
Axisymmetric orbit-based models of a mock dwarf spheroidal

galaxy

Author: Jorrit Hagen

Under supervision of: Amina Helmi
Maarten Breddels

Affiliation: Kapteyn Astronomical Institute

October 6, 2015



Abstract

In the current cosmological ΛCDM model, there is six times more dark matter mass in the Universe
than visible mass, but we still do not know what this dark matter is. The dwarf spheroidal satellite
galaxies of our Milky Way, whose internal dynamics are believed to be dominated by dark matter,
can therefore used to put constraints on its nature.

The goal of this work is to establish if it is possible to reliably measure the mass content, shape
and internal orbital structure of a Sculptor-like Dwarf Spheroidal Galaxy, using the Schwarzschild’s
orbital superposition method. Most of the work thus far has assumed that dwarf spheroidal galaxies
and their host halos are spherical, although we know from the light distribution that this is not
true. This motivates us to use the Schwarzschild method in the axisymmetric regime to model
these systems. The Schwarzschild method uses a complete set of orbits as building blocks for the
system that is being modeled. The combination of orbits needed to match the observations, results
in the distribution function of the system.

We set up a mock galaxy whose properties might resemble those of the Sculptor dwarf spheroidal
galaxy. The mock galaxy, whose global potential results in a logarithmic profile, contains flattened
luminous and dark matter components and has the advantage that it can be generated from a
simple analytic distribution function. We then tested how well our Schwarschild method can
constrain the global parameters of the potential and the stellar dynamical properties. We show
that our method can reproduce the light distribution and the stellar kinematics of a specific mock
galaxy and that we can recover the true characteristic parameters of its potential when pretending
to observe 105 and 104 stars in a known edge-on view. For both cases we find, within 1σ-confidence
interval, q = 0.8+0.04

−0.04 for the flattening and v0 = 20+3
−3 km/s for the mass parameter.

Finally, we used the same mock galaxy and show that we can constrain the mass log10(M1kpc),
scale radius Rs and flattening c/a of the system by assuming an axisymmetric NFW potential form.
Within 1σ-confidence intervals we find for its best-fit parameters that log10(M1kpc[M�]) = 7.8±0.2,
Rs = 2±1 kpc and c/a = 0.75+0.15

−0.05 when pretending to observe 105 stars in a known adge-on view

and log10(M1kpc[M�]) = 7.8± 0.2, Rs = 2+2
−1 kpc and c/a = 0.80+0.05

−0.10 for 104 stars.
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Chapter 1

Introduction

It is more than 80 years ago that Zwicky (1933) inferred the existence of dark matter. The observed
kinematics of (systems of) galaxies showed deviations with respect to the expected kinematics. The
latter was based only on the contribution of the luminous and therefore visible matter of these
systems. Around the same time, Einstein showed that gravitational lensing effects could exist
(Einstein 1936; Renn et al. 1997), although it took until 1979 for the first one to be found (Walsh
et al. 1979). Strong gravitational lensing effects that can not be explained by the amount of visible
matter only, also supports the existence of dark matter. A similar reasoning holds for the observed
HI rotation curves of spiral galaxies (Freeman 1970; Rubin et al. 1980).

More recently, the discovery of the accelerating expansion of the Universe through observations
of distant supernovae (Riess et al. 1998; Perlmutter et al. 1999) and accurate measurements of the
Cosmic Microwave Background Radiation (CMB) by the WMAP satellite (Bennett et al. 2013)
also indicated that another component is needed: dark energy.

Therefore, in the current cosmological ΛCDM model, using the new Planck results (Planck
Collaboration et al. 2015), the energy content of the universe does not only consist of normal
baryonic matter (5%) and radiation (0.008%), but also, to a much greater extent, of the mysterious
components (cold) dark matter (26%) and dark energy (69%).

Problems arise since cold (non relativistic) dark matter models overpredict the number of small
dwarf galaxies, the missing satellites problem (Klypin et al. 1999; Moore et al. 1999), and since
the central density distributions of dark matter halos should be much more peaked than what is
observed in galaxies by investigating their rotation curves, the cusp-core debate (Hui 2001). In
addition Boylan-Kolchin et al. (2011) state that the predicted subhalos from ΛCDM simulations
are too big to host the (small) Milky Way dwarf satellites, the too big to fail problem, although
Vera-Ciro et al. (2013) show that this is dependent on the mass of the host halo. They find no too
big to fail problem for a Milky Way mass around 8× 1011M�.

Structures exist since the universe started in a hot and dense state in which tiny density
fluctuations were already present. These fluctuations were for the first time found in the CMB
radiation by the NASA Cosmic Background Explorer (COBE) in 1992. Warm dark matter (WDM)
models are based on particles that initially had higher velocities than cold dark matter models.
These particles became non-relativistic later. The good thing about this type of dark matter is
that primordial density fluctuations on very small scales would get washed out because particles
from over-dense regions would move towards under-dense regions. These models reduce the missing
satellites problem and cusp-core debate and therefore seem to fit observations better. Peter (2012)
has written down a nice short review about the possible dark matter candidates. We note that
many of the ΛCDM problems could also have astrophysical solutions, since most predictions are
based on dark matter only simulations, i.e. without baryonic physics included.

The dwarf spheroidal satellite galaxies (dSph’s or dSph galaxies) of our Milky Way might be
used to put constraints on the nature of dark matter, since these systems are believed to be highly
dark matter dominated (Strigari et al. 2008; Walker et al. 2007; Wolf et al. 2010). Most work
has assumed that dwarf spheroidal galaxies and their host halos are spherical, although we know
from the light distribution that this is not true (Hayashi & Chiba 2015, and references therein).
In fact, the natural shape of a dark matter halo is triaxial (Binney 1978) and this is confirmed
in cosmological N-body simulations. In this work we test whether we can use the Schwarzschild’s
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(a) (b)

Figure 1.1: Dwarf spheroidal galaxies. Panel (a): Image of the nearby Centaurus galaxy cluster
showing elliptical galaxies (E), a spiral galaxy (Sp) and several dwarf spheroidal galaxies denoted
with arrows. Panel (b): The Sculptor dwarf spheroidal galaxy. The bright stars in the image are
most likely foreground stars located in the Milky Way itself. Figure from Mateo (2000).

orbital superposition method to measure the mass content, shape and internal orbital structure of
a system like the Sculptor Dwarf Spheroidal Galaxy. To this end we thus apply the Schwarzschild
method in the axisymmetric regime to establish whether we are able to determine the properties of
this potential, including a mass parameter and a flattening. We set up a mock galaxy made with a
luminous and a dark component all together giving rise to an axisymmetric logarithmic potential.

1.1 Discovery of dwarf galaxies

In the early 1900’s astronomers were unaware of the existence of other galaxies outside our own
Milky Way (MW). Fuzzy patches in the sky were called ‘nebulae’ and were part of the MW. In
fact the size of the Milky Way itself was not clear at all. Although Immanuel Kant, already
in 1755 in his work ‘Allgemeine Naturgeschichte und Theorie des Himmels’ (Kant 1755), for the
first time postulated that other nebulae could be large and distant disks of stars, similarly to
the Milky Way, it took until 1920 before astronomers were truly debating about the ‘Scale of the
Universe’ (Shapley & Curtis 1921). In this so-called ‘Great Debate’ Harlow Shapley and Heber
Curtis discussed, among other things as well, whether the universe was composed of one big galaxy
and that spiral nebulae were just nearby clouds or whether the universe was composed of many
galaxies respectively. A few years later Hubble (1927) identified Cepheid variable stars in M31,
the nearest major spiral nebulae, and showed that the distance was much greater than Shapley’s
proposed size of the Milky Way. The first proof of an extragalactic galaxy had been made.

The discovery of dwarf spheroidals took longer despite the fact that these systems orbit the
Milky Way and therefore are relatively nearby. In 1938, the same Shapley announced the discov-
ery of ‘A Stellar System of a New Type’ in the constellation Sculptor (Shapley 1938). Additional
observations ruled out the possibility that it could be an extended cluster of galaxies. On a photo-
graphic plate, made in 1908 by S.I. Bailey during a site-testing expedition, the first confirmation of
the reality of this object was already made. The same faint patch of light was seen at the position
of the Sculptor system after a total exposure of five nights (23h and 16m) with a 1-inch telescope.
(van Agt 1978)

The total light emitted by most spiral and elliptical galaxies over their respective area on the
sky is comparable to the amount of light the sky itself emits in the same area. Most classical dwarf
spheroidial galaxies have a surface brightness of around 1% of the night sky and are therefore
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much harder to detect. The Sculptor dwarf spheroidal was first found since it is one of the
brightest nearby dSph galaxies and since it is located in a particular empty part of the sky. Many
photographic plates have confirmed its discovery in the late 30s. (Mateo 2000)

Because dSph’s are so difficult to detect, even today more and more dwarf spheroidal galaxies,
including Ultra Faint Dwarfs (UFD’s) having luminosities well below 105L� (Webster et al. 2014),
are being discovered in the Local Group and beyond. For example Koposov et al. (2015); Bechtol
et al. (2015) used data taken during the first year of the Dark Energy Survey (DES), and claim to
have found nine (or eight) new dwarf galaxy candidates respectively in the region near the Large
and Small Magellanic Cloud (LMC and SMC). Three objects appear to be new dwarf galaxies,
while the others could be extended or disrupted globular clusters. dSph’s are very low surface-
brightness objects with half light radii of several hundred parsecs (McConnachie 2012) whereas
luminous globular clusters mostly have half light radii of . 10 pc (van den Bergh 2008). In
addition, globular clusters do not contain significant amounts of dark matter, in contrast to dwarf
spheroidals: the stars in dSph’s would have been moving far to fast relative to one another to
remain bound (Mateo 2000). Globular clusters typically contain 104-106 stars in a nearly spherical
distribution and like dSphs they do not contain gas and dust (Binney & Tremaine 2008).

1.2 Dwarf galaxies and dark matter

Dwarf spheroidal galaxies are probably the most common type of galaxies in the universe. Since
small galaxies are expected to have formed first in the ΛCDM model, it may be that dSph galaxies
represent the basic units of galaxy formation. Dwarf spheroidal galaxies are very faint with absolute
magnitudes ranging from Mv = -8 to Mv = -13.5 and have a velocity dispersion around 10 km/s
(Mateo 1998; Walker et al. 2009b). Since they are abundant and may contain large amounts of
dark matter, they might contribute greatly to the mass of the universe. The determination of the
amount of dark matter is difficult, as, in order to estimate the mass content of a system, kinematics
of gas and/or stars are needed. Since dwarf spheroidal galaxies generally do not contain much gas,
we can only gain dynamical information from the velocities of its stars. Due to the large distance
to Sculptor, it is expected that the Gaia satellite will only be able to measure proper motions of the
horizontal branch (HB) or brightest red giant branch (RGB) stars, with errors similar or larger than
the proper motion itself (Battaglia 2007; Jin et al. 2015). Therefore, only stars that can be observed
spectroscopically can be used to get (line-of-sight) velocities. Breddels & Helmi (2013) have already
used datasets (Battaglia et al. 2006; Walker et al. 2009a; Battaglia et al. 2008) consisting of roughly
2900 and 1700 probable members for Fornax and Sculptor respectively. As these numbers keep
on increasing, the characterization of the line-of-sight velocity distributions (LOSVD) will keep
on improving. Using the global velocity moments of the dSph’s gives information about the mass
content of the systems. In addition, the information about the underlying potential of the system
and therefore the dark matter distribution can be obtained from studying the change in velocity
moments throughout the system.

1.3 Dynamical modeling of dwarf galaxies

Making dynamical models of (dwarf) galaxies is easier when the systems are in dynamical equilib-
rium. Fortunately, most classical dSph’s show no tidal streams, indicating that they are very likely
to be in dynamical equilibrium. In this thesis we therefore assume that dynamical equilibrium
holds. We shortly describe two methods of dynamical modeling that have been applied to such
systems. In both methods the kinematics can be used to infer the mass distribution of the system,
under the assumption that a dwarf galaxy may be considered as a collisionless system.

We follow Binney & Tremaine (2008) to show that a Sculptor like galaxy is indeed a collisionless
system. Assuming a mass of M = 108M� for the Sculptor dSph (Walker et al. 2007), the crossing
time scale at a radius of R = 1 kpc will be:

tcross ≡ R/v = 1/
√
GM/R3 =

√
R3/GM ≈ 47 Myr (1.1)

For a luminosity L ' 2 · 106L� (Mateo 2000) and a typical stellar luminosity L? ' L� the number
of stars will be N ' 2 · 106. In crossing the galaxy once, the mean-square velocity change caused
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by stellar encounters is:

4v2 ' 8N

(
Gm

Rv

)2

ln(Λ) (1.2)

where ln(Λ) ' ln
(
M
m

)
is the Coulomb logarithm and where m ' M� is a typical stellar mass. A

typical speed v of a star is the circular velocity of a star at the edge of the galaxy:

v2 ' GM

R
(1.3)

Therefore, the velocity v will change by an order of itself after nrelax crossings given by:

nrelax ≡
v2

4v2
≈

(
M
m

)2
8N ln(Λ)

≈ 3.4 · 107 (1.4)

Then, the time in which a dSph star has changed its velocity by an order of itself can be estimated
by:

trelax ≡ nrelax × tcross = 1.6 · 106 Gyr (1.5)

Since this so-called relaxation time scale is larger than the age of the universe (trelax > tH), its
stars move under the influence of a gravitational field generated by a smooth mass distribution,
rather than a distribution concentrated into nearly point-like stars.

The distribution function f(x,v, t) of a system is defined such that f(x,v, t) d3x d3v is the
probability that at time t a randomly chosen star has phase-space coordinates in the given range.
By definition the distribution function is normalized such that:∫

f(x,v, t) d3x d3v = 1 (1.6)

The conservation of probability in phase-space is described by the Collisionless Boltzmann Equation
(CBE) (Binney & Tremaine 2008):

∂f

∂t
+ v · ∂f

∂x
− ∂Φ

∂x
· ∂f
∂v

= 0 (1.7)

where Φ(x, t) is the total gravitational potential of the system.

1.3.1 Jeans modeling

Since we assume that dwarf galaxies are in dynamical equilibrium, the distribution function is
time-independent such that the first term of the CBE equals zero. In Jeans modeling one takes
moments by multiplying the CBE by vnj and integrating over all velocities in order to obtain
the Jeans equations. These moments should be compared to the observed (low-order) velocity
moments. In general, assumptions need to be made while doing Jeans modeling.

For example in case of a spherical system, one could make an assumption on the velocity
anisotropy

β(r) = 1−
〈v2θ〉+ 〈v2φ〉

2〈v2r〉
(1.8)

If one assumes that the density ν(r) is known and that β(r) is constant with radius, then, if the
line-of-sight velocities have been measured, we may be able to derive the mass distribution of the
system (Binney & Tremaine 2008):

〈v2r(r)〉 =
1

r2βν(r)

∞∫
r

r′
2β
ν(r′)

dΦ

dr′
dr′ (1.9)

We note that the intrinsic moment 〈v2r(r)〉 is not directly observable, but that it relates to the
measured line-of-sight velocity moment 〈v2los(R)〉 via (Binney & Mamon 1982) :

〈v2los(R)〉 =
2

I(R)

∞∫
R

(
1− βR

2

r2

)
〈v2r(r)〉 rdr√

r2 −R2
(1.10)
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where I(R) is the surface brightness and R the projected radius.
Using the spherical Jeans equations Walker et al. (2007) found a virial mass of ∼ (108−109)M�

for all dSph’s. Modeling the Sculptor dSph, Battaglia et al. (2008) found a best-fit core radius of
0.5 kpc and an enclosed mass within 1.8 kpc of (3.4 ± 0.7) × 108M�, resulting in a mass-to-light
ratio of (158± 33)(M/L�).

For an axisymmetric system, Binney & Tremaine (2008) show that if one assumes that the den-
sity ν(R, z) and potential functional form Φ(R, z) are known and that if the distribution function
is of the form f(H,Lz) (such that the mixed moments vanish, 〈v2R〉 = 〈v2z〉 and 〈vR〉 = 〈vz〉 = 0),
that the Jeans equations can be solved. Here H and Lz denote the Hamiltonian and the angular
momentum in the z-direction of the system. The disadvantages of Jeans modeling is that one
should make such assumptions. In addition, not every solution to the Jeans equations has an
associated distribution function that is physical and therefore positive everywhere.

Hayashi & Chiba (2015) have applied axisymmetric Jeans modeling to infer the axis ratio of
the dark matter density distribution (Q) in several dSph’s. For the Sculptor dwarf galaxy they
find a very low axis ratio (Q = 0.45± 0.03), whereas the observed projected flattening in the light
(q′) is 0.68. They find a scale length of 0.6 kpc and an inclination of 87 degrees. Comparing both
an oblate and prolate case, they find that the oblate case yields a much better fit than the prolate
case.

1.3.2 Schwarzschild modeling

Schwarzschild models where first described by Schwarzschild (1979). In Schwarzschild modeling
one assumes a specific gravitational potential. No additional assumptions have to be made for
example about the form of the distribution function, which in fact is an output of the modeling.
On the other hand the method requires a lot of computing power and therefore a smaller set of
gravitational potentials can be explored than for Jeans modeling.

In Schwarzschild modeling orbits are used as building blocks of a system. Given a potential, a
complete set of orbits are integrated numerically and for each orbit the predicted observables are
stored in an orbit library. Varying the parameters of the potential or varying the potential form
as a whole, will result in different libraries. Therefore, a lot of orbits need to be integrated and
stored. The library from which a combination of weighted orbits matches the observations (light
profile + kinematics) the best, corresponds to the best-fit potential and provides its corresponding
distribution function, which will always be non-negative everywhere since the orbital weights are
kept positive by construction. In figure 1.2 the principle of Schwarzschild modeling is visualized:
a combination of modeled orbits are selected such that they match the observed properties of a
galaxy.

1.4 This thesis

In this work we will test the Schwarzschild method on a mock galaxy with axisymmetric properties.
The schwarzschild method has already been applied to elliptical galaxies with a central black hole
in the axisymmetric regime (Cretton et al. 1999; van der Marel et al. 1998) and in the triaxial
case (van den Bosch et al. 2008). However, in those models the dark matter was assumed to
follow the light. Here we extend the work of Breddels et al. (2013) in their models of dSph’s
with the Schwarzschild technique beyond spherical symmetry, and consider an axisymmetric mass
distribution both for the light and the dark components. To be able to test the reliability of our
conclusions when using this modeling technique, we need to set up a mock galaxy model and
simulate mock data (chapter 2). In chapter 3 we describe the Schwarzschild method, how we use
it and how we performed basic tests to confirm that we implemented the method correctly (see
section 3.6). Then, in chapter 4, we applied Schwarzschild modeling and show that we can recover
the characteristic parameters of the mock galaxy potential. In chapter 5 we model our mock galaxy
by an axisymmetric NFW potential form and show that we constrain the mass, scale radius and
flattening for realistic datasets. We conclude in chapter 6.
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Figure 1.2: Illustrating the principle of Schwarzschild modeling. Individual orbits are combined to
make the desired galaxy. Figure from Cappellari (2015).
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Chapter 2

A mock galaxy

We have built a mock galaxy with characteristics similar to the Sculptor dSph and thus placed it at
a distance of 80 kpc (d = 0.08 Mpc) and pretended to observe it with a square field of view (FOV)
with a size of 7832”x7832”, which then corresponds to 3x3 kpc, centered on the mock galaxy.
Although we could have chosen any viewing angles, we have only explored an edge-on view in this
work.

In this chapter, we first describe the properties of our mock galaxy. Then we explain how we
constructed it and the various checks performed. We then generated mock observations, including
realistic errors.

2.1 A composite axisymmetric mock dwarf galaxy

We chose to make an axisymmetric mock galaxy based on the composite system described by
Evans (1993), since it has a simple distribution function. In this section we summarize the most
important equations from that paper, which were used in our work.

Evans shows that analytically nice results can be derived for the line-of-sight velocity profile if
the composite system has an axisymmetric logarithmic relative potential,

Ψtot(= −Φtot) = −1

2
v20 ln

(
R2
c +R2 +

z2

q2

)
(2.1)

and a stellar component described by:

ρlum =
ρ0R

p
c(

R2
c +R2 + z2

q2

)p/2 (2.2)

Here the cylindrical coordinates (R, φ, z) are used. The parameter v0 is a mass parameter, Rc
is the core radius and parameter q is the axial ratio of the spheroidal equipotentials, which needs
to satisfy 1/

√
2 = 0.707 ≤ q ≤ 1.08 to yield a distribution that is positive everywhere (Binney

& Tremaine 2008; Evans 1993). With this choice, q is also the flattening of the stellar density
component. In addition, the luminous density is characterized by the central density ρ0 and slope
parameter p. For p > 3 the total mass of the luminous component is finite and given by (Evans
1993):

Mlum =
2p−3

p− 2
B

[
p− 3

2
,
p− 3

2

]
πρ0qR

3
c (2.3)

where B is the beta function. The surface brightness profile is found by integrating the luminous
density along the line of sight (Evans 1993):

I(x′, y′) =
2p−2B[(p− 1)/2, (p− 1)/2] qρ0R

p
c

q′
[
x′2 +R2

c +
y′2

q′2

](p−1)/2 (2.4)
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where (x′,y′) are the coordinates on the plane of the sky, q′ ≡ [cos2(i) + q2 sin2(i)]0.5 and where i
is the inclination towards the system.

The total density of the logarithmic potential is given by (Binney & Tremaine 2008):

ρtot(R, z) =
v20

4πGq2

(2q2 + 1)R2
c +R2 +

(
2− 1

q2

)
z2(

R2
c +R2 + z2

q2

)2 (2.5)

We note that the flattening of the total density is not equal to q. In fact it is not constant as will
be pointed out in section 5.1.

Both the dark mass and luminous mass have elementary distribution functions. The distribution
function of the luminous mass is used to derive the kinematics of the stars:

Flum = D exp(pE/v20) (2.6)

where D = ρ0R
p
c

(
p

2πv20

)3/2
is a constant and where E = Ψtot − 0.5v20 is the binding energy. Since

the luminous distribution function depends of the binding energy only, the velocity dispersion
tensor is isotropic. Furthermore, because Flum = D exp[pΨ/v20 ] exp[−pv2/2v20 ], integration over
the line-of-sight and the tangential velocity components yields the result that the line-of-sight
velocity profile is exactly Gaussian and has a velocity dispersion that is isotropic and constant
everywhere:

σ =
v0√
p

(2.7)

In this work we made a mock galaxy with v0 = 20 km/s, Rc = 1 kpc, p = 3.5. This means
that the velocity dispersion is roughly 10.7 km/s (resulting in a second velocity moment of 114.3
km2/s2), a realistic number compared to the velocity dispersions of the classical dSph’s. The central
density parameter ρ0 is irrelevant, since it has no influence on the total gravitional potential, which
is fully determined by v0, Rc and q: it is only an amplitude for the light profile, which will be
normalized anyway (see section 3.5). Therefore, lowering ρ0 is only equivalent to increasing the(
M
L

)
-ratio of the system, which is given by (Evans 1993):

υ(R, z) ≡
(
M

L

)
=

ρtot
ρlum

=
v20

4πGρ0q2R
p
c

[
(2q2 + 1)R2

c +R2 + (2− 1

q2
)z2
](

R2
c +R2 +

z2

q2

) p−4
2

(2.8)

2.2 Constructing the mock galaxy

In this section we will decribe how we constructed our mock galaxy consisting of N = 105 stars by
using the luminous density (equation 2.2) and distribution function (equation 2.22). We generate
the positions and velocities of the mock stars separately.

2.2.1 Positions

Given the stellar density profile we can randomly draw positions of N stars to generate the spatial
distribution of our mock galaxy. Since the probability functions are not independent in cylindrical
coordinates (see equation 2.2 for the density), we need a conditional density function. This works
as follows: suppose we want to generate a sample from a 2D joint density function p(x, y). The
first step is to draw a sample X whose x-coordinates follow the marginal density function p(x)

=
∞∫
−∞

p(x, y) dy. Then, since p(x, y) = p(y|x)p(x), we generate a sample Y according to the

conditional density function p(y|X).
In practise, we start by making the probability distribution function of the stellar density,

p(R, z, φ) itself. It is defined such that
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2π∫
0

∞∫
−∞

∞∫
0

p(R, z, φ) dR dz dφ ≡ 1 (2.9)

and

p(R, z, φ) =
ρlum(R, z)R

Mlum
(2.10)

To compute the total luminous mass and its relation to the characteristic parameters of the density
profile we proceed as follows

Mlum =

2π∫
0

∞∫
−∞

∞∫
0

ρlum(R,φ, z)RdR dz dφ

=

∞∫
−∞

∞∫
0

ρlum(R, z) 2πRdR dz

=

∞∫
−∞

∞∫
0

ρ0R
p
c(

R2
c +R2 + z2

q2

)p/2 2πRdR dz

=

∞∫
−∞

∞∫
0

πρ0R
p
c

(
R2
c +R2 +

z2

q2

)−p/2
dR2 dz

=

∞∫
−∞

πρ0R
p
c

1− p/2

(
R2
c +R2 +

z2

q2

)1−p/2
∣∣∣∣∣
∞

0

dz

(2.11)

for p 6= 2. Substituting z ≡ qRc tan (θ), such that dz = qRc sec2 (θ)dθ, we continue with:

Mlum = −
∞∫
−∞

πρ0R
p
c

1− p/2

(
R2
c +

z2

q2

)1−p/2

dz

= −
(
πρ0R

p
c

1− p/2

) π/2∫
−π/2

[
R2
c

(
1 + tan2 (θ)

)]1−p/2
qRc sec2 (θ)dθ

= −
(
πρ0R

3
cq

1− p/2

) π/2∫
−π/2

[
sec2 (θ)

]1−p/2
sec2 (θ)dθ

= −
(
πρ0R

3
cq

1− p/2

) π/2∫
−π/2

sec4−p (θ) dθ

(2.12)

Then for p = 3.5, we get:

Mlum =
4πρ0R

3
cq

3

π/2∫
−π/2

√
sec (θ) dθ

=
8
√

2πρ0R
3
cq

3
K(

1

2
)

' 22.0 ρ0R
3
cq

(2.13)
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The complete elliptical integral of the first kind, K(x), is defined by evaluating the incomplete

elliptical integral of the first kind, F (y|x) =
y∫
0

1√
1−x sin2(t)

dt, at y = π/2. Thus, K(x) = F (π/2|x).

So now we can compute p(R, z, φ):

p(R, z, φ) =
ρlum(R, z)R

Mlum
=

(
3
√
Rc

8
√

2πqK( 1
2 )

)
R(

R2
c +R2 + z2

q2

) 7
4

= p(R, z)p(φ) (2.14)

In our axisymmetric case the coordinate φ is independent of R and z. These coordinates φ can
therefore be generated separately. Since we have a uniform probability in φ, one can generate φ

very easily. Since φ can obtain values between 0 and 2π and since
2π∫
0

p(φ)dφ ≡ 1, we directly

see that p(φ) = 1/2π. For every φ-coordinate we draw a random number u1 from the continuous
uniform distribution over the half-open interval between 0 and 1 and compute φ = 2πu1.

Now we continue with the coordinates z and R. We first need the probability function of R
and z only:

p(R, z) = p(R, z, φ)/p(φ) = p(R, z, φ) 2π (2.15)

In the following we decide to generate a sample z before generating a sample R. Generating R
first is possible as well but results in a harder integral that needs to be solved. We follow the
sampling procedure as explained above. So we first compute p(z):

p(z) =

∞∫
0

p(R, z) dR

=

∞∫
0

(
3
√
Rc

4
√

2qK( 1
2 )

)
R(

R2
c +R2 + z2

q2

) 7
4

dR

=

∞∫
0

(
3
√
Rc

8
√

2qK( 1
2 )

)
1(

R2
c +R2 + z2

q2

) 7
4

dR2

=

(
3
√
Rc

8
√

2qK( 1
2 )

)(
−4

3

)(
R2
c +R2 +

z2

q2

)− 3
4

∣∣∣∣∣
∞

0

=

( √
Rc

2
√

2qK( 1
2 )

)(
R2
c +

z2

q2

)− 3
4

(2.16)

As for u1, we draw a random number u2 for every z-coordinate and, while substituting z ≡
qRc tan (θ) again, we solve:
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u2∫
0

1du2′ =
z∫

−∞

p(z′)dz′

u2 =

( √
Rc

2
√

2qK( 1
2 )

) z∫
−∞

(
R2
c +

z′2

q2

)− 3
4

dz′

u2 =

( √
Rc

2
√

2qK( 1
2 )

) θ∫
−π/2

[
R2
c

(
1 + tan2(θ′)

)]− 3
4 qRc sec2 (θ′)dθ′

u2 =

(
1

2
√

2K( 1
2 )

) θ∫
−π/2

[
sec2(θ′)

]− 3
4 sec2 (θ′)dθ′

u2 =

(
1

2
√

2K( 1
2 )

) θ∫
−π/2

√
sec(θ′) dθ′

(2.17)

Using Mathematica we find:

u2 =

(
1

2
√

2K( 1
2 )

)[
2F (

θ

2
, 2) +

√
2K(

1

2
)

]
(2.18)

At this point we could have inverted the equation to compute θ given u2, however we computed θ
numerically by using a solver with bounds (−π/2 ≤ θ ≤ π/2).
Next, we compute the probability function of drawing coordinate R given coordinate z, p(R|z).
This is quite simple since:

p(R|z) = p(R, z)/p(z)

=
3

2
R

(
R2
c +R2 +

z2

q2

)− 7
4
(
R2
c +

z2

q2

) 3
4 (2.19)

Again we draw a random number u3 for every R-coordinate and we solve:

u3∫
0

1du′3 =

R∫
0

p(R′|z) dR′

u3 =

R∫
0

3

2
R′
(
R2
c +R′2 +

z2

q2

)− 7
4
(
R2
c +

z2

q2

) 3
4

dR′

u3 =

R2∫
0

3

4

(
R2
c +R′2 +

z2

q2

)− 7
4
(
R2
c +

z2

q2

) 3
4

dR′2

u3 =
3

4

(
−4

3

)(
R2
c +R′2 +

z2

q2

)− 3
4
(
R2
c +

z2

q2

) 3
4

∣∣∣∣∣
R2

0

u3 = −
(
R2
c +

z2

q2

) 3
4

[(
R2
c +R2 +

z2

q2

)− 3
4

−
(
R2
c +

z2

q2

)− 3
4

]

u3 =

1−

(
R2
c +R2 + z2

q2

R2
c + z2

q2

)− 3
4


(2.20)
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Inverting the equation gives:

R =

√(
R2
c +

z2

q2

)(
[1− u3]

− 4
3 − 1

)
(2.21)

So, given random numbers u1,u2 and u3 a star’s position can be obtained by the equations stated
above.

2.2.2 Velocities

Besides the positions, stars have a certain velocity in a certain direction. These velocities are
computed through the distribution function

Flum = D exp[pΨ/v20 ] exp[−pv2/2v20 ] (2.22)

where v2 = v2x + v2y + v2z or v2 = v2R + v2z + v2φ. Since we see that we could write Flum(x,v) =

Flum(x)Flum(v) = Flum(v|x)Flum(x) we conclude that Flum(v|x) = Flum(v) ∝ exp[−pv2/2v20 ],
which is independent of position and Gaussian in all three velocity components. Therefore in order
to generate the velocities we could simply draw N velocities from a Gaussian distribution with
velocity dispersion v0/

√
p in each direction.

2.3 Checking the properties of our mock galaxy

We checked our procedure by drawing a large number of stars, such that the global properties
should not be affected by the random number generator. We used N = 105 stars to check that
this is indeed not the case.

Figure 2.1 shows 1D histograms of the R- and z-coordinates. We compare them to the corre-
sponding theoretical probability curves p(R) (equation 2.23) and p(z) (equation 2.16). To compute
p(R), we use the substitution z ≡ q

√
R2
c +R2 tan (θ) such that dz = q

√
R2
c +R2 sec2 (θ)dθ. Then:

p(R) =

∞∫
−∞

p(R, z) dz

=

∞∫
−∞

(
3
√
Rc

4
√

2qK( 1
2 )

)
R(

R2
c +R2 + z2

q2

)1 3
4

dR

=

π/2∫
−π/2

(
3
√
RcR

4
√

2qK( 1
2 )

)[(
R2
c +R2

) (
1 + tan2(θ)

)]−1 3
4 q
√
R2
c +R2 sec2 (θ)dθ

=

(
3
√
RcR

4
√

2K( 1
2 )

)(
R2
c +R2

)− 5
4

π/2∫
−π/2

(
sec2(θ)

)− 7
4 sec2 (θ)dθ

=

(
3
√
RcR

4
√

2K( 1
2 )

)(
R2
c +R2

)− 5
4

π/2∫
−π/2

sec−
3
2 (θ) dθ

=

(
3
√
RcR

4
√

2K( 1
2 )

)(
R2
c +R2

)− 5
4

[
2
√

2K( 1
2 )

3

]

=
0.5R

√
Rc

(R2
c +R2)

5
4

(2.23)

where the latter integral was solved by using Mathematica.
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(a)

(b)

Figure 2.1: Number counts of stars drawn from the distribution described in section 2.2.1 for 105

stars in total. (a): The histogram shows the drawn number of stars in 20 radial bins up to a
distance of 20 kpc (4R = 1 kpc). The dashed line shows the theoretical function (see equations
2.16 and 2.23). The expected number of stars in each radial bin is shown by the full line and
equals the mean number of the dashed line in each radial bin. (b): Similar to (a), but now for the
z-coordinate. Here 19 bins are plotted (4z = 2 kpc), to get a bin centered around z = 0.
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(a)

(b)

Figure 2.2: Theoretical and drawn contours for (a) the probability density function p(R,Z) and
(b) density ρ(R,Z). Full contours show the drawn probability of stars. Dashed contours show the
theoretical probability distribution.
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Figure 2.3: A 3-dimensional visualization of our mock galaxy. All axes have units of kpc. We note
that a significant fraction of stars have a large distance to the center of the mock galaxy.

In figure 2.2 we confirm that a 2D histogram of our mock stars shows an axial ratio equal to
q when plotting the stars in an edge-on view. We do this by first checking whether our dataset
follows the p(R, z) distribution. Then we compute ρ(R, z) by multiplying p(R, z) by M/(2πR).

To conclude this section, we add a 3d-dimensional visualization of our mock galaxy in figure
2.3. We emphasize that a high fraction of stars have a high distance to the center of the mock
galaxy. In fact, depending on the viewing angles towards the system, in between 28.7% (face-on
view) and 31.5% (edge-on view) of all drawn stars end up in our field of view (see section 2.1).

2.4 Constructing mock data with realistic errors

Nowadays we have accurate data from roughly 2000 stars of for example the Sculptor dwarf galaxy
(see section 1.2). Therefore we need to downsample the number of stars of our mock galaxy to
make a fair comparison of what we could find with our Schwarzschild method when applying it to
real data. In addition, we always have uncertainties in our velocity measurements. In the nearby
dwarf spheroidal galaxies these are of order dv = 2 km/s per star (Mateo et al. 1991; Breddels et al.
2013). So, if we want to use our mock galaxy as if we had been observing those stars, we should
convolve the line of sight velocities with a Gaussian with standard deviation equal to 2 km/s, under
the assumption that the measurement errors are normally distributed and independent. In fact we
do not use the kinematics of single stars, but we use the moments by combining the velocities of all
available stars in a certain bin on the sky (in the following ‘kinematic bin’) of our field of view. In
this section we describe how we can estimate these the best, including their corresponding errors.

2.4.1 Real raw moments estimators

We follow the method by Breddels et al. (2013) and make small modifications. We define vi as
the real line of sight velocity of star i and εi as the measurement error on that star. Therefore
vi + εi is the observed velocity of star i. We note that the expectation values for the errors, which
are drawn from a Gaussian distribution with σ = 2 km/s, are given by: E [〈εni 〉] = E [εni ] = 0
for odd n and sn ≡ E [〈εni 〉] = E [εni ] = (n − 1)!!σn for even n. Since we want to know the true
value of the moments, i.e. without measurement errors, we compute the moment estimators, µ̂n,
in every kinematic bin. We note that we calculate raw moments, which are not taken about the
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mean velocities. In the following we just mention ’moments’ to denote ’raw moments’.
For the first moment, the expectation value for the observed moment equals:

E[m1] = E

[
1

N

N∑
i=1

(vi + εi)

]

= E

[
1

N

N∑
i=1

vi

]
+ E

[
1

N

N∑
i=1

εi

]

= E [〈vi〉] +���
�:0

E [〈εi〉]
= µ1

(2.24)

We note that in our notation the µn = E [〈vni 〉] = E [vni ]. Thus, the observed first moment, m1,
equals the real moment, µ1. In general, we do not know the underlying function form of the
velocity profile. Only when assuming a symmetric velocity profile the odd real moments vanish.
Therefore, the real moment estimator is given by:

µ̂1 =
1

N

N∑
i=1

(vi + εi) (2.25)

For the second moment we have:

E[m2] = E

[
1

N

N∑
i=1

(vi + εi)
2

]

= E

[
1

N

N∑
i=1

(
v2i + 2viεi + ε2i

)]

= E
[
〈v2i 〉

]
+ 2���

��:0
E [〈viεi〉] + E

[
〈ε2i 〉

]
= µ2 + s2

(2.26)

where s2 = σ2
i = dv2. Thus, the best estimate for the real second moment is given by:

µ̂2 =
1

N

N∑
i=1

(vi + εi)
2 − s2 (2.27)

We repeat the procedure up to the 8th moment. Here we show the best estimates for these real
moments, assuming µ̂n ' µn on the right-hand side of the equations. For completeness the fifth
and seventh moments are shown as well, although they are not needed in our analysis.

µ̂3 =
1

N

N∑
i=1

(vi + εi)
3 − 3µ1s2 (2.28)

µ̂4 =
1

N

N∑
i=1

(vi + εi)
4 − 6µ2s2 − 3s22 (2.29)

µ̂5 =
1

N

N∑
i=1

(vi + εi)
5 − 10µ3s2 − 15µ1s

2
2 (2.30)

µ̂6 =
1

N

N∑
i=1

(vi + εi)
6 − 15µ4s2 − 45µ2s

2
2 − 15s32 (2.31)

µ̂7 =
1

N

N∑
i=1

(vi + εi)
7 − 21µ5s2 − 105µ3s

2
2 − 105µ1s

3
2 (2.32)
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µ̂8 =
1

N

N∑
i=1

(vi + εi)
8 − 28µ6s2 − 210µ4s

2
2 − 420µ2s

3
2 − 105s42 (2.33)

In figures 2.4, 2.5, 2.6 and 2.7 we show 2 examples of generating our mock observables. In figures
2.4 and 2.6 we show how we started for the case of observing 2000 stars in a face-on view and 104

stars in an edge-on view respectively. We visualize our field of view, in which we randomly select
2000 (or 104) stars, we check the Gaussianity of the velocity profile and add velocity measurement
errors. Then we divide the field of view in 3x3 kinematic bins. In each kinematic bin the kinematic
moments are calculated. For every kinematic bin separately we show the kinematic information
in figures 2.5 and 2.7. We show the true (T) and observed (O) velocity profile of our stars. It is
clearly visible that in the case of 104 stars, all profiles are much closer to a Gaussian distribution
than in the case of 2000 stars. The second and fourth raw moment estimators for all 9 kinematic
bins are visualized in the first column of the bottom panel. The larger the number of stars the
smaller is the range of the obtained kinematic moments: for example, for 2000 stars the second
moment ranges in between 90 and 125 km2/s2, whereas for 104 stars it ranges in between 104 and
120 km2/s2. The errors and S/N-ratios, shown in the second and last column are described in
sections 2.4.2 and 2.4.3.

2.4.2 Realistic error of the real raw moments estimators

To compute the error on these moments, we compute the square root of the variance of the
moments; V ar(µN ) ≈ V ar(mN ) = E[mN

2] − (E[mN ])2 (Breddels et al. 2013). We will work out
the variance for the first two moments and show the results for the other moments.

V ar(m1) = V ar

[
1

N

N∑
i=1

(vi + εi)

]

= E


[

1

N

N∑
i=1

(vi + εi)

]2−
[
E

{
1

N

N∑
i=1

(vi + εi)

}]2

= E

 1

N2

N∑
i=1

N∑
j=1

(vi + εi)(vj + εj)

− µ2
1

=
1

N2

N∑
i=1

N∑
j=1

[
E(vivj) +���

�:0
E(viεj) +���

�:0
E(εivj) + E(εiεj)

]
− µ2

1

=
1

N2
N(N − 1)

[
E(vi)E(vj) +��

���
�:0

E(εi)E(εj)

]
+

1

N2
N
[
E(v2i ) + E(ε2i )

]
− µ2

1

=
(N − 1)µ2

1

N
+
µ2 + s2
N

− µ2
1

=
µ2 + s2 − µ2

1

N

(2.34)

where we note that
N∑
i=1

N∑
j=1

1 = N for i = j and
N∑
i=1

N∑
j=1

1 = N(N − 1) for i 6= j.
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Again, assuming µn ' µ̂n, we can also write:

V ar(m1) =
µ2 + s2 − µ2

1

N

'

[
1
N

N∑
i=1

(vi + εi)
2 − s2

]
+ s2 −

[
1
N

N∑
i=1

(vi + εi)

]2
N

=
1

N

 1

N

N∑
i=1

(vi + εi)
2 −

[
1

N

N∑
i=1

(vi + εi)

]2
(2.35)

For the variance of the second raw moment estimator we find:

V ar(m2) = V ar

[
1

N

N∑
i=1

(vi + εi)
2

]

= E


[

1

N

N∑
i=1

(vi + εi)
2

]2−
[
E

{
1

N

N∑
i=1

(vi + εi)
2

}]2

= E

 1

N2

N∑
i=1

N∑
j=1

(vi + εi)
2(vj + εj)

2

− [µ2 + s2]2

=
1

N2

N∑
i=1

N∑
j=1

E
[
v2i v

2
j + 2��

��*
0

v2i vjεj + v2i ε
2
j + 2��

��*0
viεiv

2
j + 4viεivjεj + 2�

��*
0

viεiε
2
j + v2j ε

2
i

+ 2��
��*0

ε2i vjεj + ε2i ε
2
j

]
− [µ2 + s2]2

=
N − 1

N

[
E(v2i )E(v2j ) + E(v2i )E(ε2j ) +���

���:
0

4E(viεivjεj) + E(v2j )E(ε2i ) + E(ε2i )E(ε2j )
]

+
1

N

[
E(v4i ) + 6E(v2i )E(ε2i ) + E(ε4i )

]
− [µ2 + s2]2

=

[
A1−

1

N

] [
µ2
2 + 2µ2s2 + s22

]
+

1

N
[µ4 + 6µ2s2 + s4]−

hhhhhhhh[µ2
2 + 2µ2s2 + s2]

=
1

N

[
µ4 − µ2
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As before, assuming µn ' µ̂n, we get:
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(2.37)

Similarly the errors of the third and fourth moment estimators can be computed. They are given
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by:
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1
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Clearly, the error decreases as the number of stars in a kinematic sky bin increases. In the second
columns of figures 2.5b and 2.7b we show the errors obtained like explained in this section. When
using N = 105 stars inside the field of view and 9x9 kinematic bins, the error of the second moment
is roughly 3-9 km2/s2 and for N = 104 and 3x3 kinematic bins the error is similar, roughly 4-7
km2/s2. The errors on the higher order fourth moment are relatively larger.

We verified the errors by generating M samples, each containing N stars. For every sample we
computed the raw moment estimators. Then we computed the standard deviation over those M
samples for the first 4 moments. We confirmed this Monte Carlo Method gives errors of the same
magnitude as our analytic calculations.

2.4.3 Requiring a high signal to noise ratio

In our analysis we choose to have a high signal to noise (S/N) ratio, here simply defined as the value
of the moments divided by their errors, for our moment estimators. This reflects into a minimum
number of stars per kinematic bin. In the third columns of figures 2.5b and 2.7b we show the S/N-
ratios of our mock datasets. Using either N = 105 stars/9x9 kinematic bins or N = 104 stars/3x3
kinematic bins inside the field of view result both in a high S/N-ratio (& 20). We note that the
relative errors on the fourth moments are larger and thus result in lower S/N-ratios. Decreasing the
number of stars to 2000 results in S/N-ratios ranging from 3 to 6 for the fourth moment. Taking
fewer kinematic bins to decrease the errors does not make sense anymore. As the errors become
significant, we must be careful when interpreting results. Therefore we did not model yet datasets
containing 2000 stars. To summarize, we used 9x9 kinematic bins (Nkin = 81) when we simulate
an observation containing 105 stars and we used 3x3 kinematic bins (Nkin = 9) when observing
104 stars in order to retain a high signal to noise ratio.
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(a) (b)

(c) (d)

Figure 2.4: Selecting and assigning N = 2000 stars in total, using 3x3 kinematic bins and assuming
a face-on view: First a sufficient number of stars (red+green in panel (a)) are drawn from the
distribution function. In our field of view we randomly select N stars (green) and we verify that
the velocities are Gaussian distributed (panel (b)). To all N stars we add a velocity drawn from
a Gaussian distribution with standard deviation dv = 2 km/s to simulate measurement errors.
We pretend that these new velocities (right histogram of panel (c)) are observed. In panel (d) we
assigned to proper kinematic sky bin to all N stars. The corresponding moments and errors are
visualized in figure 2.5.
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(a)

(b)

Figure 2.5: Obtaining the kinematic moments for 2000 stars in a face-on view. In panel (a) we
show the velocity histograms of the stars for each kinematic bin (see figure 2.4d), before (true
velocities: ‘T’) and after (observed velocities: ‘O’) adding the measurement errors. For each of
the observed velocity histograms we compute the raw moments, as described in section 2.4.1. The
second and fourth moments are shown in the left column of panel (b). The error on these moments
are estimated by the method described in section 2.4.2. The corresponding errors are shown in
the middle column of panel (b). The S/N-ratios, here simply defined as the value of the moments
divided by their errors, are shown in the rightmost column of panel (b).
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(a) (b)

(c) (d)

Figure 2.6: Selecting and assigning N = 104 stars in total, using 3x3 kinematic bins and assuming
an edge-on view. See figure 2.4 for more information.

24



(a)

(b)

Figure 2.7: Obtaining the kinematic moments for 104 stars in an edge-on view. See figures 2.5
and 2.6d for more information. Increasing the number of stars by a factor M does increase the
signal-to-noise ratio by a factor

√
M .
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Chapter 3

Methodology

In this chapter we will explain in more detail how our Schwarzschild method works. For each
potential, as complete as possible sets of orbits are integrated and stored in orbit libraries. Then,
a fitting routine assigns orbital weights to the orbits, in such a way that the observational data
is fitted the best. In this way, the potential that fits the observables the best will reveal its
characteristic parameters. We first describe how the potential and accelerations are computed in
order to do orbital integration. Then we describe how the code produces as complete as possible
sets of orbits by generating proper initial conditions. Then we explain what orbital properties are
stored in the libraries and how this is done. Finally we describe how we can use these libraries
together with our ‘observed’ mock galaxy to find the best-fit model. More information can be
found in van den Bosch et al. (2008).

3.1 Potential, mass and acceleration

We use the same code as van den Bosch et al. (2008). In their work they applied their model to
the kinematically-decoupled-core galaxy NGC4365. This is a giant E3 elliptical galaxy that shows
minor axis rotation. Their models are triaxial and their modeled potentials are based on a mass
distribution following the light and a central black hole. They do not implement an additional
potential form for a dark matter halo, but the code was written such that this can be implemented
very easily. In our mock galaxy the logarithmic potential describes both the luminous and dark
matter mass distribution (see equation 2.1). In this section we will, as an example, describe the
accelerations from this underlying potential, although any other potential form can be modeled as
well (for an example, see chapter 5).

Given the analytical form of the potential, we can compute the accelerations everywhere in all
three directions, x, y and z. These accelerations are needed to integrate individual orbits. We use
cartesian coordinates since the Schwarzschild code is designed to use them and since there is no
need to modify this. We do not include the contribution of a black hole. The accelerations are
determined by the gradient of the potential:

a = −5 Φ = −
(

d

dR
,

d

dz
,

1

R

d

dφ

)
Φ (3.1)

Of course, in our axisymmetric potential there is no acceleration in the φ-direction (aφ = 0). Its
acceleration in the R-direction is:

aR(R, z) = − d

dR
Φ(R, z) = − d

dR

[
1

2
v20 ln

(
R2
c +R2 +
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)]
= −v20

R

R2
c +R2 + z2

q2

(3.2)

Similarly, the vertical acceleration is given by:
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(3.3)

To convert the acceleration in cylindrical radius to accelerations in cartesian coordinates, we use
the simple relations x = R cos(φ) and y = R sin(φ) and decompose the radial acceleration vector
into vectors along the x- and y-direction. Thus:

ax = aR cos(φ) = aR
x

R
= −v20

x

R2
c +R2 + z2

q2

(3.4)

ay = aR sin(φ) = aR
y

R
= −v20

y

R2
c +R2 + z2

q2

(3.5)

In stead of providing an analytic expression of the potential, one can also use the light profile
of the system to model the potential of the system. To convert a surface brightness profile into a
triaxial density, a multi-Gaussian expansion or MGE (Cappellari 2002) can be used and assump-
tions need to be made about the mass-to-light ratio of the system. An example of such a MGE is
given in appendix A.

3.2 Initial conditions

In Schwarzschild modeling orbits are stored in a so-called orbit library. In order to produce an
orbit library we need to compute many different orbits, which are specified by initial conditions.
In this section, we describe how initial conditions are sampled, after we give a short overview of
the different orbital families that might exist in a galaxy.

3.2.1 Types of orbits

In order to be able to identify a best fitting model (in terms of determining the intrinsic properties
of the observed galaxy), the libraries need to consist of all orbital types. To make a complete as
possible set of orbits one needs to know what orbital types one can expect.
In general, orbits in axisymmetric potentials conserve two or three integrals motion. If an orbit
admits two integrals of motion, E and Lz, it would ultimately fill the entire area within the zero
velocity curve (ZVC). The ZVC is defined as the curve in the meridional (R,z)-plane where the
velocity of the orbit in this plane is zero (vR = vz = 0). The ZVC is unique for every combination
of energy and angular momentum. The ZVC of an orbit equals its equipotential (E = Ψ) in
the limit Lz → 0 and reduces to a point when Lz → Lz,circ, the circular orbit (see figure 3.1).
If an orbit is restricted to a sub-area within the ZVC (see figure 3.2), then this means that the
orbit admits a third integral of motion, which is not a classical one, i.e. we do not know yet
how to express it analytically. Since the angular momentum in the z-direction is conserved in an
axisymmetric potential, orbits with nonzero Lz never cross the center. These Z-tube orbits (they
are often referred to as loop orbits) circulate in a fixed sense about the center of the potential,
while oscillating in radius. The circular orbit that orbits the z-axis is the parent of the Z-tubes: a
circular orbit closes on itself after one revolution and does not oscillate in radius. Given its energy
it has the highest possible angular momentum, Lz,circ.

As we use a triaxial Scwarzschild code, the initial conditions generator also samples box orbits,
to be able to reproduce triaxial systems (see section 3.2.4). Box orbits have zero time-averaged
angular momentum. In this orbital family a star eventually passes close to every point inside a
rectangular box and therefore can cross the center.

In addition to tube orbits and box orbits, a subset of phase-space will also be occupied by
resonant or irregular orbits, although this will not be a large fraction.
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Figure 3.1: The ZVC curves for seven values of Lz at an energy corresponding to a circular orbit
indicated by the dot. The higher the angular momentum, the smaller the region covered by the
ZVC. The figure is taken from Cretton et al. (1999) and is based on their test model.

Figure 3.2: A regular orbit, admitting a third integral of motion, the thin tube orbit and the ZVC
curve around them in the meridional plane. The energy of the orbits correspond to the energy of
the circular orbit indicated by the dot. The definition of the angles wthin and w are indicated.
The figure is taken from Cretton et al. (1999) and is based on their test model.
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3.2.2 Initial conditions from observable space

Most often two options are used to generate initial conditions. The first one is to sample the space
of the integrals of motion E, Lz and I3. Every orbit with nonzero Lz touches its ZVC (Ollongren
1962). Given a set of (E, Lz) an angle w or a turning radius Rzvc is used to parametrize I3. This
angle (or radius respectively) was defined by the point at which the orbit touches the ZVC. To
be more precise, for every (E, Lz) there is exactly one orbit, the so-called thin-tube orbit, that
touches the ZVC at only one angle wthin. All other regular orbits touch the ZVC for at least two
values of w, one smaller and one larger than wthin (see figure 3.2). Orbits that do not have a third
integral of motion touch the ZVC everywhere. See Levison & Richstone (1985); van der Marel
et al. (1998); Cretton et al. (1999) for a more detailed description.

Figure 3.3: The surface brightness profiles of the individual orbits shown in all 99x99 light bins
of our field of view (3x3 kpc), seen edge-on, having an energy index of 9 in the library of q80v20
from attempt 3 in section 4.3 which consist of 20 different energies and NI2 = 8 and NI3 = 5. The
labels on the projected x′- and y′-axis show the separation from the central light bin in units of
bin numbers. We note that each orbit consist of N3

dither = 53 suborbits.

The second option is to sample observable space as uniformly as possible (Cappellari et al. 2006).
In this work we generate initial conditions with this option. The code is written such that two sets of
initial conditions (or start-spaces) are being generated, the (x,z)-start space and the stationary start
space, following the method described by Schwarzschild (1993). We choose a number of energies
Nener for our models and sample the orbital energies through a logarithmic grid in radius. So,
we specify a minimum, rmin, and maximum radius, rmax and space all Nener radii logarithmically
between rmin and rmax. The energies are defined by the potential at (x, y, z) = (ri, 0, 0) and are
identical for both start spaces.
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Figure 3.4: As in figure 3.3, but now having an energy index of 12. Higher energy orbits extend
up to larger radii.

3.2.3 (x,z)-start space

Most orbits cross the (x,z)-plane perpendicularly twice at z > 0 (see section 3.2.2). To reduce
duplications of orbits in our library we therefore first find the location of the thin orbit curves. At
a fixed angle θ0 = arctan(x0/z0) stars are launched at different values of radii in the (x,z)-plane
(z = Rxz,0 cos(θ0), where Rxz,0 =

√
x20 + z20) until the width of the orbit is minimal. This is

repeated for different angles θ0 and for all energies. In an axisymmetric potential there is only one
thin tube curve per energy. We sample starting positions in a linear open polar grid in between
the thin orbit curve and the equipotential. We choose NI2 angles θ0 and NI3 radii. Therefore,
this ‘orbit library’ will consist of Norb = Nener ×NI2 ×NI3 orbits. The initial y0-coordinate and
initial velocities in the x- and z-direction are set to zero. The initial velocity in the y-direction is
simply determined by: Ψ(x0, 0, z0)− E = 0.5v2y,0. We only sample initial conditions with vy,0 > 0
since the trajectories of the orbits with the opposite velocity direction will be identical. We include
such counter-rotating orbits at a later stage, by reversing the signs of the velocity vector correctly
(see section 3.5). Thus, effectively the single orbit library will be used twice. The set of initial
conditions generated as explained above is called the ‘(x,z)-start space’.

In figure 3.3 we show the surface brightness profiles seen edge-on of strongly bound orbits for
the q80v20 model with parameters q = 0.8 and v0 = 20 km/s for the logarithmic potential, as
described in section 4.3.3. This figure shows the different orbits for 8 different values for θ0 and 5
different values for I3 at energy index 9 (out of 20). The colors range from red to green to blue,
where red colors denote a relative high fraction of time the orbit spent in that particular light bin
and blue colors a low fraction of time. The left column corresponds to orbits with low values of θ0
and arise from integrating initial conditions sampled near the minor axis of the system. θ0 increases
as we move to different columns towards the right. Thus, in last column, the orbits are sampled
near the major axis of the system. In addition the bottom row of orbits are sampled near the
location of the thin orbit (Rxz,0 ' Rxz,thin). Successive rows are sampled at higher Rxz,0-radii, up
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Figure 3.5: As in figure 3.3, but now having an energy index of 15. Higher energy orbits extend
up to larger radii.

to an orbit near the Rxz,0-radius of the equipotential satisfying E = Ψ. With these definitions, the
orbit that approximates a circular orbit the best is seen in the right bottom panel. In reality every
orbit seen in the figure is the sum of 53 = 125 neighbouring suborbits: this is called ‘dithering’
and will be explained in 3.3. In figures 3.4 and 3.5 similar sets of surface brightness profiles of less
bound orbits are shown (energy indices 12 and 15 respectively). Less bound orbits extend up to
larger radii.

3.2.4 Stationary start space

Since the Schwarzschild code is designed to be able to reproduce triaxial systems, which consist of
a significant number of box orbits, the models need to include box orbits as well. The (x,z)-start
space only has few box orbits (van den Bosch et al. 2008). To include additional box orbits, another
‘stationary start space’ is being made. Since box orbits always reach a point in which they have
no velocity component anymore, i.e. they reach the equipotential E = Ψ (Schwarzschild 1979),
the initial conditions are chosen to lie on successive equipotential surfaces. For every energy, a
2D linear grid of spherical angles θ and φ determines the initial position r0 on the equipotential.
We specify NI2 initial angles θ0 and NI3 initial angles φ0. The ‘stationary start space’ contains
(resonant) box orbits, but none of the tube orbits, such that it is a useful space in addition to the
(x,z)-start space. Similar as in the ‘orbit library’, the ‘box orbit library’ consist of Nener×NI2×NI3
orbits. Together with the 2 (mirrored) orbit libraries from the (x,z)-start space, the fitting routine
will assign weights to all orbits from these three libraries.

In figure 3.6 we show the surface brightness profiles seen edge-on of the strongly bound box
orbits for the q80v20 model with parameters q = 0.8 and v0 = 20 km/s for the logarithmic potential,
as described in section 4.3.3. This figure shows the different box orbits for 8 and 5 different initial
values for the spherical angles θ0 and φ0 respectivly at energy index 9 (out of 20). As before the
colors range from red to green to blue, where red colors denote a relative high fraction of time the
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Figure 3.6: The surface brightness profiles of the individual box orbits in all 99x99 light bins of
our field of view (3x3 kpc), seen edge-on, having an energy index of 9 in the library of q80v20
from attempt 3 in section 4.3 which consist of 20 different energies and NI2 = 8 and NI3 = 5. The
labels on the projected x′- and y′- axis show the separation from the central light bin in units of
bin numbers. We note that each orbit consist of N3

dither = 53 suborbits.

box orbit spent in that particular light bin and blue colors a low fraction of time. From left to right
the angle θ0 is increased. From bottom to top angle φ0 is increased. Since here dithering is used as
well, every box orbit seen in the figure is the sum of 53 = 125 neighbouring suborbits (see section
3.3). In figures 3.7 and 3.8 similar sets of surface brightness profiles of less bound box orbits are
shown (energy indices 12 and 15 respectively). Less bound box orbits extend up to larger radii.

3.3 Integrator and orbital dithering

The intial conditions of both start spaces are integrated with a Runge Kutta integrator. To speed
up orbital integration, the accelerations in x, y and z (see equations 3.4, 3.5 and 3.3 in the case
of the logarithmic potential) are stored in a three-dimensional polar grid. During integration the
accelerations are computed by the method of trilinear interpolation from this grid. The code
ensures that the minimum relative accuracy of the interpolation grid is better than 10−4. Each
orbit is integrated for a duration of roughly 200 orbital time scales. We require that the energy of
each orbit is always conserved better than 0.1%. The integrator uses dense output, which makes
it possible to use more integration steps when the star changes direction quickly. We make sure
that the stored properties (see section 3.4) of all orbits are based on equal time intervals, even if
temporarily more steps are used.

van den Bosch et al. (2008) find that their models do not significantly improve when the total
number of orbital weights (3 ×Norb, see section 3.2.4) that need to be fitted is larger than 2000.
When trying to recover the mock galaxy parameters, we used Nener = 32, NI2 = 16 and NI3 = 16
to get a total of 3x32x16x16=24576 orbits. We found that choosing 3x20x8x5=2400 orbits was not
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Figure 3.7: As in figure 3.6, but now having an energy index of 12. Higher energy box orbits
extend up to larger radii.

good enough.
In stead of integrating Norb orbits in each start space, we could increase our sampling to enlarge

the accuracy of the model. In addition, to smooth the building blocks of the galaxy we are using the
method of ‘dithering’. This means that we split every orbit into N3

dither suborbits: each coordinate
is replaced by Ndither adjacent coordinates. Choosing an odd number for Ndither ensures that the
original orbit will be the central suborbit of the bundle. The observables of all suborbits will be
summed and stored as being the observables of the (bundled) orbit. In all our results we used
Ndither = 5. Every orbit is thus made from a bundle of 53 = 125 neighbouring suborbits. For our
choice of parameters, this means that we integrated 32x16x16x125 = 1024000 suborbits.

3.4 Storage grids and symmetries

3.4.1 Velocity histogram

For every orbit two histograms are being stored. The first histogram consist of a velocity axis and
an axis containing sky bins. The velocity bins are specified by the user and are determined by three
parameters: vwidth, vcen and Nv. We used vwidth = 80 km/s, vcen = 0 km/s and Nv = 41, such
that 41 velocity bins are linearly spaced between -40 km/s and +40 km/s. We choose a velocity
range of 80 km/s such that we cover a 4σ (in our mock galaxy model σ = 10.7 km/s) interval in
velocity. We choose an odd number of velocity bins Nv, such that the central velocity bin is given
by vcen. A higher number of velocity bins could increase the accuracy of the velocity profile, but
could also unnecessarily enlarge the disk space needed for storage. The sky bins are identical to
the kinematic bins that were used to obtain the kinematic moments of our mock galaxy.

The program stores what fraction of time an orbit was positioned at a specific sky bin while
having a velocity that corresponds to the velocity range of the specific velocity bin. In every
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Figure 3.8: As in figure 3.6, but now having an energy index of 15. Higher energy box orbits
extend up to larger radii.

time step an orbit has velocities exceeding the velocity range of the histogram, a count will be
added in either the first or last velocity bin, depending on the sign of the velocity. Therefore the
first velocity bin theoretically includes orbits that have velocities up to −∞ km/s, and the last
velocity bin includes orbits having velocities up to +∞ km/s. Summing over the velocity axis of
the histogram will give the fraction of time that an orbit has spent in a particular sky bin. For
low energy (strongly bound) orbits that completely fall into the field of view, an extra sum over
all sky bins will results in a fraction of time equal to unity. Higher energy (less bound) orbits, that
partially spend their time outside the FOV, will have a smaller sum, while the velocity histograms
of orbits that never enter the field of view will remain empty. We note that this is just a way of
normalizing the histograms.

We verified that choosing a velocity width of 80 km/s and 41 velocity bins, does indeed give
the correct properties of the velocity profile. We note that, in our case, in every kinematic bin
the theoretical velocity profile is Gaussian (≡ G(v)). However, the velocity histograms have finite
width and are discrete. First of all, we can not use the outer velocity bins, since these contain
velocities with a large range (up to ±∞ or up to ±vesc, the escape velocity). Secondly, suppose

velocity bin k allows the contribution of an orbit that satisfies vcen,k − 4̃v < v < vcen,k + 4̃v,

where 4̃v is the half velocity width of a velocity bin and where vcen,k is the central velocity in
velocity bin k. However, when computing the kinematics from the histograms the only thing we
know is what fraction of time the orbit spent in velocity bin k. Therefore the real velocity v is
being replaced by vcen,k. To check how large these effects are, we evaluate what the determined
raw moments would be if the real line profiles are indeed Gaussian:
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Figure 3.9: The errors in the velocity histogram on all four raw moments when choosing a certain
combination of vwidth(km/s) and Nv. The odd moments are not affected by the choice of param-
eters. The even moments are. For the odd moments we plot the absolute error of the library
with respect to the theoretical value. For the even moments we plot the relative error. Negative
(blue) values show that the library will underestimate the selected moment. Obviously, the best
results are obtained when choosing both a high velocity width and a high number of velocity bins.
A higher number of velocity bins will increase the storage space. Good results can already be
obtained when using vwidth = 80-90 km/s and Nv > 20.
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Figure 3.10: The first raw moments can always be obtained very accurate, whatever combination
of number of velocity bins and velocity width you take. See figure 3.9 for more information.

mn = 〈vn〉 =

Nv−1∑
k−2

vcen,k+4̃v∫
vcen,k−4̃v

G(v) vncen,k dv

Nv−1∑
k−2

vcen,k+4̃v∫
vcen,k−4̃v

G(v) dv

(3.6)

where we sum over all, except the outer, velocity bins k. In figure 3.9 the relative errors caused by
this velocity binning only is shown. The first and third moment are not affected by the discreteness
of the histogram, as confirmed in figure 3.10 where the recovered mean velocities are well distributed
around the theoretical zero mean velocity. The second and fourth moment however show deviations
when using vwidth < 70 km/s or when a small number of velocity bins is chosen. We see that the
best results can be obtained using a velocity width between 80 and 100 km/s and for at least 20
velocity bins. Due to this histogram binning the relative error on the second and fourth moment
are of order 0.1% and 2% respectively for our choice of parameters. If we, for example, used a
vwidth = 40 km/s, the estimated second moment would have been 78.3 km2/s2 in stead of 114.3
km2/s2. In figures 3.10 and 3.11 we show the recovered first and second moment after using all
our 100000 mock stars as initial conditions to make an ideal library (see section 3.6.1). In this way
all orbits of the library are equally important. However, recovering the second moments (figure
3.11), by adding up all orbital contributions, show systematic offset if bad choices are made for
the parameters of this velocity histogram. We confirmed that the first moment is not affected for
the same choices.

3.4.2 Surface brightness histogram

A second histogram is introduced to fit the surface brightness profile of our mock galaxy. Since we
will only use a relatively small number of kinematic sky bins, to keep a high S/N-ratio, we can not
use the same few kinematic bins to constrain the flattening of the mock galaxy. To fit the surface
brightness, we therefore use ‘light bins’. Since we use an additional histogram for the light only,
we do not need to store the line profiles of the orbits in this surface brightness histogram. In stead,
we just store the fractional time an orbit spent in each of the Nlight light bins.
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(a) (b) (c)

Figure 3.11: Demonstrating the effect of choosing a wrong combination of vwidth(km/s) and Nv
when trying to model the raw second moment. Panel (a): Good results, vwidth = 80 km/s and
Nv = 41. The histogram shows the recovered raw second moments for all bins on the sky plane
(here 101x101=10201) when making an ideal library in which the stars of the mock galaxies are
taken as initial conditions (see section 3.6.1). The full line shows σ2 = 114.3 km2/s2. The dashed
line includes the effect on σ2 when using a discrete histogram and fixed velocity width (see text).
Panel (b) shows the same as panel (a), but now the velocity width of the histogram has been
doubled. In panel (c) the velocity width is doubled again.

3.4.3 Octant grid

Both histograms are used in the fitting routine to find the weights of the orbits (section 3.5). Once
the orbital weights are determined, the distribution function of the system is known and predictions
can be made about the internal properties of the system. In order to do this, an octant grid is being
made during the orbital integration. This spherical grid consists of 40 radial bins, 5 angular bins
for θ and 4 angular bins for φ. The radial bins are logarithmically sampled between rmin and rmax,
similar to what was done to determine the orbital energies that were used to make the libraries.
In the octant grid, however, the first radial bin also inserts orbits that come arbitrarily close to
the center, while the last radial bin extends to infinity. Both spherical angles are sampled linearly
between 0 and π/2, such that an octant of space is being covered. At every equally spaced time
interval we determine in what 3D-cell of the octant grid the orbit is located. If the orbit is currently
not in the positive octant satisfying x > 0, y > 0 and z > 0, then by symmetry arguments, we
compute what its coordinates and velocities would be if it was in this octant (see section 3.4.4).
Then, the x-,y- and z-positions, the vx-, vy- and vz-velocities and all second (mixed) moments
are added to this cell. After the orbital integration is completed the mean of all quantities and
the fractional time an orbit has spent in a certain cell is computed. This is done for every orbit
separately. The octant grid can be used to predict the intrinsic properties of the mock galaxy as
soon as the determination of the best-fit orbital weights is completed.

3.4.4 Symmetries

Here we summarize the most important information from the similar section in van den Bosch
et al. (2008). All orbits in a separable potential are eightfold symmetric, whereas resonant and
irregular orbits from other potentials might not be. In order to be able to use them, the orbits
are made to satisfy the symmetries by applying a folding scheme. An asymmetric orbit has up to
seven mirror images when reflecting it in the principal planes. Every point can be mirrored in x-,
y- and z-coordinate. The resulting mirrored orbits would not have entered the library without this
approach, since the initial conditions are sampled from one octant only. Thus, in the Schwarzschild
code all eight mirrors are added to obtain an orbit that has three planes of symmetry.

In order to obtain the correct kinematic observables, we must also change the sign of the
velocities. However, changing it in the same way as the positional coordinates would result in
no net angular momentum for the resulting image. This is correct for box orbits, but can not
be the end of the story for tube orbits. Tube orbits must preserve the sign of one component of
the angular momentum. For example, the sign of Lz = xvy − yvx must be preserved for Z-tubes.
Therefore, when mirroring (x,y,z) into, let’s say, (−x,y,z), the velocities need to be changed from
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(vx,vy,vz) towards (vx,-vy,vz). The full symmetry relations can be found in van den Bosch et al.
(2008).

3.5 Nonnegative least square fitting

After completing the orbit libraries, we can proceed with the fitting routine. We require that the
sum of the orbital weights wi equals unity, i.e.

Norb∑
i=1

wi = 1 (3.7)

By construction, this requirement is equivalent to fitting the fractional light of the system in our
field of view. In addition, both the measured kinematics inside our kinematic bins and the surface
brightness inside all light bins separately must be fitted by finding the best combination of orbits
from the libraries. In contrast to van den Bosch et al. (2008) we do not use the surface brightness
as a constraint only, since we model a composite system in which the luminous mass has a different
flattening than the dark mass (see equations 2.2 and 2.5). We calculate the theoretical surface
brightness (see equation 2.4) in each of our light bins and normalize this by the total luminous
mass (see equation 2.13).

Since our FOV does not cover the whole of our extended mock galaxy, we only observe roughly
28-32% of the luminous mass, depending on the viewing angles (see section 2.3). The model
returned by the fitting routine should fit the fractional light, compared to the system’s total light,
in each of the light bins. Thus:

mj =

Norb∑
i=1

wimij (3.8)

where we sum over all orbits i, mij is the fraction of time orbit i spent in light bin j and where
mj is the ‘observed’ theoretical and fractional surface brightness in light bin j.

Simultaneously the kinematics are fitted. In every kinematic bin j we compute the mass-
weighted raw moments 〈vnj 〉:

mj〈vnj 〉 =

Norb∑
i=1

wimij〈vnij〉 (3.9)

where again we sum over all orbits i. This time mij is the fraction of time orbit i spent in kinematic
bin j and mj is the ‘observed’ theoretical fractional surface brightness in kinematic bin j. 〈vnij〉 is

the raw nth moment of orbit i in kinematic bin j:

〈vnij〉 =

Nv−1∑
k=2

hij(vcen,k) vncen,k4v

Nv−1∑
k=2

hij(vcen,k)4v

(3.10)

where again we sum over all, except the outer, velocity bins k for every orbit i in kinematic bin
j. 4v is the full size of a velocity bin and hij(vcen,k) is the fraction of time that orbit i spent in

kinematic bin j with velocity v in the range [vcen,k − 4̃v , vcen,k + 4̃v].
We use a non negative least square solver to ensure that all orbital weights are positive. The

fit is based on minimizing χ2
tot:

χ2
tot =

Nobs∑
m=1

[
Model[m]−Data[m]

Error[m]

]2
(3.11)

where m runs over all Nobs observables. The number of observables is given by:

Nobs = 1 +Nlight + 4Nkin (3.12)
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which includes the contribution of the total light inside our FOV (1), the surface brightness inside
all light bins (99x99), and 4 times (four moments) the number of kinematic bins (either 9x9 or
3x3).

We note that we can investigate the contribution of all terms to the total χ2
tot by writing:

χ2
tot = χ2

light + χ2
kin + χ2

FOV light

= χ2
light + χ2

mom1 + χ2
mom2 + χ2

mom3 + χ2
mom4 + χ2

FOV light

(3.13)

The fitter minimizes: |Ax− b|2, where A is a (m x n)-matrix in which all m=Nobs properties
of all n=Norb orbits are stored. Vector x is a (n x 1)-matrix, that will contain the best fit orbital
weights. Vector b is the (m x 1)-matrix containing all corresponding observables.

3.5.1 Observables

The estimators of the kinematic moments are described in section 2.4.1. We estimate the cor-
responding errors of these moments by assuming a Gaussian error of 2 km/s on the line-of-sight
velocity measurements of the stars, as described in section 2.4.2. The errors on the light in each
of the light bins are set to 2% as in van den Bosch et al. (2008).

3.5.2 Regularization

The solution of our minimization problem may be a distribution for the orbital weights that is
rapidly varying, essentially a sum of delta-functions. The orbital distribution function can be
smoothened by adding extra terms to the χ2-fitting algorithm, such that:

χ̃2
tot = χ2

tot + χ2
reg (3.14)

This is called regularization. Regularization should not change the solution of recovered best-
fit parameters of the galaxy. Adding regularization does cause the confidence intervals of the
parameters to become smaller, since it decreases the freedom of the models (van den Bosch et al.
2008). In this work we do not add regularization terms in our fitting routine.

3.6 Testing the integrator and fitting routine

In chapter 4 we will check whether our method is able to recover the true parameters of our mock
galaxy given the true potential functional form. Then, in chapter 5 we search for the best-fit
parameters for more commonly used potentials, because, in reality, the gravitational potential
functional form in a system like the Sculptor dSph is unknown. Before we can actually use the
method to recover characteristic parameters of the modeled potentials, we perform tests to check
whether the integrator and fitting routine work fine when using an ideal library.

3.6.1 An ideal orbit library

We tested the Schwarzschild code by integrating the positions and velocities of all 105 stars in our
mock galaxy as initial conditions for the orbits. In this way we construct an ideal library, because
these are drawn from the true distribution function of the system. This implies that all orbits
should be represented in our model with equal weights. As we used Ndither = 5, 105/53 = 800
orbits are stored in this library.

The first test we performed was to give by hand all orbits of this ideal library equal weights.
We found that this recovers the properties of our mock galaxy, such as the light distribution and
the kinematic moments, showing that the potential was correctly added to the code and that the
orbits were well integrated. In figure 3.12 we show the values for the kinematic moments recovered
for all 101x101 sky bins, that were used for both the kinematics and the light in making the ideal
library, on the sky. The median of the first three moments agree with the expected values, while
the fourth moment is predicted too low. We explain this by the fact the velocity histograms that
were used to compute all moments, are binned and can cause deviations. In section 3.4.1 we show
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Figure 3.12: Histograms showing how well the observables are recovered when all orbits in our
ideal orbit library are given equal weights. The odd moments show no deviation from zero. The
second moment roughly has its mean at σ2 = 114.3 (km/s)2. The fourth moment, which should
be 3σ4 = 39184 (km/s)4, is underestimated by roughly 2%, which matches the predictions made
from figure 3.9.

that the fourth moment would be underestimated by roughly 2% by our choice of parameter vwidth
and Nv.

The second test we performed was to use the fitting routine to find the orbital weights. As input
to the fitting routine we used the surface brightness profile I(x′, y′) given by equation 2.4 and the
theoretical properties for the kinematics, as described in section 2.1. Panel (a) of figure 3.13 shows
orbits were roughly given equal weights as a best fit, implying that the correct distribution function
was recovered. In panel (b) we show the isodensity contours for both the model (full contours)
and our mock galaxy (dashed countours following equation 2.4). The recovered variances from the
line-of-sight profiles in all bins of our field of view are shown in panel (c). In panel (d) we show
how the octant grid (see section 3.4.3) can be used to investigate the internal second moment in
direction parallel to the major axis of the galaxy. The median shows that the octant grid does
recover this second moment quite well, although it shows a wide range of values.
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(a) (b)

(c) (d)

Figure 3.13: Some of recovered properties of our mock galaxy after fitting our ideal library to our
mock data. All orbital weights are roughly equal to 1/800 = 0.00125 (panel (a)). In panel (b) we
show that the same isodensity contours for both the model and our mock galaxy overlap. In panel
(c) and (d) we see that both the variance for the radial velocities in all 101x101 sky bins and for
all intrinsic 3d-elements have values around σ2.
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Chapter 4

Recovering the mock galaxy
parameters and properties

In section 3.6 we used an ideal orbit library, based on the true distribution function of the mock
galaxy, and showed that our Schwarzschild model does recover its properties (light + kinematics).
In reality we do not know which is the correct potential and want to find it with our Schwarzschild
method. In order to test whether our model can recover the characteristic parameters q and v0 of
the true potential, we make a grid of models in which we vary the values of these parameters. This
allows us to check whether the correct underlying model gives the best fit. This is indeed the case,
but we note that one needs to be careful when making choices about how the models should be
built. We therefore start this chapter by showing how we recovered the mock galaxy parameters.
Later we elaborate on the wrong choices we made for the various models, such that, even if the
correct underlying potential was chosen for the model, the results were not satisfactory.

4.1 High resolution models

We make high resolution models after settingNener = 32, NI2 = 16 andNI3 = 16. For the dithering
we used Ndither = 5, such that both the orbit and the box orbit library consist of 32x16x16x53

= 1024000 suborbits and thus of 32x16x16=8192 independent orbits. The fitting routine makes a
mirrored copy of the orbits and is therefore fitting 3x8192=24576 weights. This number is much
larger than 2000 above which van den Bosch et al. (2008) found no significant improvement in
their fits. We note that using roughly one-tenth as many orbits does not result in good models in
our case (see section 4.3). The lowest energy orbits are set by rmin = 101.81 = 64.5 arcsec along
the major axis, which corresponds to 25 pc at a distance of 80 kpc. The highest energy orbits are
set by rmax = 105.11 = 1.29x105 arcsec, which corresponds to 50 kpc.

We decided to fix the viewing angles to an edge-on view and the core radius to Rc = 1 kpc,
the true value. In our grid of input characteristic parameters used to build the orbit libraries, we
therefore vary the flattening parameter q and mass parameter v0. Since our mock galaxy has been
made for q = 0.8 and v0 = 20 km/s we sample the grid around these values from 0.72 to 0.96 in
flattening and from 11 km/s to 29 km/s for v0. We chose 4q = 0.04 and 4v0 = 3 km/s. We name
the models by the values of their parameters: qXXvYY in which XX = q100 ≡ 100q and YY =
v0 in km/s. We make mock observables following the description in section 2.4. Since we do not
want to have errors on the moments which are comparable to the moments themselves, we chose
to sample 9x9 bins on the sky when pretending to observe 105 stars and 3x3 bins when pretending
to observe 104 stars (see section 2.4.3). Using the high resolution models we found that, in order
to extract information from the light profile, taking 45x45 light bins with 2% error is too few.
Therefore, we set the number of light bins to 99x99. We kept the error of 2% in each light bin.

For each of the models using a 2.2Ghz AMD Opteron(tm) Processor 6174, generating the initial
conditions for both the orbits and the box orbits takes 2-3 hours. Making one orbit library (out
of two) takes 3-4 days. The libraries each take roughly 2.5-3.0 GB disk space. The fitting routine
needed 1-3 days to compute the best fit orbital weights, while using 99x99 light bins, either 9x9
or 3x3 kinematic bins for using 105 or 104 stars respectively and while not adding regularization.
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Figure 4.1: Contours of constant χ2 computed after fitting our mock data consisting of 105 stars
inside our field of view containing 9x9 kinematic bins, in a known edge-on view. Each of the nine
subplots show the corresponding 1-,2- and 3-sigma probability contours around the best fit model
on the grid. From top left to bottom right: fitting total mass, light, first raw moment, second raw
moment, third raw moment, fourth raw moment, regularization terms, all constraints (total), all
raw moments (kinematics). We note that all terms are not fitted independently from eachother:
χ2
tot is being minimized. The term concerning the light (χ2

mom0 ≡ χ2
light) is dominating the shape

of the contours in the total fit (χ2
tot).
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Figure 4.2: The light distribution after fitting the high resolution q80v20 library to our mock data
consisting of 105 stars in our field of view, assuming an edge-on view. The light is fitted in 99x99
bins, the kinematics in 9x9 bins. We show the relative error on the surface brightness profile. The
relative errors on the light are lower than in those of the q72v11 and q96v29 models seen in figures
4.4 and 4.6.

(a) (b)

Figure 4.3: As in figure 4.2, but now showing the fitted second (a) and fourth (b) velocity moment.

The fitting routine needs 1.9 GB memory usage.
Figure 4.1 shows the results after ‘observing’ 105 stars edge-on, while using 9x9 kinematic bins

on the sky. Colored contours of constant χ2, corresponding to 1σ-, 2σ- and 3σ-confidence intervals
(red, green and blue respectively), are shown in each of the panels. If shown, light grey contours
show either 4χ2 = 1.0 or 4χ2 = 0.1, where:

4χ2 ≡ 4χ2
ij,k = χ2

ij,k −min(χ2
k) (4.1)

where χ2
ij,k corresponds to the value of χ2 for model q = i and v0 = j and where min(χ2

k) denotes

the χ2-value for the best fit model. The subscript k emphasizes that the χ2-values are computed
for the observables in panel k only. For two degrees of freedom the 1σ-, 2σ- and 3σ-confidence
intervals are defined by4χ2 equal to 2.30, 6.17 and 11.8 respectively (Press et al. 1992). The panels
show, from top left to bottom right, the decomposition of χ2

tot in the χ2-terms corresponding to
the total light (mass), surface brightness (mom0), all kinematics moments separately (mom1 to
mom4), regularization (reg), total fit (total) and all kinematic moments together (kin), see equation
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(a) (b)

Figure 4.4: As in figure 4.2 in panel (a), but now showing the light distribution after fitting the
high resolution q72v11 library to our mock data. In panel (b) we show the light fit along the major
axis of the system.

(a) (b)

Figure 4.5: As in figure 4.4, but now showing the fitted second (a) and fourth (b) velocity moment.

3.13 and 3.14. Therefore, it can be seen that the term χ2
light (surface brightness) is the dominant

term in χ2
tot. The total light in our field of view (top left panel) is not significantly fit better for

any of the models and that is why no contours are visible in this panel. In addition, only for
low mass models, the kinematic terms are significantly worse. We note that the fitter minimizes
χ2
tot and that, because it is not minimizing all χ2-terms separately, it is not necessarily true that

the best fit model arose because of fitting the light only (as one might guess from comparing the
contours). When we downsample the number of stars this becomes clear, as the contours span
a larger area although the to be fitted surface brightness profile is identical (see section 4.2 and
figure 4.8). Since we did not use regularization, that panel (bottom left) remains empty. From the
bottom middle panel, showing the total fit, we conclude that we can recover the true parameters
of our mock galaxy, although the flattening parameter is not constrained very well within the
2σ-boundary. For datasets with 105 stars, seen edge-on, we find q = 0.8+0.04

−0.04 and v0 = 20+3
−3

km/s, where the upper and lower bounds are set by a 1σ-confidence interval, although we can also
not rule out a model with q = 0.96 and v0 = 23 km/s. For the best-fit model q80v20 we find
χ2
red ≡ χ2

tot/Ntotal = 0.0209, where χ2
tot and Ntotal are given by equation 3.11 and 3.12. We note

that this reduced-χ2 is much smaller than unity, because of the fact that the light profile is fitted
very well and because the number of light bins dominates the term Ntotal for our choices.

In figure 4.3 we show how the second and fourth moment are fitted in the best fit and true
q80v20 model. The modeled moments are shown by the full blue lines and the observed moments
with errorbars are shown by the red data points. The 9x9 kinematic bins are aligned into this
1-dimensional plot by simply running over all 81 kinematic bins from the bottom left to the top
right kinematic bin in our field of view. Therefore, kinematic bin numbers 36 to 45 show the fit
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(a) (b)

Figure 4.6: As in figure 4.2 in panel (a), but now showing the light distribution after fitting the
high resolution q96v29 library to our mock data. In panel (b) we show the light fit along the major
axis of the system.

(a) (b)

Figure 4.7: As in figure 4.6, but now showing the fitted second (a) and fourth (b) velocity moment.

along the major axis of the system. Note that the dashed lines visualize the boundary of our field of
view and that blue lines are thus not connected at these boundaries. As the model is symmetric in
the even moments the modeled moments in each row of 9 kinematic bins on the sky are symmetric
around its central kinematic bin (for example kinematic bins 1 and 9). With the same argument,
all fits, except fits of the central z = 0 row, appear twice. The modeled even moments in kinematic
bin numbers 1-9 are therefore identical to them in kinematic bin numbers 73-81. In figures 4.5 and
4.7 we show the same results, but for the q72v11 and q96v29 model respectively. A bad kinematic
fit in the fourth moment is clearly visible for the q72v11 model.

In figures 4.2, 4.4 and 4.6 we show how the light is fitted for the q80v20, q72v11 and q96v29
model. In panels (a) the relative error on the surface brightness of the model with respect to
the ‘observed’ surface brightness (see section 3.5) in each light bin is shown. Note the small
relative errors, but that the q80v20 model has the smallest range in relative errors. In panels
(b) the modeled surface brightness profile (blue full line) together with the ‘observed’ data with
2% error bars along the major axis are plotted, showing that all models fit the light quite well.
Thus, although the surface brightness profile is fitted well in all models, there is still a significant
difference between the models when combining all Nlight light bins.

4.2 Downsampling and folding data

Assuming an edge-on view and using 104 stars in the field of view and 3x3 kinematic bins, we see
in figure 4.8 that the uncertainties in the parameter ranges become large. The best fit is still found
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Figure 4.8: Similar to figure 4.1, but now using 104 stars and 3x3 kinematic bins. Both flattening
parameter q and mass parameter v0 are not constrained very well anymore.

at the q80v20 model, as seen by the grey contours that satisfy 4χ2 = 1.0 with respect to the best
fit model, although the 1σ- and 2σ-contours show that many other models can not be ruled out as
they do not appear to produce significantly worse fits.

To confine the best-fit contours to a smaller region, we started to fold the data in the case
of 104 stars. Since we have an axisymmetric system, we could fold our data into the kinematic
bins corresponding to the positive semi-major axis, the positive semi-minor axis and the remaining
kinematic bins of the positive quadrant. Assuming that the system is not rotating, which is true
in our case, we can simply move the stars towards the analogous kinematic bins without changing
the velocity signs of the stars. Using 3x3 kinematic bins, this means that the kinematic bins in
the corners of our field of view will be combined, as well as the two outer kinematic bins along the
major and minor axis. The central kinematic bin is not combined with any other kinematic bin
and we end up with 4 kinematic bins in which we now included all 104 stars. Statistically, the raw
moment estimators will be closer to the real raw moments. The errors on the moments become
smaller as the number of stars per kinematic bin has increased, but on the other hand the number
of kinematic bins to be fitted decreases. We compute the raw moments and their errors in these 4
bins, but as our program still expects an input having 3x3 kinematic bins, we copy the kinematics
back to the corresponding other 5 kinematic bins. Since these terms must not contribute anymore
to the value of χ2, we have increased the errors in their kinematic moments by a factor of 105.
Because of symmetry in the model on the field of view, changing the orbit weights will affect the
fits in all corresponding kinematic bins in the same way. Therefore, the kinematic bins having the
non-increased errors will always be the dominant term in χ2 compared to them having the large
errors. In figure 4.9 we show the resulting χ2 contours. Using this approach we find no significant
difference with respect to the approach in which we do not fold the data (see figure 4.8).

In stead of folding the data when using 3x3 bins, we also folded the data using 9x9 bins. The
mean number of stars in each bin roughly increase in by a factor of 92/52 = 3.24 (with respect
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Figure 4.9: Similar to figure 4.8, but now using the approach of folding the data from 3x3 into 2x2
kinematic bins. The probability contours are similar to the case without folding (see figure 4.8).

to not folding the data) to 104

25 = 400. This number is lower than 4 since the number of stars in
the central bin remains the same and the number of stars in the kinematic bins along the positive
semi-major axis and the positive semi-minor axis are roughly doubled. The errors on the velocity
moments will be still higher than in the case of using 105 stars, in which the mean number of

stars equals 105

81 = 1235, but the difference is not that large anymore (factor of ∼ 3). We argue
that using more and therefore smaller kinematic bins might put stronger constraints on the best-fit
model. The price being paid are the larger errors compared to folding with 3x3 kinematic bins.
Folding the data in this way, we find that the regions spanned by the 1σ-, 2σ- and 3σ-contours do
get smaller (see figure 4.10) and that the correct characteristic parameters of the potential can be
recovered within a 1σ-confidence interval when observing 104 stars in an edge-on view. We find
that q = 0.80+0.04

−0.04 and v0 = 20+3
−3 km/s, within the 1σ-confidence interval, although we can also

not rule out a model with q = 0.96 and v0 = 23 km/s and that χ2
red = 0.00221 for the best-fit

model q80v20. As expected, the constraints that can be put on these parameters are still less
strong than in the case of 105 stars (see figure 4.1), as the 2σ-confidence interval now span over a
larger area.

4.3 Rejecting bad models

Provided that the models fit the light profile in a sufficient number of bins and that the libraries
itself consist of a sufficient number of orbits, our models fit the data very well and recover the mock
galaxy parameters. We will now elaborate on the choices that we have made in order to converge
to those good models and why not meeting these requirements will not result in reliable models.
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Figure 4.10: Similar to figure 4.9, but now using the approach of folding the data from 9x9 into
5x5 kinematic bins using 104 stars.

4.3.1 Attempt 1: Too small a number of light bins (9x9)

Our first guess was to integrate 105 suborbits and 105 box suborbits and to use Nener = 20, NI2 = 8
and NI3 = 5 in order to get 800 independent orbits for both types of orbits (in all attempts we
used Ndither = 5). The fitting routine was therefore fitting 3x800=2400 weights. This number was
comparable to the number of orbits that van den Bosch et al. (2008) used. The range of energies,
defined by rmin and rmax, and the error in each light bin were identical to those used in the high
resolution models. The main difference is that we were using the same number of light bins as
kinematic bins (9x9). The kinematic observables were computed in the same way as before. In
this case, the light was fitted extremely well for almost all models, except the models with very low
mass parameter v0. As shown in figure 4.11, we found that using this configuration a minimum
mass can be constrained assuming an edge-on view towards the system. But, as we only use a few
number of light bins, it is not possible to put strong constraints on the flattening of the system.
We were not able to determine the true flattening (q = 0.8) of the system.

In figures 4.12, 4.13 and 4.14 we will show some of the recovered properties of the mock galaxy
for 3 different models: q72v20, q80v20 and q80v30. The q72v20 model is significantly worse than
the q80v20 and q80v30 models. The isodensity contours of the light along the major axis for both
model and data do not overlap (they do in the other models) and the recovered second velocity
moments have much broader range of values compared to the other two models.

4.3.2 Attempt 2: Too large a number of kinematic bins (31x31)

As a second attempt we tried to model 31x31 bins for both the light and the kinematics. As the
errors on the moments will be significantly larger as the mean number of stars per kinematic bin

drops by a factor 312

92 ' 12, we decided to fit the moments obtained from inserting equal weights
after making an ideal orbit library (see section 3.6.1) with 31x31 kinematic bins, in order to rule
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Figure 4.11: Figure showing contours of constant χ2 for our models in attempt 1, using 9x9 light
and kinematic bins and generating 105 stars in our field of view, assuming an edge-on view. The
grid shows all models between q = 0.72 and q = 0.98 (4q = 0.02) and between v0 = 10 km/s and
v0 = 30 km/s (4v0 = 2.0 km/s). Only models with mass parameters v0 < 12 km/s can be ruled
out.

(a) (b)

Figure 4.12: Some of the recovered galaxy properties after fitting the q72v10 library of attempt 1
to our mock data consisting of 105 stars in our field of view (edge-on view). In panel (a) we show
the light contours from both model (dashed) and ‘observation’ (full). The contours do not fully
overlap along the major axis of the system. In panel (b) we show the recovered second moment in
each kinematic bin. Along the minor axis, the second moments are much too high, whereas their
values are much too low diagonally going outwards. This is an example of a bad model.
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(a) (b)

Figure 4.13: Some of the recovered galaxy properties after fitting the ’correct’ q80v20 library of
attempt 1 to our mock data consisting of 105 stars in our field of view (edge-on view). In panel (a)
we now show the relative error on the light profile ([model-data]/data). Contours of both model
and data do not give any information, as they fully overlap. In panel (b) we show the recovered
second moment in each kinematic bin, which is clearly much better than in the case of q72v10.

(a) (b)

Figure 4.14: As in figure 4.13, but now for model q80v30. χ2-analysis shows that this model is
fitting the data even better, although not significantly better, than the true model q80v20: the
light profile is fitted slightly worse, whereas the kinematic are fitted better.

out that such bad, but realistic, kinematics were going to worsen our results. With this approach
we ensured that possible binning effects are diminished (see section 3.4.1). For this attempt we
made a coarse grid and used the same number of orbits as in attempt 1 (see section 4.3.1). The
flattening was varied from 0.6 to 1.0 in steps of 0.1, while mass parameter v0 was varied from 10
to 30 km/s in steps of 5 km/s. This resulted in a best-fit model at a flattening of 0.6, but we
note that physical models are only recovered as long as q ≥ 0.707 (see section 2.1). Comparing
the models with high enough flattening did give the correct best-fit model. However, a closer
look at the recovered properties of this q80v20 model showed us that the light was not fitted well
along the major axis of the system. In addition, the second raw moments in all kinematic bins
showed a large range in values. Both claims are supported by figure 4.15. We checked whether
the initial conditions were not complete in energy and angular momentum space, but we did not
find a shortcoming. We decided to change our models another time by decreasing the number of
kinematic bins while increasing the number of light bins. We decreased the number of kinematic
bins, such that the model gets more freedom in fitting the velocity moments, and since it seemed
that the kinematics were fitted the worst (as χ2

kin was the dominant term in χ2
tot).

51



(a) (b)

Figure 4.15: The recovered surface brightness profile and second velocity moments after fitting the
‘correct’ q80v20 library of attempt 2 to our ideal dataset with an edge-on view. In panel (a) we
show the fitted light profile, where you can clearly see an abnormal pattern along the major axis.
In panel (b) we show the recovered second moment in each kinematic bin, which shows a large
range of values, implying that the fit is not very well.

4.3.3 Attempt 3: Too few orbits while using 9x9/3x3 kinematic bins
and 99x99 light bins

In this section we show the shortcomings when using the same number of kinematic and light bins
as in our good high resolution models, but when using the same number of orbits as in attempt
1 and 2 (800, see section 4.3.1). We show that generating orbit libraries that do not consist of a
large enough number of orbits will not give satisfactory results.

Since it is possible that the libraries contain too few different types of orbits in order to fit
the kinematics in all 31x31 kinematic bins well, while keeping the light fitted well, we started to
use a different number of bins for both the light and the kinematics in our third attempt. The
number of kinematic bins was decreased to 9x9 again (as in attempt 1), while the number of light
bins was increased to 99x99 to be able to get more information from the light profile. We used
the realistic mock kinematics again (as in attempt 1) and the same number of orbits as in our first
two attempts (800, see 4.3.1). We again did not recover the correct parameters of our potential.
A possible explanation is that still the light profile was not fitted well along the major axis of the
system, even if the true q80v20 model (figure 4.16) or the best-fit q96v20 model (figure 4.18) was
chosen. In figures 4.17 and 4.19 we show the corresponding recovered even velocity moments. In
both cases the second moments in the central kinematic bins along the major axis (bins 40-42) are
rather underestimated. A systematic trend is visible in the recovered fourth moment, in the sense
that kinematic bins in the columns around the minor axis (the central kinematic bins in each row
of kinematic bins) have significantly larger values for its fourth moments than in the rest of our
field of view, although the model does fit the data within the errors. In our good high resolution
models, which are already described in section 4.1, we have therefore increased the number of
orbits roughly by a factor of 10 in order to rule out that, in case we still do not fit the light profile
well, we had used too few orbits in our previous attempts. As we have shown in that section, the
data is fitted well when using more orbits.

To summarize section 4.3, bad choices for models are (1) using too few a number of light bins,
(2) using too many kinematic bins and (3) using too few orbits in our orbit libraries. We note that
taking too few kinematic bins, will not be satisfactory as well, as discussed in section 4.2.

52



(a) (b)

Figure 4.16: The results after fitting the true q80v20 library of attempt 3 to our mock data
consisting of 105 stars in our field of view, assuming an edge-on view. This time the light is
fitted in 99x99 bins, the kinematics in 9x9 bins (see grid). In panel (a) we show the fitted surface
brightness profile, where you can clearly see an abnormal pattern along the major axis. In panel
(b) we show the fit along the major axis of the system.

(a) (b)

Figure 4.17: As in figure 4.16, but now showing the fitted second (a) and fourth (b) moment. Both
fits are reasonable.

(a) (b)

Figure 4.18: As in figure 4.16, but now showing the results for the best fit model q96v20. Even in
this model the light is not fitted well.
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(a) (b)

Figure 4.19: As in figure 4.18, but now showing the fitted second (a) and fourth (b) moment. The
quality of the kinematic fit is similar to the one of the q80v20 model.
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Chapter 5

NFW models: constraining the
mass of our mock galaxy

We have shown that the Schwarzschild method can constrain the correct flattening and mass when
the true functional form of the potential is known. Here we tackle the problem more realistically
by allowing a different potential functional form. We modify the potential corresponding to a
axisymmetric NFW-profile, following Vogelsberger et al. (2008):

Φ(r̃) = −4πGρ0R
3
s

[
ln(1 + r̃/Rs)

r̃

]
(5.1)

With respect to the spherical NFW-profile (Navarro et al. 1996), the radius r =
√
x2 + y2 + z2

is being replaced by a newly defined radius r̃ = (ra+r)rE
ra+rE

, in which rE =
√

(xa )2 + (yb )2 + ( zc )2

is the triaxial ellipsoidal radius, Rs the scale radius and ra a transition radius. We require that
a2 + b2 + c2 = 3, such that choosing equal axes lenghts, i.e. a = b = c = 1, will result in the
spherical NFW profile. For r >> ra, r̃ → r, whereas for r << ra, r̃ → rE . Since we use a = b, we
obtain an axisymmetric system in the central regions, whereas the potential becomes spherical in
the outer regions. We use ra = 10 kpc and since our mock field of view is 3x3 kpc, centered on the
central parts of our mock galaxy, we might say that in this region r̃ ' rE . We note that assuming a
potential Φ does not garantee that ρ > 0 everywhere and that this must be checked. The transition
radius allows us to ensure that the total density, computed from the Poisson equation, is positive
up to at least the orbits possessing the highest energies. We verified that choosing ra = 10 kpc
does satisfy this criterion as long as the flattening c/a ≥ 0.70, see apendix B. Simply replacing r by
rE in stead of r̃, and thus ignoring the transition radius, only gives positive total densities inside
the field covered by all orbits for the most round models: c/a ≥ 0.92 (assuming a scale radius of
1.0 kpc). The total density corresponding to the triaxial Vogelsberger potential is given by:

ρ(x, y, z) =
∇2Φ(x, y, z)

4πG
(5.2)

where

∇2Φ =

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

]
Φ (5.3)

such that

ρ(x, y, z) = −A
3∑
i=1

{
x[i]2

(
C1 +

C2

a[i]2

)2

B1

+B2

[
C1 +

C2

a[i]2
+ x[i]2 C3 +

(
x[i]

a[i]

)2

C4 +

(
x[i]

a[i]2

)2

C5

]}
(5.4)

where (x[1],x[2],x[3]) = (x,y,z) and (a[1],a[2],a[3]) = (a,b,c) respectively and in which:
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A = ρ0R
3
s (5.5)

B1 =
1

r̃

[
2(D2−D1)

r̃
− 1

(Rs + r̃)2

]
(5.6)

B2 =
1

r̃
[D1−D2] (5.7)

C1 =
1

ra + rE

(rE
r

)
(5.8)

C2 =
ra + r

(ra + rE)2

(
ra
rE

)
(5.9)

C3 = − 1

r2(ra + rE)

(rE
r

)
(5.10)

C4 =
2

r(ra + rE)2

(
ra
rE

)
(5.11)

C5 =
ra + r

rE(ra + rE)

[
2

(ra + rE)2
− 1

rE2
− 1

rE(ra + rE)

]
(5.12)

D1 =
1

Rs + r̃
(5.13)

D2 =
1

r̃
ln(1 + r̃/Rs) (5.14)

In this chapter we search for the best-fit parameters for scale radius Rs, mass M1kpc and flattening
c/a. We define that mass M1kpc, expressed in units of M� of the model, such that it resembles
the total enclosed mass within 1 kpc from the center in a spherical NFW profile with scale radius
Rs. The mass of a spherical NFW profile is divergent and is given by:

MNFW (Rmax) = 4πGρ0Rs
3

[
ln

(
Rs +Rmax

Rs

)
−
(

Rmax
Rs +Rmax

)]
(5.15)

Therefore:

M1kpc ≡MNFW (Rmax = 1 kpc) (5.16)

Given a mass M1kpc and scale radius Rs we compute ρ0 by equation 5.15. It is this value that is used
in the corresponding parameter of the axisymmetric Vogelsberger potential (equation 5.1) when
making the orbit libraries. We note that the parameter ρ0 of a NFW profile does not represent the
central density, as it did in the composite model of our mock galaxy (equation 2.2). In an NFW
profile the density diverges towards the center.

5.1 Setting up a grid of models

As in chapter 4 we will set up a grid of models in which the characteristic parameters of the
Vogelsberger potential are varied. Therefore, we first need to develop an intuition for what model
will resemble most closely the true potential. In order to estimate for what parameter range we
should make our Vogelsberger models, we do a number of fits.

5.1.1 Fitting the potential

First, we search for what parameters of scale radius, mass and flattening the Vogelberger potential
fits best the true logarithmic potential of our mock galaxy (q = 0.8, Rc = 1.0 kpc, v0 = 20 km/s
in equation 2.1). On a grid where we set y = 0 and where both R = x and z range from 0.2 to
2.0 kpc, where consecutive coordinates are spaced by 0.1 kpc, we compute the true potential of
our mock galaxy. Then we find the best-fit parameters for the Vogelsberger potential on the same
grid. We do this in two different ways: either fixing the parameters Rs and M1kpc or fixing Rs and
c/a.
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In the first approach we fix the scale radius and mass of the system. After setting a coordinate
grid of Rs and M1kpc, we use a fitting routine to find the optimal value for the flattening of the
potential and the same for an offset parameter Φ0 for the potential. The latter parameter has no
physical meaning and only shifts the potential upwards or downwards. This extra freedom is needed
in order to make a fair comparison between the fits. For every combination of parameters the value
of Φ0 will change. We put constraints on the values of the flattening such that values smaller than
0.7 (negative densities) and larger than 0.99 (round model) are not allowed. In panel (a) of figure
5.1 we show the best-fit parameters of the flattening on a grid ranging from Rs = 0.1 to Rs = 20
kpc (4Rs = 0.1 kpc) and from log10(M1kpc) = 6.0 to log10(M1kpc) = 9.9 (4 log10(M1kpc) = 0.1).
We see that the values of the flattening reach our boundaries for nearly all models, except in the
models with mass log10(M1kpc) ' 7.7. In panel (b) we compute the relative difference of the fitted
Vogelsberger potential with respect to the true logarithmic potential. The errors are smallest for
log10(M1kpc) ' 7.7 but we do not find a constraint on the scale radius. In figure 5.2 we show how
well the best-fit parameters (log10(M1kpc) = 7.7, Rs = 4.3 kpc, c/a = 0.84 and Φ0 = 80.7 km2/s2)
recover the logarithmic potential at the (x,z)-coordinate grid. The potential at low values of z is
fitted the worst.

(a) (b)

Figure 5.1: Panel (a) shows the best-fit values for the flattening. We set boundaries to the flattening
at 0.7 (ensures positive densities everywhere) and 0.99 (nearly round model). Only models with
log10(M1kpc) equal to 7.7 or 7.8 result in values for c/a in between 0.8 and 0.95, when using a scale
radius of 1 kpc as minimum. In panel (b) the relative error on the potential is shown, after fitting
c/a and Φ0. A mass that satisfies log10(M1kpc) = 7.7 is giving the best results.

Because panel (a) of figure 5.1 did not show strong constraints on the best-fit flattening (they
vary very quickly around models with best-fit mass log10(M1kpc) ' 7.7), we decided to fix Rs and
c/a in stead of Rs and M1kpc. In this approach we fit the mass log10(M1kpc) and offset parameter
Φ0, such that we can get more detailed information about the flattening parameter. We sampled
the flattening from 0.7 to 0.98 with steps of 0.02 and Rs in the same way as in our first approach. In
panel (a) of figure 5.3 we show that the best-fit mass is roughly log10(M1kpc) ' 7.66 for all different
combinations of Rs and c/a (except the models with Rs < 0.5 kpc). This is in agreement with our
first approach. In panel (b) we show for every combination of Rs and c/a the relative errors on the
recovered potential with respect to the true logarithmic potential after fitting log10(M1kpc) and Φ0.
A flattening of c/a = 0.78, which is lower than what we found in our first approach (c/a = 0.84),
and scale radii larger than 2 kpc are giving the best results.

5.1.2 Fitting circular velocities

Since the potential form is very different from the logarithmic potential the best fit still depicts
relatively large differences (see figure 5.2). To gather more information, we also fit the circular
velocities, the first derivative of Φ, along the major axis of the system. We define the circular
velocity along the major axis of the system by:

v2c (R, z = 0)

R
= ∇Φ|R,z=0 (5.17)
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Figure 5.2: Figure showing how well the potential is fitted at the location of our best-fit parameters:
log10(M1kpc) = 7.7, Rs = 4.3 kpc, c/a = 0.84 and Φ0 = 80.7 km2/s2. From top left to bottom
right: the logarithmic potential, the best-fit Vogelsberger potential, the absolute differences, the
relative difference. In the fit the relative differences are minimized. For low z the relative errors
are highest.

(a) (b)

Figure 5.3: Panel (a) shows the best-fit values for the mass given a combination of scale radius
and flattening. The best-fit mass equals log10(M1kpc) ' 7.66, when using a scale radius of 1 kpc
as minimum. In panel (b) the relative error on the potential is shown, after fitting the mass and
Φ0. A flattening around c/a = 0.78 is giving the best results.

where

∇Φ =

[
∂

∂R
R̂+

1

R

∂

∂φ
φ̂+

∂

∂z
ẑ

]
Φ (5.18)

Then, for the logarithmic potential this becomes:
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v2c (R, z = 0) =
v20R

2

R2
c +R2

(5.19)

For the Vogelsberger potential the circular velocity equals:

v2c (R, z = 0) = −4πGρ0R
3
s

[
1

Rs +R
− ln(1 +R/Rs)

R

]
(5.20)

These circular velocities are independent of the flattening of the potential but give information
about the mass and scale radius of the system. In figure 5.4 we show the mean absolute difference
between the circular velocity corresponding to the logarithmic potential and the Vogelsberger
potential, computed at all radii ranging from 0.01 kpc to 2.0 kpc, spaced by 0.01 kpc. We did
this for the same combination of Rs- and log10(M1kpc)-values as in the first approach of section
5.1.1. We find that based on the first derivative of the potentials, we get the best results for
log10(M1kpc) ' 7.7. This is in agreement with the results from section 5.1.1 in which we fitted the
potential itself. From fitting the circular velocities we also do not get much information about the
scale radius of the system. We only see that Rs < 0.5 kpc does result in a worse fit of the circular
velocities.

Figure 5.4: Figure showing how well the circular velocities can be fitted as function of the scale
radius and the enclosed mass at 1kpc (in a spherical NFW profile). At each coordinate the
mean difference between the logarithmic circular velocity and the Vogelsberger circular velocity
is computed. The mean is computed after comparing the velocities at all radii from R = 0.01 to
R = 2.0 kpc with 4R = 0.01 kpc. Fitting the circular velocity does seem to put a constraint on
the mass, but not on the scale radius.

5.1.3 Comparing the flattening of the total density

Because both approaches from section 5.1.1 resulted in slightly different best-fit values for the
flattening, we decided to check for what values of c/a the flattening in the total density (see equation
5.4), the second derivative of Φ, is similar to the flattening of the total density corresponding to
the logarithmic potential (see equation 2.5). We compute this axial ratio at different radii on the
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c/a 0.1 kpc 0.5 kpc 1 kpc 3 kpc 5 kpc 10 kpc 30 kpc 50 kpc
E 0.73 0.72 0.69 0.57 0.51 0.47 0.43 0.43

1kpc
0.70 0.47 0.44 0.42 0.36 0.31 0.28 0.55 0.70
0.75 0.55 0.53 0.51 0.45 0.41 0.42 0.64 0.75
0.80 0.63 0.61 0.60 0.55 0.54 0.55 0.72 0.80
0.85 0.72 0.70 0.69 0.66 0.65 0.68 0.80 0.85
0.90 0.81 0.80 0.79 0.77 0.77 0.79 0.87 0.90
0.95 0.90 0.90 0.89 0.88 0.88 0.90 0.93 0.95

5kpc
0.70 0.47 0.46 0.46 0.47 0.49 0.50 0.73 0.80
0.75 0.55 0.54 0.54 0.56 0.57 0.63 0.77 0.83
0.80 0.63 0.63 0.63 0.64 0.66 0.71 0.82 0.87
0.85 0.72 0.71 0.72 0.73 0.74 0.78 0.87 0.90
0.90 0.81 0.81 0.81 0.82 0.83 0.86 0.91 0.93
0.95 0.90 0.90 0.90 0.91 0.91 0.93 0.96 0.97

Table 5.1: Flattening of the total density profile at different radii (columns 2-9) corresponding to
an axial ratio of c/a in the potential (column 1). Row 1 shows the flattening of the total density of
our mock galaxy (E=Evans). The flattening is higher in the center and converges to roughly 0.42
at very large radii. Rows 2-7 show the results when using the Vogelsberger potential and a scale
radius of 1 kpc. Rows 8-13 show the results when using the Vogelsberger potential and a scale
radius of 5 kpc. All results derived from the Vogelsberger potential are computed after setting the
transition radius to 10 kpc. The Vogelsberger total density becomes rounder at larger radii. We
verified that the flattening of the total density approaches 1.0 when choosing radii of order 1000
kpc. Changing the scale radius to 5 kpc does not change the flattening in the inner regions (≤1
kpc), but does increase the flattening of the outer regions. For the inner regions a model with c/a
= 0.85 would result in similar values for the flattening, whereas for the outer regions, models with
a low value for the scale radius and a very low value for c/a would be needed.

major axis. In table 5.1 we compare the flattening of the Vogelsberger total density (rows 2-13)
to the flattening of the total density corresponding to the true logarithmic potential of our mock
galaxy (row 1). We set the transition radius to 10 kpc and investigate both models with a scale
radius of 1 kpc and 5 kpc. We show that in the inner regions (≤1 kpc), the flattening in the total
density is similar when choosing a flattening of c/a = 0.85 in the Vogelsberger potential. At a
distance of 3 to 5 kpc a flattening in the potential of 0.7 < c/a < 0.8 (depending on the choice
of the scale radius) would be needed, wheres for the larger radii even lower values for flattening
are needed. We note that choosing higher scale radii result in larger values for the flattening in
the total density. As the total density following the potential of our mock galaxy has rather low
values for its flattening we do not need to increase the scale radius even further. Because the
results from this section and section 5.1.1 show no strong constraints on the best-fit flattening
of the Vogelsberger potential, we decided to vary it over the physically accepted range of values
(c/a ≥ 0.7). In figure 5.5 we show the total densities of the Vogelsberger potential corresponding
to c/a = 0.9 (panel (a)) and c/a = 0.7 (panel (b)). Decreasing the flattening even more would
results in negative densities, as described in appendix B.

In this section we found that most likely the best-fit Vogelsberger potential will have a mass
equal to log10(M1kpc) ' 7.7, a scale radius below 5 kpc (although based on section 5.1.3 only),
but larger than 0.5 kpc (see section 5.1.1) and probably larger than 2 kpc (see section 5.1.2) and
a flattening c/a in between 0.7 and 0.85 from this entire section.
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(a) (b)

Figure 5.5: Figure showing the (positive) total densities when using the Vogelsberger profile with
a scale radius of 1 kpc, transition radius of 10 kpc and a flattening of 0.9 in panel (a) and 0.7 in
panel (b) in a field from R = z = 0 kpc to R = z = 5 kpc. The difference in the flattening of the
total density is clearly visible. Models with c/a < 0.7 and Rc = 1 kpc would result in negative
total densities within the spatial orbital range of our libraries (≤ 50 kpc).

5.2 Modeling axisymmetric Vogelsberger potentials

Following section 5.1 we decided to model 6 different values for the flattening ranging from 0.70
to 0.95 with steps of 0.05. For each value we made a (Rs-log10(M1kpc))-grid that ranges from 1 to
5 kpc in scale radius (4Rs = 1kpc) and from log10(M1kpc)=7.2 to log10(M1kpc)=8.0 for its mass
[4 log10(M1kpc) = 0.2].

Figure 5.6: The results after fitting our mock data consisting of 105 stars inside our field of view,
in a known edge-on view. We show the (c100, Rs)-2D-slice of probabilities at the location of the
best fit model.

To be more efficient we here decrease the number of orbits to Nener = 24, NI2 = 16 and
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NI3 = 8. We have found this also gives good results in terms of recovery of the light profile and
kinematics. Generating the initial conditions for both the orbits and the box orbits still takes
approximately 2-3 hours, but making one orbit library now takes 1-2 days. The libraries each take
roughly 1.0 GB disk space. The fitting routine needs 6-12 hours to compute the best fit orbital
weights, when regularization is not included. The fitting routine needs 0.7 GB memory usage.

We present the results in the same way as we have done in chapter 4. The only difference is that
we have a third degree of freedom in finding the best model, since we have started varying the scale
radius in this case. Therefore, we have a cubic grid of models, in which the σ-confidence intervals
are described by surfaces. For three degrees of freedom the 1σ-, 2σ- and 3σ-confidence intervals
are defined by 4χ2 equal to 3.53, 8.02 and 14.2 respectively (Press et al. 1992). The Vogelsberger
models are named by MxxxRsyyyczzz, in which xxx = M100 ≡ 100 log10(M1kpc[M�]), yyy =
100Rs[kpc] and zzz = c100 ≡ 100c/a.

Figure 5.7: As in figure 5.6, but now showing the (M100, Rs)-2D-slice. In addition to the light,
the kinematics clearly favor high mass models.

5.2.1 100000 stars

In this section we show how well we can recover the characteristic parameters of the Vogelsberger
potential when pretending to observe 105 stars in a known edge-on view. From the cubic grid of
models we show 2 perpendicular slices at the location of the best fit model, model M780Rs200c075
in which χ2

tot has the lowest value (χ2
red = 0.0244). In figure 5.6 we show the (c100, Rs)-slice and

conclude that we can constrain the scale radius of the true Vogelsberger potential to a value of
Rs = 2 ± 1 kpc and the flattening to c/a = 0.75+0.15

−0.05 within a 1σ-confidence interval. In figure
5.7 we show the (M100, Rs)-slice and conclude that we can constrain the mass of the system to
log10(M1kpc[M�]) = 7.8± 0.2. In figure 5.8 we show that the M780Rc200c075 model does indeed
fit the surface brightness profile very well and in figure 5.9 we show that the same holds for the
second and fourth velocity moments.

5.2.2 10000 stars

We repeat the procedure to investigate how downsampling the number of stars affects the proba-
bility contours. Similar to what we have done in our previous chapter we decreased to number of
stars in our field of view by a factor of 10, towards 104. Decreasing the number of stars towards
104 gives similar best-fit parameters compared to observing 105 stars. We did not fold the data as
we did in section 4.2 for 104 stars. Model M780Rs200c080 is the best-fit model (χ2

red = 0.00572),
which differs only in its flattening compared to the fit using 105 stars, although not significantly
different as the 2σ-confidence intervals do not rule out models having a flattening c/a ranging
from 0.7 to 0.9 for both 105 and 104 stars. In figure 5.10 we show the (c100, Rs)-slice and
conclude that we can constrain the scale radius of the true Vogelsberger potential to a value of
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Figure 5.8: The relative errors on the light distribution after fitting the Vogelsberger
M780Rs200c075 library to our mock data consisting of 105 stars in our field of view, assuming
an edge-on view. The light is fitted in 99x99 bins, the kinematics in 9x9 bins.

(a) (b)

Figure 5.9: As in figure 5.8, but now showing the fitted second (a) and fourth (b) velocity moment.

Rs = 2+2
−1 kpc and the flattening to c/a = 0.80+0.05

−0.10 within a 1σ-confidence interval. In figure
5.11 we show the (M100, Rs)-slice and conclude that we can constrain the mass of the system to
log10(M1kpc[M�]) = 7.8± 0.2.
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Figure 5.10: The results after fitting our mock data consisting of 104 stars inside our field of view,
in a known edge-on view. We show the (c100, Rc)-2D-slice of probabilities at the location of the
best fit model. The light seems to fully constrain the probability contours. Comparing the figure
with figure 5.6, we see that the 2-σ contours do not change significantly.

Figure 5.11: As in figure 5.10, but now showing the (M100, Rc)-2D-slice. In addition to the light,
the kinematics clearly favor high mass models. Comparing the figure with figure 5.7, we see that
the 2-σ contours of both the light and the fourth component do allow lower mass models to be
fitted well, but combined the fit results do not change.
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Chapter 6

Summary and conclusions

To test whether we can apply the axisymmetric Schwarzschild methods to real data of dwarf
spheroidal galaxies meaningfully, we set up a Sculptor-like mock galaxy and tested whether we
could recover its characteristic parameters.

In chapter 2, we set up the axisymmetric mock galaxy, whose global potential results in a loga-
rithmic potential, that contains a flattened luminous and dark matter component. Both positions
and velocities are drawn from the true distribution function with flattening parameter q = 0.8,
mass parameter v0 = 20 km/s, scale radius Rc = 1.0 kpc and slope parameter p = 3.5. We
generated realistic kinematic datasets containing (1) 105 and (2) 104 stars by assuming a 2 km/s
measurement error in the line-of-sight velocity for every star and assuming an edge-on view towards
the system.

In chapter 3 we describe how we implemented the Schwarzschild modeling technique and in its
last section, section 3.6, we tested the Schwarzschild method by making an ideal library, which
contains the orbits of the mock stars themselves, such that all orbits should be represented in the
model with equal weights. We verified that this is indeed the case and that the characteristic
properties of our mock galaxy, like the light distribution and the velocity moments, are recovered.

In chapter 4 we made models that follow the logarithmic potential functional form but with
varying the characteristic parameters v0 and q. We show that we can recover the true characteristic
parameters of the mock galaxy, assuming an edge-on view and observing the line-of-sight velocities,
including realistic errors, for samples of either 105 or 104 stars. Within a 1σ-confidence interval
we find for both cases that q = 0.8+0.04

−0.04 and v0 = 20+3
−3 km/s, although we also can not rule out a

model with q = 0.96 and v0 = 23 km/s, values for which χ2 is also minimized. In the case of 104

stars we folded the data into the positive quadrant of the sky by symmetry arguments to increase
the S/N-ratio. As expected, the constraints that can be put on the parameters by observing 104

stars are less strong than in the case of 105 stars, as the 2σ-confidence intervals span over a larger
area in that case.

In the same chapter we conclude that right choices need to be made in order to generate reliable
Schwarzschild models. We show that we needed many light bins (99x99) in order to get enough
information about the flattening of the system, not too many and not too few kinematic bins and
high resolution models to constrain the parameters of the true potential and to recover the proper
light distribution and velocity moments of the mock galaxy.

In chapter 5 we modeled an axisymmetric NFW potential functional form, the Vogelsberger
potential. We performed fits to develop an intuition for what models will resemble the true potential
of the mock galaxy the most closely. We found that most likely the best-fit model would satisfy a
mass of log10(M1kpc[M�]) ' 7.7, a scale radius of 2 ≤ Rs ≤ 5 kpc and a flattening of 0.70 ≤ q ≤
0.85. Then, we showed that we can recover the flattening, scale radius and mass of the system,
assuming an edge-on view and observing the velocities including realistic errors of either 105 or
104 stars. In the case of 105 stars we conclude that we can constrain its characteristic scale radius
to a value of Rs = 2 ± 1 kpc, its flattening to c/a = 0.75+0.15

−0.05 and the mass of the system to
log10(M1kpc[M�]) = 7.8± 0.2 within a 1σ-confidence interval. In the case of 104 stars we conclude
that we can constrain its characteristic scale radius to a value of Rs = 2+2

−1 kpc, its flattening to

c/a = 0.80+0.05
−0.10 and the mass of the system to log10(M1kpc[M�]) = 7.8±0.2 within a 1σ-confidence

interval.
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As we have shown in this work, it is possible to constrain the characteristic parameters of
the logarithmic potential and the Vogelsberger potential when datasets consisting of 104 stars are
available if one assumes an edge-on view. Most available samples are smaller, but it would be good
to aim for such datasets in the near future (with e.g. WEAVE, 4MOST or other facilities).

We like to mention that we did not try the fit the viewing angles towards the system, although
in reality these are not known. We also have not confirmed that, when using different realizations
of our dataset, the best fit models have characteristic parameters well inside our 3σ-confidence
intervals.
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Appendix A

MGE parametrization

In order to convert a surface brightness towards an intrinsic mass we take three steps, using a MGE
parametrization. First we fit 2-dimensional Gaussians to the surface brightness profile. Then, we
deproject these Gaussians into 3-dimensional Gaussians, assuming a set of viewing angles towards
the system, to model the luminous density of the system. Since we only observe the light from the
stars, we can assume a mass-to-light ratio to determine the potential of the system.

A 2-dimensional MGE model is fitted to the observed surface brightness I(R′, θ′), such that
(van den Bosch et al. 2008):

I(R′, θ′) =

N∑
j=1

Lj
2πσ′2j q

′
j

exp

[
− 1

2σ′2j

(
x′2j +

y′2j
q′2j

)]
(A.1)

where x′j = R′ sin(θ′ − ψ′j), y′j = R′ cos(θ′ − ψ′j) and where R′ and θ′ are the polar coordinates on
the sky plane. Lj is the luminosity of the Gaussian j and N Gaussians are used in total. Their
axial ratios and dispersions along the major axis are denoted by q′j and σ′j . The position angle ψj
allows an isophotal twist of each Gaussian.

To demonstrate the multi-Gaussian expansion, we show a 2D-MGE parametrization from the
luminous density ρlum in the (x,z)-plane (y = 0), using the software from Cappellari (2002). The
software assumes four-fold symmetry for the observed image and therefore takes the average of all
four quadrants, after obtaining the principle axes of the image (see panel (a) of figure A.2). The
software is able to take care of the background signal and fits a 2D MGE model to a number of
1D-sectors (Nsectors), equally spaced in polar angle (see panel (b) of figure A.2). Here we show
an example in which we fitted N = 8 Gaussians while using Nsectors = 19. We choose to fit the
density at coordinates −5 < x < 5 kpc and −4 < z < 4 kpc and choose ρ0R

p
c = 1, Rc = 1.0 kpc,

q = 0.8 and p = 3.5, such that:

ρlum(x, 0, z) = 1/

[
R2
c + x2 +

(
z

q

)2
]p/2

(A.2)

Our test image is shown in figure A.1 and consists of 2001x1601 pixels of data. In panel (a) of
figure A.3 we see the relative errors after applying the MGE parametrization. Our image can be
parametrized quite well by 2D Gaussians as the relative errors are smaller than 1%, although this
might in general not apply to all sorts of functional forms of the surface brightness profile.

Once the 2D MGE model has been made, the projected profile can be decomposed in a 3D
MGE model (van den Bosch et al. 2008):

ρ(x, y, z) =

N∑
j=1

(
M

L

)
Lj(

σj
√

2π
)3
pjqj

exp

[
− 1

2σ2
j

(
x2 +

y2

p2j
+
z2

q2j

)]
(A.3)

where
(
M
L

)
is the mass-to-light ratio and where pj and qj are the intrinsic axial ratios and where σj

is the dispersion along the x-axis and where (x,y,z) is the intrinsic coordinate system. In order to
do this one has to assume the viewing angles of the system (Cappellari 2002). The viewing angles
are defined such that the spherical angles θ and φ determine the transformation from intrinsic
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Figure A.1: The test profile to be fitted by the MGE parametrization.

coordinates to the sky plane. They define the orientation of the line-of-sight with respect to the
principal axes of the system. Therefore, (θ,φ) = (90,0) is a view down the major axis, (90,90)
down the intermediate axis and θ = 0 down the short axis of the system. In addition, an angle ψ
specifies the rotation of the object around the line-of-sight. In this setup an oblate axisymmetric
intrinsic shape satisfies ψ = 90. Increasing ψ will rotate the object clockwise in the sky plane.
To demonstrate how these viewing angles are defined, we show the underlying surface brightness
profile of our mock galaxy. For θ = 90 and ψ = 90 we construct an edge on view. Decreasing ψ
results in a counter-clockwise rotation of the image. Of course, changing φ has no impact on the
projection, because we show an axisymmetric example. When viewing our object face-on (θ = 0),
a rotation in the sky plane is meaningless as well. The viewing angles are demonstrated in figure
A.4.

Now we are able to make the triaxial MGE density, we can compute its potential by using the
Chandrasekhar (1969) formulae. For r =

√
x2 + y2 + z2 < 0.1σj and r > 45σj an expansion is

being used (de Zeeuw & Lynden-Bell 1985; van den Bosch et al. 2008), such that orbital integration
speeds up significantly (van den Bosch et al. 2008). To compute the accelerations, the derivatives
of these potentials are taken.

Since our composite system follows the logarithmic potential, we do not need to make a MGE
parameterization. This is only needed if one wishes to assume that the total mass distribution
follows the light distribution. One can still add dark matter potential forms, like a NFW profile.
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(a)

(b)

Figure A.2: Panel (a): Before doing the MGE parametrization, the MGE code searches for the
principle axes of the observed system. Then it defines the corresponding sectors in which the
surface brightness profile will be fitted (panel (b)). Both panels are produced using the software
of Cappellari (2002).

.
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(a)

(b)

Figure A.3: Panel (a): Relative errors after doing a MGE parametrization. Dashed isodensity
contours are drawn from the true density and the same full isodensity contours are drawn for the
MGE model. The contours overlap. The relative errors are smaller than 1% for almost the entire
image. Panel (b): visualization of the fit along several sectors. In the left column the figures show
the image data as blue dots, the contribution of all N Gaussians as full coloured thin lines and
the sum of all Gaussians, the model, as the red thick line. In the right column the relative errors
between data and model are shown as function of radial distance. The figure is produced using
the software of Cappellari (2002).
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(a) (b) (c)

Figure A.4: Demonstration of the two most important viewing angles. Panel (a): surface brightness
profile of our mock galaxy when viewing it face-on, θ=0. Since we have an axisymmetric system,
the angle φ never changes the surface brightness profile. In this case the angle ψ has no influence
as well. Panel (b): an edge-on view, θ=90, of our mock galaxy with ψ=90. Panel (c): same as
panel (b), but now ψ=60. The image is effectively rotated 30 degrees anti-clockwise.
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Appendix B

Choosing a NFW potential form

Changing the spherical NFW-profile towards a NFW profile in which the spherical radius r =√
x2 + y2 + z2 is replaced by the ellipsoidal radius rE =

√
(xa )2 + (yb )2 + ( zc )2, where a2+b2+c2 =

3, only gives positive densities for q≥0.92. To see this we first compute the density from the Poisson
equation:

ρ(x, y, z) = −ρ0R
3
s

r2E

3∑
i=1

1

a[i]2

{(
x[i]

a[i]

)2(
3 ln(1 + rE/Rs)

r3E
− 3

(Rs + rE) r2E
− 1

(Rs + rE)2 rE

)

+

(
1

Rs + rE
− ln(1 + rE/Rs)

rE

)}
(B.1)

where (x[1],x[2],x[3]) = (x,y,z) and (a[1],a[2],a[3]) = (a,b,c) respectively and in which Rs is the scale
radius. Then, when inserting a = b to make the system axisymmetric, and choosing different values
for the flattening c/a, we investigate the density of our system up to a distance of 50 kpc from
the center, which corresponds to the distance that the highest energy orbits of our libraries can
reach. Therefore we ensure that our orbits do not enter regions which result in negative densities.
Using Rs = 1 kpc we find that negative densities show up for c/a < 0.92 (see figure B.1 for an
example). Changing the scale radius to 5 kpc does give positive densities everywhere inside the 50
kpc boundaries for models with a flattening greater than 0.85.

In order to be able to use models which allow lower values for the flattening, we started to use
the potential functional form described by Vogelsberger et al. (2008). Now the spherical radius is

replaced by a radius r̃ = (ra+r)rE
ra+rE

. For r >> ra, r̃ → r (spherical), whereas for r << ra, r̃ → rE
(ellipsoidal). This time the density is already given in equation 5.4. Choosing a transition radius of
10 kpc results in positive densities up to 50 kpc in potentials with flattening c/a ≥ 0.70, while using
a scale radius of 1 kpc. In figure B.2 we show the densities for potentials with c/a = 0.9 (panel
(b)) and c/a = 0.7 (panel (b)). Decreasing the flattening even further would result in negative
densities along the minor axis.
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Figure B.1: Figure showing the negative densities when using the triaxial NFW profile with a scale
radius of 1 kpc and a flattening of 0.9 inside a 50x50 kpc region in the (R,z)-plane.

(a) (b)

Figure B.2: Figure showing the (positive) densities when using the Vogelsberger profile with a
scale radius of 1 kpc, transition radius of 10 kpc and a flattening of 0.9 (panel(a)) and 0.7 (panel
(b)) in the 50x50 kpc region.
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