form. And it
is the formation of these first stars that in some sense mark the transition from the simple
homogeneous early universe to the highly structured one as we see it nowadays.

4 Population III stars

4.1 Star formation

Nowadays stars are born in cold dense gas clouds that consist primarily of molecular hydrogen
with a relatively small mass fraction of metals and other molecules. These systems are known
as molecular clouds. In the cores of these clouds typical values of temperature and density
are T ∼ 10 K and n ∼ 106 cm−3. Under these circumstances, certain regions of these clouds
may start to collapse under their own gravity because their masses become too high to retain
virial equilibrium. This is a particular state of a cloud in which it is neither contracting due
to gravity nor expanding due to its internal pressure, in this case the virial theorem applies:

2 · Ekinetic + Epotential = 0. (7)

Assuming a spherically symmetric cloud with radius R, we can derive what variables play
a role in establishing virial equilibrium. The gravitational potential energy of a spherically
symmetric cloud is given by:

Epotential = −
∫ R

0

GM(r)
r

ρ(r) · 4πr2 · dr. (8)

One more assumption we make in this analysis is that the density is constant throughout the
cloud, such that ρ(r) = ρ. The total mass of the cloud is therefore given by M = 4π

3 ρR3
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whereas the mass inside a radius r is represented by M(r) = 4π
3 ρr3. Using this in equation

(8) gives us:

Epotential = −
∫ R

0

(4π)2

3
Gρ2r4dr = −3GM2

5R
. (9)

At the typical temperature of a molecular cloud, rotational and vibrational modes of molecular
hydrogen do not contribute to the internal energy of the gas. This is because the smallest
rotational transition has an energy of ∼ kB · 512K, where kB = 1.38 · 10−23JK−1 is the
Boltzmann constant. The internal kinetic energy of a gas consisting completely of molecular
hydrogen, is therefore given by:

Ekinetic =
3
2
NkBT =

3
2

(
M

2mH

)
kBT. (10)

Applying the virial theorem, as defined in equation (7), results in the following condition for
the mass of the cloud:

MJ =
√

3
4π

(
5kB

2GmH

) 3
2

ρ−
1
2 T

3
2 ∝ ρ−

1
2 T

3
2 . (11)

This critical mass for which the cloud is in virial equilibrium is called the Jeans mass. If
the mass of the cloud exceeds the Jeans mass, it starts to collapse. Obviously equation
(11) does not provide us with the exact value of the Jeans mass. A spherically symmetric
cloud with constant density where other physical phenomena, like magnetic fields and angular
momentum, do not play a role is what we may call a rather unique configuration. However,
it does at least show us how the Jeans mass depends on the density and the temperature in
the cloud. Note that the same dependencies can be derived by setting the free-fall time equal
to the sound crossing time. A more insightful way to write equation (11) is the following:

MJ ≈ 0.73M¯ ·
(

n

106cm−3

)− 1
2

(
T

10K

) 3
2

. (12)

This equation shows us that for a typical molecular cloud with a temperature of 10 K and a
density of 106 cm−3, the Jeans mass is approximately 0.73 M¯.

What happens to a cloud with M > MJ after it started to collapse depends on the
characteristics of the cloud. Collisional excitations of particles in the cloud will, in the case of
radiative de-excitations, lead to the production of photons. When the cloud is optically thin to
this radiation, it can escape from the cloud. In this particular case the photons, carrying with
them some energy, allow the cloud to cool. If the cooling rate is high enough, it can enable
an isothermal collapse so that the cloud can enter a phase of runaway collapse. However,
when the cloud is optically thick to this radiation the collapse will be almost adiabatic. The
temperature increases in this case and therefore the Jeans mass may also increase when the
density does not increase fast enough. So a cloud must be able to cool if it wants to enter a
phase of runaway collapse. This condition is expressed in a physical way by demanding that
the cooling time tcool is shorter than the free-fall time tff .

We conclude that a cloud that has both M > MJ and tcool < tff will enter a phase of
runaway collapse until some other force stops the contraction. When the density inside the
center of the cloud becomes high enough, an optically thick hydrostatic core is formed. Now
this core is not able to cool anymore so that the temperature will increase. Yet this does
not stop the collapse of the cloud, because the surrounding material is still able to cool and
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collapse. This material will compress the core further and it will also partially accrete onto
the optically thick core. At some point the temperature and density in the core become so
high that hydrogen atoms start to fuse together and form helium. The outward pressure
produced by this process blows away the surrounding material: a new star is born.

4.2 Molecular hydrogen cooling in the first stars

The physics of the formation of the first stars is in fact a lot simpler than star formation
physics nowadays. By definition there are no other stars that influence the environment (e.g.
by radiation, winds or supernovae), we do not expect the presence of strong magnetic fields
and the primordial gas consisted mainly of hydrogen with some helium and lithium. Moreover
the initial conditions of the formation of the first stars are prescribed by the cosmology that
is described in section 3.

It is primarily the chemical composition of the primordial gas that makes the first, so-called
population III stars, different from population I and II stars that are formed in normal star
formation. The presence of metals and molecules in star forming regions nowadays, enable
cooling to temperatures on the order of ∼ 10 K. This is due to the low energy-spacings
of fine-structure transitions in metals and especially the vibrational and rotational levels in
molecules. But when the first stars formed these metals and molecules were not present. The
only way in which such a cloud can initially cool is by atomic hydrogen cooling. The lowest
energy spacing available in atomic hydrogen is about ∼ kB ·104 K. It turns out that the virial
temperatures of the halos in which the first stars formed were below this threshold of 104

K for atomic hydrogen cooling. Cooling is therefore only possible if the cloud can produce
a species with a lower energy-spacing. And the only species with a lower energy-spacing
that can form out of hydrogen atoms without nuclear reactions (for this you need stars) is
molecular hydrogen.

The formation of molecular hydrogen in the early universe is hampered by the absence of
dust. This makes that initially H2 molecules are formed in the gas phase. There are three
important formation channels for H2 molecules in the gas phase [7]:

(1) H+ + H −→ H+
2 + γ followed by H+

2 + H −→ H2 + H+

(2) H + e− −→ H− + γ followed by H− + H −→ H2 + e−

(3) H + H + H −→ H2 + H or H + H + H2 −→ H2 + H2

The corresponding reaction rates make that formation channel (1) is unimportant in compar-
ison with formation channel (2). At redshifts higher than z ≈ 200 however the H+ formation
channel is important because at that time CMB photons are energetic enough to destroy
H− ions, which makes this formation channel impossible. But since the dark matter halos
in which the first stars are thought to form were not there yet at that time, this is not im-
portant for our purpose. The last formation channel, the so-called three-body reactions, is
a very efficient one but only at densities in excess of 108 cm−3. It is therefore the second
formation channel that determines how much molecular hydrogen is formed in a particular
cloud. Tegmark et al. (1997) [20] have set up a model for a low density environment that
takes into account both formation channel (1) and (2). As a rule of thumb they conclude that
if the temperature of the protostellar cloud is high enough to produce a molecular hydrogen
fraction on the order of 5 · 10−4, then a gas cloud with M > MJ will collapse.

As was already mentioned the lowest lying rotational transition of molecular hydrogen
has an energy spacing of kB · 512 K. The average energy of each particle is 3

2kBT , so that
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at a temperature of ∼ 340 K the average particle would not have enough energy anymore to
collisionally excite the lowest rotational level. However the energies of the particles are dis-
tributed according to the Maxwell-Boltzman distribution, and collisions with the high energy
tail of this distribution allow cooling by molecular hydrogen to proceed to a temparature of
∼ 100− 200 K.

4.3 When did the first stars form?

So in order to obtain a fraction of molecular hydrogen that is high enough to enable a gas cloud
to cool, the host dark matter halo has to have a certain virial temperature Tv. That is, the
fraction of molecular hydrogen that is formed in a gas cloud depends on the temperature since
the reaction rates in this formation process increase with temperature. But what determines
the virial temperature of a dark matter halo?

A dark matter halo is in virial equilibrium when the virial theorem, equation (7), holds.
In the same way we derived the Jeans mass as a condition for hydrostatic equilibrium in a
spherical gas cloud with constant density ρ and temperature T , we can derive what the virial
temperature Tv of a spherical dark matter halo with constant density ρ and mass Mhalo has
to be in order to be in hydrostatic equilibrium. Rewriting equation (11) for the Jeans mass,
thereby replacing T by Tv and MJ by Mhalo allows us to derive an expression for the virial
temperature:

Tv =

(√
3
4π

) 2
3 (

5kB

2GmH

)
ρ

1
3 M

2
3 ∝ M

2
3 · ρ 1

3 . (13)

The density of a virialized halo can be expressed in units of the cosmic density as ρvir = δρc.
This expression turns out to be very useful because one can derive that a virialized spherical
dark matter halo has an overdensity of δ = 18π2 ≈ 178 with respect to the background density
ρc. Equation (13) tells us that the virial temperature depends on the virial density and since
the virial density depends on the cosmic density this implies that the virial density is redshift
dependent:

Tv ∝ M
2
3 · ρ 1

3 ∝ M
2
3 · a−1 ∝ M

2
3 · (1 + z). (14)

Baryonic gas that falls into a dark matter potential well, will in first instance have a
kinetic temperature that is equal to the virial temperature of the halo. Virial temperatures of
104 K or higher will of course allow Lyman-α cooling although the cooling rate will initially
be relatively slow since the densities n involved are still small and the cooling rate scales
with n2 for low densities. Assuming the virial temperature of the halo determines the kinetic
gas temperature of the cloud, it is essentially this virial temperature that determines the
fraction of molecular hydrogen that is produced. Since we derived previously that there is
a minimum fraction of H2 molecules required to enable a gas cloud to cool, it is therefore
the virial temperature that determines whether a dark matter halo can succesfully host a
protostar. This virial temperature in turn depends on the mass of the halo, Mhalo, and its
virialization redshift zvir. So in order to answer the question when the first stars formed, we
actually have to answer the question when there was for the first time a combination of halo
mass and virialization redshift {Mhalo, zvir} that had a virialization temperature that was
high enough to produce enough molecular hydrogen to enable a gas cloud in the halo to cool.
This idea is nicely illustrated by a model of Tegmark et al. (1997) [20]. The results of this
model are shown in figure 2. Assuming that the first stars formed in a 3σ mass fluctuation,
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Figure 2: Results of a model by Tegmark et al. (1997) [20] that determines for a given redshift
zvir the required mass M needed for collapse. Only halos with parameters {zvir,M} that lie
above the shaded area have a virial temperature that is high enough to produce a sufficient
fraction of molecular hydrogen for a gas cloud inside the halo to cool. The dashed straight
lines correspond to virial temperatures of 103 K and 104 K. The dark shaded region does
not enable efficient radiative cooling because in these regions the required virial temperature
is lower than the temperature of the Cosmic Microwave Background (CMB) radiation. The
solid line represent a mass fluctuation of 3σ, assuming a standard normalized CDM model
for structure formation as described in section 3.

this figure shows us that the first dark matter halo in which a gas cloud could collapse formed
at a redshift of z = 30 and had a mass of Mhalo = 2 · 106M¯.

Note that at temperatures above 3000 K H2-molecules are collisionally destroyed. The
regime between 3000 and 10000 K is therefore in fact unstable. On the one hand a small
increase in the H2 fraction will enable the cloud to cool to a temperature below 3000 K,
preventing the destruction of the coolant, whereas on the other hand a small decrease in the
H2 fraction will allow the temperature to increase, enhancing the destruction of H2-molecules.
The latter vicious circle will continue until the cloud reaches a temperature of 104 K, the
equilibrium point at which Ly-α cooling becomes important again.

4.4 The formation of the first stars

An Initial Mass Function (IMF) describes the mass distribution of newly formed stars. An
IMF does not specifically descibe how many stars are formed per mass bin per unit time, but
it describes the form dN

dM of this mass distribution. The model that we develop in this article
requires the use of such an IMF for population III stars. However, before we turn to this we
first want to know what the characteristic mass scale is of a population III star and we will
discuss whether fragmentation of the primordial gas cloud will play an important role.
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4.4.1 Characteristic mass scale

A characteristic mass scale of collapse is obviously the Jeans mass. In equation (12) we derived
that for star formation nowadays the Jeans mass under typical circumstances is ∼ 0.73 M¯. A
characteristic mass scale of a primordial protostellar cloud can be derived by determining the
typical Jeans mass. For this, we need to know what we expect to be the typical temperature
and density in such a cloud. We have already seen that cooling by molecular hydrogen
cannot proceed under ∼ 100 − 200 K, therefore we take 150 K as a typical temperature. A
characteristic density can also be determined by taking a closer look at the cooling process.
When densities n are low, each collision in the gas cloud results almost instantaneously in a
radiative decay. That is, collisional de-excitations are not important. In this case the cooling
rate is proportional to n2. However, when the density reaches some critical value nc ≈ 104

cm−3, collisional deexcitations start to compete with radiative de-exciations. Since collisional
deexcitations do not cool the gas, the cooling process is suddenly less efficient and the cooling
rate is now proportional to n (see [21] for more details on cooling processes). Once the cloud
reaches this critical density it enters a phase of quasi-hydrostatic equilibrium due to the now
inefficient cooling process. It is at this point where the mass of the cloud should exceed the
Jeans mass in order to move away from this phase and enter a phase of runaway collapse.
This argument makes that we take n = nc ≈ 104 cm−3 as the typical density in a primordial
gas cloud. This typical state of a primordial gas cloud is in agreement with results as obtained
with hydrodynamical numerical simulations by [1] and [2].

Deriving the Jeans mass as previously in equation (11), only now for a spherically sym-
metric cloud with constant density that consists completely out of hydrogen atoms results
in the following characteristic mass scale of the parent gas cloud out of which the first stars
formed:

MJ ≈ 1693M¯ ·
(

n

104cm−3

)− 1
2

(
T

150K

) 3
2

. (15)

This mass of the parent clump out of which the first star formed already provides us with
an upper limit for the mass of the population III star. The final mass of the star is however
not determined by this. When the collapse of the cloud continues, the density of the central
core will at some moment become ∼ 108 cm−3. As was mentioned before, at this point the
three-body formation channel for hydrogen becomes efficient and when the density increases
to ∼ 1010 cm−3 the inner 1M¯ is able to become almost completely molecular. This causes
a sudden boost in cooling that may lead to thermal instabilities of the cloud that can cause
fragmentation. Like in normal star formation, the density at the center of the cloud will at
some moment become so high that it becomes optically thick. Simulations (e.g. by [14]) have
shown that the optically thick hydrostatic core, that forms at a density of 1022 cm−3, has a
mass of 5 · 10−3 M¯. This is essentially the same as in present-day star formation. So does
population III star formation not differ from normal star formation? Yes it does, because the
final mass of the star is not determined by the mass of this central core but by the amount of
material that can accrete onto this central core. This in turn, depends on the accretion rate.

The total amount of material that is available for accretion is set by the Jeans mass. The
time it takes for a Jeans mass to accrete is given by the free fall time, a characteristic time
of collapse. For a spherical halo the freefall time is given by:

tff =

√
3π

32Gρ
∝ ρ−

1
2 . (16)
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Dividing the Jeans mass from equation (11) by the free fall time from equation (16) shows us
that the accretion rate depends strongly on temperature:

Ṁacc ≈ MJ

tff
∝ T

3
2 . (17)

Since the typical temperature in a primordial protostellar cloud is about fifteen times larger
than nowadays, we conclude that the accretion rate in such a cloud is about 15

3
2 ≈ 60 times

larger than in ordinary star formation. Therefore population III stars are in general thought
to be very massive ones. In normal star formation the accretion process is halted when a
Wolf-Rayet wind blows away the surrounding material. However, by definition during the
formation of the first stars there were no metals and dust that could drive such a wind. Is
it then possible that a population III star accretes all the material of the surrounding gas
cloud? In that case the upper bound of the mass of a population III star would be a one or
two thousand solar masses, the Jeans mass of the gas cloud. But we have to take into account
the fact that these stars are very massive, which implies that their lifetimes are very short.
Assuming that accretion cannot proceed longer than this lifetime, the upper bound for the
mass of a population III is by [3] derived to be ∼ 500 M¯.

4.4.2 Fragmentation

It is not sure that the collapsing primordial protostellar clouds continue their collapse until a
star forms. In fact there are several reasons to expect the development of instabilities in the
cloud. These instabilities can give rise to fragmentation, breaking the cloud up in different
parts and consequently lowering the available mass to accrete onto the star.

When the three-body formation channel for molecular hydrogen becomes efficient, the
central part of the cloud undergoes a sudden boost in cooling. This can possibly cause a
thermal instability in the cloud. Such an instability would also require the presence of initial
density perturbations in the cloud. However, if these density perturbations were present
during the slowly collapsing phase around n ∼ nc they would have been erased by pressure
forces at this time. Moreover, compressional heating will prevent the cloud from experiencing
a sudden drop in temparature.

Another important seed for further fragmentation of the cloud is angular momentum.
The protostellar cloud starts with a given amount of angular momentum, in general for
early star formation this amount is thought to be relatively small. If the collapse continues
and the radius of the cloud decreases, conservation of angular momentum implies that the
typical rotational velocities of the cloud increase. This can lead to a centrifugally supported
configuration that inhibits further accretion onto the core but it can also cause fragmentation
of the cloud. Note that angular momentum transport, by for example turbulent viscosity
or gravitational torques in binary systems, can allow the protostellar cloud to loose angular
momentum during the its collapse. This can prevent the cloud from fragmentation.

Different simulations (e.g. [1], [2], [27]) showed that further subfragmentation of the cloud
does not take place. These results make that we will ignore the possibility of subfragmentation
in the rest of this article.
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4.4.3 Initial mass function of population III stars

In present-day star formation the IMF is often described by a Salpeter mass function:
dN

dM
= ξ′0 ·M−2.35. (18)

In this equation the stellar masses M are thought to vary between 0.1 M¯ < M < 100 M¯.
Unfortunately such a prescription does not exist for population III stars, a consequence of
the fact that we have not been able yet to observe these stars. However, since the model we
develop in this article requires that we have such a prescription we are forced to make some
rough assumptions at this point.

Different simulations have shown that the formation of a 100 M¯ star is easily feasible
under the circumstances of population III star formation. On the other hand the lifetimes of
these stars give rise to an upper boundary of 500 M¯. This leads to the first assumption that
the mass range of population III stars is given by 100 M¯ < M < 500 M¯. Do we expect the
IMF to follow a particular shape? As far as we know now there is no reason why for example
a 200 M¯ star would be more favourable to form than a 400 M¯ star. Therefore we assume
that, in the assumed mass range, the IMF of population III stars is a flat one:

dN

dM
= ξ0. (19)

4.5 Feedback mechanisms

Once a first generation of stars has formed, they probably influence their environment in
several ways. The fact that they were very massive implies on the one hand that they emitted
a lot of high energy photons into their environment and on the other hand that the associated
short lifetimes of these stars will enable them to produce a supernova-like phenomenon shortly
after their birth. This takes care of the first enrichment of the universe with heavy elements.

The production of these heavy elements raises the overall metallicity of the environment
quickly. We already saw that population III star formation differs from ordinary star forma-
tion in the sense that it takes place in a zero-metallicity environment. Therefore the raise
of the overall metallicity associated with the death of a population III star may lead to a
transition in the IMF from the early top heavy one to the normal Salpeter IMF as is observed
nowadays. This transition takes place as soon as the overall metallicity reaches the so-called
critical metallicity. The critical metallicity is thought to vary between 10−5Z¯ and 10−3Z¯
[15]. In this article we will use the value of Zcrit ∼ 10−3.5Z¯ derived by [4].

4.6 Population III stars as GRB progenitors

Comparing sections 2 and 4 makes clear that population III stars have some properties that
make them favourable progenitors of GRBs. That is, population III stars have a low metallic-
ity and they are thought to be very massive. On the other hand, the formation of population
III stars requires the cloud not to have too much angular momentum, to prevent it from frag-
mentation, whereas a GRB requires, according to the collapsar model, a sufficient amount of
angular momentum to form a disk. A GRB that is produced by a population III star should
therefore have a carefully balanced amount of angular momentum.

With the assumption that a certain fraction ηGRB of the total generation of first stars is
able to produce a GRB as in the collapsar scenario, it is now time to start the development
of a model.
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Description of the model

5 Star formation rate in a dark matter halo

We start setting up a model by considering the star formation rate in a dark matter halo. For
this, we assume that population III stars follow an IMF as described by equation (19). We
normalize the IMF by using the Schmidt-law. From this we will derive a star formation rate
per unit area as a function of stellar mass, a function that describes how many stars inside a
mass bin dM around M are formed per unit time per unit area in a particular halo.

5.1 Schmidt-law

The Schmidt-law describes for a given column density of gas, what the star formation rate
per unit area is in solar masses per year. It is then the IMF that tells you how the total
amount of star formation ΣSFR ·∆t is distributed over the different stellar masses.

The Schmidt-law is given by (observationally determined in [11]):

ΣSFR = 2.5 · 10−4(
Σgas

M¯ pc−2
)1.4M¯ yr−1 kpc−2. (20)

Theoretically, we expect the star formation rate to be proportional to the density divided by
the free-fall time. Since the free-fall time tff ∝ n−0.5, we expect a ΣSFR ∝ Σ1.5

gas depencence
of the star formation rate on the density. Note that this power of 1.5 lies within the confidence
level of the observationally determined density dependence of ΣSFR ∝ Σ1.4

gas. We are going
to use the observationally derived power of 1.4 because the theoretically derived one follows
from a simple argument that does not take everything into account that might play a role.

5.2 Normalization of the IMF

The condition for correctly normalizing the IMF with the Schmidt-law is:
∫

dN

dM
·M · dM = ΣSFR ·∆t. (21)

For our population III IMF this results in the following normalization condition:

ξ0 = 2.0525 · 10−9 (
Σgas

M¯ pc−2
)1.4 ·∆t. (22)

The number of stars dN that are formed within the mass bin dM per unit time per unit
area is now given by:

dN

dA · dt
= 2.0525 · 10−9 (

Σgas

M¯ pc−2
)1.4 · dM. (23)

As we can see, this formation rate of stars within a mass bin dM is a function of the surface
mass density Σgas. It is therefore important that we derive an expression for this surface mass
density.
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5.3 The column denstiy in a collapsed halo

5.3.1 Density of baryons after the collapse

A Dark Matter halo decouples from the Hubble flow at a relative overdensity of n
nc

= δ = 178
according to [13]. At the moment of decoupling, the density of the complete halo is given by
n = nc · δ, in which nc is the cosmic density at the moment of decoupling. Note that in the
case of matter the cosmic density evolves as nc = n0 · a−3 = n0 · (1 + z)3 in which n0 is the
cosmic density nowadays. So the density in the halo at the moment of decoupling is

n = δ · n0 · (1 + z)3. (24)

However, the things we are going to derive relate to baryonic matter (since we want to
know which stars and how many of these stars are formed). This brings in two important
factors that we have to take in account. First the density of baryonic matter is only a fraction
Ωb of the total mass density. As a second point we also have to take into account that baryonic
matter is able to collapse. We are going to assume spherical collapse with a collapse factor

λ−1 = Rinitial
Rfinal

. Since for matter n ∝ R−3, we have ninitial
nfinal

=
R3

final

R3
initial

= λ3. Putting these two
factors together, we get the following final density of baryonic matter after the collapse:

nb = δ · λ−3 · Ωb · n0 · (1 + z)3. (25)

Because we are more interested in GRB that happened at high redshifts, we are mainly
concerned with halos in the early universe. Baryonic matter will in general not have collapsed
to a disk at this time. Therefore, we make the assumption that that the collapse is completely
spherical.

5.3.2 Converting density into a column density

However, for using the Schmidt-law we need to know the column density. We assume that
the rate of star formation will depend on the column density that corresponds to the longest
column in the halo. In the case of complete spherical collapse, the longest column is the
one through the center with a length of two times the radius of the sphere. For getting the
corresponding column density N, we have to multiply the density with the length that we
want to consider, in this case two times the radius R. For the mass of the spherical halo we
have:

Mhalo =
4π

3
· ρ ·R3 =

4π

3
· n · µ ·mp ·R3. (26)

We can rewrite this equation to obtain the radius of the sphere,

R = (
4π

3
)−

1
3 · (Mhalo

µmp
)

1
3 · n− 1

3 . (27)

Note that n = nb
Ωb

, so that the column density Nb of baryons corresponding to a density nb as
given in equation (25) is:

Nb = 2·nb ·R = (
π

6
)−

1
3 ·(Mhalo

µmp
)

1
3 ·Ω

1
3
b,g ·n

2
3
b = (

π

6
)−

1
3 ·δ 2

3 ·λ−2 ·Ωb,g ·(Mhalo

µmp
)

1
3 ·n

2
3
0 ·(1+z)2. (28)
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Typical values in this context are:

• δ = 178

• λ = 0.07

• Ωb = 0.148

5.4 The star formation rate

5.4.1 Surface mass density

As we can see in equation (23), the number of stars dN
dA·dt in the mass bin dM that is formed

per unit area per unit time depends on the surface mass density Σgas of the halo whereas
equation (28) only provides us with a number density Nb. These two quantities are related
to each other through:

Σgas = Nb · µ ·mp. (29)

Combining this equation with equations (6) and (28) results in the following expression for
the surface mass density:

Σgas = (
π

6
)−

1
3 · δ 2

3 · λ−2 · Ωb,g ·M
1
3
halo · ρ

2
3
0 · (1 + z)2. (30)

5.4.2 Star formation rate

Finally, now that we have an expression for the surface mass density Σgas from equation (30),
we can use equation (23) to determine what the star formation rate of stars with mass M per
unit area, dN

dA·dt , is as a function of halo mass and redshift for our population III IMF. This
results in the following expression:

dN

dA · dt
= 2.0525 · 10−9


(π

6 )−
1
3 · δ 2

3 · λ−2 · Ωb,g ·M
1
3
halo · ρ

2
3
0 · (1 + z)2

M¯ pc−2




1.4

· dM. (31)

Filling in the constants in this equation reduces the equation to:

dN

dA · dt
= 1.811 · 10−11 ·M

1.4
3

halo · (1 + z)2.8 · dM. (32)

More interesting is, however, the formation rate dN
dt of stars within the mass bin dM in the

complete halo. For this we have to multiply equation (32) with the area A of the halo. The
assumption that the halo is spherical in combination with the radius from equation (27), the
number density in the halo from equation (25) and the cosmic number density from equation
(5) results in the following surface area of the halo:

Ahalo = πR2 = π
1
3 ·λ2 ·(4

3
·δ ·Ωb,g ·n0)−

2
3 ·(Mhalo

µmp
)

2
3 ·(1+z)−2 = 15.72M

2
3
halo ·(1+z)−2 pc2. (33)

The combination of equation (32) and (33) gives us the total number of stars with mass
M that are formed per unit time in a halo with mass Mhalo at redshift z,

dN

dt
= 2.848 · 10−16 ·M

17
15
halo · (1 + z)0.8 · dM. (34)
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6 Metallicity evolution and mixing processes

Each supernova or GRB has a certain metallicity yield. Therefore, as more of these explosions
take place, the overall metallicity of the halo increases. This rise in metallicity has two
consequences for the number of GRBs in the halo. First, at a certain metallicity the IMF
transforms from a population III IMF to a Salpeter IMF (this is thought to happen at a
metallicity of ∼ 10−3.5Z¯). After this IMF transition, the metallicity is still low enough to
enable the production of GRBs (although star formation now takes place with a Salpeter
IMF). From figure 1 we can conclude that at a metallicity of ∼ 10−2Z¯ it is not possible
anymore to produce GRB in an efficient manner. Therefore at this metallicity there is a
cutoff in the number of GRB.

6.1 Metallicity-yields

When we want to know how the metallicity in a halo evolves with time, we first need to
know how many metals are produced at the end of the life of a star with mass M. For this,
we need to know how a star with mass M ends it life. An overview of this distribution of
stellar end-products is found in figure 3. In the mass range of population III stars, stars
in the ranges 100M¯-140M¯ and 260M¯-500M¯ will directly form a black hole. Although
these stars produce a certain amount of metals, only a very small fraction of this will be
injected into the environment and help to raise the overall metallicity. Most of the metals
that are produced in these stars will be locked in the black holes that form directly after their
deaths. In the context of metal production, we will assume that stars that directly form a
black hole do not contribute to the overall metallicity. This implies that for population III
stars only stars in the mass range 140−260 M¯ are important for determining the metallicity
evolution of a halo. As can be seen in figure 3, stars in this mass range end their lifes as a
Pair Instability Supernova (PISN).

6.1.1 Pair Instability Supernovae

The more massive a star is, the hotter it is. And since stars radiate almost like a perfect black-
body, these hotter more massive stars will produce more energetic γ-photons. At some point,
the most energetic photons have energies on the order of E ∼ 2mec

2 ∼ 1MeV . According to
the mass-energy equivalence, such a photon has enough energy to produce an electron-positron
pair. This newly formed pair will quickly annihilate and form a new γ-photon.

Normally, the more energetic a γ-photon the larger its mean free path (since the photo-
electric effect and compton scattering are less efficient for high energy photons). However,
when gamma-rays become energetic enough to form electron-positron pairs, the mean free
path of the γ-photons will start to increase again. This increase in the mean free path causes
an instability. As a consequence the temperature increases, producing more high energy pho-
tons and hence amplifying the instability. For stars with a mass larger than ∼ 140M¯, the
released thermal energy by pair-productions is larger than the gravitational binding energy
of the star. A PISN is produced and its progenitor is completely disrupted. Important in this
is that the mass of the remnant is Mrem = 0, therefore all the metals that are produced in
a PISN are ejected into the halo causing a significant increase in the overall metallicity. To
determine the evolution of the metallicity, we need to have a function ym(M) that gives the
fraction of the stellar mass M that is converted into metal m.
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Figure 3: This figure shows that stars with an intitial mass between 100M¯ and 140M¯
will directly form a black hole. The same holds for stars with an initial mass that is higher
than 260M¯. Supernova explosions or GRBs that are directly followed by the formation of
a black hole are of no importance for us here since they do not pollute their environments
with metals: almost all the metals that are formed are locked in the black hole. However,
between 140M¯ and 260M¯ the life of a star is ended with a PISN. Such an explosion leaves
no remnant behind and therefore all the metals that are produced during such an explosion
are available to increase the metallicity of the halo. In the study of the metallicity evolution
of the halo we therefore need to take a closer look at these explosions. Figure from [8].
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Table 1: Carbon yields

mass He-core (M¯) stellar mass (M¯) carbon-yield (M¯) fraction of total stellar mass
65 140.0 6.89 4.9%
70 149.2 4.54 3.04%
75 158.5 4.32 2.73%
80 167.7 4.33 2.58%
85 176.9 4.28 2.42%
90 186.2 4.21 2.26%
95 195.4 4.13 2.11%
100 204.6 4.01 1.96%
105 213.8 3.85 1.80%
110 223.1 3.74 1.68%
115 232.3 3.73 1.61%
120 241.5 3.71 1.54%
125 250.8 3.61 1.44%
130 260.0 3.49 1.34%

Carbon yields for different masses of the central helium core. The corresponding total stellar mass is derived
with the assumption there is a linear relation between the mass of the helium core and the total mass. The

last column represents the carbon yield as a fraction of the total stellar mass.

6.1.2 Carbon enrichment of a halo

In this article we will use metallicity yields as presented in [8]. This article provides a model
that determines for different stellar masses in the PISN-range the yields for a set of metals.
In this, it is not the total mass of the star but the mass of the helium core that is taken
as a variable starting-point. This is because the mass of this core determines the maximum
temperature of the star. Previously we already concluded that the total stellar mass range
of PISN is given by 140M¯-260M¯. In [8] the mass range of the helium core varies between
65M¯-130M¯. In this article the assumption is that there is a linear relation between the
mass of the central helium core and the total mass of the star.

In considering the metallicity evolution of the halo we will take the carbon yields in PISN
and relate these to the solar abundance. The solar abundance of carbon, which we define
here as the mass fraction of carbon, is ZC¯ = 0.0041. Table 1 presents the carbon yields for
the different masses of the helium cores that are used in [8]. The corresponding stellar mass,
with the assumption that there is a linear relation between the mass of the helium core and
the total stellar mass, is also mentioned in table 1.

The only problem is that table 1 provides us with a set of discrete values whereas we would
like to have a continuous function yC(M) that gives us the carbon yields of a star with mass
M as the fraction of the total stellar mass. Such a function can, in a rather simple way, be
implemented in the formalism we developed in section 5. In order to get such a function, we
have used MATLAB to make a fit to the dataset as presented in table 1. This fit is presented
in figure 4, and results in the following yield function for carbon:

yC(M) = 2.5104 · 10−6M2 − 0.0012104M + 0.16062. (35)
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Figure 4: Quadratic fit to the dataset presented in table 1. This fit is made with MATLAB.

Now that we have the function yC(M) for the stars that are thought to produce a PISN,
and therefore eject all their metals in the environment, we can derive how many of these stars
are required to raise the overall metallicity to the critical value of 10−3.5Z¯.

The formation rate from equation (32) gives us the number of stars in the mass bin dM
that are formed in a halo with mass Mhalo at redshift z per unit time. When we multiply this
equation with the absolute carbon yield yC(M) ·M we obtain the amount of carbon dC

dt in
solar masses that is produced in a halo with mass Mhalo at redshift z per unit time by stars
within a mass range dM around M :

dC

dt
= 2.848 ·10−16 ·M

17
15
halo ·(1+z)0.8 ·M ·(2.5104 ·10−6M2−0.0012104M +0.16062) ·dM. (36)

The total rate dCtotal
dt at which carbon is ejected into the halo is obtained by integrating

equation (36) over the mass range of PISN:

dCtotal

dt
=

∫ 260M¯

140M¯
2.848·10−16·M

17
15
halo·(1+z)0.8·M ·(2.5104·10−6M2−0.0012104M+0.16062)·dM.

(37)
Evaluating the integral over the stellar mass range results in:

dCtotal

dt
= 1.417 · 10−13 ·M

17
15
halo · (1 + z)0.8M¯ · yr−1. (38)

6.1.3 How long does it take to produce enough metals to reach the critical
metallicity?

The final thing we want to know is how long it takes a halo to reach the criticial metallicity
of 10−3.5Z¯. Equation (38) is, however, not a straightforward equation that enables us to
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determine this time. In fact, the only thing we can do with equation (38) is determine the
total amount of carbon Ctotal that is produced between two times t1 and t2 by integrating
over time:

Ctotal =
∫ t2

t1
1.417 · 10−13 ·M

17
15
halo · a−0.8 · dt. (39)

The integral in equation (39) is not a trivial one to evaluate. This is because the redshift z and
the dimensionless expansion factor a are time-dependent variables. The relation between these
variables is given by equation (4) and we can use this equation together with the concordance
model to rewrite equation (39) as:

Ctotal =
∫ a2

a1

1.417 · 10−13 ·M
17
15
halo · a−0.8 · 1

H0

da√
0.27 · a−1 + 0.73 · a2)

. (40)

So equation (40) enables us to determine the total amount of carbon that is ejected into
the halo between the values a1 and a2 or equivalently 1

(1+z1) and 1
(1+z2) of the dimensionless

expansion factor. Taking a dark matter halo with mass Mhalo at a redshift zbegin with zero
metallicity as our starting-point, we would like to know the redshift at which it reaches a
metallicity of 10−3.5Z¯. Analytically this is not a feasible thing to determine from equation
(40). Therefore we have written a MATLAB program that starts with the initial state just
discussed, subsequently takes small steps in redshift space and compares the obtained metal-
licity with the desired value. As soon as the critical metallicity is reached the program gives
the redshift zend at which this happens as output value. Once the program has determined
this value, the total number of PISN NPISN that was required to enrich the halo to the
required value can be determined by evaluating the following integral:

NPISN = 2.848 · 10−16
∫ 1/(1+zend)

1/(1+zbegin)

∫ 260M¯

140M¯
M

17
15
halo ·

1
H0

a0.8

√
0.27 · a−1 + 0.73 · a2)

· dM · da. (41)

6.1.4 Results

Now it is time to present some results of the MATLAB program we have written. We have
taken different values for the total halo mass Mhalo and for the redshift zbegin at which the
halo formed. From this starting point, the redshift zend at which the critical metallicity
was reached is determined. The time between zbegin and zend is determined with equation
(4). Subsequently the total number of PISN that were needed to enrich the halo to the
critical value is determined with equation (41). For different halo masses the results of these
calculations are presented in table 2.

6.2 Mixing model

The final thing that our model should provide us with is the number of GRBs that can be
produced in a particular halo before the overall metallicity reaches a value that is equal to
the critical value. What do the result presented in table 2 tell us in this context? According
to this table a halo with a total mass of 107M¯ only needs one PISN to produce enough
carbon to raise the overall metallicity to the critical metallicity. But does this imply that at
this point the halo reaches the overall critical metallicity? It certainly need not. Obviously,
at the moment this first PISN takes place, the metals that are ejected are not homogeneously
distributed over the halo. Locally the metallicity reaches the critical value. When we want
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Table 2: Number of PISN before reaching the critical metallicity at z = 25

Mhalo time(years) numberofPISN

106M¯ 21533 0.1
107M¯ 16149 1.1
108M¯ 11535 10.8
109M¯ 8459 107.5
1010M¯ 6229 1076
1011M¯ 4614 10834

This table presents the number of PISN that is needed to reach the critical metallicity at z = 25. Note that
for the lighter halos the binding energy can be on the order of the energy of one supernova. In this case one
supernova is able to destroy the complete halo. Furthermore, if we want to use the time that is needed to
produce enough metals to reach the critical metallicity as the time to reach an overall metallicity that is

equal to the critical metallicity, we should realize that we have to build in a delay of ∼ 106 years. This is the
estimated lifetime of the first stars, in the case of a continuous star formation process it is only at this time

that stars start to produce eject metals into their environment.

to know when the overall metallicity of the halo reaches this value, we also have to model the
mixing process that distributes the metals over the halo.

A PISN is thought to produce a shock wave that propagates through the halo. It is this
shock wave that is responsible for the distribution of the metals in the halo. We make the
assumption that there exists a universal shock velocity vshock, this assumption enables us to
model the metal distribution in a rather simple way. The shock velocity of a supernova is in
[21] described as:

vs(t) = 250
(

t

t0

)−5/7

km s−1 (42)

In this, a typical normalization time is t0 ∼ 2 · 104 year. As we will see a typical mixing
time for a halo is on the order of 106 year so that a typical shock will start with a velocity of
250 km · s−1 and end with a velocity of ∼ 15 km · s−1. To facilitate the calculations we take
vshock = 50 km · s−1 as a universal shock velocity, the so-called snowplough velocity.

Imagine that at a particular moment in time there have been N PISN. We assume that
these PISN are distributed homogeneously over the halo and that the mean distance between
two PISN is LPISN . Now we can define the characteristic mixing time scale Tmix of the halo
as follows:

Tmix =
LPISN

vshock
=

Rhalo
3
√

N · vshock

. (43)

In this equation the radius of the halo Rhalo can be determined with equation (27).

6.3 When does a halo reach the critical metallicity?

We have now developed two conditions that should be fulfilled before the halo reaches the
critical metallicity. On the one hand it should have produced enough metals and on the other
hand the time between the moment the halo begins to produce PISN and the moment the
critical metallicity is reached should at least be equal to the characteristic mixing time scale.

The second condition will also be build into the model. For this, we have made a MATLAB
program that first determines (like in section 6.1) the number of PISN that are required
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to produce enough metals and the time TPISN it takes to produce this number of PISN.
Subsequently the program determines the characteristic mixing time scale Tmix of the halo at
that particular moment in time. Note that this mixing time scale changes when more PISN
are produced. The program will now compare TPISN and Tmix.

When TPISN is larger than Tmix, the program takes the value of TPISN as the time it
takes the halo to reach the critical metallicity. When TPISN is smaller than Tmix, the program
takes another step in redshift space. It determines again what the number of PISN is in the
halo and calculates the corresponding mixing time. Now this mixing time is compared with
the total time T since the halo started to produce PISN. This loop continues until the mixing
time Tmix grows larger than the total time T . At the moment this happens, the total time
T is taken as the time it takes the halo to reach the critical metallicity. The model is now
able to determine how long a particular zero-metallicity halo with mass Mhalo that starts to
produce stars at z = zbegin continues to form population III stars. That is, at the moment
the halo reaches the overall critical metallicity the IMF is assumed to make a transition to a
Salpeter IMF that is found in normal star forming regions.

Although a Salpeter IMF is also able to produce GRB progenitors, we will not consider
this here. This is mainly because we expect that GRBs do not form in an environment with
an overall metallicity higher than 10−2Z¯. The halos that we modeled did all have a mixing
time that was larger (at least one order of magnitude except for the halos with a mass 106

M¯) than the time needed to produce sufficient metals. In fact at the moment the total time
becomes equal to the mixing time, the amount of metals that had been produced is sufficient
to reach the cut-off metallicity of 10−2Z¯. This, in combination with the fact that a Salpeter
IMF is less likely to produce GRB progenitors, brings us to the assumption that once the
IMF makes the transition to a Salpeter IMF the contribution to the cosmological GRB signal
becomes modest.

7 The GRB rate in a dark matter halo

The final thing that the model should provide us with is the GRB rate in a particular dark
matter halo. For this we are going to assume that a certain fraction ηGRB of all supernovae
produce a GRB. The value for this fraction is empirically derived for intermediate redshift
GRBs by [12] to be η′GRB = 0.001. However, as was explained previously we think that GRBs
are more likely to occur at the end of the life of a population III star. Since there are no
observations of population III stars available, using the fraction η′GRB of present-day star
formation can be a serious underestimate. Therefore we take the value ηGRB = 0.005 that is
found as the global fraction of supernovae over GRBs in the model developed by [25].

The fact that the assumed population III IMF produces only very massive stars has
two consequences. First, all of these stars will end their life with a supernova-like event.
Second, these stars die almost immediately after their birth. These two things brings us to
the approximation that the supernova-rate in a particular halo is equal to the star formation
rate. Under this assumption, the GRB rate in a halo is given by:

NGRB

dt
= 2.848 · 10−16

(∫ 140M¯

100M¯
dM +

∫ 500M¯

260M¯
dM

)
ηGRB ·M

17
15
halo · a−0.8. (44)

Since we do now also know how long it takes for a halo, that begins to form stars at zbegin,
to reach the critical metallicity for a transition of the IMF at zend, we can derive the total
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Figure 5: The total number of GRBs that according to our model occurs in a particular halo.
This number is determined for formation redshifts of z = 20, z = 15 and z = 10. The slope
of the lines turns out to be ∼ 1.26. On the basis of equation (45) one would expect a slope
of 17

15 ≈ 1.13. The discrepancy between the expected and the real slope is caused by the
dependence of zend on the total mass of the halo.

number of GRB that took place in the halo during its population III stage. Note that we
made the assumption that all stars in the mass range 140 − 260 M¯ form a PISN so that
these cannot form a GRB. The total number of GRB that take place in a halo is according
to our model therefore given by:

NGRB = 3.9872 · 10−16 ·Mhalo
17
15 ·

∫ 1/(1+zend)

1/(1+zbegin)

1
H0

a−0.8 · da√
0.27 · a−1 + 0.73 · a2

. (45)

The results of this model are shown in figure 5.

8 The distribution of dark matter halos

Now that we know for a particular dark matter halo how long the phase of population III star
formation lasts and how many GRBs are produced during this phase it is time to ask ourselves
the question how likely it is to find this particular halo at a given redshift. For answering
this question we adopt a hierarchical clustering scenario described by a simple form of the
Press-Schechter formalism. This Press-Schechter formalism describes the distribution of dark
matter halos with mass Mhalo as a function of redshift with the assumption that the primordial
density fluctuations were Gaussian.
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Figure 6: The relative abundance of dark matter halos as compared with the abundance of
halos with a mass of M = 106M¯

In this article we will use the Press-Schechter formalism as described in [13]. According
to this article the distribution of dark matter halos is given by:

n(M, z) =
(

2
π

) 1
2 ·

(
ρi

M2

)
· y · dlogy

dlogM
· e−y2

2 . (46)

In this equation y = δc(1 + z)/σ(M) where δc = 1.68 and σ(M) = 16.3b−1(1 − 0.3909r0.1
0 +

0.4814r0.2
0 )−10. In this r0 is the initial radius of collapse in units of Mpc and given by

r0 = (M/1012M¯)1/3 ·(Ωh2)−1/3 whereas ρi is the initial density given by ρi = 178·ρ0 ·(1+z)3.

8.1 Relative halo abundances

Equation (46) gives a prescription for the number of halos with mass between M and M +dM
that is expected in 1 Mpc3. Although one can use this equation to obtain the number of halos
in a certain volume, it is particularly useful to compare the abundance of halos with different
masses. That is, n(M1,z)

n(M2,z) tells you how many halos with mass M1 you expect to find for
each halo with mass M2 at a given redshift z. Figure 6 shows the abundance of dark matter
halos relative to the abundance of dark matter halos with M = 106 M¯. One can clearly see
that this plot satisfies the scenario of hierarchical clustering, as with decreasing redshift the
relative abundance of more massive halos grows considerably.

Motivated by cosmological simulations of population III star formation (e.g. [1] or [2]), we
make the assumption that halos of 106M¯ acquire for the first time a significant abundance
at a redshift of z = 30. The relative abundances in figure 6 enable us now to say something
about the abundances of halos with a higher mass.
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8.2 The expected number of halos in a field on the sky

Another useful thing to derive in the context of the distribution of halos, is the number of
halos that we expect in a certain field on the sky between redshifts z1 and z2.

The angular size ∆θ of such a field is related to the physical size d(z) at redshift z through
the angular diameter distance DA:

d(z) = DA ·∆θ =
Dc(z)
1 + z

·∆θ. (47)

In this Dc(z) represent the comoving distance corresponding to redshift z and is defined as:

D(z) =
c

H0

∫ a0

1
1+z

da√
0.27 · a−3 + 0.73

. (48)

The volume element dV that corresponds to a field of ∆θ × ∆θ, that substends a solid
angle dΩ on the sky, between z and z + dz or alternatively a and a + da is now given by:

dV (z) = d(z)2 · dD(z) =

(
c

H0

∫ a0

1
1+z

da√
0.27 · a−3 + 0.73

)2

· dΩ · c

H0

da√
0.27 · a−3 + 0.73

. (49)

The number of halos dN(M) with mass between M and M + dM that we expect to find
in this volume element is dN(M) = n(M, z) ·dV . The total number of halos N(M) with mass
between M and M + dM that we expect to find in our field of ∆θ ×∆θ between redshift z1

and z2 is given by:

N(M) =
∫ z2

z1

n(M, z) · dV (z). (50)

We will not show the complete formula here since this will be a rather unattractive one.
Instead we will now use a MATLAB program to calculate what the expected number of halos
in a mass bin dM around M is in a field of 1′× 1′. The results of this calculations are shown
in figure 7.

9 A model for the spectrum of a GRB

If we want to determine whether it is possible to detect a GRB at a particular redshift, we
need to know the emission spectrum. This spectrum can be divided into the spectrum of
the instantaneous burst and the spectrum of the afterglow emission. Although the spectrum
of the instantenous burst is far more energetic than that of the afterglow, it is the latter
spectrum that is of interest to us. This is because the instanteneous burst lasts for only a few
seconds in the source frame. Despite the time dilation in the observers frame, the chance that
a telescope is pointed at this field at the particular time of the instanteneous burst is very
small. Note that this is not the case with satellites like BeppoSax that can monitor almost
the entire sky.

Moreover, the regime of high-energy photons is not the one that gives you the best spectral
resolution. Although photons are redshifted, the high energy photons that can have energies
of a few keV will never end up in for example the infrared window of the upcoming JWST
with its excellent sensitivity. This favours the afterglow of a GRB to reveal a lot of information
about the environment in which the first stars formed. For this reason, we have to model this
afterglow spectrum so that we can infer whether it is likely that we will in the near future
detect an afterglow of a population III GRB.
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9.1 The afterglow spectrum

The afterglow of a GRB is thought to be caused by a relativistic shock wave from the GRB.
Therefore we can model the spectrum of the afterglow as synchrotron emission from a decel-
erating relativistic shock wave as in [5], for the details on these emission mechanism we refer
the reader to this article.

The synchrotron emission that is responsible for the afterglow is caused by relativistic
electrons that have a power-law distribution of Lorentz factors γe, with a minimum Lorentz
factor of γm. Furthermore γc is a threshold Lorentz factor below which electrons do not loose
a significant amount of energy to synchrotron radiation. If γm > γc, all electrons do loose a lot
of energy to the production of synchrotron emission. This will cause the total population of
electrons to cool down rapidly to γe ∼ γc. When γc > γm, only electrons with γe > γc will cool
down rapidly. This threshold Lorentz factor divides the emission by synchrotron processes
into two regimes. If γm > γc, the flux as observed in the observers frame is according to this
model [5] given by:

Fν = Fνm





(ν/νc)1/3 νc > ν,

(ν/νc)−1/2 νm > ν ≥ νc,

(νm/νc)−1/2 · (ν/νm)−p/2 ν ≥ νm.

(51)

If on the other hand γc > γm, the synchrotron afterglow spectrum as observed in the observers
frame is given by:

Fν = Fνm





(ν/νm)1/3 νm > ν,

(ν/νm)−(p−1)/2 νc > ν ≥ νm,

(νc/νm)−(p−1)/2 · (ν/νc)−p/2 ν ≥ νc.

(52)

The value for the power-law index p is taken from [10] to be p = 2.2, since this value is a more
recent one than the one used in [5]. In these spectra Fνm is the observed peak flux whereas
νc and νm are the characteristic synchrotron frequencies desribed above. According to [5], for
a fully adiabatic shock, these are given by:

νc = 2.7 · 1012ε
−3/2
B · E−1/2

52 · n−1
1 · t−1/2

d · (1 + z)−1/2 Hz

νm = 5.7 · 1014ε
1/2
B · ε2e · E1/2

52 · t−3/2
d · (1 + z)1/2 Hz

Fνm = 1.1 · 105ε
1/2
B · E52 · n1/2

1 · d−2
28 · (1 + z) µJy

(53)

In this, εB and εe are the fractions of the shock energy that are converted to, respectively,
magnetic fields and the acceleration of electrons. The values for these two constants are also
taken from [10] and turn out to be εB = 0.01 and εe = 0.1. E52 is the energy of the shock
in 1052 ergs, n1 the density in cm−3, td the time in days in the observers frame between the
observation of the afterglow and the actual GRB and d28 the luminosity distance in 1028cm.

In this the luminosity distance is a redshift-dependent quantity that can be determined
for a concordance model with the following equation:

dL = (1 + z) ·D = (1 + z) · c ·
∫ to

te

dt

a(t)
= (1 + z) · c

H0

∫ a0

ae

da√
0.27 · a + 0.73 · a4

. (54)

When we now consider for example a GRB at redshift z = 20 with an energy of 1052

ergs, determine the luminosity distance with equation (54) and take for the density of the
gas the baryonic density of the halo from equation (25) we can compute a set of synchrotron
spectra for the afterglow. These spectra are shown in figure 8. Note that these spectra are
not corrected for possible extinction mechanisms, due to the dust in the host galaxies.
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Figure 8: Afterglow spectra of a GRB at z = 20 as seen in the observers frame under the
assumption that synchrotron processes in the shock following the GRB are responsible for
the afterglow.

10 Observations

10.1 What do we expect to see with JWST?

We will now focus on a particular part of the spectrum we have just derived: the JWST
window. We will compare the sensitivities of the filters on the NIRcam of JWST, as can be
found on their website, and compare these with the afterglow spectra in the JWST window.
This comparison is plotted for GRBs at z = 10, 20, 30 in figure 9. As one can see, the 10σ
sensitivities of all the filters are sufficient to detect the afterglow spectra from the different
redshifts, varying from 15σ for z = 30 to 60σ for z = 10, for the filter with the highest
sensitivity. This is a significant result that tells us that it is in principle possible to detect
the afterglow of a very high-redshift GRB.

10.2 Number of GRB in a random field

Now that we know that JWST does in principle enable us to detect a high-redshift GRB we
would like to say something about the probability of detecting such an afterglow when we
point the NIRcam at a random field at the sky. The field of the NIRcam is 2.6′ × 2.6′. If we
consider for example high-redshift GRBs from z = 10 to z = 30, we know from section 8.2
the number of halos within a mass bin dM around a halo of mass M .

As we can see there will be a lot of 106 M¯ halos in our field, but will these halos produce
a lot of GRBs? What we have not taken into account by now is that the amount of energy
that is released during a PISN can be on the order of the gravitational binding energy of the
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halo. The binding energy of a 106 M¯ halo is for example ∼ 1051 ergs whereas for a 107

M¯ halo this is ∼ 1053 ergs. Therefore in a halo of 106 M¯ one supernova like event that
releases 1052 ergs of mechanical energy, is enough to blow away the complete halo whereas in
a halo of 107 M¯ you need only ∼ 10 of these events to destroy the halo. In this case further
star formation is of course halted so that the halo will also not be able to produce a GRB
anymore. Since ηGRB << 1, we do not expect GRBs to occur in these halos. The binding
energy of a 108 M¯ halo is however significantly more than the 1052 ergs so that these halos
will probably survive the supernova like events within them. We make the assumption here
that halos with a mass higher than 3 · 107 M¯ will survive a supernova whereas lower mass
halos will not. The total number of GRBs that we expect in our random field is therefore
determined by halos with a mass higher than the cutoff mass of 3 · 107 M¯.

As a final thing we would like to derive an estimate for the number of GRB that we expect
in our random field. For this, we will combine section 7 that provides us with the number of
GRB that take place in a particular halo with section 8 that tells us how many of these halos
we expect in our field.

Since we are interested in the halos between z = 10 and z = 30, we can use the prescrip-
tions from figure 7 to derive the expected number of halos in our field. The values that are
presented there are already integrated over time so that the power-law fit that was used to
approximate the number of halos is only a function of halo mass. According to this fit, that
was used to facilitate this derivation, in a field of 1′x1′ the number of halos in a mass bin dM
around halos with mass M is given by #halos/1′ × 1′ = 1.34 · 1015M−2.08

halo .
For the total number of GRBs NGRB that occur in a particular halo we use the values

presented in figure 5 for z = 20, fitted by NGRB = 4.1 · 10−11M1.26
halo. This total number does
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not change drastically with redshift so that we take this as a constant from z = 10 to z = 30.
As was explained previously the lower limit of the halos that we will take into account is 3·107

M¯. For the upper limit we will take 1011 M¯. Combining all of these gives the following
approximation to the total number of GRBs Nfield in our random field with the NIRcam on
JWST:

Nfield ∼ θ2
JWST

∫
#halos(Mhalo) ·NGRB(Mhalo)dM ∼ 1.5 · 108. (55)

At first this might seem an amazingly large number, but we have to realize that we would
only expect to observe such an amount of GRBs in our field if we make the rather naive
assumption that all the halos in our field have at the particular time of observation just
started to form stars out of zero-metallicity gas. A much more realistic assumption would
for example be that the probability that a random halo has just started to form stars out of
zero-metallicity gas is equally distributed over time between z = 10 and z = 30. Notice that
from equation (4) we have a time span of ∼ 4 · 108 yr between z = 10 and z = 30, so that the
latter probability would be ∼ 1

4·108 yr−1. In this case we would have to observe our random
field for ∼ 3 yr in order to detect one GRB! Therefore we conclude that it seems to be rather
unlikely that we find the afterglow of a GRB when we point our telescope at a random field
on the sky at a particular moment in time. In any case, follow-up of a GRB detected with
GRBs detectors like the one on BeppoSax is fine of course.

11 Discussion and conclusion

Within the context of the collapsar model and the existing theories about population III star
formation in a ΛCDM cosmology we have derived that the existence of very high redshift
GRBs is very likely. Moreover, we have derived that it is in principle possible to detect
the afterglow of such a high redshift GRB with JWST. The probability of detecting such
an afterglow when we point JWST at a random field on the sky is however rather small.
Therefore the detections of afterglows will for the time being remain dependent on satellites
like BeppoSax that can monitor almost the entire sky for γ-flashes. Once such a flash has
been detected, other telescopes like JWST can be guided to this position and try to detect
an afterglow and possibly the spectrum of the afterglow.

Now that we finished the model it is time to look back and ask ourselves the question what
it really tells us. For this, we should discuss the uncertainties in our model. The uncertainties
in the model are mainly introduced by the assumptions we make and the uncertainties that
are already present in values we take from other models. We will first take a closer look on
the question whether the assumptions we made can be justified.

We started with a model of the star formation rate. In this, we assumed that the total star
formation rate per unit area for population III stars is like in normal star formation given by
the Schmidt-law. This Schmidt-law is more or less what you would expect when you divide
the density by the freefall time. Since the physical meaning of these two quantities on which
we expect the total star formation rate to depend does not change with time, it seems to
be a reasonable assumption that the Schmidt-law is valid for star formation at high redshift.
Like we did in our model, one should in this case of course use a value of the surface density
that is characteristic for a population III environment. A second assumption that we made is
that dark matter halos and the baryonic gas inside these halos undergo a spherical collapse.
Although this is not completely true, in the high redshift universe that we are interested in,

32



this turns out to be a good approximation. The same holds for the assumption that stars
form out of a spherical gas cloud.

In the normalization of the IMF for population III stars we assumed in the mass range of
100− 500 M¯ a flat IMF. This is a rather crude assumption, but the absence of observations
make that we have to base our model on the data that follows from other models. The IMF of
the first stars will however remain uncertain as long as observations do not become available.
This lack of observations does also make the assumed fraction ηGRB of these stars that form
a GRB, a highly uncertain value.

The way in which a halo is enriched with metals is also based on a model. This is again
because there are no observations available of PISN and certainly not of their nucleosynthesis.
It is however difficult to say something about the reliability of the data that we use from other
models. All of these models make their own assumptions introducing resulting uncertainties.

The use of the Press-Schechter formalism as an indication of the abundance of dark matter
halos hides a lot of information we would like to have. The formalism does only tell us the
abundance of halos whereas we would also like to know for example when such a halo formed,
when it started to form stars and what its starting metallicity is. The latter is related to the
fact that the Press-Schechter formalism does only take into account gravity. In the context
of the hierarchical clustering scenario smaller galaxies merge and form larger galaxies. When
these smaller building blocks already had some episode of star formation this will give rise
to a halo that is pre-enriched with metals. Pre-enrichment of the primordial gas can also be
caused by the smallest halos that had some star formation before they were destroyed by the
supernova-like events within them. As we have seen, above a metallicity of 10−2Z¯ we do not
expect GRBs anymore. Our model does not take this into account.

Finally we assumed for the afterglow spectrum of the GRB a synchrotron spectrum as
observed in normal shock waves. Since we think that the afterglow of a GRB is caused by
such a shock wave, this seems to be a reasonable assumption.

Although we realize that each of the assumptions we make introduce some uncertainty, it is
hard to say something quantitatively about the total uncertainty. Therefore it is at this point
better to restate what conclusions we can draw from our model, despite the uncertainties
that it contains. That is, our research tells us that within todays theoretical framework
population III stars are a likely progenitor for GRBs and the model we developed showed
that we should be able to use JWST to observe the afterglow of a such a GRB. Moreover
our model showed that finding GRB afterglows will in the near future remain dependent on
follow-up observations of GRBs observed by specific all-sky monitoring detectors.
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