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Abstract

Simulating the Systematic Variation of the Low-Mass Stellar Initial Mass

Function in Early-Type Galaxies Using a Semi-Analytic Model

Recent studies combining spectroscopy, lensing or dynamics with stellar population models

indicate the low-mass stellar initial mass function (IMF) varies with high velocity dispersion

in early-type galaxies (ETG) in the local Universe. The physical origin for this bottom-heavy

IMF is still unclear, although turbulence in star-forming clouds appears to drive fragmentation

to smaller mass scales.

We used the statistical capability of semi-analytic models (SAM) to qualitatively investi-

gate the low-mass IMF slope as a function of typical galaxy properties to probe what underlying

processes could drive the IMF variation. We test four different models that re-assign an IMF to

stars formed under specific conditions in the SAM and compare the resulting present day mass

function slope with the observed IMF slope: The first two models tie the slope of the low-mass

IMF to the star formation mode, either quiescently (bottom-light IMF) or burst (bottom-heavy

IMF), or e to the present-day location of the stars, either in the disc (bottom-light IMF) or in

the bulge (bottom-heavy IMF). This indicates that most of the stars in today’s most massive

ETGs did not form in turbulent star burst but turbulent gas in discs at high redshift following a

bottom-heavy IMF and moved to the bulge afterwards. We therefore test two models where the

power-law slope of the low-mass IMF varies with the cosmic epoch and velocity dispersion of the

galaxy at the moment the stars formed following the observed IMF slope relation with velocity

dispersion. We find that by assigning an IMF slope relation to stars formed in a galaxy with

a certain velocity dispersion that is slightly higher and steeper than the relation observed in

the Local Universe, we are able to reproduce the observed low-mass IMF variation with galaxy

velocity dispersion.
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Chapter 1
Introduction

1.1 The Stellar Initial Mass Function

The stellar initial mass function (IMF) describes the mass distribution of stars formed in
a single star-formation event. In other words, it describes the ratio of high to low-mass stars
formed in a single stellar population. The IMF is important in our understanding of observa-
tional properties and evolution of stars itself as stellar evolution and the resulting observable
properties such as color and luminosity are mostly determined by stellar mass. Moreover, the
ratio of low and high-mass stars is important in understanding observational properties and
evolution of large populations of stars such as galaxies as high-mass stars are responsible for
most of the chemical enrichment and stellar feedback and will dominate the light of a galaxy
whereas the low-mass stars dominate the galaxy’s total stellar mass. The IMF is used in con-
verting observed properties of distant galaxies such as colour and luminosity into stellar masses
for galaxies too far away to resolve individual stars by relating the IMF of resolved nearby stars
to the integrated light of distant unresolved stellar populations. Stellar population synthesis
models (SSP) are used as tools in interpreting the integrated light we receive from these galax-
ies. These models backtrack the possible star formation histories (SFH) and metallicity history
that could give the observed properties of a galaxies such as colors, line-indices and luminosities
by using stellar evolution prescriptions and stellar spectra libraries given an, assumed, input
IMF. It is thus important to have a good understanding of the IMF and its behavior with cos-
mic time and environment. The IMF is an observationally derived relation and its theoretical
underpinning and physical driving factors still remain an open question although advances in
observations of the IMF in varying environments and theoretical and computational derivations
of the origin of the IMF have been made over the last several years which will be relayed below.

1.1.1 The IMF in the Milky Way and Local Group

The IMF is an observationally derived relation, or rather a parametrization of the number
of stars formed per unit mass as derived as derived from observations. However, we do not
observe the IMF directly. We convert the individual or integrated luminosity of objects into a
mass function using theories or relations of stellar luminosity, mass and ages. In most cases we

1
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also not observe the IMF but the present day mass function (PDMF). Massive stars above a
certain “turn-off” mass will have moved of the main sequence after a certain age such that the
observed present-day light and the derived masses will differ from the one initially created. The
observations of this PDMF is converted into an IMF by accounting for the loss of high mass
stars using theories of star formation rates and histories which assume that the IMF is invariant
over time. Only in young stars clusters where none of the stars have yet moved of the MS or
had considerable mass loss are we able to observe the luminosity function corresponding to the
IMF directly.

Most observational studies of the IMF have been performed on stellar populations in the
Milky Way. In our galaxy, stars with masses 1 M� are found to follow a power-law distribution
with power-law coefficient α = 2.35 from fits to observational data as first described by Salpeter
(1955). For stars below 1 M� this function breaks or turns over and goes to 0 in the sub-stellar
regime, i.e. below 0.08 M� (Offner et al. 2014). The Galactic IMF over the entire mass range
is described in several ways, either as a series of three broken power-law (Kroupa and Gilmore
1993), (Kroupa 2002) or as a log-normal distribution in the low-mass wend with a power-aw
tail above 1 M� (Chabrier 2003). The break or turn over point varies in these methods but
lies between 0.08 and 1 M�. The difference in representation can be seen as a difference in
ideas on whether stars formation is a continuous process across all mass ranges (Chabrier) or
whether different physical processes dive SF in each regime (Kroupa) (Offner et al. 2014). The
high-mass end of IMF appears to hold in star-forming regions in the Local Universe (Bastian
and Meyer 2010; Offner et al. 2014).

Figure 1.1: The functional forms for (among others) the Salpeter (solid blue), Kroupa (dotted red)
and Chabrier (dashed purple) IMF; three functional forms that have been proposed to fit Galactic
observations of stellar mass distribution. Each of these curves is normalised such that the integral over

the mass is unity. Figure from Offner et al. (2014).
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1.1.2 Observations of a Varying IMF in massive ETGs

It is impossible to directly observe the low-mass IMF in extragalactic environments so the
Galactic IMF has been assumed to be invariant over the Universe. However, several recent
extragalactic IMF studies have found that the low-mass IMF of early type galaxies (ETGs)
steepens, so becomes more dwarf-rich with increasing galaxy velocity dispersion (Auger et al.
2010; Conroy and van Dokkum 2012a,b; Ferreras et al. 2013; LaBarbera et al. 2013; Spiniello
et al. 2014, 2012; Treu et al. 2010; van Dokkum and Conroy 2010). These studies determine
the low-mass IMF of the unresolved stellar populations of ETGs with the following different
techniques or combinations thereof:

• Using surface gravity sensitive spectral line strengths indicative of low mass (≤ 0.3 M�)
stars and comparing the observed spectra with synthetic ones from SSP models to find
the best IMF fit. van Dokkum and Conroy (2010) observed two of these lines which are
thought to be strong in low-mass stars, the NAI doublet and Wing-Ford molecular band,
and later NAD Conroy and van Dokkum (2012a,b), in ETGs in the Coma and Virgo
cluster. They fit of synthetic indices for these lines from the SSP models to the observed
lines gives a best fit for a logarithmic IMF slope of x ≈ −3 which is much steeper than the
Salpeter coefficient of 2.35. Other studies found that the NAI and NAD lines can in some
cases be influenced interstellar absorption (Spiniello et al. 2012). However, Spiniello et al.
(2014, 2012) find a similar relation based on TiO2 line strengths which are sensitive to cool
dwarf stars and less contaminated by age or metallicity. They compare this line index in
stacked Sloan Digital Sky Survey (SDSS) of ETGs with velocity dispersion varying from
150–310 km s−1 to stellar population models and find they the IMF slope x steepens for
increasing σ , over the center of these bins from 1.85− 2.62 following :

x = 2.3(±0.1) log(σ200) + 2.13(±0.15) (1.1)

Ferreras et al. (2013) and LaBarbera et al. (2013) have found similar, though slightly
steeper x–σ relations using the same spectral line.

• Using dynamical analysis of stellar kinematics and comparing the derived M/L-ratios with
those from SSP models. Cappellari et al. (2012) used stellar kinematics for 260 ETGs
from the ATLAS3D project. They constructed several different dynamical models, with
an axisymmetric stellar component and a dark halo whose shape is a free parameter, and
fit these models to th the projected stellar distribution and the 2D stellar kinematics to get
(M/L)star. The dynamically derived M/L only constrains the overall mass normalisation
of the IMF. These are compared to (M/L)pop derived by fitting SSP synthetic spectra for
different input IMFs to the observed spectra. The dynamically derived M/L is found to
vary with increasing M/Lstar, where the lowest M/Lstar ratios are described by a Kroupa
or Chabrier normalisation and going to a Salpeter or an even more bottom heavy IMF
normalisation for the galaxies with the largest M/L ratios.

• Using gravitational lensing and stellar kinematics to distinguish the dark and luminous
mass of lensed ETGs and comparing these with stellar mass estimates from SSP models
using the multicolour photometric data of these galaxies. Treu et al. (2010) determine the
total mass within the Einstein radius of lensed ETGs form the Sloan Lens ACS Survey
(SLACS) by fitting gravitational lens models. They then model the stellar mass within the
Einstein radius based on SDSS velocity dispersion data by using this total mass within the
Einstein radius from lensing and by assuming a fixed profile for the dark matter halo and
the anisotropy of the stellar component. This is then compared to the stellar mass inside
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the Einstein radius independently derived from SSP models. This SSP model determines
the stellar mass based on the multicolour Hubble Space Telescope (HST) photometric data
of these lensed galaxies, assuming either a Salpeter or a Chabrier IMF. They find that
SSP stellar masses based on a Salpeter IMF agree with those from lensing and dynamical
models whereas the SSP masses based on a Chabrier IMF underestimates them. They
also find an increasing power-law slope with increasing velocity dispersions. This observed
trend could also be due to a non-universal dark matter halo profile, a degeneracy which
cannot be resolved within this model based on a combination lensing and dynamical data.
However, as the above described studies based on spectral lines and solely dynamical data
also find a similar trend of IMF slope with velocity dispersion, it is most likely the IMF
which is non-universal.

All three methods thus find a steepening of the low-mass IMF slope with increasing galaxy
mass or velocity dispersion, by comparing observationally derived stellar masses, either through
stellar dynamics, spectroscopy or lensing, with those derived from SPP models using stellar
spectral libraries and stellar evolutionary theories.Spiniello et al. (2012) compare all three dif-
ferent methods described and find that they provide similar trends going from a Salpeter IMF
slope of x = 2.35 at σ ≈ 200 km s−1 to an upper limit of x = 3.0 for the most massive ETGs
with σ ≈ 335 km s−1. Smith (2014) compares the IMF of ETGs derived from dynamics and
spectroscopic data and also finds that both methods on average give a steeper IMF slope than
observed in the Milky way though he does not find any correlation between slope on a galaxy-by
galaxy basis between these two methods.

These recent observations of ETGs thus provide strong indications for a non-universal
IMF, with the low-mass IMF varying with galaxy velocity dispersion in elliptical galaxies.This
would have implications on galaxy evolutionary models and observational results using stellar
mass and metallicity derivations based on the IMF as observed in the Milky Way and the Local
Group.

1.1.3 Theories of a varying CMF and IMF

Despite the implications of a non-universal IMF for many areas in astronomy, we do not yet
have a conclusive theory of the origin of the IMF. However, several theoretical and computational
models have been put forward in which molecular cloud fragmentation into gravitationally
bound, pre-stellar, cores is driven by turbulence and resulting density fluctuations in these
clouds (Hennebelle and Chabrier 2008, 2009; Hopkins 2012a,b, 2013; Padoan and Jones 1997;
Padoan and Nordlund 2002). These theories of variation in the fragmentation of molecular
clouds on low-mass scales induced by increasing turbulence provide a promising way to connect
the observed IMF variations in ETGs to variations in galactic environments in which stars form.

These theories of star formation and stellar mass distribution rely on a relation between
IMF and the the mass function of pre-stellar cores (CMF), which describes the distribution
of clumps of gas that will go on collapse and form one to a few stars. These functions are
observed to be similar (McKee and Ostriker 2007), although the CMF appears to be shifted to
larger masses (e.g. Alves et al. (2007)). Following this similarity, theories of star formation thus
relate stellar masses to core masses as these clumps in molecular clouds are thought to serve
as gas reservoirs of material for the forming stars. The local conditions in molecular clouds
that determine the fragmentation of gas into cores leading to a CMF will as a consequence also
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determine the IMF. The main factor contributing to this fragmentation in all of these theories
is turbulence, which can both provide support against gravity in the ISM and at the same time
it will create compressions and rarifications leading to local density fluctuations which if dense
enough can collapse to form stars (Offner et al. 2014).

1.1.3.1 Core Formation from MHD Shocks in a Turbulent Magnetised Medium

Padoan and Jones (1997); Padoan and Nordlund (2002) were among the first to propose
a theory based on a combination of turbulence and gravity. Magneto-hydrodynamic (MHD)
shocks due to supersonic isothermal turbulence in a magnetised medium forms both under
dense regions and sheets and filaments in molecular clouds which can turn into cores. When
locally gravity exceeds the thermal and magnetic energy as given by the thermal Jeans mass,
these overdensities or cores can collapse to form protostars. The effects of interacting shocks in
the turbulent flow are multiplicative which following the central limit theorem naturally leads
to a log-normal density distribution. Most dense cores will be able to collapse, but following
this log-normal density distribution even some small cores have a chance to be dense enough to
undergo collapse.

The derivation of the mass distribution of dense cores relies upon the assumption that the
power-law shaped power spectrum of the velocity field of the pre-shocked gas and the post-shock
velocity field are self-similar. Moreover, the typical mass of cores scales with the thickness of
the post-shock gas out of which they formed, so that the number of cores per scale L scales as
L−3. These elements connect the Alvénic Mach number to the scale L of the initial turbulent
fluctuation and thus to the number of cores formed for a certain scale length of the shocked
gas. When combined with the distribution of Jeans masses, the mass distribution of collapsing
cores is then given by a power-law close to a Salpeter slope for masses above 1 M� because of
the, assumed, power-spectrum for turbulence and flattens and turns over decreasing with mass
for sub-solar masses as observed. The number of cores below 1 M� able to collapse increases
with increasing Mach number of the pre-shock gas as a larger Mach number increases density
contrasts following the MHD shock conditions.

1.1.3.2 Core Formation from the Press-Schechter Formalism for a Turbulent Medium

Hennebelle and Chabrier (2008, 2009) have pointed out that some of the assumptions made
in this theory are not justified; for instance the magnetic field is not observed to be proportional
to density in simulations or observations (Hennebelle et al. 2008; Padoan and Nordlund 1999;
Troland and Heiles 1986). Also, turbulence does not always promote star formation in every
over dense region as is assumed but is also found to quench overall star formation efficiency
(Hennebelle and Chabrier 2008).

Hennebelle and Chabrier (2008, 2009) propose an analytic theory of the CMF and IMF
based on the cosmological Press-Schechter (PS) theorem which describes the mass distribution of
dark matter haloes in cosmology forming form overdensities in a Gaussian field of initial density
fluctuations (Press and Schechter 1974). In the PS theory densities that lie above a certain
mass threshold at a particular epoch and will undergone gravitational collapse to evolve into a
bound object, a dark matter halo. Rather than the cosmological Gaussian density distribution,
Hennebelle and Chabrier (2008) use a log-normal density distribution for density fluctuations in
molecular clouds due to supersonic isothermal turbulence. They determine the mass spectrum
of bound self-gravitating objects in a solely quiescent or turbulent medium and a combination of
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both on all scales.The density threshold above which overdensities can be considered to collapse
and form a gravitationally bound prestellar core is scale-dependent for supersonic turbulence,
in contrast to the scale-free density threshold in the cosmological case. This threshold can
be calculated from the Virial theorem by determining when thermal, turbulent and magnetic
support are dominated by gravity.

The resulting mass distribution is described by a power-law at large scales and a log-
normal form which is centered around the characteristic mass for gravitational collapse and
rapidly declines for lower masses following an exponential cut off. The mass distribution is
dependent on the global Mach number M, the ratio of the non-thermal velocity over the sound
speed at the scale of the whole cloud and on the effective Mach numberM∗, the same quantity at
the scale of the mean Jeans length, which describes the ratio of turbulent versus thermal support
at the Jeans length scale. Increasing the global Mach number enhances the collapse of small
scale structures as it heightens and decreases the peak of the turnover mass. This increases the
amount of brown dwarfs formed but does not affect the high-mass power law tail significantly.
An increase in effective Mach number at fixed global Mach number, so increasing the influence
of turbulent support at the Jeans length scale, does significantly affect the location of the turn
over mass but it decreases the peak slightly. Fewer intermediate-mass stars are formed as the
extra turbulent support suppresses the gravitational collapse of large structures into smaller
ones. At the high-mass end increasing the global turbulence extends the maximum core or
stellar mass. Increasing turbulence in this model thus increases the formation of low-mass and
high mass stars but also suppresses the formation of intermediate mass stars.

When comparing this model to observations, the Salpeter power-law tail is recovered at
the high-mass end for the velocity power spectrum of isothermal supersonic turbulence as given
by numerical simulations (Kritsuk et al. 2007) whereas pure thermal collapse produces a power-
law tail steeper than Salpeter. In the low-mass end, however, the number of brown dwarfs are
underestimated by the turbulent model when comparing with observations, although this effect
lessens with increasing global Mach number.

1.1.3.3 Core Formation from the EPS Formalism for a Turbulent Medium

Hopkins (2012a,b, 2013) extended this approach of deriving the IMF via the PS formilism
to larger, galactic, scales that dominate velocity and density fluctuations and find that they
derive the resulting properties with fewer assumptions. Moreover, he invoked a method that
solves the cloud-in-cloud problem of PS theory more naturally than in the Hennebelle and
Chabrier (2008, 2009) models. This problem is the miscounting of the number of low-mass
structures in the PS formalism, as it does not take into account that small structures can end
up in larger ones at later times. Bond et al. (1991) first identified this problem and proposed the
excursion set theorem, which executes a random walk for a density fluctuation and determines
when it first crosses the largest scale for which it is considered to be bound, the fist-crossing
scale. By determining how often the fluctuation crosses this treshold, this theorem can count
the mass enclosed within a halo at the scale. The probability of smaller substructures within a
region are taken into account via this method.

Hopkins (2012a) uses the PS theory extended by the excursion set theorem, extended Press-
Schechter (EPS), but derives the results for the log-normal density distribution of supersonic
turbulent gas with an assumed power-law spectrum instead of for a Gaussian cosmological
density spectrum. The EPS formalism is derived for turbulent gas in a galactic disc over scales
from that of the entire disc to below the sonic length.
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The method goes as follows: the density field is smoothed at some scale and the mean
density in a window with increasing radius will be compared to a threshold above which the self-
gravitating collapse of the density fluctuations is possible. This threshold is determined taking
into account thermal, turbulent, magnetic and rotational support, all of contribute differently
on different size scales. Therefore there is both a maximum and a minimum scale for which
the smoothed field crosses this thresholds and for which structure is self-gravitating, the first-
crossing and the last-crossing distribution respectively. In between these extremes the field can
cross the threshold multiple times. As the dynamic range of the scales taken into account is
large, this crossing allows for formation of self-gravitating substructures within large structures
over all these scales.

The density variance as a function of scale, and its dependence upon Mach number, nat-
urally follows from the EPS theorem as the effect of turbulence on disc scales to the smallest
scales is taken into account. This is in contrast to the Hennebelle and Chabrier (2008, 2009)
model, where this relation was an assumption based on numerical simulations. The relation
between Mach number and density variance determines the broadness of the mass distribution
in both models. The collapse conditions derived from this method on smaller sales are found to
be the same as in the Hennebelle and Chabrier (2008, 2009) model

The first-crossing distribution for turbulent gas in a disc is found to reproduce observations
of the mass function of giant molecular clouds (Hopkins 2013). The last-crossing distribution
is found to correspond to the CMF and by extension to the IMF. At the high-mass end where
the scale radius is in the turbulent regime, this reproduces a near Salpeter power-law slope
whose value is set by the critical density from the local Jeans criterion. This power-law turns
over at the sonic radius, where the contributions from thermal and turbulent support are equal.
The turnover mass is dependent on the sonic radius which can be related to the global disc
gas surface density. When the scale radius is below the sonic radius, thermal support increases
and the low-mass slope flattens with increasing Mach number. The model in Hopkins (2013)
does not predict a varying high mass slope for variations in star forming core temperatures,
galaxy velocity dispersion and galaxy surface density typical of the Milky way and the Local
group. The low-mass CMF turn-over occurs at lower mass for higher global Mach number,
creating some variation in the low-mass slope but still within the observed differences in the
low-mass slope. However, for more extreme global parameters, i.e. a higher temperature, gas
surface density and Mach number, as observed in ultra-luminous infra-red galaxies and starburst
regions such as merging galaxy nuclei, the turnover between high and low mass slopes occurs
more slowly and at a lower mass than in the Milky Way. This creates a bottom-heavy IMF
in these environments, as the mass boundary where thermal support dominates over turbulent
support decreases with increasing Mach number. The high mass slope in these extreme cases
is similar to Milky Way like conditions. However, as the turnover mass decreases in the case of
extreme global parameters, there are more intermediate mass stars formed and more importantly
the low-mass slope becomes bottom-heavy.

These three models to derive the CMF and by extension the IMF from turbulence in
molecular clouds thus all predict a Salpeter-like powerlaw slope at high core masses and a log-
normal turnover as can be seen in Figure 1.2. The location of this turnover depends on the
scale below which thermal and/or magnetic support becomes greater than that of turbulence.
A larger Mach number thus allows for fragmentation to smaller scales. However, these theories
of the CMF/IMF formation and variation in itself do not yet provide an explanation of the
difference in conditions in galaxies that appears to lead to a more bottom-heavy IMF in ETGs
than in our own Milky Way. Merger-induced star formation and starburstst could provide
such turbulent conditions out of which a bottom-heavy IMF can form as these lead to high
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(a) (b)

(c)

Figure 1.2: The mass distribution of bound, prestellar, cores for varying values of Mach number of
the flow from Padoan and Nordlund (2002) (left), Mach number at the scale of the whole cloud from
Hennebelle and Chabrier (2008) (right) and Mach number at the disc scale Hopkins (2013) (bottom), as
for the latter the Mach number on disc scales in ULIRGs is higher than in the MW. All three theories
for turbulence induced fragmentation in molecular clouds predict a Salpeter-like powerlaw slope at high
core masses and a log-normal turnover. The location and height of this turnover depends on the scale
below which thermal and/or magnetic support becomes greater than that of turbulence where a larger
Mach number allows for fragmentation to smaller scales and relatively more mass in low-mass stars.

local temperatures, densities and velocity dispersion. There are indications that massive ETGs
formed more of their stars in star burst and at higher redshift, when the ISM was more dense
and the average temperature was higher, than spiral galaxies (Brennan et al. 2015; Cappellari
et al. 2012). Such a dependence on star formation history and environment could link the
theories on the origin of a bottom-heavy IMF to the observations of the bottom-heavy IMF
in ETGs. We will therefore investigate the variation of the low-mass IMF with global galaxy
properties, such as fraction of starburst, total stellar mass, and morphology, that could possibly
influence the mass distribution of stars using semi-analytic models (SAMs) of galaxy formation
and evolution. These models can provide global properties of galaxies for a large number of
galaxies in a computer-time efficient manner and are therefore ideal to study variations of the
IMF with galaxy and star formation environment.
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1.2 Semi-Analytic Modeling of Galaxy Formation and Evolu-
tion

One method to model and study the formation and evolution of galaxies is through semi-
analytic models (SAMs). SAMs tie physically motivated recipes for the baryonic processes that
govern galaxy formation and evolution to dark mater (DM) halo merger trees as formed within
the hierarchical ΛCDM model of structure formation.

1.2.1 The ΛCDM Model of Galaxy Formation

The ΛCDM model is the current standard cosmological model of a cold dark matter (CDM)
universe with a cosmological constant (Λ). Within this model structure forms through the
collapse of small-amplitude primordial density fluctuations in the cold dark matter component
of the Universe (Blumenthal et al. 1984). The initial DM fluctuations are assumed to follow
a Gaussian random distribution creating a nearly uniform density field in the early Universe.
Inflation, the exponential expansion of space-time in the early Universe, enlarged the initial
minute quantum fluctuations to over- and under-densities of matter on larger scales. DM only
interacts through gravity, and is not affected by opposing pressure, resulting in the growth
of the over-densities through gravitational collapse. In the ΛCDM picture, the amplitude of
the dark matter fluctuations decreases with increasing scale, such that smaller objects collapse
first and then merge with one another to form larger and larger structures in a hierarchical
manner. Once these densities become equal to or larger than the mean background density of the
Universe they cannot be described by linear clustering theory. They enter the non-linear regime
in which these clumps of DM will be affected by both the gravitational pull of neighbouring
structures but also start to have an impact on matter flows resulting in a much more complicated
(description of their) evolution. The non-linear evolution of these DM density perturbations
will eventually lead to a virialised DM halo, a bound, self-gravitating system. Baryonic gas that
falls into the potential well of these DM haloes and then cools and fragments to forms stars
will eventually produce luminous galaxies (White and Rees 1978). In the hierarchical clustering
model, galaxies will grow and evolve due to the continuing merging of these dark haloes and the
baryonic components within them (Cole et al. 1994). These baryonic components are coupled
gravitationally to the DM and can be influenced by shocks, cooling and heating processes. Next
to processes like star formation and evolution, galaxy tidal interaction and mergers will thus
influence the galaxy properties. (Cole et al. 1994)

1.2.1.1 Modeling the ΛCDM Framework

As the process of hierarchical structure formation has an influence on the formation and
evolution of different types of galaxies and thus to both the similarities and differences in their
observed properties, it is important to model this process in more detail. This can be done using
large N-body simulations of DM structure formation and distribution coupled with hydrody-
namics. However, to obtain realistic galaxies in the ΛCDM framework and reproduce observed
galaxy properties in detail, additional baryonic physics such as cooling, star formation and
supernova (SN) and active galactic nuclei (AGN) feedback which together form a complicated
feedback loop needs to be included in these DM N-body simulations (Cole 1991; Kauffman et al.
1993; Somerville and Primack 1999; White and Frenk 1991; White and Rees 1978). Due to time
and memory limitations it is not computationally feasible to include realistic gas physics over
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the required dynamic range in N-body simulations of a significant volume. Moreover, as we do
not understand the full details of the interplay of these baryonic processes and feedback loops,
we would like to study the effects of varying the uncertain parameters associated with these
processes on the modeled galaxies. As N-body simulations are computationally expensive, it is
difficult or impossible to study a wide range of models varying the uncertain parameters or to
study different realisations of the same model (Somerville and Primack 1999). Semi-analytic
models (SAMs) do provide a computationally efficient and easier way to study bulk galaxy prop-
erties for a very large number of galaxies and to reproduce many observed properties (Somerville
et al. 2012). SAMs apply simple but physically motivated recipes for the physical processes that
shape galaxies to DM merger trees that are formed either via N-body simulations or via the
analytic extended Press-Schechter (EPS) theory within the framework of structure formation
predicted by ΛCDM.

1.2.2 Dark Matter Merger Trees

1.2.2.1 The (Extended) Press-Schechter Formalism

The Press-Schechter formalism is based upon the idea that we can make predictions on the
outcome of nonlinear collapse on the basis of the initial linear DM density fluctuations(Press and
Schechter 1974). This means that we can relate non-linear properties such as the mass distri-
bution and merging probabilities to the initial spectrum of linear Gaussian density fluctuations
from which they originated and grew (Longair 2008). The PS formalism produces a halo mass
distribution at a given redshift based on overdensity which lie above a certain threshold at that
particular epoch and thus have undergone gravitational collapse to evolve into a bound object
by that epoch. However, this analysis is based on the linear theory of growth of perturbations.
It only considers positive density fluctuations collapsing into bound objects, whereas a Gaussian
density field contains both over- and underdensities. Once perturbations grow to larger ampli-
tudes, mass is accreted from the vicinity of the perturbations so also from underdensities in
the original field (Longair 2008). This miscounts the the number of low-mass DM fluctuations,
many of which would have been subsumed into larger objects (Bond et al. 1991). This is the so
called “cloud-in cloud” or “peak-in peak” problem. This problem can be solved by letting the
value of the overdensity execute a Markovian random walk for different smoothing mass scales
or thresholds ensuring that each element is in a halo of some, possibly very low, mass scale.
This excursion set formalism or EPS formalism which can relate the fraction of trajectories of
the random walk in haloes with a certain mass at one epoch to a halo with a larger mass at a
larger mass can thus create a halo merging tree (Bond et al. 1991).

1.2.2.2 (EPS-Based) DM Merger Trees and SAMs

EPS can thus predict the masses of the progenitor haloes and the redshifts at which these
smaller haloes merge to form larger haloes, the parent halo (Cole et al. 1994; Kauffman et al.
1993; Somerville and Kolatt 1999; White and Frenk 1991). The redshifts of branching events
and the masses of the progenitor haloes at each stage are chosen randomly using Monte Carlo
techniques such that the overall distributional satisfies the average predicted by the EPS the-
ory (Somerville and Primack 1999). A particular Monte Carlo trajectory of the halo merging
history is referred to as a realisation (Somerville and Primack 1999). SAMs represent structure
formation by describing these merging histories of virialised dark mater haloes and coupling the
universal baryon fraction gravitationally to the virial mass of the halo (Somerville et al. 2008).
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Figure 1.3: A schematic depiction of a binary merger tree to provide a visual of the concept.
A horizontal slice through the tree gives the distribution of masses in the parent haloes at a
given time t (Lacey and Cole 1993). The model by Somerville et al. has set no limit on the

amount of branches allowed.

This baryonic component is accreted as hot gas and will cool to form a galaxy. Initially galaxies
form in their own halo and are followed in the simulation as their haloes are incorporated into
larges haloes, as given by the DM merger tree. During these halo mergers, galaxies from dif-
ferent initial haloes can eventually merge, cause tidal disruptions, or become a satellite galaxy
depending on the ratio of masses of galaxies in the different DM haloes. A parent halo of a
given mass can have a variety of merging histories and the properties of the galaxies that form
within this halo is thought to depend to some extent on that history (Somerville and Kolatt
1999). The Monte Carlo approach of random sampling facilitates the study individual objects or
global quantities in the SAM. As the Monte Carlo method allows tracing of individual galaxies,
it possible to look at the scatter in galaxies properties caused by different merging histories
(Kauffman et al. 1993). Many realisations of the merger tree can be run in a moderate amount
of time on a work station. SAMs are therefore an efficient and feasible way of exploring the effect
of varying the uncertainties associated with merger histories and baryonic processes on galaxy
properties providing a way to qualitatively understand many features of galaxy formation and
evolution(Somerville and Primack 1999).

Somerville et al. construct the merging history of a dark matter halo by sampling the paths
of individual particle trajectories using the excursion set formalism (Somerville and Primack
1999). This sampling of the trajectories starts at a halo mass M0 and goes back in time using
very mall time steps. For each trajectory in M0 at z0, the mass of the progenitor halo it was
located in at an earlier redshift z1 is chosen randomly using Monte Carlo techniques such that
it follows the probability that a halo of mass M0 at redshift z0 had a progenitor in the mass
range (M1,M1 +dM1). A branch occurs when at least two trajectories are found in haloes with
masses greater than a pre-set minimum resolution mass Ml to make the tree finite (Somerville
et al. 2008). Only haloes the history of haloes larger than this mass will be followed. In the
model by Somerville, contributions from trajectories in haloes smaller than Ml are included as
accretion of a diffuse component.
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1.2.3 The Baryonic Model

SAMs model the formation history and evolution of galaxies by tying simple but physically
motivated recipes for the baryonic physics that shapes galaxies to the DM merger trees. These
physical recipes are mostly dependent on feedback between cold gas, warm gas and the stellar
component and/or black holes such as simplified hydrodynamics, star formation, supernova
(SN) and active galactic nucleus (AGN) feedback, galaxy-galaxy mergers, and stellar population
synthesis (Somerville and Kolatt 1999; Somerville and Primack 1999; Somerville et al. 2008).
Underlying theory and observations are used to set parameters that model these processes. A
schematic depiction of the interplay of all these processes in SAMs in general can be found in
figure 1.4, though this description is more extensive than the ’Santa Cruz’ version of the SAM
used in this project.

The particular SAM used in this project/thesis is based on the ones described in Somerville
and Primack (1999); Somerville et al. (2008, 2012), the ’Santa Cruz’ SAM. The version was
extended in 2014 by Popping et al. (2014) (PTS14) to include multiphase gas partitioning and
to compute the star formation rate (SFR) based on the molecular gas content (Popping et al.
2014). Besides the PST14 model another version of the SAM as updated by Porter et al.
(2014a) (Porter+14) was used in this project as well. This version of the SAM provides a
method to model spheroid growth through both major and minor mergers and disc instabilities
which moves stars from the disc to the spheroid. This method also allows the modeling of the
effective radius and velocity dispersion of galaxies taking into account both the effect of mergers
and dissipation on these parameters. Through this addition to the SAM it will be possible to
compare the results of the SAM with the observations of the IMF slope–σ relation in 1.1.2.
The Porter+14 SAM version does not include the molecular-based SF module from PST14.
Moreover, this Porter+14 version of the SAM is not based upon the analytic EPS merger trees
but on merger trees from the Bolshoi N-body DM simulation (Klypin et al. 2011; Trujillo-Gomez
et al. 2011) which were generated via the ROCKSTAR method as developed by (Behroozi et al.
2014). However, implementing the model with either EPS and Bolshoi, or other N-body, DM
trees gives similar results (Porter et al. 2014a; Somerville et al. 2008).

The description of the physical recipes in the SAM below is mostly based on the description
of Somerville et al. (2008) and Somerville et al. (2012) this forms the basis for both of the models
used, for a more detailed description please take a look at these papers (Somerville et al. 2008,
2012). The most important changes within the PS14 and Porter+14 that are of influence to our
research are discussed as well.

1.2.3.1 DM Haloes, Merger Trees and Substructures

In the SAM, the universal baryon fraction corresponding to the DM halo mass is assumed
to be accreted as hot gas (Somerville et al. 2000). Every DM halo in each merger tree is given
a dimensionless angular momentum, or spin, parameter and a concentration parameter based
on redshift and halo mass. This concentration parameter describes the matter density profile
of each halo as given by the Navarro-Frenk-White profile (Somerville et al. 2008). When DM
haloes merge the central galaxy of the largest progenitor becomes the new central galaxy and
all others become satellites. These can lose angular momentum due to dynamical friction as
they orbit and in some cases may eventually merge with the central galaxy (Somerville et al.
2012). During this merger process, satellites are tidally stripped. Satellites with long merger
timescales can become tidally striped and destroyed before they fully merge with the central
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Figure 1.4: A schematic description of the interplay between the physical processes in a SAM
that will lead to the observable properties of galaxies, as adapted from (Cole et al. 2000) in

(Baugh 2006).

galaxy. If this occurs, stars from the satellite are added to a diffuse stellar halo (Somerville
et al. 2008). Satellite galaxies are not allowed to merge with other satellites in the model.
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1.2.3.2 Cooling

Before reionisation each halo contains a mass of hot gas equal to the universal baryon frac-
tion times the viral mass of the halo. However, after reionisation, the photoionising background
suppresses the collapse of gas into low-mass haloes (Gnedin 2000). When a dark matter halo
collapses or undergoes a merger that at least doubles the mass of the largest progenitor, the hot
gas is shock heated to the virial temperature of the new halo. This gas then cools radiatively
and collapses. The cooling radius is the radius in which all of the gas can cool in a cooling
time. This cooling time is dependent on the metallicity, density and temperature of the hot gas
(Sutherland and Dopita 1993). The cooling time is assumed to be equal to the halo’s dynamical
time (Croton et al. 2006; Springel et al. 2001). When the cooling radius is larger than the virial
radius the cooling rate is limited by the infall rate, which is determined by the mass accretion
history. This regime is associated with “cold flows” in which gas streams into the halo along
dense filaments without getting heated. If the cooling radius is smaller than the virial radius,
the cooling regime is associated with “hot flows” in which the gas is first shock heated to close to
the viral temperature of the halo, forming a quasi-hydrostatic halo, and then cools in a manner
similar to a classical cooling flow. This distinction is of importance when modeling heating by
AGN-driven radio jets.

1.2.3.3 Disc Formation

The cold gas is assumed to only be accreted by the central galaxy of the halo even though
in reality satellite galaxies are thought to accrete some of the cold gas as well. The newly cooling
gas is assumed to collapse into a rotationally-supported exponential disc. This gas has acquired
angular momentum momentum before it collapses through tidal torques (Peebles 1969). The
scale radius of this disc is computed using conservation of angular momentum given the halo’s
NFW concentration and spin parameters and the fraction of baryons in the disc following Mo
and White (1998). This fraction of baryons is needed as the self-gravity of the collapsing baryons
causes the adiabatic contraction of the inner part of the halo. The scale length of the gas can
be converted to the scale length of the stars in the disc via a conversion parameter, χgas, as
observations of nearby spiral galaxies suggest taht HI discs are more extended than stellar discs
(Leroy et al. 2008).

1.2.3.4 Quiescent and Burst-Mode Starformation

Star formation in the model occurs both in a quiescent mode and in a merger-driven star
burst mode. In this first mode, the star formation is modeled using the empirical Schmidt-
Kennicutt relation, assuming that only cold gas above a fixed critical surface density forms
stars (Kennicutt 1998). In the PST14 model, quiescent star formation is modeled based on the
surface density of molecular gas. This SF recipe follows a two fold scaling law as in higher H2

density environments the slope of the SFR density steepens Popping et al. (2014). In the merger
driven mode the efficiency and timescales of the bursts are dependent on the merger mas ratio
and the gas fraction of the progenitors following hydrodynamical simulations. In Porter+14
burst mode star formation can also be induced via a disc instability as cold gas in the bulge can
be used to fuel star formation besides the gas gained through mergers (Porter et al. 2014a).
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1.2.3.5 Chemical Enrichment and Supernova Feedback

Within the SAM, stars are formed following a Chabrier IMF (Chabrier 2003). This will
have an effect on the amount of feedback from stellar winds and SN of massive stars and on the
metallicity enrichment and gas loss due to the stellar evolution. Mass-loss from stars is modeled
using the instantaneous recycling approximation which returns a fraction of the mass that was
turned into stars to the cold gas reservoir. The metals and mass loss are modeled instantaneously
after the formation of stars in the SAM such that the model does not have to keep track of
stellar lifetimes and resulting SN and stellar winds and injected metals, which simplifies the
computational processes needed in the SAM. The recycled fraction of gas R = 0.43 is a good
approximation for the mass loss of massive stars in a Chabrier IMF (Bruzual and Charlot 2003).

Chemical enrichment is also modeled by this instantaneous recycling approximation. Every
time a set of new stars, dm∗, are formed, a fraction of the mass turned into stars is assumed
to instantaneously mix with the cold gas in the disc as mass in metals. This fraction is set by
the yield parameter. A newly formed set of stars is assumed to have the same metallicity as
the mean metallicity of the cold gas of the ISM at that time step. When gas is removed from
the disc through SN driven winds, a corresponding portion of metals is moved to the hot gas
or outside the halo. A change in the IMF assigned to a set of stars formed in this project, will
not alter any of these IMF-dependent properties in the SAM described here.

A fraction of the energy from SN and stellar winds is deposited into the ISM. This drives
large scale outflows of cold gas from the galaxy. The mass outflow rate is linked to the star
formation rate and inversely proportional to the escape velocity of the galaxy. A fraction of this
ejected gas escapes out of the potential of the DM halo while the rest is deposited in the hot
gas reservoir within the halo where it can cool again. This ratio between these two fractions
depends on the halo’s circular velocity.

1.2.3.6 Spheroid Formation

Mergers are though to remove angular momentum from the disc stars and build up a
spheroid. The efficiency of this spheroid growth is based on the progenitor’s gas fraction and
merger mass ratios. Hydrodynamic simulations indicate that major mergers, so once where
the mass ratio is close to equal, and gas-poor mergers are more efficient in removing angular
momentum, destroying discs and building a spheroidal component (Hopkins et al. 2009a,b).

1.2.3.6.1 Disk Instabilities and Spheroid Formation

In Porter+14, spheroid formation is also influenced by disc instabilities. N-body simula-
tions have shown that gravitational instabilities that occur when the mass of stars in the disc
exceeds a critical value relative to the DM mass, can result in the formation of a bar (Efstathiou
et al. 1982; Ostriker and Peebles 1973). Bars can destabilise the disc and transfer mass into a
spheroidal component (Debattista et al. 2004). Moreover, cosmological hydrodynamical simu-
lations indicate that “violent disc instabilities” (VDI) lead to fragmentation in gas-rich discs.
In this case, clumps of gas that formed through gravitational instabilities can migrate to the
center of galaxy, contributing to bulge growth (Bournaud et al. 2011; Dekel et al. 2009, 2013).
The version of the SAM used treats both star+gas disc instabilities (DI). The radius of the gas
disc and the mass of stars and cold gas in the disc are used to determine the onset of instability
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following (Efstathiou et al. 1982; Toomre 1964). Each time step the disc is found unstable, stars
and gas from the disc are moved to the spheroid component to reach marginal stability. The
cold gas moved to the disc is assumed to be used in a starbust. The efficiency and timescale of
this burst is the same as in merger triggered starbursts.

1.2.3.6.2 Modeling of Spheroidal Structural Parameters

In the Porter+14 model, the structural parameters of these spheroids formed in mergers
can now be computed. The effective radius in gas-rich mergers with dissipation can be deter-
mined by augmenting conservation of energy arguments with a term that incorporates radiative
losses (Covington et al. 2008, 2011; Porter et al. 2014a). In Porter+14 the constants that ac-
count for these radiative losses depend on the mass ratio of the merger and the morphology and
gas content of the progenitors (Porter et al. 2014b). The constants are calibrated using results
of hydrodynamical simulations of both major and minor mergers of gas-rich disc-dominated
progenitors, of mixed-morphology and of spheroid-spheroid mergers (Hopkins et al. 2009c; Jo-
hansson et al. 2009). The value is highest for major mergers of two disc-dominated galaxies,
lower for minor mergers between two disc-dominated galaxies and mergers where one or both
of the galaxies are spheroid dominated are found to be essentially dissipationless (Porter et al.
2014b). The line-of-sight velocity dispersion of the spheroid is computed using the viral theo-
rem where a dimensionless constant accounts for the conversion between the three-dimensional
effective radius and the line-of-sight projection of the velocity dispersion. These calculations
of the structural parameters are used in the SAM whenever galaxies with a mass ratio greater
than 1:10 merge; in mergers below this ratio the satellite material is added to the disc.

1.2.3.7 Black Hole Growth and Feedback

Mergers also drive gas into galactic nuclei, fueling black hole growth. In the SAM each
galaxy is born with a small seed black hole of ≈ 104 − 105M�, for PTS14 and Porter+2014
respectively.

After a halo merger, pre-existing black holes in the galaxies will also merge. The black hole
(BH) will grow at the Eddington rate until the energy deposited into the interstellar medium
(ISM) in the central region of the galaxy becomes enough to reach a pressure driven outflow
that stops accretion. This mode of BH growth is called “bright mode” or “ quasar mode”,
resulting in self-regulated accretion. In Porter+14 BH also grow following a disc instability. In
this case it accretes the fuel following a DI event at a fraction of the Eddington limit chosen
to reproduce the AGN luminosity function and the BH-bulge mass relation (Hirschmann et al.
2012).

A second mode of black hole growth, the “radio mode”, is associated with powerful jets
observed at radio frequencies. The BH is fueled by hot gas accretion according to the Bondi
Hoyle approximation instead of the merger-driven BH growth of the “bright mode” (Bondi
1952). This leads to low accretion rates so most of the BH mass is gained in the“bright mode”.
However, the radio jets from this “radio mode” are very efficient in coupling with the hot halo
gas. This heating term can partially or completely offset cooling in the hot flow mode in the
quasi-hydrostatic halo, suppressing star formation through “radio mode feedback”.
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1.2.4 Comparison of SAM Results with Observations

Different SAMs have been able to reproduce, at least qualitatively, many fundamental
observation such as the morphology-density relation and the Tully-Fisher relation (amongst
others (Cole et al. 1994; Kauffman et al. 1993; Somerville and Primack 1999)). Another key
result of SAMs is that they can provide a physical explanation of the characteristic shape of the
galaxy stellar mass or luminosity function as described by Somerville et al. (2008), after they
incorporated AGN feedback into their model (Bower et al. 2006; Croton et al. 2006; Somerville
et al. 2008). The Porter+14 showed that the SAM including VDI and dissipation reproduces
the observed size-mass relation for ETGs and fundamental-plane scaling relations of spheroid-
dominated galaxies in the local universe. It also predicts sufficient intermediate mass ETG in
the local universe, which it does not do without including the DI (Porter et al. 2014a).

Though the SAMs are able to reproduce many observational relations such as gas fractions,
stellar and gas mass functions in the local universe, SF history, with success, there are still
some model result that do not correspond to our current understanding of galaxy evolution.
Most notably, there are large discrepancies between the observed number density of low mass
galaxies, i.e. with M∗ ≈ 109−10.5 M�, and those predicted by SAMs (Weinmann et al. 2012).
Additionally these low mass galaxies are too passive at z = 0 (Fontanot et al. 2009; Guo et al.
2010). However, a similar discrepancies are found in hydrodynamical simulations suggesting that
this is not necessarily a modeling problem within the SAM but within our modeling of galaxy
formation and evolution in general (Weinmann et al. 2012). To solve this problem Weinmann
et al. (2012) postulate that the growth of low mass galaxies which grow at late times needs
to be decoupled from the growth of the high mass ones at earlier times, which would require
a better understanding of processes such as stellar feedback which mostly affect this low mass
galaxy end (Weinmann et al. 2012). However, recent work by Henriques et al. (2013) and White
and Ferguson (2015) have demonstrated that changing the re-accretion time-scale of ejected gas
might be a potential solution to these problems.

1.3 This Project

Recent studies using a combination of lensing, stellar dynamics, spectral features and SSP,
indicate that the low-mass IMF varies with galaxy properties such as velocity dispersion. ETGs
with high velocity dispersion in the local Universe appear to have relatively more low-mass stars
than predicted by a universal IMF. The physical origin for this bottom-heavy IMF is unclear
but theories base on increased low-mass fragmentation due to turbulence provide promising
results. Merger-induced star formation and starbursts could create local conditions, such as
density, temperature, turbulence, for the fragmentation of the star forming cloud that would
lead to a bottom-heavy IMF.

We will use the statistical capability of semi-analytical models to qualitatively investigate
the low-mass end slope of the IMF as a function of typical galaxy properties such as total
stellar mass and fraction of stellar mass formed in bursts. The SAM allows us to track for
instance stars formed in turbulent bursts and stars formed in quiescent environments. By re-
assign either a bottom-heavy Salpeter or a bottom-light Chabrier IMF to these star formation
situations respectively, we can determine the PDMF based on star formation history. The
statistical properties and computer-time efficiency of the SAM allow us to study the variation
of this PDMF with typical global galaxy properties for a large sample of ETGs. This will give
insight into which physical mechanisms in galaxies could be responsible for bottom- heavy star
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formation. In Chapter 2 we will explain the general method used for creating bottom-heavy and
bottom-light IMF bins and populating these bins with stars formed under different conditions
and how we determine the resulting PDMF slope from this. In Chapter 3 and Chapter 4
the results of re-assigning an IMF to stars formed under different conditions and comparison
with the observed σ–IMF slope relation will be presented and discussed. In Chapter 5 we will
summarise the results of all different models and compare them with theories of IMF variation.



Chapter 2
General Method: Creating and fitting the
IMF bins

2.1 Introduction

As mentioned in the introduction, the aim of this thesis is to gain insight into the underlying
physical reasons of the observed variation in the low-mass end of the IMF. This is done by four
different recipes of re-ascribing a bottom-heavy IMF to stars formed under certain conditions
in the SAM and to compare the resulting PDMF slope with the observed IMF-slope. In the
coming chapters, the following four main models will be considered:

I The SF–IMF model: a physically-motivated model that ties the slope of the low-mass
IMF to the type of star formation, either quiescent (bottom-light) or burst (bottom-heavy)
in Chapter 3

II The Morph–IMF model: a heuristic model that ties the slope of the low-mass IMF to
the present-day location of the stars, either in the disc (bottom-light) or in the spheroid
(bottom-heavy), in Chapter 3.

III The 〈t〉–IMF model: an observationally motivated model that ties a power-law IMF
slope to a set of stars formed that varies with the time at which they formed in post-
processing. This power-law slope varies with 〈t〉 following the σ–〈t〉 relation which can be
determined from the SAM and the observed σ–IMF slope in ETGs, in Chapter 4.1.

IV The σ– IMF model : an observationally motivated model that ties an IMF slope–σ
relation to the stars formed based on the σ of their “host” galaxy at the time of star for-
mation which is implemented within the Porter+14 SAM (although not self-consistently),
in Chapter 4.2.

However, the basic method for creating bottom-heavy and bottom-light IMF bins and
populating these bins with the stars formed is the same for all three methods; the only real
difference is the criteria for the assignment of stars to a particular IMF-slope. Moreover, the
manner in which the slope of the resulting bins is fitted, to be compared to the observed IMF
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slope, is also the same for each model. Therefore, before the details and results of the three
separate models are discussed, first the processes for generating and fitting the PDMF bins is
outlined in this chapter.

2.2 Creating the IMF bins

2.2.1 The Initial Mass Function

To understand how IMF bins are created, first the definition and usage of the stellar
mass function and initial mass function needs to be explained. The mass function of a stellar
population gives the number of stars per unit mass (Salpeter 1955). The mass function Φ(M)
is defined such that Φ(M) dM is the number of stars with masses between M and M + dM .
The total number of stars with masses between M1 and M2 is then given by

N(M1,M2) =

∫ M2

M1

Φ(M)dM (2.1)

or equivalently

Φ =
dN

dM
(2.2)

In order to get the mass of stars within some mass interval, rather than the total number
of stars within that interval, we can integrate Φ times the mass per star

M∗(M1,M2) =

∫ M2

M1

MΦ(M)dM (2.3)

or

ξ(M) ≡MΦ(M) =
dM∗
dM

(2.4)

Throughout this thesis this form of the mass function has been used. To better understand how
to interpret ξ(M) we can rewrite the relations above such that

ξ(M) = MΦ(M) = M
dN

dM
= M

d ln M

dM

dN

d ln M
= M

1

M

dN

d ln M
=

dN

d ln M
(2.5)

Thus ξ(M) gives the number of stars per logarithm in mass. As star formation takes place over
a large mass range, this logarithmic definition is helpful in giving a clear representation of the
mass distribution in a galaxy.

We are interested in the distribution of stellar masses rather than the total mass in stars.
To compare this distribution between different galaxies, we will have to normalise ξ such that
the integral is equal to one: ∫ ∞

0
ξ(M)dM = 1 (2.6)

If the function is normalised, ξ(M) dM will give the fraction of stars by mass with masses
between M and M + dM . Equivalently, if Φ(M) would be normalised this way, it would hive
the fraction of stars by number for masses between M and M+dM.
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A mass function can be constructed for any type of population but the one we are interested
in is the initial mass function. This is the mass function for stars that have just formed. The
IMF will differ from the present day mass function (PDMF) as stars lose mass throughout their
lifetime and more-massive stars will have moved off the main sequence (MS) at a certain age,
in a manner dependent on their initial MS mass (Chabrier 2003). However, for stellar masses
below ∼ 0.9M� the MS lifetime is longer than the age of the universe so these stars will not
have moved of the MS. Below this mass limit we thus expect the IMF and the PDMF of the
stellar population to be the same. This mass limit of stars still on the MS can be derived by
combining the expressions for the luminosity of a MS star,the energy produced by hydrogen
burning, and the mass-luminosity relation. For a mass-luminosity relation of L ∼ M−3.5 the
resulting expression in terms of solor units becomes

M

M�
∼
tMS,�
tMS

1/2.5

(2.7)

For tMS,� = 1010Gyr and the upper limit tMS ≈ 13.8Gyr, M ≈ 0.88M� is the mass limit for
stars that have not evolved of the MS. Recent isochrone models suggest that for solar-metallicity
stars under 1 M� have not moved off the MS in 10 Gyrs ().

2.2.1.1 Salpeter IMF

Throughout this thesis, for a bottom-heavy IMF a power-law (i.e. Salpeter-like) IMF is
used. This is a power law type IMF as first proposed by Salpeter in 1955 (Salpeter 1955):

ξ(m) = C m−x (2.8)

where C is the normalisation constant and x = 1.35 is the Salpeter exponent. Note that that
if the the form Φ(m) had been used, this exponent would have been α = x+ 1 = 2.35. Due to
the negative exponent the number of stars or mass in stars decreases strongly with increasing
mass, which is why this form of the IMF is ideal to represent a bottom-heavy IMF.

2.2.1.2 Chabrier IMF

A Chabrier (2003) IMF is used for a bottom-light IMF (Chabrier 2003). This IMF can be
parameterised in the mass regimes above and below 1 M� as follows:

ξ(m) =

{
A e−(log m−log mc)2/2 σ2

if m < 1M�

B m−y if m > 1M�
(2.9)

where y = 1.3, σ = 0.69, and mc = 0.079 M�. A and B are the normalisation constants. In
the low mass regime, this IMF takes a lognormal form.

2.2.2 Normalisation Constants

The values for the normalistion constants are found by requiring that :∫ Mu

Ml

ξ(m)dm = 1 (2.10)
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where Mu = 120 M� and Ml = 0.1 M� are the upper and lower mass limits for the normalisa-
tion.

2.2.2.1 Normalising the Salpeter IMF

For the Salpeter IMF, we can find the normalisation constant C by requiring

1 =

∫ Mu

Ml

C m−x dm = C
[ m1−x

1− x

]Mu

Ml

= C
M1−x
u −M1−x

l

1− x
(2.11)

so that

C =
1− x

M1−x
l −M1−x

u
(2.12)

This constant is written in terms of the Salpeter exponent x and the upper and lower nor-
malisaton mass limit, Mu and Ml so that these parameters could be changed if required. For
Mu = 120 M�, Ml = 0.1 M� and x = 1.35, we find that C = 0.1706.

2.2.2.2 Normalising the Chabrier IMF

In order to normalise the Chabrier IMF over the entire stellar mass range, the following
equations must hold:

1 =

∫ 1M�

Ml

A e−(log10 m−log10 mc)2/2 σ2
dm+

∫ Mu

1M�

B m−y dm (2.13)

which gives, rewriting the equation using log10(x) = ln(x)
ln(10) such that c = ln(10) ∗ b :

1 = A
[
a
√
π/2 a · c · ec2/2 Erf

(
−ln a− c2 + ln m√

2 c

)]1M�

Ml

+B
[m1−y

1− y

]Mu

1M�
(2.14)

using the values for a, band mc, and putting in this mass limits, this leads to:

1 = A
(

0.004− 0.556 Erf(0.006 + 0.445 ln Ml)
)

+B

(
M1−y
u − 1

1− y

)
(2.15)

By requiring continuity between the two parametrisations of the mass function at 1 M�
we can express the constant B in terms of A:

B = A
e−(log10 1−log10 mc)2/(2 σ2)

1−y
(2.16)

By combining equations (2.15) and (2.16) we can then find the normalisation constants A
and B. For Mu = 120 M�, Ml = 0.1 M� and y = 1.3, we find A = 0.8435 and B = 0.2354.
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2.2.3 Mass Bins

Next the stellar mass bins need to be initialised. These bins will later be used in creating
fractional arrays for the IMF and to populate the PDMF. The mass range for these bins is
binlow = 0.1M� and binup = 0.8M�. The upper limit of 0.8 M� lies slightly below the initial
mass for which star have not moved of the main sequence within the current Hubble time as
explained in the Section 2.2.1. The bins are equally spaced in logarithms. For N mass bins,
N +1 left and right edges of the bins are needed. These edges are saved in the array bins[N +1]
following :

bins[n] = 10log10(bin up)−n∗stepsize (2.17)

for n from 0 up to and including N, where stepsize = log10(bin up/bin low)/N . In this project
N = 24, so 24 mass bins have been used, as will be explained in Section 2.2.7.

Recent models indicate that solar-metallicity stars below 1 M� have not yet moved of the
MS as explained in 2.2.1. Increasing the low-mass bin upper limit from 0.8 M� to 1.0 M� ,
only changed the resulting PDMF slope by a couple of hundreds at most. We have therefore
decided to only extend the upper limit of the mass bin in the σ–IMF model of Section 4.2.

2.2.4 Integrating the Mass Function

The fraction of mass in stars in each stellar mass bin needs to be determined for both
the Salpeter and Chabrier IMF, using the respective normalization constants as found from
Equation (2.25). For each bin with lower mass edge mi and right mass edge mi+1, for i from 0
to N − 1, the fraction of mass in stars for either the Chabrier or Salpeter IMF ξ(m) is found by

fimf =

∫ mi+1

mi

ξ(m) dm < 1 (2.18)

resulting in fimf [N ] = [f0, f1, ...., fN−1] Solving the integral for the specific types of IMF,
including the respective normalisation constant, the resulting expression for fimf will look as
follows for the Salpeter case:

fsalp[i] =
C

1− x
(bins[i]1−x − bins[i+ 1]1−x) (2.19)

And for the Chabrier IMF case:

fchab[i] = A ∗
(
− 0.556 Erf

[
0.445 log(bins[i]) + 0.006

]
+

0.556 Erf
[
0.445 log(bins[i+ 1]) + 0.006

]) (2.20)

This expression for the Chabrier fractional mass array will only hold as long as bin up ≤
1M�. Otherwise the full parametrisation of the Chabrier IMF as in Equation (2.23) will need
to be taken into account.
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2.2.5 Populating the PDMF

We now have two arrays with the normalised fractions of mass in stars in the mass range
0.1− 0.8M�, fchab and fsalp, one for the Chabrier IMF and one for the Salpeter IMF.
With these we can populate the PDMF array: this will be an array with the same N mass bins
over the same mass range as fsalp and fchab. In the SAM, inherently, stars are formed assuming
a Chabrier IMF. However, we reassign these newly formed stars a different IMF, either in post-
processing or inmediately after the original star formation, and populate the PDMF following
this method. Depending on the model, each time stars have been formed in a galaxy in the
SAM under a specific condition or in a specific location, cond1 or cond2, they will be assigned
to the PDMF of that galaxy following either a Chabrier or Salpeter IMF. Each time stars are
formed they are thus reassigned an IMF and are then added to the PDMF, which at z = 0 will
give the PDMF of that specific galaxy:

PDMF1[N ]+ = dm∗(cond1) fsalp[N ] + dm∗(cond2) fchab[N ] (2.21)

This PDMF gives us the fraction of stars in mass in each bin, with masses between M and
M + dM , i.e. the edges of each bin. This is equivalent to ξ(M) dM as described in Section
2.2.1. To get ξ(m), this PDMF needs to be divided by the dm of each mass bin, dm∗ bins[N].
Moreover, in order to normalise the PDMF, it should be divided by the total mass in stars
formed over the entire normalisation range (i.e from 0.1-120 M�). However, this last point will
not affect the slope of the resulting PDMF, only the offset. The final expression for the PDMF
is then:

PDMF [N ] =
PDMF1[N ]

m∗,tot ∗ dm∗ bins[N ]
(2.22)

2.2.6 Re-assignment of IMF

Note that in all three models the IMF is not implemented self-consistently as we determine
the PDMF by re-assign the IMF either in post-processing (models 1 and 2) or in the SAM
(model 3) but only after stars have already formed. Stars within the SAM are formed following
a Chabrier IMF which translates into on the amount of feedback from stellar winds and SN
of massive stars and on the metallicity enrichment and gas loss due to the stellar evolution
as further described in Section 1.2.3.5. However, we only alter the low-mass end (< 1M�)
IMF in post-processing which will not affect the feedback mechanisms from higher mass stars.
Therefore we except the current implementation of re-assigning the IMF in post-processing to
be a reasonable first approximation which will have little effect on the global properties of the
galaxies in the SAM. In Fontanot (2014) assigning a bottom-heavy IMF rather than a top-heavy
IMF only strongly affect the (evolution of the) metallicities of the hot gas though not the stellar
mass function and SFR. A change in metallicity may affect the cooling rate of hot gas which
will have an impact on the cold gas and metallicity thereof that is available for star formation
at any given time. In them future, the exact effect of varying the low-mass end of the IMF
self-consistently within the ’Santa-Cruz’ SAM should be tested.
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2.2.7 Comparing the model PDMF with the theoretical mass function

To check whether the algorithm to get to the PDMF works well, a pure Chabrier or pure
Salpeter PDMF is compared with the respective theoretical input IMF ξ(m). For either a sole
Salpeter or a sole Chabrier PDMF, i.e. stellar mass bins populated via either 100 % cond1 or
via 100 % cond2, the resulting PDMF is presented in Figure 2.1. The output PDMF of the
model is compared with the theoretical input ξ(m) for a Salpeter IMF as given in Equation
(2.8) and ξ(m) for a Chabrier IMF as in Equation (2.23). In both cases the output PDMF is
the same as the input IMF as it should be.

(a) (b)

Figure 2.1: Comparing the PDMF that follows from the model (red dots) with the theoretical input
ξ(m) (blue line), for a pure Salpeter case on the right and a pure Chabrier case on the left.In both cases

the output PDMF is the same as the input IMF.
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To determine the number of mass bins needed to be sensitive to a change in slope but not
to use unnecessary memory or computing power, several Nvalues for the amount of mass bins
were tested. In Figure 2.2 the PDMF is shown for 50 % of stellar mass populated following fsalp

and 50 % following fchab, for respectively 10, 24, and 50 mass bins. The vertical axis shows the
PDMF · dm∗, rather than just the PDMF, as this form depicts the change in slope best. As
can be seen from Figure 2.2, 24 mass bins represents the change in slope more smoothly than
10 bins but, for our purposes, just as well as 50 bins. So throughout this project N = 24 mass
bins have been used.

Figure 2.2: This figure shows a PDMF which was populated with 50 % of the stellar mass following
a Salpeter-like IMF and 50 % of the stellar mass following a Chabrier-like IMF. The PDMF is plotted
for 10, 24 and 50 mass bins in the range 0.1-0.8 M�. The plot for the 10 mass bins shows the change in
slope too stochastically, however, both 24 and 50 mass bins present a smooth transition in the curve.

For this reason throughout this project 24 mass bins are used.

2.3 Fitting the PDMF

To get the slope of the PDMF, the relation y = a ∗ x + b is used as a fit. The log of the
center of each mass bins (x) is fitted to the log of the PDMF (y), so to the log of the fraction
of mass in stars in each bin. The relation y = a ∗ x + b is fitted using python’s scipy function
scipy.optimize.curve fit(f, xdata, ydata) 1, which uses a non-linear least squares to fit a function
f to data. The resulting slope a can then be used to compare to observational values of the
PDMF slope. The offset b of this fit is not of interest to this project as it only describes the
overall mass normalisation. We are interested in the relative amount of low-mass stars, which
is the observed low-mass IMF slope–σ relation. In Figures 2.3a and 2.3b a sole Salpeter or
Chabrier populated PDMF respectively are presented with the fitted dashed black line. The
slope of the Salpeter PDMF is -1.35 in accordance with the theoretical input value. The slope
of the Chabrier PDMF is -0.51, fitted between 0.1 and 0.6 M� as in this range the linear fit is
more sensetive to the slope of the Chabrier-like curve.

1for documentation see http : //docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve fit.html
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(a) (b)

Figure 2.3: Fit (dashed black line) to a sole Salpter populated PDMF (red curve) on the left. The
slope of the fit is -0.35. On the right, the fit (dashed black line) to a sole Chabrier populated PDMF

(red curve) over the range 0.1 and 0.6 M�. The slope of the fit is -0.51.

2.4 Summary of the PDMF and fitting algorithm

The point wise algorithm for creating and populating the PDMF bins:

I Define the functional form of the Chabier and Salpeter IMF, respectively:

ξ(m) =

{
A e−(log m−log mc)2/2 σ2

if m < 1M�

B m−y if m > 1M�
(2.23)

where y = 1.3, σ = 0.69, and mc = 0.079 M�, and

ξ(m) = C m−x (2.24)

where x = 1.35.

II Find the respective normalisation constants A, B, and C for the Salpeter and Chabrier
IMF by requiring that ∫ Mu

Ml

ξ(m)dm = 1 (2.25)

with Mu = 120 M� and Ml = 0.1 M�

III Generate N number of stellar mass bins in the range 0.1 − 0.8M� equally spaced in
logarithm.

bins[n] = 10log10(bin up)−n∗stepsize (2.26)

In this project N = 24 mass bins have been used. These mass bins will be populated
with formed stars to get the PDMF of galaxies.

IV Determine the fraction of stars in each stellar mass bin for both the Salpeter and the
Chabrier case, giving fsalp and fchab, by solving this integral

fimf =

∫ mi+1

mi

ξ(m) dm < 1 (2.27)
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where mi is the left mass bin edge and mi+1 the right mass bin edge.

V Create an empty PDMF array for each galaxy using bins[n]. Populate this PDMF array
with stars that have formed in the SAM by reassigning either a Chabrier or Salpeter
IMF, using fsalp and fchab, to those stars depending on the condition or location of their
formation.

PDMF1[N ]+ = dm∗(cond1) fsalp[N ] + dm∗(cond2) fchab[N ] (2.28)

The final normalised expression for this PDMF array is

PDMF [N ] =
PDMF1[N ]

m∗,tot ∗ dm∗ bins[N ].
(2.29)

VI Determine the slope of the PDMF by fitting the relation y = a ∗ x+ b to it. Fit the log of
the center of each mass bins (x) to the log of the PDMF (y), so to the log of the fraction of
mass in stars in each bin. The resulting slope a can be used to compare to observational
values of the PDMF slope.



Chapter 3
Models I and II: Star Formation Mode and
Morphology Linked to IMF

3.1 Introduction

We investigate different recipes for re-assigning an IMF to stars formed under certain
conditions in SAMs and compare the resulting PDMFs of the model galaxies with the observed
IMF-slope in local ETGs to gain insight into the origin of the variation in the low-mass IMF.
In this chapter two of those recipes will be described. This first recipe is a physically-motivated
model that ties the slope of the low-mass IMF to the star formation mode, either quiescently
or in bursts; we call this the SF–IMF model. The second recipe is a heuristic model that ties
the slope of the low-mass IMF to the present-day location of the stars, either in the bulge or in
the disc; we call this the Morph–IMF model.

SAMs connect simple analytic recipes for baryonic processes that govern galaxy formation
and evolution to DM merger trees that are formed either via N-body simulations of struc-
ture formation (Porter+14) or via the analytic EPS theory (PST14). This method provides
global galaxy properties such as stellar mass, size, star formation rate, merger history, and
starburst contribution for a statistically large and diverse sample of model galaxies. Moreover,
the Porter+14 model is able to compute the velocity dispersion σ of the model galaxies through
which we can compare the model results with observed σ–IMF slope relations from for instance
Spiniello et al. (2014) directly

The SAM also allows us to determine the fraction of stars per galaxy that have formed
under a specific condition or in a specific location. We will use this property of the model
to re-assign a bottom-light or bottom-heavy IMF to stars formed under different conditions.
In the SF–IMF Model, we assign a bottom-light Chabrier IMF to stars formed in a quiescent
environment and a bottom-heavy Salpeter IMF to stars formed in bursts as theories on the
origin of the CMF and IMF expect that increased turbulence in the “parent” molecular cloud
leads to increased dwarf formation (Hennebelle and Chabrier 2008, 2009; Hopkins 2012a,b, 2013;
Padoan and Jones 1997; Padoan and Nordlund 2002). In the Morph–IMF model we will assign
a a bottom-light Chabrier IMF to stars presently in the disc of a galaxy and a bottom-heavy
Salpeter IMF to stars presently in the bulge of galaxies. This Morph–IMF model will take
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merger histories and, when applied to the Porter+14 SAM, migration and formation of stars
after disc instabilities into account.

3.2 PST14: Method & Results

3.2.1 Specifications

We run the PST14 model to z = 0 with a grid of a 100 haloes with 100 realisations of each
halo mass for viral masses between 108 − 1014M� with a mass resolution of 1010M� as SAMs
are not yet able to correctly model the star formation histories and other observed properties of
galaxies below a galaxy mass resolution of 109−10 M� (Somerville et al. 2008; Weinmann et al.
2012). However, if the resolution mass is larger than 0.01× halo mass, the adopted resolution
is 0.01× halo mass.

A flat ΛCDM cosmology is used with the following parameters: Ωm = 0.28, ΩΛ = 0.72,
h = H0/(100km s−1) = 0.70, σ8 = 0.812, ns = 0.96, and fb = 0.1658, the cosmic baryon fraction
(Komatsu et al. 2009). All other free galaxy formation parameters are fixed to the values in
(Popping et al. 2014) and (Somerville et al. 2012), except MBH,seed = 1.0 104M�.

3.2.2 SF–IMF Model

We use the results of this run to determine the PDMF of the galaxies that are outputted by
the SAM at z = 0. The PDMF for each galaxy is constructed by adding re-populating the stars
that formed in “quiescent” mode with a Chabrier IMF and the stars that formed through bursts
with a Salpeter IMF as described in Section . The PDMF is computed in N = 24 stellar mass
bins equally spaced in log-space in the mass range 0.1 − 0.8M�. For the SF-IMF assignment
mode, combining Equations (2.21) and (2.22), the PDMF is assigned through:

PDMF [N ]+ =
dm∗(quiscent) fsalp[N ] + dm∗(burst) fchab[N ]

m∗,tot ∗ dm∗ bins[N ]
(3.1)

3.2.2.1 Selection Criteria Galaxies

b The PDMF is only determined for central galaxies at z = 0, with a stellar mass above
107 M� and a a non-zero stellar contribution that formed in bursts, to filter low-mass galaxies
and satellites out of the results. This allows us to better compare the results to observations of
ETGs.

For each of these resulting galaxies, the PDMF (3.1) is fitted by a power law in the range
0.1− 0.7M� as described in Section 2.3.
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3.2.2.2 Results

The SAM outputs global galaxy properties like stellar mass, merger history, starburst
contribution. We can use the above method to to qualitatively investigate the slope of the low-
mass end of the PDMF versus these typical galaxy properties such as stellar mass and stellar
mass through bursts.

We use Table BI from (Arrigoni et al. 2010) to find a rough scaling between (dynamical)
stellar mass and velocity dispersion as the PST14 of the SAM does not provide σbulge. This
allows for a comparison of the SAM results with the observed IMF slope–σ relation (see red
dashed line in Figure 3.1). The model galaxies from the SAM are colour-coded by the mass-
weighted mean age of the current stellar population in the galaxy.

Figure 3.1: The PDMF slope versus the total stellar mass for z = 0 galaxies from the PST14 SAM to
which the SF–IMF model is applied; Stars formed in starbursts in the SAM are re-assigned a Salpeter
IMF and stars formed quiescently a Chabrier IMF. Only central galaxies at z = 0 with M∗ > 107 and
with a non-zero fraction of stars formed in bursts are presented. The galaxies are colour coded based on
mass weighted mean age in Gyr. The red dashed line is the schematic observed σ–IMF slope relation
converted to M∗. Although a trend is visible between higher M∗ and a steeper slope, this is not as
strong and steep as the observed relation. The galaxies with the highest mean age have a higher M∗

and a slightly steeper slope, the galaxies thus have more stars formed in starbursts.

In Figure 3.1 we do see a slight trend of the PDMF-slope with total stellar mass, however,
not as strong as the observations predict. The ansatz of re-assigning an IMF based on star
formation mode is thus not sufficient in reproducing the observed IMF slope–σ relation.

As expected from galaxy evolution theory there is a positive relation between galactic
stellar mass and mean age of the stellar population where the most massive galaxies have the
oldest stellar populations (Panter and Charlot 2007). The highest mass galaxies, and thus the
galaxies with the oldest stellar populations do have a steeper and therefore more bottom-heavy
slope than the lower-mass galaxies with a lower mean age. These high-mass galaxies have gone
through more mergers and therefore have more, merger-induced, stars formed in bursts whereas
the lower-mass galaxies experienced most of their star formation more recently and quiescently
(Brennan et al. 2015). However, the outliers are not the galaxies with the highest mass or oldest
mean age.
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We investigate how burst-mode star formation influences the PDMF by plotting the log
of Mburst and of Mburst/Mtot versus the slope. Figure 3.2 shows what was put into the model
by construction; a larger fraction of burst-mode SF gives a steeper slope. The mean age colour
coding shows that the outliers in terms of steepest slope are not the oldest galaxies. Figures
3.3 and 3.2, however, shows these outliers occur among the galaxies with the highest Mburst or
actually the highest fraction of stellar mass due to Mburst. These are the galaxies that had a
recent starburst episode. The average PDMF slope in these galaxies with a recent burst has
not been mixed yet by addition of more stars and stellar populations that formed in quiescent
mode which would have been assigned a Chabrier IMF which would make the slope shallower.

Figure 3.2: The PDMF slope versus the fraction of stellar mass due to burst-mode star formation, i.e.
Mburst/Mtot for central model galaxies with M∗ > 107 in the SF–IMF model which re-assigns a Salpter
IMF and stars formed quiescently a Chabrier IMF. This figure shows what was put into the model
by construction; a larger fraction of burst-mode star formation gives a steeper slope. The galaxies are
colour coded by mean age in Gyr,which shows that the outliers in terms of steepest slope are not the

oldest galaxies but galaxies with the highest Mburst/Mtot.

The galaxies with the steepest slope resulting from this model thus formed most of their
stars early on or had a recent burst of star formation that contributed to a large fraction of
their stellar mass. However, these galaxies and the model population as a whole are not able
to reproduce the steepness of the observed slope-mass relation. This could indicate that we
would need to expand our criteria for the environments in which stars formed from turbulent
gas beyond starburst or to model the starburst physics better, either in the SAM or in the
post-processing model.

The PDMF of three model galaxies are depicted in in Figure 3.4 to illustrate how the PDMF
slope is derived from actual model galaxies to reach the above relationships between IMF slope
and galaxy properties. The PDMF gives the normalised division of number of stars in mass per
stellar mass bin at z = 0 after they have been re-assigned an IMF in post-processing based on
how the stars formed. A linear fit to the number of mass in stars in each bin is performed to
find the power-law slope of the low-mass PDMF. We present the PDMF (red-line) and linear fit
(black-dashed line) to this PDMF for three model galaxies ; one with the shallowest PDMF slope
of the sample, one with an average slope and one with the steepest slope respectively. This slope
is determined by the amount of stellar mass in a galaxy through starburst by construction of the
model; the galaxy with the largest fraction of stellar mass through bursts has the steepest slope.
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Figure 3.3: The PDMF slope versus the stellar mass in per galaxy due to burst-mode star formation
for central model galaxies with M∗ > 107 in the SF–IMF model which re-assigns a Salpter IMF and
stars formed quiescently a Chabrier IMF. The galaxies are colour coded by mean age in Gyr,which
shows that the outliers in terms of steepest slope are not the oldest galaxies. Most outliers are galaxies
with the highest Mburst but not all as the PDMF slope is determined by both the Mburst and Mnormal.
As can be seen in Figure 3.2, the highest Mburst/Mnormal or Mburst/Mtot will determine the steepness

of the PDMF slope in the SF–IMF model.

This burst stellar mass fraction for the three depicted galaxies is respectively M∗/Mtot ∼ 0%,
∼ 4%, and ∼ 46%.
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(a) (b)

(c)

Figure 3.4: The PDMF (red curve) and linear fit to the PDMF (dashed black line) for three model
galaxies; One with the the lowest fraction of stellar mass through bursts, Mburst/Mtot ∼ 0%, one with an
average burst fraction Mburst/Mtot ∼ 4% and one with the highest burst fraction Mburst/Mtot ∼ 46%.
The slope of the linear fit to the PDMF of each galaxy gives the PDMF slope. By construction of the
SF–IMF model, the galaxy with the steepest slope has the highest fraction of stellar mass formed in

starbursts.

As a test we increase the power-law coefficient of the input Salpeter IMF to probe the slope
required to generate the observed IMF slope-mass relation with our model. An observed system
IMF slope is an average of the mass in stars in a certain mass range and it is possible that
some of the individual cases that build up this PDMF are much steeper than the final observed
slope. In Figure 3.5 it can be see that even with a Salpeter-like power-law input slope of x = 3
for stars formed in bursts, the steepness of the observed slope-mass relation is not reproduced.
Changing the input IMF power-law slope for bursts shifts the final PDMF slope down by at
most a factor of 1. However, such a strong increase in IMF slope would have serious implications
on the feedback mechanisms and evolution of the subsequent stellar populations in the model
and does not represent observations (see e.g. (Bastian and Meyer 2010)). A power-law slope of
x = 3 would be almost twice as steep than the steepest observed IMF-slope from Spiniello et al.
(2014).
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Figure 3.5: The PDMF slope versus stellar mass for model galaxies for the SF–IMF model in which
we increase the power-law coefficient of the input Salpeter IMF from xsalp = 1.35 to x = 3 that we
assigned to burst-mode star formation in the SF–IMF model to probe the slope required to generate
the observed IMF slope-mass relation. This increased input slope to an unobserved high value is also

not able to reproduce the observed steepness of the stellar mass–IMF slope relation.

The mean age of the outliers in Figure 3.1, 3.3 and 3.2 in terms of slope is relatively
low. These galaxies have a younger stellar population with the largest stellar fraction due to
starbursts giving these galaxies a lower M/L ratio than the high mass galaxies with old stellar
populations. As explained in the Section 1.1.2, Cappellari et al. (2012) have found a strong
systematic variation in IMF in ETGs with M/L ratio which suggest a dependence of IMF on
the galaxies formation history. In Figure 3.6 we therefore investigate the M/L-slope relation of
our model. The SAM gives the absolute magnitude of the model galaxies in different filters. The
SAM constructs photometric information on the model galaxies based on Chabrier isochrones
in the spectral energy distribution distribution (SED) model from Bruzual and Charlot (2003).
To find LV from these absolute magnitudes in the V -band we use

LV
L�

= 10(MV,�−MV )/2.5 (3.2)

with MV,� = 4.83. This has been used to derive the M∗/LV - slope relation in Figures 3.6 and
3.7.
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Figure 3.6: The PDMF slope versus M/LV relation of model galaxies for the SF–IMF model. The
galaxies with the steepest slope have a relatively low M/L ratio, indicating recent star formation.

Figure 3.7: The PDMF slope versus B/D flux ratio in the B-band of model galaxies for the SF–IMF
model. Galaxies with the steepest slope have a relatively high bulge-to-disc flux ratio. As this ratio
can be used to distinguish between galaxy morphology we will use it ratio to divide the model galaxies

into morphological class in Figure 3.8.

From Figure 3.6 confirms that galaxies with the steepest slope indeed have a relatively low
M/L ratio. Moreover, in Figure 3.7 we colour coded the galaxies according to the bulge-to-disc
flux ratio in the B-band, which shows that galaxies with the steepest slope have a relatively
high bulge-to-disc flux ratio.

The bulge-to-disc (B/D) or bulge-to- total (B/T ) ratio can be used as a criteria to distin-
guish between galaxy morphology. As we see a connection between IMF slope and B/D ratio
in Figure 3.7, we will use this to further investigate the relationship between IMF slope and
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different types of galaxies in the SF–IMF model. Graham and Worley (2008) derived the dust-
corrected B/D ratio in several bands as derived from observed fluxes as a function of galaxy
type for a set of galaxies with catalogued Hubble type. As these values from Graham and Wor-
ley (2008) are dust-corrected, we use the SAM galaxy magnitudes that are modeled without
dust in the B-band. The SAM outputs the absolute and total magnitude. Using Equation (3.2)
we can convert these into LB,tot and LB,bulge, where LB,�. From this B/T ratio we get B/D
through

B/D =
1

(T/B)− 1
(3.3)

We use the log(B/D) – morphological type classification in the B-band from (Graham and
Worley 2008) to distinguish between spirals (log(B/D) ≤ −0.71), S0s (−0.71 < log(B/D) ≤
−0.46), and ellipticals (log(B/D) > −0.46). The galaxies colour coded by this morphological
division from B/D ratio in the B-band are presented in Figure 3.8. The dashed yellow line is
a fit to the slope of only the elliptical population.

Figure 3.8: The PDMF slope versus stellar mass of model galaxies for the SF–IMF model which are
colour coded based on B/D B−band flux ratio – morphology class distinction from Graham and Worley
(2008) where spirals have log(B/D) ≤ −0.71 (blue), S0s have −0.71 < log(B/D) ≤ −0.46 (green), and
ellipticals have log(B/D) > −0.46 (red). The yellow dashed line is a linear fit to the stellar mass –
PDMF slope relation for only the ellipticals in this sample of model galaxies. Although the galaxies
with the steepest slopes in the SF – IMF model are elliptical galaxies, a fit to the IMF slope – mass
relation of these ellipticals in the SF–IMF model does not reproduce the observed IMF slope – mass
relation in ETGs, it even predicts a decline in IMF slope with increasing mass instead of an increase.
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Figure 3.9: The PDMF slope versus stellar mass of model galaxies for the SF–IMF model which
are colour coded based on B/D B − band flux ratio – morphology class distinction from Graham and
Worley (2008). Only the elliptical (red) and S0 (green) galaxies are shown as these galaxies have the
been observed to have a IMF slope – σ relation that is steeper than in the Milky Way. The SF–IMF
model is not able to reproduce the observed IMF slope – mass relation in ETGs, however, we do find
the galaxies in our SF–IMF model that have the steepest slopes are ellipticals and S0s which indicates
that we could extend our criteria for IMF assignment beyond SF mode to possibly a variation based

on the B/D ratio or morphology of the galaxy.
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Figure 3.9 isolates the ellipticals and S0s from the full sample. The galaxies with the
steepest slopes are ellipticals and S0s, which are expected to have the most stellar contribution
due to starbursts in the SAM (Brennan et al. 2015).

3.2.3 Morph–IMF Model

Figures 3.8 and 3.9 indicate that we could extend our criteria for IMF assignment beyond
SF mode to possibly a variation based on the B/D ratio or morphology of the galaxy. The
B/D ratios represent the formation history of galaxies as bulge dominated galaxies are the
results of mergers and subsequent burst induced star formation whereas discs form through
gravitational collapse and grow through quiescent star formation out of cold gas that falls into
the disc (Brennan et al. 2015). Although, elliptical galaxies can also be the result of the merger
of two spiral galaxies whose stars formed quiescently (Schweizer 1982; Toomre and Toomre
1972). The B/D ratio can thus be seen as an indirect tracer of the environment in which the
bulk of the stars in a galaxy formed. (Dutton et al. 2013) find that strong lensing and gas
kinematics of the bulges of massive spiral galaxies from the SWELLS survey can be best fitted
by stellar population synthesis models with a Saltpeter-like IMF. The disc masses, though less
constrained by lensing and dynamics, are consistent with a Chabrier-like IMF.

We therefore apply a different IMF assignment method based on the present-day location
of stars either in the disc or bulge to the same run of the SAM as described in Section 3.2.1.
Stars that at z = 0 are in the disc were are assigned a Chabrier IMF and those in the bulge a
Salpeter IMF for N24 mass bins ranging from 0.1− 0.8M� following

PDMF [N ]+ =
dm∗(quiscent) fsalp[N ] + dm∗(burst) fchab[N ]

m∗,tot ∗ dm∗ bins[N ]
(3.4)

3.2.3.1 Results

This Morph-IMF model gives the IMF slope-stellar mass relationship in Figures 3.10 and
3.11, colour coded by respectively the mass weighted mean age and the morophological type
based on the B/D-flux ratio in the B-band as before.

As can be seen from Figures 3.10 and 3.11 this IMF assignment method produces a much
steeper IMF slope–stellar mass relation than the SF assignment method though it does not yet
reproduce the offset and slope of the observed relation depicted by the red-dashed line in Figure
3.10 . The yellow-dashed line in Figure 3.11 is a fit to the slope of only the ellipticals in the
sample.
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Figure 3.10: The PDMF slope versus the total stellar mass for z = 0 galaxies from the PST14 SAM
to which the Morph–IMF model is applied; Stars in the bulge of the present-day galaxy in the SAM are
re-assigned a Salpeter IMF and stars in the disc of the present-day galaxy a Chabrier IMF. Only central
galaxies at z = 0 with M∗ > 107 and with a non-zero fraction of stars formed in bursts The galaxies are
colour coded based on mass weighted mean age in Gyr. The red dashed line is the schematic observed
σ–IMF slope relation converted to M∗. This assignment model based on the present-day location of
the stars in a galaxy produces a much steeper IMF slope–stellar mass relation than the SF–IMF model

although it does not yet reproduce the offset and slope of the observed relation.

Figure 3.11: The PDMF slope versus the total stellar mass for z = 0 galaxies from the PST14 SAM
to which the Morph–IMF model is applied which are colour coded based on B/D B − band flux ratio
– morphology class distinction from Graham and Worley (2008) with ellipticals (red), S0s (green) and
spirals (blue). The yellow dashed line is a linear fit to the stellar mass – PDMF slope relation for only
the ellipticals in this sample of model galaxies. The IMF slope – stellar mass relation for the ellipticals
does not yet reproduce the steepness of the observed Spiniello et al. (2014) relation but does reproduce

this relation much better than the SF–IMF model.
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3.3 Porter+14: Method & Results

We now apply the SF-IMF and Morph-IMF method to the Porter+14 model. This model
provides information on the structural parameters of the spheroid which facilitates comparison
of the PDMFs derived from the model with the observed IMF- σ relation, Moreover, unlike the
PST14 SAM, it allows for spheroidal growth due to DI when stars and old gas and are moved
from the disc to the spheroid to create marginal stability. This cold gas will subsequently be
used the form stars in a starburst. This better models the physics and morphological formation
histories that we are probing with the SF-IMF and Morph-IMF methods.

3.3.1 Specifications

The Porter+14 version uses merger trees from the Bolshoi N-body DM simulation (Klypin
et al. 2011), (Trujillo-Gomez et al. 2011) which were generated via the ROCKSTAR method
developed by (Behroozi et al. 2014). The simulation follows halos down to Vcirc = 50 km/s or
correspondingly Mvir ≈ 2 × 1010M� . The force resolution (i.e. smallest cell size) is 1h−1 kpc
and the mass resolution (i.e. one particle mass) 1.9 × 108M� per particle. The full Bolshoi
simulation follows ∼ 8.6 × 109 particles in a box with sides of 250 Mpc h−1. The cosmological
parameters are the same as for the PST14 model as described in Section 3.2.1.

3.3.2 SF–IMF Model & Morph–IMF Model for 4 Merger Trees

We apply the SF–IMF method of Equation 3.1 to the complete merger histories for halos in
four (50Mpc h−1)3 subvolumes of the Bolshoi simulation (treefiles). We use the tree files without
subhaloes because the SAM already tracks the evolution, so merging and tidal stripping and
destruction, of subhalos semi-analytically (Somerville et al. 2008). This results in Figure 3.12.
Applying the Morph–IMF method to the same subset of tree files results in Figure 3.13. As for
the results in Section 3.2 we only selected the central galaxies that have a stellar mass above
107 M� at z = 0 and have a non-zero stellar contribution that formed in bursts. We first apply
the SF–IMF and Morph–IMF model to only four tree files in the Porter+14 model to determine
whether and how the results differ from the same models applied in PST14. In Section 3.3.3,
we will apply the same two models to a larger set of tree files in the Porter+14 model and
apply more exclusive filtering criteria for ETGs to better compare the model results with the
observations.
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Figure 3.12: The PDMF slope versus the total stellar mass for z = 0 galaxies for four (50Mpc h−1)3

subvolumes of the Bolshoi simulation in the Porter+14 SAM to which the SF–IMF model is applied. The
Porter+14 model can provide structural parameters such as σ for galaxies and models disc instabilities
and subsequent spheroid growth due to migration of stars and gas and star bursts . Only central galaxies
at z = 0 with M∗ > 107 and with a non-zero fraction of stars formed in bursts are presented. The
galaxies are colour coded based on mass weighted mean age in Gyr. The red dashed line is the schematic
observed σ–IMF slope relation converted to M∗. The SF–IMF model applied to the Porter+14 SAM
creates a slightly steeper slope than when applied to PST14 because the burst star formation mode

occurs more often as burst-mode star formation after disc instabilities is also taken into account.

Figure 3.13: The PDMF slope versus the total stellar mass for z = 0 galaxies for four (50Mpc h−1)3

subvolumes of the Bolshoi simulation in the Porter+14 SAM to which the Morph–IMF model is applied.
Only central galaxies at z = 0 with M∗ > 107 and with a non-zero fraction of stars formed in bursts are
presented. The galaxies are colour coded based on mass weighted mean age in Gyr. The red dashed
line is the schematic observed σ–IMF slope relation converted to M∗. The Morph–IMF model applied
to Porter+14 model reproduces the steepness of the observed slope, though not the offset, much better

than the SF–IMF model or than when applied to the PST14 SAM.



Chapter 3. Models I and II: Star Formation Mode and Morphology Linked to IMF 43

Using the Porter+14 SAM which outputs the σbulge of each galaxy we can get the PDMF
slope as a function of σbulge in Figures 3.14 and 3.15 for the SF–IMF and Morph-IMF model
respectively. These can be directly compared with the observed IMF–σ relation from (Spiniello
et al. 2014) (red line).

Figure 3.14: The PDMF slope versus the σbulge for z = 0 galaxies for four (50Mpc h−1)3 subvolumes
of the Bolshoi simulation in the Porter+14 SAM to which the SF–IMF model is applied. Only central
galaxies at z = 0 with M∗ > 107 and with a non-zero fraction of stars formed in bursts are presented.
The galaxies are colour coded based on mass weighted mean age in Gyr. The red line is the observed
σ–IMF slope relation from Spiniello et al. (2014). The SF–IMF model does not reproduce the steepness

of the σ–IMF slope relation.

The SF–IMF model applied to Porter+14 in Figure 3.12 reproduces a slightly steeper
PDMF slope in the high mass end than the same model applied to PST14 in 3.1. The Porter+14
model creates a slightly steeper slope than PST14 because the burst star formation mode occurs
more often; It is not only induced after mergers as in PST14 but also after gas migrates from
the disc to the spheroid to balance disk instabilities. The SF-IMF model applied to Porter+14
model, however, is still not able to reproduce the observed relation. The Morph–IMF model
applied to Porter+14 model in Figure 3.13 reproduces the steepness of the observed slope,
though not the offset, much better than the SF–IMF model, as it did when when applied to
PST14 in Figure 3.10. The model thus does not generate enough of the highest mass galaxies
with a steep slope to reproduce the offset of the observed IMF slope – galaxy mass relation.

Similarly, the σbulge–PDMF slope relation of the Morph–IMF model in Figure 3.15 is much
steeper than of the SF-IMF model in Figure 3.14. This correspondence between the σbulge–
PDMF slope and M∗–PDMF slope relation is expected as σ is known from observations to
roughly scale as a power law with M∗ (Faber and Jackson 1976).

In Figures 3.16 and 3.17 we separate the morphological classes of the z = 0 galaxies using
the B/D flux ratio in the B-band as described above. However, the Porter+14 model outputs
the magnitudes in the Gunn g′ and r′-band, so we convert these values to the Johnson B-band
using the corresponding filter transformations from Windhorst et al. (1991). The yellow line is a
linear fit to the PDMFs slope as a function of the galaxy’s total stellar mass of only the elliptical
galaxies (red dots). We see that the galaxies with the steepest slope are the ones classified as
ellipticals, as in the results for the PST14 version of the SAM.
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Figure 3.15: The PDMF slope versus the σbulge for z = 0 galaxies for four (50Mpc h−1)3 subvolumes
of the Bolshoi simulation in the Porter+14 SAM to which the Morp–IMF model is applied. Only central
galaxies at z = 0 with M∗ > 107 and with a non-zero fraction of stars formed in bursts are presented.
The galaxies are colour coded based on mass weighted mean age in Gyr. The red line is the observed
σ–IMF slope relation from Spiniello et al. (2014). The SF–IMF model does not reproduce the offset of
the observed σ–IMF sloped relation but it does reproduce the steepness much better than the SF–IMF
model. This result is similar to the PDMF slope – stellar mass relation from the Morph–IMF model as
σ is known from observations to roughly scale as a power law with M∗ (Faber and Jackson 1976).

Figure 3.16: The PDMF slope versus the total stellar mass for z = 0 galaxies for four (50Mpc h−1)3

subvolumes of the Bolshoi simulation in the Porter+14 SAM to which the SF–IMF model is applied
which are colour coded based on B/D B− band flux ratio – morphology class distinction from Graham
and Worley (2008) with ellipticals (red), S0s (green) and spirals (blue). The yellow line is a linear
fit to the stellar mass – PDMF slope relation for only the ellipticals in this sample of model galaxies.
Galaxies with the steepest slope are the ones classified as ellipticals although the fit to the stellar mass

– PDMF slope relation of the ellipticals does not reproduce the steepness of the observed relation.

3.3.2.1 Updated Selection Criteria Galaxies: Observed ETGs

We apply a further filter to the galaxies to match the selection criteria of the observational
relation for ETGs from Spiniello et al. (2014) we compare our results to as much as possible. We
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Figure 3.17: The PDMF slope versus the total stellar mass for z = 0 galaxies for four (50Mpc h−1)3

subvolumes of the Bolshoi simulation in the Porter+14 SAM to which the Morph–IMF model is applied
which are colour coded based on B/D flux ratio – morphology class distinction from Graham and
Worley (2008) with ellipticals (red), S0s (green) and spirals (blue). The yellow line is a linear fit to the
stellar mass – PDMF slope relation for only the ellipticals in this sample of model galaxies. Galaxies
with the steepest slope are the ones classified as ellipticals although the fit to the stellar mass – PDMF

slope relation of the ellipticals does not reproduce the steepness of the observed relation.

select only central galaxies with large stellar masses of log(M∗/M�) > 9.5 as this is where most
of the ellipticals reside in Figures 3.16 and 3.17. We select galaxies with a velocity dispersion
of 150 ≤ σ [km s−1] ≤ 310 and a low star formation rate of SFR < 0.3 M� yr−1 as in (Spiniello
et al. 2014). Finally, we only use galaxies with a stellar mass bulge-to-total ratio of B/T > 0.5
to select spheroid-dominated early type galaxies as in (Porter et al. 2014b).

Applying this filter to the galaxies in the same four subvolumes as above leads to Figures
3.18 and 3.19. These selection criteria exclude more galaxies from our sample than the criteria
used before as can be seen from comparison with Figures 3.14 and 3.15.

Please note that from here onwards, the vertical axis on all figures which shows the low-
mass PDMF slope x has been inverted. We fit the PDMF slope resulting from our models using
y = a×x+b, where a gives the slope which will be a negative number as can be seen from Figure
3.4. However, our model defines the power-law coefficient of the input Salpter and low-mass
Chabrier IMF as x = −1.35 and y = 1.3 respectively instead of as x = 1.35 as in Spiniello et al.
(2014).Therefore the values of the resulting PDMF slope are inverted, so multiplied by −1, to
have the y-axis of our results present the slope in the same manner as Spiniello et al. (2014).
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Figure 3.18: The PDMF slope versus the total stellar mass for z = 0 galaxies for four (50Mpc h−1)3

subvolumes of the Bolshoi simulation in the Porter+14 SAM to which the SF–IMF model is applied
filtered to match the selection criteria of the observational relation for ETGs from Spiniello et al.
(2014) we compare our results to as much as possible selecting only central galaxies at z = 0 with
log(M∗/M�) > 9.5 , 150 ≤ σ [km s−1] ≤ 310, SFR < 0.3 M� yr−1, and B/T > 0.5, stellar mass
bulge-to-total ratio. These selection criteria exclude more galaxies from our sample than the criteria

used before as can be seen from comparison with Figure 3.14.

Figure 3.19: The PDMF slope versus the total stellar mass for z = 0 galaxies for four (50Mpc h−1)3

subvolumes of the Bolshoi simulation in the Porter+14 SAM to which the Morph–IMF model is applied
filtered to match the selection criteria of the observational relation for ETGs from Spiniello et al.
(2014) we compare our results to as much as possible selecting only central galaxies at z = 0 with
log(M∗/M�) > 9.5 , 150 ≤ σ [km s−1] ≤ 310, SFR < 0.3 M� yr−1, and B/T > 0.5, stellar mass

bulge-to-total ratio.

3.3.3 SF–IMF Model & Morph–IMF Model for 21 Merger Trees

We now apply the SF–IMF and Morph–IMF model to this galaxy selection to galaxies in
21 subvolumes of (50Mpc h−1)3 of the Bolshoi simulation to get more model points in figures
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3.20 and 3.21 respectively.

Figure 3.20: The PDMF slope versus the σbulge for galaxies in 21 (50Mpc h−1)3 subvolumes of the
Bolshoi simulation in the Porter+14 SAM to which the SF–IMF model is applied. These galaxies are
selected to match the selection criteria of ETGs by Spiniello et al. (2014) following Section 3.3.2.1. The
yellow line gives the linear fit to the PDMF slope of the model galaxies. The red line is the observed
Spiniello et al. (2014) relation. The SF–IMF model only reproduces the observed σ–IMF slope relation

for the lowest σ galaxies

Figure 3.21: The PDMF slope versus the σbulge for galaxies in 21 (50Mpc h−1)3 subvolumes of the
Bolshoi simulation in the Porter+14 SAM to which the Morph–IMF model is applied. These galaxies
are selected to match the selection criteria of ETGs by Spiniello et al. (2014) following Section 3.3.2.1.
The yellow line gives the linear fit to the PDMF slope of the model galaxies. The red line is the observed
Spiniello et al. (2014) relation. The Morph–IMF model only reproduces the observed relation for the
intermediate σ galaxies, over the full σ range it does not reproduce the observed slope of the σ–IMF

slope relation.
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The yellow line in Figures 3.20 and 3.21 is the fit to the PDMF of the model galaxies; the
red line in Figures 3.20 and 3.21 is the observed Spiniello relation. For the SF–IMF model this
fit is given by

x = −0.36(±0.04) + 0.52(±0.02)× log(σ) (3.5)

For the Morph–IMF model this fit is given by

x = 0.57(±0.03) + 0.28(±0.01)× log(σ) (3.6)

The red line is the observed Spiniello et al. (2014) relation

x = 1.13(±0.15) + 2.3(±0.1)× log σ200 (3.7)

Note that we have modified the Spiniello et al. (2014) relation such that it describes the mass
function parametrised as dN/d logM rather than dN/dM as it does in the original paper.

Spiniello et al. (2014) found this relation by fitting the mean PDMF slope of the observed
galaxies in the five σ bins in Table 3.1. Therefore, we also bin the PDMF slope of the model
galaxies in the same σ bins and the determine the mean and standard deviation of the PDMF
slope in each bin. These results are presented in Figures 3.22 and 3.23

Table 3.1: The five velocity dispersion bins of the SDSS galaxies in (Spiniello et al. 2014). We will
bin the model galaxies using these velocity bins to directly compare the binned σ– IMF slope relation

from the model to the observed relation.

SDSS σ∗[km s−1]

150 ± 20
190 ± 20
230 ± 20
270 ± 20
310 ± 20
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Figure 3.22: The binned PDMF slope versus the σbulge for ETGs in 21 treefiles in the Porter+14
SAM for the SF–IMF model (yellow), binned in the same five σ bins as the Spiniello et al. (2014)
observational data (red). The SF–IMF model is able to reproduce the observed IMF–σ relation in the

lowest σ bin(s).

Figure 3.23: The binned PDMF slope versus the σbulge for ETGs in 21 treefiles in the Porter+14
SAM for the Morph–IMF model (yellow), binned in the same five σ bins as the Spiniello et al. (2014)
observational data (red). The Morph–IMF model is able to reproduce the observed IMF–σ relation in
the higher mass galaxies within the error bars of the observational data. It first the observed relation

best in the intermediate σ bin.

We see that the SF–IMF model is able to reproduce the observed IMF–σ relation in the
lowest σ galaxies from Figures 3.20 and 3.22. The Morph–IMF model in Figures 3.21 and 3.23,
on the other hand, is able to reproduce the observed IMF–σ relation in the higher mass galaxies
within the error bars of the observational data.
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3.3.3.1 SF–IMF Model & Morph–IMF Model for Power-Law Slope x = 1.85

We investigate for which input power-law slope assigned to stars formed in bursts the
SF–IMF model is able to reproduce the observed relation. We assign an input power-law IMF
coefficient of x = 1.85 instead of the Salpeter coefficient 1.35 in Figures 3.24 and 3.25. The red
line is the observed Spiniello et al. (2014) relation from Equation (3.7), to be compared with
the yellow line in Figure 3.24 which is a fit to the slope of the model galaxies given by

x = −0.65(±0.07) + 0.79(±0.03)× log(σ) (3.8)

With a slightly steeper power law slope of 1.85 instead of the Salpeter coefficient of 1.35,
the SF–IMF model is able to reproduce the observed IMF slope–σ relation, at least in the three
central σ bins, in Figures 3.24 and 3.25. However, such a steep power-law slope has not been
observed, at least not in field stars below 1M� (e.g. see Figure 8 in (Benson 2010)), and is also
steeper than observed in ETGs by Spiniello et al. (2014) although it has been observed in ETGs
by Ferreras et al. (2013) and LaBarbera et al. (2013).

For comparison, assigning this input power-law slope of 1.85 to present-day bulge stars in
the Morph–IMF model will provide PDMF slopes much higher than observed in Figures 3.26
and 3.27. The red line is the observed Spiniello et al. (2014) relation from Equation (3.7), to
be compared with the yellow line in Figure 3.26 which is a fit to the slope of the model galaxies
given by

x = 0.88(±0.04) + 0.35(±0.02)× log(σ) (3.9)

Figure 3.24: The PDMF slope versus the σbulge for ETGs in 21 treefiles in the Porter+14 SAM for the
SF–IMF model with the input power-law coefficient for the Salpeter IMF x = 1.85 instead of x = 1.35
that is assigned to burst-mode star formation in the SF–IMF mode. The yellow line gives the linear fit
to the PDMF slope of the model galaxies. The red line is the observed Spiniello et al. (2014) relation.
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Figure 3.25: The binned PDMF slope versus the σbulge for ETGs in 21 treefiles in the Porter+14
SAM for the SF–IMF model (yellow) with the input power-law coefficient for the Salpeter IMF x = 1.85
instead of x = 1.35 that is assigned to burst-mode star formation in the SF–IMF mode. The results
are binned in the same five σ bins as the Spiniello et al. (2014) observational data (red). The SF–IMF
model is able to reproduce the observed IMF slope–σ relation, at least in the three central σ bins, with

this increased input power-law coefficient for the IMF re-assigned to burst-mode star formation.

Figure 3.26: The PDMF slope versus the σbulge for ETGs in 21 treefiles in the Porter+14 SAM for
the Morph–IMF model with the input power-law coefficient for the Salpeter IMF x = 1.85 instead of
x = 1.35 that is assigned to present-day bulge stars of a galaxy in the Morph–IMF mode. The yellow
line gives the linear fit to the PDMF slope of the model galaxies. The red line is the observed Spiniello

et al. (2014) relation.
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Figure 3.27: The binned PDMF slope versus the σbulge for ETGs in 21 treefiles in the Porter+14
SAM for the Morph–IMF model (yellow) with the input power-law coefficient for the Salpeter IMF
x = 1.85 instead of x = 1.35 that is assigned to present-day bulge stars of a galaxy in the Morph–IMF
mode. The results are binned in the same five σ bins as the Spiniello et al. (2014) observational data
(red). Increasing the input power-law coefficient in of the IMF re-assigned to present-day bulge stars,

generates PDMF slopes much higher than observed in the Morph–IMF model.
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3.3.3.2 Selecting Speroid-Dominated Early Type Galaxies

We do not use the B/D flux ratio to distinguish between morphological types that was
used earlier. Instead, in the above sampling of our model galaxies from the Porter+14 model, we
have chosen to use a stellar mass B/T criterion of B/T > 0.5 to select spheroid-dominated early
type galaxies. Cheng et al. (2011) found that a sample of passive, red sequence SDSS galaxies
selected with this criterion may include a significant fraction of disc-dominated passive S0 and
Sa galaxies. In other literature/research there is wide range in B/T value used to select early
type galaxies. Shen et al. (2003) use B/T > 0.2 to define early type galaxies whereas others
adopt higher cut-off values ranging from B/T ∼ 0.5 − 0.7 (Shankar et al. 2013; Wilman et al.
2013). Gadotti (2009) found that B/T corresponds more tightly with concentration index in the
r-band cr ≡ r90/r50 than with Sérsic index after analysing 1000 SDSS galaxies with bulge-disk
decomposition. A B/T of 0.2 is found to correspond to a cr of 2.86 by Guo et al. (2011). Cheng
et al. (2011) show that galaxies selected with cr > 2.9 have a high population of visible bulges
with B/T > 0.5 but also contains a population of galaxies with 0.2 < B/T < 0.5. We check
the concentration index in the r-band of the selected SDSS galaxies of Spiniello et al. (2014) to
determine which B/T we should use for the most consistent comparison of observational and
model data. We do this for the galaxies in the four highest velocity dispersion bins Spiniello et al.
(2014) used, with outer edges ranging from 170 − 330 km s−1. We retrieve the concentration
index for these galaxies from SDSS database using the following criteria in CasJobs:

SELECT s.specobjid , s.plate , s.mjd , s.fiberid , s.veldisp , s.veldisperr ,

p.petroR50_r ,p.petroR90_r

FROM MyDB.chiarpart AS m

JOIN SpecObjAll AS s ON (s.plate$=$m.plate AND s.mjd$=$m.mjd AND s.fiberID$=$m.fiber)

JOIN PhotoTag AS p ON (s.specobjid$=$p.specobjid)
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Figure 3.28: A histogram of the concentration index cr ≡ r90/r50 values of the observed galaxies in
the four highest σ bins from Spiniello et al. (2014). cr can be related to B/T . The histogram shows
that the most of the observed galaxies by Spiniello et al. (2014) have a cr > 3.0 which most likely
correspond to a B/T > 0.5 but could still be contaminated with some galaxies of 0.2 < B/T < 0.5

(Cheng et al. 2011).
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Figure 3.29: A binned plot containing the mean and standard deviation of the concentration index
cr ≡ r90/r50 values of the observed galaxies in the four highest σ bins from Spiniello et al. (2014). cr
can be related to B/T . This binned plot, like the histogram in Figure 3.28 shows that the most of the
observed galaxies by Spiniello et al. (2014) have a cr > 3.0 and that the mean cr and thus B/T ratio

increases with σ.
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The histogram and binned plot in Figures 3.28 and 3.29 respectively show that the majority
of the concentration indices of the SDSS galaxies selected by Spiniello et al. (2014) lie above
3.0 so are expected to correspond mainly to a B/T > 0.5. However, Cheng et al. (2011) found
that galaxies selected with cr > 2.9 could contain some galaxies with 0.2 < B/T < 0.5. We
therefore test extending the selection criteria of ETGs in our SAM output down to stellar mass
B/T ratio of 0.3 and 0.2 in Figures 3.30 and 3.31. Extending the B/T ratio downward gives a
larger spread of a couple of tenths in PDMF slope per bin, with the largest increase in standard
deviation in the lowest σ bin. This is because a lower B/T criterion includes more galaxies
with a wider variety in morphological (B/T) types and thus a wider variety in (star) formation
histories. We choose to continue to the selection criterion B/T > 0.5 in the remainder of this
thesis unless stated otherwise, as the mean cr of the Spiniello data lies above 3.2, and well above
2.9, and as decreasing the B/T to 0.2 only changes the PDMF slope by a couple of tenths at
most.

Figure 3.30: The binned PDMF slope versus the σbulge for ETGs in 21 treefiles in the Porter+14 SAM
for the SF–IMF model selected with B/T > 0.2 (blue), B/T > 0.3 (green), and B/T > 0.5 (yellow)
to check how an extension of our ETG morphological selection criteria will affect the PDMF slope–σ
relation. These results are binned in the same five σ bins as the Spiniello et al. (2014) observational

data (red) Decreasing the B/T to 0.2 only changes the PDMF slope by a couple of tenths at most.
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Figure 3.31: The binned PDMF slope versus the σbulge for ETGs in 21 treefiles in the Porter+14 SAM
for the Morph–IMF model selected with B/T > 0.2 (blue), B/T > 0.3 (green), and B/T > 0.5 (yellow)
to check how an extension of our ETG morphological selection criteria will affect the PDMF slope–σ
relation. These results are binned in the same five σ bins as the Spiniello et al. (2014) observational

data (red) Decreasing the B/T to 0.2 only changes the PDMF slope by a couple of tenths at most.
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3.4 Conclusion and Discussion

We applied the physically motivated SF–IMF model which ties a Salpeter shape to stars
formed in bursts and a Chabrier shape to stars formed quiescently in the ETGs to two versions
of the ’Santa Cruz’ SAM, PST14 (see Figure 3.1) and Porter+14 (see Figures 3.20 and 3.22).
This SF–IMF model is unable to reproduce the observed low-mass PDMF slope of the most
massive ETGs in both versions of the SAM.

Starbursts in the SAMs occur after mergers with mass ratios above 1 : 10 and after gas
is moved from the disc to the spheroid to balance disc instabilities in the Porter+14 model.
However, burst mode star formation only makes up a small portion of the stellar mass in the
large galaxies in our model. The stellar mass contribution through bursts in thee high mass
galaxies is in most cases still a small fraction of the total stellar mass, as can be seen from
Figures 3.4b and 3.4c. Moreover, Robaina et al. (2009) have shown by combining observations
and hydrodynamical simulations that less than 10% of star formation between 0.4 ≤ z ≤ 0.8 is
directly triggered by mergers and instabilities. Therefore the conditions for assigning a Salpeter
slope to a stellar population need to be extended beyond stars formed in bursts to steepen the
final PDMF slope to the one observed in local ETGs.

We applied the Morph–IMF model which ties the shape of the IMF to the present-day
location of stars, either in the disc or bulge, in ETGs from both versions of the SAM, i.e.
PST14 (see Figure 3.10) and Porter+14 (see Figures 3.21 and 3.23). The Morph–IMF model is
not directly physically motivated but is motivated by the observed IMF slope distinction in discs
and bulges of SWELLS galaxies and by the B/D-flux ratio of the galaxies with the steepest
slopes from the SF–IMF model. The galaxies with the steepest slope derived from this model
were also the ones with the highest B/D ratio which indirectly traces the formation history of
the galaxy. We therefore tie a Salpeter shape to stars in the spheroid and a Chabrier shape
to stars in the disc of the present-day galaxy ETGs from the SAM. In the high-mass end this
method is able to reproduce the observed σ-IMF relation in local ETGs within the error bars
of the observational data. In our two models, the present day location of the stars, in either
the disc or spheroid, thus has a larger effect on the steepness of the final PDMF slope than
the manner in which these stars formed, either in bursts or quiescently. However, as we select
ETGs in our model to have a high B/T > 0.5 ratio, these galaxies will by selection end up with
relatively steep PDMF slopes in the Morph–IMF model.

Bulges in our SAM grow through mergers and subsequent triggered star burst episodes
and through the migration of stars and gas from the disc to the bulge and subsequent star
burst episodes after disk instabilities in the Porter+14 model. As burst star formation only
contributes a fraction of the total stellar component, the Morph–IMF model is more successful
due to the formation history of stars currently residing in spheroids of ETGs. Brennan et al.
(2015) show that high mass bulge dominated galaxies in the ‘Santa Cruz’ SAM we use often
form through at least one major merger (< 1 : 3) early on and subsequent multiple minor
mergers and disk instabilities which form the dominant spheroidal component. The present-day
bulge stars thus most likely formed in discs at higher redshift and moved to the spheroid after
a merger or a disk instability to eventually form a current ETG. The higher mass galaxies on
average formed their stars earlier than galaxies in the lower-mass bins; see for instance the
mass weighted mean age colour coding in Figure 3.21. The process in which more massive
galaxies form most of their stars at higher redshifts, galactic downsizing, is observed in red
sequence high σ galaxies at low redshifts Nelan et al. (2005) and predicted in massive ETGs in
the ‘Santa Cruz’ SAM (Trager and Somerville 2009). The majority of the stars in the bulges of
the highest mass galaxies thus most likely formed at high redshift discs in turbulent gas when
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average temperature and gas density was higher. The SFR of quiescent mode star formation in
the SAM scales with this surface density of cold gas in the disc following Kennicutt (1998) and
most of the major merger(s) will have happened early in the lifetime of a currently quiescent
spheroid-dominated SAM galaxy following Brennan et al. (2015) so a time dependence of the
IMF slope will affect the turn-over mass in both modes of star formation. In Chapter 4 we
will therefore investigate the possibility that IMF slope varies with the time at which the stars
formed such that the highest mass galaxies with on average the oldest stellar populations will
end up with the steepest PDMF slope.



Chapter 4
Model III: σ linked to IMF in post-processing
and in SAM

We this chapter we test two empirically motivated models that assigns (a variation of) the
observed σ–IMF slope relation to stars formed in the SAM to further investigate what shapes
this relation. We tie a power-law IMF following the observed σ–IMF slope relation to stars
formed based on the time at which they formed and the average σ of galaxies in the SAM
at that time; the σ–〈t〉–IMF Model which is implemented in post-processing. Next, we tie a
power-law IMF following the observed σ–IMF slope relation to stars formed based on the σ
of their “host” galaxy at the time of star formation; the σ–IMF model which is implemented
within the Porter+14 SAM, although not self-consistently.

4.1 σ–〈t〉–IMF Model

4.1.1 Method

In Chapter 3 we saw that assigning an IMF-shape to stars based on the present-day location
of stars was able to reproduce the the σ-IMF slope relation in ETGs within the error bars of
this relation in the high-mass end. In the low-mass end the model deviated from the observed
slope. The high mass galaxies on average formed their stars early on in the universe when the
gas was more turbulent than galaxies in lower mass bins. This could indicate that the low-mass
IMF slope varies with the redshift at the time stars formed. So instead of using a Chabrier and
a Salpeter IMF for different conditions we will now assign a single power-law IMF slope to a
set of stars formed that varies with the time at which they formed, the σ–〈t〉–IMF model.

We first apply the σ–〈t〉–IMF model in post-processing (from here on 〈t〉–IMF model) to
a run of the Porter+14 version of the SAM with the specifications as given Section 3.3.1. We
run this SAM for galaxies in 21 subvolumes of (50Mpc h−1)3 of the Bolshoi simulation. The
SAM outputs the stars formed in both the bulge and disk per galaxy at a pre-set 195 ages tout
from 13.75 − 0 Gyr in 25 metallicity bins. We get the total stellar mass per age by adding
the stars formed in both the bulge and the disk in each bin. We only do this for the galaxies
filtered on ETG properties so central galaxies with log(M∗/M�) > 9.5, 150 ≤ σ [km s−1] ≤ 310,

60
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SFR < 0.3 M� yr−1 and B/T > 0.2 (instead of B/T > 0.5 as in Section 3.3 though it only
make a slight difference as can be seen in Figure 3.31).

I We know the relation between IMF slope and σ from the Spiniello relation

x = 2.3 log(σ200) + 1.13 (4.1)

II We know the mass weighted mean age 〈t〉 and σ of each z = 0 galaxy from the SAM.

By combining the observed relation with these two galaxy properties from the SAM we get
the log〈t〉–x relation in Figure 4.1. The IMF slope on the x-axis is found by plugging the σ of
the galaxies found from the SAM into the Spiniello relation from Equation (4.1). The y-axis is
the corresponding mean age of these galaxies.

Figure 4.1: The log〈t〉–x relation for ETGs in found by combining the 〈t〉– σ relation found from the
properties of the galaxies in the SAM and the observed σ–x relation from (Spiniello et al. 2014).The
linear fit to the mean of his relation in each bin will be used as to assign a slope x to the stars formed

per output age tout for galaxies in the SAM.

We bin the IMF slopes into bins with left and right most edge in the range 0.8− 1.6 with
a width of 0.05, giving 16 bin centers. We apply a linear fit y = a+ b x to the mean in each bin
(red line in Figure 4.1). This gives us an expression to relate 〈t〉 to x:

log〈t〉 = a+ b x (4.2)

where the fit gives a = 0.0768 and b = 0.923

We can use this relation to find the x corresponding to each of the 195 output ages tout:

tout = 0.0768 + 0.923 x (4.3)

The tout–x relation we get from the fit in Figure 4.1 is only based on a small range of log〈t〉
and corresponding x as we selected ETGs from the SAM that were used to make this fit that
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have by nature a relatively high mean age that does not cover the entire possible age spectrum.
We therefore choose to fix Equation 4.4 below x = 0.8 such that log(tout)(x < 0.8) = 0.985.
The relation in Equation 4.3 then becomes

tout =

{
0.0768 + 0.923 x if x ≥ 0.8

0.985 if x < 0.8
(4.4)

We know how many stars were formed per galaxy for 195 different ages. For each of these
ages we have the power-law slope x with which they formed using Equation 4.4. For each of
these ages with corresponding x we can now determine the the fraction of stellar mass in each
mass bin, [i] from 0.1 − 0.8 M� as described in Section 2.2.4. For each x, so at each tout, we
determine the corresponding fractional stellar mass array ftx using

ftx [i] =
C

1− x
(bins[i]1−x − bins[i+ 1]1−x) (4.5)

where the normalisation constant C is determined for each x following

C =
1− x

M1−x
l −M1−x

u
(4.6)

We now have at each output age tout an array which represent the normalised fraction of
mass in stars in the range 0.1−0.8 M� for the power-law slope x corresponding to that tout. For
each selected ETG we know the amount of stars ∆m∗,t that formed between two output ages.
These stellar masses are output without taking into account stellar mass loss due to massive
stars as is done in the rest of the SAM. So we multiply the mass of the stars formed in each
time step with (1− frecycle), where frecycle = 0.43, to determine the fraction of mass in stars at
each time step that is left today. Now for each galaxy we can additively populate the PDMF
array at each of the 195 time steps using:

PDMF1[N ] =
t=0∑

t=13.75

∆m∗,t (1− frecycle) ftx[N ]t (4.7)

which is normalised and put in the right format at t = 0 using

PDMF [N ] =
PDMF1[N ]

m∗,tot dm∗ bins[N ]
(4.8)

where

m∗,tot =
t=0∑

t=13.75

∆m∗,t (1− frecycle) (4.9)

For each galaxy a linear fit is applied to the log of this PDMF [N ] as described in Section
2.3, which gives us the σ–x relation for the model galaxies at z = 0.
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4.1.2 Results

The σ–PDMF slope relation from the 〈t〉 –IMF model for the ETGs of the SAM is shown
in Figure 4.2. In Figure 4.3 we bin these results as before following Table 3.1 to best compare
them with the observed Spiniello relation.

Figure 4.2: The σ–PDMF slope relation from the 〈t〉 –IMF model for the ETGs in the Porter+14
SAM. This model assigns a power-law slope to a set of stars based on the 〈t〉 and σ at which they
formed. The red line is the observed σ–IMF slope relation from Spiniello et al. (2014) and the green
line is a linear fit to the PDMF slope of the model galaxies. This model is able to reproduce some
gradient in IMF slope with increasing σ but it does not fully reproduce the offset or steepness of the

observed relation, especially for the lower σ galaxies.

Figure 4.3: The binned σ–PDMF slope relation from the 〈t〉 –IMF model for the ETGs in the
Porter+14 SAM. This model assigns a power-law slope to a set of stars based on the 〈t〉 and σ at which
they formed.This method is only able to reproduce the observed relation in the highest σ bin. In the

lower σ bins the final PDMF slope is higher than the errorbars of the observed relation.
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This method is only able to reproduce the observed relation in the highest σ bin. In the
lower σ bins the final PDMF slope is higher than the (errorbars of) the observed relation. The
IMF we assign to stars formed at each t thus appears to be too high. We will therefore test
how using the top of the scatter in the log〈t〉−−x relation as an input IMF slope will affect the
results. A fit to this upper limit will provide an input power-law IMF with a lower slope x at
a higher 〈t〉 than when the same fit is applied to the mean which should bring the final PDMF
slope down as well.

We determine the log〈t〉–x relation from Equation 4.2 for the upper limit of the scatter in
the log〈t〉–x plot. We do the same for the lower limit of the scatter for comparison. We therefore
fit the mean plus the standard deviation and the mean minus the standard deviation, so the
upper and lower limits of the error bars in Figure 4.1, to get the two corresponding relations
for tout–x. We apply the same routine as before to determine the PDMF slope–σ relation at
z = 0. The resulting PDMF slope–σ relation for the input IMF determined from the mean plus
the standard deviation is presented in Figures 4.4 and 4.5 and for the mean minus the standard
deviation in Figures 4.6 and 4.7.

Figure 4.4: The σ–PDMF slope relation from the 〈t〉 –IMF model for the ETGs in the Porter+14
SAM, using an input IMF determined from the mean plus the standard deviation of the 〈t〉–x relation.
The red line is the observed σ–IMF slope relation from Spiniello et al. (2014) and the green line is
a linear fit to the PDMF slope of the model galaxies. This input relation brings the overall σ–IMF
slope relation from the model down such that it fits the offset, although not fully the steepness, of the

observed relation better.
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Figure 4.5: The binned σ–PDMF slope relation from the 〈t〉 –IMF model for the ETGs in the
Porter+14 SAM with the mean plus the standard deviation of the 〈t〉–x relation as input tout–x relation.
This model reproduces the observed slope in the high σ bins well, and comes closer to the slope in the
low σ bins than when using the mean of the log〈t〉 − x relation as an input IMF but it does not yet

reproduce the correct slope in these lower mass bins.

Figure 4.6: The σ–PDMF slope relation from the 〈t〉 –IMF model for the ETGs in the Porter+14
SAM, using an input IMF determined from the mean minus the standard deviation of the 〈t〉–x relation.
The red line is the observed σ–IMF slope relation from Spiniello et al. (2014) and the green line is a
linear fit to the PDMF slope of the model galaxies. To illustrate how a change in input tout–x relation
relation in this model affects the PDMF slope. As expected a higher input power-law slope at a lower

〈t〉 increases the resulting PDMF to steeper than the observed values per σ of the galaxy.

This method of varying the slope if the IMF assigned to a set of stars with the time at
which they formed is only able to reproduce the observed relation in the high mass end when
using the mean of the log〈t〉–x relation as an input IMF (see Figure 4.3). Using the upper limits
of the error bars (see Figure 4.5 as input IMF brings the PDMF slope down over the entire σ
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Figure 4.7: The binned σ–PDMF slope relation from the 〈t〉 –IMF model for the ETGs in the
Porter+14 SAM with the mean minus the standard deviation of the 〈t〉–x relation as input tout–x
relation. As expected a higher input power-law slope at a lower 〈t〉 increases the resulting PDMF to

steeper than the observed values per σ bin.

range and is therefore also able to reproduce the observed relation in the intermediate σ bins
as well. However, like the Morph–IMF model, neither implementation of the 〈t〉–IMF model
reproduces the observed IMF slope for the lower mass galaxies in the lower σ bins.

4.2 σ–IMF Model in SAM

The SF–IMF model is only able to reproduce the low end of the observed σ–x relation,
the Morph–IMF Model the high and intermediate relation, and the 〈t〉–IMF model only the
intermediate bins. However, none of these models is able to reproduce the steepness of the
Spiniello relation over full σ range. One of the problems in reproducing the slope for lower
mass galaxies is that these have varying assembly and star formation histories, whereas higher
mass galaxies have fewer options for potential formation histories. By construction, the 〈t〉–IMF
model is not able to apply a varying IMF slope over the entire history of the galaxies in the
SAM in post-processing; The selected ETGs that were used to relate 〈t〉 to σ and then to the
power-law slope by nature all have a relatively high mean age that does not cover the entire
possible age spectrum and all time steps. We chose to truncate the assigned slope below the
lowest mean age in the sample. We will therefore now apply a variation of this model within
the SAM which can directly relate the σ of the galaxy to a power-law IMF slope at all time
step when stars are formed.

We now let the IMF slope vary with the σ∗ of the galaxy at the time that the stars
formed within the SAM, instead of in post-processing as before, and additively populate the low-
mass PDMF of the eventual present-day ETGs. This method takes into account the formation
histories of the present day ETGs we look at and indirectly also the time at which the stars
formed as most of the lower σ galaxies which eventually merged to form ETGs formed early in
the universe.
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4.2.1 Method

We populate the low-mass PDMF with a power-law IMF at each time step stars are formed
in the SAM. This IMF power-law coefficient depends on the σ of the galaxy at the time the
stars are formed and is determined by an input σ–x relation. Each time stars are formed the
normalised fractional mass array corresponding to the IMF power-law coefficient x is computed
and the stars are added to the galaxy’s PDMF array following this IMF. The slope of the final
PDMF of each central (early type) galaxy at z = 0 is then determined in post-processing. Below
we describe briefly how this PDMF routine is implemented in the Porter+14 SAM (for more
details on the general method, see Chapter 2).

In the parameter file, that sets up the necessary variables and other input information for
the SAM, we provide the following information to execute the σ –IMF model :

I a relation between σ and IMF slope x:

x = −(a× σ200 + b) (4.10)

II the number N of stellar mass bins and the mass range mlow − mupM�, to compute an
array logarithmically-spaced stellar mass bins; and

III the mass range Mlow −MupM� over which the IMF should be normalised

We use the following values, although these values can be changed for each new run of the
SAM if needed:

I the Spiniello et al. (2014) relation, where a = 2.3 and b = 1.13 in Equation 4.10.

II N=24 stellar mass bins and the mass range 0.1− 1.0 M�

III the normalisation mass range 0.1− 120 M�

This implemented in the parameter file in the following way:

#pdmf rou t i n s bin genera t i on ( added by Judith 19−11−2014)
#compute pdmf 0=o f f 1=on
1
#Mnormlow pdmf Mnormup pdmf binlow pdmf binup pdmf BINNR PDMF
0.1 120 0 .1 1 .0 24
# imf s l ope x= −1∗(a ∗ sigma + b ) : a s l op e b s l ope
2 .3 1 .13

In the file which provides member functions for the halo and galaxy classes, haloclass.cc,
we use these parameters to:

IV generate binsimf [N + 1]: an array that contains the edges of the logarithmically-spaced
stellar mass bins;

V initialise binsfsalp[N ]: an array which will give the fraction of stars in each stellar mass bin
following a power-law slope dependent on the σ of the galaxy and the input σ–x relation.
This will be computed per galaxy at each time step stars are formed in stars.cc, the file
of the SAM that adds the baryonic physics to the DM merger trees and forms and tracks
the luminous galaxies.



Chapter 4. Model III: σ linked to IMF in post-processing and in SAM 68

VI initialise binspdmf [N ]: an array that will be populated additively per galaxy each time
stars are formed following the fractional mass array. This is done in stars.cc as well.

This is implemented in haloclass.cc as follows:

// added by Jud i t h t e r Horst 19−11−2014
// s e t t i n g t h e a r ray s f o r t h e PDMF rou t i n e
b in s imf = NULL; // mass b i n s
bins pdmf = NULL; //PDMF b in s
b i n s f s a l p = NULL; // f r a c t i o n a l mass array dependent on sigma−s l o p e r e l a t i o n
i f ( compute pdmf ) {
// g ene ra t e mass b i n s used in PDMF rou t i n e w i th l ower and upper edge and number o f b i n s g i v en in param f i l e

b in s imf = new double [BINNR PDMF+1] ;
double s t e p s i z e= ( log10 ( binup pdmf)− l og10 ( binlow pdmf ) )/BINNR PDMF;

for ( int n=BINNR PDMF; n >= 0; −−n){
b in s imf [ n]=pow(10 , ( log10 ( binup pdmf)−n∗ s t e p s i z e ) ) ;
}
bins pdmf = new double [BINNR PDMF ] ;
b i n s f s a l p = new double [BINNR PDMF ] ;
// i n i t i a l i s i n g t h e PDMF b in s f o r each ga laxy , t h ey w i l l be popu l a t e d in s t a r s . cc
for ( int m=BINNR PDMF; m > 0 ; −−m){

bins pdmf [m] = 0 . 0 ;
b i n s f s a l p [m] = 0 . 0 ;

}
}

We determine the normalised fractional mass array binsfsalp[N ] and populate the PDMF
binspdmf [N ] in stars.cc. This part of the SAM that implements the recipes for baryonic physics
and at each time step computes and updates the properties of all the galaxies that are being
followed for each galaxy individually. These properties are linked to the current (central) galaxy
being followed in the loop via g->property. From the Porter+14 model we know the σ of each
central galaxy at any timestep. We also know the stars that formed in each galaxy at that time
step. We then implement the central part of the σ–x model at each time step for each of the
central galaxies as follows:

VII We know the σ of the galaxy g− > σ and we have an input σ—x relation, Equation 4.10,
defined in the parameter file. Combining these determines the power-law IMF slope we
re-assign to the stars formed in that galaxy at that time step:

x = −1× (a× (log 10(g->sigmabulge)− log 10(200)) + b) (4.11)

VIII We then determine the normalisation constant C corresponding to the power-law IMF
with the computed slope x

C =
1− x

M1−x
low −M

1−x
up

(4.12)

IX We now compute the fractional mass in each of the mass bins of g->binsimf [N + 1] from
mlow −mup M� = 0.1 − 1.0 Modot per galaxy for the specific slope x and corresponding
normalisation constant C, for the indices m = N = 24 up until m = 1:

g->binsfsalp[m] = − C

x+ 1
(g->binsimf [m]1−x − binsimf [m− 1]1−x) (4.13)

X The PDMF g− > binspdmf with the same mass bins 0.1− 1.0 M� can now be populated
using the fractional mass array g->binsfsalp corresponding to the power-law slope x and
the amount of stars formed in this galaxy at this time step. This happens additively for
each central galaxy over all the time steps.
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g− > binspdmf [m]+ = g− > binsfsalp[m]∗ (dm∗,norm+dm∗,burst)∗ (1.0−frecycle); (4.14)

This is implemented in stars.cc as follows:
i f ( compute pdmf ){

for ( int m=BINNR PDMF; m > 0 ; −−m){

g−>b i n s f s a l p [m] = 0 . 0 ; // f r a c t i o n a l array t h a t g i v e s t h e f r a c t i o n s o f mass in each mass b in
} // f o r s p e c i f i c s l o p e i s s e t t o z e ro a t each g a l a x y

// and t ime i t e r a t i o n

double x s l ope= 0 . 0 ; // IMF s l o p e
double C= 0 . 0 ; // S a l p e t e r no rma l i s a t i on con s t an t

// l i n k t h e s l o p e x in S a l p e t e r l i k e IMF k s i (M) / prop to Mˆx to t h e cu r r en t t ime s t e p ’ s and ga l a x y ’ s sigma
// f o l l o w i n g t h e sigma−x r e l a t i o n from the param f i l e ( a s l o p e and b s l o p e )
x s l ope= −1. ∗ ( a s l op e ∗ ( log10 (g−>s igma bulge)− l og10 (200) ) + b s l ope ) ;

// to de termine no rma l i s a t i on con s t an t o f t h e s p e c i f i c IMF form
C=(−1.0∗( x s l op e + 1 . 0 ) ) / (pow(Mnormlow pdmf , x s l ope +1.0) − pow(Mnormup pdmf , x s l ope +1 .0 ) ) ;

for ( int m=BINNR PDMF; m > 0 ; −−m){
// p o pu l a t i n g t h e S a l p e t e r l i k e f r a c t i o n a l array us ing t h e s p e c i f i c s l o p e x and no rma l i s a t i on con s t an t C
//Uses t h e edge s o f t h e mass b i n s ( im f b i n s ) as l i m i t s in t h e i n t e g r a l o f t h e co r r e spond ing IMF f un c t i o n to
// popu l a t e t h e f r a c t i o n s .

g−>b i n s f s a l p [m]=−C/( x s l ope +1.0) ∗(pow(g−>b in s imf [m] , x s l op e +1.0)−pow(g−>b in s imf [m−1] , x s l op e +1 .0 ) ) ;

// p o pu l a t i n g PDMF array a d d i t i v e l y per g a l a x y w i th mass in s t a r s formed ( and s t i l l remaining ) t imes t h e
// f r a c t i o n a l mass array .

g−>bins pdmf [m]+=g−>b i n s f s a l p [m]∗ ( dm star norm+dm star burs t )∗ ( 1 . 0 − f r e c y c l e ) ;
}

}

The PDMF of each galaxy outputted at z = 0 per central galaxy in a separate file, pdmf.dat,
along with the galaxy and halo id and some typical galaxy properties such as total stellar mass
and velocity dispersion. Before the PDMF of each galaxy is outputted at z = 0 we divide
binspdmf by the dm in each mass bin to end up with ξ(m) rather than ξ(m) dm. We do not
divide the PDMF by the total stellar mass in each galaxy as described in 3.2.2 as this will
only affect the offset of the PDMF relation and not the slope which is what we are interested
in. In post-processing we fit this PDMF of each galaxy using a linear fit as described in 2.3 to
determine the slope x of the PDMF.

4.2.2 Results

4.2.2.1 Spiniello Relation as Input σ–x Relation

We first implement thisσ–IMF model with the observed Spiniello et al. (2014) relation
(from here on the Spiniello relation) as input IMF relation in Equation 4.10 to test if and how
we should change the input σ–x relation in our model to end up with the observed relation.
We run the Porter+14 SAM with the PDMF routine addition described in Section 4.2.1 for
subvolumes of (50Mpc h−1)3 of the Bolshoi simulation with the specifications in 3.3.1.

Figure 4.8 shows the fit (black dashed line) to the PDMF (red line) of one galaxy with
log(σ) ≈ 2.35, one of the intermediate galaxies within our σ-range. The slope of this fit is can be
plotted against typical properties of the galaxy, stellar mass and velocity dispersion. This is done
for all the selected ETGs from the sample. The resulting m∗–x and σ–x relations are presented
in Figures 4.9 and 4.10 for ETGs selected as central galaxies with with log(M∗/M�) > 9.5,
150 ≤ σ [km s−1] ≤ 310, SFR < 0.3 M� yr−1 and B/T > 0.5. We bin these results following
Table 3.1 and determine the mean value and standard deviation in each bin in Figure 4.11.
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Figure 4.8: A fit (black dashed line) to the PDMF (red line) of one galaxy with log(σ) ≈ 2.35 from
the σ–IMF model which assigns a power-law IMF slope to stars formed within the SAM following a
σ–x relation and the σ of the galaxy at the time the stars were formed, to illustrate what the PDMF

of a model galaxy, in the intermediate σ bin, looks like.

Figure 4.9: The M∗–IMF slope relation for ETGs in the Porter+14 SAM for the σ–IMF model, which
assigns a power-law IMF slope to stars formed within the SAM following the observed Spiniello et al.
(2014) σ–x relation and the σ of the galaxy at the time the stars were formed. The the highest mass

galaxies have the steepest IMF slopes.
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Figure 4.10: The σ–IMF slope relation for ETGs in the Porter+14 SAM for the σ–IMF model with
the observed Spiniello et al. (2014) as input σ–x relation (red line). The PDMF slope of the ETGs from
the model reproduces the steepness of the observed relation but lies below the observed slope values.
The input σ–x relation serves as the upper limit for the slope of the majority of the galaxies as most
of the stars of a particular galaxy were not formed when that galaxy had reached its present day size.
By drawing a horizontal line at a fixed IMF slope between the input relation and the model points, we
can estimate at which σ most of the stars formed that contribute to the slope of particular present day

σ–galaxy.
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Figure 4.11: The binned σ–IMF slope relation for ETGs in the Porter+14 SAM for the σ–IMF mode
with the observed Spiniello et al. (2014) as input σ–x relation. The binned model data is shown in yellow
and the observational data from Spiniello et al. (2014) in red. The σ–x model is able to reproduce the
steepness of the observed relation over the entire σ range, though not fully the offset of the observational

slope.

From Figures 4.10 and 4.11 we see that σ–x model is able to reproduce the steepness of
the observed relation over the entire σ range, though not fully the offset of the observational
slope. The red line in Figure 4.10 is the input σ–x relation, the Spiniello et al. (2014) relation
from observations. The input relation serves as the upper limit for the slope of the majority
of the galaxies as most of the stars of a particular galaxy were not formed when that galaxy
had reached its present day size. These stars formed in lower mass galaxy which ended up in
the present-day ETG and were thus re-assigned an IMF with a lower slope than if they would
have formed in the galaxy with the present-day σ. We can estimate at which σ most of the
stars formed that contribute to the slope of particular present day σ-galaxy formed by drawing
a horizontal line at a fixed IMF slope between the input relation and the model points.

In the SF–IMF, Morph–IMF, and 〈t〉–IMF models we populate and determine the PDMF
slope for the stellar mass bins from 0.1 − 0.8 Modot. However, the upper limit for which solar
metallicity stars have not moved off the MS in 10 Gyrs is 1.0 M� as explained in section 2.2.1.
We therefore apply the σ–IMF model to stellar mass bins extended to this upper limit of 1.0M�
which results in Figures 4.9, 4.10 and 4.11. Figure 4.12 shows the results of the PDMF routine
with the exact same specifications except one run with stellar mass bins from 0.1− 0.8 M� and
one with the bins in the range 0.1− 1.0 M�. Extending the mass range of the stellar mass bins
for which the PDMF slope is determined only makes a minute difference in slope; the mean
difference is 0.003.
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Figure 4.12: The σ–IMF model with the low-mass IMF ranging 0.1−0.8 M�, which has been used in
the SF–IMF, Morph–IMF, and 〈t〉–IMF models and 0.1− 1.0 M�, which has been used in the σ–IMF
model. An increase in the upper mass limit for which stars have not yet moved off the MS such that
we can equate their observed IMF with the PDMF, only affects the final PDMF slope in our models by
a couple of hundreds at most. We therefore do not change the upper mass limit of the low-mass IMF

in the other models in this thesis.
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4.2.2.2 Spiniello + 0.15 Relation as Input σ–x Relation

We change the offset of the input σ–x relation from Equation 4.10 by 0.15 such that a = 2.3
and b = 1.28, which is approximately the amount that the observed relation needs to be shifted
to better fit the mean of the σ bins. When applied to the SAM with the exact same specifications
as before this leads to Figures 4.13, 4.14 and 4.15.

Figure 4.13: The M∗–IMF slope relation for ETGs in the Porter+14 SAM for the σ–IMF model with
the observed Spiniello et al. (2014) +0.15 as input σ–x relation. The overall PDMF slope at each galaxy

mass is higher than when Spiniello et al. (2014) was used as input σ–x relation

Figure 4.14: The σ–IMF slope relation for ETGs in the Porter+14 SAM for the σ–IMF model with
the observed Spiniello et al. (2014) +0.15 as input σ–x relation (green line), to be compared with the
Spiniello et al. (2014) relation (red line). This model is able to reproduce both the steepness and the

offset, so height, of the observed σ–IMF slope relation over the entire σ range of ETGs considered.
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Figure 4.15: The binned σ–IMF slope relation for ETGs in the Porter+14 SAM for the σ–IMF mode
with the observed Spiniello et al. (2014) +0.15 as input σ–x relation. The binned model data is shown
in yellow and the observational data from Spiniello et al. (2014) in red. The σ–x model with Spiniello
+ 0.15 is thus able to reproduce both the offset and steepness of the ETGs at z = 0 well within the
errorbars of the observational data, although a slightly steeper slope would fit the mean IMF slope in

the highest mass bins from the observations even better.

The green line in Figure 4.14 is the Spiniello + 0.15 input relation and as before this input
relation serves as an upper limit to the slope of the galaxies. The red line is the observed
Spiniello et al. (2014) relation and fits the slope and offset of the model galaxies nicely, which
can also be seen in the binned Figure 4.15. The σ–x model with Spiniello + 0.15 is thus able to
reproduce both the offset and steepness of the ETGs at z = 0 well within the errorbars of the
observational data, although a slightly steeper slope would fit the mean IMF slope in the highest
mass bins from the observations even better. Figure 4.16 compares the results of the model with
Spiniello and Spiniello +0.15 as input relations with the observed σ–x relation. Though both
models fall within the errorbars of the observed relation, the model with Spiniello + 0.15 as
input relation lies closest to the mean of the observed relation. In future works, however, it
should be investigated how much the slope, and not just the offset, of the input σ–x relation
should be adjusted to reproduce the slope of the observed relation fully.

4.2.2.3 The σ–x Relation at z = 1 and z = 0

The σ–IMF model with an input σ–x relation that is higher than the observed relation
for local ETGs is able to reproduce the observations as we expect that the model galaxies in
the SAM formed most of theirs stars earlier in galaxies with a lower σ and grew from there to
end up as high-mass ETGs. We investigate the proposed evolution of the σ–x relation in the
SAM from z = 1 to z = 0 to investigate the evolution of the PDMF slope with time and to see
whether we can make predictions for future observations of the IMF of ETGs at higher redshifts

The Bolshoi DM tree files are generated to end at z = 0, but we can output the PDMF and
typical galaxy properties for the central galaxies in the SAM at the intermediate step at z = 1
in a separate output file, galpropz.dat. We output the galaxies at z = 1 for a run of the SAM
with the Spiniello relation and a run with the Spiniello + 0.15 as input σ–x relation. At z = 1,
we do not have the information for the star formation rate averaged over the entire timescale of
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Figure 4.16: The binned σ–IMF slope relation for ETGs in the Porter+14 SAM for the σ–IMF mode
with theSpiniello et al. (2014) as input σ–x relation (yellow) and with the Spiniello et al. (2014) +0.15 as
input σ–x relation (green), to be compared with the observed σ–IMF slope relation (red). The PDMF
slope of both models fall within the errorbars of the observed relation but the model with Spiniello
+ 0.15 as input relation is able to reproduce both the offset and steepness best. Although a slightly
steeper slope would fit the mean of the IMF slope in the highest mass bins from the observations even

better

the galaxy so we select our ETGs as in the rest of the σ–IMF model but without the condition
SFR < 0.3 M�/yr. These results are not colour coded by the mass weighted mean age of the
galaxy as we also do not have that information at the intermediate output time at z = 1. The
results for the Spiniello relation as input σ–x relation are given in Figures 4.17 and 4.18. The
results for the Spiniello +0.15 as input relation are given in Figures 4.19 and 4.20.

Figure 4.17: The M∗–IMF slope relation for ETGs at z = 1 in the Porter+14 SAM for the σ–IMF
model with the observed Spiniello et al. (2014) as input σ–x relation.
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Figure 4.18: The σ–IMF slope relation for ETGs at z = 1 in the Porter+14 SAM for the σ–IMF
model with the observed Spiniello et al. (2014) as input σ–x relation (green line), to be compared with

the Spiniello et al. (2014) relation (red line).

Figure 4.19: The M∗–IMF slope relation for ETGs at z = 1 in the Porter+14 SAM for the σ–IMF
model with the observed Spiniello et al. (2014) +0.15 as input σ–x relation.
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Figure 4.20: he σ–IMF slope relation for ETGs at z = 1 in the Porter+14 SAM for the σ–IMF model
with the observed Spiniello et al. (2014) as input σ–x relation (red line).
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We apply the same filtering,so without the condition SFR < 0.3 M�/yr, to the central
galaxies at z = 0 for the model with the Spiniello relation and the Spiniello + 0.15 as input σ–x
relation. This allows us to fairly compare the binned results of the σ–IMF model at z = 0 and
z = 1. For the Spiniello relation as input σ–x relation this is done in Figure 4.21 and for the
Spiniello +0.15 as input relation in Figure 4.22.

Figure 4.21: The σ–IMF slope relation for ETGs at z = 0 (yellow) and z = 1 (blue) in the Porter+14
SAM for the σ–IMF model with the observed Spiniello et al. (2014) as input σ–x relation. The binned
σ–IMF slope from Spiniello et al. (2014) is shown in red. There is no significant evolution in the IMF
slope of ETGs in this model between z = 1 and z = 0. At z = 1 there is a sightly smaller spread
in possible IMF slopes as there are multiple formation paths that would lead to a particular σ galaxy

between z = 1 and z = 0.

The low-mass PDMF slope of the galaxies at z = 1 lies slightly above the slope at z = 0 for
either input σ–x relation. These galaxies at z = 1 must thus have merged with low σ galaxies,
in which the stars had been formed at this low σ and thus with a lower slope, between z = 1
and z = 0 to decrease the slope. Moreover, at z = 1 there is a sightly smaller spread in possible
slopes as there are multiple formation paths that would lead to a particular σ galaxy between
z = 1 and z = 0.

4.3 Conclusion and Discussion

Using the observed Spiniello et al. (2014) σ-IMF slope relation we re-assign in post-
processing an IMF slope to a set of formed stars to the σ of the galaxy in which they formed in
the 〈t〉–IMF model. This is done for the stars formed between 195 different ages from 0− 13.75
Gyrs. The slope is connected to these ages by combining the Spiniello et al. (2014) relation and
the mean age of each ETG at x = 0 we retrieve from the SAM. This method is only able to
reproduce the observed relation in the highest σ bin and in the intermediate σ bins when the
input 〈t〉 − −x relation is a fit to the upper standard deviation of this relation rather than the
mean. In the lower σ bins, however, the final PDMF slope for either of these models is higher
than the observed relation.

Next, we apply the observed Spiniello et al. (2014) σ–IMF slope relation within the SAM
each time stars are formed. We re-assigned the IMF slope following this relation based on the
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Figure 4.22: he σ–IMF slope relation for ETGs at z = 0 (green) and z = 1 (blue) in the Porter+14
SAM for the σ–IMF model with the observed Spiniello et al. (2014)+0.15 as input σ–x relation. The
binned σ–IMF slope from Spiniello et al. (2014) is shown in red. There is no significant evolution in
the IMF slope of ETGs in this model between z = 1 and z = 0. These results for redshift evolution are
the same as when Spiniello et al. (2014) is used as input σ–x relation (in Figure 4.21, but the offset of
the slope at both z = 1 and z = 0 is moved upward and better fits the mean of the observed relation

as is shown in Figure 4.16.

σ of the galaxy in which the stars are formed using this relation and the PDMF for each galaxy
is populated additively. This σ–IMF model is able to reproduce the slope of the observed σ–
IMF relation over the entire considered σ range better than if we assign it in post-processing.
However, the input σ–IMF slope relation serves as an upper limit of the slope as most of the
stars of a particular galaxy were not formed when that galaxy had reached its present day size.
By drawing a horizontal line at a fixed IMF slope between the input relation and the model
points, we can see at which sigma most of the stars contributing to this slope formed. To retrieve
the observed relation the offset of the input relation needs to be shifted by 0.15. Applying the
σ–IMF model with Spiniello + 0.15 as input relation in the SAM is thus able to reproduce both
the offset and steepness of the ETGs at z = 0.

To fully test this σ–IMF model the next step will be to assign the change in IMF slope
to a set of stars corresponding to the σ of the galaxy self-consistently within the SAM. In our
current model we merely ascribe an IMF slope to the stars formed and populate the low-mass
PDMF of the galaxy accordingly. However, the chemical enrichment and subsequent cooling and
heating and stellar feedback of the stars formed remain those prescribed following a Chabrier
IMF. These processes should depend on the power-law slope each time stars are formed to fully
investigate the implications of the σ–IMF model in the SAM. However, as we in our current
models only re-assign the low-mass IMF, this could be considered as applying a two-fold IMF
with a varying low-mass part and a fixed high-mass slope. Implementing such a two-fold model
self-consistently in the SAM will not affect the SN feedback from high mass stars and keep the
overall normalisation the same (Fontanot et al. 2009).

Moreover, we investigate the evolution of the σ–x relation in the SAM from z = 1 to z = 0
and find that there is no significant evolution in the IMF slope of ETGs in the SAM to z = 1.

This is in agreement with observations by Mart́ın-Navarro et al. (2014) who determined the
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IMF of 49 massive quiescent galaxies between 0.9 < z < 1.5 using the TiO2 absorption feature
which has a dependence on stellar age and on the content of the low mass stars. They fit the
IMF using a bidomdal IMF from Vazdekis and Beckman (1996) which is flattened for stellar
masses below M < 0.6M� and is further solely defined by a single parameter Γb. They find that
at z ∼ 1 the IMF is more bottom heavy, Γb = 3.2± 0.2 for the most massive galaxies M > 1011
than the Γb = 2.7+0.3

−0.4 for the lighter galaxies 2 × 1010 < M < 1011M�. After converting the
stellar mass to velocity dispersion they find that these slopes at z = 1 are only slightly higher
than the observed bimodal sloped in ETGS of Ferreras et al. (2013) at z = 0. They thus do
not find any evolution in IMF slope since z = 1. However, as the Ferreras et al. (2013) σ–IMF
slope relation is steeper than Spiniello et al. (2014) we compare our results to, the slope of
Mart́ın-Navarro et al. (2014) z = 1 lies a couple of tenths in slope above the observed Spiniello
et al. (2014) at z = 0.

We thus predict no evolution for IMF slope for the most massive galaxies after z ∼ 1. This
makes sense as the most massive galaxies have finished forming most of their stars before z = 1
(Panter and Charlot 2007). In future works it should be investigated from which z onward the
models would predict a discernible evolution in IMF slope and for which lower galaxy masses
the model does predict some evolution in slope between z = 1 and z = 0. This information
could be used to guide and compare to future observations of IMF at higher z or in less massive
galaxies.

As explained in more detail in Section 1.1.2 , a relation between [Mg/Fe] and IMF slope
has been proposed as a driver for IMF variations (Conroy and van Dokkum 2012a; van Dokkum
and Conroy 2010), besides velocity dispersion (Ferreras et al. 2013; LaBarbera et al. 2013;
Spiniello et al. 2014). Mart́ın-Navarro et al. (2015) studied the stellar population and kinematic
properties of 24 local ETGA from the CALIFA surey to determine whether σ or metallicity
is the driver for the IMF observed low-mass IMF variations in ETGs. They again assumed
a bimodal IMF truncated below 0.6M� and fit the slope above 0.6M� with Γb, the only free
parameter. They do not find a tight correlation between [Mg/Fe], age or Vrms but do find a
strong correlation between IMF slope–[M/H]. They find that with increasing metallicity the
slope increases, so becomes more bottom heavy. The postulate that this metallicity–IMF slope
relation drives IMF variations and that the observed σ–IMF slope relation is a result of the
combination of the galaxy mass–metallicity relation and this metallicity–IMF slope relation.
If this is indeed the case, it will also have an influence on the evolution of galaxies and their
IMF relation (Mart́ın-Navarro et al. 2015). Massive galaxies increase their metallicity during
the formation of different stellar populations due to stellar feedback and chemical enrichment.
Following the proposed metallicity–IMF slope relation the IMF should have been shallower at
higher redshifts above z ∼ 1.

If the underlying metallicity–IMF relation indeed drives IMF variations, it is possible that
the success of our σ–IMF model in the SAM is actually due to this underlying metallicity– IMF
slope relation. In this model, we re-assign an IMF slope to galaxies in the SAM based on the
σ of the galaxy in which the stars formed and the metallicity–mass relation could connect the
metallicity– IMF slope relation to the σ of the galaxy. To fully test the σ–IMF model in the
SAM we will need to implement it self consistently such that each time stars are formed the
assigned IMF slope is also used in prescribing the heating, cooling and chemistry following from
that formed stellar population. In our current SAM, all those quantities are modeled based on
a Chabrier IMF. When a varying IMF is implemented self-consistently such that it can model
the subsequent evolution of the chemical enrichment, it can be used to connect the IMF slope
to the metallicity of the gas out of which the stars formed. Such an implementation can test
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whether this, underlying, metallicity relation is able to reproduce the observed σ–IMF slope
relation in the SAM.



Chapter 5
Conclusion

The stellar IMF is an observationally derived relation that describes the mass distribution
of stars formed in a single stellar population; it describes the ratio of high to low-mass stars.
Understanding the IMF is important for observing and interpreting observations of galaxies as
high-mass stars are responsible for most of the chemical enrichment and stellar feedback and will
dominate the light of a galaxy whereas the low-mass stars dominate the galaxy’s total stellar
mass.

Due to observational limitations, most observational studies of the IMF have been per-
formed on stellar populations in the Milky Way and in the Local Group. These observations
indicate that the IMF is the same in all these environments and can be described by a power-
law in the high-mass end with a log-normal turn over and and exponential cut-off below 1 M�.
In SSP and other models, it has been assumed that this type of IMF is universal over cosmic
time and galactic environment. However, recent studies using a combination of lensing, stellar
dynamics, spectral features and SSP indicate that the low-mass IMF varies with galaxy prop-
erties such as velocity dispersion (Auger et al. 2010; Conroy and van Dokkum 2012a,b; Ferreras
et al. 2013; LaBarbera et al. 2013; Spiniello et al. 2014, 2012; Treu et al. 2010; van Dokkum
and Conroy 2010). ETGs with high velocity dispersion in the local Universe appear to have
relatively more low-mass stars than predicted by a universal IMF.

The physical origin for this bottom-heavy IMF is unclear but theories base on increased
low-mass fragmentation due to turbulence provide promising results. These theoretical and
computational models derive the CMF and by extension the IMF from turbulence in molecular
clouds all predict a Salpeter-like powerlaw slope at high core masses and a log-normal turnover
(Hennebelle and Chabrier 2008, 2009; Hopkins 2012a,b, 2013; Padoan and Jones 1997; Padoan
and Nordlund 2002). In all three models, the location of this turnover depends on the scale
below which thermal and/or magnetic support becomes greater than that of turbulence. A larger
Mach number thus allows for fragmentation to smaller scales, creating a more bottom-heavy
IMF.

However, these theories of the CMF/IMF formation and variation in itself do not yet
provide an explanation of the difference in conditions in galaxies that appears to lead to a more
bottom-heavy IMF in ETGs than in our own Milky Way. Merger-induced star formation and
starbursts could provide such turbulent conditions out of which a bottom-heavy IMF can form
as these lead to high local temperatures, but also high densities and velocity dispersion. Such
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a dependence on star formation history and environment could link the theories on the origin
of a bottom-heavy IMF to the observations of the bottom-heavy IMF in ETGs.

We use the PST14 and Porter+14 model of the “Santa Cruz” SAM to test the variation
of the IMF with typical galaxy properties,such as fraction of starburst, total stellar mass, and
morphology, that could possibly influence the mass distribution of stars. SAMs tie physically
motivated recipes for the baryonic processes that govern galaxy formation and evolution to
DM halo merger trees. They can provide global properties of galaxies for a large number of
galaxies in a computer-time efficient manner and are therefore ideal to study variations of the
IMF with galaxy- and star formation environment. SAMs also allows us to track under what
conditions or in what location stars formed. We used this to test several recipes of re-ascribing
a bottom-heavy IMF to stars formed under certain conditions in the SAM and compared the
resulting PDMF slope with the observed Spiniello et al. (2014) IMF–slope to gain insight into
the underlying physical reasons of the observed variation in the low-mass end of the IMF in
ETGs.

We tested four different models of re-assigning an IMF to stars formed in the SAM and
compared to resulting PDMF – galaxy mass or σ relation to the observed Spiniello et al. (2014)
relation to disentangle drivers of low-mass IMF variation in ETGs. We will recap the results of
these models and their implications for postulated physical drivers of a bottom-heavy IMF:

• The physically motivated SF–IMF model, which ties a Chabrier shape to stars formed
quiescently and a Salpeter shape to stars formed in bursts and under the assumption that
stars formed in bursts formed under more turbulent conditions. This model is implement
as theories of IMF formation suggest that turbulent conditions can lead to a more bottom-
heavy IMF. This SF–IMF model is unable to reproduce the observed low-mass PDMF
slope of the most massive ETGs as the majority of their stars did not form in bursts. If
turbulence drives the increased low-mass fragmentation molecular clouds, this model shows
that only taking turbulence associated with starburst star formation, whether merger- or
disc instability induced, into account is not sufficient to reproduce the observed bottom-
heavy IMF in ETGs.

• The Morph–IMF model, which ties the shape of the IMF to the present-day location
of stars, either a Chabrier slope to stars in the disc or a Salpeter slope to stars in the
bulge. In the high-mass end this method is able to reproduce the observed σ-IMF relation
in local ETGs within the error bars of the observational data, though not the low-mass
galaxy end. The present day location of the stars, in either the disc or spheroid, thus has
a larger effect on the steepness of the final PDMF slope than the manner in which these
stars formed, either in bursts or quiescently. This is because by selection of ETGs in the
model, these are the galaxies with high bulge-to-total stellar masses (i.e. B/T > 0.5). The
present-day location of the stars is not necessarily the location where the stars formed as
they could have migrated from the disc to the bulge in the SAM, however, it can be seen
as an indirect tracer of the formation history of the galaxy. It indirectly traces the time
of the majority of the star formation as the present-day bulge stars most likely formed in
discs at higher redshift and moved to the spheroid after a merger or a disk instability to
eventually form a current ETG. The partial success of this Morph–IMF model could thus
be due to the scaling of turbulence with cosmic time, where gas conditions out of which
stars in discs formed had a higher density and were more turbulent at earlier times.

• The 〈t〉–IMF model, which assigns a single power-law IMF slope to a set of stars formed
that varies with the time at which they formed in post-processing. This power-law slope
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varies with 〈t〉 following the σ–〈t〉 relation which can be determined from the output of the
SAM and the observed σ–IMF slope in ETGs. This model re-assigns an increased dwarf-
to-giant ratio in a stellar population through an increase in a single low-mass power-law
slope instead of using a Chabrier and a Salpeter IMF for different conditions. This model
can reproduce the observed relation in the intermediate and high σ bins but over predicts
the relative number of low-mass stars formed in the lower bins. These high σ galaxies have
the oldest mean age and thus are expected to have most of their stars formed in high-
redshift turbulent gas. However, by construction, the 〈t〉–IMF model in post-processing
is not able to apply a varying IMF slope over the entire age history of the galaxies in the
SAM; the selected ETGs that were used to relate 〈t〉 to σ and then to the power-law slope
by nature all have a relatively high mean age that does not cover the entire possible age
spectrum and all time steps. We chose to truncate the power-law slope below the lowest
mean age in the sample. As the lower mass ETGs have more of their stars formed below
this mean age than the highest mass ones, the PDMF slope in the low-mass galaxies is over
predicted due to the model construction whereas the high-mass end is not significantly
affected by this model choice.

• The σ–IMF model, which assigns a single power-law IMF slope to a set of stars formed
that varies with the σ of the galaxy in which they formed. This is implemented within the
Porter+14 SAM such that for each galaxy the PDMF is re-populated additively based on
this σ–x relation each time stars are formed. The σ–IMF model is able to reproduce the
slope of the observed σ–IMF relation over the entire considered σ range better than the
〈t〉–IMF model in post-processing. However, the input σ–IMF slope relation serves as an
upper limit of the slope as most of the stars of a particular galaxy were not formed when
that galaxy had reached its present day size. By drawing a horizontal line at a fixed IMF
slope between the input relation and the model points, we can see at which sigma most of
the stars contributing to this slope formed. To retrieve the observed steepness and offset
of the Spiniello et al. (2014) relation of ETGs at z = 0, the offset of the input relation
needs to be shifted upwards by ≈ 0.15. throughout their lifetime, larger σ galaxies merges
with multiple smaller galaxies, which have more bottom-light stellar population and thus
brings their PDMF slope down. The input σ–x relation in the σ–IMF model thus needs to
be higher than the the one observed in z = 0 galaxies to account for this accretion and still
be able to reproduce the observed relation. The input power-law slope thus has to scale
with the σ of a galaxy at time most of the galaxy’s stars formed. This input power-law
slope needs to be higher than present-day observed relation to reproduce observations. If
increased turbulence indeeds decreases fragmentation scales to lower masses, this method
takes into account a decrease in turbulence in overall gas conditions in discs over time.

5.0.1 Future Prospects

We investigate for the σ–IMF Model the evolution of the σ–x relation in the SAM from
z = 1 to z = 0 and find that there is no significant evolution in the IMF slope of ETGs in
the SAM to z = 1 in agreement with observational results from Mart́ın-Navarro et al. (2014).
This result makes sense as the most massive galaxies have finished forming most of their stars
before z = 1 (Panter and Charlot 2007). We expect this evolution of σ–x relation to occur
at higher redshift. In future works it should be investigated from which z onward the models
would predict a discernible evolution in IMF slope and for which lower galaxy masses the model
does predict some evolution in slope between z = 1 and z = 0. This information could be used
to guide and compare to future observations of IMF at higher z or in less massive galaxies.
Especially the coming generation of extremely large telescopes with apertures of > 30 m, i.e.
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the European Extremely Large Telescope (E-ELT) and Thirty Meter Telescope (TMT), will be
sensitive enough and have a large enough range up to the Near Infra Red (NIR) to pick up lines
indicative of low-mass stars such as TiO2 at high redshifts out to z ≈ 3.

Mart́ın-Navarro et al. (2015) find a strong correlation between IMF slope–[M/H]. They
find that with increasing metallicity the IMF slope increases, so becomes more bottom heavy.
The postulate that the metallicity–IMF slope relation drives IMF variations and that the ob-
served σ–IMF slope relation is a result of the combination of the galaxy mass–metallicity relation
and this metallicity–IMF slope relation. Following the proposed metallicity–IMF slope relation
the IMF should have been shallower at higher redshifts above z ∼ 1. When a varying IMF is
implemented self-consistently in the SAM, it can model the evolution of the chemical enrichment
when the IMF slope is connected to the metallicity of the gas out of which the stars formed.
Such an implementation can determine whether this relation can reproduce the observed σ–x
relation in the SAM and thus be considered the underlying driver. The evolution of the IMF
slope with redshift could be used to disentangle whether σ or metallicity is a driver of IMF
variations.

However, the implementation of the σ–IMF model within SAM is not yet self-consistent; we
only re-assign a power-law IMF slope to the stellar population after the stars have formed such
that e.g. SN fractions, metallicities and photometry are all still calibrated based on a Chabrier
IMF. As we only re-assign the low-mass IMF, this could be considered as applying a two-fold
IMF with a varying low-mass part and a fixed high-mass slope. If this fixed high-mass slope
is similar to the one in a Chabrier IMF, this should not significantly affect gas and metallicity
injection from, short-lived, high-mass stars. The different theories of the low-mass CMF/IMF
variation predict not a power-law but a log-normal turn over with an exponential cut-off of the
IMF in the low-mass end. The peak of this turn-over mass is shifted towards smaller masses and
shifted upwards with increasing turbulence when turbulence will dominate over thermal support
up until smaller fragmentation scales. This creates more mass is in smaller stars, such that a
power-law fit to this slope will steepen. However, due to the turn-over, the amount of mass in the
smallest stars will be over-estimated by such a power-law. A re-assignment of a low-mass IMF
with different peak masses varying with, for instance, σ should thus be implemented to correctly
model the formation of the low-mass PDMF at the smallest stellar scales. The line indices from
the SED model in the SAM taking into account the varying IMF slope could be applied in SSP
models to compare to line indices of actual observed galaxies to compare metallicity evolution
and star formation histories in the model galaxies and the observed galaxies to further narrow
down the physical driving mechanisms for a bottom-heavy low-mass IMF in ETGs.

Moreover, in future recipes it should be investigated how assigning an IMF slope self-
consistently based on properties associated more directly with the star-formation process in the
SAM influences the final PDMF slope. One quantity that would be ideal for this purpose is
the gas surface density as it is related to star formation via the Kennicutt-Schmidt law and
we know that it evolves with cosmic time and contributes to setting turbulent conditions and
thus possibly fragmentation scales. In our σ–IMF model we assigned an input σ– IMF slope
relation based on an empirical relation from Spiniello et al. (2014) to test what is needed to
shape that observational relation in the SAM. This method does not yet directly point out the
underlying physical process that causes the molecular clouds in galaxies to fragment and form
stars following a certain mass distribution. In this project we have shown that we can model and
investigate the low-mass IMF variation with global galaxy properties using a SAM. However,
assigning an IMF slope based on more directly star formation related properties such as gas
surface density could help to reach a better understanding of the star formation environment
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and evolution thereof in galaxies that could lead to the relatively bottom-light IMF observed in
the Milky Way and the bottom-heavy IMF observed in ETGs.
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