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Abstract

The Radial Velocity Experiment (RAVE) is an ongoing project
which will measure radial velocities and stellar atmosphere parame-
ters (temperature, metallicity, surface gravity and rotational velocity)
of up to one million stars. Since its start in 2003 until the internal
data release of June 2007, ∼ 200 000 observations have been made,
from which 50 994 spectra have been reduced, resulting in 21 032 ob-
servations having astrophysical parameters.

This new dataset will be interesting for Galaxy structure studies.
However, there is a crucial piece of information missing: The distance
to the stars. When combined with radial velocities from the RAVE
survey, proper motions (when available) from Starnet2, Tycho2 and
UCAC2 catalogues this dataset will provide the full 6d phase space for
each star.

In this report, we present a method to derive the distance to a
star using stellar models and astrophysical parameters such as effective
temperature (Teff ), surface gravity (log(g)) and metallicity ([Fe/H ])
as provided by RAVE. This method is tested with artificial data and
a subset of the RAVE data for which distances are known, yielding
consistent results. When we apply our method to a set of 17 434 stars
for which we are able to derive their distance for the first time, there
are 4 048 stars with relative distance errors < 28%, 6 921 and 12 412
whose relative errors are smaller than 37% and 46% respectively.

Using the obtained distances in combination with sky coordinates,
radial and proper motions we are able to derive the full 6d phase space
for these stars. We recover the known gradients in the metallicity of
stars as we move away from the Galactic plane. Velocity for stars in the
Solar neighbourhood are analysed, signatures of a non rotating halo
is found and the UV velocity ellipsoid shows the well known vertex
deviation.
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1 Introduction

During the past few decades, cosmology has changed from philosophy to pre-
cision physics. We now believe to have a good understanding of the universe
we live in. This is a flat universe, dominated by dark energy which causes the
expansion to accelerate (Spergel et al., 2007). We further believe that most
matter is in the form of cold dark matter, cold referring to non-relativistic.
Zwicky (1937) was the first to introduce dark matter to explain the missing
mass in nebulae. By this definition dark matter does not interact with nor-
mal matter through the electro-magnetic force, but does interact through
the gravitational force. This popular and successful cosmological picture
is referred to as ΛCDM cosmology and predicts a hierarchical formation of
structure in the Universe. In this framework, small structures grow first,
to later form bigger structures. The larger structures we see today are the
filaments and super clusters as observed by galaxy surveys like the Sloan
Digital Sky Survey (SDSS). At smaller scales we find galaxies, ellipticals,
spirals, and finally dwarf galaxies.

The power spectrum is used to measure the power of density perturba-
tions on a certain scale. The current cosmological model predicts a Harrison-
Zel’dovich spectrum (P (k) ∝ k, where k is the wavenumber). This power
spectrum predicts more power on small scale, so there should be more dwarf
galaxies than ellipticals and spirals. In this cosmological model it is likely
that many of these dwarf galaxies have merged to form larger galaxies. If
these dwarf galaxies have merged with the Milky Way, how would we be able
to detect this? We see evidence of an ongoing merger between our Galaxy
and the Sagittarius stream (Majewski et al., 2003). However, we might also
be able to detect already merged galaxies using the kinematics of stars in
the Milky Way (Helmi et al., 2006).

From numerical simulations we have learnt that stars from a common
progenitor, when merged with the Milky Way, move on similar orbits (Helmi
and de Zeeuw, 2000). Helmi et al. (2006) used the apocenter (A), pericenter
(P) and the z-angular momentum (Lz) to find substructure, which they refer
to as APL space. To construct the APL space the full 6d phase space is
needed, 3d positions and 3d velocities. Helmi et al. (2006) used the Geneva-
Copenhagen survey (GC-survey) (Nordström et al., 2004), which has around
14 000 stars with full phase space information. The sample is magnitude
complete to V = 7.7, i.e. it contains very bright stars.

In the future the GAIA satellite (Perryman et al., 2001) is expected to
observe 109 stars of the Milky Way, which is 1% of the total of 1011. One
of the objectives of the GAIA mission is to create a 6d phase space map
of stars in our Galaxy. This enourmous dataset will be highly valuable
to learn more about the formation of our own Galaxy. GAIA will measure
multi-colour photometry and spectroscopy with a limiting magnitude of V =
20. Trigonometric parallax and proper motions will also be measured, and
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combined with the radial velocties from spectra will then give us 6d phase
space coordinates of these stars. The mission will start in 2011 and last for
about 5 years.

In the meantime the Radial Velocity Experiment (RAVE) is measuring
radial velocities and stellar atmosphere parameters (temperature, metal-
licity, surface gravity and rotational velocity) of up to one million stars.
Spectra are taken using the 6dF spectrograph on the 1.2m UK Schmidt
Telescope of the Anglo-Australian Observatory. Observed stars are drawn
from the Tycho-2 and SuperCOSMOS catalogues in the magnitude range
9 < I < 12. Since the start in 2003 until the internal data release of June
2007, ∼ 200 000 observations are made, from which 50 994 spectra are re-
duced. This new dataset will be interesting for Galaxy structure studies.
However, there is a crucial piece of information missing: The distance to the
stars. When combined with radial velocities from the RAVE survey, proper
motions (when available) from Starnet2, Tycho2 and UCAC2 catalogues,
this dataset will provide the full 6d phase space coordinates for each star.

A common way to measure the distance to a star is the trigonomet-
ric parallax method. A different method, also used by Nordström et al.
(2004) for the GC-survey, is distance determination by photometric par-
allax. Main sequence stars show a tight correlation between their colour
and absolute magnitude. Therefore an empirical calibration can be used
to derive a relation between photometric colours, metallicity and absolute
magnitude (Crawford, 1975).

In this report, we present a method to obtain the distance to a star
using stellar models (isochrones). We infer the probability of an absolute
magnitude given its effective temperature (Teff ), surface gravity (log(g))
and metallicity ([Fe/H]). With some caution1 also colour indices can be
used. The distance to a star can then be calculated using the distance
modulus.

In section 2, we present a general introduction. We will discuss the
connection between stellar evolution theory, stellar tracks and isochrones to
gain insight in these topics before presenting the statistical methods for the
distance determination. Section 3 will test the method by using synthetic
data and a subset of the RAVE data for which distances are known. The
application of the method to the RAVE dataset will also be discussed. Re-
sults about the velocity and metallicity distributions will be presented in
section 4.

1Extinction can modify colour indices, this can be corrected for, or infra-red (IR) bands
can be used.
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2 Background

2.1 Stellar evolution

Stellar evolution is relatively well understood. The evolution of a star is
determined by its mass, initial chemical composition and a set of equations,
such as hydrostatic equilibrium, mass continuity, conservation of energy...
(Salaris and Cassisi, 2005). Given these initial conditions, the evolution of
a star in time is fully determined by these equations. Since they have no
solution in an analytic form, the equations have to be solved using numeri-
cal techniques. This means that the stellar evolutionary tracks are usually
released as tables of solutions. For instance the Yonsei-Yale (Y 2) evolution-
ary stellar tracks are calculated for different alpha-enhancement ([α/Fe]),
metallicity ([Fe/H] or Z) and mass (m). For certain values of [α/Fe], Z
and m, the evolution from pre-main-sequence till the helium core flash is
tabulated. The tabulated data for the Y 2 stellar tracks are listed in ta-
ble 1. Other properties such as the radius and surface gravity can also be
calculated. The radius R of a star can be found using:

L = 4πR2σT 4
eff , (1)

where L is the luminosity, σ the Stephan-Boltzmann constant, Teff the
effective temperature. Using the radius, we find the surface gravity:

g =
Gm

R2
, (2)

where G is the gravitational constant and m the mass of the star. It is
common to use log(g) instead of g in literature, where g is in cgs units.

column explanation

Age in Gyr, the free variable

log(Teff ) logarithm of effective temperature in Kelvin

log(L/Lsun) logarithm of luminosity over solar luminosity

Ycore mass fraction of helium in the core

Mcore mass of the core

Table 1: Tabulated values for the Y 2 stellar tracks.

In astronomy, the mass fraction of hydrogen, helium and all heavier ele-
ments (usually called metals) are denoted by X, Y and Z respectively, where
X + Y + Z = 1, such that given two fractions, the other can be calculated.
Since iron lines are easy to measure from a spectra, the traditional metal
abundance indicator is the iron abundance, and is defined as:

[Fe/H] ≡ log

(

N(Fe)

N(H)

)

∗

− log

(

N(Fe)

N(H)

)

�

, (3)
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where n(E) is the number of atoms of element E in the star and the subscript

� refers to our Sun. The units are referred to as dex. Rather than the
number of atoms it is also possible to use mass fractions in Eq. (3). If solar
abundance is assumed, the iron abundance can also be expressed in the mass
fraction Z (all metals):

[Fe/H] = log

(

Z

X

)

∗

− log

(

Z

X

)

�

, (4)

If the solar abundance is not assumed, the right hand side of Eq. (4) gives
the abundance of all metals to hydrogen, and write is as:

[M/H] = log

(

Z

X

)

∗

− log

(

Z

X

)

�

, (5)

where M refers to all metals. For stars having non solar abundances distri-
bution, other ratios can be interesting, and the abundance of certain metals
with respect to others is expressed as in Eq. (3). For example calcium (Ca)
to iron (Fe):

[Ca/Fe] ≡ log

(

N(Ca)

N(Fe)

)

∗

− log

(

N(Ca)

N(Fe)

)

�

. (6)

The abundance of the α elements (O, Ne, Mg, Si, S, Ca and T i) compared
to iron (Fe) is denoted as [α/Fe]. When [α/Fe] > 0, a star is said to be
‘alpha-enhanced’. The metal and iron abundance are approximately related
by (Salaris and Cassisi, 2005):

[M/H] ≈ [Fe/H] + log(10[α/Fe]0.694 + 0.306). (7)

The difference in [α/Fe] is often attributed to the different contribution of
Type Ia and Type II supernovae. Type Ia inject more iron elements into the
inter stellar medium (ISM) compared to Type II, while Type II explosions
are typically more rich in α elements.

Colour indices from stars are easy to measure and therefore we would
also like to have this in the stellar models. If stars behave like a blackbody,
the theoretical absolute magnitude in different bands can be calculated from
the effective temperature and response function (‘shape’) of a colour filter
since the shape of the spectrum is completely determined by the Planck
curve. From these absolute magnitudes, colour indices can be constructed,
which is defined as the difference between the magnitudes in two different
bands.

Stars do not behave like blackbodies, therefore theoretical spectra have
to be calculated. From the chemical composition, the surface gravity and
the temperature, different absorption and emission lines can be modelled
to construct a complete spectrum. Although the Y 2 stellar tracks do not
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Figure 1: left: Y 2 stellar tracks for 0.4, 1,0, 2.0, 3.0 and 5.0 M� (black), as
indicated by the labels. Pre main sequence tracks are shown dotted right: Y 2

isochrones for 0.01, 0.1, 1.0 and 15 Gyr (black) as indicated by the labels. For
stars on the 0.01 Gyr isochrone, all stars are still on the main sequence. For older
isochrones we can clearly see the turnoff points. On the red giant branch (RGB)
the bright and relative cold giants can be found.

include colour indices, they are available for the isochrones. To compute
the colour indices, precalculated tables are used which are also correlated to
observations (Yi et al., 2001).

Figure 1 shows log(L/L�) versus log(Teff ) and is called the Herzsprung-
Russel (HR) Diagram. This diagram is comparable to plots of absolute
magnitude (e.g. MV ) versus colour (e.g. B−V ), since effective temperature
and colour are correlated, and the luminosity is related to the magnitude.
A diagram showing apparent magnitude (e.g. V ) versus colour (e.g. B−V )
is referred to as a Colour Magnitude Diagram (CMD).

The left panel of Fig. 1 shows stellar tracks with masses ranging from
m = 0.4M� − 5M�. In the upper left region we find the high mass stars as
indicated by the labels. A high mass star of m = 5M� arrives at the helium
flash at an age of τ ≈ 0.06Gyr while a low mass star of m = 0.4M� will
start burning helium at an age of τ ≈ 118Gyr.

The stellar tracks form the basis of isochrones. Isochrones (meaning
‘same age’), are similar to stellar tracks. But instead of keeping mass con-
stant, and age as a free variable, age is kept constant and mass is a free
variable. To generate an isochrone of a certain age, the stellar tracks from
different masses are interpolated such that lines of constant age are gener-
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Figure 2: left:Colour Magnitude Diagram (CMD) of M68 (from Walker, 1994)
right:CMD with theoretical Y 2 isochrones for similar metallicity.

ated. The right panel Fig. 1 shows isochrones of similar chemical composi-
tion and can be compared to the stellar tracks shown on the left panel. All
stars on the 0.01 Gyr isochrone are still on the main sequence. For older
isochrones we can clearly see the main sequence turnoff points, the point
at which the star stops burning hydrogen in its core. After this stage, the
star expands and cools down proceeding onto the red giant branch (RGB)
sequence.

In the left panel of Fig. 2, we see a CMD of the globular cluster Messier
68 (M68), plotted as colour index B − V against apparent magnitude V .
We can clearly see that there is one dominant stellar population. This is
usually referred to as a single (or simple) stellar population (SSP) . When we
compare the isochrones in the right panel of Fig. 2 to M68, we can already
see this is a very old population.

In the plot with theoretical isochrones, the absolute magnitude is plotted,
and in the data from M68 the apparent magnitude. The difference between
these magnitudes, the distance modulus (µ), is due to distance:

µ = m − M = 5 log(d) − 5, (8)

where m is the apparent magnitude, M the absolute magnitude, and d the
distance in parsec. In practise the effect of extinction complicates matters
since interstellar matter can absorb part of the light, and an extra term
must be added to Eq. (8).

The stellar tracks and isochrones can also be seen (in a mathematical
sense) as a function (F) of alpha-enhancement ([α/Fe]), metallicity (Z),
mass (m) and age (τ) that maps to absolute magnitude (Mλ), surface gravity
(log(g)), effective temperature (Teff ), and colours:



2 BACKGROUND 9

Figure 3: log(g) versus log(Teff ) plot for isochrones from 0.01-15 Gyr spaced
logarithmically, [α/Fe] = 0. Colour indicates the absolute magnitude in the J
band. left: Isochrones for [Fe/H ] = -2.50 dex. right: Isochrones for [Fe/H ] =
0.00 dex. Overall shape of the isochrones is quite similar for both metallicities.

F([α/Fe], Z, τ,m) 7→ (Mλ, log(g), Teff , colours...),

I(m) = F(m)|[α/Fe],Z,τ 7→ (Mλ, log(g), Teff , colours...).
(9)

For example, the isochrones are a function I(m) of mass, which is obtained
from F by keeping all other variables constant.

Assuming solar α-enhancement, [α/Fe] = 0.0, we define the function
S(Z, τ,m) as F , keeping [α/Fe] constant

S(Z, τ,m) = F(Z, τ,m)|[α/Fe] 7→ (Mλ, log(g), Teff , colours...). (10)

Therefore the isochrones or stellar tracks from Y 2 can be seen as a samples
from the theoretical stars defined by S(Z, τ,m). A sample of these theoret-
ical ‘model stars’ are shown in Fig. 3 for two different metallicities. Each
model star is represented as a dot, and the connecting lines correspond to
the isochrones of different ages.

The metallicity, surface gravity, and effective temperature of a star can be
obtained from a spectrum and its colours can be measured photometrically.
Extinction can affect colour, but the near-IR and IR colours used by the
RAVE survey are less affected. If the function S at fixed Z from age and
mass to e.g. log(g) and Teff is injective2, we can invert it, and determine
Mλ. But the function is not injective, meaning that for a given log(g) and
Teff there is not a single mass and age. This overlap can be seen best on
the right of Fig. 3 around log(Teff ) = 3.8, log(g) = 4, where the isochrones

2Also referred to as one-to-one.
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can be seen to overlap. However in a statistical sense, it is still possible to
infer the probability of a mass, age, and therefore absolute magnitude.

Figure 4 shows the same isochrones as Fig. 3, illustrating the relation
between MJ and Teff , and between MJ and log(g) separately. From this
figure we can see how errors in log(g) and Teff affects the uncertainty of
the absolute magnitude (MJ in this example). The middle row in Fig.
4 shows that the value of MJ is better defined by log(g) for RGB (top
right) than for main sequence (bottom left) stars, independent of metallicity.
On the other hand, the bottom row of Fig. 4 shows that Teff essentially
determines MJ for main sequence stars, again independent of metallicity.
We therefore expect that a small error in log(g) will give better absolute
magnitude estimates for RGB stars, while a small error in Teff will have a
similar effect on main sequence stars. We also expect this to be not strongly
dependent on metallicity.

2.2 Statistics

Descriptive statistics is the mathematical tool we have for summarising all
the data we collect in a few numbers, which we may call a statistic. Instead
of working with images, it is easier to work with quantitative data such as
the mean magnitude of a star and its error. Instead of a full spectrum,
we would rather know the stars physical parameters such as [Fe/H] and
[α/Fe]. But we also use statistics to draw conclusions from the data, known
as inferential statistics, or inference for short. For example, having statistics
about the weather and knowing that dark clouds cover the sky, we want to
infer the probability that it will rain or not.

Let us suppose we observe a star with a telescope and obtain its spec-
trum. From this, we derive Teff , log(g) and [Fe/H] with an uncertainty
because our measurements have errors, which we assume are Gaussian. We
search for the most likely star, by requiring that

χ2
model =

(Teff − Teff,model)
2

2σ2
Teff

+
(log(g) − log(g)model)

2

2σ2
log(g)

+
([Fe/H] − [Fe/H]model)

2

2σ2
[Fe/H]

,

(11)
is a minimum. The subscript model refers to values from the model star
obtained from the isochrones. Using our most likely model star and the
measurement errors, we can construct a probability distribution function
(pdf) which describes the probability of measuring Teff , log(g) and [Fe/H]:

P (Teff , log(g), [Fe/H]|Teff , log(g), [Fe/H]) = 1
2π3/2σTeff

σlog(g)σ[Fe/H]
e−χ2

,

(12)

χ2 =
(Teff − Teff )2

2σ2
Teff

+
(log(g) − log(g))2

2σ2
log(g)

+
([Fe/H] − [Fe/H])2

2σ2
[Fe/H]

, (13)
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Figure 4: Isochrones for [α/Fe] = 0, [Fe/H ] = -2.50 (left column) and [Fe/H ] =
0.00 (right column), ages ranging from 0.01-15 Gyr spaced logarithmically. Dashed
line indicates the youngest (0.01 Gyr) isochrone. top row: Similar to figure 3,
shown for completeness. middle row: MJ is best restricted by log(g) for RGB
stars (top right). bottom row: MJ is best restricted by Teff for main sequence
stars (bottom right).
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where the overline Teff indicates the values from our most likely model star.
Observing the mean values has the highest probability, and decreases with
the distance from the mean value, as measured by χ2. In a hypothetical
situation where we know what our model star is, we could simulate the
observation by drawing random samples from the pdf defined by Eq. (12).
This is the basic idea behind of Monte Carlo simulations.

We want to find the pdf of MJ , so we can calculate statistics from it
such as the mean value and the variance. We therefore simulate many
observations which we draw from the pdf defined in Eq. (12) assuming our
most likely model star is the correct one. From these simulated observations,
we again find the best matching model star from the isochrones (see Fig.
3), which is the model for which the distance measured by Eq. (11) is a
minimum. This model star provides us with the corresponding value of MJ .
The recipe for the method is pictured in Fig. 5, and a description can also
be found in Press 1988, chapter 15.6. When many simulations are done, the
histogram of MJ values obtained using this method will give us our best
estimate of its pdf. Note that the absolute magnitude of the best matching
model star will be the most likely, which will not necessarily be equal to the
mean absolute magnitude like in the case of a Gaussian pdf.

For the RAVE data, Teff is determined only from the spectra, and not
photometrically. The Teff and a colour index are therefore uncorrelated in
the sense that they are independently drawn. Both Teff and one colour
index can be used for the Monte Carlo simulation. If multiple colour indices
are used, using the same band, samples should be properly drawn from a
correlated multivariate distribution (Wall and Jenkins, 2003, chapter 6.5).



2 BACKGROUND 13

monte carlo simulation
(Eq. 12) Magnitude ’pdf’ distance ’pdf’

measured
star

model
star

(Eq. 11)
most likely

star 1

1
star 22

...
...

star N

N

Magnitude 1Eq. 11

Magnitude 2

Magnitude ...

Magnitude N

distance 1Eq. 16

distance 2

distance ...

distance N

Figure 5: Overview of the Monte Carlo method used to derive absolute magnitudes
and distances for the RAVE stars. The first step is to find the most likely model
star which will be used as the true model. From this model stars, N samples are
created by applying Gaussian noise to the observables. For each sample we will
find the best matching model star, giving us estimates for the absolute magnitude.
The N samples are our best estimate for the pdf of the absolute magnitude. We
can calculate statistics from this pdf, such as the mean and variance, and we can
also use the samples to do further calculations such as the distance.



3 ANALYSIS 14

3 Analysis

In this section we will first describe the exact method that we will use to
calculate distances for the RAVE data. We will test its performance and
dependence on the magnitude of the errors on our observables in §3.2, with
emphasis on errors typical for the RAVE data. We will also test the method
on a subset of the RAVE data for which distances have been determined in
the GC-survey in §3.3. Finally, in §3.4, the method is applied to the full
RAVE dataset.

3.1 Description of the method

The RAVE dataset provides [M/H], J and K band magnitudes, log(g) and
Teff . These measured quantities can be used for the isochrone fitting routine
to derive the absolute magnitude for each star. These bands, J (1.25 ± 0.12
µm) and K (2.22 ± 0.22 µm), are in the infrared (IR) and are less affected
by dust than visual bands. The J and K band magnitudes in the RAVE
database come from the DENIS and 2MASS survey. The magnitudes used
for the fitting routine are the weighted average of the available magnitudes,
where the weight is the reciprocal of the measurement error:

Xweighted =

∑

j wjXj
∑

wj
, (14)

where Xj are the measured values and wj = 1/σ2
j the corresponding weight.

The error in the average is calculated as:

σ2
weighted =

1
∑

j 1/σ2
j

. (15)

Errors in [M/H], Teff and log(g) are estimated at 0.25 dex, 300K and 0.3
dex respectively (Zwitter, private comm.), better error estimates are under
development. The current internal data release of June 2007 has two metal
abundances, one uncalibrated, determined from the spectra alone ([m/H]),
and a calibrated value ([M/H]). The latter is calibrated using a subset of
stars with accurate metallicity estimates and is the one that is used for the
fitting routine. We only use the isochrones with [α/Fe] = 0 because the
RAVE measurements of [α/Fe] are not accurate enough. We also assume
[Fe/H] = [M/H] which will be valid only when [α/Fe] = 0 (Eq 7). To
estimate the absolute magnitude, the most likely model star is found first, as
described in 2.2, calculating the minimum χ2

model using [Fe/H], log(g), Teff

and J − K with errors as described above. From the most likely star, 5000
samples are generated by convolving these most likely values with Gaussian
errors as described in §2.2. For every generated sample, the nearest model
star as measured by the χ2

model is found. This gives 5000 samples which is
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our representation of the pdf for the absolute magnitude. The sample mean
and standard deviation are calculated and we will use these values for the
analysis in the following sections.

The isochrones used for the fitting routine are the Y 2 isochrones. The
isochrones can be downloaded from the Y 2 website3, where also an inter-
polation routine is available, called YYmix2. We generated a new set of
40 isochrones using the YYmix2 code with ages between 0.01 and 15.0 Gyr,
spaced logarithmically, for every [Fe/H] between -2.5 and 1.0 dex, with 0.25
dex separation (corresponding to 1 sigma in [M/H]). This resulted in 13
files, for every metallicity one file, each containing 40 isochrones. The sepa-
ration between the points of the isochrones has been visually inspected, and
is in general smaller than the errors in Teff and log(g).

3.2 Testing the method

To test the method, we take a sample of 1000 random model stars. This
set is large enough, that one can be confident the method is working and to
determine for what kind of stars the model works best. We draw this set
from one metallicity, randomly uniform in log(τ) and randomly uniform in
mass index. Now we convolve [Fe/H], Teff , log(g) and the colour indices
with a Gaussian corresponding to the error in the RAVE survey to mimic
our measurements. We run the method on this set of 1000 stars and analyse
its results.

The reason for choosing a fixed metallicity is twofold. In §2.1 we have
seen that different metallicities should give similar results in terms of the
accuracy with which the absolute magnitude can be derived. It should there-
fore be sufficient to only analyse the method for one metallicity. Secondly, it
also means that the results only have to be compared to one set of isochrones,
making it easier to analyse the figures. Note that although one metallicity
is used to generate the sample, after error convolution, isochrones for all
metallicities are used for the fitting routine.

In the left column of Fig. 6, we plotted the results for the 1000 random
model stars. The colours indicate the errors on MJ and are clipped to a value
σMJ

= 1.25. The middle row shows the results on an HR diagram. Stars on
the main sequence and on the RGB appear to have the smallest errors as
expected (see §2.1). In the bottom row, the estimated magnitude is plotted
against the input magnitude of the model star from which the estimate was
derived, showing the deviation from the real absolute magnitude grows with
σMJ

, as expected. The method appears to be give sane results, showing no
systematic errors.

We now run the method again, decreasing the error in Teff to 150 Kelvin.
The results are shown in the middle column in Fig. 6. The errors in MJ do

3http://www-astro.physics.ox.ac.uk/ yi/yyiso.html



3 ANALYSIS 16

Figure 6: Effect of the errors of log(g) and Teff on the estimated absolute magni-
tude MJ . The main sequence and RGB stars perform best. Reducing the errors in
log(g) has the largest effect. Left column: Errors similar to the RAVE dataset,
σTeff

= 300K and σlog(g) = 0.3. Middle column: Reducing the errors in effective
temperature, σTeff

= 150K. Right column: Reducing the errors in surface gravity,
σlog(g) = 0.15. Top row: The random sample of 1000 stars, with colours indicating
errors, clipped to a value of σMJ

= 1.25. Middle row: HR Diagram with colours
indicating the same errors as the bottom row. Bottom row: Estimated versus
real (model) absolute magnitude (MJ). The line indicates the when they are equal.
Colours indicates the same errors as the top row. The error between the real and
estimated absolute magnitude grows as the variance grows (colour towards red).
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not seem to have changed much, except for the main sequence stars (slightly
more blue and purple). Instead of decreasing the error in Teff , we decrease
the error in log(g) to 0.15 dex and run the method again. The results are
shown in the right column in Fig. 6 and shows that the accuracy with
which we can determine MJ has increased significantly. Therefore reducing
the error in log(g) will result in significant improvements in the estimate of
the absolute magnitude.

We can now apply Eq. (8) to find the distance d to a star:

d = 10(J−MJ+5)/5) = 10(µ+5)/5, (16)

where d is in parsec. Using error propagation, we can estimate the error
in the distance:

σ2
d =

(

∂d(µ)

∂µ

)2

σ2
µ =

(

ln(10)

5
dσµ

)2

, (17)

σd

d
=

ln(10)

5
σµ ≈ 0.46σµ = 0.46

√

σ2
J + σ2

MJ
, (18)

where we find that an error of 1 magnitude in the distance modulus cor-
responds to a 46% error in distance. If the error in apparent magnitude
is negligble compared to the error in absolute magnitude, we find for the
relative error in distance:

σd

d
≈ 0.46σµ ≈ 0.46σMJ

. (19)

The left column of Fig. 6 shows that we expect for the main sequence and
RGB stars in the RAVE data set a relative error in distance in the order of
25% (blue colors), and for the other stars around 50-60% (green colors).

3.3 Testing the method on GC-survey stars observed by

RAVE

To test the method on real data, we use a subset of 64 stars from the
RAVE dataset whose distances are known from the GC-survey. Of these
stars, 35 have distances derived from trigonometric parallaxes (Hipparcos
satellite). For the other 29 stars, this was not available or accurate enough
and therefore a photometric parallax was determined by Nordström et al.
(2004), having an uncertainty of about 13%.

In the top left panel of Fig. 7 we show the locations in a log(g) versus
log(Teff ) plot. Overlaid is a set of isochrones with [Fe/H] = 0. In the top
right panel of Fig. 7 the distances derived using our method (and 1σ errors)
are plotted versus the distance as given by the GC-survey. The green circles
indicate stars with distance from Hipparcos, red squares and blue triangles
from photometric parallax for respectively F and G stars. Relative errors
are in the range of 50%, as expected. A few stars are more than 3σ away
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from the one-to-one correspondance (shown as the black line). In the bottom
row of Fig. 7 the corresponding HR diagrams are shown, where on the left
the absolute magnitudes are used from the GC-survey, and on the right
the estimated absolute magnitudes from our method using the astrophysical
parameters ([M/H], log(g), Teff , and magnitudes) from the RAVE survey.
Stars having their distance overestimated by 50 parsec with respect to the
GC-survey distances are indicated by a magneta cross, underestimation by
50 parsec is indicated by yellow cross. The top left panel of Fig. 7 shows
that the over and underestimation are caused by the errors in log(g).

3.4 Distances for stars in the RAVE dataset

The internal data release of June 2007 contains 50 994 observations, of which
21 032 have astrophysical parameters. We first clean up the dataset accord-
ing to the constraints of table 2. For some stars multiple observations are
available, these are grouped by their id, and a weighted average (Eq. 14)
and corresponding error (Eq. 15) for all radial velocity, proper motions and
apparent magnitudes are calculated. The astrophysical parameters ([M/H],
log(g) and Teff ) have nominal errors as described in §3.1. For these pa-
rameters an unweighted average is calculated and the error in the average
is kept equal to the nominal errors of a single measurement. The resulting
source count, after applying these constraints and grouping the multiple ob-
servations, is 18 663. After this step, the best model star is first found as
described in §2.2. If it has a χ2

model ≥ 6 (Eq. 13, including J-K) it is not
considered further. This last step gets rid of stars which do not fit to any
isochrone very well, and results in 17 434 sources which are used for the
isochrone fitting method. The maximum χ2

model value of 6 is chosen after
visual inspection of the outliers in the log(g) vs Teff plot.

We now apply the isochrone fitting routine to the 17 434 sources, re-
sulting in 5000 estimates of MJ for each star. In the next step we generate
5000 apparent magnitudes (J) for each star by convolving it with its errors
assuming it is Gaussian. We now combine the absolute and apparent magni-
tudes giving us 5000 distances (Eq. 16). From these, we calculate the mean
distance and the standard deviation for each star.

3.5 6d phase space coordinates for stars in the RAVE dataset

To calculate the full 6d phase space coordinates, the radial velocity, proper
motion and sky coordinates are also needed. From the radial velocity and
proper motion, 5000 samples are created by convolving them with their er-
rors, assuming they are Gaussian. These 5000 samples are combined with
the 5000 distances from the previous step. We now have 5000 distances,
radial velocities and proper motions (in right ascension and declination di-
rection). Combined with the sky coordinates we now calculate the 6d phase
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Figure 7: Results from the RAVE subset for stars with known distances from
the GC-survey. The grey lines are isochrones for [Fe/H ] = 0. The green circles
indicate stars with distance from Hipparcos, red squares and blue triangles from
photometric parallax for respectively F and G stars. Stars having their distance
overestimated by 50 parsec with respect to the GC-survey distances are indicated
by a magenta cross, underestimation by 50 parsec is indicated by yellow cross. Top

left: Overview of the location of the overlapping subset of RAVE and GC dataset in
a log(Teff ) versus log(g) plot. Top right: GC distance versus estimated distance
from the isochrone fitting method. Bottom left: HR diagram using the absolute
magnitude from the GC-survey. Bottom right: HR diagram using the absolute
magnitude from the isochrone fitting method.
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column name constraint

spectrum quality flag empty (equals ’-’) only stars which have no problem with

the spectrum, no cosmic rays, no binaries etc.

signal to noise ratio > 10

χ2 < 2000

proper motions 6= 9999.9 proper motions should be available

(9999.9 means not available)

[M/H] 6= 9.9 metallicity abundance should be available

error in proper motion 6= 0.0 unable to calculate weighted averages

error in K magnitude 6= 0.0 unable to calculate weighted averages

Table 2: Constraints on the RAVE dataset.

space coordinates, using code provided by A. Helmi (private communication)
based on Johnson and Soderblom (1987).

The x′, y′, z′ coordinate system we use is a right handed Cartesian co-
ordinate system centred on the Sun indicating positions, with the x′ axis
pointing from the Sun to the Galactic Centre (GC), the y ′ axis pointing
in the direction of rotation and the z ′ axis pointing towards the North-
ern Galactic Pole (NGP). The x, y, z coordinate system is similar to the
x′, y′, z′ coordinate system, but centred on the GC, assuming the Sun is at
(x, y, z) = (−8, 0, 0). An overview can be found in Fig. 8 with Galactic
longitude (l) and latitude (b) shown for completeness.

The velocities with respect to the Sun in the directions of x′, y′, z′ are
U, V,W respectively. For velocities of nearby stars, a Cartesian coordinate
system will be sufficient, but for large distances, a cylindrical coordinate
system makes more sense for the disk stars. To calculate these coordinates,
we first have to transform the U,V,W velocities to the Galactic rest frame,
indicated by vx, vy, vz as shown in Fig. 9. Assuming a local standard of
rest (LSR) of vlsr = 220 km/s, and the velocity of the Sun with respect to
the LSR of (U�, V�,W�) = (10.4km/s, 5.25km/s, 7.17km/s) (Dehnen and
Binney, 1998) we find:

vx = U + U�, (20)

vy = V + V� + vlsr, (21)

vz = W + W�. (22)

(23)

The relations between Cartesian (x, y, z) and cylindrical coordinates
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GC:(0, 0, 0)
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x′y′

z′

Sun:(−8, 0, 0)

Figure 8: Overview of the Galactic coordinates. The Sun is found at (x, y, z) =
(−8, 0, 0).

(ρ, φ, z) are:

x = ρ cos(φ), (24)

y = ρ sin(φ), (25)

z = z, (26)

ρ2 = x2 + y2, (27)

tan(φ) =
y

x
. (28)

We can use this to find the velocities in the directions of ρ and φ:

vρ =
dρ

dt
=

xvx + yvy

ρ
, (29)

vφ = ρ
dφ

dt
=

xvy − yvx

ρ
. (30)

(31)

Note that the direction of φ is anti-clockwise, meaning that the LSR is
at (vρ, vφ, vz) = (0,−220, 0).

We calculated 5000 Cartesian coordinates positions and 5000 velocities
(U, V,W, vx, vy, vz, vρ, vφ) for each star. From these, we calculate the mean
and standard deviation for each position and velocity component.

An overview of the errors is found in Fig. 10. In the top row, we plot
the distributions of errors for MJ on the left, and cumulative errors on the
right. In the middle row, the relative distance errors are plotted. The x-axis
is scaled by the factor ln(10)

5 ≈ 0.46 (found in Eq. 18) with respect to the
top row such that the top two rows can be compared. Although the shapes
of the two histograms are similar, the errors in relative distance are larger
than those in MJ , because of the error in the apparent magnitude J . In
the bottom row, errors in velocities are plotted for the three components,
all showing similar error behaviour.
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vρ

vφ

vxvy

vz

GC:(0, 0, 0)

UV

W

Sun:(−8, 0, 0)

Figure 9: Overview of Galactic velocity coordinate systems. U, V, W velocities
are with respect to the Sun and are aligned with the x′, y′, z′ coordinate system.
vx, vy, vz are Cartesian velocities, and vρ, vφ are cylindrical velocities, both with
respect to the Galactic rest frame.

Figure 10: Error distribution and cumulative plot for MJ , relative distance, and
U, V, W .Top row: Errors for MJ .Middle row: Relative distance errors, x-axis is

scaled by the factor ln(10)
5 ≈ 0.46 (found in equation 18) with respect to the top

row such that the top two rows can be compared.Bottom row: Errors for U (red
solid), V (green dashed) and W (blue dotted).
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3.6 Calculation time

For the sample of 17 434 stars, it takes around 100 minutes to estimate the
absolute magnitudes of the stars on a cluster of around 13 Dual core Intel
Pentium (D) 2.8 Ghz pc, one 2x Dual Core AMD Opteron Processor 275
(2.2 Ghz) pc and a quad core Intel Xeon CPU 5150 (2.7 Ghz) pc. The
calculations of the 6d phase space coordinates takes a few minutes on the
same machines. If the total of 106 sources need to be calculated, this would
take around 60 times longer, ∼ 4 days for the estimation of the absolute
magnitudes and a few hours for the 6d phase space calculations.
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Figure 11: Results for applying the isochrone fitting method to the RAVE data.
Colours indicate the magnitude of the error in MJ (left εMJ

< 1, middle εMJ
< 0.8,

right εMJ
< 0.6). Isochrones for [Fe/H ] = 0 are plotted for comparison. Top row:

HR diagram of RAVE dataset showing that the stars on the main sequence and
RGB stars have the smallest errors. Bottom row: log(Teff ) versus log(g) , colour
coding as in the top panels. The typical error in log(g) is 0.3 dex and in Teff is
300 K.

4 Results

The results of the isochrone fitting method applied to the RAVE dataset
are plotted in Fig. 11 for different limits on the maximum error in absolute
magnitude. 12 412 stars have error σMJ

< 1, for σMJ
< 0.8, 6 921 sources,

and for σMJ
< 0.6, only 4 048 sources will be left. These correspond to

relative distance errors less than 46%, 37% and 28%.
Our Galaxy consist mainly of three components, a bulge, a halo and the

thin and thick disks (Binney and Tremaine, 1987). The thin disk has a scale
height of around 300 pc, while the thick disk scale height is approximately 1
kpc. The disk is known to be dominated by metal rich stars, while halo stars
are in general metal poor. To see if this is reflected in the RAVE data, we
will now focus on how the metallicity changes as function a of distance from
the plane. In Fig. 12 we show the spatial distribution of stars in the RAVE
dataset. In the top left panel we can see a rather strong concentration of
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stars towards z = 0, i.e. the Galactic mid plane. The bottom left panel on
the other hand shows a more axisymmetric distribution. This figure also
shows that the RAVE survey probes deep into the halo, and we therefore
can look for a metallicity change as function of height above the Galactic
plane (z).

Many stars have high uncertainties in their position, and due to a high
density of stars in the plane, the halo gets ‘polluted’ by disk stars. Therefore
we will from now on only work with stars having σMJ

< 0.8. The spacial
distribution of this cleaned up sample is plotted in Fig. 13, showing less
halo stars, and a more pronounced disk than Fig. 12.

In the left panel of Fig. 14 we have plotted the metallicity distribution
for this sample for three ranges of z. The red solid line for 0 ≤ |z| < 1
kpc, the green dashed line for 1 ≤ |z| < 3 kpc and the blue dotted line
for 3 ≤ |z| < 8 kpc. Note that most of the stars, as expected, are in the
thin disk, and have a mean metallicity of 0.0 dex. In the middle panel the
histograms are normalised such that the area of a single histogram is 100%
to make it easier to compare the metallicity distributions. As we move to
higher |z|, the mean metallicity decreases, but even for our farthest bin we
appear to be dominated by the thin disk. Note however that a metal poor
tail is clearly visible in the central panel of Fig. 14. In the right panel of Fig.
14 the mean metallicity is plotted as function of |z|, showing a decrease in
the mean metallicity till at least 6 kpc. A similar trend is seen in Ak et al.
(2007a) and Ak et al. (2007b), although our gradient in Fig. 14 is much
shallower, possibly due to contamination of disk stars having large distance
errors.

We will now analyse the velocities of the stars in the RAVE dataset. For
the tangential velocity, we have:

v⊥ ∝µd, (32)

where µ is the proper motion and d the distance. For the error in v⊥ we
get:

σ2
v⊥

∝ µ2σ2
d + σ2

µd2 ∝ v2
⊥σ2

MJ
+ σ2

µd2. (33)

If we want to analyse velocities, we want them to have small error. There-
fore we select a subsample of stars with small errors in MJ (σMJ

< 0.8), in
proper motion (σµ,RA < 5 milli arc second per year (mas/year), σµ,DEC < 5
mas/year) and radial velocities (σvR

< 5 km/s). We do not yet select stars
with small distances since we also want to analyse the halo stars. This subset
contains 5 029 stars.

In Fig. 15 we have plotted the average angular velocities in different bins
of |z|. It shows a decreasing rotational velocity as we move away from the
Galactic plane which can be explained by a fast rotating thin disk, a less
fast rotating thick disk, and an almost non rotating halo.
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Figure 12: The RAVE stars in galactic coordinates, the circle with label GC
indicates the galactic centre. Bottom left: Face on view of our Galaxy. Bottom

right: Edge on view of our Galaxy, with our Sun at the left, and the galactic centre
on the right. Top left: Edge on view, looking through the galactic centre at our
Sun. Top right: Galactic sky coordinates, with the Northern Galactic Pole (NGP)
at the top, showing the sky coordinates for the RAVE observations.
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Figure 13: Similar to Fig. 12, except only showing stars with σMJ
< 0.8 ( σd/d =

38%).

Figure 14: Left and middle: Metallicity distribution for stars in different bins
of height above the Galactic plane. Stars further away from the Galactic plane are
more metal poor. Left: Absolute count for different metallicity bins. Middle:
Normalised histograms such that the area of a single histogram is 100%. Right:
Mean metallicity as function of distance from the Galactic plane showing a decrease
in metallicity till 6 kpc. Errorbars indicate 1σ errors in the means.
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Figure 15: Rotational velocity decreasing as function of |z|, errorbars indicate 1σ
errors in the means. Note that negative vφ means clockwise rotation.

If both the errors and the velocity distribution were Gaussian, then the
observed velocity dispersion would be the result of the convolution of the
intrinsic velocity dispersion and the measurement error. And if the mea-
surement error (ε) was the same for each star, then σ2

obs = σ2
int + ε2. If we

know ε, we can calculate σint, but if the ε are much smaller compared to
σint, the effect on σobs is negligible.

Close to the Galactic plane, and not too far from the Sun, the errors
in velocity are small, therefore apart from the restrictions described above,
we will restrict ourselves to a small volume around the Sun to analyse the
velocity dispersions. In Fig. 16 the velocity distributions for 2 188 stars in
a cylinder centred around the Sun with a radius of 500pc and a height of
600pc (300 above and below the Galactic plane) are plotted. This sample
has average errors of εU = 8.0 km/s, εV = 6.5 km/s, εW = 5.4 km/s. The
solid lines are best fit Gaussians to the velocity distributions and although
the average errors are small compared to the velocity dispersions, this figure
shows that the wings are slightly wider, which causes the estimates of σ
to be somewhat larger. This can be understood as the effect of the errors
in velocity which are proportional to the magnitude of the velocity itself,
creating these wings. To be able to give accurate and unbiased values for
velocity dispersions a more sophisticated model than a Gaussian is needed,
which will not be treated in this report.

For this sample, we compute the mean velocities, the full velocity dis-
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Figure 16: Velocity distributions for the U, V and W components (histogram) and
the best Gaussian fit (solid line). Left: The velocity distribution for U is highly
symmetric, showing a slight negative mean U. Middle: The V component shows an
slight asymmetry, having a longer tail towards the lower part. Right: The velocity
distribution of W shows a lower dispersion than U and V, and is symmetric.

persion tensor σij and the vertex deviation:

U = − 12.43 ± 0.60 km/s (34)

V = − 19.81 ± 0.42 km/s (35)

W = − 7.33 ± 0.32 km/s (36)

σU =36.72 ± 0.55 km/s (37)

σV =25.62 ± 0.66 km/s (38)

σW =19.44 ± 0.39 km/s (39)

σUV =10.94 ± 1.00 km/s (40)

σ2
UW = − 6.41 ± 17.13 km/s (41)

σ2
V W =19.12 ± 14.71 km/s (42)

lv =9.61 ± 1.62◦ (43)

where lv is the vertex deviation, which is defined as:

lv =
1

2
arctan

(

2
σ2

UV

σ2
U − σ2

V

)

, (44)

and is a measure for the orientation of the UV velocity ellipsoid. The veloc-
ities and dispersions are in good agreement with Famaey et al. (2005) and
Dehnen and Binney (1998) using Hipparcos data. The σ2

UW and σ2
V W do

not indicate a significant asymmetry in these directions.
Close inspection of the middle panel of Fig. 16 shows an asymmetric

distribution for the V component, with a longer tail towards lower velocities.
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Figure 17: Left: UV plane shows asymmetry and a vertex deviation. Right:
Isodensity contour lines for the UV plane. The red + symbol marks the LSR the
green � symbol marks the Solar velocity (0, 0). The contour lines contain 2, 6, 12,
21, 33, 50, 68, 80, 90, 99 and 99.9 percent of the stars.

This is due to two effects. The first is that we are seeing the asymmetric
drift, stars showing negative rotational velocities with respect to the LSR.
Velocity dispersion and stellar density increase towards the GC (Binney and
Tremaine, 1987) such that at a fixed radius, we find more stars near their
apocenter than their pericenter, meaning we see more visitors on orbits closer
to the GC than we see visitors on larger orbits. Secondly the tail towards
low V can also be seen in Fig. 17 where each star is plotted in UV-plane
in the left panel, and the density contours are shown in the right panel. A
slight over density of stars around U ≈ −50, V ≈ −50 can be seen which
will affect the symmetry of the U velocity component. This over density is
called the Hercules stream, and is thought to be an effect of the bar of our
Galaxy (Famaey et al., 2005).

5 Discussion and conclusion

We presented a method to derive absolute magnitudes, and therefore dis-
tances, for RAVE stars. It is based on the use of isochrone fitting in the
metallicity, log(g), Teff and colour space. For this method we used the Y 2

isochrones.



A DESCRIPTION OF RAVE CATALOGUE WITH PHASE SPACE COORDINATES31

The errors in the estimated absolute magnitudes for RGB stars are found
to depend mainly on the error in log(g) while for main sequence stars the
accuracy of Teff is also important (§3.2). The errors in log(g) and Teff for
the RAVE data give rise to relative error in distance in the range 30%-50%,
but as seen in the results (§4), the data does reflect the known properties of
the halo and disk stars of the Milky Way.

A metallicity gradient found in the direction away from the Galactic
plane corresponding to an increase in the fraction of metal poor halo stars.
The decrease in the vφ component as we move away from the Galactic plane
can be explained by the transition from thin disk to thick disk to halo stars.
The asymmetry in the V direction and vertex deviations are clearly visible
in the UV plane and are most likely a combination of asymmetric drift
and structures such as the Hercules streams. The vertex deviation is in
agreement with previously found values.

Helmi et al. (2006) studied the kinematics of our Galaxy using the
Geneva Copenhagen data. The relative error in distance for this survey
is around ∼ 13% for ∼ 14 000 stars. For the RAVE survey the errors are
in the order ∼ 30-50% for ∼ 12 000 stars but this survey is ∼ 4 magnitudes
deeper and hence probes further away. In the future the RAVE survey will
increase its size by a factor of ∼ 20 providing an interesting and significantly
larger dataset before the GAIA mission will fly.

A Description of RAVE catalogue with phase space

coordinates

The resulting dataset is provided as a comma separated values (CSV) file,
with headers. The columns are described in the table below. See Steinmetz
et al. (2006) for a more detailed description about the RAVE data.
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Field name Units Type Description

OBJECT ID string RAVE internal identifier

RA deg float Right ascension (J2000)

DE deg float Declination (J2000)

Glon deg float Galactic longitude

Glat deg float Galactic latitude

RV km/s float Weighted mean of available radial velocities

eRV km/s float Weighted error of available radial velocities

pmRA km/s float Weighted mean of available proper motions

pmDE km/s float Weighted mean of available proper motions

epmRA km/s float Weighted error of available proper motions

epmDE km/s float Weighted error of available proper motions

Teff Kelvin float Arithmetic mean of available temperatures

nTeff int Number of observations having Teff

logg log( cm
s2 ) float Arithmetic mean of available surface gravities

nlogg int Number of observations having log(g)

MH dex float Arithmetic mean of RAVE uncalibrated metallicity

abundance

nMH int Number of observations having MH

MHcalib dex float Arithmetic mean of RAVE calibrated metallicity

abundance

nMHcalib int Number of observations having MHcalib

AM dex float Arithmetic mean of RAVE alpha enhancement

nAM int Number of observations having AM

Jmag mag float Weighted mean from available magnitudes

eJmag mag float Weighted error from available magnitudes

Kmag mag float Weighted mean from available magnitudes

eKmag mag float Weighted error from available magnitudes

Mj mag float Absolute magnitude in J band (from fitting routine)

eMj mag float Error in Mj

distance kpc float Distance from Mj and Jmag

edistance kpc float Error in distance

age Gyr float Age estimate from isochrone fitting 1

eage Gyr float Error in age

mass in M� float Mass estimate from isochrone fitting 1

emass in M� float Error in mass

1Not analysed or tested.
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Field name Units Type Description

xGal kpc float Galactic x coordinate2

exGal kpc float Error in x

yGal kpc float Galactic y coordinate2

eyGal kpc float Error in y

zGal kpc float Galactic z coordinate2

ezGal kpc float Error in z

U km/s float Galactic velocity in x′ direction w.r.t the Sun2

eU km/s float Error in U

V km/s float Galactic velocity in y′ direction w.r.t the Sun2

eV km/s float Error in V

W km/s float Galactic velocity in z ′ direction w.r.t the Sun2

eW km/s float Error in W

vxGal km/s float Galactic velocity (vx) in x direction in Galactic rest frame2

evxGal km/s float Error in vxGal (vx)

vyGal km/s float Galactic velocity (vy) in y direction in Galactic rest frame2

evyGal km/s float Error in vyGal (vy)

vzGal km/s float Galactic velocity (vz) in z direction in Galactic rest frame2

evzGal km/s float Error in vzGal (vz)

Vr km/s float Galactic velocity (vρ) in ρ direction in Galactic rest frame2

eVr km/s float Error in Vr (vρ)

Vphi km/s float Galactic velocity (vφ) in φ direction in Galactic rest frame2

eVphi km/s float Error in Vphi (vφ)

B Software manual

The fitting routine software package is provided as a zipped tarball, ‘ko-
rave yyyy-mm-dd.tar.gz’ containing all software to obtain the full 6d phase
space coordinates, where yyyy-mm-dd refers to year, month and day of
month at which the released is made. It contains a small manual (filename
README) which is included below.

Author: M.A. Breddels

About

This document is about setting up and running the isochrone fitting routine
for the RAVE dataset. It outputs position and velocity components. Most

2See §3.5 for a description.
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tasks are simplified by making use of ’Makefiles’. All commands, like:

# make rave pre

should be executed from the same directory as this help file. The com-
mand:

# make

Without arguments should give you some quick help info.

Requirements

• Python 2.3 or above

• c compiler (gcc)

Optional

• Pyrex (when changes are made to korave/isofind.pyx)

Includes

• Python code + module to do the fitting korave/*

• Python cluster module to run the software on multiple ma-
chines mab/cluster.py

• Sample isochrones data/isochrones/* (you can change the
location in the Makefile)

• Sample RAVE data data/rave.dat (you can change the name
in the Makefile)

This means that you don’t have to add any files to test the whole package.

Step 1: Setting up

Python code

Part of the Python code is done in a module. Normally it’s written in c, but
I used a wrapper program for it called Pyrex. Fortunately this program gen-
erates c-code (which I included) so there is no need to install it. But, if you
make changes to korave/isofind.pyx you need to generate the corresponding
korave/isofind.c by using the pyrex program. If you do, run this:

# pyrexc korave/isofind.pyx
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Note, this is not required, I included the korave/isofind.c file. To com-
pile the module, I use distutils, which is always included with Python, to
make it easier I added a Makefile target, so:

# make pycode

should do the trick, ignore the compiler warnings.

Isochrones

I included the isochrones in data/isochrones, I advise not to generate new
isochrone until you got everything working. You can change the location in
the Makefile.

RAVE data

I included a sample of 10 sources in data/rave.dat, you can change the
location in the Makefile

Step 2: Pre isochrone fitting

Generate the csv file

Whatever format you want to feed into the fitting routine, reformat it to a
comma separated values (csv) file. All routines are working with csv files.
I included a file korave/rave csv.py that can at least reformat the internal
data release file of July 2007 to a csv file, but not without problems. There is
some problem with the number of headers found and the number of columns
(they seem to be space separated, but some columns are sticked together,
therefore I recommend csv files). Hold your breath and execute:

# make rave csv

If you used the included file (data/rave.dat), ignore the warning, the
output should give:

header length = 68

first line length = 68

header length doesn’t match, they will be truncated, this is ok if

it’s only the last column, check it!

If you used you own file check the number of header etc, do a manual
check so that you absolutely sure the csv file is correct.
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Preprocessing

We’re now gonna add multiple observation together, and throw away obser-
vation as described in the report. The following make command will execute
korave/rave pre.py :

# make rave pre

If you used the included file (data/rave.data), you will (hopefully get):

python korave/rave pre.py data/rave.csv > data/rave.pre.csv

input: 10

output: 6

Meaning, out of the 10 sources, 6 are left in the file data/rave.pre.csv

Cleaning up

Now we are throwing away the chisq > 6 stars:

# make rave clean

If you used the included file (data/rave.data), you should get the follow-
ing output:

python ko/rave clean.py data/rave.pre.csv

data/isochrones/yy* > data/rave.clean.csv

loading RAVE db...

input: 6

loading isochrones...

calculating chisqs...

precount: 6

output: 6

We have now the file data/rave.clean.csv which will be ready for the
isochrone fitting routine.

Step 3: Isochrone fitting

This takes quite a while to compute, but I coded a Python module that can
execute the same program on multiple computers using ssh, and communi-
cating via STDIN/STDOUT. That means that it’s almost zero-config cluster
software, and should run out of the box. It does have some requirements:

• You should be able to connect to it with ssh without a pass-
word, therefore make sure that the command ssh virgo02
connects to this machine instantly, without asking for a
password. If you don’t know how, see the Kapteyn HOWTO
database, or google on ssh private/public key.
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• The files on each node of the clusters should see the same di-
rectory structure, meaning that /some/dir/isochrone should
be the same from each computer the program will run on.

• In case of mixed 32 and 64 bit machines, and when the
Python module is compiled on a 32 bit machine there may
be missing 32 libraries (you can manually copy them and
make sure LD LIBRARY PATH points to them). When
the module is compiled on a 64 bit machine, it will likely
crash on the 32 bit machines.

I recommend compiling it on a 32 bit machine, and make sure the 64
bit machines have the correct 32 bit libraries. The hypatia and hercules03
machines missed the following libraries:

libblas.so libblas.so.3.0.3 liblapack.so liblapack.so.3.0.3

libblas.so.3 libg2c.so.0 liblapack.so.3

libblas.so.3.0 libg2c.so.0.0.0 liblapack.so.3.0

When you run python -c “import korave.isofind” on hypatia it will com-
plain that it cannot find these libraries.

I copied these files from the (local) /usr/lib/ directory from a 32 bit
machine to a network disk directory (/Users/users/breddels/bulk/lib32),
and added this path to the LD LIBRARY PATH using the following code
in my ˜/.cshrc:

switch ( $HOST )

case hercules03:

case hypatia:

setenv LD LIBRARY PATH /Users/users/breddels/bulk/lib32

breaksw

endsw

Now python -c “import korave.isofind” should run fine on these two
machines.

Preparing the program

Open the file korave/isofit.py, the last lines should look something like:

node = mab.cluster.createNode(worker=worker, processors=2, parser=parser)

for i in range(2,16):

if i not in [2,4]:

node.addRemote("virgo%02d" % i, processors=2)
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node.addRemote("hercules03", processors=3, forceUse=True)

node.addRemote("hypatia", processors=3)

node.start()

node.addRemote takes 1 required argument, the machine hostname. The
optional (keyword) argument processors is the number of threads that will
be started on the remote machine, and therefore should equal the number of
processors (see next section). The optional (keyword) argument forceUse, is
a boolean which defaults to False. When someone is locally logged in using
X, the program chooses not to use the machine, when forceUse is True it
will ignore this, and will always use the machine. Note that adding virgo02 -
virgo15 is done in a loop, and excluding machines (e.g. when they are down)
is doing by an exclusion list ([2,4] in this case).

hercules03 and hypatia are 64 bit machines, make sure that 32 system
libraries are available.

Listing the machines

The program takes a –help argument:

$ python korave/isofit.py --help

options:

-h, --help show this help message and exit

--cmd=CMD execute ’cmd’ on remote machines

--test like --noremote, but without multiple threads

--noremote doesn’t use remote slaves

--who shows who is logged in on the remote machine

--listfree list the ’free’ machines (no X logins)

--cpucount get cpu count for remote machines

--cpuinfo get cpu info for remote machines

-q, --quiet no debug output

--slave puts machine in slave mode(used internally)

--processors=PROCESSORS

# processors for machine(used internally)

--eTeff=ETEFF

--eLogg=ELOGG

--testjob run test stuff

The –cpucount option is useful for getting the number of cpu’s on remote
machines (instead of manually checking /proc/cpuinfo on all machines). The
–cpuinfo gives information about the type of cpu’s the remote machines
have.



B SOFTWARE MANUAL 39

Running the fit

When the program crashes, it is kind of hard to kill (due to multi treading),
use kill -9 <pid> where pid is the process id obtained from ps for instance.
During testing it is useful to run the program with the –test argument, when
given, the program gracefully dies when crashes, and it is possible to kill it
with Ctrl-C.

The make command rave isofit test does exactly this, it is recommended
to run this first to see if the program is working properly (not crashing):

$ make rave isofit test

If this works ok, try running the program normally:

$ make rave isofit

This should create one file for each star in the database to the data/rave/
directory. These files contain the 5000 fitted magnitudes, and some statistics
(mass, age, and errors).

The command is executed by the time command so that after completion
it will list the time it took to run. Don’t worry if it crashes near the end,
restart, and it will continue where it stopped.

Step 4: To phase space

About the same process as the previous step, edit korave/rave 6d.py for the
machines you want to use.

First test if everything is working:

$ make rave 6d test

If ok, run the whole batch:

$ make rave 6d

This should give you the file data/rave.final.csv

Step 5: Post processing

Any post processing can be done in ko/rave post.py, the default is to do
nothing:

$ make rave post

This will output the file data/rave.final.post.csv
And post-post process is done by ko/rave post vel.py, which makes cuts

to select stars for velocity analysis:

$ make rave post vel

This will output the file data/rave.final.vel.csv
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