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Abstract

We have studied the density and velocity fields from the Cosmogrid
simulation (Ishiyama et al., 2013). Our methods include a Delaunay Tes-
sellation Field Estimation (DTFE) of density and velocity fields from the
simulation particles. We decomposed the velocity gradient into diver-
gence, shear and vorticity, and classified six different components of the
cosmic web on the basis of the eigenvectors of the deformation tensor.

This thesis presents the spatial and statistical distributions of these
quantities, and a decomposition of these fields into the contributions from
different web components. We have studied the correlations between den-
sity and various velocity-related quantities, and followed the redshift evo-
lution of parameters for the lognormal fits to the statistical distributions.

From these results, we find various forms of evidence for hierarchical
evolution of cosmic structures; we determine the extent to which den-
sity and velocity divergence are correlated; we explore the formation and
interactions between different structures that make up the cosmic web;
we specifically probe the evolution of anisotropic structures; and follow
the time evolutions of density, divergence, shear and vorticity. Lastly, we
have identified a few artefacts resulting from the data and methods; and
we assert the merit of the DTFE algorithm.
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1 Introduction

The cosmic web
Our milky way — the spiral galaxy in which we spend all of our time — is only

one of billions of galaxies that occupy the observable Universe. At far larger
scales, the way matter is distributed in space is referred to as the cosmic web,
the central subject in the study of cosmological structure formation (Bond et al.,
1996). Redshift surveys have revealed that the Universe at Megaparsec (Mpc)
scales is populated by regions of elevated density (Aghanim & Baccigalupi, 2015;
Colless et al., 2003; York et al., 2000; Huchra et al., 2012; Saunders et al., 2000;
Drinkwater et al., 2010) — where galaxies cluster together. These clusters form
the nodes of the cosmic web. In the space between them, galaxies are gathered
into filamentary structures that span from cluster to cluster. Nodes are also
connected by sheet-like formations of galaxies, referred to as walls (Bond et al.,
1996). In between these various types of dense features are the voids — vast
regions of space where matter is sparse. These mostly empty regions dominate
the Universe by volume, but contain only a minute fraction of all the matter in
existence (e.g., Gregory & Thompson, 1978; Jõeveer et al., 1978; Kauffmann &
Fairall, 1991; Rojas et al., 2005).

In reality, these weblike structures appear in various sizes. Across a very
broad range of scales, the Universe is pervaded by a hierarchy of nodes, filaments,
walls and voids (e.g., Kirshner et al., 1981; Jõeveer et al., 1978; Bond et al.,
1996; Jenkins et al., 1998; Sheth & van de Weygaert, 2004; Colberg et al., 2005;
Springel et al., 2005; Dolag et al., 2006; van de Weygaert & Schaap, 2009)1.
For example, the tiniest filaments — or tendrils — consist of only a handful of
galaxies, embedded in voids (Alpaslan et al., 2014). Only at scales upwards of
the homogeneity scale does the Universe assume a homogeneous appearance.
Estimates of this scale range from ∼ 70 Mpc (Hogg et al., 2005; Sarkar et al.,
2009; Scrimgeour et al., 2012; Sylos Labini et al., 2009) to several hundreds of
Megaparsecs — see Jones et al. (2004) and references therein2. Nodes, filaments,
walls and voids can be found throughout this whole hierarchy of spatial scales,
the smaller objects embedded within larger ones. The formation and evolution
of this hierarchical structure is the topic of investigation in this study.

Structure formation I — Gravitational instability
If we start with the assumption of a perfectly smooth initial matter distribution
in the Universe, this induces a homogeneous gravity everywhere. Whatever the
general expansion or contraction of the Universe may be, the relative position
of any particle has no reason to change one way or another. However, this is an
unstable equilibrium: an arbitrarily small local deviation from uniformity can
be the seed for the growth of structure3. Overdensities attract mass, which in

1Computer simulations have also shown the formation of weblike structures, see (Doroshke-
vich et al., 1980; Melott, 1983; Pauls & Melott, 1995; Shapiro et al., 1983; Sathyaprakash et al.,
1996)

2To add to the confusion around the maximum scale at which structures appear, Gamma-
ray Bursts have been observed to be clustered at scales around 2000-3000 Mpc (Horváth et al.,
2014).

3In fact, the initial conditions for structure formation are generally regarded to be the
primordial quantum fluctuations, expanded to macroscopic scales by the cosmological infla-
tion (Mukhanov & Chibisov, 1981; Guth & Pi, 1982; Hawking, 1982; Linde, 1982; Starobinsky,
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turn further increase the density contrast. As long as pressure forces are in-
sufficient to counteract this infall of matter, the overdensity can decouple from
the general expansion of the Universe: it collapses into a gravitationally bound
object (Icke, 1973; Peebles, 1980). Conversely, the gravitational force in an un-
derdense region, surrounded by overdensities, will point outward. Matter will
stream out of such regions, creating voids.

Initially, these deviations from homogeneous gravity are small, and so are
the displacements of matter. As the unbound collapse of structures intensi-
fies, much of the matter will be displaced more and more, in various directions.
At relatively small scales, this will be noticeable relatively early on. At larger
scales, matter displacement becomes significant at a later time, when the parti-
cle velocities have increased enough.

At any spatial scale, then, there is an initial epoch in which the displace-
ment of matter is still limited, this period is referred to as the linear regime (e.g.
Dekel, 1994, and references therein). This comprises a relatively large portion
of the time in which structure forms, on any scale. From then onwards, the
growth of structure will gradually turn nonlinear (e.g., Fry & Ma, 2001).

The time around which this happens at any spatial scale depends on the
power spectrum of the spatial distribution of density (Peebles, 1980). Section 2.6
will treat this topic in more detail, but suffice it to say that — under the cur-
rently determined power spectrum index — the spatial distribution of matter
is more ‘clumpy’ at small scales than at large scales. For that reason, the tran-
sition to nonlinear structure growth occurs later at higher spatial scales — at
present day, the limiting spatial scale is roughly 8 Mpc. In other words: ob-
jects at small scales collapse earlier than large ones. This allows the growth of
structure to be hierarchical4 (Bond et al., 1996).

Structure formation II — Hierarchical interplay
The nodes, filaments and walls created at different scales are by no means static
entities. Evolution of these structures is characterised by the interplay between
various cosmic web components at various scales. For example, filaments act
as matter conduits, feeding mass into the ever condensing clusters (see e.g.
Summers, 1993; van Haarlem & van de Weygaert, 1993). From a certain point,
alignment between minor sub-filaments tends to increase — due to the same
anisotropic gravity fields that span filaments between clusters — causing those
filaments to merge into larger-scale filaments (Bond et al., 1996; Aragón-Calvo
et al., 2007b).

A complementary view to the picture of hierarchical collapse and merging of
massive features is built upon voids. In this paradigm, the voids are seen as as
key actors in the formation of structure. The dynamics of the empty regions has
yielded valuable insights (see e.g. van de Weygaert (1991, 2002); Sheth & van de
Weygaert (2004); Platen et al. (2008); van de Weygaert et al. (2010); Aragon-
Calvo & Szalay (2013); Padilla et al. (2014); Sutter et al. (2014); Ceccarelli et al.

1982; Bardeen et al., 1983). The minute density fluctuations — of ∼ 10 ppm in magnitude
— which are probed by the cosmic microwave background radiation form the seeds for all
structure growth (Smoot et al., 1992; Bennett et al., 2003; Spergel et al., 2007)

4A ‘bottom-up’ hierarchy of structures was previously hypothesised (Press & Schechter,
1974; Peebles, 1980) and competed with a ‘top-down’ picture of structure forma-
tion (Zel’dovich, 1970; Zel’dovich et al., 1982; Arnold et al., 1982; Klypin & Shandarin, 1983),
where walls are the first structures to form, followed by filaments and then nodes.
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(2015); Lambas et al. (2016) and many more sources).
Voids account for ∼ 95% of the volume (Kauffmann & Fairall, 1991; El-Ad

et al., 1996; El-Ad & Piran, 1997; Rojas et al., 2005). Some void regions, due
to a deep depression in density, expand at a super-Hubble rate, exceeding the
expansion of the Universe5. By number, the overwhelming majority of smaller
sub-voids are squeezed between expanding voids and the massive components of
the cosmic web. These voids may collapse along one or two axes. In this study,
these cases will be referred to as oblate ∼ and prolate collapsing void regions,
respectively.

When matter is squeezed between merging voids, this typically results in
sheet-like features (Dubinski et al., 1993) — compressed in one direction by the
voids, but expanding in the other two. Such scenarios are characterised by the
bending of the voids’ velocity outflows into that sheet. It is for this reason
that we study anisotropic velocity flows, to probe the formation of anisotropic
structures.

Structure formation III — Weaving the cosmic web
Similarly, anisotropic velocity flows are a major aspect of the formation of fil-

aments.
When density peaks form and grow, they induce a multipolar gravity field.

Between two density peaks, each of them acts as an attractor, while the sur-
rounding underdense regions form depressions, effectively pushing matter away.
In such scenarios, matter in the environment is encouraged to flow into the shaft
directly between the density peaks (Bond et al., 1996). This is how filamentary
bridges are formed, connecting neighbouring nodes6. Bond et al. (1996) have
christened this mechanism the weaving of anisotropic structures between peaks
in density. As such, the term cosmic web is very descriptive, not only of the
appearance but also of the formation of large scale structure.

The collapse of gravitationally bound features is generally characterised by
an increase in anisotropy. Even the most subtly aspherical bound regions have
a major and a minor spatial axis. Collapse along the minor axis is augmented
as the centre of attracting mass is closer to most particles along the minor axis
than to most of those along the major axis. This progressively increases the
eccentricity (van de Weygaert, 2006). Collapse along the shortest axis leaves
a flattened object — pancake-like, in the official jargon. Further collapse along
the second shortest axis forms an elongated feature.

Bond et al. (1996) have determined on theoretical grounds that peaks in
density are the first features to emerge from nearly-homogeneous initial condi-
tions. The filamentary features connecting them form afterwards.

Velocity flows
As the previous subsections aim to illustrate: the formation of various com-

ponents of the cosmic web is characterised by various types of velocity flows.
Due to gravitational instability, density peaks increase by the infall of matter,
and underdense regions grow by a divergence of velocity flows. Anisotropic
structures like filaments and walls form by the bending of velocity flows into

5This always happens in void regions with a flat density profile.
6Bond et al. state that walls form at a later stage, out of the rest of the matter left between

voids.
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Figure 1: An example of the commonly occurring scenario where overdensities
and underdensities erect a quadrupolar gravity field. Notice how matter from
the environment is pulled into the linear region directly between the overden-
sities. Notice, also, the shearing motion of the matter flowing from the under-
densities into the filamentary structure. This image was taken from Aragon-
Calvo & Szalay (2013), who indicate dark matter halos from their simulation as
white circles. They have used the particle advection technique for visualising
the velocity stream lines.
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anisotropic patterns. Therefore, this study approaches the formation and evo-
lution of structure in the framework of velocity flows.

Whether considering the formation and hierarchical merging of massive com-
ponents, or focusing on voids in a dynamical description, velocity flows — linear
and nonlinear — are a key aspect of structure formation. The arrangement of
matter into structures manifests in the form of velocity flows, and they have
proven to be excellent probes of structure formation as well. Various theoretical
frameworks have been formulated to link spatial distributions of matter to veloc-
ity flows, and velocity flows to the formation and evolution of cosmic structures
— refer to Zel’dovich (1970); Peebles (1980) for seminal publications, and for
more recent investigations e.g. to Nusser et al. (1991); Gramann (1993); Cautun
et al. (2013); Libeskind et al. (2014). In these studies, important distinctions are
made between linear and nonlinear velocity growth — see sections 2.3 and 2.5
— and between potential and rotational velocity flow components.

The most basic scenario in which a potential flow can be illustrated would
be that of an isotropic density peak surrounding a sparser region. Here, the dis-
tribution of mass induces an inward-pointing gravitational field, and therefore
a radial well in the velocity potential field. As a result, matter — provided zero
initial rotation — falls radially into the dense region. In this scenario, the scalar
density and velocity potential fields are proportional at any point in space, as
are the vector gravity and velocity fields. In a more general example of po-
tential flow, matter is not distributed isotropically, and these proportionalities
no longer hold. Still, the velocity field is induced purely by the distribution of
density. It can be expressed completely as the mathematical gradient of the
scalar velocity potential. This means that the mathematical curl of the velocity
field vanishes7.

In an anisotropic density distribution, the resulting anisotropic gravitational
force field will induce shearing motions of matter in the velocity flows: the gra-
dient of the velocity potential field will generally curve into different directions,
and trajectories of matter elements will be bent. In the context of the cosmo-
logical large scale structure, a particularly suitable example of this is given by
a typical system of a filament connecting two clusters and flanked by two voids,
see figure 1. Whereas matter around the clusters falls inward radially, due to
depressions in the potential field, matter near the midpoint of the filament un-
dergoes a shearing motion. This is because the filament crosses a saddle point
in the potential field. Matter flowing out of the void generally travels in curved
paths, navigating around that saddle point on way or the other.

Instances of shearing motion in the velocity field, then, betray the existence
of anisotropic gravity fields — and therefore anisotropic structures. The main
strategy in this study uses the formal mathematical definition of the velocity
deformation — see section 2.7 — to detect anisotropic features in the data set.
In the same vein, the velocity divergence is identified through mathematical
methods, to follow the expansion and contraction of structures.

What distinguishes a potential flow from a velocity field with a non-zero
rotational component is that rotating features like vortices do not appear. The
picture of structure formation described so far leaves velocity flows without any

7Section 2.7 introduces the mathematical foundations for this subject, and section 2.2
provides a more detailed treatment.
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rotational component. As for the evolution of rotational flow, the Kelvin circu-
lation theorem8 states that it is conserved: Under ordinary conditions, rotation
can be neither created nor destroyed. In linear perturbation theory — see equa-
tion 31 — it is established that any existing vorticity in the linear regime of
structure formation can only decay rapidly (Peebles, 1980). Starting from a
potential flow, this leaves no possibility for rotation to occur.

To say that all velocity flows in the Universe are potential flows, however,
would be too hurried a conclusion. As long as displacement of matter is lin-
ear on a certain scale, there will be no spatial overlap between several different
velocity flows on that scale, and so potential flow is preserved throughout this
stage. In the nonlinear regime, though, there can be significant crossing of
matter streams. This occurrence is referred to as shell crossing (Mücket, 1985;
Hellaby & Lake, 1985; Shandarin et al., 2012; Laigle et al., 2015), and section 2.9
discusses it in detail. The presence of various directional influences at the same
location can produce vorticity (Pichon & Bernardeau, 1999; Pueblas & Scoc-
cimarro, 2009). The detection of vorticity could have interesting implications
for the study of cluster formation and perhaps even spiral galaxies. Yet this
pursuit is not a trivial one: as Hahn et al. (2015) have pointed out, the vorticity
signal determined from velocity flow measurements can in some part consist of
a projection effect between the different streams, rather than actual vorticity —
see the discussion leading up to equation 96.

Outline of this thesis
In this thesis, we document our investigations of velocity flows in the Cosmogrid
simulation (Ishiyama et al., 2013). The rest of the present section will further
introduce the goings-on in this field of study. Then, section 2 presents the
theoretical background that this study is founded upon. The more strategical
issues of simulation and field estimation are introduced in sections 3 and 4,
respectively.

Section 5 traces out the practical procedures this study employed, the results
of which are presented in section 6. Section A compiles the relevant statistical
certainties and philosophical caveats, and section B presents a brief overview
and distills the conclusions from this study.

1.1 Cosmological context

The expanding Universe
Of the four fundamental forces of nature, it is undisputedly gravity that dom-

inates on large scales. An evaluation of the dynamics of the Universe, then,
relies on a proper general relativistic treatment of gravity. In General relativity,
gravity is a metric force, determined by the curvature of spacetime according to
the Einstein field equations.

Given the Universe’s principal homogeneity and isotropy, there are only three
possible metrics it can assume. These are all isotropic and homogeneous, they
expand or contract in time at some rate a, and exhibit one of three possible

8This theorem applies to fluids. The approach of matter in the universe as a cosmic fluid
is introduced in the theory of gravitational instability by Peebles (1980) — see section 2.2.
The conservation of circulation is limited to systems without anisotropic stresses. These are
generated in shell crossing, see section 2.9.
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types of curvature k. The expansion factor a(t) describes the rate of expansion
of the Universe, and is normalised at present day t0 to be a(t0) = 1. This means
that any proper position r can be written in terms of the expansion factor and
its comoving position x by:

r = ax. (1)

The spherically symmetric spatial part of the metric requires a uniform curva-
ture, described by k > 0 for a closed Universe, k = 0 for a flat one, or k < 0
for an open Universe. Then, the Robertson-Walker metric gives the spacelike
spacetime interval ds in spherical coordinates (r, θ, φ):

ds2 = c2dt2 − a2(t)
(
dr2 +R2

cS
2
k

(
r

Rc

)[
dθ2 + sin2(θ)dφ2

])
, (2)

where c is the speed of light, Rc is the radius of curvature, and the curvature
function Sk

(
r
Rc

)
is given by:

Sk

(
r

Rc

)
=


sin
(
r
Rc

)
k = +1

r
Rc

k = 0

sinh
(
r
Rc

)
k = −1

(3)

Armed with this metric and the Einstein field equations, which relate the
local spacetime curvature to the local energy density, Friedmann derived a pair
of seminal equations in 1922. Relating the time evolution of the expansion factor
to the density ρ, pressure p and the cosmological constant Λ, the Friedmann-
Robertson-Walker-Lemâıtre equations:

ä
a = −4πG

3

(
ρ+ 3p

c2

)
+ Λ

3

ȧ2

a2 = 8πGρ
3 − kc2

a2 + Λ
3 .

(4)

The quantity ȧ
a is the Hubble parameter H,

H ≡ ȧ

a
,

which relates the distance by which galaxies are separated from us to rate of
expansion. The discovery of this — to first order — linear relationship by Edwin
Hubble, only in 1929, was the first confirmation of the theory of an expanding
Universe. Just as equation 1 relates the proper and comoving positions of a
point, its physical velocity is:

ṙ = Hr. (5)

Since the scale factor relates the proper position of a particle to its comoving
position, its time derivative ȧ relates the physical velocity to that same proper
position. Its dimensionality is thus velocity times reciprocal distance. The
Hubble parameter is thus expressed in km/s/Mpc. As Georges Lemâıtre has
pointed out — prior to Hubble’s observations! — these relations imply that the
Universe has started as an extremely hot and dense entity. The Big Bang.

All formation of structure on cosmological scales happens on the background
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of our expanding Universe. These processes are governed by gravity. Above the
scales of homogeneity, even the largest structures can no longer be discerned.
The Universe then appears like a homogeneous and isotropic body (Hogg et al.,
2005; Sarkar et al., 2009; Scrimgeour et al., 2012; Sylos Labini et al., 2009). The
cosmological principle is still valid at smaller scales, though, in the sense that the
probabilistic spatial distribution of matter is uniform throughout space (Bardeen
et al., 1986).

1.2 Investigations of structure formation and velocity flows

So far, the study of structure formation has branched out into various strate-
gies, and various tools have been developed. A full analytical description of
structure formation has proven to be a challenge beyond our capabilities, but
various perturbation theories — applied to the theory of gravitational instability
— have yielded very useful approximations (Peebles, 1980, 1993). This study
will be limited to linear perturbation theory, which is applicable throughout the
linear and mildly nonlinear regime.

Linear perturbation theory
The essence of perturbation theory is that tiny variations — perturbations

— in a variable can be approximated e.g. as a linear or higher order deviation
from its base value. Any higher order power of this small deviation will then be
negligible, as will any higher order product of various perturbation quantities.
This allows us to remove higher order expressions from equations, a potentially
crucial simplification that holds for as long as the perturbations in these quan-
tities stay sufficiently close to zero. Section 2.3 presents the linear Eulerian
version and section 2.5 the Lagrangian perturbation theory.

This is an important reason why we are interested in the distinction be-
tween linear and nonlinear phases of structure formation. In the linear phase
— during which most of structure formation occurs — perturbation theory can
facilitate a very reliable treatment of the evolution of quantities like density,
gravity and velocity. As the growth of physical quantities becomes more and
more nonlinear, approximations from lower-order perturbation theories will get
shoddy. This thesis will review the application of linear perturbation theory
to two complementary views of fluid mechanics: the Eulerian and Lagrangian
ones. The former considers the time evolution and thoroughfare of quantities in
a stationary location; the latter travels along with a fluid element and describes
its motion and deformations.

Simulations
Efforts towards analytical descriptions are complemented by numerical strate-

gies — N-body simulations. Cosmological N-body simulations have been around
for decades, and have been unhalting in their technical improvements.

Redshift surveys have yielded large quantities of data to form a basis of
structure formation research (e.g. Saunders et al., 2000; York et al., 2000; Col-
less et al., 2003; Tegmark et al., 2004; Huchra et al., 2005; Drinkwater et al.,
2010; Huchra et al., 2012; Aghanim & Baccigalupi, 2015), but they are not
without limitations. Our field of view is cluttered with foreground objects and
effects; fainter galaxies are far less visible at greater distances; and redshift dis-
tortions arise from the degeneracy between cosmological expansion and proper
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motion of galaxies (see Lonsdale & Barthel (1986); Hamilton (1998) and ref-
erences therein). Due to this last effect, the distribution of galaxies in cosmic
web formations is enhanced differently in radial and azimuthal directions9. This
brings immediate complications and uncertainties into structure formation stud-
ies.

The ever increasing power and availability of computation have been a cat-
alyst for the simulation of structure formation. N-body simulations start with
a large number of particles in their initial conditions: they typically sit in a
regular grid, and are given a Gaussian random10 initial displacement and ve-
locity. From there, particle displacements are calculated in iterative evaluations
of the adopted equations of motion. Section 3 provides a more complete de-
scription of these methods. More and more complex and realistic simulations
have been conducted in the recent decades — see references in section 3 — and
they circumvent the problems of field of view, visibility and redshift distortions.
Trading “fingers of God” for “eyes of God”, simulations allow the locations and
velocities of particles to be determined to arbitrary precision. Furthermore, as
simulations trace out the time evolution of structures in all of space in paral-
lel, we can follow the evolution of one and the same structure throughout the
course of cosmic time. This is not possible through observations, where a view
of an earlier time frame — i.e. higher redshift — necessitates a focus to greater
distances.

It has to be stated very clearly, though, that simulation is by no means a
replacement for observation. Most importantly, simulations will never provide
data on what the Universe really looks like. They only evaluate structure for-
mation under the theoretical assumptions that they are built upon. As such,
it would be more suitable to see them as test Universes for our theories — a
simulation is only as useful as the theoretical framework it incorporates. Reality
is an incredibly complex system: although most of structure formation is well
modelled by gravity alone, the influences of myriad physical components like
pressure, radiation, dark energy, general relativity, magnetism, etc. are very
real — see section 3. To equip a simulation with a proper implementation all
of these mechanisms is beyond the limits of our abilities. Furthermore, there
are various nontrivial complications inherent to the way simulations operate.
One prominent example of this is the discretised nature of the space and time
that they define. While the particle locations and velocities can be defined to
machine precision, the densities and gravitational forces are only calculated at
regular points in a grid of some resolution (Hockney & Eastwood, 1981; Barnes
& Hut, 1986). Among other complications, this leads to errors in the calcula-
tion of particle displacements. Sections 3 and A treat these limitations in more
detail.

Even so, N-body simulations have led to invaluable insights. They form
an extremely useful complementary approach to the study, in parallel to ob-
servations. This project is founded upon the results of the Cosmogrid simu-
lation (Ishiyama et al., 2013), which simulates the formation of structure in
a volume of 30 Mpc, by means of 20483 dark matter particles, in a standard
ΛCDM cosmology.

9One prominent example of redshift distortions is the radial elongation of galaxy clusters
due to the spread in radial velocity components, which induce a range of spectral shifts on top
of their cosmological redshift. This radial elongation effect is referred to as “fingers of god”.

10see section 2.6 for an introduction
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Field estimation
At any given time frame in a simulation, the locations and velocities of all

the particles can be listed. One of the most important steps in the analysis of
simulation data is to distill from these locations and velocities a field — e.g.
a density or velocity field — which is sampled at a regular set of grid points.
This step is called field estimation, and there is a variety of approaches to this
— e.g. Hockney & Eastwood (1981); Bernardeau & van de Weygaert (1996);
Schaap & van de Weygaert (2001); van de Weygaert & Schaap (2009). The
present study appeals to a method that has gained particular favour in the
recent years: the Delaunay Tessellation Field Estimator (Bernardeau & van de
Weygaert, 1996) — accounts of its nature, modus operandi, and assessment can
be found in sections 4.4, 4.5 and A.

Separating spatial scales
As a last introductory note, there is a convenient way to disentangle the

matter and velocity distributions from different distance scales: This is done
by the process of filtering the spatial distribution at a scale of choice. The
procedure is explained in section 4.1, and has the effect of smoothing out all
structure at all scales below a chosen value. This allows for the analysis of
structure formation at various scales.

By virtue of the hierarchical nature of the structure of the Universe, the
evolution of a region at any particular scale is dependent only on the distribution
on that scale and above — i.e. it is not necessary, to determine the activity on
all finer scales (Peebles, 1980; Little et al., 1991). This is a very fortunate fact,
as an accurate reconstruction of all smaller scale structures would border on the
impossible.
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2 Theoretical Background

2.1 Overview

This section aims to provide a description of the theoretical background of rele-
vance to this study. We start with a treatment fluid dynamics in general insta-
bility — section 2.2 — which forms the very basis of studies in cosmic structure
formation. Here, we will stumble upon an obstacle in solving the fluid equa-
tions; this is solved in a linear perturbation theory — section 2.3 — by linearising
the equations. Then, section 2.5 makes a switch from an Eulerian perspective
to a Lagrangian one. We formulate Lagrangian perturbation theory and the
Zel’dovich approximation in an attempt at describing the nonlinear evolution of
structure. Sections 2.2, 2.3 and 2.5 are largely based on (Peebles, 1980, 1993;
Zel’dovich, 1970) and lecture notes by Rien van de Weygaert.

Next, a framework for the statistics of various field quantities is developed in
section 2.6. Here we introduce Gaussian random fields (Bardeen et al., 1986),
and an important statistical descriptor, the power spectrum, which is of im-
portance to the way structures evolve over cosmic time. The related view of
lognormal random fields (Coles & Jones, 1991) is introduced too.

Sections 2.7 and 2.8 provide an overview of velocity flows, where the veloc-
ity gradient is decomposed into divergence, shear and vorticity. Density- and
velocity-related fields are used for the disentanglement of different cosmic web
components — i.e. nodes, filaments, walls and voids — in the so-called T-web
and V-web classifiers. Section 2.8 traces a conceptual genealogy of the web clas-
sification algorithm used in this study. The most important publications in the
history of this topic are (Hahn et al., 2007; Forero-Romero et al., 2009; Hoffman
et al., 2012; Cautun et al., 2013).

The role vorticity in structure formation is explored in section 2.9. We get
a taste of the intricacies and nontrivialities in the study of vorticity in cosmic
velocity flows (Pichon & Bernardeau, 1999; Pueblas & Scoccimarro, 2009; Hahn
et al., 2015).

Following this Theoretical Background section, section 3 introduces the com-
putational world of cosmological N-body simulations. Various approaches to the
task of field estimation are covered separately in section 4.

2.2 Cosmic structure formation

The fluid approximation
While, fundamentally, the distribution of matter in the Universe is discretised,

we approximate it as a continuous cosmic fluid. Whether this approximation
is reliable depends on the nature of the matter distribution: For the baryonic
component, the discrete nature of particulate matter is of importance only at
microscopic levels, until the formation of condensed objects like stars and galax-
ies — which forbid a fluid approximation at scales below ∼ a hundred kpc at
lower redshifts. For dark matter, the limiting scales remain very small during
all of cosmic history. Our study of velocity flows and structure formation is
limited to dark matter, and concentrates on Megaparsec scales, so that a fluid
approximation is very adequate.

Approximating the cosmic matter distribution as a fluid allows us to describe
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its evolution in the fluid equations (Peebles, 1993). These equations describe
properties of the fluid — e.g. density and velocities — in the context of grav-
itational instability : the spatial distribution of density induces a gravitational
potential, which in turn influences the velocity field. Note that a full description
must include pressure forces between matter elements. However, these are not
of influence on the dynamics of dark matter at the scales in this study. There-
fore, pressure terms will be left out of the treatment in this thesis.

Thus, the physical quantities of interest are position r, momentum p, density
ρ, gravitational potential Φ and gravitational acceleration g.

Fluid equations
A fluid can be generally described by the phase space distribution function
f(r,p, t), which follows the distribution of matter in physical space r, momen-
tum space p and time t. Emerging from the conservation of energy and mass,
the Vlasov equation describes the evolution of the distribution function:

∂f

∂t
+ p · ∇f −∇Φ · ∂f

∂p
= 0. (6)

Taking the first cumulants of this equation — i.e. multiplying it by the first
powers of momentum and integrating over momentum space — yields equations
that govern the density 7, velocity 8 and the gravitational field 9. These three
equations are widely applied in the study fluid dynamics:

Firstly, the continuity equation ensures conservation of mass:

∂ρ

∂t
+∇r · ρu = 0 (7)

Secondly, the Euler equation links the gravitational forces acting on a mass
element to its velocity:

∂u
∂t

+ (u · ∇)u = −∇rΦ (8)

Lastly, the Poisson equation determines the gravitational field as sourced by
the matter distribution.

∇2
rΦ = 4πG

∑
l

(1 + 3wl)ρl (9)

Do note two things about this system of equations:

� We assume dark matter to be pressureless and ignore other sources of pres-
sure. In a more complete description, pressure would appear as a term
coupled with density in the Euler equation. Particularly in the matter-
dominated era — during which most of structure formation occurs — pres-
sure forces are negligible. Also, these equations leave out magnetic fields
on cosmic scales, and the minute general relativistic effects of radiation
and dark energy — after all, Ωr,0 ' 10−5.

� Equations 7, 8 and 9 comprise what we call the Eulerian picture of the
fluid equations. Section 2.5 will present a complementary view, referred
to as the Lagrangian view.
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Comoving coordinates
Equations 7, 8 and 9 describe the evolution of fluid elements in physical coordi-

nates. In an expanding Universe, it is useful to switch to a system of comoving
coordinates. If at any given time, the Universe has expanded by a factor a(t)
relative to its size at the present day

a(t0) ≡ a0 ≡ 1,

the comoving positions x of an element will be

x ≡ r
a(t)

. (10)

This way, a comoving coordinate system allows us to describe the displacement
of fluid elements with respect to the expanding background (Peebles, 1993) —
a successful description of this displacement equals a description of structure
formation.

The procedure is to write the quantities — density, velocity, gravitational
potential and gravitational acceleration — in terms of their deviations from the
cosmic background. These deviations are called perturbations. The density
perturbation δ is defined in terms of its deviation from the universal density11

ρu(t):

δ(x, t) ≡ ρ(x, t)− ρu(t)
ρu(t)

(11)

note that this confines δ to [−1;∞〉. The peculiar velocity v is the change in
comoving position:

v = a(t)ẋ, (12)

and as such describes velocity relative to the Hubble expansion.
The gravitational potential can be written as the sum of a background poten-

tial Φu due to the Hubble expansion plus the perturbative gravitational potential
φ. The potential perturbation is thus given by

φ(x, t) = Φ(x, t)− 1
2
aäx2. (13)

The peculiar gravitational acceleration is the gradient of the potential pertur-
bation, and related to the peculiar velocity:

g(x, t) ≡ −∇φ
a

(14)

Rewriting these equations for perturbation quantities in comoving coordinates,
they become12:

∂δ

∂t
+

1
a
∇x · (1 + δ)︸ ︷︷ ︸v = 0 (15)

∂v
∂t

+
1
a

(v · ∇x)v︸ ︷︷ ︸+
ȧ

a
v = −1

a
∇xφ (16)

11We will assume the adiabatic perturbation mode, in which the density of matter and
radiation are completely coupled, although other options exist.

12The horizontal braces| {z } are included to mark the nonlinear couplings between perturbation

quantities. These are simplified in section 2.3.
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∇2
xφ = 4πGa2ρuδ (17)

Here, the operator ∇x refer to differentiation in comoving space — as opposed
to the derivatives in physical space, in equations 7, 8 and 9.

As a last adaptation, it may be noted that the comoving perturbative Euler
equation can be simplified by switching to an alternative time-differentiation.
The Lagrangian derivative13 d

dt contains a time derivative, but also travels along
with the trajectory of a fluid element. Acting upon a field f(x, t), the comoving
Lagrangian derivative follows:

d

dt
f(x, t) ≡ ∂

∂t
f(x, t) +

1
a

(v · ∇)f(x, t) (18)

Upon inspection, the first two terms of the euler equation 16 can be replaced
by d

dtv, and we can even simplify even further:

d

dt
(av) = −∇φ (19)

Notice that the Euler equation also equals the gravitational acceleration:

−∇φ = ag(x, t). (20)

2.3 Linear Perturbation Theory

The Fluid equations provide a good framework to study the flow of matter
and the formation of structure. However, they contain terms that are nonlin-
ear combinations of perturbative quantities, which proves to be an immense
complication in solving them. To be specific, the expressions marked with
horizontal braces︸ ︷︷ ︸ render an analytical solution to the full perturbative fluid
equations impossible — with known analytical methods.

There is, however, a practical workaround to this unfortunate complication:
Linear Perturbation Theory. In the linear regime, perturbations are very small
— i.e. δ << 1 — and that means that higher order combinations of them are
negligible. The essence of linear perturbation theory lies in the omission of
the nonlinear combinations, which greatly simplifies the expressions, and allows
an approximate analytical description of structure formation for as long as the
physical quantities evolve linearly.

The description of linear perturbation theory in this section originates from
seminal work by Peebles (1980, 1993).

Linear solutions
The matter dominated epoch is the most instrumental phase of structure forma-
tion, and most matter in the Universe appears to be collisionless dark matter.
Therefore, our initial evaluation of structure growth will start with the fluid
equations for matter perturbations, ignoring pressure effects. A linearisation
of the continuity and Euler equations — the Poisson equation 17 remains un-
changed — yields:

∂δ

∂t
+

1
a
∇x · v = 0; (21)

13a.k.a. convective derivative
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and
∂v
∂t

+
ȧ

a
v = −1

a
∇xφ. (22)

With a bit of algebraic persuasion, these linearised equations may be manipu-
lated into a second order partial differential equation for the growth in δ:

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
=

3
2

Ω0H
2
0

1
a3
δ. (23)

This equation contains no spatial derivatives, meaning that the evolution is
independent of location, and so any solution can be separated into independent
spatial ∆(x) and temporal Dδ(t) components. Two solutions exist,

δ(x, t) = Dδ,1(t)∆1(x) +Dδ,2(t)∆2(x), (24)

where ∆(x) describes the spatial distribution of density perturbations, and the
density growth factor Dδ(t) plays the same role14 as δ in equation 23.

The actual evolution of Dδ(t) depends on the background cosmology. When
the time evolutions of

2
ȧ

a
and

3
2

Ω0H
2
0

1
a3

(25)

are determined and inserted into equation 23, two solutions for Dδ(t) can be
found.

For example, an Einstein-de Sitter (EdS) Universe is characterised by Ω(t) =
1 and H(t) = H0, so that the expansion factor follows

a(t) =
(

3
2
H0t

)2/3

. (26)

This implies that the a(t)-dependent expressions 25 become

2
3t

and
2

3t2
,

respectively. The resulting differential equation for δ(t) will then have the tem-
poral solutions D1(t) ∝ t2/3;

D2(t) ∝ t−1.
(27)

A density growth factor Dδ(t) ∝ tα for α < 0 comprises a decaying mode
solution, and will result in the extinction of structure formation. A density
growth factor for which α > 0 will only increase, and such a growing mode
solution will dominate structure formation. In the EdS Universe example, we
see that D1(t) grows, and D2(t) decays. Thus, it is usually sufficient to distill
the linear solution to the fluid equations down to only the growing mode Dδ(t).

We proceed to the growth factor for gravitational potential Dφ(t). The

14Dδ(t) being the sole temporal component of δ(t), and equation 23 being a purely temporal
PDE
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Poisson equation for the potential perturbation φ is completely determined by
matter density perturbations.

∇2φ =
3
2

ΩmH2a2δm(x, t),

which can be solved by Greens’s formula. Time-dependence enters via ΩmH2a2

and δm. In the linear regime, δm(x, t) ∝ Dδ(t), and for the potential perturba-
tion, the growth factor Dφ(t) holds:

φ(x, t) = Dφ(t)φ0(x) =
Dδ(t)
a(t)

φ0(x), (28)

so we see that Dφ(t) differs from Dδ(t) only by a factor a(t).
The gravitational acceleration perturbation g(x, t) ≡ −∇φa , and can thus

be related to the potential perturbation. In a very similar fashion, the gravity
growth factor Dg(t) can be determined:

Dg(t) =
Dδ(t)
a2(t)

.

In most cases, while Dδ(t) keeps increasing, it is the hubble expansion that
causes the peculiar gravity to decrease nonetheless.

Velocity growth
In the general picture of structure formation, matter flows out from underdense
regions, and towards overdense regions. Figure 2 — from a study by Stanonik
et al. (2009) — provides a visual explanation, it displays velocity flow lines and
density contours from an N-body simulation. This image makes clear how the
velocity flows stretch from low to high density regions, and bend along with the
anisotropic density distributions.

To study the evolution of peculiar velocity v, recall the Euler equation in
terms of the Lagrangian derivative of av, equation 19. The Euler equation —
d
dt (av) = −∇φ — incorporates the net effect on velocity against the background
of an expanding Universe. Note that the latter term in d

dt (av) is nonlinear:

a(v · ∇)v,

so that it can be omitted in linear theory. The linearised Euler equation can
then be written with just a partial time derivative:

∂(av)
∂t

= −∇φ. (29)

Presently, we use two vector identities. The curl of the gradient of any scalar
field always vanishes, as does the divergence of the curl of any vector field:

∇× (∇f) = 0;

∇ · (∇×A) = 0.

Therefore, any vector field can be written in terms of a component with zero curl
— the potential component v‖ = ∇f — and a component with zero divergence
— the rotational component v⊥ = ∇×A. If we express peculiar velocity as

v = v‖ + v⊥,
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Figure 2: Velocity flow lines from an N-body simulation (Stanonik et al.,
2009). Superimposed are the density contours. Notice how velocity flows
point outward from the underdensities; bend into filamentary and wall-like
structures, and concentrate to density peaks. Image source: (Stanonik et al.,
2009).
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then the Euler equation can be split into two components; and the aforemen-
tioned identities yield that: 

∂
∂t (av‖) = −∇φ
∂
∂t (av⊥) = 0

(30)

As a consequence, in the linear regime the rotational component will always
decay:

v⊥ ∝
1
a
. (31)

For this reason, vorticity (see section 2.7) does not occur at the spatial and
temporal scales that comprise the linear regime. For example, notice that no
rotational flow occurs in figure 2.

Now that velocity and gravitational acceleration are both gradients of a
potential, their relation can be found via the Poisson equation. Keeping in
mind that g(t) ∝ Dg(t) ∝ Dδ(t)

a2 :

v = a
∂

∂t

(
g

aπGρua

)
=

1
Dδ

dDδ

dt

(
g

4πGρu

)
, (32)

where we can take 1
Dδ

dDδ
dt to be

H(t)
a

Dδ

dDδ

da
≡ Hf. (33)

We have just defined

f ≡ a

Dδ

dDδ

da
, (34)

the linear velocity growth factor, and it is of extreme importance within linear
perturbation theory. It directly relates velocity to gravitational acceleration:

v =
Hf

4πGρu
g. (35)

It has been approximated as a function of Ωm. For Ωm below unity, an extremely
good approximation is given by (Linder, 2006)

f(Ωm) ' Ωγm, (36)

where
γ = 0.55 + 0.05(ω + 1),

and ω is the equation of state parameter for the dominant component.
From the linearised continuity equation, we can derive the growth factor for

velocity Dv in a matter-dominated Universe:

Dv(t) = aDδHf(Ωm). (37)

Via equation 35, the dimensionless velocity growth factor f(Ωm) provides a way
to observationally determine Ωm!

From the linearised continuity equation, we can derive an immediate relation
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between density perturbation and velocity divergence. In terms of the velocity
growth factor. This is done by establishing the proportionality

∂δ

∂t
=
Ḋδ

Dδ
δ,

where
Ḋδ

Dδ
= Hf(Ω),

yielding

δ = − ∇ · v
Haf(Ω).

(38)

2.4 Nonlinearity

In describing the growth of structure outside the linear regime15, the approxima-
tions made in linear perturbation theory are no longer warranted. Perturbation
quantities approach and exceed unity, and power transfer starts to occur. Ex-
pressions that are linear functions of perturbation quantities — e.g. linear terms
in the fluid equations — have a property that is very important for the forma-
tion of structure: their evolution on any distance scale is completely independent
from that on every other scale. This becomes apparent when the evolution of
these quantities is expressed in Fourier transforms: the Fourier modes k are in-
dependent from each other. See, for example, the linearised continuity equation
in Fourier space:

d

dt
δ̂(k)− 1

a
ik · v̂(k) = 0 (39)

In contrast, the nonlinear terms in the fluid equations — marked with
vertical braces︸ ︷︷ ︸ in equations 15 and 16 — lack this Fourier mode independence.
Their Fourier transforms involve the mixing of Fourier modes from different
perturbation quantities. For example, the full nonlinear Fourier version of equa-
tion 39 acquires a mode-coupling term:

d

dt
δ̂(k)− 1

a
ik · v̂(k)− 1

a

∫
dk′

(2π)3
iδ̂k′ · v̂(k− k′) = 0 (40)

The physical consequence of that nonlinear term — which comes into view as
soon as δ̂ and v̂ approach or exceed unity — is that the Fourier contributions
from different wavenumbers start influencing each other. A concrete example of
this is the nonlinear collapse of high density regions, where the Fourier modes
corresponding to the spatial extent of the peak are enhanced. Another im-
portant example is the influence from large scale structures onto small scale
structures embedded into them: e.g. a small overdensity embedded in a large
overdense region will collapse more quickly.

The collapse of large-scale structures influences the growth of smaller-scale
substructures. If the opposite would happen, small-scale structures would affect
their surroundings — there would be transfer from high to low frequency modes.
In that case, it would introduce the necessity that a feature’s substructure be
known completely in order to determine its evolution. Fortunately, this does not

15id est: later epochs and smaller distance scales
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occur if the steepness of the fluctuation power spectrum is low enough (Peebles,
1980; Little et al., 1991),

n(k) =
d logP (k)
d log k

< 4. (41)

2.5 Lagrangian and Zel’dovich theory

The Eulerian and Lagrangian approaches
Faced with the generic task of describing the motions of energy and matter

in a certain volume, the Eulerian approach is to consider the evolution of any
location, fixed in space. This evolution consists of the local changes in the
system, and of the flow of energy and matter through the element under scrutiny.

The fluid equations, as presented in sections 2.2 and 2.3, are a clear example
of Eulerian thinking. The continuity equation links the local density to the in-
and outflow of matter; the Euler equation links the local velocity to changes
in the local gravity potential; and the poisson equation links that to the local
density.

As an alternative to the Eulerian philosophy, the Lagrangian approach is a
more dynamic way of monitoring the evolution of a system. The core idea is to
travel along with an element of the fluid, and describe the time evolution of its
location and deformation. To this end, it is convenient to follow the evolution of
a moving fluid element with the Lagrangian derivative — equation 18 — rather
than just a partial time-derivative. A few aspects of the Lagrangian perspective
of fluid dynamics will be formulated momentarily; and in it, the forces acting
on a fluid element become more readily apparent.

The deformation of a fluid element can be described by the three modes of the
spatial velocity derivative, introduced in section 2.7. The divergence measures
the expansion or compression of a fluid element, and consequently changes in
density. The shear tensor measures deformations in different directions: its
eigenvectors describe the principal axes, and corresponding eigenvalues measure
the strength of deformation along them. The overall rotation of a fluid element
is measured by the vorticity. Two-dimensional equivalents of these three modes
of deformation are illustrated in figure 3

Lagrangian fluid equations
Initially, our Lagrangian description of a pressureless fluid dynamics assumes

pure laminar flow, in which shell crossing — see section 2.9 — does not occur.
This description consists of a Lagrangian version of the continuity, Euler and
Poisson equations, as well as equations governing the divergence, vorticity16 and
shear of fluid elements.

While section 2.7 elaborates on the different modes of the velocity gradient
that exist, it is useful to introduce them briefly at this point. The velocity
gradient ∇v is a 3× 3 tensor, which can be decomposed into three components:
a scalar divergence θ, a tensor shear σ and a tensor vorticity ω. These adhere

16The vorticity equation is not treated in this thesis, but suffice it to say that it does not
allow the growth of vorticity from an irrotational primordial state, as long as shell crossing
does not occur. This is in agreement with the Eulerian description.
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Figure 3: Three modes of deformation of fluid elements represented in two
dimensions. A square fluid element can undergo changes in size, rotation
and shearing — the latter effect can be seen as a shortening and expansion
along two perpendicular axes, not necessarily aligned with the fluid element’s
principal axes. Any linear combination of these effects can apply to a fluid
element at a time. Note that the three-dimensional case allows extra degrees
of freedom to rotation axes, and shear planes.

27



to the following definitions:

θ =
1
a
∇ · v =

1
a

(∂xvx + ∂yvy + ∂zvz) (42)

σij =
1
a

1
2

(∂jvi + ∂ivj)−
1
a

1
3

(∇ · v)δij (43)

ωij =
1
a

1
3

(∂jvi − ∂ivj) (44)

In each of these, the division by the scale factor a is to obtain the comoving
quantity. From a Lagrangian perspective, the conservation of mass is ensured
by considering a fluid element of fixed mass. Its density is then determined
purely by the expansion, so that the continuity equation becomes:

dδ

dt
+ a(1 + δ)θ = 0 (45)

The Euler equation has already been rewritten in terms of the Lagrangian
derivative, refer to equation 19. The dependence of the potential on the matter
distribution is the same in Eulerian and Lagrangian treatments, so the Poisson
equation 17 is unaltered.

The Euler and Poisson equations combine into the Raychaudhuri equa-
tion (Raychaudhuri, 1955), which describes the evolution of divergence:

dθ

dt
+ 2

ȧ

a
θ +

1
3
θ2 + σijσij − 2ωijωij = −4πGρuδ, (46)

it shows — in combination with the continuity equation — that shear accelerates
the collapse of a fluid element, while vorticity counteracts it. Appearing only in
quadratic terms, these two constitute purely nonlinear effects.

Lastly, the evolution of shear is dependent on the gravitational tidal field17

T :

Tij(x) =
1
a2

(
∂i∂jφ−

1
3
∇2φδij

)
. (47)

The continuity and Euler equations combine into an equation linking the shear
mode of deformation of fluid elements to the gravitational tidal field:

dσij
dt

+ 2
ȧ

a
σij +

2
3
θσij + σikσ

k
j −

1
3
δij(σklσkl) = −Tij . (48)

This is an important equation for the purposes of our study: it shows how the
tidal field induces shear in velocity flows. As can be seen from these Lagrangian
fluid equations, all quantities used are locally determined, except for the gravi-
tational field φ, which depends on the entire mass distribution in all of space.

The Zel’dovich approximation
In order to construct a framework for describing the nonlinear growth of struc-

ture purely from local quantities, the Zel’dovich approximation (Zel’dovich,
1970) takes the complete evolution of density, velocity gradient and gravity
gradient of any mass element to be fully determined by the initial conditions,

17The tidal tensor field Tij is the traceless part of the deformation tensor — equation 56.
Note that the tidal field and the shear field are equivalent in — and only in — the linear
regime.
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and independent of other mass elements. Despite the inane appearance of this
assumption, the Zel’dovich approximation has proven to be very apt, and an
instrumental contribution to the history of this study.

For a particle following a trajectory x(t), the initial comoving position
q ≡ x(t = tinit) is a unique indicator of that trajectory. Zel’dovich approx-
imates to first order the distance travelled at any time relative to q, denoted
x(1). By the grace of mass conservation, the density ρ(x, t) of a mass element
at any time and position dx can be related to the initial density, which equals
the average density of the Universe: ρ(x, t)dx = ρu(t)dq. Then, the density
perturbation δ(x, t) can be linked to the determinant of the Jacobian matrix of
the mass element’s displacement and deformation relative to its initial position:

1 + δ(x, t) =
ρ(x, t)
ρu(t)

=
∥∥∥∥∂x
∂q

∥∥∥∥−1

. (49)

The central assumption made in the Zel’dovich approximation is that the Jaco-
bian matrix ∂x

∂q is determined to first order:

∂x
∂q

=

 1 0 0
0 1 0
0 0 1

+
∂x(1)

∂q
, (50)

discarding higher order terms ∂x(n)

∂q . Then, its determinant is approximated in
terms of the divergence in Lagrangian initial space q, to 1 +∇q · x(1). So that

δ(1)(x, t) = −∇q · x(1). (51)

Entering this result into the Poisson equation yields our much desired localised
expression for the potential perturbation φ(1). Subsequently, the assumption
that the displacement x(1) is completely potential — i.e. ∇× x(1) = 0 — , the
Poisson equation can be manipulated to give the potential gradient:

∇φ(1) = −4πGρua2x(1). (52)

Via the Euler equation, this implies that the trajectory x(1) is governed by:

d2x(1)

dt2
+ 2

ȧ

a

dx(1)

dt
= 4πGρux(1), (53)

This is equivalent to the partial differential equation 23, for the linear growth
of density perturbations, and has the same solutions. As we have in section 2.3,
we discard the decaying mode solution, and we separate the solely t-dependent
Dδ(t) from a solely position-dependent quantity ψψψ(q). This is a purely poten-
tial vector field — like x(1) under our current assumptions — and can thus be
written as the gradient of a displacement potential field Ψ:

x = q−Dδ(t)∇Ψ(q). (54)

We can now relate this potential field gradient to the peculiar velocity:

v ≡ adx
dt

= −aDδHf(Ω)∇Ψ,
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while we already have an invaluable relation linking peculiar velocity to gravity
(equation 35). Combining these yields that the displacement potential field is

Ψ(q) =
2

3Dδa2H2Ω
φ(x, t), (55)

still a time-independent quantity.

There is a way to retrieve the sec displacement field ψψψ(q) from the spatial
distribution of the density perturbations. This utilises the relation between the
Fourier transforms of the density perturbation and the gravitational potential
field at the present epoch,

φ̂0(k) = −3
2

Ω0H
2
0

1
k2
δ̂0(k).

Combining this with our relation between the gravitational potential and the
displacement field (from equation 55) results in ψψψ(k) = −iek δ̂(k). This allows
the displacement vector field ψψψ(q) to be calculated from the initial density per-
turbations, determining approximately the formation of structure throughout
the linear regime, and even resulting in a reasonable approximation beyond.

Zel’dovich deformation tensor and anisotropic collapse
To this end, we introduce the deformation tensor18:

ψij =
Dδ(t)
a(t)

∂2Ψ
∂qi∂qj

(56)

It is always possible to define a coordinate system in which this tensor can
be written in a purely diagonal form. The axes then point along the principal
directions of the deformation, and the tensor is described completely by its
eigenvalues λ1, λ2 and λ3. The linearly extrapolated density perturbation δ(t)
can then be written as:

δ(t) = a(t)
∑
m

λm. (57)

As a result of this approximation, it is possible to take the tidal field to be
linearly proportional to the shear, (Hui & Bertschinger, 1996), with proportion-
ality − 3ΩH2

2Hf(Ω) . This proportionality violates equations 46 and 48, but allows for
a localised approach to simulating structure formation.

Only at the point where different streams of matter from different starting
points q meet each other does the Zel’dovich formalism really break down. The
approximation of immutable displacements sends mass elements onward on their
same old trajectory after this crossing takes place, which is incongruous with
the gravitational attraction between the streams that is induced in reality. The
main limitation of the Zel’dovich formalism is that it does not reproduce the
self-gravitation of structures.

A note of credit: the hierarchical formation of filaments and nodes is imme-
diately predicted from the Zel’dovich formalism, which was formulated in 1970.
Twenty-six years before the term ‘cosmic web’ was coined — see the introduc-
tion.

18Notice, through equation 55, that ψ is proportional to the Hessian of φ.

30



Velocity-density relations
As Nusser et al. (1991) have noted, building from the Zel’dovich formalism,

the extraction of a density from the velocity field can be done in two distinct
ways. One option, solving the continuity equation, results in a continuity density
ρc. Resting on the concept of Zel’dovich displacements, the continuity equation
can be written in terms of the Eulerian density δx and the Lagrangian density δq:

ρx(x)d3x = ρqd
3q (58)

Nusser et al. derive the continuity density as follows:

δc(x) =
∥∥∥∥∂q
∂x

∥∥∥∥− 1 (59)

=
∥∥∥∥I −Dδ

∂ψψψ

∂x

∥∥∥∥− 1 (60)

=
∥∥∥∥I − (Hf)−1 ∂v

∂x

∥∥∥∥− 1, (61)

where I is the identity matrix. As long as shell crossing does not occur, and the
velocity field is purely potential, the deformation tensor ∂ψψψ

∂x can be diagonalised
at any given x. The continuity density is then a function of the eigenvalues
λ1, λ2, λ3:

δc = (1−Dδλ1)(1−Dδλ2)(1−Dδλ3)− 1. (62)

The continuity density ensures that mass is conserved, but in general fails to
conserve momentum.

Alternatively, solving the equation of motion will conserve momentum but
generally violate the conservation of mass. Nusser et al. derive the dynamic
density ρd by inserting the Zel’dovich motions into the dynamical Euler-Poisson
equation. The resulting density

δd(x) = −(Hf)−1∇ · v = −DδM1. (63)

Like the continuity density, the derivation of the dynamic density rests on the
assumption of no shell crossing, but holds for rotational flows as well. The
relation between velocity and density in the quasi-linear regime is now a probe of
the differences between Zel’dovich displacements and the displacements brought
about by real gravity.

2.6 Gaussian random fields

For cosmological purposes, Gaussian Random Fields (GRFs) are the core con-
cept in the statistical analysis of matter distributions. The primordial density
distribution — that forms the initial conditions for all cosmic structure forma-
tion — is assumed to be Gaussian random. It is the product of the inflation of
quantum fluctuations.

The assumption that primordial density fields — and those derived from
density — are Gaussian rests on a few pillars. Among them are the fact that
inflation is assumed to generate Gaussian fluctuations; and the central limit
theorem, which states that the superposition of a large number of variables in-
dependently drawn from the same distribution is Gaussian. Also, convincing
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deviations from Gaussianity have yet to be found (e.g. Planck Collaboration
et al., 2015b).

A field that follows a homogeneous and isotropic Gaussian Random distri-
bution can be statistically specified completely by one single descriptor: the
power spectrum. It is within the framework of GRFs that we can specify the
most important properties of structure formation — e.g. the relative sizes of
collapsed structures; the manner of hierarchical structure formation; and the
(non)reciprocal influence exerted between large and small scale structures. Par-
ticularly the properties of the initial density — or gravitational potential —
distribution are of key interest, as they determine the most important aspects
of all structure formation that follows.

The analysis of physical quantities over a broad range of scales via a more
straightforward computational route — e.g. simulations — can become prob-
lematic. For example, the highest density peaks will always be rare, the semi-
analytical approach of GRFs is more suitable for such purposes. Seminal cosmo-
logical research on the topic of GRFs has been done by Adler (1981); Vanmarcke
(1983); Peacock & Heavens (1985) and particular credit goes to Bardeen et al.
(1986).

Gaussian random fields are fields of variables from a Gaussian distribution. The
initial conditions of structure growth — id est: the density fluctuations resulting
from inflation, observable through the Cosmic Microwave Background radiation
— are assumed to be Gaussian. This assumption has so far withstood rigorous
testing (see e.g. Fergusson & Shellard, 2009; pla, ????; Planck Collaboration
et al., 2015b).

In studies where measurements can be taken from various realisations of an
underlying physical system, a simple ensemble average over a suitable number of
realisation can straightforwardly provide a measurement and a corresponding
confidence level. However, astronomical observations are limited to only one
Universe. Fortunately, the ergodic theorem states that a spatial average over
a number of sufficiently small patches — sub-horizon scale — is an adequate
substitute to an ensemble average19.

The main statistical descriptor of a GRF is the power spectrum. In physical
terms, it is a measure of the ‘clumpiness’ of a realisation of the field. More
generally, a random (non)Gaussian field can be specified completely by the co-
variance matrix and the mean of the variables. After introducing these, the
GRF power spectrum will be defined. Following that, we will apply this theory
to cosmological structure formation, and present a more generally applicable
alternative: the lognormal distribution.

The covariance matrix and the correlation function
For a general M -dimensional random field f : RM → C, the N -point probability

function gives the probability that N specific points in space {x1...xN} satisfy
N specific values f(xi) = fi ∀i ∈ [1;N ] — i.e. f(x1) = f1 and f(x2) = f2 and
... and f(xN ) = fN . This N -point probability function looks like:

PN = P [f(x1), f(x2), . . . , f(xN )]df1df2 . . . dfN (64)

19Adler (1981) has shown that this requires the power spectrum — introduced momentarily
— to be continuous in k.
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The covariance function ξ(x1,x2) is a measure of the statistical dependence
between two points x1 and x2, it is defined as the following ensemble average:

ξ(x1,x2) = 〈f(x1)f(x2)〉. (65)

If the field is homogeneous and isotropic, the only thing that really matters is
the distance between the two points, and the correlation function ξ(|x1 − x2|)
gives a general feel of how smooth the field is. A large correlation between
points far apart implies a smooth landscape, low correlation between nearby
points characterises a more Himalayan scene. It can easily be shown that the
correlation of a point with itself equals the variance of the field’s underlying
distribution: ξ(0) = σ2.

Gaussian Random Field
For a Gaussian field with standard deviation σ, the 1-point function is

P1(y) =
1√
2π
σ2e−

y2

2σ2 . (66)

The N -point function is:

PN

N∏
i

dyi =
1

(2π)N/2
√
‖M‖

exp

−1
2

N∑
i

N∑
j

yi(M−1
ij )yj


N∏
i

dyi (67)

where M is the covariance matrix — and ‖M‖ its determinant:

M =


ξ(0) ξ(x1,x2) · · ·

ξ(x2,x1) ξ(0)

...
. . .

 . (68)

Power spectrum
Equation 65 can be worked out to:

ξ(x1,x2) =
∫

dk
(2π)3

P (k)e−ik·|x1−x2|, (69)

where P (k) is the power spectrum, defined as

(2π)3P (k1)δD(k1 − k2) = 〈f̂(k1)f̂∗(k2)〉 = 〈|f̂(k1)||f̂(k2)|〉, (70)

where δD(k) is the Dirac delta function, and the superscript ∗ denotes complex
conjugation. The power spectrum is the Fourier transform of the correlation
function.

The power spectrum of the initial density field of the Universe is extremely
influential for the formation of structure — see e.g. Little et al. (1991). It
measures the contribution of different spatial wavenumbers k to the fluctuations
in the field. If there is a lot of contribution from high wavenumbers, small scale
fluctuations will play an important role. They will collapse early, allowing for
a hierarchical bottom-up structure formation scenario. See the left column in
figure 4 for an illustration. However if there is a cutoff at some k, above which
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The power spectrum determines structure formation
Cold DM Warm DM

Figure 4: Two different power spectra (top row) and possible corresponding
one-dimensional density distributions (bottom row). The panels on the left
correspond to a ‘cold dark matter’ cosmology, in which high frequency compo-
nents dominate the spectrum, allowing for small scale activity and hierarchical
structure formation. The panels on the right show a ‘warm dark matter’ type
of spectrum, where structure below a cutoff scale does not occur.
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the power spectrum is zero, the longer wavelength components will dominate.
This implies a top-down scenario for the formation of structure — illustrated in
the right column of figure 4. A power spectrum where high frequencies dominate
— e.g. a power law with a spectral index n > −3 — is associated with a cold
dark matter cosmology (Peebles, 1982; Bond & Szalay, 1983). A power spectrum
dominated by low frequencies corresponds to warm dark matter.

Note that the Fourier transform f̂(k) contains all the information of a GRF
realisation, and is in general a complex number. Written in terms of its phase
and amplitude, f̂(k) = |f̂(k)|eiθ(k). Equation 70 shows that the power spectrum
of a field f is independent of its phases θ(k). While the power spectrum contains
crucial statistical information of a GRF, it is no descriptor of its field value at
any specific location.

GRFs in structure formation
From linear perturbation theory (section 2.3) it can be shown that the

assumption of initial density perturbations δ being a Gaussian field leads to the
velocity v and gravitational potential φ being Gaussian as well, following

Pv(k) = (Haf(Ω))2P (k)
k2

, (71)

and

Pφ(k) = (
3
2

ΩH2a2)2P (k)
k4

. (72)

This implies that the density field is dominated by small-scale fluctuations, ve-
locity by medium scale fluctuations, and gravitational potential by the larger
scale distribution of matter.

The primordial power spectrum — containing the seeds of structure growth
— emanates from the inflationary phase of cosmic history. This is predicted to
be a Harrison-Zel’dovich spectrum, a spectrum increasing linearly by wavenum-
ber, given by:

P (k) = Ak. (73)

A more general case is a power law spectrum

P (k) = Akn,

characterised by a slope A and a spectral index n. In combination with equa-
tion 72, this means that the variance of the gravitational potential σ2

φ obeys:

σ2
φ ∝ A

∫
d log k
(2π)2

kn−1. (74)

Therefore, a Harrison-Zel’dovich spectrum, with n = 1, results in a scale-free
contribution to potential perturbations.

Departing from the primordial state, the formation of structure involves an
evolution of the power spectrum. Physical processes generally have different
influences on different frequency ranges. During the linear regime, the distri-
butions retain a Gaussian shape, and the various Fourier components evolve
independently from each other. Still, processes like Silk damping may result in
a low-pass filtering.
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The lognormal distribution
While Gaussian random fields appear an adequate model for distributions in

the linear phase of structure formation, deviations form Gaussianity appear in
the nonlinear regime. An important example is the unbounded increase of den-
sity peaks under gravitational instability, and the spatial growth of underdense
regions. The density distribution then evolves away from a Gaussian curve.

To model this non-Gaussian distribution, Coles & Jones (1991) have sug-
gested a framework centred upon the lognormal distribution — illustrated in
figure 46 — to approximate the distribution of density perturbations evolving
away from initial conditions. The lognormal distribution is different from the
Gaussian, but can be arbitrarily close to it given certain combinations of its
parameters. For fields following a lognormal distribution, the same holds as
for GRFs: they can be statistically characterised completely by one covariance
function. In contrast to the Gaussian distribution, though, the lognormal is not
completely specified by its moments.

The lognormal distribution Y (r) is obtained by transforming a Gaussian
X(r) as follows:

Y (r) = exp[X(r)] (75)

An underlying Gaussian distribution with mean µ and variance σ2 then yields
the following lognormal one-point distribution function:

f1(y) =
1

σ
√

2π
exp

{
− (log y − µ)2

2σ2

}
dy

y
. (76)

Nota bene that µ and σ2 do not correspond to the mean and variance of the
lognormal distribution. It can easily be shown that the n-th moment about the
origin, µ′n, follows

µ′n = exp[nµ+ n2σ2/2],

so that the mean µ′1 is
µ′1 = eµ+σ2/2. (77)

The variance — the 2nd moment about the mean, µ2 — is then given by

µ2 = e2µ+σ2
(eσ

2
− 1).

For the purposes of this study, it is useful to determine the median, which is
given by

median(µ) = eµ. (78)

Having defined the one-point distribution function, a lognormal random field is
determined by the covariance matrix M:

fn(y1, ..., yn) =
1√

(2π)n‖M‖
exp

−1
2

∑
i,j

M−1
ij log(yi) log(yj)


n∏
i=1

1
yi
. (79)

This field, too, can be specified by a correlation function ξ(r). The reader is
referred to (Coles & Jones, 1991) for a detailed description.

Notice, from the one-point distribution function 76, that the values in a log-
normal distribution are confined to the support y ∈ 〈0;∞〉, which works in its
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favour as a potential descriptor20 for the density perturbation δ+1. Notice, also,
that by taking a sufficiently large mean relative to the variance, the lognormal
distribution can approach arbitrarily closely to a Gaussian. This property is of
obvious importance, since the initial conditions are assumed to be Gaussian.

The fact that observations of galaxies on the celestial plane can be well ap-
proximated by the lognormal distribution function (Hubble, 1934; Peebles, 1980)
is another motivation for the lognormal model. Also, the continuity equation
implies that the density grows as an exponential function of velocity divergence.

2.7 Velocity flows

The velocity field in a cosmological volume is a three dimensional vector field,
meaning that for each of three components, a spatial derivative with respect to
any of three spatial directions can be defined. The velocity gradient tensor is
the Jacobian of the velocity field:

∇v =


∂vx
∂x

∂vx
∂y

∂vx
∂z

∂vy
∂x

∂vy
∂y

∂vy
∂z

∂vz
∂x

∂vz
∂y

∂vz
∂z

 . (80)

This tensor contains all the information on the spatial change in velocity, but
there are three convenient quantities that describe different modes of the ve-
locity gradient: divergence θ, shear σ and vorticity ω. The velocity gradient is
retrieved by the following summation:

∂jvi =
1
3
θδij + σij + ωij , (81)

where δij is the Kronecker delta.
The illustrations in figures 5 and 7 are from the wikimedia commons, created

by Jorge Stolfi, and licensed under the Creative Commons Attribution-Share
Alike 3.0 Unported license.

Divergence
Divergence is defined as the sum of the diagonal components of ∇v.

∇ · v ≡ ∂xvx + ∂yvy + ∂zvz. (82)

In comoving space, there is the divergence θ:

θ =
1
a
∇ · v (83)

It is a scalar field, that measures the amount of outward pointing velocity from
a given point — a negative divergence indicates the velocity field converging
towards a given point. See panel (b) in figure 5 for an illustration of positive
divergence. It is this mode, together with the shear mode, that characterises a
potential flow — see section 2.3. In cosmological scenarios, the prominent cause
for negative divergence is a peak in density, e.g. a halo or a galaxy cluster, whose

20The lognormal model is a particularly simple descriptor for positive definite distributions,
and offers an analytical evaluation of various properties.
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(a)

(b) (c)

(d) (e)

Figure 5: Decomposition of a two-dimensional sample velocity field (panel a)
into its divergence (panel b), vorticity (panel c), and traceless shear (panel d).
Panel (e) shows the symmetric component of the velocity gradient, which is
the shear plus the divergence. Note that the generalisation into three dimen-
sionality is simple for the case of divergence: it is measured by the total inward
and outward flow in all spatial directions. Three-dimensional vorticity is —
like the two-dimensional case shown — characterised by one single rotational
axis. Two- and three-dimensional shearing motion can take on a large variety
of appearances. See text and figures 6 and 7 for details. Image: Jorge Stolfi
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(a) (b) (c)

Figure 6: Illustrations of pure shear (a), general shear (b) and simple shear
(c). Source: (Fossen, 2016).

depressed gravitational potential manifests a region of gravitational acceleration
pointing towards itself.

A positive divergence is usually related to the presence of an underdensity.
The continuity equation relates the expansion or contraction of a velocity field
to the density gradient:

1
ρ

∂ρ

∂t
= −∇ · v. (84)

This is a fundamental hydrodynamical relation, that holds in linear and non-
linear conditions. The typically large regions of space between clusters, fila-
ments and walls initially comprise only a slight underdensity. As the positive
density perturbations attract matter and collapse, the underdense regions are
drained and expanded. It is possible for the outflow of matter from these re-
gions to create a divergence greater than the Hubble expansion, but the great-
est possible divergence is determined by the greatest possible underdensity21

δ = −1 (Romano-Dı́az & van de Weygaert, 2007)

θmax = 1.5Ω0.6.

See the introduction for a brief description of voids.
The physical divergence Θ of a velocity field will be the comoving divergence

θ plus the global divergence due to the hubble expansion ΘH = 3H(t). The
hubble divergence is simply to be subtracted from Θ, to obtain the comoving
quantity.

Within the framework of linear perturbation theory, the divergence of the
velocity field is directly related to the density field — see equation 38.

Shear
The shear σ of a three-dimensional velocity field is a 3 by 3 tensor. The ij

component is defined as

σij =
1
2

(∂jvi + ∂ivj)−
1
3

(∇ · v)δij . (85)

21Romano-Dı́az & van de Weygaert show that 1.5 is the difference between H in Universes
characterised by Ω = 0 and Ω = 1. Note that void interiors characterised by a flat and
minimal density profile “locally mimic the behaviour of an Ω = 0 universe”.
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In comoving space, this quantity is divided by the scale factor a. From the
above expression, it is readily visible that it is always a symmetric tensor —
σij = σji. The shear defined in equation 85 is traceless, i.e.:

σxx + σyy + σzz = 0.

As a symmetric and traceless tensor, σ can be specified completely by five
independent components. Physically, shear measures the change of velocity like
in panel (d) of figure 5. Like divergence, shear can exist in a purely potential
velocity field.

The scalar quantity of shear magnitude can be defined as

|σ| =
√
σ2
xx + σ2

yy + σ2
zz + 2σ2

xy + 2σ2
yz + 2σ2

xz. (86)

This quantity traces the total amount of shear in any direction.
Note that the shear flow illustrated in figure 5 — panel (d) — is a spe-

cial symmetric case, referred to as pure shear. More generally, two-dimensional
velocity flows can also exhibit simple shear — see panel (c) in figure 6. A combi-
nation of the two results in general shear — panel (b) in figure 6. The extension
to three dimensions allows for various other shear patterns, all of them can be
specified by five independent components of the shear tensor.

Panel (e) in figure 5 shows the complete symmetric part of the velocity gra-
dient :

1
2

(∂jvi + ∂ivj).

This quantity is also referred to as strain, and it incorporates both shear and
divergence. As such it specifies completely the potential component of any ve-
locity flow. The strain tensor is symmetric but not traceless, so it is determined
by six independent components.

In the context of cosmological structure formation, the shear mode in ve-
locity flows is of great relevance in various ways. Firstly, shear is induced by
anisotropic gravitational potentials; and a manifestation of anisotropic velocity
flows in structure formation. Particularly, it is a major aspect of the formation
of filamentary and sheet-like structures. As such, the shear mode is a potent
agent and probe of structure formation. See figures 1 and 2 for visualisations of
this principle through N-body simulations. Equation 48 governs the evolution
of velocity shear, which depends on the tidal field T . It reflects that shear is
induced by anisotropy in the gravitational potential. See Bond et al. (1996) for
a more detailed discussion.

As an inextricable consequence of this, the shear mode of velocity flows can
be used to identify the components of the cosmic web — i.e. nodes, filaments,
walls and voids. Section 2.8 elaborates upon this. This study, too, relies on the
shear tensor for the classification of cosmic web components, see section 5.4 for
an explanation of our methods.

Furthermore, in Lagrangian theory — section 2.5 — it is derived that shear
has a nonlinear effect on the gravitational collapse of structures. The Raychaud-
huri equation 46 shows that shear accelerates the collapse of fluid elements.

Vorticity
As with the shear, the vorticity ω of a three-dimensional velocity field is a 3 by
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Figure 7: Velocity vorticity resulting from a simple shearing motion like in
panel (c) of figure 6. Image: Jorge Stolfi

3 tensor. It follows the definition:

ωij =
1
2

(∂jvi − ∂ivj). (87)

Vorticity, too, is divided by a to obtain the comoving tensor. This expression
clearly results in the vanishing of the diagonal elements, and shows that vor-
ticity measures the asymmetry in the gradient tensor, the difference between
the cyclic and contra-cyclic components. Vorticity is also called the antisym-
metric component of the velocity gradient. When ∂ivj and ∂jvi do not balance
out, a rotation about the k-axis is created. Panel (c) in figure 5 gives a two-
dimensional visualisation of this. In three dimensions, the rotation vector and
velocity gradient are related by the Levi-Civita symbol of their indices.

ωk = εkji∂jvi.

Note that vorticity is not only generated by ‘vortex-like’ velocity patterns
such as the one in figure 5. In fact, vorticity can be a part of a field characterised
by simple shear — panel (c) in figure 6. From the perspective of a point in the
middle of that diagram, there is a disbalance between the upper and lower flows;
velocities at neighbouring points may follow a pattern illustrated in figure 7.

From Lagrangian theory, we learn that vorticity has an inhibiting effect on
the collapse of structures. Notice that vorticity ω appears with the opposite
sign from shear σ in the Raychaudhuri equation 46. As with the shear, this is
only a nonlinear effect.

A potential flow has zero vorticity. As described in section 2.3, equation 30,
the rotational component of the cosmological velocity field in the linear regime
decays rapidly. Any vorticity in the Universe has to be generated at a later
epoch. It is only when different velocity streams start to overlap spatially that
vorticity can be generated — this scenario is referred to as shell crossing and
multi-streaming, see section 2.9 for a discussion.

Vorticity plays only a side role in this study. While it is certainly of interest
in nonlinear structure formation, there are nontrivial hurdles to be crossed in
the analysis of vorticity measurements. Section 2.9 will explain how vorticity
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measurements can be contaminated by a certain projection effect, due to the
projection of velocity streams from phase space onto physical space (Hahn et al.,
2015). A proper analysis of vorticity falls outside the scope of this project.

2.8 Velocity-based web classification

When trying to work out the type of environment a matter element is embedded
in at a certain scale22, one very straightforward approach would be to consider
the local density. After all, there clearly is a coarse density dependence between
voids, walls, filaments, and nodes23. This method has been employed by Lemson
& Kauffmann (1999); Macciò et al. (2006); Maulbetsch et al. (2007); Cautun
et al. (2013), but it is not the most reliable option, as very large overlap exists
between the densities spanned by different web components.

From a visual assessment of the cosmic web — through observations and
simulations — it is undeniable that the boundaries between nodes, filaments,
walls and voids are blurry. An unambiguous definition marking the boundaries
of these types of structures does not exist. This poses an epistemological chal-
lenge in the development of classification algorithms. It is inevitable that such
algorithms will rely on free parameters that — in the words of Hoffman et al.
(2012) — “cannot be determined from first principles”.

Among the parameters a web classification algorithm depends on is the spa-
tial scale at which structures are to be identified. Aragón-Calvo et al. (2007a)
has developed a way to circumvent this problem, by studying a volume at a range
of scales. This technique is called the multiscale morphology filter (MMF), and
its essence lies in defining a scale space. This is an extension of three-dimensional
space, by a fourth dimension which specifies the length scale at which space is
filtered. Cautun et al. (2013) extended this strategy in the formulation of the
web classifiers NEXUS and NEXUS+. The latter applies a lognormal filter ker-
nel to the density field, which results in a good resolution of structures spanning
several orders of magnitude in spatial scales. The local geometry of a mass field
is quantified by the Hessian — the second order derivative — of the density
field. The Nexus algorithms operate by determining the Hessian of a tracer
field24, and performing an eigendecomposition on that Hessian tensor. A study
of the eigenvalues allows for a local classification of the dimensionality of the
environment, and thus offers a way to identify cosmic web components.

Investigations of the eigenvalues of the shear tensor (e.g. Doroshkevich &
Shandarin, 1978a,b) are by no means a novelty, but the following literature
study will demonstrate their usefulness to the purpose of web classification.
Velocity-based web classification allows for a resolution high enough to study
the formation of haloes and galaxies (Hoffman et al., 2012). A study of the
geometry of velocity and potential fields allows a view on the dynamics of struc-
ture formation. Various studies have focused on velocity fields as tracers of the
cosmic web (e.g. Hahn et al., 2007; Forero-Romero et al., 2009; Hoffman et al.,

22One may want to do this since certain trends have been observed between properties of
(satellite) galaxies and sub-haloes and their types of environments (Dressler, 1980; Knebe
et al., 2004; Blanton et al., 2005; Avila-Reese et al., 2005; Gao et al., 2005; Libeskind et al.,
2005; Maulbetsch et al., 2007; Libeskind et al., 2011; Forero-Romero et al., 2011).

23This is very intuitive, it has been reported in many studies (Hahn et al., 2007; Cautun
et al., 2013), and it is readily visible in our results, see figure 41.

24In the case of Nexus, this can be the density, tidal tensor, divergence or shear.
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2012; Cautun et al., 2013; Tempel et al., 2014; Cautun et al., 2014; Fisher et al.,
2016).25

T-web: Tidal tensor eigenvalues
Hahn et al. (2007) have taken an important step in the development of this

method for the classification of cosmological environments. The equation of mo-
tion can be linearised (see also van de Weygaert & Bertschinger, 1996), yield-
ing26:

ẍi = −Tij(xk)(xj − xk,j), (88)

where Tij is the tidal tensor, the Hessian of the gravitational potential

Tij ≡ ∂i∂jφ.

From this, Hahn et al. determine, to first order, the dynamics around xi,
from the three eigenvalues of Tij . They argue that the eigenvalue signature of
the force field is related to the local morphology of the cosmic web. A positive

eigenvalue indicates a contraction along the direction of its corresponding
eigenvector; a negative eigenvalue indicates expansion. Therefore number of
positive eigenvalues — which can be [0− 3] for the non-traceless tidal tensor

— is linked to the dimensionality of the structure near xi.

# positive environment
eigenvalues: classification:

0 Void
1 Wall
2 Filament
3 Node

In 2009, Forero-Romero et al. improved this method with the requirement
that an eigenvalue exceeds a certain positive threshold λth, before it is counted
towards the classification signature. It was argued that this filters out the cases
in which only a very minimal collapse occurs — i.e. where 1 >> λi > 0. If
the threshold λth is too low, it will result in an overrepresentation of collapsed
regions, and an underrepresentation of voids. Conversely, a very high λth results
in a volume dominated by voids, where filamentary regions no longer reach from
nodes to neighbouring nodes27. Figure 9 — Figure 1 in (Forero-Romero et al.,
2009) — gives a concise visual explanation of this. For a properly normalised
Tij , Forero-Romero et al. find empirically that a threshold λth ∈ [0.2; 0.4] is
suitable for a visual reproduction of the cosmic web structures.

Classification on the basis of the tidal field has its drawbacks. The application
of this method requires that a spatial scale and threshold eigenvalue are chosen,
we elaborate on this soon. Another disadvantage is an inescapable consequence

25Other approaches to web classification have been explored too, e.g. Novikov et al. (2006);
Aragón-Calvo et al. (2007b,a); Sousbie et al. (2008); Bond et al. (2010a,b); Sousbie (2011);
Shandarin et al. (2012); Cautun et al. (2013) but this section will be limited to the direct
genealogy of the classification method used in this study.

26Hahn et al. do make the point that the Hubble drag term — the ȧ
a
v that appears in the

comoving Euler equation 16 — is discarded in this treatment, by considering the test element
to be “frozen in time”. ẍ then indicates a derivative “with respect to a fictitious time”.

27In the usual jargon, it is said that the volume is no longer percolated (Zel’dovich et al.,
1982; Shandarin & Zeldovich, 1989; Shandarin et al., 2004, 2010).
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Figure 8: Statistical distributions of density taken from four different types of
regions in numerical N-body simulations conducted in a study by Hahn et al.
(2007). The types of regions — voids, sheets, filaments and clusters — were
disentangled by the criterion of orbit stability — see text. Notice the large
degeneracy between density and region types, resolved by this method. Image
source: (Hahn et al., 2007)
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Figure 9: figure 1 from (Forero-Romero et al., 2009) shows the degree of per-
colation depending on the threshold eigenvalue. The top left panel shows the
logarithmic density field, the other panels show the web classifications resulting
from threshold eigenvalues λth ∈ {0.00, 0.20, 0.40, 1.00, 2.00}. In these plots,
black regions indicate nodes, dark grey indicates filaments, pale grey indicates
walls and white regions are voids. As higher threshold λth are taken, notice the
increase in void volume, the decrease in nodes and filaments, and the decrease
in percolation.
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V-web T-web

Figure 10: V-web (left) and T-web (right) classification of the same simulation
volume. The same colour codes are used as in figure 9. Notice (i) that the
V-web classification resolves compact features far better; and (ii) the double-
spined appearance of underdense walls in the V-web.

of the nature of the potential field.
Recall from section 2.6 — equation 72 — that the gravitational potential is

determined by the matter distribution on large scales. This has an important
consequence for the identification of cosmic web structures based on the tidal
tensor. At a given point, some distance away from a massive region — e.g.
in a void, neighbouring a filament — this classification method will detect an
anisotropic gravitational force, due to the long-range effect from that filament.
A large part of the void will thus be classified as a filament.

Velocity flows are dominated by comparatively smaller ranges, and thus offer
a finer resolution as tracer of cosmic web structures.

V-web: Web classification by velocity shear
Hoffman et al. (2012) formulated a method, based on velocity shear, rather than
the tidal tensor. They coined the term “T-web” to refer to web classification
based on the tidal tensor, while the term “V-web” is introduced to denote the
velocity as basis for classification. Given the relationship between the tensors
used, these two methods yield identical results in the linear regime, and deviate
towards nonlinear structure growth. Specifically — see equation 35 —

v =
2f

3HΩ
g, (89)

which implies

σij =
2f

3HΩ
Tij . (90)

Hoffman et al. find that web classification based on the tidal tensor with
a threshold λth does not resolve structure on sub-Mpc scales. Density goes
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nonlinear faster than velocity or gravity — see Kitaura et al. (2012) for an
explicit study. This leaves the velocity field as a better descriptor of the initial
conditions; and the initial conditions determine the appearance of the cosmic
web (Zel’dovich, 1970; Bond et al., 1996).

This motivates a classification based on the non-traceless shear tensor Σij :

Σij = − 1
2H0

(
∂vi
∂rj

+
∂vj
∂ri

)
. (91)

The V-web classifier counts the number of eigenvalues Σij possesses above a
free threshold λVth. Hoffman et al. find this classifier to be “much superior [...]
compared with the T-web”. See figure 10 for a comparison. They find walls
to be generally underdense — δ < 0 — regions, and filaments to be generally
overdense28. Pogosyan et al. (1998) have found a correspondence between the
density and local geometric properties of the shear field.

Interestingly, the V-web identifies some underdense sheet-like structures that
appear like parallel caustics enclosing an inner planar region with positive di-
vergence29. Aragón-Calvo et al. (2010); Hoffman et al. (2012); Rieder et al.
(2013) find sheets to contain partially collapsed filaments, themselves contain-
ing very compact non-linear nodes. The V-web classifier boasts a nearly perfect
match between spatial distributions of density and velocity divergence, which
is in agreement with full nonlinear theory of gravitational instability. The oc-
currence of converging flows in underdense regions, then, are seen as purely
nonlinear effects, and classified as walls.

Parameters
When developing a model for physical phenomena, it is preferable to rely on as

few free parameters as possible. Ideally, the values adopted for all parameters
used in a model can be unambiguously justified — e.g. from first principles.
A model that manages to be descriptive of a wide range of phenomena with-
out requiring that many variables are ‘tweaked’ to fit observations is a strong
model. The issue with the structures in the cosmic web is that they are — even
by eye — hardly well-delineated. Boundaries between cosmic web components
are gradual, and an unambiguous framework dividing them has not been formu-
lated. It is for this reason that various free parameters had to be incorporated
in the web classifiers described above.

The filter scale is the length scale at which the input field is filtered. While
this is a free parameter in most web classifiers, it does reflect the fact that
structures occur at various scales. Rather than introducing an arbitrary choice
inherent to the cosmic web model, regulating the filter scale allows us to probe
ranges of the scale hierarchy.

The fact that an eigenvalue threshold λth appears to be necessary in order
to prevent misclassification is a direct consequence of the ill-defined nature of
the cosmic web. The cosmic web does contain structures that collapse only very
slightly along a given direction, which should not realistically be counted to-
wards its dimensionality. For example: our study finds many large void regions

28In this study, we define walls to be overdense oblate features; underdense oblate features
are called oblate collapsing void regions.

29Our study reproduces this result with a somewhat different web classifier — see section 6
— we dub this artefact “double-spined” features.
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Figure 11: Illustration of white caustic lines on a blue background. Image
from the public domain, created by Piotr Siedlecki.

that collapse very slightly in one direction, and are thus classified as oblate
collapsing void regions. The effects of various choices for the threshold eigen-
value are illustrated in figure 9 — from Forero-Romero et al. (2009), who had
to choose λth empirically.

The NEXUS(+) algorithms rely only on a lower filter scale, and a total
dynamic range determined by the number of filter scales. As long as these pa-
rameters are chosen such that they span a sufficiently broad range, the results
should have no dependence on those choices. The signatures for cosmic web
components are determined via procedures that do not depend on any free pa-
rameters.

The web classifier used in this study is based on the non-traceless shear ten-
sor, and makes no arbitrary assumptions to the eigenvalue threshold — it takes
λth = 0. Details on this method are presented in section 5.4, and a discussion
can be found in section A.

2.9 Shell crossing and the generation of vorticity

In the strongly nonlinear phase of structure evolution, it is possible for different
velocity flows to overlap spatially. A mass element’s Lagrangian position q is
defined as its initial Eulerian position

q ≡ x(t = 0). (92)

Throughout the linear regime, the mapping between Lagrangian and Eulerian
positions is bijective for each mass element: the Lagrangian position can be

48



Figure 12: This illustration shows a section of the dark matter sheet in one
spatial dimension (horizontal) and velocity vertically. The sheet links points
that are close in Lagrangian space. The blue line shows the result of an inter-
polation using only physical positions and discarding all velocity information.
An interpolation in phase space — red line — is far smoother. Source: (Hahn
et al., 2015)

unambiguously retrieved from solely the Eulerian position. This no longer holds
when velocity flows overlap, e.g. as particles i and j coincide,

x(qi) = x(qj). (93)

The overlap of velocity flows is referred to as shell crossing and multi-
streaming. This results in sharp density enhancements, spatial patterns equiva-
lent to caustics formed by light rays that are bent through a wavy translucent
material. See figure 11 for an illustration.

In essence, the Zel’dovich formalism (Zel’dovich, 1970) of mass element tra-
jectories originating at an initial potential field — with some spatial correlation
— already predicts the formation of three-dimensional caustics — see equa-
tion 54. The Zel’dovich approximation predicts that flattened caustics form
first, followed by elongated ones. It is in these places that strong nonlinear ef-
fects on the velocity flows occur. In the general case, the approximation of the
velocity field as a purely potential flow breaks down at this point, and vorticity
can be generated.

Measurements in phase space
As different streams cross each other, a mere interpolation — e.g. Delaunay

estimation, see section 4.5 — between spatially neighbouring particles implies a
mixing of estimations from different streams. A potentially broad range of veloc-
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(a) (b) (c)

Figure 13: Projection of the dark matter sheet onto a two-dimensional Eu-
lerian space. Panel (a) shows an early time frame, panels (b) and (c) show
consecutively later ones. Notice the buckling of the dark matter sheet, and
the corresponding formation of multi-stream regions in Eulerian space. Images
created by Johan Hidding.

ities, with no discernible spatial structure, leads to great spurious fluctuations in
the velocity measurements, this is illustrated by the blue line in figure 12 (Hahn
et al., 2015). In 2012, Abel et al. developed a method to disentangle the veloc-
ities from different streams and make clean velocity estimations.

This method employs the Lagrangian coordinates of particles, to link those
in any stream together, into a dark matter sheet. Figure 12 gives a schematic
view of a dark matter sheet folded in a phase space rendered in one spatial di-
mension and one velocity. The crossing of streams is equivalent to the twisting
of the sheet, so that streams with different velocities occur at the same spatial
location — figure 13 gives a visual impression of how this forms caustics in Eule-
rian space. Abel et al. made use of the fact that particles linked together in the
sheet are also neighbouring in Lagrangian space. A Delaunay tessellation — see
section 4.5 — is made of the particles in Lagrangian space, and its connectivity
is remembered throughout the evolution of the system. Interpolations between
measured particle quantities are then carried out on the basis of these tetrahe-
dra, even though they generally no longer satisfy the Delaunay condition30. The
quantity f at position x is then estimated by averaging the interpolated quan-
tities f̂ (i)(x) from all the tetrahedra i containing x. This averaging is weighted
by the density ρ̂(i) at the tetrahedron:

〈f〉(x) '
∑
i ρ̂

(i)(x)f̂ (i)(x)∑
i ρ̂

(i)(x)
. (94)

This results in a much smoother estimation — one “respecting the phase-space
connectivity” — illustrated by the red line in figure 12.

Now that an operator 〈 . 〉 for estimating — or projecting onto physical
30id est: the tetrahedra used for linear interpolation generally become stretched into less

compact shapes. The cost is that this brings greater uncertainties in the interpolation — see
section 4 for details.
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space — is defined, any derivative of the projected quantity must also include the
derivative of the projection operator. Hahn et al. (2015) provide the following
expressions for the divergence:

∇ · 〈v〉 = 〈(∇ log ρ) · (v − 〈v〉)〉+ 〈∇ · v〉, (95)

and for the vorticity:

∇× 〈v〉 = 〈(∇ log ρ)× (v − 〈v〉)〉+ 〈∇ × v〉. (96)

In both expressions, the first term is “purely due to the projection of a multi-
stream field [...], and [...] reflects alignment of velocities with density gradients”.
Note that the second term in the vorticity expression vanishes for a potential
flow. The vorticity “is a property of the projected velocity field alone”. These
derivatives of the bulk velocity field are well behaved across the discontinuities
in caustics.

In the practice of analysis of the vorticity field, this projection effect has
an important implication. The observable is the left-hand-side of equation 96,
which is not purely the vorticity 〈∇×v〉, but rather the vorticity contaminated
by the projection term. This requires caution to disentangle the two from any
vorticity measurements. Failure to do so will result in a — partial or entire —
false vorticity signal31.

In collapsed structures in their simulations, Hahn et al. found the corre-
lation between density and velocity divergence to reverse after shell-crossing.
From linear theory it follows that ∇ · v ∝ −δ, but inside caustics, high mass
predominantly induces a larger divergence. Only in the innermost regions of
collapsed structures is the correlation still consistently negative.

An analysis of the effects of the stress tensor — i.e. extended perturbation
theory — through the new lense of the phase space sheet tessellation method
has yet to be carried out.

31It is with the eye on this caveat that the present study remains reserved in drawing
conclusions from vorticity analysis.
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3 Cosmological Simulations

N-body simulations are an inherently Lagrangian approach to simulating struc-
ture formation. In such a simulation, the trajectories of a large number of
particles are approximated, by calculating the forces acting on the particles at
each step in a discretised time line. The types of simulations that have been
carried out are very diverse. They can contain various combinations of cosmo-
logical components, account for various combinations of physical effects, and
work by various numerical methods that have been developed in recent decades.

N-body simulations have been used for the investigation of all aspects of
structure formation: galaxy cluster populations, gravitational lensing, baryonic
acoustic oscillations, internal properties of dark matter haloes, halo formation
and evolution, statistical properties, etc. (see e.g. Evrard et al., 2002; Wambs-
ganss et al., 2004; Springel et al., 2005; Teyssier et al., 2009; Kim et al., 2009;
Crocce et al., 2010; White et al., 2010; Klypin et al., 2011; Ishiyama et al., 2013;
Vogelsberger et al., 2014).

3.1 Parameters

Resolution and Dynamic range
The particles in a simulation are usually confined to a box of a fixed size, with

periodic boundary conditions. The spatial resolution applies to grid-based meth-
ods that the simulation relies on — like field estimation and the PM method;
see sections 4 and 3.2. The mass resolution of a simulation is a measure of the
particle mass. For objects containing any given total mass, a simulation with
higher mass resolution will render it as being comprised of a larger number of
individual particles. Conversely, too high a particle mass does not allow the
dynamical processes of low-mass objects like small haloes and dwarf galaxies to
be resolved to great detail.

The dynamic range of a simulation is the difference between the smallest
and largest scales at which structures are simulated. A large dynamic range is
computationally costly, as it requires a sufficiently high resolution as well as a
sufficiently large box. Simulations with a large dynamic range allow the simul-
taneous investigation of large and small scale processes happening in the same
volume. This makes it possible, for example, to study the effects of structures
across scales; and to generate a large bias-free sample of small scale objects
from the same environment (Ishiyama et al., 2013). Given a total dynamic
range that can be simulated with available computation power, there is still the
choice as to which scales to focus on. To illustrate the possibilities: the millen-
nium simulation (Springel et al., 2005) and the Cosmogrid simulation (Ishiyama
et al., 2013) both have a roughly comparable dynamic range — both contain
comparable numbers of particles. However, while the millennium simulation
volume spans 500 Mpc in each direction, and is limited to a mass resolution of
1.2·109M�; Cosmogrid spans only 30 Mpc and consists of 1.28·105M� particles.

The scale of homogeneity — see also the introduction — indicates the dis-
tance scale above which structure appears to be homogeneous. Estimates of this
scale at the present cosmological epoch vary from 70 Mpc to several hundreds
of Mpc. Boxes larger than the scale of homogeneity bring the benefit of enclos-
ing a representative portion of the cosmology they implement — a sufficiently

52



large box can contain a representative sample of even the rarest objects, and
large-scale processes like velocity flows. A box size that is appreciably shorter
than the scale of homogeneity introduce the risk of containing a volume that is
not representative of the intended cosmology — for example, a small box may
happen to be dominated by a large central void, causing the overall expansion
to be greater than the Hubble expansion32.

Another disadvantage of a limited box size is what we call the fundamental
mode problem, which is discussed in section A.3. In brief, all structures need a
box significantly larger than their spatial scale, in order to be represented well in
Fourier space — all structures have a maximum wavelength contribution to the
Fourier transform, called the fundamental mode. The fundamental modes for
the largest structures require a large box to be reliably rendered. Particularly
at low redshifts, large structures appear, and a 30 Mpc box is insufficient for
rendering them accurately. Appendix A.3 presents a more detailed explanation.

As for resolutions, it stands to reason that high spatial and mass resolu-
tions make it possible to resolve small objects. For an accurate depiction of
the generation of nonlinear velocity flows, a high resolution is crucial (Pueblas
& Scoccimarro, 2009) as they occur at very small scales. The application of
Fourier operations33 at low spatial resolutions introduces the risk of aliasing —
discussed in section A.3 as well. For the simulation of small scale structures, a
sufficient temporal resolution is of importance, too. This is because they have
relatively high overdensities, which implies small dynamical time scales (Springel
et al., 2005).

While box sizes are preferably large, and resolutions are preferably high,
they come with a certain computational cost. Based on the amount of avail-
able computing power, one has to decide upon a trade-off between the two:
between representativeness and accuracy of large scale structures on one hand,
and resolution of small scale objects and nonlinear processes on the other. The
box size and resolution can be therefore chosen on the basis of the goals of the
simulation.

Components
While the gravitational interactions between cold dark matter particles are by

far the dominant driver of structure formation, a more realistic simulation may
be obtained by the inclusion of other components, as well as the implementation
of other physical interactions. The Universe around us contains baryonic mat-
ter, radiation, and dark energy. Among the physical processes that are known
to be of influence to structure formation are pressure, dark energy, relativistic
gravity, magnetic forces, radiative processes, hydrodynamic processes, star for-
mation, and various feedback interactions (Iliev et al., 2006; Dolag & Stasyszyn,
2009; Li & Barrow, 2011; Vazza et al., 2014; Marinacci et al., 2015; Schaye et al.,
2015). When these processes are incorporated in a simulation, it is often in some
simplified form, they are referred to as sub-resolution physics (Springel & Hern-
quist, 2003).

The degrees to which these processes influence structure formation vary be-
tween time scales — see the gastrophysics treatment in Baugh (2006), and refer-
ences therein. A recent example of advanced N-body simulations including gas

32And this happens to be the case for the Cosmogrid simulation.
33e.g. convolution or differentiation via Fourier space.
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physics is the illustris project (Vogelsberger et al., 2014). It has over 18·109 par-
ticles in a (106.5 Mpc)3 box, with a mass resolution in the order of 106M�, and
hydrodynamics resolved down to 48 pc cells. It simulates chemical enrichment
of gas, and stellar evolution, to name just a few of many aspects.

Cosmology
The currently widely accepted ΛCDM model has it that the Universe consists

mainly of Cold Dark Matter and Dark Energy (Peacock, 1999). It specifies
the present matter content Ω0 to be 0.3, the Dark Energy content ΩΛ to be
0.7, and the Hubble parameter H0 = 70 km/s/Mpc. The mass fluctuation
parameter σ8 indicates the amount of fluctuation in density over a distance of 8
Mpc, and is determined to be σ8 = 0.8. The power spectrum of initial density
perturbations is assumed to be a power law with index n = 1.0 — see section 2.6
for a background.

These parameters are set when simulating a Universe. It would be the most
sensible thing to match one’s simulated cosmology with the parameters from
observations. The most recent and precise measurements to date come from
the Planck mission (see e.g. Planck Collaboration et al., 2015a). The ΛCDM
model with these parameters fits well with the temperature and polarisation
measurements from the Cosmic Microwave Background.

In the practice of designing simulations, the statistical properties of the
initial conditions are specified by a power spectrum — see section 2.6. The
power spectrum is commonly assumed to be a power law with some spectral
index n ' 1.0 The integration of positions and velocities in comoving space —
see the next subsection — is dependent on the values for Ω0 and ΩΛ.

3.2 Methodology

The core operation in any N-body simulation is calculating the evolution of
every particle’s position and velocity at every time step. Particles obey the
following equations of motion: 

∂x
∂t
∝ v

∂v
∂t
∝ F

(97)

which govern the positions x and velocities v of a particle, depending on the
total accelerating forces F acting upon it. This operation can be broken down
into two steps: (i) integrating the particle positions and velocities across discrete
time frames, and (ii) calculating the forces necessary for the next iteration.

Integration
For a computer to integrate the particle trajectories through a discrete set of

time steps, the method of leapfrog integration is very suitable — see figure 14
for an illustration. The essence of this approach is that updates to the positions
x and velocities v take place alternatingly in time — e.g. positions at integer
time steps xi and velocities at odd-half-integer time steps vi±1/2. Updating
these quantities follows these equations:

xi = xi−1 + vi−1/2 ·∆t; (98)
vi+1/2 = vi−1/2 + F(xi) ·∆t, (99)

54



Figure 14: Visual diagram of leapfrog integration. Positions are updated at
whole integer time steps, velocities at odd-half-integer steps. The fact that the
two quantities are updated alternatingly lends stability to the results.

(a) (b)

Figure 15: Two-dimensional visualisation of the tree code (Barnes & Hut,
1986). Both panels show a simulation body comprising 5000 particles. The
left panel shows the entire tree with Nleaf = 1, so that each subcell contains at
most one particle — note that in this case cells are divided by four, not eight
as in the three-dimensional case. The right panel shows a tree of only 146
subcells, which are used for the force calculation on a particle in the middle of
the diagram. Small and distant ensembles of particles can be taken together
into few subcells without a substantial loss of accuracy. Diagrams are from
wikimedia commons, created by eclipse.sx
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where ∆t is the duration of the time step, and F(xi) is the force acting upon
a particle at position xi at time step i. These equations are easily rewritten so
that updates can be carried out simultaneously, once per time step. Then, the
method is still founded upon positions and velocities playing leapfrog with one
another, which brings a few crucial advantages over other integration schemes:
firstly, it is a second order yet very simple integrator. Also, it prevents the
unbounded increase of particle positions and energies34. One requirement is
that the time step ∆t is constant (Birdsall & Langdon, 1985). For the purposes
of cosmological simulations in comoving space, integration is conducted over a
discretised sequence of steps in the expansion factor ∆a, rather than time. This
means a nonlinear progression of redshift.

In each and any time step of a simulation, the forces acting upon all parti-
cles need to be calculated. In the case of long range forces — like gravity —
all particles influence all other particles to some degree. For a discrete time
step, it is possible to calculate the forces from every particle onto every other
particle in the system — to this end, Aarseth (1963) has developed the Particle-
Particle (PP) method — with an arbitrary number of particles Np. The prob-
lem, though, is that the number of calculations required to do this scales with
N2
p .

Hockney & Eastwood (1981) have described a method that can replace the PP
calculation on large ranges. It sacrifices some accuracy at small scales for a
great acceleration of the computation. This is called the Particle-Mesh (PM)
method, and it involves determining a potential — and then a force field — at
a regularly distributed set of mesh points, by solving the Poisson equation on a
grid, via Fourier transformation. From there, the forces acting on particles are
interpolated between the mesh points. Hockney & Eastwood (1981) have sug-
gested that the PM method be used in combination with an additional scheme
acting upon individual particles at smaller scales, with forces confined to a cut-
off radius rcut. A combination with the PP method is referred to as the PPPM
or P3M method. See also Efstathiou et al. (1985); Efstathiou (1986a,b).

A technique that can be used to supplement the PM method for calculating
small scale particle forces was developed by Barnes & Hut (1986). Their algo-
rithm erects a hierarchical tree of cells: each cell containing more than a set
number Nleaf of particles is divided into eight cubic subcells — and this is done
recursively, until all cells contain at most Nleaf particles. Figure 15 gives a
two-dimensional visualisation of this.

In principle, method for force calculation is a dicretised version of a multipole
expansion; it depends on an opening angle θ, which determines the threshold
size and distance of particle clusters to be incorporated in the calculation. The
tree of subcells is built from scratch at every time step. Using these subcells
for particle force calculations brings the advantages of being accurate at a large
range of spatial scales, and being far less biased by grid axis orientations. Fur-
thermore, the number of calculations required this way scale only as Np logNp.
This method was combined with the PM algorithm in the development of the

34because it is a symplectic integrator: it conserves the area spanned by the particles’
velocity and momentum vectors in phase space (Ruth, 1983).
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TreePM technique (Xu, 1995; Bode et al., 2000; Bagla, 2002; Bode & Ostriker,
2003; Yoshikawa & Fukushige, 2005; Khandai & Bagla, 2009).

Division of labour
The most computationally demanding simulations benefit from being run by a

cooperation of several computers in parallel. In this case, each of the processes
must cover a sector of the simulation volume, and communicate long range
forces as well as the positions of particles crossing the sector boundaries. To
this end, Ishiyama et al. (2009) have developed a parallelised TreePM algorithm
called GreeM35. In the GreeM procedure, each process determines a density on
the PM grid points by means of the TSC — see section 4.2 — estimator, and
exchange the density estimates with all other processes, to interpolate the PM
forces on all particles. Next, the processes construct the trees from particles in
their own sectors, and calculate the PP forces on those particles; this entails the
communication of tree information stemming from within the PP cutoff radius
rcut from particles in other sectors. When the displacements resulting from PM
and PP forces send particles across sector boundaries, they are adopted by the
appropriate process (Ishiyama et al., 2009).

A more recent method of parallelisation for N-body simulations is the SUSHI
code (Groen et al., 2011). Like previous methods, it works by a combination of
PM and tree methods, but the distribution of sectors over different processes is
reevaluated at every time step, to maintain a balanced distribution of labour.
At the macro level of computers at remote locations, SUSHI connects each site
with only two others, resulting in a ring topology. The Cosmogrid simulation
marks an important step in the spreading of N-body simulations as a globally
operated endeavour.

Gastrophysics and the Gadget code
When a simulation includes gas, radiative cooling and star formation, the Gad-

get code — for GAlaxy with Dark matter and Gas intEracT — is a suitable
framework. The code was introduced in 2001 (Springel et al., 2001) and a new
version was published in 2005 (Springel, 2005). Currently, it is a contribution
of key importance to the field of cosmological N-body simulations.

Gadget uses the Tree algorithm, but with Smooth Particle Hydrodynam-
ics (SPH) (Monaghan, 1992; Springel, 2010) — see also section 4.2. The SPH
scheme aims to solve the fluid equations on the basis of particles. A fluid is
represented by smoothed, interacting particles with thermodynamic properties.
This is achieved by a smoothing kernel that can adapt in size for every particle
separately, depending on the sampling density in its immediate environment.
This allows the use of small kernels in high-density areas and large kernels in
low-density areas, resulting in a better resolution in dense regions as well as low
noise levels in sparse regions.

An extension to the Gadget code has been made to incorporate radiative
transfer in the simulation (Petkova & Springel, 2009). The Gadget code formu-
lates a specific file format, where particles of various types and masses are stored.
At present, the Gadget format is widely used for the storage and communication
of simulation data.

35where the ‘G’ stands for GRAPE (Sugimoto et al., 1990; Makino & Taiji, 1998; Makino
et al., 2003), a system for facilitating parallel computation between units with high latency,
e.g. supercomputers located continents apart.
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Initial conditions
It is by virtue of the Zel’dovich formalism that we can construct the initial

conditions for an N-body simulation in an efficient and natural way (Klypin
& Shandarin, 1983). The procedure starts with the generation of a random
Gaussian initial density field36 δ0(q), with the desired power spectrum P (k).
The Zel’dovich displacement field ψψψ(q) is determined by the density Fourier
components of the field:

ψψψ(q) =
∫

dk
(2π)2

(
−i k
k2
δ̂(k)

)
e−ik·q. (100)

The Fourier components δ̂(k) are conveniently determined if the positions are
placed in a regular cubic grid37. Next, the initial particle positions are calculated
by a small Zel’dovich displacement,

x(q) = q +Dδ(t)ψψψ(q), (101)

and the particles are given an initial velocity

v(q) = aDHf(Ω)ψψψ(q), (102)

from where the integration can take off.
The initial density values δ0(q), are to be drawn from a Gaussian distribution

with the specified power spectrum (Bardeen et al., 1986)

〈δ̂(k)δ̂∗(k)〉 ∝ P (k). (103)

The construction of a GRF with specific constraints — e.g. ‘proto-voids’ or
density peaks with a specific height shape, and such constraints to reproduce
the observed universe (van de Weygaert, 1991; van de Weygaert & van Kampen,
1993; Ganon & Hoffman, 1993) — is no trivial task (Binney & Quinn, 1991).
Bertschinger (1987); Hoffman & Ribak (1991) developed an elegant algorithm
that works by constructing analytically the mean constraint field, and adding a
statistically independent residual GRF. van de Weygaert & Bertschinger (1996)
have implemented this Hoffman-Ribak method by calculations in Fourier space.

Bertschinger (2001) has developed a computational package called GRAFIC
— facilitating the generation of Gaussian RAndom Field Initial Conditions. A
Gaussian random density field δ(x) is made by the convolution of white noise
ξ(x) with a transfer function T (x) (Salmon, 1996). White noise is a very plain
type of field, with power spectrum

〈ξ̂(k1)ξ̂(k2)〉 = δ3
D(k1 + k2); (104)

the transfer function is related to the power spectrum of the initial density field.
Recall from section 2.6 that the primordial power spectrum is expected to be of
the Harrison-Zel’dovich type. The transfer function incorporates the evolution

36note that q denotes the initial — or Lagrangian — positions.
37For those bothered by the risk of orientation-bias due to a regular grid, there is the

alternative of glass initial conditions (White, 1996), where a homogeneous random set of
initial particle positions is determined by a number of Lloyd iterations (Lloyd, 1982) upon a
random spatial sample of generating points.
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Figure 16: Dark matter density from five different slices of the Millennium
simulation — at z = 0. Each slice is 15h−1 Mpc in thickness, and planar scales
are given. The lower two images comprise several slices from the periodic box
— sliced at an angle, to avoid repetition of structures. The faintest galaxies
of 0.1L? consist of at least 100 particles.

of the power spectrum, reflecting the physical processes in structure formation.
The convolution is discretised on an adaptive mesh grid with periodic boundary
conditions, the range of length scales that can be represented depends on the
size and resolution of the grid, see section A.3 for a description.

Prunet et al. (2008) have extended this GRAFIC package so that it can be
used by various computing platforms, simultaneously generating initial condi-
tions for one and the same simulation. This is done by a Peano-Hilbert decom-
position of the simulation volume, which assigns a simply connected region of
space to an arbitrary number of computing processes. Since the Message Pass-
ing Interface library was used for communication, Prunet et al. have dubbed
the extended package MPGRAFIC.

3.3 Cosmogrid

Predecessor — the Millennium simulation
The Millennium simulation (Springel et al., 2005) was conducted by the Virgo

Consortium in 2005, as a method for testing the inflationary Λ cold dark matter
model. Springel et al. implemented new techniques to follow the evolution of
structures in the simulation. For the aim of comparing simulation results to
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Parameter Value
Matter density parameter (ω0[sic!]) 0.3
Cosmological constant (ΩΛ) 0.7
Hubble constant (H0) 70.0 km/s/Mpc
Mass fluctuation parameter (σ8) 0.8
Box size (30 Mpc)3

Softening scale 175 pc

Table 1: Cosmological parameters used in the Cosmogrid simulation.
Source: (Groen et al., 2012).

redshift surveys, the simulation is required to be large enough to representa-
tively sample rare objects; but at the same time, small scale structures must
be resolved as well. As an answer to this challenge, the Millennium simulation
spans a volume of (500 Mpc)3, containing 21603 particles of 1.2 · 109M� each.
Figure 16 gives a taste of the dynamic range achieved.

The study of galaxy formation and evolution also requires a treatment of
physical aspects like the interstellar medium, star formation, galactic winds,
metallicity, feedback from Active Galactic Nuclei and other aspects. Springel
et al. have supplemented the simulation with what they call ‘post-hoc’ mod-
elling of these physics. The semi-analytic models are applied to the merger trees
of haloes in the simulation, and includes a treatment of the dark matter sub-
structure. It works by integrating a number of differential equations for all the
galaxies in the merger tree. These equations describe processes like radiative gas
cooling, star formation, black hole growth, various feedback processes and more.

The Millennium simulation was conducted with a version of Gadget2 (Springel
et al., 2001; Springel, 2005); and force calculations were done with the TreePM
method described above. Initial conditions were constructed by a random
Zel’dovich displacement of particles in an initial glass configuration (White,
1996) — see also footnote 37.

Cosmogrid
This study uses data from the Cosmogrid simulation (Ishiyama et al., 2013).

This simulation offers a very high spatial and mass resolution, since it was
created for the main purpose of studying the statistics of small dark matter
haloes. While velocity flows are inherently a large scale phenomenon — recall
from section 2.6 that

Pv(k) ∝ P (k)
k2

; (equation 71),

— the aim of this study is to investigate the nonlinear formation of structure
on small spatial and mass scales. For that reason, we appeal to the Cosmogrid
simulation. Its main run contains 20483 particles; however, due to limited avail-
able computational power, this study is based on a 5123 particle run.

Cosmogrid — see figure 17 for an impression — is a cosmological N-body
simulation, with a periodic box of (30 Mpc)3, and containing as many as
20483 ' 8.5 · 109 particles. This is comparable to the number of particles
used in the famous Millennium Run simulation (Springel et al., 2005). The
cosmological volume in that simulation spanned 500 Mpc along each axis. The
Cosmogrid body is far more compact.
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Figure 17: Slice of the Cosmogrid simulation body at z = 0.0, the thickness of
the slice is 0.6 Mpc. Image by Steven Rieder
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Figure 18: Division of the Cosmogrid simulation volume among the supercom-
puters in Espoo — green portion on the left — ; Edinburgh — blue in the
centre — and Amsterdam — red portion on the right. The image shows the
full (30 Mpc)3 simulation volume at redshift 0. Source: (Groen et al., 2011).
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Cosmogrid was designed with the purpose of investigating the low end of the
halo mass function, in hopes of relieving the missing dwarf problem. In other
studies, detailed simulation of haloes is conveniently achieved by selecting haloes
from large-box, low-resolution simulations; and subsequently re-simulating those
haloes at higher resolutions. This comes at a cost: namely that the haloes —
all coming from a different re-simulation environment — are not statistically
representative as a population. Cosmogrid aims to prevent this bias in varia-
tions between simulated haloes, by simulating them all in one and the same run.
Therefore, a relatively small box size was chosen, with a resolution that allows
for the reproduction of star clusters and dwarf galaxy sized haloes. Each particle
weighs in at 1.28 · 105 M� — though the mass resolution is only 8.12 · 106M�
for the 5123 particle run.

The computational load for Cosmogrid has been divided among three super-
computers: Huygens (Amsterdam, Netherlands), Louhi (Espoo, Finland), and
HECToR (Edinburgh, Scotland) (Portegies Zwart et al., 2010). The division
of computational load among these sites is visualised in figure 18. Cosmogrid
uses the GreeM code — introduced in section 3.2 — with 5123 grid points for
the PM calculation. For the communication between the supercomputers, the
SUSHI code was used.

The cosmological parameters used in the Cosmogrid simulation are listed in
table 3.3 (Groen et al., 2012). The initial redshift in the simulation is zinit = 65,
but this study only uses data from z = 3.7 to z = 0.0. Within that range, the
opening angle θ for the tree code force calculation remained constant θ = 0.5.

Note that the box length of the Cosmogrid volume falls short of the Uni-
verse’s present scale of homogeneity — estimated from 70 to several hundreds
of Mpc, see the introduction and section 3.1 — so the simulation in itself fails to
produce a representative portion of our Universe at low redshifts. The limita-
tions due to the small box size are explained in section A.3. Another limitation
of Cosmogrid is that it, too, is a dark matter-only simulation.
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4 Field Estimators

In practice, fields of quantities resulting from an N-body simulation are repre-
sented on a regular cubic grid. When matter densities and velocity flows are
sampled at regular grid points, this allows for various kinds on analysis to be
performed on the simulation results. Among procedures that require a grid-
representation of field quantities are: determining their statistical distributions;
calculating forces acting on particles; and computing a discretised Fast Fourier
Transform (FFT) of a field.

By nature, N-body simulations sample particle quantities — like masses and
velocities — at highly irregular locations, namely the particle positions. Many
particles will be clumped together in high-density areas, and large regions will
be very sparsely populated. How is a grid representation of field quantities ob-
tained from this? This is no trivial question, and has been addressed in various
studies (e.g. Birdsall & Fuss, 1969; Hockney & Eastwood, 1981; Bernardeau &
van de Weygaert, 1996; Schaap & van de Weygaert, 2001; Romano-Dı́az & van
de Weygaert, 2007; van de Weygaert & Schaap, 2009).

Extracting a regular grid of physical quantities from a list of particle data
is called field estimation, and while there is no perfect way to do this, various
techniques offer a wide range of trade-offs between reliability and computability.
It must be noted that the representation of data on a regular grid is not physi-
cal, and induces artefacts in the analysis — e.g. Fourier aliasing and orientation
biases — that must be taken into account.

The core operation in a field estimation involves the ‘smearing out’ of every
particle over a number of grid cells. This is conceptually equivalent to filtering
the sample of particles — i.e. convolving the spatial distribution with a certain
kernel — and subsequently sampling the result on a set of grid points. Several
strategies implement this in different ways. This section will introduce the work-
ings of grid-based field estimators, as well as those operating on tessellations of
the sampling points.

Two qualities are of particular importance to field estimation techniques: (i)
resolving variations in the field values at small scales, and (ii) the ability to pro-
duce useful estimates across a broad range of sampling densities. High resolution
of field estimates is of importance for the investigation of small scale objects and
processes, like dwarf galaxy sized haloes and nonlinear velocity flows. This also
requires a high grid resolution for the representation of estimated field quanti-
ties.

The performance of a field estimator on a broad dynamic range comes into
view on larger scales. For example, a grid cell at the periphery of a void may
fall in a region with no particles at all, but to estimate the density in that grid
cell to be zero would be an unphysical thing, and introduce errors in the mea-
sured void density profile. Such cases of under-sampling are more likely to occur
when a high grid resolution is chosen, and if there are relatively few particles.
Figure 19 illustrates the trade-offs between accuracy and spatial detail, yielded
by field estimations on different grid resolutions.

Grid-based and tessellation approaches
Whatever approach is used, in essence it is impossible to translate a list of

particle positions and field values to a grid of field values without loss of infor-

64



Figure 19: Two different kinds of density estimations in one dimension. The
solid grey line shows the underlying density field, and the markers at the
top indicate the simulated particle positions — a realisation of the density
field. The filled and dashed graphs show density estimations at high and
low resolutions, respectively. Notice that the low resolution estimator fails
to reproduce the bimodality in the density field, while the high resolution
estimator is more subject to noise and occasionally estimates a zero density
due to undersampling.
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mation and statistical certainty — unless those particles happen to be sitting
on those grid points already. The question is how to use the information from
the simulated particles optimally to this end — and different solutions to this
problem exist, populating a rather broad range in effectivity and creativity.

The class of Grid-based field estimators is a relatively straightforward one.
These methods function by overlaying a grid on the simulation body, and di-
viding a particle’s physical quantity — like mass or velocity — over a specific
selection of nearby grid points, with weights determined by the particle’s posi-
tion.

As a result, the high-density regions will have a rich sampling of the particle
properties. Field values can then be estimated with high confidence levels, by
interpolating between the nearby particle positions. A problem is that narrow
density peaks require a very fine-meshed grid to be resolved. The low-density
regions, au contraire, will introduce an undersampling problem, and the esti-
mated field values will be subject to large statistical uncertainties. Additionally,
a high grid resolution, while computationally costly, will hardly add any quality
to the field estimation in these undersampled regions.

Tessellation algorithms divide a simulation body into irregular cells, deter-
mined by the irregular spatial distribution of the particles. They then interpo-
late the physical quantities within those cells. This approach has the potential
to circumvent undersampling and oversampling problems. It naturally defines
few and large cells in low-density regions — resulting in larger uncertainties —
and makes more spatially detailed interpolations between many smaller cells in
high density regions — resulting in large fluctuations.

Various existing algorithms for field estimation require various amounts of
computational power and memory. Some field estimators working on large bod-
ies of simulation data can divide the volume spatially into different partitions,
to save memory usage. This will introduce a certain inefficiency38.

4.1 Convolution and adaptivity

As mentioned, a grid-representation of field quantities is essentially achieved
by the ‘smearing out’ of every particle over a number of grid cells. This is
conceptually equivalent to filtering the sample of particles — i.e. convolving
the spatial distribution with a certain kernel — and subsequently sampling the
result on a set of grid points. The process is characterised by the shape and size
of the kernel, and balances are struck between noise levels and the reproduction
of spatial detail.

On a continuous, one-dimensional manifold x, the convolution of a function
f(x) with the kernel K(x) is given by:

f̂(x) = (f ∗K)(x) =
∫
f(x′)K(x− x′)dx′. (105)

38Field estimation in any given partition of the volume will generally depend to a greater or
lesser extent on the particle quantities sampled just outside the partition’s boundaries. As a
result, field estimation will be executed twice in the neighbourhoods of partition boundaries.
The sampling density determines the amount of space needed to perform interpolations on —
high sampling density means interpolation over small distances and vica versa.
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A discrete sample g (a set of N points with coordinates xi and values gi) can
be convolved similarly:

ĝ(x) =
N∑
i=1

giK(x− xi) (106)

Convolution can be done by multiplying the Fourier transform of the sample
by that of the convolution kernel. If f(x) and g(x) Fourier transform to F{f}(k)
and F{g}(k), their convolution satisfies the convolution theorem:

F{f ∗ g}(k) = F{f}(k) · F{g}(k) (107)

Furthermore, since determining the spatial derivative of a field can be done in
Fourier space, filtering in Fourier space can be carried out at the same time.
These considerations make it preferable that a convolution kernel has a well-
behaved Fourier transform. In practice, the most widely used kernels are the
top-hat and Gaussian kernels.

� Top-hat kernel: For filter scale RTH , the kernel is given by:

WTH(x− x′) =


1

4π
3 R

3
TH

|x− x′| ≤ RTH

0 otherwise
(108)

An advantage of this kernel is that it is conceptually simple and has a
computationally low demand. More importantly, it is localised: a sample
value has no influence at all outside a radius of RTH . A disadvantage of
the top-hat kernel is that, due to its sharp edges, its Fourier transform
produces many fringes, or shot noise.

� Gaussian kernel: For filter scale RG, the kernel is given by:

WG(x− x′) =
1

(2πR2
G)3/2)

e
(− |x−x′|2

2R2
G

)
(109)

Under this kernel, each sampling point will have an influence on the rest
of the domain that asymptotically approaches zero, but extends outward
infinitely. Therefore, an accurate execution of this convolution requires
more computation. The Fourier transform of the Gaussian kernel, though,
is much better behaved than that of the top-hat kernel:

F{W}(k) = e−
k2RG

2 ,

another Gaussian.

Note that the ‘identity operand’ for convolution is the Dirac delta function
δD(x).

(f ∗ g)(x) = f(x)⇒ g(x) = δD(x)

For the purpose of cosmological simulation bodies, it is a discrete sample of
particles in a three-dimensional space that is convolved. In essence, grid-based
field estimators do this by erecting a kernel function of choice, centred on each
particle position, and sampling the summation of all these kernels on a set of
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grid points39. This requires a kernel that is defined in three dimensions. In
the process of field estimation, the kernel is represented by the symbol W , as it
signifies the weight by which a physical quantity is distributed over a collection
of spatial points.

Adaptivity
In regions of different sampling density, the accuracy and spatial detail have

a different dependency on the kernel’s shape and size. Therefore it is beneficial
— though computationally more costly — to let the kernel shape and size vary
according to the sampling density. An adaptive kernel size can be implemented
in a grid-based field estimator, by varying the scale length (e.g. RTH or RG)
inversely proportional to the sampling density. For example, the scale length
can be chosen such that a sphere of that radius around a sample point contains
a fixed number of other sampling points in its interior. High density regions will
then be resolved better, while noise is kept relatively low in low density regions.

An adaptive kernel shape is beneficial in regions where the sampling density
is distributed anisotropically in space — e.g. in filaments and walls. In order
to reproduce the flattened and extended nature of such anisotropic features, a
tessellation field estimator is best suited.

4.2 Grid based field estimators

A grid-based field estimator superimposes a regular grid on the simulation vol-
ume, and considers the grid cell a particle is in, and in some cases its precise
within that grid cell. It then divides the field value corresponding to that parti-
cle among any number of neighbouring grid points, depending on the particle’s
position. This procedure can follow various schemes. In these schemes, the
adopted division of field values over the grid points is usually fixed in shape and
size. The weights are usually symmetric in orientation, i.e. solely dependent on
the absolute distance between the particle and grid point in consideration.

In the general approach to a grid based estimator, the particle position is
xi, and all its components which lie between 0 and the box size L. A grid point
is specified by its index vector n. Now, the spatial separation between particle
i and grid point n becomes:

di,n = xi −
n
NG

L, (110)

where NG is the number of grid cells along one vertex of the box — it is thus
inversely proportional to the grid resolution. Then, the general formula for any
grid-based estimation of a physical quantity f is the following:

f̂

(
n
NG

L

)
=
∑N
i=1 fiW (di,n)∑N
i=1W (di,n)

, (111)

where f̂ is the estimated quantity, N is the number of particles in the simulation
volume, and fi is the quantity corresponding to particle i. It is always possible
to set the box size to unity, L = 1, and rescale all particle positions such that

39Subsequently, the resulting grid of field estimations can optionally be smoothed over by
an FFT on the grid, and a suitable smoothing kernel.
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xi lies between 0 and 1. Furthermore, under the restriction that

N∑
i=1

W (di,n) = N

for a normalised estimation scheme, the expression for the estimated field value
simplifies to

f̂

(
n
NG

)
=

1
N

N∑
i=1

fiW (di,n). (112)

This way, any scalar quantity can be estimated. Vector quantities like veloc-
ity v can be obtained by combining a field estimation for each spatial component
separately:

v̂ = v̂xex + v̂yey + v̂zez, (113)

where ej is the unit vector in the j-direction.

Density estimation
A density can be estimated by determining a grid cell mass using equation 112,
and dividing it by the cell volume,

Vcell =
(
L

NG

)3

,

so that the estimated density ρ̂ is given by

ρ̂

(
n
NG

)
=

1
N

(
NG
L

)3 N∑
i=1

miW (di,n),

or if we set the box volume to unity:

ρ̂

(
n
NG

)
=
N3
G

N

N∑
i=1

miW (di,n), (114)

where mi is the mass of particle i.

Choice of estimation weights
What sets apart one grid-based field estimator from another is its choice of the

weights W (di,n).
In a one-dimensional space, a single particle’s quantity can be distributed

over any number of cells along that dimension. To set this division, a field
estimator can assign any number of weights w(di,n). In M dimensions, the
total weight of a particle to any grid cell can be taken to be any combination
of its weights in each dimension separately. One straightforward choice is to
consider a linear product of weights wj along each dimension j:

W (d) =
M∏
j=1

w(dj), (115)
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and this construction of weights is adopted by three widely used field estimators:
(i) Nearest Grid Point, (ii) Cloud in Cell and (iii) Triangular Shaped Cloud. All
three of them distribute a particle’s field quantity in a spatially symmetric way.
This is equivalent to a convolution with a spatially symmetric kernel, with a
fixed size depending on the grid resolution.

� The Nearest Grid Point (NGP) method is conceptually the simplest of the
three. It solely assigns all of a particle’s mass to the grid point nearest to
it, regardless of the particle’s precise position within its cell. Effectively,
the scheme uses a Dirac δ-shaped cloud. For the j-eth component of the
distance di,n between particle i and grid point n, the weight function is
given by:

wNGP (dj) =

1, NG|dj | ≤ 1
2 ,

0, otherwise.
(116)

� The Cloud in Cell (CIC) algorithm (Birdsall & Fuss, 1969) improves upon
this by considering the spatial separation between a particle and its sur-
rounding grid points. It assigns a density to these grid points as a function
of that separation. The CIC method divides the weight over a particle’s
two closest neighbouring grid cels in each spatial direction. The num-
ber of updated grid points is then 2M . The CIC scheme is equivalent to
convolution with a top-hat kernel; the weight function is:

wCIC(dj) =

1−NG|dj |, NG|dj | ≤ 1,

0, otherwise.
(117)

� The Triangular Shaped Cloud (TSC) algorithm can be seen as a refinement
on the CIC method. Instead of dividing a particle mass over the 2M closest
grid points, the TSC algorithm assigns a portion of the mass to the nearest
grid cell, and to both its direct neighbours in each spatial direction. This
means that a small (hyper)cube of 3M grid cells can be assigned a density.
This method corresponds to a triangular kernel: the weight assigned to the
closest cell is greater than that assigned to its neighbours in any direction.
The one-dimensional weight function is:

wTSC(δdj) =


3
4 −N

2
Gd

2
j , NG|dj | ≤ 1

2 ,

1
2

(
3
2 −NG|dj |

)2
, 1

2 ≤ NG|dj | ≤
3
2

0, otherwise.

(118)

Limitations
The methods described above have a relatively low computational demand, and
preserve spatial resolution well. The great limitation of these algorithms is that
they perform poorly on undersampled regions — i.e. few particles and many
grid cells. Cells that do not contain or neighbour any particles will simply be as-
signed a zero density or velocity, regardless of the populations in nearby regions.
This leads to relatively high noise levels. The NGP method is most extreme

70



in all of these considerations — it has the lowest computational cost, preserves
spatial resolution as well as the grid resolution allows for, and is the most sensi-
tive to the local sample density. The CIC and TSC methods progressively trade
more computational demand and spatial detail for a higher estimation quality,
based on a more detailed use of the information on a particle’s position.

As a result of this sensitivity to local sample density, the grid representa-
tions of estimated field quantities can be subject to various issues. The edges
in spatial features can become jagged, and artefacts can show up both in scalar
fields and in their gradients.

For the fixed-shape methods holds that the value of an estimated quantity
at a given position depends strongly on the chosen grid resolution. Also, there
is an artificial dependence on the orientation of the grid relative to any possi-
ble anisotropic feature — e.g. filaments or walls — in the simulated structure.
These limitations are a direct consequence of the fact that the chosen grids and
kernels are non-adaptive.

Smooth Particle Hydrodynamics
Smooth Particle Hydrodynamics (SPH) schemes make use of available infor-

mation about a particle’s environment. They consider an M -dimensional weight
W (di,n, hi) that adapts in size to the local sampling density. The shape of the
kernel, just like the aforementioned non-adaptive schemes, remains symmetric
in all directions — the anisotropic nature of the grid notwithstanding. However,
the scaling length hi can be chosen for each particle i separately. One example is
to require that a sphere of radius hi around the particle always contains a fixed
number of neighbouring particles. This way, estimations in high density regions
will have a greater resolving detail, while estimations in low density regions will
be less subjected to noise.

Although these are significant advantages, certain artefacts remain, due to
the fixed resolution, shape and orientation of the SPH kernel and the grid. Fur-
thermore, determining a precise scale length hi for a particle according to the
density of its immediate environment introduces another arbitrary choice.

4.3 Weighting

We have seen that grid-based field estimators essentially count particles in pre-
defined grid cells, and we will soon witness tessellation-based algorithms defining
a space-filling network of cells according to the spatial distribution of particles.
There is a fundamental difference between the outcomes of these strategies, and
this difference is that between mass-weighted and volume-weighted averaging.

When estimating a physical quantity on a regular grid, the weighted sum
of particle quantities is divided by the sum of weights — or, equivalently, the
convoluted sample is divided by the summed kernel.

f̂(x0) =
∑N
i=1 fiW (xi,x0)∑N
i=1W (xi,x0)

. (119)

It is important to realise that in so doing, one is in fact weighting the quantity
f by mass, as equation 119 is a discretisation of

f̂(x0) =
∫
dxf(x)ρ(x)W (xi,x0)∫
dxρ(x)W (xi,x0)

. (120)

71



Figure 20: Two different ways to triangulate the same set of sampling points
in two dimensions. In the two cases interpolation on the point marked with
the red + will be based on two distinct sets of sample points. Note that the
triangulation in the right panel will result in smaller errors, as it consists of
the most compact triangles. The right panel satisfies the Delaunay condition,
while the one on the left does not.

The analytically determined statistical properties of the cosmological velocity
field, however, are only rarely weighted by mass. In nearly all cases, they are
weighted by volume.

f̂(x0) =
∫
dxf(x)W (xi,x0)∫
dxW (xi,x0)

. (121)

Mass-weighted quantities cannot simply be compared to volume-weighted ones,
and this makes it preferable to produce a volume-weighted estimation.

In one-dimensional space, the interpolation of quantities from a given set
of sample points is done by one-dimensional bins. At any coordinate — short
of the particle positions themselves — it is clearly defined which samples to
interpolate between — namely the closest particles to the left and right of that
coordinate. There is no choice to be made in the ordering of particles into
interpolation bins.

In a higher dimensionality, though, higher-dimensional interpolation bins
can be defined in various ways. This is illustrated in figure 20. At any point
in space, quantities can be interpolated between various sets of neighbouring
samples, and there is the choice which particles are to be used for interpolation.
In other words, no unique ordering of interpolation bins exists between sampling
points in higher dimensionalities.

Some choices will be more sensible than others. The Delaunay tessellation
— introduced momentarily — is chosen such that its cells — triangular in two
dimensions and tetrahedral in three — are as compact as possible. This way,
interpolation along the edges between particles is subject to a minimal amount
of uncertainty.

In contrast to an overlayed regular grid, the positions and orientations of
Voronoi and Delaunay cells are highly sensitive to the spatial distribution of the
sample points. It is in this capacity that these two species of tessellations are
employable in producing volume-weighted field estimations.
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4.4 Tessellations

A tessellation is the division of a space of any dimensionality into cells of positive
definite size and equal dimensionality. In a tessellation no two cells ever overlap,
and all cells taken together fill the entire space40. A tessellation can be defined
on various geometries, and for the purposes of cosmological N-body simulations,
a (hyper)toroidal geometry is usually adopted. This means that a trajectory in
any direction, upon crossing the edge of the defined volume, will emerge at the
same position on the opposite edge, and continue in the same direction. This is
referred to as periodic boundary conditions, and it is a convenient way to define
a finite volume without edges. Thus, it is possible to fill the volume with a finite
number of tessellation cells.

Two distinct types of tessellation — the Voronoi and Delaunay tessellations
— are defined on the basis of a spatial distribution of sampling points. These
points, finite in number, may follow any spatial distribution.

Voronoi tessellation
Consider a finite, periodic volume of dimensionality M , containing a set p

of N sampling points. In a Voronoi tessellation, one cell is erected around each
of those points. A cell around a sampling point pi is defined — i.e. the positions
of the cell’s vertices are determined — such that every point within that cell is
closer to pi than to any other sampling point, using a Euclidean metric.

A region with a high sampling density will have many small Voronoi cells,
and a region with a low sampling density will have few large ones. Voronoi
cells are always convex, and the number of vertices spanning it is always greater
than or equal to M +1, but has no upper limit. Figure 21(a) shows the Voronoi
tessellation based on a sample of 40 points, following a sampling density field
consisting of a Gaussian peak superimposed on a uniform background.

Delaunay tessellation
Based on the same set p, the Delaunay tessellation is the division of space

into hypertriangles, in such a way that no point pi ever falls within the circum-
scribing hypersphere of any hypertriangle. On a two-dimensional plane, each
Delaunay cell is a triangle, whose circumcircle has zero sampling points in its
interior. In three dimensions, each Delaunay cell is a tetrahedron, whose cir-
cumsphere, likewise, contains no sampling points. For any given set of sampling
points p, there may be many ways to divide the space up into hypertriangles —
see figure 20 for two examples in two dimensions. As a result of the Delaunay
condition, the Delaunay tessellation maximises the minimum angle at all trian-
gle vertices. Figure 21(b) shows the Delaunay tessellation based on the same
sample of points used in figure 21(a).

For the sample set p, the Delaunay tessellation is the dual of the Voronoi
tessellation based on that same set. A Voronoi tessellation can be constructed
by connecting the centres of the circumscribing hyperspheres of all Delaunay
hypertriangles. By virtue of their duality, the edges in one of the two tessella-
tions can be determined by connecting the centroids of all pairs of cells from
the other tessellation if they share a face.

40Occasionally, one comes across a tessellation of extraordinary beauty — an experience
that the cover of this thesis attempts to capture.
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Figure 21: Two-dimensional Voronoi (panel a) and Delaunay (panel b) tes-
sellations of the same distribution of 40 sampling points. The distribution
consists of a Gaussian peak superimposed on a uniform background. Both
tessellations assume periodic boundary conditions. The density peak shows
the behaviour of the tiles according to the local sampling density. Notice the
duality between the two tessellations. The shaded area marks the union of
Delaunay cells sharing the sample point marked with the red +, it is that
point’s contiguous Voronoi cell, used to estimate the local density.
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Degeneracy
In a two-dimensional distribution of sampling points, it may occur that four

neighbouring points happen to lie on the same circle - with no sampling points
between them. In this case, they form a cyclic quadrilateral41, and as a conse-
quence, the circle circumscribing each of the four triangles that could possibly
be defined by three of these points will also pass through the fourth. This
means that the triangulation can be done in two ways — either one of the two
possible diagonals can be taken to be an edge. There is no preferred way, and
this situation is called a degeneracy. The points in a square grid form a readily
appreciable example of this.

Degeneracies also occur when five or more points lie on the same — otherwise
empty — circle. In M -dimensional space, M + 1 sample points are required to
define one hypertetrahedron. Thus, any empty hypersphere that passes through
more than M + 1 will be subject to degeneracy.

4.5 Tessellation field estimators

In a space of dimension M ≥ 2, a regular grid is only one of boundless possible
ways of dividing the sample volume up into cells. There is no end to the config-
urations M -dimensional ‘binning’ regions can be defined in. As an alternative
to a regular grid, a very natural and logical choice would be to define one re-
gion for each simulation particle, with a size that corresponds to the sampling
density in its environment. This is done by computing the Voronoi tessellation
generated by the particles42 (Icke & van de Weygaert, 1987; van de Weygaert,
1991, 1994; Schaap & van de Weygaert, 2000; van de Weygaert & Schaap, 2009).
This description of tessellation field estimators follows broadly Bernardeau &
van de Weygaert (1996) and van de Weygaert & Schaap (2009).

The Voronoi estimator
The Voronoi method can be seen as a very natural extension into M - di-

mensionality of the approximation of a one-dimensional field as a piecewise
constant function in a set of bins. The one-dimensional analogue is illustrated
in figure 22(a), the upper panel in figure 23 shows an example of Voronoi in-
terpolation on a two-dimensional body of sample points. In each Voronoi cell,
the estimated scalar field quantity simply equals that of the generating particle.
Only at the boundaries separating the Voronoi cells, there is a non-zero gradient.
The total area of cell boundaries within a certain region of space then forms a
measure of the volume-averaged quantity. By filtering the field estimation with
a radius that is sufficiently large, this volume-averaged quantity is obtained.
Evidently, a kernel that does not exceed the confines of a single Voronoi cell will
not measure any gradient in the field value. For a volume spanning a length
L in each dimension, the characteristic length scale at which this effect starts
occurring is of the order L/N1/M .

Since the Voronoi cell boundaries are the locus of all points with a non-zero
gradient, the gradient of a scalar field — like one individual velocity component
— at point r can be determined from a Voronoi tessellation directly. We assume

41Cyclic quadrilaterals are generally asymmetric, but special cases exist: Squares, rectan-
gles, isosceles trapezia, antiparallellograms and some kites.

42Note that it is not necessary to use all of the particle positions to create a space filling
tessellation. However, using all particles as generating points will result in a greater accuracy.
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Figure 22: Piecewise constant (panel a) and piecewise linear (panel b) approx-
imations of a one-dimensional field as sampled by a set of 62 randomly located
points. These approximations are one-dimensional equivalents of the Voronoi
tessellation (panel a) and Delaunay tessellation (panel b) as generated by the
circular markers. The behaviour of the tessellations across a range of sampling
densities is visible. The generating points generally do not form the geometri-
cal central points of their corresponding Voronoi cells. Note that degeneracies
in the Delaunay tessellation never occur in one dimension.
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Figure 23: Interpolation on a two-dimensional body of sample points. The
upper panel shows an interpolation using Voronoi cells, in which each cell is
given a constant field value — a piecewise constant interpolation. The lower
panel uses the Delaunay triangulation of the sample points, allowing for a
piecewise linear interpolation. Source: (Schaap & van de Weygaert, 2001).
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each boundary k, separating cells k1 and k2, to be of an infinitesimal thickness.
A volume-averaged velocity gradient can be estimated at point r by integrating
over all the — partial — cell boundaries within a radius R from r.

The Delaunay estimator
To improve upon the approximation of a field value as piecewise constant in a

set of Voronoi cells, we might perform a linear interpolation between the gen-
erating sample points. To construct a piecewise linear approximation — see
figure 22(b) for a one-dimensional example and the lower panel in figure 23
for a two-dimensional one — we appeal to the Delaunay tessellation (Delone,
1934). Since each edge runs linearly from one particle to one of its closest neigh-
bours, a constant gradient can be defined along it. The same analogy applies
here: the Delaunay method can be seen as a very natural extension into M -
dimensionality of the first-order interpolation of a field between a finite number
of sample points. This is illustrated in figure 22(b).

For a Delaunay simplex — see figure 24 for an example of a Delaunay tetra-
hedron in three dimensions — each point in its interior is a linear combination
of the cell’s vertices. Therefore, the field value at any desired point can be es-
timated as the same linear combination of the field values sampled at each of
the vertices. Let a point r fall within a certain Delaunay simplex with M + 1
vertices rk. Its representation as a linear combination of the vertex locations
looks like:

r =
M+1∑
k=1

αkrk. (122)

In a linear interpolation, the field estimation at r then uses the same coefficients
αk:

f̂(r) =
M+1∑
k=1

αkf(rk). (123)

As with the Voronoi method, the spatially adaptive nature of the tessellation
allows us to estimate a field gradient directly from the sample values at the
simplex vertices. In three dimensions, a Delaunay tetrahedron’s shape — i.e.
the locations of r1, r2 and r3 relatively to r0 — can be characterised by a matrix
A, defined as:

A =

 ∆x1 ∆y1 ∆z1

∆x2 ∆y2 ∆z2

∆x3 ∆y3 ∆z3

 , (124)

where ∆xk ≡ xk − x0, and similarly for ∆yk and ∆zk. In the same way, along
each vertex, the gradient in the l-velocity is the constant ∆vl,k = vl(rk) −
vl(r0). From here, the gradient components ∂jvl of the velocity field quantity
vl throughout the tetrahedron can be determined by: ∂xvl

∂yvl
∂zvl

 = A−1

 ∆vl,1
∆vl,2
∆vl,3

 . (125)

In order to determine a volume-averaged velocity gradient at point r, the
piecewise constant environment around r is filtered, again with a kernel of suf-
ficient size. When a top-hat kernel is used, this involves finding the intersection
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Figure 24: Delaunay tetrahedron in a three-dimensional scenario. In three
dimensions, every Delaunay simplex is defined by four points, {0-3}, and every
point in its interior can be described as a linear combination of the four points’
coordinates. This is how linear interpolations are made at an arbitrary point
inside the tetrahedron. See the text leading up to equation 125.
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between the spherical volume and all tetrahedra it encompasses and passes
through. For any tetrahedron k, let Vk(r, R) be its total volume of intersection
with the sphere of radius R around r. The velocity gradient is then estimated
by summing over all tetrahedra k with non-zero intersection:

ˆ∂jvl(r, R) =
3

4πR3

∑
k

(∂jvl)kVk(r, R). (126)

Density estimates can be made from the Delaunay tessellation, by using
the fact that the local matter density and the size of Delaunay simplices are
inversely correlated — provided all particles are equal in mass. The density at
a sampling point is determined by the size of all the cells it is a part of (van de
Weygaert & Schaap, 2009). The union of all Delaunay cells sharing a point xi
is known as that point’s contiguous Voronoi cell, and designated by the symbol
Wi — see the shaded area in figure 21(b) for a two-dimensional example. In M
dimensions, the density estimate at xi is proportional to the inverse volume of
the contiguous cell V (Wi):

ρ̂(xi) = (1 +M)
wi

V (Wi)
, (127)

where wi is the weight of sample point i. The density estimate must be nor-
malised and weighted by the particle masses, if all particles are equal in mass,
wi will be equal as well. Note that 1 + M is the number of points making up
each Delaunay simplex in M dimensions.

The superiority of the DTFE method — particularly in resolving small scale
structures at high sampling densities — can be clearly seem from a comparison
with the TSC technique applied to the same data set. See figure 25.

Note that this method can be used in any tessellation that defines hypertrian-
gles with the particle positions as their vertices. However, in order to optimise
the accuracy of the interpolation, it is of crucial importance to minimise the
distances between the estimation points and the cell vertices. A Delaunay tes-
sellation yields these optimal results, as it produces the most compact simplices.

80



Figure 25: Comparison between the DTFE and TSC techniques. The left col-
umn shows the distribution of separate particles from a simulation, at three
different scales. The central column shows the corresponding DTFE den-
sity estimations, and the right column shows the TSC estimated densities.
Source: (Schaap & van de Weygaert, 2002)
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z a z a

14 0.07 0.47 0.68
3.7 0.22 0.30 0.77
2.1 0.32 0.16 0.86
1.4 0.42 0.04 0.96

0.97 0.51 0 1
0.68 0.60

Table 2: Redshifts and corresponding scale parameters for all the Cosmogrid
snapshots used in the analysis.

res cellw cellpop
512 0.059 1
256 0.117 8
128 0.234 64
64 0.469 512

Table 3: Intrinsic smoothing scales associated with various grid resolutions on
a box sized 30 Mpc in each direction, containing 5123 particles. The column
labelled ‘res’ displays the number of grid cells along each edge of the box. The
column labelled ‘cellw’ displays the width of each sell in Mpc. The column
labelled ‘cellpop’ displays the average number of particles per cell.

5 Methods and definitions

5.1 Simulation data

The analysis in this project concerns eleven snapshots from the Cosmogrid sim-
ulation — see section 3.3. These are spaced evenly in the scale parameter a, at
the redshifts listed in table 2. Each snapshot contains the positions and veloci-
ties of 5123 dark matter particles — all equal in mass. For the lower resolution
analyses, downsamples were made of 2563 particles and fewer, by a uniform
random selection from the original list of particles.

The velocities stored in the gadget files43 are internal velocities. In order
to convert those to comoving velocities — which are needed for the analysis —
they are multiplied by the square root of the scale factor,

√
a, corresponding to

the epoch of each snapshot.
To motivate this, we insert H(t) ∝ a−3/2 and f(Ω) = 1 into equation 37.

These specifications correspond to the the Einstein-de Sitter Universe, which is
in a close agreement with the predominant epochs of structure formation. This
results in the proportionality

v(t) ∝ a1/2. (128)

5.2 Field estimation

From the simulation data, we determined the density and velocity values on
regular grid points, once using the TSC estimator and once with DTFE — see

43Gadget (Springel et al., 2001) is a file format used to store particle data for cosmological
N-body simulations. See section 3.2 for details.
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sections 4.2 and 4.5). Here, the grid resolution determines the intrinsic smooth-
ing of the resulting density and velocity fields. For 5123 particles in a 30 Mpc
box, these scales are listed in table 3.

The TSC estimation was made by an algorithm that stacks the TSC weights
of particles upon a grid that is initially zero everywhere. The density is de-
termined in correspondence with equation 114. Each velocity component sepa-
rately is determined conform equation 112.

The DTFE estimation was done by the DTFE-1.2.0 programme — devel-
oped by Marius Cautun — which divides the computational load of the pro-
cedure described in section 4.5 over various available processors. By virtue of
the periodicity of the Cosmogrid Universe, the Delaunay triangulation was con-
structed under periodic boundary conditions without loss of accuracy at the
edges of the box.

The DTFE programme determined the volume-averaged densities and ve-
locities — while the TSC estimator, by nature, yields mass-weighted quantities.
The internal workings of the DTFE algorithm allow for a direct calculation of
each of the velocity gradient components. The TSC estimator returns velocities,
but the velocity derivatives were calculated separately.

5.3 Velocity differentiation

In the case of TSC-estimation, the velocity gradient was calculated subsequently.
Departing from a regular grid of samples for each velocity component, deter-
mining the nine gradient components can be done in various ways.

Real space derivatives
One straightforward method is to calculate the difference between the field

values at neighbouring grid points, and combining these differences into an
approximate derivative quantity at each position. This scheme is described
in R̊ade & Westergren (2004), and produces a first-order approximation of the
velocity derivative. The velocity derivative ∂jvi in cell jn will be

∂jvi|n '
vi(jn+1)− vi(jn−1)

2d
, (129)

where d is the cell width. If the volume has periodic boundary conditions, this
property can be exploited to approximate the derivatives at the edges — e.g.
for a 128 cell grid,

∂jvi|127 '
vi(j0)− vi(j126)

2d
.

Otherwise an extrapolation from the interior grid points can provide a solution:

∂jvi|127 '
vi(j125)− vi(j126)

2d
. (130)

The fact that this method can be used in non-periodic volumes is one of
its strengths. However, this first-order approximation does not make use of the
data on any grid points further than one unit away from the point of interest.
The derivatives determined in this way are also particularly sensitive to noise
in the original samples.
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Fourier space derivatives
An alternative method makes use of the Fourier transform of the derivative

operator:
f̂ ′(k) = −ikf̂(k) (131)

Once the discrete Fourier transform of the sample velocities is determined, dif-
ferentiation with respect to the j-direction is done by a simple multiplication
by −ikj , and subsequent inverse transformation back to real space. This makes
the derivative of the l-component of velocity with respect to spatial dimension
j:

∂jvl(x) = −i
∫

dk
(2π)3

kj · v̂l(k)e−ik·x, (132)

where44

v̂l(k) =
∫
dxvl(x)eix·k. (133)

As the discrete Fourier transformation of the whole grid is evaluated, periodicity
is a requirement. Aperiodic boundary conditions will result in artefacts rippling
inward from the edges — although this can be prevented by tapering the data.

Contrary to the aforementioned real space differentiation scheme — where
the derivatives are only dependent on the field values in immediately neigh-
bouring cells — the Fourier method assigns derivatives to grid points within the
context of the whole volume: the derivative at any location generally depends
on the field values at all other locations. While this introduces the risk of cer-
tain Fourier artefacts — see section A.3 — it is mostly considered an advantage.
Differentiation via Fourier space uses all available data in a field and produces
more accurate derivatives. On top of that, the computational cost is limited.

When carried out numerically, it is possible that the result is not purely real
— some small imaginary residuals may be left after the inverse transformation of
the field values, despite the original velocity field being purely real. This can be
prevented by setting the condition that the complex conjugate v̂∗l (k) = v̂l(−k).
This may be necessary in cases of noisy data.

All TSC estimated velocities are differentiated using this Fourier method —
the real space method provides a reality check for the Fourier results.

5.4 Web classification

A core element in this study is the decomposition of the cosmic volume into the
different components that make up the cosmic web. Identifying and separating
cosmic web components is known as web classification, and section 2.8 provides
a background into this. For our study, we have formulated a unique web clas-
sification method. Previously developed classifiers are based solely upon the
geometry of a tracer tensor — the individual eigenvalues. Ours makes an addi-
tional distinction on the basis of the local overall expansion or contraction —
determined by the sum of eigenvalues. Thus, we identify six different cosmic
web components, they are listed in table 4. The rest of this section provides a

44Equations 132 and 133 are written under the Kaiser convention, in which the latter is the
standard formulation of the Fourier transformation. The former is the inverse transformation
of −ikj v̂l(k). Note that i is the imaginary unit, and l is the velocity component index.
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ID λ1 λ2 λ3

∑
i λi feature:

0 - - - - Node
1 + - - - Filament
3 + - - + Prolate collapsing void
2 + + - - Wall
4 + + - + Oblate collapsing void
5 + + + + Expanding void

Table 4: Classification of spatial regions according to their eigenvalues —
individually as well as summed. The + symbol indicates positive definite
values, while the − symbol indicates negative ones. Note that the presupposed
condition that λ1 > λ2 > λ3 excludes several combinations of signs. Note, also,
that the cases labelled either 1 or 3 and those labelled 2 or 4 share the same
eigenvalue signature, but are distinguished solely by the sign of the summed
eigenvalues. The six types of regions identify the components of the cosmic
web. They are mutually exclusive and span all of space: No single element
of space falls within zero or more than one of these categories. See text for
details.

detailed explanation of our method.

Deformation tensor eigenvalues
Following in the footsteps of Pogosyan et al. (1998); Hahn et al. (2007), we

identified different regions of space as specific components of the cosmic web,
by means of investigating the eigenvalues of the deformation tensor. The defor-
mation tensor Dij is defined in terms of the shear and divergence:

Dij = σij +
1
3

(∇ · v)δij . (134)

Like the shear, this tensor is symmetric. It is not traceless, however, and thus
it has three linearly independent eigenvalues.

Symmetric matrices — and other Hermitian matrices — are guaranteed to
be diagonalisable, and have a number of independent real eigenvalues equal to
their dimensionality. The eigendecomposition of the deformation tensor was
conducted with the help of a linear algebra package in a python interface:
scipy.linalg. This package contains an algorithm that makes use of the Her-
mitian symmetry. At each grid point, we determine an ordered set of eigenvalues
λi:

λ1 > λ2 > λ3.

Based on the signs of these eigenvalues, without loss of generality, six unique
and mutually exclusive cases can be separated, see table 4. These cases are based
on the sign of the individual eigenvalues, as well as the sign of the summed
eigenvalues. A positive eigenvalue indicates expansion along the direction of
the corresponding eigenvector; a negative eigenvalue indicates compression.

Identification
Where there is collapse along each spatial direction, this unambiguously points

towards the collapse of a region, which characterises the nodes of the cosmic
web. Expansion in one direction occurring alongside compression in the other
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two indicates a prolate feature. If this prolate feature collapses on the whole, it
forms a filamentary feature, otherwise it is classified as a void. Similarly, expan-
sion along two directions and compression along one indicates an oblate feature.
This is classified either as a wall or as another type of void, depending on the
sum of the eigenvectors — which indicates the total expansion or contraction.
Lastly, expansion along all directions characterises the expanding voids. These
regions are expected to dominate the cosmic web spatially.

While the sum of eigenvalues in the regions labelled as prolate or oblate col-
lapsing voids is positive, and these voids do expand overall, they still collapse
along one or two axes (see also Sheth & van de Weygaert, 2004; Lavaux & Wan-
delt, 2010). They are flattened, as they get squeezed between other regions —
typically between expanding voids on one hand and anisotropic massive features
on the other (e.g. Dubinski et al., 1993). For a void to keep expanding, it is
a necessary condition that it expands in all directions — although it is possi-
ble for these voids to increase in anisotropy (van de Weygaert & Babul, 1997).
These voids have been shown to be rare in number, but dominant in physical
volume (Hidding et al., 2012).

Discussion
There is a consequence to the method of detecting collapse and compression

purely based on the sign of eigenvalues. Forero-Romero et al. (2009) were the
first to point this out, see section 2.8 for a more detailed description of this.
In brief, when a given structure collapses only slightly along a given direction,
our web classifier treats it the same way as it would a full collapse. It makes
no distinction based on the measure of collapse and expansion occurring in
any direction, and may therefore misclassify some structures. Forero-Romero
et al. establish some control over this by introducing a threshold eigenvalue λth,
below which no collapse is ascertained. This strategy introduces an arbitrary
choice for the value of λth. Our study attempts no such assumptions — de facto
adopting λth = 0. For comparison, section A presents a visual example of a web
classification with a non-zero threshold eigenvalue.

Web classification in a Gaussian random field
A simple additional numerical experiment has been conducted, to compare the

web classification in near-Gaussian initial conditions to mathematical expecta-
tions. In this experiment, three Gaussian random eigenvalues are drawn at each
cell in a grid of equal resolution to the data set — 1283 cells. These are ordered
within each cell, and the eigenvalue signatures are determined. A study of the
relative amounts of volume occupied by different signatures provides a reality
check for the web classification applied to the data set at high redshifts.

In this experiment, the stochastically generated divergence was defined as
the sum of eigenvalues. The statistical distribution of this divergence per web
component also provides a background to compare the distributions of diver-
gence measured from the data set too. See section 6.5.

5.5 Determining velocity gradients

Other than the density perturbation, all physical quantities that are analysed in
this study are combinations of spatial velocity derivatives. Recall the definitions
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of shear:
σij =

1
2

(∂jvi + ∂ivj)−
1
3

(∇ · v)δij , (135)

vorticity:

ωij =
1
2

(∂jvi − ∂ivj), (136)

and the deformation tensor:

Dij = σij +
1
3

(∇ · v)δij . (137)

The quantities analysed in this study are then the velocity divergence:

∇ · v = ∂xvx + ∂yvy + ∂zvz; (138)

deformation eigenvalues:
λi · a = D · a; (139)

and the shear and vorticity magnitudes are defined as

|σ| ≡
√∑

i

∑
j

σ2
ij ; (140)

and

|ω| ≡
√∑

i

∑
j

ω2
ij . (141)

Discarding all information about any specific directionality, both |σ| and |ω|
solely measure the amount of local vorticity and shear in a region. It must be
noted — see section 2.9 and particularly equation 96 for a detailed discussion
— that the numerically measured vorticity largely consists of a projection effect.
In other words, the measured values in general do not indicate real vorticity45.

Normalisation
In order to make a comparison between the density and velocity gradient modes
— i.e. divergence, shear and vorticity — each of these quantities needs to be
normalised. The density perturbation δ + 1 — see equation ?? — is obtained
by dividing the density grid by its mean value. We add unity to the density
perturbation for the sole purpose of simplifying the analysis, as δ+ 1 is guaran-
teed to be positive.

Using linear theory, the procedure for scaling the divergence with time fol-
lows from the continuity equation. The normalisation for any linear combination
of velocity derivatives — e.g. any individual component of the shear and vor-
ticity tensors — is done in exactly the same way. Considering the derivation
leading towards equation 38, we get the proportionalities:

∇ · v ∝ Haf(Ω),

and more generally
∂ivj ∝ Haf(Ω).

45As can be seen in section 6.9, in our case the ‘vorticity’ measurement consists almost
entirely out of noise.
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Therefore, any velocity derivative quantity ∂ivj is to be normalised as

∂ivj → 1− ∂ivj
Haf(Ω)

, (142)

in order to make the comparison with δ + 1 at any given cosmic time.
This normalisation applies only to the linear regime of velocity growth. As

soon as any velocity gradient becomes nonlinear, the linearised continuity equa-
tion is no longer an adequate basis for normalisation. The nonlinear time evo-
lutions of velocity gradients is not currently described by any known analytical
theories. Note, however, that the linear value gives an adequate point of refer-
ence.

In this case, the most logical tentative approach is to maintain the same nor-
malisation as with the divergence. Then, it is not expected that the velocities
have the same time redshift evolution as the density. Consequently, it is not
expected that their statistical distributions match with the density distributions
at low redshifts. However, a comparison of their shapes may lend insights. This
comparison is made by fitting lognormal curves to the statistical distributions
— see section 5.7 — after the data have been smoothed and different cosmic
web components have been disentangled. See section 5.7.

5.6 Smoothing

Noise in the spatial distribution of the physical quantities can be smoothed out
by convolving the grids with a Gaussian kernel. The workings of this procedure
is described in section 4.1. Without smoothing, the data in the grid will still
have an intrinsic smoothing scale, depending on the grid resolution. Table 3
lists the cell widths corresponding to different grid resolutions for a 30 Mpc box,
these cell widths mark the lowest scale of detail that can be represented in the
grid. Any kernel size exceeding the cell width can be chosen.

Other than smoothing out noise, convolving the grid with a kernel of a spe-
cific size allows us to follow the spatial distribution of quantities at that specific
scale. In this capacity, the same process is also referred to as filtering, in the
language of signal processing. For example, in order to follow the evolution of
structures formed at very high redshift — which occur on very small scales — it
is suitable to filter at a small kernel size. A large kernel, conversely, can provide
an outlook on the assembly of structures emerging at lower redshifts — ∼ 8Mpc
is a suitable size for structures at z = 0.

Other than a specific outlook on spatial distributions of various physical
quantities, smoothing at a particular scale can also offer a specialised view on
the statistical distributions. As such, smoothing at well chosen scales is a tool
to follow e.g. the correlation between density and any velocity derivative mode
across the evolution of structures of specific spatial scales.

In our study — in part bounded by the spatial resolution of the estimated
fields — we found most structures when filtering at scales of 0.1 Mpc, 0.25 Mpc
and 0.5 Mpc.

Where operations in Fourier space are concerned — e.g. smoothing / filter-
ing, other forms of convolution, or differentiating via Fourier transformations
— one warning particularly applies to the Cosmogrid dataset. For any spatial
distribution of density in a box, there is a certain range of wavelengths required
to represent it accurately in Fourier space. For individual structures that occur
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at a scale of several Mpc, the wavelengths in the Mpc region are very impor-
tant — there is a lot of Fourier power in that part of the spectrum. When the
largest structures occur at a scale comparable to the box size, these wavelengths
can no longer be accurately represented in a Fourier transform. The Cosmogrid
volume spans only 30 Mpc in each direction, and at lower redshifts, the largest
structures occur at scales approaching this limit. The results of this effect can
clearly be seen at the lower redshifts, and section A.3 further discusses this effect.

5.7 Lognormal distribution fitting

The expected statistical distributions of density and divergence — refer to sec-
tion 2.6 — are of lognormal nature, the logarithm of a Gaussian distribution:

p(x) =
1

xσ
√

2π
exp

{
− log (x− µ)2

2σ2

}
, (143)

where µ and σ are the mean and standard deviation of the Gaussian distribution
that this lognormal distribution is based upon.

No theory has been formulated to describe fully the nonlinear evolutions
of these distributions. However, some insight may be harvested from studying
the shapes of these distributions, and how they vary between redshifts, spatial
scales, and cosmic web components. In this study, the shapes of distributions
are quantified by fitting lognormal curves, and studying the parameters of those
fits. A lognormal distribution can be fully determined by two parameters: the
median eµ — where µ is the mean of the underlying Gaussian distribution —
and the standard deviation std46. Some examples of lognormal curves are given
in figure 46, which visualises how these parameters influence the distribution’s
shape.

A study of the redshift evolution of these fit parameters for a distribution
of various quantities from various web components provides a way to follow the
basic evolution of cosmic structures. It must be mentioned that any deviations
from lognormal distributions do not show up in this analysis. Reducing a dis-
tribution to two parameters, we discard the finer details of these distributions.
The reduced chi squared goodness of fits provides a way to gauge how great
these deviations are.

This analysis is applied to the density and divergence distributions — sec-
tion 6.5 — to the shear magnitude — section 6.7 — and the vorticity magnitude
— section 6.9.

46we avoid denoting the standard deviation with the symbol σ, to prevent confusion with
the velocity shear.
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massive features voids

nodes expanding voids
rgb={.85,.22,.33} rgb={.25,.75,.40}

filaments prolate collapsing voids prolate features
rgb={.21,.35,.79} rgb={.10,.07,.03}

walls oblate collapsing voids oblate features
rgb={.42,.52,.49} rgb={.90,.50,.18}

Table 5: Colours used in this thesis for plotting data from the six cosmic web
components.

6 Results

Overview
The analysis techniques explained in the previous section were applied to vari-

ous physical quantities measured from the Cosmogrid simulation: density, diver-
gence, shear, deformation tensor eigenvalues and vorticity. This section exhibits
the results, one physical quantity at a time. First, an outlook on the raw sim-
ulation data is provided in section 6.1. Then the DTFE estimated density is
explored in section 6.2, and the divergence in section 6.3. These sections present
the spatial and statistical distributions of the fields of interest.

Next, section 6.4 follows the classification of web components. The method
explained in section 5.4 is used to identify six types of regions in the cosmic
web.

Spatial and statistical distributions of the shear magnitude |σ| are presented
in section 6.7. The shear magnitude measurements are decomposed into the
six different cosmic web components, and their statistical distributions are pre-
sented separately, and so are the correlations with density. An investigation is
also made into the parameters of the lognormal fits to these separate distribu-
tions.

Section 6.8 presents a face-on view of a wall, displaying the density, diver-
gence and shear magnitude. A substructure of filaments embedded in this wall
is discovered.

Analogous to section 6.7, section 6.9 presents findings related to the vorticity
magnitude |ω|. Note, however, that these measurements are of a poor quality,
and mainly consist of a projection effect, see section 2.9.

This section closes with a visual comparison between the TSC and DTFE
estimators. While all other results are obtained by means of the DTFE tech-
nique, it is useful to note how this technique relates to an alternative estimator.

Within the scope of this section, two things are useful to note. Firstly, un-
less specified otherwise, all spatial plots show the distribution of the quantity
of interest in the same slice of the Cosmogrid volume. A slice of 30× 30× 0.234
Mpc3.

Secondly, for convenience in interpreting all plots that decompose data from
different cosmic web components, the same colour convention is used every-
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where. Six different colours are assigned to the six different types of regions in
the cosmic web, according to table 5.

6.1 Simulation: particle and velocity distributions

Particle positions
The positions of the particles from the simulation already exhibit clear struc-

tures. Particles from thin slices of the Cosmogrid volume are plotted in figures 26
and 27 — for redshifts 3.7 and 0.0, respectively. In both figures, the large upper
panel shows a 30 × 30 × 0.469 Mpc3 slice; the lower panels show enlargements
of the areas marked in black perimeters. The colour of each particle indicates
the magnitude of its velocity, see figures 28 and 29 and related text for details.

At both redshifts, the particle maps show a hierarchical structure of under-
densities, clusters and filamentary features. Note that, since these figures show
thin slices of the cosmic volume, filaments appear as compact regions, and walls
appear like filamentary features. At z = 3.7 the dominant structures appear to
occur on a smaller scale than those at z = 0.0. The small scale structures at
z = 3.7 — e.g. the anisotropic features in the zoom-ins on the right — are no
longer found at z = 0.0. This is evidence of the expected merging of structures
over the course of cosmic time.

The zoom-ins on the left show a void region, becoming sparser over time.
A comparison between the two also reveals the formation of a thin filamentary
structure.

Particle velocities
The raw particle velocities are shown in figures 28 — for redshift 3.7 — and 29

— for redshift 0.0. The velocities are sampled at a uniform random selection
of particle locations, the vectors are projections of particle velocities onto the
displayed plane. Vector sizes and colours indicate the velocity magnitudes, dark
arrows indicate low velocity, red arrows indicate high velocities. The figures
show 0.234 and 0.469 Mpc thick slices of the Cosmogrid volume in the large
upper panels. The lower panels present enlargements of the highlighted areas.

These velocity maps clearly show the velocity streams pointing away from
the void interiors, along filaments, and into the nodes of the cosmic web. Ex-
amples of the quadrupolar gravity field generated by two overdensities and two
underdense regions are found everywhere — particularly in the right zoom-in at
z = 3.7. Such shearing motions — compare these velocity flows to the those in
figures 1 and ?? — are important aspects of structure formation.

A clear example of a sub-filament embedded in a void is found in the left
zoom-in at z = 0.0. This is a filament47 running upwards through a large void
region. The velocities in this filament point outward, along with the expanding
velocity stream of the void it is embedded in.

A very relevant observation of shell crossing can be made from these veloc-
ity maps. Generally, shell crossing first occurs at small scales, and spreads to
larger scales later. In these maps, at z = 3.7 no shell crossing can be discerned

47A tomography of the cosmic volume — see section 6.8 — shows the three-dimensional ap-
pearance of this feature. This method allows us to exclude the possibility that the filamentary
feature is some cross section of a wall.
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particle positions z = 3.7

Figure 26: Spatial distribution of particles at redshift z = 3.7. Red: high
velocity particles; black: low velocity particles. The large upper panel contains
data from a slice of 0.469 Mpc in thickness. The lower panels are zoom-ins of
the areas marked in the black borders, both depict a 0.703 Mpc thick slice.
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particle positions z = 0.0

Figure 27: Spatial distribution of particles at redshift z = 0.0. Red: high
velocity particles; black: low velocity particles. The large upper panel contains
data from a slice of 0.469 Mpc in thickness. The lower panels are zoom-ins of
the areas marked in the black borders, both depict a 0.703 Mpc thick slice.
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particle velocities z = 3.7

Figure 28: Particle velocities at z = 3.7. Red arrows: high velocity particles;
black arrows: low velocity particles. The large upper panel contains data from
a slice of 0.234 Mpc in thickness. The lower panels are zoom-ins of the areas
marked in the black borders, but 0.469 Mpc thick.
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particle velocities z = 0.0

Figure 29: Particle velocities at z = 0.0. Red arrows: high velocity particles;
black arrows: low velocity particles. All panels contains data from a slice of
0.469 Mpc in thickness. The lower panels are zoom-ins of the areas marked in
the black borders.
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Map: log(δ + 1), rf = 0.1 Mpc

Figure 30: Spatial distribution of logarithmic overdensity at redshifts 3.7 and
0.0. Dark areas indicate high density, light areas are sparser. Data shown
come from a slice of the Cosmogrid volume 0.234 Mpc in thickness. Horizontal
and vertical coordinates are given in Mpc.

at all, but at z = 0.0, the overdense areas appear to be very active multi-stream
regions. For example: the large horizontal structure across the right zoom-in in
figure 29 appears to contain multiple velocity streams at the same place: flows
pointing towards the node on the right, as well as the streams of matter flowing
out from each of the two neighbouring voids. The cluster on the right side is an
even more active place, where velocity streams from all adjacent filaments and
voids come together.

Lastly, notice the substructure of this same large horizontal feature in the
right zoom-in at z = 0.0. This feature appears to consist of two chains running
parallel to each other — a double-spined feature. The velocity vectors — simply
sampled at particle positions — appear to be more concentrated towards the
edges of this structure, and sparser in the middle. Caution is required when
making such observations by eye,48; these regions do not consist of separate
parallel overdensities. Their double spined appearance is an artefact due to
shell crossing, see section A for a discussion. Double-spined features like these
occur often in the spatial distributions of velocity-related quantities — see fig-
ures 36, 32, 57, and 51. Section 6.4 will reveal that these features are walls, and
section 6.8 will explore these objects further.
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Overdensity, z = 3.7 & z = 0.0, rf = 0.25 Mpc

Figure 31: Statistical distributions of density at z = 3.7 (red) and z = 0.0
(purple). The dashed blue lines are lognormal fits to the distributions. Notice
the elevated high density tails.

6.2 Density

Maps
The DTFE-estimated density fields of two snapshots are mapped out in fig-

ure 30. Again, the evolution and hierarchical nature of structures are clearly
visible, as is the merging of structures over time. Complex strands of small
scale structures can be found everywhere at z = 3.7; but at z = 0.0 they form
into fewer larger structures. Similarly, groups of small underdensities at z = 3.7
appear to form larger and deeper voids over time.

Notice the sharp localised density peaks at the nodes, and the smaller spikes
in density along the anisotropic features. These compact features form the high-
density tail of the statistical distributions.

Statistical distribution
Figure 31 shows the statistical distribution of the density at redshifts 3.7 and
48especially since the arrows are predominantly horizontal, enhancing our tendency to notice

horizontal correlations visually.
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0.0. The quantity δ+ 1 is shown in a fixed-weight histogram, in which each bin
holds a fixed number of data points. From the bin widths it can be seen that
the sampling density is higher in the low density end, and lower in the high
density tail. This means smaller errors in the low density regions, and greater
uncertainty towards the high density end of the distribution.

It can be seen that the densities span a far greater range at z = 0.0. The
spreading of the low density end of the distribution towards the δ+ 1 = 1 · 10−2

mark indicates the deepening of void underdensities over time.
It is plausible that the long tail in the lognormal distribution already ac-

counts for the nonlinear growth of density in the bound regions (Coles & Jones,
1991). This suggests that the elevated high-density tail in the presently mea-
sured distribution is in part a spurious enhancement. However, Uhlemann et al.
(2015) have produced analytical density distributions49 that match the mea-
sured distributions in figure 31 in appearance. The analytical distributions
by (Uhlemann et al., 2015) reproduce the straight downward slopes; and a
high-density knee. This knee is not clearly present in our results, but at high
densities the statistical certainty is not enough to verify this.

The light blue dashed lines in figure 31 show the lognormal fits to the density
distributions — see section 5.7. In this study, lognormal fits are made to all the
density, shear and vorticity distributions in this study — including those from
separate cosmic web components. These fits are compared in sections 6.5, 6.7
and 6.9.

Notice the large deviation between the distribution at z = 0.0 and the log-
normal fits in the high-density tail. The high-density measurements are less sig-
nificant compared to low densities, but the deviation is very clear. We conclude
that the density distributions are not lognormal, which is in line with analytical
work by Uhlemann et al. (2015). The other distributions in this study — i.e.
velocity related quantities — are far better approximated by lognormal curves.

6.3 Divergence

Maps
Figure 32 shows the spatial distribution of divergence at two redshifts. It plots

the positive logarithm of positive divergence log |∇ · v| in orange tones — the
darkest reddish shades indicating the most extreme divergence. The negative
logarithm of absolute divergence − log |∇ · v| is shown in dark colours — the
darkest colours indicate the greatest convergence of velocity. The white areas
indicate where the divergence is precisely zero. This figure shows the evolution
of structures at various spatial scales in parallel.

The divergence maps bear a great similarity to the density maps, reflecting
the infall of matter towards high-density regions, and the outflow from empty
regions. Two interesting dissimilarities may be observed.

Firstly, recall the sharp spikes that populate the density maps, they are lack-
ing in the divergence. For as far as they indicate realistic density enhancements,
the velocity streams do not seem to converge on these points proportionally.

Secondly, notice in the z = 0.0 map some elongated features consisting of
two convergent strips enclosing a highly divergent region. In section 6.4 we will

49Those were produced using the Large Deviation Principle (Bernardeau & Reimberg, 2015).
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Map: ± log |∇ · v|, z ∈ {3.7, 0.0}, rf ∈ {0.1, 0.25, 0.5} Mpc

Figure 32: Spatial distribution of logarithmic velocity divergence at z = 3.7
(left column) and z = 0.0 (right column). Maps in the top row are filtered
at 0.1 Mpc, those in the middle at 0.25 Mpc, and those at the bottom at 0.5
Mpc. Orange tones indicate positive divergence, dark regions have a negative
divergence — i.e. convergence. White regions have ∇ · v = 0.0.
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Overdensity and divergence, z = 3.7 & z = 0.0, rf = 0.25 Mpc

Figure 33: Statistical distribution of velocity divergence (solid lines) and den-
sity (dashed lines) at z = 3.7 (purple) and z = 0.0 (red). The divergence has
been normalised to allow a comparison with the density distributions.

find that these are walls. They do not consist of parallel high-density sheets
— the density maps indicate no such structure. Rather, the double spined ap-
pearance of these walls is an artefact in the DTFE estimator. Briefly put, shell
crossing occurs the interior regions, and the DTFE estimator performs poorly
there, see also (Hahn et al., 2015). The overlapping of various velocity flows in
these areas results in the spurious measurement of a very large net divergence.
Section A explains this in more detail.

The high convergence measurements at either side of a wall is attributed to
the velocity flows in the immediate environment. They cause the velocity-based
web classifier to identify anisotropic structures regardless of the local matter
density. These double spined appearances are also recovered by Hoffman et al.
(2012), who used a velocity-based web classifier. See figure 10.

Even though figure 32 shows data filtered at a low spatial scale, it shows
little structure on small scales in divergence, compared to the density maps in
figure 30. Velocity flows — when not subjected to nonlinear effects — are a
large scale phenomenon, as explained in section 2.6.
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Overdensity-divergence correlation, rf = 0.25 Mpc

Figure 34: Correlation between velocity divergence and overdensity at z = 3.7
(purple) and z = 0.0 (red). The divergence has been normalised to allow a
comparison with the density distributions.

Statistical distribution
Figure 33 displays the statistical distributions of divergence at z = 3.7 and
z = 0.0. It also shows the density distributions on dashed lines. The divergence
has been normalised so that it can be compared to the density distribution, see
section 5. It is clear that the distributions from z = 3.7 form a far better match
than those from z = 0.0.

Even so, the divergence distributions do not show the same elevated high
end tail like the density distributions do. The divergence distributions are much
better described by lognormal distributions. Do note that the z = 0.0 divergence
distribution spreads into the negative domain, where ∇ · v > −Haf .

Divergence-density correlation
Figure 34 shows the correlations between divergence and density at redshifts

3.7 and 0.0. Corresponding densities and divergences from a uniform random
selection of grid cells are plotted as dots. The dashed grey line indicates where
1− ∇·vhaf = δ + 1: a perfectly correlated body of data points would lie precisely
on this bisector. The overall distribution of data points indicates that the di-
vergence is well correlated with density.

The divergence and density from z = 3.7 are clearly more narrowly corre-
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lated, compared to those from redshift 0.0. The narrow body of data points
is also slightly tilted with respect to the y = x line: the correlation is some-
what shallower than unity. This reflects the previously made observation that
the density distribution continues to high values, while the divergence does not.
The correlation at z = 0.0 has spread mostly to higher convergence values; only
at the lower left end do we see the measurements dropping towards negative
values.

6.4 Cosmic web classification

Component maps
The cosmic web components were identified by the method described in sec-

tion 5.4. For each grid cell, we determined the signature of the deformation
tensor eigenvalues. The deformation tensor is defined as:

Dij = σij +
1
3

(∇ · v)δij , (144)

and it has three eigenvalues, ordered as

λ1 > λ2 > λ3.

A positive eigenvalue indicates local expansion along the direction of the cor-
responding eigenvector — and a negative eigenvalue indicates contraction. The
sum of eigenvalues is therefore related to the local density. This has been used
as a basis for the classification of six unique cosmic web components. Table 4
presents the definitions of these types of regions.

Section 2.8 provides background information on different web classifiers that
have been used in previous studies. It is relevant to restate that the classification
algorithm used in this study does not make assumptions on the threshold λth
eigenvalue to determine whether a structure is collapsing or not along a given
eigenvector direction — in effect it takes λth = 0. This decision simultaneously
relieves us of arbitrary choices for the free parameter λth, but also introduces
the risk of mistaking a slight compression for a full collapse of a structure. See
also section A for a discussion.

The resulting classification of web components for z = 3.7 and z = 0.0 is
displayed in figures 35 and 36. The top left panels show filaments in purple and
nodes in yellow. Prolate void regions appear to be very rare, and limited in size
— see figure 39 — and have not been demonstrated to be of interest in structure
formation. As such they are not plotted. Note that, since the figures show a
thin slice of the Cosmogrid volume, filaments appear as compact regions, and
walls appear like filamentary features.

The features in the z = 3.7 plot were determined at a spatial scale of 0.10
Mpc, which appears to form a lower bound on the smallest structures that can
be seen in the simulation at that redshift. For the z = 0.0, the dominant struc-
tures appear on larger scales. The classification was done on 0.25 Mpc.

It is clearly visible on both figures that the oblate void regions form the
peripheral parts of the voids, surrounding the expanding void regions. This is
a very adequate confirmation of the expectation that the outer void regions get
squeezed50 between expanding voids and massive surrounding regions. These

50Vastly more likely along one direction — Oblate — than along two — Prolate.
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Figure 35: Results of the cosmic web classification from a slice of the Cosmogrid
volume at z = 3.7. Data are filtered at a scale of 0.1 Mpc. The top left panel
shows regions classified as nodes in orange, and filaments in purple. The other
panels show the mentioned web components in purple. Note that there is no
overlap between these regions. Prolate collapsing void regions are not shown.
Since this figure shows a thin slice from the simulation volume, filaments tend
to appear as compact structures, and walls appear as filamentary features.
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Figure 36: Results of the cosmic web classification from a slice of the Cosmogrid
volume at z = 0.0. Data are filtered at a scale of 0.25 Mpc. The top left panel
shows regions classified as nodes in orange, and filaments in purple. The
other panels show the mentioned web components in purple. Note that the
expanding void regions are surrounded by large oblate collapsing void regions.
Notice the double-spined appearance of the walls.
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oblate void regions enclose the expanding regions systematically throughout
redshift and distance scales. What is not unsurprising is the sheer consistence
and prominence of these oblate void regions: most expanding void regions are
almost completely enclosed in oblate void regions. Moreover, oblate void regions
occupy a far larger proportion of total space than any other type of region, at
any redshift and on any scale — see figure 39.

At z = 0.0, the vertical sub-filament crossing the large void, described in
the previous subsection, does not appear as a filament. The left zoom-ins in
figures 28 and 29 show that the velocity flow in this region is dominated by
the outflow of the surrounding void — no velocity flow along the structure’s
principal direction is seen. This is reflected in the fact that it is identified as an
oblate collapsing void region, being compressed between two expanding voids
— see figure 36.

Dubinski et al. (1993) model a simplified model of void mergers, resulting in
the same oblate structures we see. In their simulated scenarios, spherical empty
regions expand and merge together, trapping any matter sitting between them.
This then forms an underdense structure that is sheet-like in dimensionality,
and diminishes in density. There is no fundamentally defined boundary sepa-
rating underdense walls from oblate collapsing void regions. Our web classifier
draws that line at

∑
i λi = 0, and thus identifies oblate void regions mostly in

underdense regions.
The squeezing of oblate regions between merging voids also manifests in

velocity shear. This can clearly be seen in our spatial distribution of shear
magnitude, figure 57. Notice from figures 35 and 36 that the identified oblate
collapsing void regions occupy a very large proportion of total space. The next
subsection will address this. In brief, this is a consequence of the fact that our
classifier assumes no non-zero threshold eigenvalue λth.

It is in the spatial distribution of the walls that great differences between
redshifts and distance scales arise. Figures 35 and 36 show the emergence of
sheet-like structures on very large scales, and at z = 0.0 they appear as dou-
ble spined features. Do note that this double spined appearance is an artefact
due to the DTFE estimator performing poorly on multi-stream regions. These
figures only provide edge-on views of walls, but section 6.8 will explore these
features further.

Our web classification strategy is based on velocities, which are a large scale
phenomenon — see section 2.6. One consequence of this is that velocity flows
cause the web classifier to identify anisotropic structures regardless of the local
matter density. This way, a low-density area, some distance away from a wall,
may be identified as a wall region due to the velocity shear occurring there.
These double spined appearances are also recovered by Hoffman et al. (2012),
who used a velocity-based web classifier. See figure 10.

Oblate void regions
The fact that expanding void regions are nearly completely enclosed by oblate

void regions is illustrated in figure 37. The two upper panels show voids with
large bulk motions, and the lower left panel shows the oblate regions in an in-
tersection of massive elongated structures. Most oblate void regions appear to
have a somewhat higher sampling density than the expanding void regions —
and this is confirmed in section 6.5.

Most of the detected oblate void regions have a slim, elongated appearance
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Particle velocities in oblate void regions, rf = 0.1 Mpc
z = 3.7 z = 0.0

z = 0.0 map

Figure 37: Decomposition of several regions in the Cosmogrid volume. Purple
areas mark oblate void regions, yellow marks expanding void regions. Vectors
indicate particle velocities. All data are filtered at 0.1 Mpc. The top left panel
corresponds to the region marked at the top left in the map, but data are from
redshift 3.7. The other panels correspond to the other areas marked in the
map, both at z = 0.0
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Volume filling percentages for expanding and contracting regions

Figure 38: Relative amounts of space occupied by regions that are: on the
whole expanding (blue) and on the whole contracting (red). Solid lines: data
from rf = 2.5 Mpc, dash-dotted: rf = 1.0 Mpc, dotted: rf = 0.25 Mpc. The
separation of the two region types is made on the basis of the sign of summed
eigenvalues, see text for details.

on these maps51. In most of the cases, velocities are generally oriented perpen-
dicular to the principal direction of the oblate region. This — together with a
low particle density — suggests the presence of actual oblate void regions, being
squeezed between expanding void regions and massive components.

Occasionally, velocities are more aligned with the oblate regions. This sug-
gests that matter is trapped in underdense wall-like structures, and flowing
outward in the features principal plane52.

Volume occupation
Figure 38 shows a breakdown of the cosmic web into expanding and collapsing

regions. The expanding regions are determined by the criterion that
∑
i λi > 0,

and collapsing regions by
∑
i λi < 0. Note that, in Gaussian initial conditions,

these regions are expected to be precisely balanced — i.e. 50% of space expands,
and 50% contracts. An extrapolation of the highest redshift measurements sug-
gest that this balance occurs at redshifts upwards of z ∼ 34. Note that the
Cosmogrid simulation starts at zinit = 65.

The relative amounts of space occupied by the six distinguished cosmic web
components are compared in figure 39. It follows the percentages of occupied

51Note that this is the likely appearance of any cross section of any oblate shape.
52A reliable distinction between these cases would require a bulk-correction, where the

particles velocities are corrected by an estimated velocity field from some larger spatial scale.
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Volume filling percentages

Figure 39: Relative amounts of space occupied by the six different cosmic web
components, as a function of redshift, at filter scales 0.1 Mpc, 0.25 Mpc and
0.5 Mpc. A comparison between these plots allows us to probe the differences
between the appearance of the cosmic web at different scales.
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Volume filling percentages by Nexus+
(Cautun et al., 2014)

Figure 40: Relative amounts of space occupied by the web components identi-
fied in Cautun et al. (2014). They used the Nexus+ method — see section 2.8.
See their paper for details.

space as a function of redshift. Note that the horizontal axis indicates logarith-
mic redshift, resulting in a roughly logarithmic time line running from right to
left. The top panel displays data from the web components determined at spa-
tial scales around 0.1 Mpc, while the middle and lower panels show structures
at 0.25 and 0.5 Mpc, respectively.

A comparison between the occupation levels of web structures in these three
panels shows how sensitive the data are to the spatial scales considered. Partic-
ularly the prominence of filamentary regions undergoes a great transformation
when the focus is shifted from low to high scales: while they play a relatively
modest role in the small scale structures, filaments are the dominant type of
massive features in the large scale structure of the Universe.

Note that an assessment of structures on a given scale requires a sufficient
spatial resolution. This study is based on a velocity estimation at a grid res-
olution of 128 cells spanning a 30 Mpc box length, resulting in a cell width of
0.234 Mpc. A finer intrinsic smoothing would be preferable for a proper view
on the 0.1 Mpc structures.

These plots also offer a general overview of the time evolution of the struc-
tures. At each scale, there seems to be a break-even point between filaments
and expanding voids, and this happens at a progressively later time as higher
scale structures are considered. This is a clear manifestation of the hierarchi-
cal development of linear and nonlinear structure formation, where small scale
structures mature before large scale structures do. On the whole, a large part of
the ‘shifts in balance’ involved in structure formation appears to be completed
at a relatively early stage in cosmic history — most of the change in volume
occupation occurs at higher redshifts.

For a comparison, figure 40 shows the volume filling percentages obtained by
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the Nexus+ technique53 applied to the Millennium simulations (Cautun et al.,
2014). They find voids to keep expanding linearly with redshift, at the expense
of walls and voids — this is roughly in agreement with our results. In contrast
to our study, Cautun et al. find walls to dominate over filaments throughout
the redshift range. The difference between the measured volume occupation
percentages for walls can be attributed to the difference between the web clas-
sifiers used. Our web classifier identifies underdense walls as oblate collapsing
void regions, which are found to be surprisingly dominant.

The oblate void regions detected by our web classifier dominate the volume
at every scale and every redshift studied. They increase from the near-Gaussian
initial conditions, peak around z = 3.7 − z = 2.1, and decrease somewhat in
prominence at later times and at higher scales. Note that the majority of struc-
ture formation occurs at high redshifts, which may explain the peak in oblate
void volume fractions. The fact that it peaks later at larger scales is in line with
the expected hierarchical structure formation, too.

A separate numerical experiment was conducted in order to gauge the statis-
tically expected volume filling percentages in Gaussian initial conditions — See
section 5.4. Since there are 8 possible unordered eigenvalue signatures each is
expected to occur in 12.5% of a Gaussian random volume (Doroshkevich, 1970).
While, for example, only one of these signatures — i.e. (+ + +) — corresponds
to expanding void regions. The condition of oblate regions, however, may be
satisfied by three signatures — i.e. (+ + -); (+ - +); (- + +) — so that 37.5%
of space is expected to be oblate. Our experiment separates the generally con-
tracting and expanding regions by the sum of eigenvalues — e.g. it separates
oblate void regions from walls. The following volume filling fractions are thus
recovered:

Volume filling percentages for independent random eigenvalues
feature signature Gaussian λi

(λ1;λ2;λ3;
∑
i λi) relative volume

nodes (- ; - ; - ; -) ∼ 12.5%
filaments (+ ; - ; - ; -) ∼ 29.4% total prolate:
prolate (+ ; - ; - ; +) ∼ 8.1% 37.5%
walls (+ ; + ; - ; -) ∼ 8.1% total oblate:
oblate (+ ; + ; - ; +) ∼ 29.4% 37.5%
expanding (+ ; + ; + ; +) ∼ 12.5%

The measured volume filling percentage of oblate void regions can be brought
down significantly by adopting a suitable threshold eigenvalue λth for the web
classification. In this method, a region is only judged to be collapsing along
a given principal axis if the corresponding eigenvalue exceeds λth. See 2.8 for
detailed information and figure 9 for a visual explanation for the effects of a λth.
Section A presents the effects of a λth for our web classification.

A very sharp contrast can be seen between the occupation levels of oblate
and prolate voids. The likelihood of a void being squeezed in two directions
simultaneously is dwarfed by the likelihood of collapse in only one direction.
The increase in total space occupied by expanding void regions is in agreement
with expectations. Since voids tend to merge, the absolute number of individual
voids decreases, but this has no net effect on the volume occupation.

53The Nexus+ web classifier is based on the density — it uses a lognormal filter kernel —
and is scale independent.
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6.5 Density-divergence relations per web component

Density per web component
The individual density distributions from the separated cosmic web components
are shown in figure 41. The region types are coded with the colours conform
table 5. Firstly, notice the horizontal ranges the distributions occupy at either
end of the redshift evolution. The node and filament distributions broaden by
great amounts, getting more extreme in both high and low density. The other
four regions spread to lower densities, but their upper density bounds change
only little. Nodes are invariably overdense at z = 3.7, but not so at z = 0.0.

These results bear a strong similarity to those in a previous study by Hahn
et al. (2007). Their classification method was based on the gravitational po-
tential. Their study defined only four types of regions — it did not distinguish
between different types of underdense regions. Their density distributions are
plotted in figure 8 — section 2.8.

At z = 3.7, while the massive features have long high-density tails, we see
a sharper cutoff at the right hand sides of the void distributions. This is of
course a result of the conditions under which these void regions were defined.
For regions of progressively higher density, the likelihood that a positive sum of
eigenvalues is found falls off steeply. The sum of eigenvalues is, after all, closely
related to the density — this can be derived from the continuity equation.

Conversely, at z = 0.0, all distributions have longer high-density tails, and
there is far more overlap between density levels of separate types of regions. To
the point that a narrow range of densities around δ + 1 ' 0.2 falls within the
ranges of all types — even distributions from nodes and expanding void regions
overlap. The fact that such low density areas are still classified as nodes on
the basis of the eigenvalue signature indicates a limitation of the validity of the
classification method. Velocity based web classifiers may unduly identify empty
regions as nodes, filaments or walls, if the appropriate velocity flows occur. This
means that the massive regions are overrepresented, at the cost of underdensi-
ties, which is reflected in the amount of massive features occurring at densities
below δ + 1 ' 1.0.

The fact that this misrepresentation occurs to a larger degree at low redshift
than at high redshift is likely in part due to an actual difference in spatial bal-
ance between overdensities and underdensities. The density distribution grad-
ually deviates from its initial Gaussian nature.

An analytical assessment of how likely different eigenvalue signatures are to
be found at different densities is provided by Pogosyan et al. (1998). They, too,
used the deformation tensor as basis, but considered only the eigenvalues, not
their sum. For Gaussian random initial conditions — and the Cosmogrid body
at z = 3.7 is close to Gaussian — Pogosyan et al. calculate that any region
at δ = 0 has a probability 0.5 of having a signature (− + +); characterising a
filamentary structure. In the other half of cases, the signature is (−−+), char-
acterising a sheet-like structure. The upper panel of figure 41 reveals that the
filaments enter a break-even point with oblate void regions around δ ∼ 0. So do
the walls and prolate void regions, at redshift 3.7. The measured density dis-
tributions for nodes, filaments and walls54 agree to some extent with Pogosyan

54particularly when taking into account the walls contained in the oblate void region mea-
surements
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Statistical distribution δ + 1

Figure 41: Statistical distributions of overdensity δ + 1 at z = 3.7 (top panel)
and z = 0.0 (lower panel). Different distributions come from regions identified
as different cosmic web components, see legend. Notice that the overdensities
range between ∼ [0.1; 20] at z = 3.7 but at z = 0.0 they span ∼ [0.01; 100].
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GRF shear eigenvalue - density probabilities
(Pogosyan et al., 1998)

Figure 42: Statistical distributions for eigenvalue signatures, given a density
(left); and densities per eigenvalue signature (right). Like in our study, eigen-
values are based on the non-traceless shear tensor. Signatures (+ + +) char-
acterise nodes, (−+ +) filaments and (−−+) walls. ν is defined as ν = δ/σ,
where σ is the standard deviation of the δ distribution. The left panel shows
the likelihood of signatures at each density; the right panel displays density
distributions. These calculations are done by Pogosyan et al. (1998), they
apply to Gaussian random conditions.

et al.’s predictions. See figure 42.

Divergence per web component
The discrepancy between the long tails of the density and divergence distri-

butions is illustrated in figure 43(a). The convergence in the nodes falls off far
more steeply than the density. This is mirrored in the expanding void regions,
where densities are low in proportion to the divergence. Both density distribu-
tions span a broader range than the divergences in corresponding regions. Note
that, in absolute terms, the discrepancy between the node distributions is far
greater than that between the expanding void distributions.

In other web components, the corresponding density and divergence distri-
butions match more closely. Exampli gratia, both distributions for the filaments
are shown in figure 43(b). This panel lifts out the oblate and prolate features.
Most striking is the sharp divide at 1 − ∇·v

Haf = 1.0. There is a certain overlap
around δ + 1 = 1.0 between the densities of these four regions — see figure 41.
But in contrast, no net convergence was found in the voids, nor any net diver-
gence in the massive regions. The absoluteness of this divide is not a physical
phenomenon, but a consequence of the method of classification: The web compo-
nents on either side are distinguished by the sign of the sum of their deformation
tensor eigenvalues, which is determined by the divergence.

Figure 43(c) shows the divergence distributions for the oblate and prolate
regions at z = 0.0. At this stage of structure formation, the greatest diver-
gences in the void regions have grown to the point that the quantity 1 − ∇·v

Haf
spreads into the negative domain. This is a sign that the velocity distribution
has become nonlinear. This plot, too, shows a divide between the overdense
and underdense regions at unity.

Given the definitions of these four regions — table 4 — certain continuities
between the four distributions may be expected: the filaments and prolate voids
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Divergence and density distributions
(a) z = 3.7, rf = 0.25 Mpc

(b) z = 3.7, rf = 0.25 Mpc

(c) z = 0.0, rf = 0.25 Mpc

Figure 43: Statistical distributions of density velocity divergence. Solid lines:
divergence, dashed lines: density. Colours indicate cosmic web regions corre-
sponding to the legend. Redshifts and filter scales are displayed above panels.
Horizontal axes show densities and normalised divergence values, note that
horizontal ranges differ between panels.
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Random Gaussian divergence distribution

Figure 44: Divergence distributions from a separate numerical experiment.
Independent random Gaussian eigenvalues were drawn as a basis for web clas-
sification, and divergence ≡

P
i λi. The horizontal axis is logarithmic as well.
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share the same eigenvalue signature. They differ only in the sign of the sum,∑
i λi, and the same holds for the walls and oblate voids. Interestingly, it turns

out to be the distributions for oblate void regions and filaments that lie closely
together at 1 − ∇·v

Haf = 1.0; and the walls and prolate void regions meet rela-
tively closely as well. Statistically, walls and prolate voids are among the rarest
types of regions, and they span only small ranges in density and divergence.
Figures 43(b,c) reveal that they are concentrated around unity.

These results are in agreement with a numerical experiment where indepen-
dent random Gaussian eigenvalues are drawn for each grid cell. The divergence
is defined as the sum of eigenvalues, and the signatures determine cosmic web
components conform our web classifier. Figure 44 shows the resulting divergence
distributions — compare these to the results in figure 43. The same discontinu-
ity at unity occurs in both cases. As we have seen in the previous exploration
of volume filling percentages, the filaments and oblate void regions are far dom-
inant over walls and prolate void regions in Gaussian random conditions. The
latter two appear at only narrow ranges of divergence.

Another interesting continuity at unity can be seen in figure 43. Note that
the slopes for oblate void regions and walls match at unity, and the same holds
for prolate void regions and filaments. This can be seen both at z = 3.7 and
z = 0.0. Note that, disregarding the sign of

∑
i λi, oblate voids and walls share

the same eigenvalue signature — they are both oblate. Prolate void regions and
filaments are both characterised by a prolate eigenvalue signature. Therefore,
this continuity makes intuitive sense: considering simply the statistical distri-
bution of a region defined by a specific eigenvalue signature, there would be no
grounds to expect a discontinuity in slope at any point. Note that the continuity
in slopes is also reproduced by the aforementioned numerical experiment, see
figure 44.

Density - divergence relation per web component
Figure 45 shows the correlations between between divergence and density at
z = 3.7. Corresponding densities and divergences from a uniform random se-
lection of grid cells are plotted as dots, with colours indicating the cosmic web
components. The dashed grey line indicates where 1− ∇·vHaf = δ+ 1: a perfectly
correlated body of data points would lie precisely on this bisector. The overall
distribution of the data points indicates that the divergence is well correlated
with density.

This plot reflects some previously made observations: the sharp divide at
1− ∇·vHaf = 1.0 appears as a sharp horizontal boundary in the density-divergence
plane. Also, the highest node densities continue while the convergence in cor-
responding regions levels off. The correlation in the underdense regions mirrors
that in the nodes: the correlation is somewhat shallower than unity, as the den-
sity spans a somewhat broader range than the divergence.

Note the boundary between the expanding and oblate collapsing void regions
— between the green and yellow loci. The skewness of this line is indicative of
the differences between density and divergence distributions for the two types
of voids. In the expanding void regions, the two distributions are shifted, while
the distributions from oblate void regions match relatively well. The same holds
for the boundary between nodes and filaments.
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Density-divergence correlation z = 3.7, rf = 0.25 Mpc

Figure 45: Correlation between overdensity and velocity divergence. Each
point is a density-divergence measurement form a uniform-randomly selected
grid cell from the simulation at z = 3.7. Colours show the identified region
types. The dashed grey line indicates where 1 − ∇·v

Haf
= δ + 1, i.e. a perfect

unity correlation.
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example lognormal curves

Figure 46: Examples of lognormal curves. In the left panel, all curves have
unity standard deviation, scales vary according to the legend. On the right,
all curves have unity median, while the standard deviations are varied.

Lognormal fit parameters
As explained in more detail in section 5.7, lognormal curves were fitted to

the density and shear magnitude distributions from all cosmic web components,
and from all redshifts in the data set. For each distribution, two lognormal fit
parameters were recovered: the median eµ and standard deviation std55. Fig-
ure 46 shows a number of examples of lognormal curves with varying medians
and standard deviations.

Figure 47 shows the redshift evolution of the determined fit parameters.
The horizontal axis indicates redshift, so that the right portions of the graphs
constitute the linear regime, deviations from linearity increase towards the left.
This figure shows that density distributions — in all web components — clearly
increase in the std parameter over the entire course of structure evolution. This
is mirrored by a decrease in medians. For reference, figure 46 provides examples
of the consequences for a distribution. Higher standard deviations and lower
medians result in a great deviation from a Gaussian appearance.

These deviations from Gaussianity reflect the unbounded growth of the den-
sity contrast. While density peaks keep increasing, ever larger volumes only get
sparser. Notice that these deviations appear to be more pronounced in voids
than in the massive region types. The densities in nodes exhibit a surprisingly

55Note that this is not the statistical standard deviation of the distributions, but rather that
of the underlying Gaussian distribution that the lognormal curve is defined upon. Similarly, eµ

is the median of the lognormal distribution, where µ is the mean of the underlying Gaussian.
See section 2.6 for details. Rather than the conventional symbol σ, we denote the standard
deviation by std, to prevent confusion with velocity shear.
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Density distribution fit parameters, rf = 0.25 Mpc

Figure 47: Redshift-evolution of parameters for lognormal fits to density distri-
butions. Top panel: standard deviations, middle panel: medians, lower panel:
reduced chi squares. Colours indicate the web components.
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Density distribution fit parameters, rf ∈ {0.1, 0.25, 0.5} Mpc

Figure 48: Redshift-evolution of parameters for lognormal fits to density dis-
tributions. Only data from filaments and oblate void regions are shown. Line
widths indicate the spatial scale at which distributions were taken.
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Divergence distribution fit parameters, rf = 0.25 Mpc

Figure 49: Redshift-evolution of parameters for lognormal fits to divergence
distributions (solid lines). Dashed lines indicate the fit parameters to the den-
sity distributions from nodes and expanding void regions. Top panel: standard
deviations, middle panel: medians, lower panel: reduced chi squares. Colours
indicate the web components.
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large and early increase in medians, contrary to all other regions56.
All data from figure 47 are filtered at a scale of rf = 0.25 Mpc. Small scale

structures are expected to deviate from linearity earlier, and large ones later.
Our analysis with different filter scales reproduces this successfully. Figure 48
shows examples of parameter evolutions from different spatial scales. It is clear
that the parameters from different scales undergo the same changes, but that
small scale distributions evolve earlier, and are followed by those from large
scales.

A very important remark must be made about the interpretation of these
results. The numbers shown in figure 47 come solely from lognormal fits to the
distributions — not from the real distributions. Most velocity based quantities
are reasonably well described by lognormal curves, but the density distribution
less so. For as far as physical nonlinear growth deviates from lognormal distri-
butions, those changes are not visible in this analysis.

The lower panel in figure 47 follows the reduced chi squares of the fits. This
lets us know how well a given distribution is described by a lognormal curve.
The increase of chi squares towards low redshifts indicates a deviation from
lognormal distributions. It appears that filaments adhere to a lognormal distri-
bution relatively well.

Figure 49 shows the results of the same analysis applied to the divergence distri-
butions. The divergence distributions increase in standard deviations, parallel
to the densities — and this is in line with expectations from gravitational insta-
bility. However, the medians for the divergence fits also increase significantly,
contrary to the density fits.

The qualities of fits to the Divergence distributions vary to a great extent.
Particularly the voids appear to deviate from expectations. In the nodes, the
divergence measurements are generally closer to lognormal than the density
measurements are. This reflects the differences in the high-density tails, also
seen in figure 43(a).

As with the density data, the changes in the divergence distributions — as
probed by lognormal fit parameters — are nearly the same between different
spatial scales considered. All changes happen at an earlier time for lower scales,
and at a later time for larger scales. This agrees well with expectations.

6.6 Deformation eigenvalues

The deformation tensor was defined in terms of shear and divergence:

Dij = σij +
1
3

(∇ · v)δij .

It is a symmetric, non-traceless tensor, so that it has three eigenvalues. These
are ordered as:

λ1 > λ2 > λ3.

Section 5.4 provides more detailed information on these quantities. In the
present section, we explore the spatial and statistical distributions of the eigen-

56There is a very important caveat in interpreting these results, namely that the lognormal
fits do not capture the true distributions. Deviations from lognormal distributions occur
particularly in the high-density tail — see section 6.2.
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values. We also follow their behaviour in different web components, and their
relation to density.

Maps
Spatial distributions for the deformation tensor eigenvalues and their sums are

shown in figures 50 for z = 3.7, and 51 for z = 0.0. The same colours are used
as in the divergence maps, white areas indicate the zero level. One of the most
readily visible aspects of the eigenvalue maps is that the largest eigenvalue, λ1,
exhibits a very deep hierarchy of structure, while the other two are far more
homogeneous.

The largest eigenvalue indicates the largest expansion among the three prin-
cipal axes of any region, and in that capacity it contains information on the
anisotropy of structures. Hence, the filaments and walls are well visible in the
spatial distribution. Small scale structures, like the colliding outflows from
neighbouring voids, are not well visible in these plots. The least anisotropy is
expected in nodes and expanding void regions, and it is indeed these regions
that appear in lower λ1 values on all redshifts.

The other two eigenvalues, λ2 and λ3, appear to follow the places where the
density is highest. Notice that their spatial distributions do not appear to be
statistically isotropic: the λ2 map appears to be more correlated horizontally
than vertically, and vica versa for the λ3 map. This is an artefact that origi-
nates in the simulation — no physical quantity on Mpc scales is expected to be
more spatially correlated along any specific direction. In this study, the hor-
izontal and vertical alignments are not arbitrary, since the data are produced
and stored in a regular grid. The imbalance in spatial correlations is due to the
fundamental mode problem, addressed in section A.3.

The sum of eigenvalues is a close indicator of density, but is still a quantity
derived from velocity derivatives. As such, the summed eigenvalue maps do
not show sharp spikes where the density peaks. It is notable that the spurious
double spined appearance of walls at z = 0.0 is more present both on the λ1 and∑
i λi maps. The λ1 distribution is expected to be closely related to the shear

magnitude, and
∑
i λi to the divergence. Nonetheless, the divergence maps in

figure 32, as well as the shear magnitude maps in figure 57, show a clearer double
spine structure than the eigenvalue plots.

Statistical distribution
Figure 52 shows the statistical distribution of all eigenvalues and their sum at

z = 3.7. Conform our tradition, the plotted quantity is 1− (P
i)λi

Haf , this means
that the blue line is not exactly the sum of the others — there is a factor 3
missing.

The distributions continue into the negative domain, meaning that the quan-
tities (

∑
i)λi exceed Haf in some places. In fact, λ1 peaks at 2.982 · Haf ;

λ2 at 2.89 ·Haf ; λ3 at 2.542 ·Haf ; and
∑
i λi at 1.895 ·Haf .

A striking observation in this figure is that, while the eigenvalues sum to a
smooth and ordinary-looking distribution, the individual distributions exhibit
bumps and dents. Between 1 − λi

Haf ∈ {0.2; 1.0}, a large dent occurs in the λ1

distribution, which appears to be compensated by bumps in the other eigen-
value distributions. This effect persists throughout the redshifts, and at z = 0.0
it occurs at slightly higher λi values. Its nature is as of yet unclear.
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Deformation eigenvalues, z = 3.7, rf = 0.1 Mpc

Figure 50: Spatial distribution of the deformation tensor eigenvalues at z =
3.7. The eigenvalues are ordered such that λ1 > λ2 > λ3 at each grid cell.
Positive eigenvalues are marked in orange and indicate expansion along their
respective eigenvector direction. Negative eigenvalues — shown in dark shades
— indicate contraction. The zero level is marked in white. The horizontal and
vertical tendencies in the λ2 and λ3 maps are a numerical artefact.
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Deformation eigenvalues, z = 0.0, rf = 0.25 Mpc

Figure 51: Spatial distribution of the deformation tensor eigenvalues at z =
0.0. Layout and colours are the same as in figure 50. The horizontal and
vertical tendencies in the λ2 and λ3 maps are a numerical artefact, as is the
double-spined appearance of walls in the

P
i λi map.
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Deformation eigenvalue distribution, z = 3.7, rf = 0.25

Figure 52: Statistical distributions of λ1 (dashed, red), λ2 (dashed, purple) λ3

(dashed, green) and
P
i λi (solid, blue). The dent in λ1 — and compensating

bumps in λ2, λ3 — at ∼ 0.5 are as of yet unexplained.
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Largest eigenvalue distribution z = 3.7, rf = 0.25 Mpc

Figure 53: Statistical distribution of λ1 at z = 3.7 for nodes, filaments, oblate
and expanding void regions. Distributions from prolate void regions and walls
contain areas of very low sampling density, and are thus not shown.

Deformation eigenvalues per web component
Separating the λ1 values from different cosmic web components — figure 53 —

reveals that the dent occurs at lower λ1 for lower density regions. The node
distribution appears to exhibit a decrease up to λ1 ' 3.0, relative to the

∑
i λi

distribution57. Particulary in the oblate void regions and filaments, the λ1 gap
is deep — the sampling density gets very low.

Density-eigenvalue correlations
The correlation between density and summed eigenvalues — plotted in the

upper panel of figure 54 — reflects some previously made observations. The
densities continue to increase, while the sum of eigenvalue levels off. In the lower
left corner we can see the bend towards negative values of 1 −

∑
i λi/(Haf).

Interestingly, many readings from the oblate void regions appear to occur at
even lower densities than the expanding voids.

The middle panel in figure 54 shows the correlation between density and the
maximum eigenvalue λ1 at z = 3.7. Several observations are made:

� Firstly, the slanted strip with a considerably lower sampling density is a
manifestation of the dent in λ1 values, found in figure 52. The slope of this
divide on the λ1 − δ plane indicates a certain density-dependency in this
effect. This is in agreement with figure 53. The same density-dependence

57Note that
P
i λi = ∇ · v, so the distribution of summed eigenvalues is given by figure 43.
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relation: density - summed eigenvalues z = 3.7, rf = 0.25 Mpc

relation: density - largest eigenvalue z = 3.7, rf = 0.25 Mpc

relation: density - largest eigenvalue z = 0.0, rf = 0.25 Mpc

Figure 54: Correlations between density and deformation tensor eigenvalues
— λ1 and

P
i λi. Data are a uniform random selection of grid cells from the

Cosmogrid volume. colours indicate cosmic web region types; dashed grey lines
indicate unity correlation. The gaps in the lower two panels are of unknown
origin. See text for interpretations.
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holds for all web components. It is shallower than x = y, and appears to
coincide with the correlation of the whole data set.

� Contrary to the divergence-density correlation in figure 45, the boundary
between overdense and underdense regions is not clear. For the nodes and
expanding void regions, there is still a very sharp horizontal boundary
at unity. However, walls, filaments, and collapsing void regions occur
on both sides of this boundary. Do note that the oblate features — i.e.
walls and oblate void regions — appear to be far more concentrated at
lower eigenvalues, and that prolate void regions are more prevalent at
high eigenvalues.

� Halfway the upper portion of the plane, we see a clear, linear boundary
between void regions and walls. This is a consequence of our classification
method, which identifies underdense walls as oblate void regions. Another
clear linear boundary between prolate void regions and filaments is found
just below it, but at a completely different slope. Similarly, the regions
identified as prolate void regions also contain underdense filaments.

The density-maximum eigenvalue correlation for z = 0.0 is displayed in the lower
panel of figure 54. The most notable difference is that the low sampling band
has changed in appearance since redshift 3.7. While still clearly recognisable at
low densities, the high density region is populated with readings from nodes.
There is only a somewhat ambiguous indication that the ‘rift’ continues in the
same direction, or that it bends towards a horizontal direction.

In general, the fact that some web components obey very clear boundaries
in the λ1 − δ plane, while others do not, may be related to the method of
classification. The limitations of a classification based on deformation tensor
eigenvalues are explored in sections 2.8 and A. The whole existence of the low
sampling rift may be due to a numerical instability.

Eigenvalue ratios
In order to explore the cause of the relative decrease in frequency of λ1 mea-

surements, the ratios of eigenvalues were compared. Figure 55 displays the
statistical distribution of the ratio λ3/λ1. This figure is also illustrative of the
ratio λ2/λ1, which follows a very similar distribution. Both ratios are extremely
closely concentrated around zero. In most cases, λ1 far exceeds the other two
eigenvalues. This is expressed in the large volume fraction where the λ2/λ1 and
λ3/λ1 ratios are below unity. It indicates the strongly anisotropic nature of the
velocity flow.

Figure 56 displays the ratios λ2/λ1 and λ3/λ1 at two redshifts. The first
quartile of the distribution is shown in black, the second in indigo, the third in
orange, and the fourth in bright yellow58. It is predominantly at the peripheries
of massive regions, where extreme positive and negative spikes in both ratios
are found. Such spikes occur if λ1 is close to zero, which makes it likely that the
other eigenvalues are negative. Therefore, there will often be some anisotropic
collapse. A comparison with figures 35 and 36 suggests that these spikes typi-
cally occur in oblate collapsing void regions.

58These quartiles are based on the distribution from the entire Cosmogrid volume. The
slice shown in figure 56 is not representative of this volume, and thus has an unequal spatial
balance of quartiles.
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Eigenvalue ratio distributions, rf = 0.25 Mpc

Figure 55: Statistical distributions of the ratio λ3/λ1. The top panel displays
the distribution over the entire measured range — The ratios range from ∼
−107 to ∼ 106, this figure shows a fixed-weight histogram. The other two
panels zoom in on a narrow range, at redshifts 3.7 and 0.0. In the lower two
panels, vertical lines indicate the boundaries between the four quartiles of the
distribution. The statistical distribution of the ratio λ2/λ1 assumes a closely
similar appearance to the one shown here.
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Map: eigenvalue ratios, rf = 0.25 Mpc

Figure 56: Spatial distributions of λ2/λ1 (left) and λ3/λ1 (right) at z = 3.7
(top) and z = 0.0 (bottom). As visualised in the colour bar, the first quartile
of the distribution is shown in black, the second in indigo, the third in orange
and the fourth in bright yellow. As can be seen in figure 55, the second and
third quartiles occupy an extremely small range of ratios, centred around zero,
while the first and fourth spread to extreme negative and positive values. In
the left half of each panel, contours mark unity ratios. Note that λ3/λ1 = 1
is fully isotropic; and λ2/λ1 = 1 indicates either planar or full isotropy.
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In the left half of each panel, contours mark the unity ratio. Physically,
λ3 = λ1 implies that λ2 = λ1 also. This constitutes a completely isotropic sig-
nature — be it isotropically expanding or collapsing. More generally, λ2 = λ1

only implies an isotropic planar expansion or collapse — i.e. isotropy in the
plane defined by the eigenvectors corresponding to the first and second eigen-
values. Since λ3 ≤ λ2, two cases can be distinguished. If λ1 = λ2 = λ3, this
constitutes a fully isotropic signature. However, λ1 = λ2 > λ3, is a specially
symmetric oblate signature: a larger and equal expansion — or a slower collapse
— in two directions, and a smaller expansion or faster collapse in the remaining
direction. Among all places where λ2/λ1 = 1, the majority also has λ3/λ1 = 1.
This means that fully isotropic signatures are detected far more often than sym-
metric oblate ones.

These forms of complete and planar isotropy occur mostly within underdense
regions. This satisfies the expectations of relatively isotropic potential and ve-
locity fields in isotropic spatial structures. Locally isotropic velocity flows are
expected only in regions with a uniform density, and this occurs in the interiors
of voids.

It is important to note that the velocity components incorporated in the
deformation tensor eigenvalues do not include any contributions from pure bulk
flow. Bulk flow is the zeroth order contribution to a flow field: a constant
velocity field over an extended region. It is thus distinctly anisotropic, but
not represented in the deformation tensor — i.e. the velocity gradient. This
means that isotropic velocity gradient signatures can still be detected in areas
dominated by bulk flows.

6.7 Shear magnitude

Velocity shear is defined as follows:

σij =
1
2

(∂jvi + ∂ivj)−
1
3

(∇ · v)δij . (145)

It is also called the symmetric part of the velocity gradient ∂ivj . Shear measures
anisotropy in potential velocity flows, and as such is an important aspect of the
formation and evolution of anisotropic structures. This subsection explores the
spatial and statistical distributions of the shear magnitude |σ|, which is defined
as:

|σ| =
√∑

i

∑
j

σ2
ij . (146)

This is still a linear combination of velocity gradients, and as such it is expected
to scale with Haf during its linear growth.

This section also explores the behaviour of shear magnitude distributions
from different web components, and its statistical relation to density. In an
attempt at investigating the nonlinear evolution of shear magnitude, the log-
normal fit parameters of shear magnitude distributions are compared to those
of density distributions.

Maps
Since we have found the shear magnitude to be a very adequate indicator of

structure formation, figure 57 follows the spatial distribution of shear magnitude
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Map: log |σ|, z ∈ {3.7, 0.0}, rf ∈ {0.1, 0.25, 0.5} Mpc

Figure 57: Spatial distribution of logarithmic velocity shear magnitude at
z = 3.7 (left column) and z = 0.0 (right column). Maps in the top row are
filtered at 0.1 Mpc, those in the middle at 0.25 Mpc, and those at the bottom
at 0.5 Mpc. Bright regions indicate low log |σ|, dark regions indicate high
shear magnitude. The main conclusion drawn from this figure is that small
scale structures — opposed to large ones — evolve by a greater number of
individual mergers and relatively large displacements of structures in terms of
their characteristic size. See text.
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at z = 3.7 and z = 0.0 at three different filter scales. This allows us to assess
the evolution of structure at three different scales in parallel.

Firstly, the spatial distribution shows a wealth of structure on various scales.
The formation and evolution of anisotropic structures generally involves shear-
ing of velocity flows, and so these maps highlight the regions of activity in
anisotropic structure formation. This includes the shearing inflow of matter
into filaments, walls and nodes. The merging and squeezing of voids also gen-
erates velocity shear, as matter is drained from the sheet-like region between
voids — see e.g. Dubinski et al. (1993). This explains why shear flows show up
in low-density areas as well.

The shear magnitude maps at z = 0.0 clearly show the unrealistic double
spined appearance of massive, large scale walls59. At the edges of these regions,
we see parallel strips where high shear values are measured. In part, these mea-
surements come from the low density environments around walls. Here, velocity
flows are bent towards the alignment with the walls, due to the anisotropic dis-
tribution of mass and gravity.

By comparing maps from different redshifts and filter scales, we gather in-
sights in the evolution of structures from different scales. The small scale struc-
ture undergoes the greatest metamorphosis, while large scale structures remain
relatively stable. At the largest scales, we witness the merging of structures, but
hardly any displacement of structures over large scales. At smaller scales, we
see more extensive changes. The structures are smaller, less massive, and more
numerous; therefore, their evolution involves many mergers. In these mergers,
structures get displaced over distances that are large in terms of the typical
structure size.

Statistical distribution
In figure 58, the statistical distributions of shear magnitude at two different

redshifts are compared. The shear magnitude distributions are displayed along
with the corresponding density distributions. The distributions from z = 3.7
deviate mostly because of the high-density tail — explored in section 6.2. The
distributions at z = 0.0 show very high shear magnitude measurements, relative
to the density distribution. Recall that the comparison between these distribu-
tions rests on a normalisation — Haf — derived from the linearised continuity
equation. The visual discrepancy between the distributions from z = 0.0 can in
part be attributed to a nonlinear shear evolution.

In a comparison solely based on the shapes of the distributions — regardless
of their position and horizontal extent — the distributions appear to be a rather
well matched. At redshift 3.7, both distributions appear relatively close to a
lognormal curve; at redshift 0.0 both have been stretched and acquired a more
shallowly decreasing high-value tail. For as far as these distribution shapes
represent realistic physical distributions of density and shear magnitude, the
agreement between them suggests that a proper normalisation for the nonlinear
shear growth does exist.

Shear magnitude per web component
It must be noted that the classification of web components depends largely on
59Recall that these have been observed in divergence and deformation eigenvalues as well,

and are an artefact due to a poor performance of the DTFE estimator in multi-stream regions.
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Overdensity, shear magnitude, z = 3.7 & z = 0.0, rf = 0.25 Mpc

Figure 58: Statistical distributions of overdensity (dashed lines) and shear
magnitude (solid lines), at redshifts 3.7 (in red) and 0.0 (in purple). The
horizontal axis indicates both density and shear magnitude. The latter is
normalised under the assumption of linear velocity growth, which does not
hold at z = 0.0.
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shear magnitude, z = 3.7 & z = 0.0

Figure 59: Statistical distributions of velocity shear from different cosmic web
components at z = 3.7 (solid lines) and z = 0.0 (dashed lines). Colours indicate
cosmic web region types — expanding and prolate void regions are not shown.
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the velocity shear. This means that studying the shear in these regions is a
‘circular experiment’ that should be of limited value. However, the web classi-
fication is also dependent on divergence; and the study of shear magnitude has
yielded some interesting observations.

The shear magnitude distributions from separate cosmic web components
at redshifts 3.7 and 0.0 are displayed in figure 59. It shows distributions from
the two redshifts that bookend the structure formation up to the present. The
oblate voids, filaments and walls are the most important regions of anisotropic
structure formation.

While figure 58 shows the overall shear magnitude distribution at redshift
0.0 to be enhanced at the high value tail, this seems to hold for none of the
cosmic web components individually. Notice, however, that the highest shear
magnitude values measured in walls, filaments and nodes continue towards
|σ| ' 10.0 ·Haf . It can be seen that shear values increase significantly over the
course of structure formation in all of the shown web components.

In velocity shear — other than e.g. in density or velocity divergence — it is
not only the nodes where the highest peaks are measured: The enhancement of
the high shear magnitude tail is due to shear occurring in walls and filaments.
The importance of walls and filaments in the shear magnitude distributions is in
agreement with the picture of velocity flows approaching anisotropic structures.
Particularly in the case of walls — which are very prominent on the shear maps
— it can be seen that the shear magnitude is centred around |σ| ∼ 2.1 ·Haf at
z = 0.0. This constitutes a clear deviation from lognormal distribution.

The shear magnitude distributions from oblate void regions deviate from
lognormal, by an apparent enhancement60. It is intuitive to attribute the in-
creased frequency of these measurements to the scenarios of shear generation in
void collisions. The distributions assume the same shapes at filter scales of 0.1
and 0.5 Mpc.

Notice that, in contrast to velocity divergence — but similar to density —
there is a large overlap between shear magnitude values measured in different
cosmic web components.

Density-shear magnitude correlations
The fact that sharp divisions between different web components occur neither

in density nor in shear magnitude is clear in figure 60, where the correlation
between the two is shown. The measurements from different web components
form a clearly linear chain in the density-shear magnitude plane. However,
within each individual component, no correlation can be seen. We see no intra-
component correlation, but there is an inter-component correlation that is some-
what forced, since the components are in part defined by their shear flows.

Notice that the massive features occupy roughly the same range of shear
magnitudes, and are differentiated between mainly by density. This indicates
the relative importance of shear in walls and filaments.

It is important to note that the normalisation of |σ| is not motivated by any
full theory of nonlinear velocity growth. At redshift 0.0 and scales of 0.25 Mpc,
the velocity shear has become nonlinear. This means that the vertical axis is
arbitrary to some extent — a different normalisation would result in the vertical
elevation or lowering of the data points. Figure 60 shows most data points to

60around |σ| ∼ 0.3 ·Haf at z = 3.7 and around |σ| ∼ 0.8 ·Haf at z = 0.0.
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Density-shear magnitude relation, z = 0.0, rf = 0.25 Mpc

Figure 60: Correlation between density and velocity shear at z = 0.0. Colours
indicate cosmic web components. Dashed grey line indicates unity correlation.

lie above the y = x line. This suggests that the nonlinear velocity shear does
not scale with Haf(Ω), but accelerates somewhat.

Lognormal fit parameters
As with the density and divergence distributions — section 6.5 — lognormal

curves were fit to the shear magnitude distributions. Figure 61 shows the
redshift-evolution of the fit parameters and the chi squares. The lognormal
curve is determined by a standard deviation std and a median eµ. Section 2.6
gives a deeper explanation, and figure 46 gives a few examples.

The shear magnitude distributions undergo only little change in standard de-
viations, but their medians increase considerably. This means a shift in balance
towards high shear measurements; which reflects the importance of shear as an
aspect of structure formation. The changes in fit parameters from different web
components mostly run in parallel. This suggests that they are consequences of
the same processes — i.e. gravitational instability.

The fit parameters from different scales undergo largely the same changes,
but these changes consistently occur earlier for smaller scales and later for larger
scales. This is in line with expectations for a hierarchical evolution of structures.

As mentioned before and discussed in section A, the redshift evolution of fit
parameters yields only limited information on the evolution of these quantities.
Deviations from lognormal distributions cannot be probed with this method.
The lower panel in figure 61 shows the reduced chi squares of the lognormal fits.
In general, the shear magnitude distributions are rather well described by log-
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Shear magnitude distribution fit parameters, rf = 0.25

Figure 61: Redshift evolution of lognormal fit parameters to shear distributions
(solid lines). Dashed lines relate to fits to density distributions from filaments
and expanding void regions. Colours indicate web components. Horizontal
axis: logarithmic redshift. Top panel: standard deviations, middle panel:
medians eµ, lower panel: reduced chi squares. All data are filtered at rf = 0.25
Mpc.
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Tomography: log |σ|, z = 0.0, rf = 0.25 Mpc

Figure 62: Partial tomography of the Cosmogrid volume in logarithmic shear
magnitude at z = 0.0. Only three parallel slices are shown, spaced 3.05 Mpc
apart, and centred on the same level as all other plots in this section so far.
Notice that the large double spined features persist throughout these depth
levels, while the thin filamentary features undergo greater variations.

normal curves. In line with previous findings from section 6.5, it is the massive
features that match a lognormal distribution best.

6.8 Walls

Tomography
In previous subsections, we have seen — at low redshifts — a number of large,

elongated features, appearing to consist of two parallel spines. Recall that
these double spines are an artefact, because shell crossing occurs there, and the
DTFE estimator unduly mixes several velocity flows. One way to demonstrate
that these features are walls, is by tomography. The three-dimensional shape of
structures is probed by considering successive slices of the cosmological volume,
and studying the differences and similarities between features at nearby depth
levels.

Density, divergence, deformation eigenvalue and shear magnitude maps were
made of all slices in the Cosmogrid volume. When strung together into a moving
.gif image, the speed at which structures appear to vary in the tomography is
an indicator of the scale of their variations in the depth direction. Anisotropic
features that appear, move and disappear relatively quickly span a limited range
of depths, and are thus concluded to be filamentary in nature. Anisotropic
features that appear, move and disappear more slowly are more stretched out
in depth, and are thus sheet-like in nature.

In the tomographies, it was clearly the double spined features that moved
slowly, and are thus identifiable as walls. Among the smaller, single spined
features, most of them emerged and vanished more rapidly throughout the depth
levels. The .gif files will be available at
www.astro.rug.nl/∼mast/probes and agents, and can be requested via
mast@astro.rug.nl.

Figure 62 shows the shear magnitude maps from three levels. The map in
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the middle shows the same slice as all the previous maps in this chapter; the
other two maps are situated at ∼ 3.05 Mpc from the middle map on either side.
In comparing the maps from three depth levels, it becomes apparent that some
structures undergo more variation than others. Most notable are the double
spined features, which remain present throughout all three maps and undergo
only small changes in position and orientation. Spanning at least 6.1 Mpc in
depth, they are classified as walls. This is in agreement with the cosmic web
decomposition — section 6.4 and figure 36 — where these features are identified
as walls.

Just another brick...
The slice of the Cosmogrid volume that has been mapped out many times so

far is intersected by a few walls, but contains no face-on view on any of them.
In order to explore the internal structure of a wall, maps from a different slice
are on display in figure 63, in density, divergence and shear magnitude. These
maps are filtered at 0.1 Mpc, but the purple contours — delineating the massive
features — are filtered at 0.25 Mpc.

In all three quantities, we can see an intriguing substructure of filaments
embedded in the face of the wall. In the density map, we see a few small spikes.
Some filaments appear to form the edges of the sheet, and a rather fine net-
work of filaments is spun between them. The divergence map indicates a rather
homogeneous velocity convergence throughout the wall, interrupted by a few
moderately sized centroids of positive divergence. The shear magnitude map,
on top of a noisy small scale background, shows an irregular structure of thick,
curvy features. These appear to be closely coupled to the regions of high veloc-
ity convergence.

Note that the tiny filaments embedded in walls cannot be detected in lower
resolution simulations. Walls are sensitive to breaking up, but it is not specif-
ically expected that they break up in filaments rather than blobs. (Bernard
Jones, personal communication)

6.9 Vorticity magnitude

As explained in section 2.9 — and particularly equation 96 — the vorticity mea-
surements in a DTFE-estimated velocity field may be to any extent clouded by
a projection effect. In this study, the measured ‘vorticity’ appears to consist
almost entirely out of that effect, from the projection of velocity streams onto
Eulerian space. While there are clear indications of shell crossing in the low
redshift snapshots of the Cosmogrid simulation, the vorticity measurements are
of a very low quality and no reliable results about physical vorticity could be
derived.

Maps
The spatial distributions of |ω| at z = 3.7 and z = 0.0 are mapped out in

figure 64. While certain structures are clearly visible, the maps are far noisier
than the other quantities in this investigation. Despite the small filter scale,
small-scale structure is not clearly visible, and the walls appear like thick, solid
regions rather than double spined features.
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Wall (face-on), z = 0.0, rf = 0.1 Mpc

Figure 63: Logarithmic density, divergence and shear maps from a slice of
the Cosmogrid volume that cuts along a wall in the cosmic web. These data
are from z = 0.0 and filtered at 0.1 Mpc. Purple contours — filtered at 0.25
Mpc — delineate voids from massive features. Colour codes are the same as in
figures 30, 32 and 57. Note that this face-on view reveals a rich substructure
of small filaments embedded in the wall.
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Maps: log |ω|, rf = 0.1 Mpc

Figure 64: Spatial distribution of the measured vorticity magnitude at z = 3.7
and z = 0.0. Note that these data are very noisy, and consist mainly of a
projection effect (Hahn et al., 2015). These measurements follow closely the
structures in density, see figure 30.

From equation 96, we see that the projection effect

〈(∇ log ρ)× (v − 〈v〉)〉 (147)

is tightly coupled to the density. This introduces a cause to be particularly
suspicious of the vorticity measurements from high-density regions, and it is
these regions that dominate the maps in figure 64.

Statistical distribution
In figure 65, the statistical distributions of vorticity magnitude are compared

with their corresponding density distributions. While the distributions at z =
0.0 are off by roughly one order of magnitude, those at z = 3.7 are separated
by more than two orders of magnitude.

The vorticity magnitude distribution broadens by a very large amount over
time, much more than the density distribution does. This indicates that the
tentative normalisation |ω|

Haf fails in the nonlinear phase of velocity growth. A
proper normalisation, reflecting nonlinear evolution, would be a nonlinear trans-
formation of |ω|.

Correlation with density
The correlations between the measured vorticity magnitude and density at

redshifts 3.7 and 0.0 are plotted in figure 66. Most notable is that there is a
certain correlation, but this may come entirely from the projection effect —
expression 147 — which is itself a direct function of density. As with the shear
magnitude, the fact that the data set from z = 0.0 is not centred around the
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Vorticity magnitude, density, z = 3.7 & z = 0.0, rf = 0.25 Mpc

Figure 65: Statistical distributions of overdensity (dashed lines) and the mea-
sured vorticity magnitude (solid lines) at z = 3.7 (in red) and z = 0.0 (in
purple). Note well that the vorticity magnitude measurements are of a very
poor quality, and consist mainly of a projection effect (see Hahn et al., 2015).
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Density - vorticity magnitude relation z = 3.7, rf = 0.25 Mpc

Density - vorticity magnitude relation z = 0.0, rf = 0.25 Mpc

Figure 66: Correlations between density and the measured vorticity magnitude
at z = 3.7 (upper panel) and z = 0.0 (lower panel). Colours indicate cosmic
web components. Note that the vorticity magnitude measurements are of a
very poor quality, see text.
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Lognormal fit parameters, rf = 0.25 Mpc

Figure 67: Redshift evolution of lognormal fit parameters to density (dashed)
and vorticity magnitude (solid) distributions. Only data from walls, filaments
and nodes are shown.

y = x diagonal is arbitrary, since the proper nonlinear normalisation of |ω| is
not determined. On top of that, the large deviation from the y = x line at
z = 3.7 — which is in the linear stage — is a consequence of the poor vorticity
measurements.

At z = 3.7 there is a rather sharp — though not absolute — boundary be-
tween overdense and underdense regions. This time it is a vertical line, meaning
that the vorticity magnitude measurement itself is has little bearing on the clas-
sification. There is a large overlap between the regions on the density-vorticity
plane. At lower redshift, this overlap only appears to increase; and the boundary
changes in orientation.

Lognormal fit parameters
In an analysis equivalent to the study of fits to the density, divergence and shear
magnitude distributions — sections 6.5 and 6.7 — lognormal fits were made to
the vorticity magnitude distributions. Here, we compare the medians eµ and

146



standard deviations std of the vorticity magnitude and density distributions.
Figure 46 provides a few examples of lognormal curves, where the two parame-
ters are varied.

Figure 67 presents the redshift evolutions of the fit parameters for walls, fil-
aments and nodes. The void regions are not expected to contain vorticity flows.
Interpretations of the density data have been made in section 6.5. Note that the
medians of the density distribution fits from nodes increase by a great amount,
which is visible in figure 47, but omitted here.

In contrast to the shear distributions, the vorticity distributions undergo a
large and early increase in standard deviations. The medians increase strongly
as well, but level off at lower values than the shear medians. Here, too, we see a
largely parallel change in fit parameters from different web components. With
relatively high standard deviations and low medians, it appears that most of
the Cosmogrid volume is characterised by low vorticity magnitudes. It is clearly
the nodes where these measurements peak — an unsurprising result in the light
of equation 96.

On top of being suspicious about the vorticity measurements, we repeat the
warning from section 6.5: An analysis of lognormal fit parameters limits our
view on the distributions. Any deviations from the lognormal shape — which
may prove a key aspect of nonlinear structure formation — does not show up
in these graphs.

The lower panel of figure 67 shows a general improvement of fit qualities
over the course of cosmic history. The same qualities of density fits are not
reached, however. It would be informative to study a distribution of vorticity
magnitudes determined by an estimation in phase space.

Despite these shortcomings, the hierarchical nature of structure evolution
is retrieved in these results. When the redshift evolutions of fit parameters to
distributions from different spatial scales are compared, we find only small dif-
ferences. The small scale distributions evolve earlier, large scale distributions
undergo the same changes some time later.

6.10 DTFE-TSC comparison

Maps
Figure 68 shows the spatial distributions of various physical quantities, from the
lower right quadrant of the Cosmogrid slice that has been shown before. This
figure allows the comparison between the Delaunay Tessellation Field Estimator
— see section 4.5 — and the Triangular Shaped Cloud estimator — section 4.2.
From the density maps, it is clear that the DTFE technique allows finer struc-
tures to be resolved better. The density peaks in the DTFE-estimated fields are
not only smaller, but also less isotropic. In TSC estimation — as it is based on
a fixed shape kernel — some information on the shape of anisotropic features is
lost.

A comparison between velocity maps yields more dramatic differences. It
is important to remark that the rippling artefacts surrounding the high den-
sity regions in the TSC maps are not a consequence of the TSC algorithm.
This is aliasing due to the differentiation of the velocities, which was done in
Fourier space — see section A.3 for an explanation. The fine structures in the
divergence maps are blurred out in the TSC estimation. Those in the shear
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DTFE-TSC comparison, z = 0.0, rf = 0.1 Mpc

Figure 68: Spatial distributions of density (top row), divergence (middle row)
and shear magnitude (bottom row) determined by the DTFE technique (left
column) and the TSC estimator (right column). The fringes in the divergence
and shear maps on the right are a consequence of the velocity derivation, not
the TSC algorithm. The area shown is the South East quadrant of the familiar
slice of the Cosmogrid volume.
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Distributions: density and divergence z = 0.0, rf = 0.25 Mpc

δ + 1

1− ∇·vHaf

Figure 69: Statistical distributions of density (upper panel) and divergence
(lower panel) determined by DTFE (solid lines) and TSC (dashed lines) algo-
rithms. Only the low-density portion of the density distribution is shown —
the two distributions coincide rather accurately up to δ + 1 ' 50.

magnitude maps are completely lost in noise.

Statistics
Figure 69 presents the DTFE and TSC estimated densities and divergences.

The discrepancy between the two divergence distributions is far larger, but it
can be to any extent attributed to aliasing in the velocity differentiation.

The density distributions from different estimators agree very well. Figure 69
shows only the low-density portion, where a slight discrepancy occurs. The TSC
method estimates a slightly smaller volume with these low densities, which
seems to be a consequence of its limited spatial resolution. The density maps in
figure 68 illustrates this too: densities from small scale massive features ‘leak’
into their underdense environments.

Web classification
The web classification based on the TSC-estimated deformation tensor61 is
61id est a combination of the TSC-estimated shear and divergence.
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Web classification by TSC
z = 3.7, rf = 0.1 Mpc

Figure 70: Web classification based on the TSC-estimated deformation tensor.
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presented in figure 70. In comparison to the DTFE-based web classification —
see figures 35 and 36 — this classification results in an extremely unrealistic
prominence of oblate void regions, and almost no expanding void regions at all.

It is clear that the velocity measurements are very sensitive to artefacts
showing up in both TSC estimation and velocity differentiation via Fourier
space. This study has a great deal to thank the DTFE algorithm for.
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7 Discussion and possible artefacts

This section provides a brief account of the caveats and artefacts of relevance to
the data and analysis techniques used in this study. We have applied a powerful
field estimator and web classifier to the results of a high resolution N-body
simulation. Here, we explain the mechanisms that determine to what extent
the produced results are reliable. We also identify a number of phenomena that
arise purely from the numerical methods, and represent no physical entities.

A more complete assessment of the encountered artefacts is presented in
appendix A.

The Cosmogrid simulation
The Cosmogrid simulation — upon which we based these investigations — has

a very high spatial and mass resolution. A box of (30 Mpc)3 box contains 20483

particles, although we use only 5123 particles, due to computational limitations.
Much of our analysis is conducted upon a 1283 cell grid, yielding a spatial
resolution of 0.234 Mpc.

Besides the simulation’s numerous strengths, the limited box size of 30 Mpc
has two disadvantages. Firstly, it is less than the scale of homogeneity — see
the introduction — and the volume is thus too small to be representative of the
whole Universe. This brings the risk of misrepresenting the prominence of any
feature contained in the volume. Secondly, the fundamental mode of the largest
structures is subject to heightened uncertainties, due to the small number of
long wavelength Fourier components that can be defined. Both of these effects
are stronger at lower redshifts — in the nonlinear regime.

The Cosmogrid simulation contains only dark matter. The effects of baryons,
radiation and dark energy on structure formation and evolution have not been
represented. Nonetheless, the simulation is a powerful tool for the purpose of
investigating gravitational structure formation.

The Delaunay Tessellation Field Estimator
The DTFE — see section 4.5 — is among the most advanced methods for field

estimation. It conducts a piecewise linear interpolation of field quantities be-
tween sampling points. It ensures minimal interpolation errors because it is
based on the most compact possible triangulation of the sampling points: the
Delaunay triangulation.

Since no fixed kernel size is defined, the DTFE technique performs equally
well in regions of extremely low and extremely high sampling densities. It is
not dependent on any fixed kernel shape or orientation either, so that it repro-
duces well the shape of anisotropic features. Another important strength of this
method is that it yields volume-weighted averages, rather than mass-weighted
ones. This is preferable since most analytically derived quantities are volume-
weighted; the DTFE is among the very few techniques that satisfies this.

We have been able to confirm the superiority of the DTFE technique with
respect to the Triangular Shaped Cloud estimator — see section 4.2. The TSC
method depends on a kernel that is fixed in size and aligned to the estimation
grid. It also produces mass-weighted averages.

It is in multi-streaming regions where a limitation of the DTFE technique
is exposed. By interpolation between nearby particles, no distinction is made
between the different overlapping velocity flows (Hahn et al., 2015). Particu-
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larly the measurements of velocity vorticity are affected by this, as vorticity is
generated precisely in these regions.

Visually, massive walls in the cosmic web have assumed a double-spined ap-
pearance in velocity-related fields at low redshifts — these artefacts are visible
in divergence, eigenvalues and shear magnitude. High velocity divergence is
measured in the innermost areas of these features. These artefacts are a conse-
quence of shell crossing that occurs in high-density areas at low redshifts.

Deformation eigenvalues
The statistical distribution of the largest eigenvalues exhibits an unexpected

and unexplained dent around 1 − λ1
haf ∈ {0.2; 1.0}. This dent is precisely com-

pensated by bumps in the other eigenvalue distributions, resulting in a smooth∑
i λi distribution. This effect persists throughout all redshifts, but occurs at

slightly higher eigenvalues at later times. A decomposition of web components
reveals that the decrease in λ1 samples occurs at lower eigenvalues for regions
that are characterised by lower densities — i.e. voids. The density dependence
of this effect matches the correlation between λ1 and density: they have pre-
cisely the same slope. Towards low redshifts, this effect takes on a strange and
unexplained shape in the λ1− δ plane. We have investigated a range of possible
causes, but have not yet succeeded in identifying it.

Web classification
We have identified cosmic web regions on the basis of the eigenvalues of the

deformation tensor, which is determined by velocity shear and divergence. Our
classifier is unique in making a distinction on the basis of the overall expansion
or contraction of a region, on top of the eigenvalues individually. We make no
arbitrary assumption for the threshold λth, and our classifier operates on only
one spatial scale at a time — we apply it to several.

Velocity flows are a large scale phenomenon, which means that a web classi-
fication on the basis of velocity flows is subject to certain resolution limitations.
A greater limitation arises from ambiguities in the collapse of structures: with-
out a well-chosen λth, slightly contracting regions are treated as if they are
collapsing fully. This brings misclassifications, we find oblate void regions in
particular to be very prominent.

Essentially, our classification assumes λth = 0; figure 71 shows the result
of a decomposition where we empirically tweaked λth to yield a more visually
realistic balance of region types.

Fourier artefacts
Aliasing is a virtually inevitable effect encountered in discrete Fourier trans-

forms (DFT) of sampled signals. It occurs whenever a wave component of the
signal does not match any of the frequencies encoded in the Fourier transform.
That Fourier power is then transferred to other frequencies. This means that
components with higher frequencies than half of the sampling frequency — the
Nyquist frequency — can never be represented in the DFT.

One important artefact in our data set is a consequence of the limited box
size of the Cosmogrid simulation. The longest wavelength components that can
be defined in any box are only few in number. This means that long wavelength
components are subject to higher statistical uncertainties. At low redshift, the
largest structures in the simulation are dominated by wavelengths comparable

153



Web decomposition with threshold λ, z = 0.0, rf = 0.25 Mpc

Figure 71: Spatial layout of web components at z = 0.0, classified by the same
method introduced in section 5.4, only with a non-zero threshold eigenvalue.
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to the box size of 30 Mpc. This may cause rippling imprints on the spatial
distributions, as can be seen in figures 50 and 51.
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8 Conclusions

Our milky way — the spiral galaxy in which we spend all of our time — is only
one of billions of galaxies that occupy the observable Universe. At far larger
scales, the way matter is distributed in space is referred to as the cosmic web.
This project has been an exploration of velocity flows from a simulated Uni-
verse, and their roles as probes and agents in the formation of this structure.

We have studied the density and velocity fields from the Cosmogrid simula-
tion (Ishiyama et al., 2013). Our methods include a Delaunay Tessellation Field
Estimation (DTFE) of density and velocity fields from the simulation particles.
We decomposed the velocity gradient into divergence, shear and vorticity, and
classified six different components of the cosmic web on the basis of the eigen-
vectors of the deformation tensor.

Section 6 presents the spatial and statistical distributions of these quanti-
ties, and a decomposition of these fields into the contributions from different
web components. We have studied the correlations between density and various
velocity-related quantities, and followed the redshift evolution of parameters for
the lognormal fits to the statistical distributions.

From these results, we distil a number of conclusions: We find various forms
of evidence for hierarchical evolution of cosmic structures; we determine the
extent to which density and velocity divergence are correlated; we explore the
formation and interactions between different structures that make up the cosmic
web; we specifically probe the evolution of anisotropic structures; and follow the
time evolutions of density, divergence, shear and vorticity.

Appendix B provides a detailed list of the conclusions that are drawn from
our results. Here, we advert the main points.

We have recovered various signs of hierarchical structure formation. The density
field, exhibits mergers of small scale structures into larger ones, both in over-
dense and underdense regions. Observable moments in structure evolution — a
balance between expanding voids and filaments, and an increase in oblate void
regions — occur at later times on larger spatial scales. The same goes for the
changes in statistical distributions of various quantities as probed by lognormal
fits: small scale structures evolve earlier than large scale structures.

We visualised the evolution of shear fields at several spatial scales in parallel.
Small scale structures undergo more intensive changes, involving many mergers;
while large scale structures remain relatively stable.

Particularly at high redshifts, a close correlation between density and diver-
gence is recovered, both in spatial and statistical distributions. Above a certain
threshold, however, the density keeps increasing while the convergence levels
off — the same happens in voids, where divergence no longer increases towards
extremely underdense regions. The density distribution exhibits a greater de-
viation from the lognormal curve than the velocity-related quantities62. The
median velocity convergence increases over cosmic time, while the median den-
sity remains stable.

In our unique classification of cosmic web structures, we find oblate void re-
gions to enclose expanding void regions virtually everywhere. Between different

62A study by Uhlemann et al. (2015) has provided analytical support for this observation.
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spatial scales, we find variations in the proportions of space occupied by various
web components. Notably, we find oblate void regions to be very prominent,
and this finding has been reproduced by a separate numerical stochastic exper-
iment.

We have probed the formation and evolution of anisotropic structures by
studying the velocity shear and the eigenvalues of the deformation tensor. Both
the |σ| and λ1 fields show a deep hierarchy of anisotropic structures, spanning
broad ranges of density. We find rather high shear measurements in filaments
and walls. We also see an intricate filamentary and clumpy substructure within
the face of a wall.

Densities were found to spread both to far lower and far higher levels as
cosmic time progresses, reflecting the unbounded growth of the density contrast
under gravitational instability. The density field acquires sharp, localised peaks
— both in nodes and in filamentary regions. Velocity-related fields do not mimic
this.

The divergence distribution generated by a random Gaussian velocity field
match well with the measured divergences from high redshifts. This also holds
for contributions from all cosmic web components separately. The shapes of
shear magnitude distributions evolve mostly parallel in all region types. At low
redshifts, the shear grows nonlinearly — somewhat faster than Haf . Like the
density, shear acquires a more shallowly decreasing high-value tail. Vorticity
measurements are dominated by a projection effect (Hahn et al., 2015), which
is coupled to density.

We have studied the formation and evolution of a great hierarchy of structures.
Some of them so vast that they take many millions of human lifespans to cross,
even at the speed of light. In at least one extremely small, nonlinear component
of this hierarchy, the inhabitants have acquired a taste for solving the mysteries
that populate the Universe. Scientific investigation can be seen analogous to
a journey — and at times, when one journey comes to a close, it kindles the
opening of another.
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Appendix A Inventory of caveats and artefacts

The main issues that are to be kept in mind in the interpretation of our results
are discussed in section 7. This appendix elaborates on those points, to provide
a closer view on the strengths and limitations in our data and methods.

A.1 Data

Cosmological volume and resolution
What the Cosmogrid simulation excels in is resolution. The main run, with

20483 particles in a (30 Mpc)3 box, has a sufficient spatial- and mass resolu-
tion to resolve ultra faint haloes the size of dwarf galaxies. In the 5123 particle
run, the density and velocity spaces have not been smoothed in post process-
ing. These data have offered a high spatial resolution that is important for the
analysis of small scale nonlinear velocity flows.

In view of the available computational power, this study has only used the
5123 particle simulation, and the analysis was conducted on a 1283 cell grid. In
future, a more industrial analysis, making use of all the available data, would
certainly benefit the quality and statistical significance of the results.

One limitation of the Cosmogrid volume is its relatively small volume. As a
result, it cannot show us a representative picture of structure in the Universe.
The principal homogeneity of the Universe only holds for distance scales & 100
Mpc (Hogg et al., 2005; Sarkar et al., 2009; Scrimgeour et al., 2012; Sylos Labini
et al., 2009). A 30 Mpc box size is comparable to the characteristic scales of the
largest actual cosmological structures themselves — structures of these scales
are especially dominant at low redshift.

Other than the consequence of this fact in Fourier space — see section A.3 —
this introduces a substantial risk that the actual cosmic structures are statisti-
cally misrepresented in the simulation. In fact, the structures in the Cosmogrid
volume are dominated by a large central void, and thus the overall expansion
of the volume is greater than the Hubble expansion.

The authors of the Cosmogrid Universe have found the limited box size to
cause an artificial increase in the number of intermediate mass haloes. This is
due to the absence of perturbations at long-wavelengths (Ishiyama et al., 2013).
They have compared the halo mass function of the 30 Mpc box to 45 Mpc and
60 Mpc simulations to confirm this. Bagla et al. (2009) have asserted the ef-
fects of limited box size for the mass functions, and the skewness of velocity
distributions.

Cosmological components
Simulating only dark matter, Cosmogrid ignores baryonic matter, radiation,

and dark energy. It has left out all effects from pressure, relativistic gravity,
magnetic forces, radiative processes, hydrodynamic processes, star formation,
and the feedback interactions that are known to be of influence in reality. These
factors are particularly important below the scales of galaxy clusters — see
section 3.1 — but may also constitute visible corrections at larger scales, to
any purely gravitational dark matter simulation. The proper inclusion of all
of these factors into a full, realistic simulation of structure formation will be a
great challenge.
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On top of all this comes a somewhat philosophical critique: simulations,
however potent, remain an entity fundamentally different from the Universe
around us — it would be more honest and modest to refer to them as ‘attempts
at simulation’. In his lectures, Rien van de Weygaert warns of a misguided
“attitude [...] in which the reproduction of observed patterns or results by a
computer model is considered to be an explanation in itself. [...] A true physical
understanding may at best only start or be guided by computer experiments.”

A.2 Field estimation

DTFE
As a method to determine a field value at any grid location, based on an inho-

mogeneous sampling of particles, the DTFE technique offers many advantages
over alternative methods. Field estimation is, in essence, a difficult task, and
no perfect solution has been developed. DTFE is among the most advanced
methods available today, and is merely based upon a piecewise linear interpola-
tion. However, the Delaunay Tessellation offers a highly optimised configuration
for this interpolation, as it erects the shortest possible vertices between sample
points.

One of the greatest strengths of the DTFE method is its unhindered ap-
plicability to a wide range of spatial scales and sampling densities. It is not
dependent on a fixed kernel size — like, e.g. the TSC method is — and as such
it can interpolate between particles at any conceivable sampling density. Nei-
ther is it dependent on any kernel orientation — since it is not a grid based
estimator. As a result, it is equally well suited for the processing of particles in
all anisotropic structures, regardless of their orientation. In contrast, grid based
estimators may produce biased results, depending on the degree of alignment
between anisotropic structures and the estimator’s grid axes.

Another important advantage of the tessellation field estimator is that it
yields volume-weighted averages. This constitutes a distinct advantage over
grid based field estimators, which yield mass-weighted averages. The analyt-
ically derived quantities of interest are nearly always volume-weighted, so the
DTFE results are particularly suited for a comparison with analytical work —
see section 4.3 for a more detailed discussion.

We have been able to confirm that the DTFE algorithm resolves compact
density peaks better than then Triangular Shaped Cloud (TSC) estimator.
DTFE also reproduces anisotropic shapes better. Only a slight discrepancy
occurs between the density distributions: The TSC method estimates a slightly
smaller volume with low densities. This is probably a result of its limited spatial
resolution. Significant artefacts in the velocity fields result from both the TSC
estimator and from differentiation of velocities via Fourier transforms.

Anisotropic features and grid alignment
While the field estimation in this study is not based on a grid — and thus

does not introduce any bias in orientation — the same cannot be said of the
subsequent steps in the analysis. The estimated field values were represented
in a grid, and their spatial and statistical properties were evaluated from those
discrete and regular grid positions.
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An anisotropic feature that is well aligned with one of the three grid axes —
i.e. it is oriented close to the x, y or z direction — will be represented differently
than a feature that is not. As long as the spatial grid resolution is sufficiently
high, this difference is limited, but a grid will always introduce some arbitrary
effect on the data.

Similarly, the statistical distribution of field values from anisotropic struc-
tures is not expected to be influenced significantly, given a sufficiently high
spatial resolution. The diversity in scales and orientations of structures occur-
ring in the Cosmogrid volume is of importance. No preferred inherent scale or
orientation exists for these structures; therefore, alignment with an arbitrarily
oriented grid cannot systematically enhance or suppress any properties of the
simulation.

Web classification
Our web classifier, described in detail in section 5.4, shares some of the strengths
and weaknesses of those proposed by e.g. Hahn et al. (2007); Forero-Romero
et al. (2009); Hoffman et al. (2012). It is based on velocity flows, it assumes
no specific threshold eigenvalue λth, and it acts on only one distance scale —
though it has been separately applied to several.

The fact that our classification method is based on the velocity-related de-
formation tensor is of relevance in interpreting the results. Since velocity flows
are large-scale phenomena, and they are influenced by the distribution of matter
over large distances, some misclassifications can occur. This happens in cases
where a region in the neighbourhood of a given structure exhibits velocity flows
characterising that type of structure. The same happens in web classifiers based
on the tidal field, which is also of influence at great distances.

Misclassification can also occur due to ambiguity in the collapse or expansion
of structures. If a region contracts or expands only slightly along one of its prin-
cipal directions, our classifier picks up a small but definite positive or negative
eigenvalue, and treats this movement as an absolute indicator of a structure’s
dimensionality. Forero-Romero et al. (2009) work around this problem by intro-
ducing a threshold eigenvector, λth — see section 2.8 for details. The drawback
of this method is that it introduces a free parameter, an arbitrary choice in the
classification method. This is not adopted in our strategy63, sparing this study
the burden of an arbitrary free parameter, but at the cost of some adequacy
in the classification. For example, the prominence of oblate void regions in our
results is in part due to this.

Figure 71 presents an alternative — visually more realistic — classification
of web components, where a non-zero λth has been used. Note that the expand-
ing void regions are nearly ubiquitously surrounded by oblate regions. It must
be mentioned that the shift in threshold eigenvalues also applies to the sepa-
ration between generally expanding and contracting regions. As a result, the
regions marked as oblate collapsing void regions may include features one could
call walls; and prolate collapsing void regions contain filamentary features.

Like many web classifiers that have previously been developed, ours depends
on an assumed spatial scale at which structures are identified64. Our web classi-
fication is applied to scales of 0.1 Mpc, 0.25 Mpc and 0.5 Mpc, and the difference

63In essence, we take λth = 0.
64The Nexus and Nexus+ algorithms (Cautun et al., 2014) form a notable exception to this.
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in structures at these scales can be seen e.g. in figures 39 and 57.
It is a fundamental aspect of the cosmic web that no absolute differences in

dynamical development between types of regions can be defined from first princi-
ples. Not every region can be unambiguously labelled. This makes it impossible
to identify structures with full accuracy, or even to quantify the accuracy of any
given identification. This is also why web classifiers are fundamentally depen-
dent on free parameters like threshold eigenvalues and distance scales.

Hahn’s algorithm
One limitation of the field estimation in this study is that it does not dis-

tinguish between the particles that come from different velocity flows. In the
case of shell crossing — see section 2.9 — particles from one velocity flow are
positioned among those from any number of spatially overlapping flows. The
Delaunay tessellation field estimator sec will then interpolate between particles
from different streams, and this way information about separate velocity flows
is lost. This may account for a part of the uncertainty in the higher density
regions at low redshifts — which is where shell crossing occurs.

In particular, the detection of velocity vorticity suffers from this limitation.
Vorticity is generated in multi-stream regions, and its detection is dependent
on a proper separate treatment of the streams involved. The quality of the
vorticity results in this study — section 6.9 — show how little can be achieved
without such a treatment.

As explained in more detail in section 2.9, Hahn et al. (2015) have developed
a method to disentangle the particles from different velocity flows, based on the
Lagrangian position of all particles. Interpolating their properties is done be-
tween particles that are close in Lagrangian, rather than Eulerian space. This
method is illustrated in figure 12 (see also Abel et al., 2012; Hahn et al., 2015).
A future study in which this algorithm is applied to a high-resolution data set
like Cosmogrid is expected to yield far better vorticity measurements.

The fact that the DTFE estimator does not respect the phase space con-
figuration of velocity flows has another prominent consequence, and that is the
double spined appearance of massive walls in many velocity-related fields. These
artefacts can be seen in figures 32, 36, 51, and 57. They are the consequence of
shell crossing that occurs in those regions at low redshifts. An estimator that
properly disentangles different velocity flows may result in velocity fields where
these double spined artefacts do not appear.

Deformation Eigenvalues
The statistical distribution of the largest eigenvalues exhibits an unexpected

and unexplained dent around 1 − λ1
haf ∈ {0.2; 1.0}. This dent is precisely com-

pensated by bumps in the other eigenvalue distributions, resulting in a smooth∑
i λi distribution. This effect persists throughout all redshifts, but occurs at

slightly higher eigenvalues at later times. A decomposition of web components
reveals that the decrease in λ1 samples occurs at lower eigenvalues for regions
that are characterised by lower densities — i.e. voids. The density dependence
of this effect matches the correlation between λ1 and density: they have pre-
cisely the same slope. Towards low redshifts, this effect takes on a strange and
unexplained shape in the λ1− δ plane. We have investigated a range of possible
causes, but have not yet been successful in identifying it.
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Figure 72: Aliasing illustrated. The orange sinusoid represents the original
signal, the vertical dashed lines are the sampling points along one dimension.
A sampling of the signal at the present resolution consists solely of the red
markers. Since the signal’s wavelength is shorter than the sampling width,
the red markers appear to come from a waveform with the same amplitude
but a longer wavelength Fourier component — about seven times the sam-
pling width. As a result, original signal’s wavelength will not appear in the
discrete Fourier transform, and the samples wrongfully contribute to a higher
wavelength component.

A.3 Fourier artefacts

Spectral leakage and aliasing
For a one-dimensional signal f(x) that is discretely sampled at N points, reg-

ularly spaced a distance h apart, spanning a total extent L = Nh, the discrete
Fourier representation consists of N — generally complex — Fourier coefficients
at a range of wavenumber indices k. The number of Fourier coefficients is equal
to the number of sample points, and they are ordered by wavenumber.

The smallest wavelength that can be represented is twice sampling resolu-
tion, and this is called the Nyquist limit. If a wave component of the signal has
a shorter wavelength than 2h, the sampling of that waveform will contribute to
the Fourier component of a higher wavelength. This is illustrated in figure 72,
each sampling ‘overshoots’ the wavelength by a little, resulting in a new sinu-
soid. Such a distortion of the original signal is called aliasing65. To some degree,
this effect will always emerge in the DFT of a signal consisting of components
with wavelengths close to the sampling resolution.

Aliasing is a specific case of a broader phenomenon called spectral leakage.
Spectral leakage occurs when a signal is convolved — see section 4.1 — with
a certain convolution kernel. In the general case, this process creates spurious
wave components, which contribute to the Fourier transform of the resulting
signal. The operation of sampling can be seen as a convolution of the signal
with a Dirac comb, which causes leakage in the form of aliasing — an effect
spanning the whole sample. Convolution with other kernels — e.g. smoothing
windows, see equations 108 and 109 — generally produces leakage that affects
a smaller range. In this study, we have used a Gaussian kernel for the filtering
of data at various length scales. While, in theory, this kernel produces leakage
that affects all of space, this effect falls off quickly over distance — in real space,
most of the leakage from any point emerges very close to that point, so that
damage to the data is limited.

65The original signal and the slower sinusoid described by the samples are said to be ‘aliases
of each other’, as they are both sampled precisely the same way.
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Cosmogrid fundamental mode
For the representation of small scale structure in f(x) — assuming the Nyquist

limit is respected — there are relatively many small-wavelength indices where
this structure can be encoded. This large quantity of information results in
a high statistical certainty. For this reason, it is generally preferable to sam-
ple structures over a scale that appreciably exceeds the length scale at which
those structures occur — provided a good sampling resolution. In the case of
Cosmogrid, we see that the extent of the simulation volume — 30 Mpc, with a
sampling resolution of 0.234 Mpc — is sufficient for a reliable representation of
structure at, say, 0.5 Mpc.

For the representation of larger scale structures, though, the number of
Fourier coefficients that can encode f(x) is limited — at the same sampling
resolution. Long wavelength components, encoded by fewer Fourier coefficients,
are subject to greater uncertainty. In the case of Cosmogrid, the largest struc-
tures appear at a scale comparable to the sample length of 30 Mpc — the largest
wavelength is called the fundamental mode of the spatial distribution. There are
too few Fourier components available to accurately represent such large scale
structures. This decreases the statistical certainty of measurements from large
scale structures.

In figures 50 and 51, it can be seen that the spatial distributions of λ2 and λ3

are subject to an artificial enhancement of horizontal and vertical correlation,
respectively. These effects are a consequence of the fundamental mode problem:
The longest wavelength Fourier coefficients in each direction kx,ky,kz are only
few in number, and therefore of limited accuracy. This introduces the risk that
the Fourier power in one of them visibly — and unduly — exceeds that in the
other directions. When the largest wavelength component in one direction is
spuriously amplified, the resulting spatial distribution of f(x) is subject to an
artificial wavelike enhancement in that direction.

On top of the artificial enhancement of long-wavelength components, there is
an arbitrariness in the directionality of these effects. Since the data are sampled
on a regular cubic grid, they can only occur in the spatial orientations of the
grid axes.
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Appendix B Inventory of findings

As summarised in section 8, this study has yielded insights and confirmations
relating to hierarchical structure evolution; relations between density and di-
vergence; the decomposition of the cosmic web; the formation and evolution of
anisotropic structures; and the evolution of statistical distributions of various
quantities. This appendix aims to provide a more complete picture of these
conclusions.

Evidence of hierarchical structure evolution

� A visual assessment of the density field reflects the expected hierarchical
evolution of cosmic structures by the merging of small scale structure
into larger features. Mergers occur both in massive regions — i.e. nodes,
filaments and walls — as in voids.

� It appears that the early stage of structure formation is characterised by (i)
a transition where expanding void regions become more spatially dominant
than filaments; and (ii) a temporary increase in the prominence of oblate
collapsing void regions. Both of these indicators appear to be coupled,
and occur at later times when larger spatial scales are considered. This
suggests that small scale structures mature before large scale structures
do.

� A study of lognormal fit parameters supports the expectations of hierar-
chical evolution as well. We find that the general redshift-evolution of
density distributions match very closely between different spatial scales.
However, changes systematically occur earlier at smaller scales and later at
larger scales. The same is found in fits to divergence and shear magnitude
distributions — and even in vorticity magnitude distributions.

� By comparing shear magnitude maps from different redshifts and filter
scales, we gather insights in the evolution of anisotropic structures from
different scales. The small scale structure undergoes the greatest meta-
morphosis, while large scale structures remain relatively stable. The merg-
ing of large scale structures involves only relatively small displacements.
At smaller scales, we see more extensive changes. The structures undergo
many mergers, where structures get displaced over distances that are large
in terms of the typical structure size.

Density-divergence relations

� At high redshifts, the density and divergence distributions match well, but
discrepancies increase over time.

� In agreement with gravitational instability, the velocity divergence field
follows the peaks and troughs in density. The general correlation between
density and divergence is very clear, particularly at high redshifts.
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� However, past some density threshold, velocity convergence no longer in-
creases along with the density contrast. This is also manifested in the
density and divergence distributions — the density distribution has an
elevated long tail, but no similar high-convergence tail is found. The di-
vergence distributions taken from the whole cosmic volume appear to be
better modelled by a lognormal curve than the density distributions.

� Similarly, the divergence in voids levels off, where the density continues
to lower levels. In other web components, the two quantity distributions
appear to match more closely.

� A study of lognormal fit parameters to the divergence distributions in-
dicates that they evolve somewhat differently from density distributions:
the median convergence increases, while the median density does not.

Classification of cosmic web structures

� Oblate void regions can be seen ubiquitously flanking expanding void re-
gions. Even if a threshold eigenvalue is used for detecting cosmic web
structures, oblate features surround expanding void regions nearly every-
where. This is in agreement with expected scenarios where matter flows
into walls and filaments towards nodes, in a shearing motion; as well as
the draining of matter from oblate regions trapped between merging voids.

� The volume filling percentages of various cosmic web components vary
according to the spatial scales considered. Notably, filaments are more
prominent at large scales than at small scales.

� Concerning the relative volume occupation percentages of different cosmic
web components, most of the shifts in balance occur at relatively high
redshifts, on all spatial scales studied. This supports existing expectations
that most of structure formation happens at early times.

� We find unexpectedly high volume occupation percentages of oblate col-
lapsing void regions66. This result is to a great extent reproduced by a
numerical experiment where the volume filling percentages of cosmic web
components are simulated, based on Gaussian random velocity fields.

� The prominence of oblate void regions is attributed to an overestimation
of collapse in our web classification algorithm. We have found that this
can be remedied by setting a non-zero threshold eigenvalue (see Forero-
Romero et al., 2009).

Formation and evolution of anisotropic structures

� Anisotropy in cosmic structures is well probed by the largest deformation
eigenvalue λ1. We find that the spatial distribution of λ1 exhibits a very
deep hierarchy of structure, more than the other eigenvalues. Notably,

66As well as a strikingly low volume occupation of prolate void regions.
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filaments and walls appear clearly on the λ1 maps, while the nodes and
expanding void regions do not — they are typically more isotropic features.
The spatial structures in λ2 and λ3 appear to follow more closely the
density peaks.

� Velocity shear is a major aspect of anisotropic structure evolution. A
visual spatial mapping of the magnitude of the shear tensor clearly shows
anisotropic structures in high and low density regions, at all redshifts
and spatial scales. This supports expectations of anisotropic structure
evolution in dense and sparse environments.

� In the whole cosmic volume, there is a clear linear correlation between
shear magnitude and density. Within each component separately, however,
this correlation becomes unclear67.

� The massive features occupy roughly the same ranges in shear magnitude.
This shows the importance of shear in filaments and walls.

� In general, the shear magnitude distributions are rather well described by
lognormal curves. Just as with density and divergence, it is the massive
features that match a lognormal distribution best.

� In density, divergence and shear, we can see an intriguing substructure
of walls. There are spikes in density, and an intricate substructure of
filaments embedded in the face of the wall. Detecting this would not have
been possible in a simulation of lower spatial or mass resolution.

Evolution of statistical distributions
In density:

� A decomposition of the density distribution into its different contributions
from individual web components reproduces the findings by Hahn et al.
(2007); Aragón-Calvo et al. (2010); Cautun et al. (2013)68.

� With the passing of cosmic time, the density distribution broadens to
both far lower and far higher values. All separate cosmic web components
spread to higher densities, resulting in an increased overlap between the
density distributions. This happens most notably in node and filament
distributions.

� Sharp, localised peaks69 are found in the density fields — more so at low
redshifts than in the early stages. These cause an elevated high-density
tail in the density distribution, which constitutes a clear deviation from
the lognormal curve70.

� A study of lognormal fit parameters shows that density distributions —
in all web components separately — deviate from a Gaussian appearance
over time: they acquire ever higher density peaks and ever larger regions of

67In other words, there is an intra-component correlation, but no inter -component one.
68Note that their web classification is based on the tidal field, while ours is based on velocity

shear and divergence.
69Not only at the nodes of the network, but along filaments also.
70A study by Uhlemann et al. (2015) has provided analytical support for this observation.
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lower density. This reflects the unbounded growth of the density contrast.
This effect is more pronounced in voids than in massive region types.
A decrease in fit qualities towards low redshifts indicates that densities
deviate from a lognormal distribution. The filaments appear to follow a
lognormal model the best.

In divergence:

� The divergence distributions from different cosmic web components —
particularly at high redshifts — are visually well reproduced by our sep-
arate numerical experiment. We have generated divergence distributions
from a random Gaussian velocity field, and they assume the same ap-
pearance. In our divergence measurements, there are continuities between
the distributions from regions that share the same eigenvalue, but differ
in the sign of

∑
i λi. Our numerical experiment also reproduces these

continuities in divergence distributions.

� The divergence distributions from massive regions appear to be better
described by lognormal curves than those from void regions.

In velocity shear:

� There are signs of a nonlinear shear evolution towards redshift 0.0, where
shear magnitude growth accelerates somewhat. In the nonlinear regime,
velocity shear measurements do not scale with Haf(Ω), but grow slightly
faster.

� The shear magnitude distributions at z = 0.0 show very high measure-
ments, relative to the densities at that time frame. This visual discrep-
ancy between the distributions from z = 0.0 can in part be attributed to
the nonlinear shear evolution.

� When regarding solely the shapes of the distributions, and not their posi-
tion and horizontal extent, the density and shear magnitude distributions
appear to be a rather well matched. At redshift 3.7, both distributions
appear relatively close to a lognormal curve; at redshift 0.0 both have been
stretched and acquired a more shallowly decreasing high-value tail. This
observation yields potential insights into a proper normalisation for the
nonlinear shear measurements.

� The enhancement of the high shear magnitude tail is in part due to large
shear measurements occurring in walls and filaments.

� Over the course of structure formation, we find a significant increase of
shear values in oblate void regions, walls, filaments and nodes.

� At all considered scales, the shear magnitude distributions from oblate
void regions have an enhancement of at |σ| ∈ {0.3; 0.8}Haf — a range
that is associated with low density areas. This can be attributed to the
draining of matter from underdense walls between merging voids.
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� We studied the redshift evolution of parameters of lognormal fits to the
shear magnitude distributions. The results indicate a shift in balance
towards high shear measurements as cosmic time progresses. Different
web components mostly have the same changes in fit parameters — there
is a mostly parallel evolution of quantities in all types of regions.

And in vorticity:

� Vorticity measurements are dominated by an artificial projection effect,
which is tightly coupled to the local density. This results in high measure-
ments in dense areas, but no significant detection of vorticity.

� We find great discrepancies between the statistical distributions of density
and vorticity measurements. There is a certain correlation between the
two, but this may come entirely from the projection effect.
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