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Cover figure.
Artist’s impression of the binary asteroid 617 Patroclus, a Trojan asteroid
gravitationally locked to trail 60◦ behind Jupiter in its orbit around the
Sun. The two components in this system are similar in size and ellipsoidal
in shape. Image credit: Lynette Cook and W. M. Keck Observatory.



Abstract

The physical and dynamical properties of asteroids are windows into the complex history of
the solar system. Of particular interest is the thermal inertia of asteroids, a very sensitive
indicator for the looseness of surface material: mature, fine-grained regolith has a much
lower thermal inertia than compact material.

Knowledge of thermal inertia aids the planning of spacecraft operations near or on
asteroid surfaces. Through the Yarkovsky effect, thermal inertia can measurably influence
asteroid orbits and plays a crucial role in the prediction and prevention of asteroid impacts
on Earth.

The topic of this work is to study the role of component shape in the analysis of
the thermal emission of eclipsing binary asteroids. This method was pioneered by Mueller
et al. (2010) with Spitzer IRS observations of eclipses in the binary Trojan asteroid system
(617) Patroclus-Menoetius. Their analysis yielded the first direct measurement of asteroid
thermal inertia and the first determination of this property for a Trojan asteroid.

Based on the evidence available at the time, Mueller et al. (2010) assumed spherical
component shapes. However, Buie et al. (2015) derived a significantly ellipsoidal shape
through occultation observations. We reanalyze the Spitzer observations of Patroclus using
that shape as an input parameter. We also employed other shape models, interpolating
between the sphere and the Buie et al. shape model as well as extrapolating beyond it, in
order to study the influence of component shape.

We find component shape to have a dramatic impact on the thermal emission of eclips-
ing binary asteroids. As a consequence, we find thermal-inertia values that are reduced
by factors of several J s�1{2 K�1 m�2. For one eclipse event (’event 1’), we find 0.23 �
0.17 J s�1{2 K�1 m�2 while Mueller et al. found 21 � 14 J s�1{2 K�1 m�2. For the other
eclipse event (’event 2’), we find 1.00 � 0.45 J s�1{2 K�1 m�2 while Mueller et al. found
6.4 � 1.6 J s�1{2 K�1 m�2.

Our thermal-inertia result is at the low edge of the plausible range and indicates
extreme looseness in the topmost surface layer. The two events are representative of
the thermal inertia of the two separate components of the Patroclus system. If the two
components are formed from the same material, one would expect them to display identical
thermal inertia. The comparison between the thermal inertia for events 1 and 2 does not
support nor reject this possibility.

These results will support further studies into the thermal properties, composition and
structure of asteroids. Patroclus, our target asteroid, is also among the targets of the Lucy
mission, currently under study at NASA. If approved, Lucy will fly by Patroclus in 2033,
providing highly resolved data.
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Chapter 1

Introduction

Asteroids or minor planets are small bodies in the solar system in direct orbit around
the Sun that are not planets or moons and do not show any active comet characteristics.
They are the remnants of the formation of the solar system in the sense that they did
not become part of the central star or one of the planets. Many of them are probably
fragments of collided planetesimals that did not grow to the size of a protoplanet or planet.
They can be as small as dust grains or larger. The largest known asteroid is Ceres with
a diameter of almost 1000 km, which is also classified as a dwarf planet and possibly a
surviving protoplanet.

Since most asteroids have undergone much less processing since their formation than
the Sun and planets, they contain information on the early formation stage of our solar
system. The distribution of asteroids throughout the solar system and their physical
properties also provide clues about the solar system’s evolution. Knowledge of our own
planetary system will aid the understanding of other planetary systems in modeling them
and interpreting their observational data.

1.1 Dynamical classes of asteroids

There are millions of asteroids in the solar system. They can be divided in dynamical
asteroid groups that share similar orbits. Some asteroids have a common origin such as
the fragmentation of a single asteroid due to a collision in the past (see Figure 1.1). Most
of the asteroids in the solar system are main-belt asteroids (MBAs) between the orbits of
Mars and Jupiter. Orbital resonances with Jupiter divide this asteroid group in an inner
main belt ( 2.5 AU), a middle main belt (2.5-2.8 AU) and an outer main belt (¡2.8 AU).
Almost as numerous are the Jupiter Trojan asteroids (see Sect. 1.2) that librate around
gravitational stability points within the orbit of Jupiter.

Of particular relevance to mankind are the near-Earth asteroids (NEAs). As their
name implies, these come closer to Earth and may cross its orbit or even be potentially
hazardous and strike the Earth. Unlike most natural disasters, an asteroid impact is a
predictable and theoretically preventable event, if we have sufficient knowledge on the
asteroid orbital parameters. Determining this as accurately and for as many NEAs as
possible is an ongoing effort.
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Figure 1.1: An artist’s conception how a family of asteroids is created in a collision. Image
credit: NASA/JPL-Caltech.

1.2 Jupiter Trojans

617 Patroclus, the target of this research, is a Jupiter Trojan. The Jupiter Trojans are
trapped into two gravitationally stable regions of the Sun-Jupiter system, called the Jupiter
Lagrangian L4 and L5 points. These points lie along the orbit of Jupiter, so the Jupiter
Trojans accompany Jupiter in its orbit around the Sun. The Greek camp leads the way
60� ahead of Jupiter at the Lagrangian L4 point and the Trojan camp trails 60� behind
at the Lagrangian L5 point. Also see Figure 1.2 for an illustration.

Trojan asteroids have dark surfaces with almost featureless, reddish spectra. They
may be coated in a mixture of fine silicates grains, possibly organic compounds and other
opaque materials.

The origin of the Trojans is under debate. They may have formed at the present
location in the solar nebula, or may have been formed at a different location and been
captured in the Lagrangian points during a migration, or a combination of both.

Statistical analysis of colors and spectra of Trojan asteroids separates them into two
separate spectral groups. One group has a reddish spectrum (referred to as D-type aster-
oid) and the other group has a less-red spectrum (referred to as P-type asteroid). Emery
et al. (2011) suggest that the redder group may have formed farther out in the solar sys-
tem and was captured in the Jupiter Lagrangian points after a chaotic phase in the solar
system evolution as described in the Nice model by Morbidelli et al. (2005), and that the
less-red group originated near Jupiter or in the main asteroid belt.
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Figure 1.2: The inner solar system, from the Sun to the orbit of Jupiter. The main asteroid
belt between the orbits of Mars and Jupiter is indicated in white dots. Green dots represent
Jupiter Trojans, in a leading ’Greek’ and trailing ’Trojan’ camp. The orange dots are the
Hilda asteroids, another dynamical group of asteroids in a 3:2 orbital resonance with
Jupiter. More smaller of such dynamical groups exist as well, this figure does not include
all asteroid groups in the solar system. Figure from https://en.wikipedia.org/wiki/

Jupiter_trojan.
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Only two binaries are currently known among the Trojans, our target 617 Patroclus
is one of them. The apparent lack of binary Trojans is intriguing and may give clues
about their formation history. Possibly only close or contact binaries were able to stay
gravitationally bound in the chaotic period before their capture in a Lagrangian point
(Margot et al., 2015). But there is no conclusive evidence yet, and the origin of Trojans
remains a topic of active research.

1.3 Asteroid taxonomy

The compositions of asteroid surfaces are mainly derived from their visible and near-IR
spectra. This divides asteroids in a few characteristic classes, of which we will name the
main ones.

C-type asteroids are carbon-rich asteroids and seem to represent the majority of outer
main belt objects. S-type asteroids are silicate-rich or stony and dominate the inner main
belt and NEA realm. M-type asteroids are moderately bright and are generally identified
with a pure or partial metallic nickel-iron composition, but can also be non-metallic.

Most Trojans are of D-type or P-type. P-type asteroids have a low albedo and may
contain organic rich silicates, perhaps with water ice interiors. D-type asteroids have a
similarly low albedo and roughly the same composition as the P-types, but a distinctly
redder spectrum. This may indicate different ratios of the compositional elements and
possibly a different origin (Emery et al., 2011).

1.4 Thermal inertia

Thermal inertia is the resistance of a physical object to a change in its surface temperature.
It is thus the thermal variant of inertia, which is the resistance of a physical object to a
change in its motion. Thermal inertia measures how slowly a body reaches the same
temperature as its surroundings. This depends on a combination of physical properties as
discussed below.

A conductive material like a metal will transport and distribute heat quickly to its
interior. The surface will therefore not become significantly warmer than the inside. The
surface temperature takes more effort to increase in this case, giving a high thermal in-
ertia. On the other hand, an insulating material like dust or foam will strongly resist a
temperature change. The heat cannot penetrate the material and builds up on the surface.
The surface temperature is thus easy to increase, giving a low thermal inertia. In between
these extremes is a whole spectrum of materials with varying thermal inertia depending
on their density, specific heat and ability to conduct heat.

A high thermal inertia thus keeps the surface temperature low for a long time. A high
thermal inertia like metal therefore feels cooler than the surrounding temperature at first
touch. And on a hot day at the beach a dive in the sea water with medium high thermal
inertia will feel refreshingly cool after walking on the hot beach sand with its lower thermal
inertia.
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Figure 1.3: Example of thermal inertia in relation with the daily temperature variation
on Earth. The top panel shows the surface temperature as a function of time during the
day, the bottom diagram plots the incoming and outgoing energy during a day. The daily
temperature is controlled by the incoming solar radiation and outgoing infrared radiation.
Thermal inertia determines how fast the surface temperature rises and falls. Since the
surface stays warm for some time, the maximum temperature is lagging behind on the solar
maximum. Figure from http://www.atmos.washington.edu/~hakim/101/101.cgi.

Another example of thermal inertia is given in Figure 1.3. The Earth is constantly re-
leasing heat with outgoing infrared radiation. Heat is mainly incoming from solar radiation
during the day. The incoming energy causes the Earth’s surface to rise in temperature.
How fast this happens depends on the thermal inertia of the surface. When the incoming
solar energy drops below the outgoing infrared radiation, the temperature of the Earth’s
surface decreases again. Note that, due to thermal inertia, the highest temperature does
not occur at noon but a few hours later. This is the basis of the Yarkovsky effect, see
Sect. 2.4.
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1.5 This research

The thermal inertia of an asteroid gives insight into its surface structure. It can be deter-
mined by studying the thermal response of the asteroid surface to a temperature change
of the surroundings. An eclipse event in a binary asteroid system offers the opportunity to
measure thermal inertia directly in one single event. Mueller et al. (2010) were the first to
apply this method to eclipses in the binary Trojan asteroid system (617) Patroclus using
Spitzer IRS observations. This was also the first determination of thermal inertia for a
Trojan asteroid.

The analysis by Mueller et al. (2010) assumed a spherical shape for both components of
Patroclus. However, stellar occultation observations by Patroclus from Buie et al. (2015)
revealed that the components are more ellipsoidal. Given that the shape of the asteroid
changes the configuration of an eclipse and thus the shadows and temperature variations
on the surface, the shape is expected to influence the determination of thermal inertia. In
this research, we refine the analysis of the thermal eclipse data with the new shape model
and investigate the influence of asteroid shape in the thermophysical eclipse model using
the existing Spitzer data.

In chapter 2 we will first give an introduction to thermal inertia of asteroids, describe
how we measure the thermal inertia of asteroids with a thermophysical model and discuss
some implications of this property.

In chapter 3, we introduce our target asteroid, the Trojan binary system 617 Patroclus-
Menoetius. We will describe the observations of two mutual eclipse events in the Patroclus
system that were performed by Mueller et al. (2010) to determine its thermal inertia.

In chapter 4 we set out the steps for the data analysis, starting with an illustration
of the implemented ellipsoid asteroid models, followed by the reanalysis of the Patroclus
eclipse events with these improved asteroid shapes.

Finally, chapter 5 and 6 contain the discussion of the results and conclusions of this
research.
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Chapter 2

Thermal inertia of asteroids

We will first describe how we measure the thermal inertia of asteroids, and explain the
theory of the thermophysical model that is used in this research. Then we give some
examples of thermal inertia values for different materials and asteroids, and mention a few
applications that motivate the study of thermal inertia of asteroids.

2.1 Measuring thermal inertia

To measure the resistance of a material to temperature changes, we need to monitor
the material while it is undergoing these changes. An object in space does continuously
experience temperature changes when it is warmed by a heat source from one direction
while it rotates around its axis. In our solar system the Sun is the main heat source and
rotating objects cycle through alternating day and night phases. In theory we can observe
a rotating asteroid from different angles to see its dayside and nightside. The thermal
inertia can then be inferred from the asteroid’s diurnal temperature variation.

Ideally you would want to measure the temperature on consecutive days and nights,
but in practice these observations have to be spaced with long time intervals. Normally
you do not have the luxury to orbit an asteroid, but you observe it from a long distance
and the rotational phase from your point of view changes slowly.

Another type of event that causes a temperature change is an eclipse, when one object
moves in front of the Sun as seen from another object. The first object blocks the sunlight
which causes the temperature on the second object to drop. A realtime eclipse enables a
direct and immediate detection of temperature changes. Eclipses can occur between any
types of objects in space. Solar eclipses and lunar eclipses are the best known types, but
an eclipse can also occur between other planets and their moons, binary stars and even
binary asteroids.

Pettit and Nicholson were the first to measure the thermal inertia of the Moon with
this technique during a total lunar eclipse (Pettit and Nicholson, 1930). The technique has
also been applied to eclipses of other natural satellites by their host planet, such as Jupiter
and Saturn and even by Saturn’s rings (Morrison and Cruikshank, 1973; Neugebauer et al.,
2005; Pearl et al., 2008).
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In general eclipses occur much more frequently and regularly between mutually orbiting
objects than for single objects. Single asteroids in space are also not frequently eclipsed and
certainly not regularly. But in a binary asteroid system both components can alternately
eclipse each other. More and more binary asteroids are now known in which mutual eclipse
events can be quite accurately predicted (see Mueller et al., 2010). In this research we
analyze observations of the binary asteroid system 617 Patroclus during eclipse events in
June 2006.

The eclipse method allows for a direct measurement of thermal inertia of binary aster-
oids. However, this technique cannot be used for all asteroids. The diurnal method will
still be useful for more statistically significant data. The different methods are compli-
mentary to each other.

2.2 Thermophysical model

In a thermophysical model (TPM), the surface of an asteroid is modeled by a mesh of
triangular facets. We need to determine the temperature for each model facet, assuming it
is a black body radiator, and calculate its thermal emission with the Planck function. The
surface temperature is a result of several contributing energy transport processes within
and outside of the asteroid, which are accounted for in the TPM. The Planck function is
then integrated over all facets to obtain the total thermal emission of the asteroid. Finally,
the predicted thermal output is fitted with observations.

The first TPMs for objects in space were developed for the Moon. These were able
to reproduce thermal observations of the lunar surface, and also determine values for
its thermal inertia and surface roughness which were matched by experiments on site
by Apollo astronauts. The lunar surface models were generalized for spherical planetary
bodies by Spencer et al. (1989) and Spencer (1990). The most used asteroid TPMs are
all based on these two works. For a more detailed overview of the evolution of TPMs
and references, see Delbo et al. (2015). The first TPM that accounts for eclipses and
occultations in (doubly tidally locked) binary asteroid systems was reported by Mueller
(2007). That model, referred to as binary TPM (BTPM), is used in this work.

In the rest of this section we will give an outline of the theory and implementation of
TPMs in general as presented in Delbo et al. (2015), and of the BTPM as presented in
Mueller (2007), see there for more details.

The BTPM starts with an energy balance at the asteroid surface. Incoming solar radi-
ation heats the surface up. The intensity of the solar radiation I is inversely proportional
to the distance r from the Sun squared. The energy coming onto the surface is propor-
tional to the cosine of the angle between the Sun and the surface normal. A fraction A
of the power in the total solar radiation on the asteroid surface will be scattered back.
A is commonly known as the Bond albedo. The incoming solar radiation at the asteroid
surface is then:

I � p1�AqSd
r2
µS , (2.1)
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with Sd the solar constant, which is the mean solar flux density at 1 AU from the Sun,

and µS �
ÝÑr �ÝÑn

r � cos(θ), the cosine of the local solar zenith distance, which is defined to
become 0 when the Sun is below the horizon. The surface may also be heated by secondary
terms, such as scattered solar radiation, or reabsorbed thermal radiation within concave
shapes. Since we assume a convex shape, we can neglect these secondary heating terms.

The absorbed solar energy can either be thermally re-emitted as a black body, or
conducted down into the subsurface. The total power P emitted per unit area by an
asteroid surface, assuming black body radiation, is given by the Stefan-Boltzmann law,
which integrates the Planck radiation function over all frequencies and solid angles:

P � εσT 4, (2.2)

with T the surface temperature, σ the Stefan-Boltzmann constant, and ε the emissivity of
the surface that gives the fraction of thermal power P that the asteroid can emit.

The heat flux Φ conducted down into the subsurface is proportional to the gradient of
the temperature T . We will only consider heat transfer in the direction Z perpendicular
to the surface, since the heat diffusion is only effective over a few centimeters and the
model surface elements are much larger that that. Then:

Φ � �κBTBZ , (2.3)

with κ the thermal conductivity of the material.
Conservation of energy prescribes that the incoming energy should equal the outgoing

energy at the surface:

εσT 4 � κ

�BT
BZ



Z�0

� p1�Aq S
r2
µS (2.4)

The heat conduction is a diffusive process described by:

ρC
BT
Bt �

B
BZκ

BT
BZ , (2.5)

where ρ is the surface mass density, and C is the specific heat capacity. The thermal con-
ductivity κ is assumed to be independent of depth, and thus temperature. This assumption
reduces the previous equation to the diffusion equation:

BT
Bt �

κ

ρC

B2T
BZ2

(2.6)

Equation 2.6 is a second order differential equation, for which two boundary conditions
are needed to be able to solve it. Equation 2.4 is the first boundary condition, for energy
conservation at the surface. The second boundary condition is that the temperature should
not change at infinite depth:

�BT
BZ



ZÑ8

� 0 (2.7)
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The conservation of energy equation 2.4, diffusion equation 2.6 and infinite depth equa-
tion 2.7 give a complete coupled set of equations describing the thermal economy of the
asteroid. To facilitate its computational solution it is preferable to cast the equations
into a dimensionless form. To this end, we define the following dimensionless quantities,
following Spencer et al. (1989):

τ � ωt (2.8)

z � Z{ls
u � T {TSS

with angular frequency of the asteroid ω, and in which skin depth ls, subsolar temperature
TSS , thermal parameter Θ and thermal inertia Γ are defined as:

ls �
c

κ

ωρC
(2.9)

TSS � 4

c
p1�AqSd{r2

εσ

Θ � κ{ls
εσT 3

SS

� ?
ω

Γ

εσT 3
SS

Γ �
a
κρC

Thermal inertia is thus defined as a combined property of thermal conductivity, density
and specific heat capacity.

This parametrization leads to the following coupled set of differential equations in
terms of dimensionless quantities:

B
Bτ upz, τq � B2

Bz2upz, τq (2.10)

up0, τq4 � µSpτq �Θ
B
Bzup0, τq (2.11)

lim
zÑ8

B
Bzupz, τq � 0. (2.12)

This combination of equations depends only on the thermal parameter Θ, so this contains
all the physics for the heat transfer mechanism. Θ is directly proportional to thermal
inertia Γ and does not depend on any other thermal properties. However, κ, ρ and C
cannot be determined separately with these equations, only the combined thermal inertia
Γ � ?

κρC. ρ and C are approximately constant for asteroid surfaces, but κ can vary over
several orders of magnitude for different asteroids.
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The source code of the BTPM is written in the C++ programming language. The
program contains three main building blocks. Part I generates the shape of the asteroid
system. Part II predicts lightcurves for the eclipses and occultations in the binary system.
Finally, part III fits the grid of predicted lightcurves to the observed lightcurve.

Fixed asteroid parameters in the BTPM are the shape, spin period P , spin-axis ori-
entation, absolute optical magnitude H and emissivity ε. Variable input parameters are
thermal inertia Γ, beaming parameter η, area equivalent system diameter D and eclipse
time offset ∆t. The dimensionless factor η corrects for the effect of infrared beaming,
which is the brightening of a rough surface at low observation phase angles. The rougher
the surface, the larger this effect, so η is related to surface roughness. The area equivalent
diameter D is related to geometric albedo pV and the observed optical magnitude H. D is
related to the diameters of the individual components D1 and D2 through D2 � D2

1�D2
2.

The eclipse time prediction is uncertain within a few hours and the model finds the best
fitting eclipse time offset ∆t. The best fit of the observations with the model determines
the best fit for D, Γ, η, ∆t and the corresponding minimum χ2.

The data flow in the three building blocks of the program is as follows:

• The starting point in part I is a predefined sphere. The main asteroid is an exact
copy of this sphere. The accompanying asteroid is a rescale of this sphere, so that
the ratio of both spheres represents the true mutual proportions of the asteroids.
Then both asteroids are shifted in opposite directions along the X axis to scale with
the actual distance between the two asteroids. The shift for each asteroid is inversely
proportional to its mass, so that the system’s center of mass lies in the origin. The
two spheres are then saved as one system into a 3D graphics file.

• The second part of the program simulates the possible eclipses and occultations in
the binary system. It takes the generated binary asteroid shape of the first part as
input, along with the orbit and timing parameters. It also applies a grid of relevant
physical properties, such as thermal inertia and roughness. A simulation over time
then calculates the predicted lightcurves for the entire grid of variable parameters.

• The third part of the program fits the observed lightcurve to the grid of predicted
lightcurves. This is implemented with a Monte Carlo simulation, which adds ran-
dom noise to the observed lightcurves. This way the model determines the best fit
including the error for the input physical properties. In particular, it determines a
best fit thermal inertia for the given asteroid shape and eclipse event.

Details of the implementation can be found in Mueller (2007) and Mueller et al. (2010).
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2.3 Physical interpretation of thermal inertia

The ”looseness” of the surface material is an important factor in the total thermal inertia.
A solid rock surface will react differently to temperature flux than a loose sandy surface.
The solid rock will transfer heat more quickly to the inside and surface temperatures will
not fluctuate easily, giving a high thermal inertia. In contrast, the sandy regolith will act
as an insulator and not easily be penetrated by a heat wave. Thus heat remains on the
surface and the surface quickly adapts its temperature, giving a low thermal inertia. This
enables us to use thermal inertia as a probe for the surface structure.

See Figure 2.1 and 2.2 for illustrations of the thermal response for materials or objects
with different thermal inertia. To get a feeling for values of thermal inertia for different
materials and asteroids, Table 2.1 gives a few examples.

Figure 2.1: Response of two different materials to the daily temperature variation. Plotted
is the temperature as a function of the day time. The red line shows the temperature
variations for a low thermal inertia of TI = 50 J s�1{2 K�1 m�2 (comparable with lunar
regolith) and the green line for a high thermal inertia of TI = 2500 J s�1{2 K�1 m�2

(comparable with bare rock). The higher the thermal inertia or resistance to surface
temperature change, the less variation in surface temperature, and vice versa. Also note
that the higher thermal inertia material stays warm inside for longer, so that the peak
temperature is shifted to a later time than for the lower inertia material. Image credit:
Migo Mueller.
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Figure 2.2: Model lightcurves of an eclipsing binary asteroid (not Patroclus!). Shown are
lightcurves for three different thermal-inertia values (in J s�1{2 K�1 m�2). The white
box contains the thermal response to a total eclipse event, where the larger component
casts shadow on the smaller component. The remaining three events are irrelevant for the
topic at hand. Low thermal inertia results in a large eclipse-induced flux drop, almost
instantaneously at the start of the eclipse, and a quick heat-up after the eclipse. Higher
thermal inertia reduces the drop amplitude and delays the response time. Image credit:
Migo Mueller.

16



Material κ ρ C Γ

(W K�1m�1) (kg m�3) (J kg�1K�1) (J s�1{2 K�1m�2)

Nickel 91 8850 448 19�103

Iron 81 7860 452 17�103

Granite 2.9 2750 890 2600
Marble 2.8 2600 800 2400
Water ice, 0� 2.25 917 2000 2040
Water, 0� 0.56 1000 4200 1500
Snow (compact) 0.46 560 2100 740
Sandy soil 0.27 1650 800 600
Coal 0.26 1350 1260 665
Pumice 0.15 800 (900) 330
Paper 0.12 700 1200 320
Polystyrene foam 0.03 50 1500 47
Air 0.026 1.2 1000 5.6
Lunar regolith 0.0029 1400 640 51

Object Classification R D Γ

(AU) (km) (J s�1{2 K�1m�2)

1620 Geographos NEA 1.1 5.04 340
1862 Apollo NEA 1.0 1.55 140
1 Ceres MBA 2.767 923 10
277 Elvira MBA 2.6 38 250
2363 Cebriones Trojan 5.2 82 7 � 7
3063 Makhaon Trojan 5.2 116 15 � 15
Ganymede Jupiter moon 5.2 5262 14 � 2 (eclipse)

�70 (diurnal)
Callisto Jupiter moon 5.2 4820 11 � 1 (eclipse)

�50 (diurnal)
2060 Chiron Centaur 13.6 166 4-5
10199 Chariklo Centaur 15.8 302 1-16
50000 Quaoar TNO 43 1082 6
90377 Sedna TNO 87 995 0.1

Table 2.1: Top - Thermal properties of a selection of materials: thermal conductiv-
ity κ, mass density ρ, specific heat capacity C and thermal inertia Γ, all for temper-
atures of 20� unless otherwise stated. Values in parenthesis were estimated based on
similar materials. Data as quoted after Mueller (2007), see there for original references.
Bottom - Physical properties and thermal inertia of a selection of small bodies in the solar
system: classification of type of object, semimajor axis of orbit around the Sun R, mean
diameter D and thermal inertia Γ. The thermal inertia measuring method (eclipse/ diur-
nal) is specified when different methods were used. Data for the NEAs, MBAs, Trojans,
Centaurs and TNOs as quoted after Delbo et al. (2015), thermal inertia for the Jupiter
moons as quoted after Mueller et al. (2010), semimajor axes for the Trojans and Centaurs
as quoted after IAU Minor Planet Center, diameters of Jupiter moons and Centaurs as
quoted after JPL Small-Body Database Browser; see there for original references.
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2.4 Yarkovsky effect

Thermal inertia not only controls the temperature distribution on the asteroid surface. It
can also significantly alter the orbits of small asteroids via the Yarkovsky effect, named
after its discoverer Ivan Osipovich Yarkovsky.

Consider a rotating object that is illuminated by the Sun. As illustrated in Figures 1.3
and 2.1, a higher thermal inertia will delay the maximum daily temperature. At the end of
a day the surface temperature is higher than at the beginning of the day, because the heat
has been absorbed by the subsurface and it takes time to cool down again. Consequently
more photons are emitted on the evening side than on the morning side, resulting in a net
force on the object that may significantly alter its orbit if it is not too large. See Figure
2.3 for an illustration of the Yarkovsky effect.

Figure 2.3: Illustration of the Yarkovsky effect. The Yarkovsky effect can push an asteroid
closer to or farther away from the Sun. The asteroid is radiated by the Sun, the sunlight
is indicated by yellow arrows. The depicted asteroid rotates retrograde and is warmer
on the evening side. It thus effectively radiates more heat on the evening side than
on the morning side. The excess photon emission is indicated by red arrows. The net
recoil force on the asteroid is opposite the direction of its movement, causing it to slow
down and spiral inward. If the asteroid is a prograde rotator, it radiates more heat on
the other side, increasing the asteroid’s speed and thus moving it outward. Figure from
https://dslauretta.com/2013/12/21/dewg-wheres-my-asteroid.

This process can also cause an asteroid that was initially far from Earth to gradually
come closer. The Yarkovsky effect is significant for asteroids smaller than 30 - 40 km in
diameter (Vokrouhlický et al., 2015). Since collisions with Earth of even small asteroids are
undesirable, it is worthwhile to investigate this process in more detail and systematically
determine the thermal inertia of asteroids.
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2.5 Asteroid spacecraft missions

Another practical reason for being interested in the thermal inertia of asteroids is that we
would like to know its surface structure if we would want to land on it. Interest in asteroids
as scientifically relevant objects and even as potentially containing mining resources are
increasing so that this becomes a realistic scenario.

Not only that, Patroclus has been chosen as one of the targets of the Lucy mission,
which is currently being developed by NASA. If approved, Lucy will fly by Patroclus in
2033, providing highly resolved data (see Figure 2.4). A fly by mission is a first step in
spacecraft missions, then comes an orbiter mission and finally a lander mission.

Figure 2.4: Artist impression of Lucy spacecraft targeting to visit six Jupiter Trojans
including (617) Patroclus. Image credits: SwRI and SSL/Peter Rubin.

This may be far in the future for Patroclus, but asteroid lander missions are already
a reality. At this moment, the Japanese JAXA’s Hayabusa 2 and NASA’s OSIRIS-REx
spacecrafts are on the way to NEAs. Both will return samples from their target’s asteroid
surface back to Earth. The successful approach of the spacecrafts depends on accurate
knowledge of surrounding temperatures, which are governed by thermal inertia. Both mis-
sions carry infrared spectrometers to obtain detailed in situ measurements of the thermal
inertia to compare against remote-sensing results.

These missions follow up even earlier ones that have already visited several asteroids.
NEAR Shoemaker visited (433) Eros in 2001 and Hayabusa visited (25143) Itokawa in

19



2005. Neither mission had a thermal instrument, but the thermal inertia measurements
from earlier thermal studies are consistent with the expected thermal inertia based on the
imagery of the spacecrafts (Mueller, 2007).

Also, the Rosetta space probe flew by (21) Lutetia in 2010 and did measure its thermal
inertia (Capria et al., 2012; Schulz et al., 2012). These were in agreement with remote-
sensing observations done from the ground and also with observations from the Spitzer
Space Telescope and Herschel Space Observatory (Lamy et al., 2010; O’Rourke et al.,
2012).
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Chapter 3

Target & observations

We will first give some background information on our target asteroid, 617 Patroclus.
Then we will describe the Spitzer observations of Patroclus by Mueller et al. (2010) that
are the basis of this work. The new shape model by Buie et al. (2015), which ultimately
triggered this research project, is described in Sect. 3.3.

3.1 617 Patroclus

617 Patroclus is one of the largest asteroids in the Trojan L5 camp, named after the Greek
warrior Patroclus. It was the second Trojan to be discovered, as early as 1906 by German
astronomer August Kopff.

The spectral classification for Patroclus is P-type (Neese, 2010) (for the meaning of the
asteroid spectral classifications see Sect. 1.3). It has a dark surface with a low geometric
albedo of 0.0433 and its emissivity spectra reveal the presence of fine-grained(  few µm)
silicates on the surface (Mueller et al., 2010).

It is not known where Patroclus was formed in the solar system. For a long time it
was believed that the Trojans were formed near Jupiter (e.g. Marzari et al., 2002). But
the Nice model by Morbidelli et al. (2005) shows that the Trojans might originate in
the Kuiper belt. From there they may have been scattered over the solar system in a
chaotic phase with resonant interactions of Jupiter and Saturn and ultimately have been
captured in Jupiter’s Lagrangian points. On the basis of their finding that Patroclus is
mostly composed of water ice, Marchis et al. (2006) suggests that Patroclus could indeed
be a former Kuiper belt object that has migrated inwards. However, Emery et al. (2011)
hypothesize that of the two different compositional groups of Trojans (see Sect. 1.2), the
less-red group originated near Jupiter or in the main asteroid belt. 617 Patroclus belongs to
the less-red group of Trojans, which would mean it was formed nearby the present location
in the middle of the solar nebula (Emery et al., 2015), contradicting the suggestion by
Marchis et al. (2006).

Merline et al. (2001) discovered that Patroclus is a binary system, using adaptive optics
to spatially resolve the system, see Figure 3.1. The main component remained Patroclus
and its smaller companion was dubbed Menoetius.
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Figure 3.1: Patroclus and Menoetius, as viewed on October 13, 2001, from Gemini Tele-
scope North, Mauna Kea, Hawaii (Merline et al., 2001).

If the components of a binary have different spin periods than the mutual orbit period,
visible lightcurve observations will most likely show variations of multiple periodicity.
Optical data of the Patroclus system obtained by Mueller et al. (2010) had low amplitude
variations with only one single period. This indicates that both the primary and the
secondary spin periods are fully synchronized to the mutual orbit period, so Patroclus and
Menoetius are both tidally locked to each other. This means that the two components
continuously face each other with the same side and the entire system can be treated as a
rigid body. Such binaries are called doubly synchronous binaries.

The low amplitude of the lightcurve variations also indicated that both components are
almost spherical, which motivated the initial assumption of a spherical shape by Mueller
et al. (2010). The oblate Buie et al. (2015) model is however also consistent with this
observation.

Marchis et al. (2006) obtained further spatially resolved observations of Patroclus, from
which they derived the system’s mutual orbit. They detected a near-infrared magnitude
difference of 0.17 mag. Assuming similar albedo, the two companions are similar in size
with the larger component being only � 1.082 times larger in diameter than the other.
This was combined with thermal measurements for an estimate of the system size by
Fernández et al. (2003) to give D1 = 121.8 km and D2 = 112.6 km.
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They found the components to be separated by 680 � 20 km and to go around each
other in a period of 4.283� 0.004 days. This orbital information allowed them to determine
the total system’s mass at 1.36�0.11�1018 kg. Together with the system size they obtained
a low average mass density of 0.8�0.2

�0.1 g cm�3. This suggests that both components are
loose agglomerations of smaller clumps consisting mostly of water ice.

The Marchis et al. model was used to accurately predict the timing of a series of eclipse
events in the Patroclus system in 2006-2007. It then reached one of its annual equinoxes,
where the plane of the components’ mutual orbits passes through the center of the Sun, so
that the components regularly eclipse or occult each other. Several of these eclipse events
have been observed in two separate campaigns by Berthier et al. (2007), and by Mueller
et al. (2010).

Berthier et al. (2007) observed eclipse events with several ground-based telescopes.
The new data allowed a further refinement of the Marchis et al. (2006) orbit model. They
concluded that Patroclus and Menoetius orbit each other at a center-to-center distance of
654 � 36 km and with a rotation period of 4.289 � 0.05 days. Following Kepler’s third
law, the corresponding total system mass is 1.20� 0.11� 1018 kg, and the corresponding
diameters of Patroclus and Menoetius are 112 � 16 km and 103 � 15 km, respectively.
The orbit is circular (eccentricity ¤ 0.001) and features no precession.

Mueller et al. (2010) observed the thermal emission of the Patroclus system during two
mutual eclipse events in June 2006. Those data are the basis of this work, see Sect. 3.2
for a description of the observations. Using a custom binary TPM (BTPM, see Sect. 2.2),
they determined the thermal inertia of a Trojan asteroid for the first time. They obtained
an average thermal inertia of 20 � 15 J s�1{2 K�1 m�2. This indicates a top surface layer
of loose small dust and soil pieces, which may vary over the surface. Furthermore, the
model converged to component diameters of 106 � 11 and 98 � 10 km and a resulting
average mass density of 1.08� 0.33 g cm�3, overlapping within 1 σ with the values from
Berthier.

3.2 Observations

Mueller et al. (2010) employed the InfraRed Spectrograph (IRS) (Houck et al., 2004) to
observe the thermal emission of the Patroclus system during two eclipse events during June
2006. The IRS is one of the three science instruments on board the Spitzer Space Telescope
(Werner et al., 2004). The observations were carried out in low-resolution spectroscopy
mode, covering the infrared wavelength range 7.4 - 38 µm with resolution R � λ{dλ � 64
- 128.

Two eclipse events were observed in June 2006. In event 1, Menoetius is shadowed by
Patroclus and vice versa for event 2. Both events lasted about 4 hours and were observed
from about 1-2 hours before the start of the eclipse, up to about an hour after the end
of the eclipse. Spectra were obtained at 18 different times, 9 per event. Each observation
had an integration time of approximately 6 minutes, which are snapshots compared to the
total duration of the eclipse.

The start times of observations are given in Table 3.1. Observations 1.0 and 2.0
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Observation Day Time Observation Day Time
(June 2006) (UT) (June 2006) (UT)

1.0 24 18:40 2.0 26 10:42
1.1 24 21:54 2.1 26 23:22
1.2 24 22:47 2.2 27 00:24
1.3 24 23:54 2.3 27 01:31
1.4 25 00:41 2.4 27 02:19
1.5 25 01:47 2.5 27 03:29
1.6 25 02:49 2.6 27 04:24
1.7 25 04:12 2.7 27 05:55
1.8 25 05:24 2.8 27 06:52

Table 3.1: Start times of the Spitzer observations during the two eclipses. There are 9
observations per event, labeled 1.0 - 1.8 for event 1 and 2.0 - 2.8 for event 2. Table copied
from Mueller et al. (2010).

Event 1 2

Heliocentric distance r 5.947 AU 5.947 AU
Spitzer-centric distance ∆ 5.95 AU 5.98 AU
Solar phase angle α 9.80� 9.77�

Heliocentric coordinates (J2000) 170.8�, +18.03� 170.9�, +18.00�

Spitzer-centric coordinates (J2000) 160.5�, +18.2� 160.7�, +18.1�

Table 3.2: Observing geometry of the eclipse events. The absolute visible magnitude for
Patroclus equals H = 8.19, the slope parameter of the phase curve is assumed to be G =
0.15 (Tedesco et al., 2002). Table copied from Mueller et al. (2010).

were taken well before the start of the eclipses to enable comparison with the non-eclipse
situation, and observations 1.7-1.8 and 2.7-2.8 were made to observe the warming up after
the eclipse.

Figure 3.2 gives an impression of what the events will have looked like as seen from the
Spitzer spacecraft. On the basis of this figure we roughly estimate that during maximum
eclipse a fraction of � 40 % of the eclipsed asteroid is shadowed for event 1, and � 20 %
for event 2.

Certain wavelength ranges were discarded from the analysis due to the presence of
emissivity features (due to silicate grains), which are not accounted for in the BTPM. Each
observation yielded usable data at 178 wavelengths, which adds up to 1602 data points
per event of 9 observations. The observation geometry of the observations is summarized
in Table 3.2.

The Spitzer observations have been reduced and calibrated by Mueller et al. (2010) to
obtain the luminous flux during the eclipse happenings. The resulting fluxes can be found
in data appendix A of their paper. These fluxes have been used in this research to fit the
thermophysical model.
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Figure 3.2: Impression of the two eclipse events, the labeling is the same as in Table 3.1.
The top panel (1.1 to 1.8) is a reconstruction of the event 1 eclipse sequence on the basis
of the corresponding Spitzer lightcurves. Bottom panel (2.1 to 2.8) repeats this for event
2. Figure copied from Mueller et al. (2010).

3.3 New shape model for Patroclus

Mueller et al. (2010) assumed a spherical shape for both components. But Buie et al.
(2015) observed a stellar occultation by Patroclus and Menoetius and derived a more
accurate shape. The tri-axial ellipsoid shape of (617) Patroclus that they determined sets
the axial ratios of both components as a : b : c = 1.3 : 1.21 : 1, with mean-ellipsoidal
axes of 127 � 117 � 98 km for Patroclus and 117 � 108 � 90 km for Menoetius. The
uncertainty in these measurements is estimated to be about 3 km, with possible local
deviations up to a scale of 5 km.

Patroclus and Menoetius are assumed to have their longest axis aligned with the di-
rection towards each other. This is an expected configuration for two bodies that are
tidally locked to each other. The tidal forces between their closest and farthest points
from each other causes them to be stretched along their connecting line. The two bodies
can then gradually lose their rotational energy to heat by the resulting internal friction
and eventually become tidally locked with their longest axis pointing towards each other.

This new information on the shape and orientation is used in this research to refine
the thermophysical model and determine the thermal inertia of the Patroclus system.
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Chapter 4

Data analysis

Here we describe our reanalysis of the Spitzer observations of eclipses in the Patroclus
system. As discussed above, Mueller et al. (2010) assumed spherical component shapes.
We generalize this analysis by assuming ellipsoidal shapes including the one derived by
Buie et al. (2015).

Firstly, we describe how we generate ellipsoidal binary shape models and how we
visualize them. Sect. 4.2 forms the core of this section: we report the BTPM reanalysis
of the eclipse data assuming first a spherical shape (to validate our numerical approach),
then ellipsoidal shapes including the one derived by Buie et al.. Results are summarized
in Sect. 4.2.3.

4.1 Asteroid models

We have made two adaptations to the code to create new asteroid shapes. First we
have added a visualization method to enable a quick judgement by eye if the result is
as expected. Second we have varied the parameters for the outer proportions to create
asteroid shapes of different ellipticities.

4.1.1 Visualization

The code produces asteroid model files of a .concave format which lists all the vertices and
facets as well as topological information that is used in the thermophysical model. This
format is not easy to visualize. We have added an extra output file in .obj format that
only lists the vertices and facets to enable visualization of the asteroid shape with easily
available software.

The .obj format defines a 3D geometrical shape by digitizing its surface into separate
facets. Each facet is defined by three or more points that are its corners or vertices. It
is specified on one single line that starts with an ’f’ and is followed by the identification
numbers of its vertices (f v1 v2 v3). Each vertex is predined in the same file by listing
its (x, y, z) coordinates on a single line that stars with a ’v’ (v x y z). The .obj format
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Figure 4.1: Geometric setup for the computational model of the asteroids. The image is a
visualization in Blender of the original sphere from its .obj file (see text for explanation).
This sphere is the starting point for the creation of new asteroid shapes, for example by
stretching it into an ellipsoid.

also supports facets defined by more than three vertices, but we have used only triangular
facets.

The .concave format already contains all the information that the .obj format requires.
But it also includes additional information for the thermophysical model that makes it
unreadable for .obj graphics programs. So we have written an extra function to create an
.obj file that only contains the lines with facet identification numbers and vertex coordi-
nates. This function had to account for the fact that .obj facets are one-based, so the first
vertex is nr. 1. The .concave file is zero based, so the first vertex is nr. 0. The vertex
numbers are therefore increased by 1 in the .obj format.

We used the open source 3D graphics software package Blender for the final visual-
ization. See for example Figure 4.1 for the image of the predefined sphere that forms the
starting point of the asteroid models.

At first glance this visualization seems exactly as expected. The sphere is formed by
a surface of connected triangles and it seems to approach a spherical form as good as
possible with this configuration. But a sphere can be rotated around any angle and map
onto itself due to its circular symmetry. You would not notice any difference if the sphere
was for example rotated around the X, Y or Z axis.

When we started to work with the elliptic asteroid models, we did notice a difference.
As explained in Sect. 3.3, the longest axes of both asteroids should be aligned with the
direction towards each other and they should be flattened in the plane of rotation, which
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is the XY plane. So the shortest axis should be in the Z direction. However, when we
first looked at the elliptic asteroid models, the shortest axis was in the Y direction. At
first sight, it seemed as if something was wrong with the model.

We then had a close look at the definitions of the axis orientations and recalculated
some of the transformations between different coordinate systems. But these all seemed to
be correct. Varying the axis ratios, eg. swapping the value for the b- and the c-axis, also
gave the expected result. Then we looked at the .obj file itself and checked the maxima in
the Y and Z coordinates, where the range in Y should be larger than in Z, given a ¡ b ¡ c.
This was also correct. So a, b, c indeed seems to correspond to X,Y, Z, respectively. That
led to the suspicion that the visualization in Blender might not be correct, so we looked at
the asteroid models with two other 3D viewers. There the orientation was indeed correct,
with the shortest axis along Z.

We finally found out that the problem is indeed a Blender specific issue. By de-
fault Blender assumes that objects in .obj files are projected with the Y axis upwards, but
Blender always projects the Z axis upwards. This default orientation for .obj files is a rem-
nant of 2D axis systems. For this reason Blender automatically rotates all imported .obj
files 90 degrees along the X axis. (Explanation taken from blender.stackexchange.com.)
We decided to still keep using Blender, since it is a versatile, flexible and easy to use
software package. We thus apply a rotation of -90 degrees in X after importing any .obj
file into Blender to obtain a correct physical visualization.

4.1.2 Creating new asteroid shapes

First, we verified whether we obtained the same binary shape model as Mueller et al.
(2010) with two spherical components in part I of the thermophysical model (see Sect.
2.2). The code was not changed (apart from redefining system paths), but this does
indicate if there are any system-dependent issues or compiler issues. We compared the
two output .concave files with an automatic file differencing tool and found that the two
files were identical. So the first part of the program had the expected output.

The tri-axial ellipsoid shape of 617 Patroclus as determined by Buie et al. (2015) sets
the axial ratios of both components as a : b : c = 1.3 : 1.21 : 1. Our main goal is to
determine the thermal inertia for this updated shape model. But to measure the sensitivity
of the model to variations in the shape, we have also created several models in a range
of axis ratios. The axis ratio that is used throughout this thesis to compare between
different models is the ratio of the largest axis to the smallest axis a{c. The ratio of the
intermediate axis to the smallest axis b{c is scaled proportional to the shape as observed
by Buie et al..

By definition, the spherical model has axis ratio a{c = 1. The Buie shape model for
Patroclus is our reference point with axis ratio a{c = 1.3, and accordingly b{c = 1.21.

For a gradual variation of shape models, we take the differences in sizes of the largest
and intermediate axis between the sphere and the Buie model and multiply these differ-
ences by a fraction. The shape is then parametrized by the ellipticity fraction fe:
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a � 1� 0.3fe

b � 1� 0.21fe

c � 1 (4.1)

Setting fe = 0 creates a uniform sphere, and fe = 1 will create the Buie shape model for
Patroclus. This way we have created 7 different shape models in a grid of axis ratios a{c
between 1 and 1.45 with steps of fe = 0.25. We expect to find a good fit for or nearby the
a{c = 1.3 model, given the accurate occultation observations by Buie et al. (2015).

The code had already defined the dimensions of the asteroids in the terms of the axial
ratios a : b : c of an ellipse. But all further calculations were initially performed for a
sphere, not an ellipse. Now that we apply an elliptic model, we had to verify that all steps
in the code were still valid for an ellipse as well.

In particular, the two volumes V1 and V2 of Patroclus and Menoetius are calculated
in the code by a multiplication of all axial ratios with the volume equivalent diameter of
each asteroid DV,1 and DV,2, respectively. The volume equivalent diameter of a shape is
the diameter of a sphere with the same volume as the shape. The volume V1 then becomes
proportional to:

V1 9 b1
a1

c1
a1
D3

V,1;

� b1
a1

c1
a1

a31
a31
D3

V,1;

� a1b1c1
D3

V,1

a31
, (4.2)

and similarly for V2 (taking out constant factors of 4
3π consistently). For a sphere, the

fraction in the last equation becomes 1 and the volume is proportional to the radius to the
third power, as expected. For an ellipse, the volume should be proportional to abc, so this
last multiplication goes with a difference of a constant factor pDV {aq3. However, this is a
constant throughout the model and does not influence the fit. Also the exact diameter is
not used further in the code. So the code is still valid for an ellipsoid.

See Figure 4.2 for a visualization of the spherical and nominal ellipsoid asteroid shape
model. This shows that the asteroids have the right shape and mutual proportions. We
have verified that the most massive asteroid is closer to the center of mass, with the relative
distances inversely proportional to their mass.

Given the observations by Buie et al. (2015), the actual shape of the asteroid system
should closely resemble that of the bottom pair of ellipsoidal asteroids in Figure 4.2. Note
that this shape represents the new input in the TPM for this research.

29



Figure 4.2: Visualization of two binary asteroid systems with different component shapes.
The Z axis is upwards. The depicted plane is the XY plane, or plane of rotation. To
distinguish the two systems, both have been translated in the Z direction, one upwards
and one downwards. The models on top are spherical as in the first analysis by Mueller
et al. (2010). The models on the bottom are elliptical with axial ratios of 1.3 : 1.21 : 1,
which is the observed shape by Buie et al. (2015). In both cases, the larger Patroclus is
on the left and Menoetius is on the right. Notice that Blender applies a perspective view,
which seems to distort the alignment of the two asteroids. However, in 3D their longest
axis are indeed aligned as required.

4.2 Fit model lightcurves to data

We continue the project with a validation of the results for a spherical model by Mueller
et al. (2010) to make sure we run the thermophysical model properly and become familiar
with its workings. We then proceed by implementing varying asteroid shapes for Patroclus
and Menoetius, based on the observations by Buie et al. (2015). We conclude with the
results of the BTPM for varying shapes.

4.2.1 Validation of analysis of spherical model

The analysis for each shape model is separated into four parts, for two eclipse events and
two rotation axis positions for each eclipse event. In event 1, the larger Patroclus shadows
the smaller Menoetius, and vice versa for event 2. The determination of thermal inertia
is dominated by the thermal response of the shadowed component. Event 1 thus mostly
represents the thermal inertia of Menoetius and event 2 mostly represents the thermal
inertia of Patroclus. The axis positions refer to the orbit model rotation axis: the nominal
one as given by Berthier et al. (2007) and an offset one probing the 1-σ uncertainty in axis
(see Mueller et al., 2010, for details).

For each shape model, event and axis position the BTPM creates a grid of predicted
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Parameter Value Reference

H 8.19 mag Tedesco et al. (2002)
G 0.15 Tedesco et al. (2002)
ε 0.9 Hovis and Callahan (1966)
pV 0.0433 Mueller et al. (2010)
P 4.289 days Berthier et al. (2007)
R 654 km Berthier et al. (2007)
D1 113 km Buie et al. (2015)
D2 104 km Buie et al. (2015)

Table 4.1: Input BTPM parameters for 617 Patroclus: absolute visible magnitude H,
slope parameter G, emissivity ε, geometric albedo pV , rotation period P , center-to-center
distance R and component diameters D1 and D2. Following Kepler’s third law for this
binary system, the corresponding total system mass is 1.20 � 1018 kg. Model fluxes are
calculated with the input geometric albedo and later rescaled to vary the diameters.

lightcurves for a range in thermal inertia Γ and beaming parameter η, which is specified
by the user. The observed fluxes are then fitted to this grid of lightcurves. This gives the
range in Γ and η for which a good fit can be found. In the final step, a best fit for Γ, η,
diameter D and eclipse time offset ∆t is determined.

Table 4.1 lists input parameters for the BTPM for Patroclus. For input parameters
Γ and η we need to determine a proper range. The Monte Carlo simulation looks for a
local minimum in χ2. We require that the fitted parameter range falls well within the
input parameter range. If the minimum χ2 in a certain input parameter range is on the
boundary of that range, the real minimum might be beyond that boundary. To have
reasonable certainty that the local minimum is the global minimum, we require that the
fit may not hit the boundaries of the input parameter range. Fitting the model in a wide
grid of physical properties is computationally expensive. So we take a reasonably wide
range and coarseness of the input grid.

For example, if the input thermal inertia values are between 3 and 6 J s�1{2 K�1 m�2,
then the range for fitted thermal inertia should be between approximately 3.5 - 5.5
J s�1{2 K�1 m�2 and the fit should never converge to the minimum or maximum in-
put value. If the fit does contain either the minimum or maximum input value, the input
parameter range is broadened until the fitting range falls well within it.

Since we had an expected outcome for the analysis of the spherical model, we chose a
range of input parameters of Γ and η centered on those values. Then we calculated the
BTPM through for the spherical model and for both events and both axis positions.

This revealed that some of the fits of the first results by Mueller et al. (2010) did
occasionally hit the boundaries of the input grid of physical properties. The boundaries
of the grids therefore had to be widened. However, this hardly changed the final best fit
parameters.

Tables 4.2 and 4.3 compare the results by Mueller et al. (2010), with our validation of
this result, respectively. The values per event are clearly strongly overlapping and almost
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χ2 Γ (J s�1{2 K�1 m�2) η D (km)

Event 1 2543 � 84 20.7 � 3.8 0.762 � 0.014 145.7 � 0.3
2586 � 84 7.6 � 1.7 0.814 � 0.008 146.0 � 0.3

Event 2 3566 � 102 6.4 � 0.9 0.838 � 0.005 143.4 � 0.3
3847 � 109 5.1 � 0.8 0.845 � 0.004 143.1 � 0.3

Table 4.2: Output BTPM parameters for the best fit by Mueller et al. (2010) for events 1
and 2 in the case of a spherical asteroid model. For each event the model is calculated for
a nominal solution of the orbit model in the top line and an offset solution of 1σ in the
bottom line. Listed parameters are minimum χ2, thermal inertia Γ, beaming parameter
η and area equivalent diameter D. There are 1602 data points per event, so the reduced
χ2 is in the order of 1.6 to 2.4.

χ2 Γ (J s�1{2 K�1 m�2) η D (km)

Event 1 2541 � 84 20.7 � 3.9 0.762 � 0.013 145.7 � 0.3
2588 � 84 7.7 � 1.8 0.814 � 0.008 146.0 � 0.2

Event 2 3566 � 106 6.4 � 1.2 0.838 � 0.006 144.8 � 0.2
3845 � 111 5.2 � 0.7 0.845 � 0.004 144.5 � 0.2

Table 4.3: Output BTPM parameters for the best fit in our rerun of the thermophysical
model in the case of a spherical asteroid model, to be compared with Table 4.2.

all of them are within each other’s error bounds. The values do not have to be exactly
the same to validate the result of the first research, since the fitting procedure applies a
Monte Carlo simulation with random Gaussian noise added to the data. Small variations
are therefore expected.

Two of our results are significantly different from those given in Mueller et al. (2010):
the diameters for event 2. As confirmed by M. Mueller, this is due to an oversight in
the preparation of their manuscript. Final results were inadvertently generated using
different code versions, which differed in the application of a diameter correction factor.
Our diameter results for event 2 are therefore an improvement over those presented by
Mueller et al., although the � 1 % improvement is small compared to the systematic
diameter uncertainty of � 10 %.

To make the determination of the boundaries for the input parameter range easier for
the remainder of the project, we have added functions in part III of the model to output
the minimum and maximum of the fit and compare this with the input values. It is then
easily seen whether the range of input values should be widened.
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4.2.2 Run model with new asteroid shapes

Now we turn to the analysis of the BTPM for varying ellipsoidal shapes. The basic input
parameters are the same as in Table 4.1. The nominal shape is the new shape for Patroclus
as determined by Buie et al. (2015) with a : b : c = 1.3 : 1.21 : 1. We vary shapes by
varying a{c, and scaling b{c proportional to the nominal shape, as explained in Sect. 4.1.2.
This way we create a spectrum of seven different shapes, from a sphere to an even more
ellipsoidal shape than the Buie model.

The code needed adjustments to accommodate the different shape models. The data
structure was changed so that the output for different shape models is saved in separate
folders for each model. The files with the final fits also received an additional suffix for a
clear distinction between different events and different axis positions for different shapes.

The first step was to implement the new shapes in part I of the model by applying
the new axis ratios. We verified that all new shapes looked as expected, by inspecting
the gradual increase in axis ratios with more and more ellipsoid models, and checking the
orientation of the rotation axis.

We then determined the input range in Γ and η for which the BTPM finds best fits,
again with the requirement that all fitted values fall well within the considered input
range. For each new model we used the input parameters for Γ and η of the previously
fitted model as the starting point, assuming that a small change in the shape will not
drastically change the eclipse event. So for the a{c = 1.075 model we started with the
fitted parameter range from the a{c = 1 model, and so on. Since the data volume in model
lightcurves significantly increases with a larger range of input parameters, we start with
a coarse grid for each shape model of r∆Γ � 2,∆η � 2s.

We then run the full BTPM over this range of input parameters. Whenever a fit
converged to one of the boundaries of this range, the boundaries were expanded until
none of the fits hit any of the input boundaries. This way we determined a coarse range
of proper input values of Γ and η for each shape, event and axis position.

The model grids were then further refined to r∆Γ � 0.25,∆η � 0.25s to obtain a fine
grid of lightcurves for all combinations of the considered values of Γ and η. The code
checks whether a lightcurve is already calculated for a certain Γ and η and skips these
values if the file with the lightcurve already exists. We thus constantly refined the grids
in factors of two, so that previous results could be reused in the new calculations. In the
case of the three most elliptical models the thermal inertia reached low values to nearly
0, so in those cases the grid for thermal inertia was even further refined by a factor two.

Finally, we determined the best fit for each shape, eclipse event and axis position. The
output of the third program part of the BTPM is a file with the best fit values for each of
the 5000 lightcurves with random noise that are created in the Monte Carlo simulation.
The best fit over all these values is determined with a separate IDL routine (which was
already available).

We report the applied input ranges and the corresponding best fits for Γ and η in
Table 4.4.
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Event Axis [Γmin,Γmax] Best fit Γ [ηmin, ηmax] Best fit η

(Js�1{2K�1m�2) (Js�1{2K�1m�2)

a{c = 1

1 Nominal 10.50 – 34.00 20.7 � 3.85 0.7200 – 0.8000 0.762 � 0.013
Off 0.00 – 16.75 7.69 � 1.82 0.7775 – 0.8525 0.814 � 0.008

2 Nominal 3.50 – 15.00 6.41 � 1.16 0.8000 – 0.8525 0.838 � 0.006
Off 2.75 – 8.00 5.15 � 0.75 0.8300 – 0.8575 0.845 � 0.004

a{c = 1.075

1 Nominal 4.25 – 29.25 15.8 � 2.65 0.7250 – 0.8175 0.770 � 0.010
Off 0.00 – 15.00 4.37 � 1.69 0.7750 – 0.8425 0.819 � 0.008

2 Nominal 2.25 – 13.75 5.55 � 2.57 0.7975 – 0.8500 0.833 � 0.012
Off 2.25 – 6.25 3.81 � 0.60 0.8300 – 0.8525 0.841 � 0.003

a{c = 1.15

1 Nominal 0.00 – 8.75 3.49 � 1.48 0.7875 – 0.8325 0.813 � 0.007
Off 0.00 – 2.50 0.25 � 0.26 0.8175 – 0.8375 0.830 � 0.002

2 Nominal 1.25 – 5.25 2.58 � 0.52 0.8250 – 0.8475 0.838 � 0.003
Off 1.00 – 3.00 1.78 � 0.31 0.8325 – 0.8500 0.843 � 0.002

a{c = 1.225

1 Nominal 0.00 – 2.50 0.16 � 0.28 0.8075 – 0.8275 0.820 � 0.002
Off 0.00 – 1.75 0.45 � 0.39 0.8100 – 0.8250 0.818 � 0.003

2 Nominal 0.75 – 3.50 1.82 � 0.44 0.8225 – 0.8425 0.833 � 0.003
Off 0.25 – 2.25 0.63 � 0.29 0.8300 – 0.8475 0.839 � 0.002

a{c = 1.3

1 Nominal 0.000 – 1.000 0.209 � 0.164 0.8050 – 0.8175 0.811 � 0.002
Off 0.000 – 0.875 0.252 � 0.149 0.8025 – 0.8150 0.809 � 0.002

2 Nominal 0.375 – 2.250 1.115 � 0.336 0.8200 – 0.8350 0.828 � 0.002
Off 0.250 – 1.250 0.690 � 0.150 0.8225 – 0.8375 0.830 � 0.002

a{c = 1.375

1 Nominal 0.000 – 0.625 0.110 � 0.107 0.7975 – 0.8075 0.802 � 0.002
Off 0.000 – 0.375 0.060 � 0.079 0.7950 – 0.8075 0.801 � 0.002

2 Nominal 0.375 – 1.625 0.771 � 0.178 0.8150 – 0.8275 0.821 � 0.002
Off 0.125 – 1.125 0.542 � 0.151 0.8150 – 0.8275 0.822 � 0.002

a{c = 1.45

1 Nominal 0.000 – 0.250 0.015 � 0.059 0.7875 – 0.7975 0.793 � 0.002
Off 0.000 – 0.125 0.000 � 0.000 0.7875 – 0.7975 0.793 � 0.002

2 Nominal 0.000 – 1.125 0.425 � 0.160 0.8075 – 0.8200 0.814 � 0.002
Off 0.000 – 0.750 0.261 � 0.170 0.8075 – 0.8200 0.814 � 0.002

Table 4.4: Results of the thermophysical model for shape models a{c = 1 to 1.45. The
analysis for each shape model is separated into four parts: for two eclipse events and two
axis positions for each eclipse event. Tabulated are the fitted range and the best fit for Γ,
and the fitted range and best fit for η.
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4.2.3 Results

Figures 4.3 to 4.6 plot the results for the seven different shape models, two events and two
axis positions. We distinguish in particular between event 1 and 2 in the results, given
that they are two separate happenings and may also indicate different physical properties
between Patroclus and Menoetius.

Figure 4.3 plots the best fit thermal inertia Γ as function of shape. This figure repre-
sents the main result of this research. The shape is expressed in terms of axis ratio a{c,
with a the longest axis and c the shortest axis of the asteroid. The new shape model for
Patroclus corresponding to the observations by Buie et al. (2015) has axis ratio a{c = 1.3.
For the numerical values of the plotted quantities we refer to the fourth column with the
best fit for Γ in Table 4.4.

In the plot, we show four lines. The red and green lines represent the nominal axis
and off axis configuration of event 1, respectively. The blue and black lines represent
the nominal axis and off axis configuration of event 2, respectively. The error bars have
been obtained by a Monte Carlo evaluation of the uncertainties in the observations. The
thermal inertia varies between 0.0 to 20.7 J s�1{2 K�1 m�2 (also see the fourth column in
Table 4.4). In all cases we see a clear general downward trend of thermal inertia as the
asteroid becomes more elongated.

Note the substantial difference between the red and green line of event 1 for low axis
ratios, specifically in the range of a{c � 1.0 � 1.15. In other words, the thermal inertia
is considerably different towards a more spherical shape between the nominal and off axis
case of event 1. In varying the shape from a{c = 1 to 1.15 the thermal inertia plummets
to only 17 % of its value in the nominal axis case. Over this range the value for thermal
inertia for the nominal axis is 2-3 times higher than for the off axis. From Table 4.4 we
read for event 1 that at the nominal value of a{c = 1.3, Γ = 0.209 � 0.164 J s�1{2 K�1 m�2

for the nominal axis and Γ = 0.252 � 0.149 J s�1{2 K�1 m�2 for the off axis.
For event 2, we see that the black and blue line overlap within 1 σ. Over the entire

range of explored axis ratios the nominal axis model (blue) attains a higher thermal inertia
than that of the off axis model (black). From Table 4.4 we read for event 2 that at the
nominal value of a{c = 1.3, Γ = 1.115 � 0.0.336 J s�1{2 K�1 m�2 for the nominal axis
and Γ = 0.690 � 0.150 J s�1{2 K�1 m�2 for the off axis.

For low axis ratios from a{c = 1 to 1.075, event 1 has a higher thermal inertia than
event 2, with a factor of 2-3. Interestingly, for axis ratios from a{c = 1.225 and higher, we
find that the thermal inertia of event 2 becomes higher than for event 1, in the order of a
factor 3 to 4 for a{c = 1.3 and even higher at higher axis ratios.

Figure 4.4 plots the best fit for the beaming parameter η as a function of varying shape.
This is a dimensionless factor with which the flux is corrected for the infrared beaming
effect and which is related to surface roughness (see Mueller, 2007). The lines and error
bars have the same meaning as in Figure 4.3. The value for η ranges from 0.76 to 0.84 over
all cases. For the numerical values of the plotted quantities we refer to the sixth column
with the best fit for η in Table 4.4.
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Figure 4.3: Thermal inertia as a function of shape. Plotted are the best fit thermal inertia
values as a function of axis ratio a{c. This figure represents the main result of this research.

Figure 4.4: Beaming parameter η as a function of shape. The plot shows the best fit η
parameter as a function of axis ratio a{c.
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For event 2, we see a gradual downward trend in η for a{c ¡ 1.15, following a plateau
for lower axis ratios. The value of η for the off axis case of event 2 is for all shapes ¥ η of
the nominal axis case. The difference in η between the nominal and off axis case of event
2 is the highest for a{c = 1.075, with ∆η = 0.008. From Table 4.4 we read for event 2
that at the nominal value of a{c = 1.3, η = 0.828 � 0.002 for the nominal axis and η =
0.830 � 0.002 for the off axis.

Event 1 displays a more complex behavior than event 2. While it has the same down-
ward trend for high axis ratios, it shows an increasing trend for lower axis ratios, with
a turnaround point at a{c ¡ 1.15 � 1.225. For lower axis ratios than a{c � 1.225 the
nominal axis model has substantially lower values of η than the off axis models (and the
values for event 2), up to a difference in η of 0.05. For higher axis ratios the nominal and
off axis values in event 1 for η are almost equal. From Table 4.4 we read for event 1 that
at the nominal value of a{c = 1.3, η = 0.811 � 0.002 for the nominal axis and η = 0.809
� 0.002 for the off axis.

Comparing event 1 with event 2, we note that over the entire range of shape models
the values for η of event 2 are higher than for event 1. The maximum difference in η
between event 1 and 2 is 0.076 for the spherical model. Towards higher axis ratios, the
difference in η between event 1 and 2 becomes an approximately constant 0.021.

Figure 4.5 shows a general monotonous increase of area equivalent diameter D with
increasing asteroid axis ratio. The variation in diameter is not large, smaller than 10 %.
This is still smaller than the maximum systematic uncertainty in diameter of 10 %, esti-
mated from maximum systematic uncertainties in TPM-derived diameters in the case of
near-Earth asteroids (see Mueller et al., 2010).

For event 1, the two shape models with the lowest axis ratio have a smaller D for the
nominal axis model than the off axis model, and vice versa for higher axis ratios. At the
nominal value of a{c = 1.3, D = 154.7 � 0.2 km for the nominal axis and D = 154.2 �
0.2 km for the off axis. For event 2, all shape models have a smaller D for the off axis
model than for the nominal axis model. At the nominal value of a{c = 1.3, D = 152.7 �
0.2 km for the nominal axis and D = 152.1 � 0.2 km for the off axis.

Comparing event 1 with event 2, for all shape models event 1 uniformly has a larger
area equivalent diameter than event 2 of � 1 %.

Figure 4.6 plots the minimum χ2 per shape model. We see a clear difference between
event 1 and 2. The minimum χ2 is invariably lower for event 1 than for event 2 by a factor
of 25 to 50 %.

For event 1, the minimum χ2 is found for axis ratios a{c of 1 - 1.075. The nominal
axis solution has a lower χ2 for all shape models by a factor of around 2 - 8 %. At the
nominal value of a{c = 1.3, χ2 = 2936 � 91 for the nominal axis (reduced χ2 = 1.85 �
0.06) and χ2 = 3155 � 97 for the off axis (reduced χ2 = 1.99 � 0.06).

The minimum χ2 with the best fit for event 2 is found around axis ratios a{c of 1.075 -
1.15. The nominal axis solution has a lower χ2 for all shape models by a factor of around 5
- 10 %. At the nominal value of a{c = 1.3, χ2 = 3542 � 104 for the nominal axis (reduced
χ2 = 2.22 � 0.07) and χ2 = 3966 � 112 for the off axis (reduced χ2 = 2.50 � 0.07).
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Figure 4.5: Diameter as a function of shape. Plotted is the best fit area equivalent diameter
as a function of axis ratio a{c.

Figure 4.6: Reduced χ2 of the BTPM fits as a function of shape. Plotted is the best fit
reduced χ2 as a function of axis ratio a{c.
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χ2 Γ (J s�1{2 K�1 m�2) η D (km)

Event 1 2936 � 91 0.209 � 0.164 0.811 � 0.002 154.7 � 0.2
3155 � 97 0.252 � 0.149 0.809 � 0.002 154.2 � 0.2

Event 2 3542 � 104 1.115 � 0.336 0.828 � 0.002 152.7 � 0.2
3966 � 112 0.690 � 0.150 0.830 � 0.002 152.1 � 0.2

Table 4.5: BTPM parameters for the best fit for ellipsoidal components with axial ratios
of 1.3 : 1.21 : 1. (This corresponds to the Buie model for Patroclus and Menoetius.) For
each event the model is calculated for a nominal solution of the orbit model in the top
line and an offset solution of 1σ in the bottom line. Listed parameters are minimum χ2,
thermal inertia Γ, beaming parameter η and area equivalent diameter D.

Event 1 Event 2

D 154 � 15 km 152 � 15 km
D1 113 � 11 km 112 � 11 km
D2 105 � 10 km 103 � 10 km
ρ 0.88 � 0.26 g cm�3 0.92 � 0.26 g cm�3

Γ 0.23 � 0.17 J s�1{2 K�1 m�2 1.0 � 0.45 J s�1{2 K�1 m�2

η 0.810 � 0.003 0.829 � 0.003

Table 4.6: Best fit parameters for event 1 & 2 with the Buie model, following from Table
4.5: area equivalent diameter D, individual asteroid diameters D1 and D2, mean density
ρ, thermal inertia Γ and beaming parameter η. This is the nominal solution for the new
shape model by Buie et al. (2015) of Patroclus.

Table 4.5 shows the outcome for χ2, Γ, η and D in the case of two ellipsoidal compo-
nents of Patroclus with axial ratios of 1.3 : 1.21 : 1, as in the shape model observed by
Buie et al. (2015). Table 4.6 specifies the corresponding best fit parameters per event 1
and 2, including the resulting individual asteroid diameters and average system density.
For the diameter a conservative upper limit on the systematic uncertainty of 10 % is as-
sumed. These best fit parameters are the nominal solution for the new shape model for
Patroclus.

As Figure 4.3 shows, the determination of thermal inertia is strongly dependent on
uncertainties in the shape model. Following the varied shape TPM by Hanuš et al. (2015)
we have investigated the behavior of χ2 as a function of thermal inertia for the different
shapes. The results are plotted in Figures 4.7 and 4.8 for event 1 and 2, respectively. Each
data point in these plots represents the best fit for thermal inertia for each shape model.
We have tried to identify the optimal fit for thermal inertia for each event over all shapes.

For event 1, we should note that the range in thermal inertia for the green line, i.e.
the off axis model, is considerably shorter than that for the nominal model represented in
the red line (also cf. Figure 4.3). In the plot we included an insert that zooms in on low
Γ values.
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Figure 4.7: Reduced χ2 as a function of thermal inertia for event 1. The insert diagram
zooms in on the lowest values of thermal inertia. Each data point represents the minimum
χ2 for a specific shape model. There is no clear minimum for χ2. Only for the off axis
solution a faint minimum may be indicated. To extrapolate the data more to the right of
this graph, the normally longest axis of the asteroid would become the shortest, which is
highly unlikely for Patroclus.

Figure 4.8: Reduced χ2 as a function of thermal inertia for event 2. Each data point
represents the minimum χ2 for a specific shape model. The best fit for thermal inertia lies
at the minimum for χ2. We estimate this to be 4 � 2 J s�1{2 K�1 m�2 for the nominal
axis and 3 � 2 J s�1{2 K�1 m�2 for the off axis solution.
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The χ2 distribution for the thermal inertia has a broad base for event 1. Given that
χ2 does not show a clear minimum for the current data, an outstanding signal cannot be
immediately detected. However, there is a faint indication for a minimum in a range of
4-8 J s�1{2 K�1 m�2 for the off axis solution of event 1. For Γ ¡ 1 the two lines for the
nominal and off axis are similar within � 3 %. For Γ   1 we observe fluctuations. This
seems to be related to the small dip in Γ at a{c = 1.225 for the nominal model, see Figure
4.3.

For event 2 we find that the best fit thermal inertia over all shapes is 4 � 2 J s�1{2

K�1 m�2 for the nominal axis and 3 � 2 J s�1{2 K�1 m�2 for the off axis solution. Note
that this is a rough on the eye estimate, while a more statistically firm answer would ask
for a properly sampled shape distribution. Over the whole range, the nominal axis has a
lower reduced χ2 of � 10 � 20 % than the off axis model, with the exception of a small
fluctuation at Γ � 0.5 J s�1{2 K�1 m�2.
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Chapter 5

Discussion

5.1 Influence of shape

Implementing the new shape model for Patroclus and Menoetius in the eclipse analysis
has a profound influence on the thermophysical model, especially for the determination of
thermal inertia. The strong dependence of the thermal inertia on shape is clearly visible
in Figure 4.3. The fit for thermal inertia varies by approximately a factor of 6 depending
on the shape. The beaming parameter, which is an indication for surface roughness, is
also strongly dependent on the exact shape model.

Our findings are consistent with the analysis by Hanuš et al. (2015) of the significance
of asteroid shape models and pole orientation in thermophysical modeling. They find that
a TPM has a strong dependance on variations of the shape model. Uncertainties on best
fitting parameters (such as thermal inertia) are usually underestimated if the uncertainty
in the shape model is underestimated. The uncertainties in the shape model must therefore
be considered in thermophysical modeling.

5.2 Thermal inertia of Patroclus

We find an updated thermal inertia estimate for Patroclus with the new ellipsoid shape
model from Buie et al. (2015) of 0.23 � 0.17 J s�1{2 K�1 m�2 for eclipse event 1 and 1.00
� 0.45 J s�1{2 K�1 m�2 for eclipse event 2. The previously determined thermal inertia
for Patroclus assuming two spherical components by Mueller et al. (2010) was 21 � 14
J s�1{2 K�1 m�2 for event 1 and 6.4 � 1.6 J s�1{2 K�1 m�2 for event 2. The updated
value for thermal inertia is substantially lower than previously determined, indicating a
highly fine-grained and fluffy regolith on the surface.

We see a general trend of lower thermal inertia for more ellipsoid shapes for both
events. This is expected, since the longest axes of the components are aligned towards
each other, so that the shadow during an eclipse on the eclipsed component is a projection
of the smallest cross section of the other component. A more ellipsoid shape will thus
have a smaller shadow during the eclipse and cause a shallower eclipse flux drop. The
model compensates to fit with the actual data by increasing the eclipse depth, seemingly
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causing a higher temperature variation, which corresponds to a lower thermal inertia. The
underestimation of the eclipse depth thus leads to an underestimation of thermal inertia.

For the lower axis ratio models in event 1 and all shapes in event 2, the thermal inertia
for the off axis event is below that of the nominal axis event. This may indicate that the
off axis cases have a smaller eclipse depth than the nominal axis cases for the same reason
as above.

We see that especially for the nominal case of event 1 the shape model drastically
influences the thermal inertia determination. Clearly the shape model has a significant
influence on the determination of the thermal inertia in this case. For the other cases the
shape varying effect is smaller, but it is still significant for the thermal inertia determina-
tion. The strong influence of the shape in the BTPM is surprising, since the shape does
not seem to be that drastically different when judged by eye, see Figure 4.2.

The thermal inertia values for the two eclipse events dominantly represent the thermal
inertia of the two separate components, given that the thermal inertia determination is
mainly based on the temperature variation on the shadowed component. The values of
thermal inertia for the two events differ approximately by a factor of 4. But within 1.3 σ
the two values are still overlapping. Thus we cannot give conclusive evidence that the
thermal inertia is similar and that the two components have similar regolith properties,
but we cannot reject this possibility either. Similar surface properties would be expected
if the two components are formed out of the same material.

The best BTPM fit for the beaming parameter η ranges from 0.76 to 0.84. It is inversely
correlated to thermal inertia. The η parameter is a measure of apparent color temperature
and indirectly contains information on surface roughness via thermal beaming. For a
perfectly smooth sphere with zero thermal inertia η = 1. Increasing surface roughness
causes η to decrease. The smaller found value of η = 0.76 is higher than the lunar value
of � 0.72 (Spencer et al., 1989), which would mean that the surface of Patroclus is less
rough than that of the Moon. The higher found value of η = 0.84 represents even less
surface roughness. Note that again the η fit for event 1 nominal axis is highly sensitive
for the shape of the model.

The reduced χ2 values for the BTPM fits may seem quite high, but due to systematic
uncertainties in thermal infrared observations, in the asteroid shape and in the thermo-
physical modeling, it is not uncommon to get large reduced χ2 values (Delbo et al., 2015).

The minimum χ2 for event 1 is for all shapes lower than for event 2, so we find a
better fit for data of eclipse event 1. At first sight, the χ2 fit for event 2 in Figure 4.6
seems to find a best fit for a shape around a{c � 1.1, which is less elongated than the Buie
model. However, we cannot conclude that this is a better fitting shape than a{c = 1.3.
The Buie observations are far more accurate than our TPM. We suggest that some other
parameters connected to the shape or orbit model in our TPM may still be off by a small
factor. Event 1 even seems to find a minimum χ2 or best fit at the spherical model, which
we reject for the same reason as with event 2.

Note also that for both events χ2 is invariably lower for the nominal axis solution of
the orbit model than for the off axis model. This does give some confidence that the orbit
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model is reasonably accurate, which would be an independent validation of the Berthier
orbit model solution.

The above thermal inertia for the Buie shape model of Patroclus is the nominal result
of this research. If we assume that the model shape variation can be used to find a best fit
for the thermal inertia, we find for event 2 that the best fit thermal inertia for Patroclus
is 3 to 4 � 2 J s�1{2 K�1 m�2, for the off axis and nominal axis model, respectively. Both
values are higher than our nominal values of the Buie model (see Table 4.6), but there is
an overlap within 1 σ of the lower of these values with the higher nominal value. However,
the errors on this fit are not well defined, given that they are a rough on the eye estimate
and given that we did not sample the shape distribution.

This varying shape model is not well constrained by the data for event 1. Perhaps
the eclipse for event 1 is shallower than the orbit model predicts, since an overestimated
eclipse depth leads to an overestimated thermal inertia. This could explain why the
thermal inertia for the event 1 nominal axis model is relatively high for the spherical
model, but converges to similarly low values like the other event as the models become
more and more elliptical. For those more ellipsoid models the eclipse will be shallower,
and better fit the observations. However, conclusive evidence cannot be drawn from this.

Care should be taken in this interpretation of a best fit thermal inertia over all shape
models as we do not have a representative sampling of the full shape distribution of the
asteroid. This is work for a follow up study. Nonetheless, given that we see a similar trend
as in Hanuš et al. (2015) and that there is a partial overlap with our nominal values, we
conclude that the minimum that we find in Figure 4.8 is close to the real value of the
thermal inertia for Patroclus.

The low thermal inertia of Patroclus is possible given values for other asteroids. Known
thermal inertia values for Trojan asteroids range from 7 � 7 to 50 � 20 J s�1{2 K�1 m�2

(Delbo et al. (2015) and references therein). The new value for Patroclus is low, even for
a Trojan, but not unphysical.

Also, thermal inertias for trans-Neptunian objects (TNOs) can be comparably low as
for Patroclus. For example the thermal inertia of the TNO 136108 Haumea is 0.3 � 0.2
J s�1{2 K�1 m�2 and the thermal inertia of the TNO 90482 Orcus is 1 � 1 J s�1{2 K�1 m�2

(Delbo et al. (2015) and references therein). This raises the intriguing question whether
Patroclus could be a captured TNO. If so, this would be an important fact for evolution
models of our solar system. Any model that tries to explain the formation of the solar
system would then have to include a mechanism to migrate TNOs inwards. It would also
have to explain the spectral type of Patroclus, which seems to exclude an origin as a TNO.

We do need to keep in mind that thermal inertia is a function of temperature. The
thermal conductivity scales with T 3 for predominantly radiative heat transfer between
loose grains, so Γ9?κ9T 3{29 r�3{4 (see Mueller et al., 2010). At the cold Jovian out-
skirts the thermal inertia for fine regolith would be approximately 4 times lower than on
the Moon. We thus especially need to take extra care when comparing thermal inertia
values of objects at different distances from the Sun.
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Also, the fitted thermal inertia is an average value over approximately the depth that
the heat wave penetrates, including the effects of radiative heat transfer between particles,
but not explicitly calculating the radiative heat transfer. We need to keep in mind that not
only thermal inertia actually does vary with depth and temperature, but also the particle
size and the thermal conductivity vary with depth and temperature.

Another important effect that cannot be neglected is that the value for thermal inertia
as determined by the eclipse method is normally lower than with the diurnal method.
See for example the values for the Jupiter moons in Table 2.1. This is due to the small
duration of an eclipse in comparison to the daily temperature variation. The heat wave
thus penetrates the surface less deep and effectively only probes the top surface layer.
The top layer is expected to be the finest in structure and have the lowest thermal inertia.
This effect needs to be taken into account when comparing thermal inertia values that
are determined with different methods. The low thermal inertia of Patroclus that we find
may thus be partially due to a vertical grain size sorting, with finer grains on top and
increasing particle size with increasing depth.

5.3 Diameter and mass density

Our results for the diameters and mass densities agree with the results from previous stud-
ies within the 1-σ level, see the comparison in Table 5.1. The density remains indicative
of a loose structure consisting mainly of water ice.

Reference D D1 D2 ρ
(km) (km) (km) (g cm�3)

Marchis et al. (2006) 166.0 � 4.8 121.8 � 3.2 112.6 � 3.2 0.8�0.2
�0.1

& Fernández et al. (2003)
Buie et al. (2015) 154 � 4 113 � 3 104 � 3 0.88 � 0.16

Mueller et al. (2010) 154 � 15 106 � 11 98 � 10 1.08 � 0.33
This work, event 1 154 � 15 113 � 11 105 � 10 0.88 � 0.26
This work, event 2 152 � 15 112 � 11 103 � 10 0.92 � 0.26

Table 5.1: Comparison of estimates for area equivalent diameter D, individual asteroid
diameters D1 and D2 and mean density ρ from different references.

The stellar occultation by Patroclus as observed by Buie et al. (2015) was a direct
and accurate observation of the separation distance between the components and their
individual sizes. The values for the individual asteroid diameters from Mueller et al.
(2010) and this work match within 1 σ with those from Buie et al. (2015).

For the assumption of a spherical model, a mistake in the first analysis of the Patroclus
thermal eclipse data by Mueller et al. (2010) is corrected in our validation of these results.
The diameter for event 2 is corrected by about 1 %. This is however a small correction
considering the systematic errors for the diameter of about 10 %.
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Chapter 6

Conclusions

6.1 Role of shape in thermal eclipse models

We conclude that shape is a highly important factor in the thermophysical modeling of
eclipse data. In order to successfully perform a thermal analysis of an eclipse, the shape
needs to be known with a high precision, in particular for the determination of the
thermal inertia. And if the shape is not known precisely, the error analysis for the thermal
inertia must account for this. Future improvement of thermal analysis techniques thus
will need to include improving of asteroid shape models.

6.2 Patroclus

Assuming the ellipsoidal shape as derived by Buie et al. (2015), the value of the thermal
inertia that we find is 0.23 � 0.17 J s�1{2 K�1 m�2 for eclipse event 1 and 1.00 � 0.45
J s�1{2 K�1 m�2 for eclipse event 2. This is much lower than the values found by Mueller
et al. (2010), assuming spherical shape, of 21 � 14 J s�1{2 K�1 m�2 and 6.4 � 1.6
J s�1{2 K�1 m�2, respectively.

This means that the top surface layer of Patroclus is made up of even finer and fluffier
regolith than previously assumed. The overlap between the thermal inertia for events 1
and 2 is too small to conclude that the two components have a similar surface composition,
but large enough to consider this possibility. This would be consistent with the idea that
the two components were formed from the same cloud of material.

We caution that our error estimates on the thermal inertia for Patroclus do not account
for uncertainties in the shape model. The error should therefore be interpreted as a
minimum estimate of the real uncertainty in thermal inertia.

The very low thermal inertia for Patroclus is comparable with that of TNOs. While at
first sight this suggests that there is a relation between these objects, we also should take
into account the different locations in the solar system where these objects reside. The
TNOs are at considerably larger distances and have correspondingly lower temperatures.
As a result, the average thermal inertia of TNOs is lower. However, it may point to an
interesting relationship. In this case, it may suggest an origin of Patroclus in the outer
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solar system. The low density of 0.88 � 0.26 g cm�3 for event 1 and 0.92 � 0.26 g cm�3 for
event 2 indicates a porous structure with a composition of mainly water ice, which would
resemble the composition of TNOs and support the idea of a connection of Patroclus to
TNOs.

With respect to asteroids in the main belt, we see that most of these have a higher
thermal inertia. This implies that these objects have a different surface structure with
coarser regolith. However, further research is necessary as we again have to take into
account that MBAs are closer to the Sun and thus have a higher temperature. We find no
conclusive evidence for an origin of Patroclus as a TNO or MBA, but no counterevidence
either.

The origin of Patroclus remains undecided and the surface structure is an important
key to better understand its formation. Patroclus is among the targets of the Lucy mission
concept, currently under study at NASA. If approved, Lucy will fly by Patroclus in 2033,
and should subject our predictions about regolith structure to a thorough observational
test.
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