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Front cover:

Snapshot from a simulation involving the a Mvir = 1010M⊙ dwarf galaxy (model H4 14) and a Mvir =

2× 109M⊙ dark satellite on a planar orbit. The time is 1.5 Gyr after the start of the simulation. Shown

are the stellar particles in the disk of the dwarf galaxy (blue), the gas particles from the disk (yellow),

the dark matter particles from the satellite (red; 50 % of the particles shown) and the gas particles of

the disk of the dwarf galaxy that are forming stars at this moment (green). The dwarf galaxy has a dark

matter halo and a bulge in addition which are not shown in this plot.



Chapter 1

Introduction

1.1 Hierarchical galaxy formation

In the most favoured cosmogony today, the ΛCDM (Λ cold dark matter) model, galaxies form through
hierarchical clustering. Small perturbations due to quantum fluctuations in the very early universe,
grow and lead to the formation of small dark matter haloes which grow further through merging.
The dark matter initially has negligible thermal velocities and a Gaussian scale-free distribution of
density fluctuations and is therefore termed ‘cold’. The baryonic matter falls into the small haloes at
high redshift, cools and forms galaxies which then also grow through merging.

The first theoretical descriptions (e.g. Press & Schechter 1974; White & Rees 1978; Rees &
Ostriker 1977) of the involved processes were soon followed by N-body simulations of the dark matter
component. These simulations have contributed enormously to the popularity of the hierarchical
paradigm. The evolution of dark matter structures in the universe is very well suited to N-body
simulations as both the initial conditions and the evolution equations are well known. Predictions
for the large-scale structure of the universe from cosmological cold dark matter simulations so far
compare well with the observed large-scale structure (Springel, Frenk & White 2006; Springel et al
2005).

The success of the ΛCDM paradigm on smaller scales is still a matter of discussion. Longair
(2008) describes how the first simulations seemed to show that small-scale structure was wiped-out
in the accumulation and merging processes. In contrast smaller-scale objects can observationally be
distinguished as for example satellites and streams in galaxy haloes and individual galaxies within
galaxy clusters. This now appears to have been the result of a lack of resolution: more recent N-body
simulations have highlighted the opposite problem: these are finding more ‘subhaloes’ than what can
be accounted for by the observed galaxy luminosity function. This has become known as the ‘missing
satellite problem’ (Klypin et al. 1999; Moore et al. 1999). Though many more very faint small systems
around the Milky Way have been found since the problem was posed, there is still a discrepancy
between the predicted number in simulations and the observations. Most astronomers who address
this discrepancy see two possibilities: either the hierarchical cold dark matter models are incorrect or
there are no missing satellites but they are below our current observational limits. Questions about
the existence of a lower bound on the mass of galaxies have been there for a few decades. Arp (1965)
posed it after finding a small, faint and compact galaxy and in addition wondered whether we would
be able to detect the smallest, faintest galaxies. Klypin et al. (1999) suggested that observations
missed a large set of satellites because these were so called dark galaxies, systems that hardly formed
stars and so were very faint. The suppression of star formation could be because of supernova-driven
winds or because of gas heating by the UV ionizing background during and after reionization. The
dwarf satellite galaxies of the Milky Way, which are the most dark matter dominated objects known,
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4 Introduction Chapter 1

are found to have approximately the same central density irrespective of their luminosity (Gilmore
et al. 2007; Strigari et al. 2007; Strigari et al. 2008). This could indicate that there is a special
threshold or scale in the formation of dwarf galaxies that indicates whether it can form stars or
not. Okamoto & Frenk (2009) show that in their models there is a threshold in maximum circular
velocity at reionization that divides haloes into those where gas can cool and form stars and haloes
in which this cannot take place. Read, Pontzen & Viel (2006) advocate the existence of a critical
mass Mcrit ∼ 108M⊙ necessary for small haloes to be able to light up. This critical mass is close to
the limit below which a galaxy cannot retain its gas if blown out by a supernova (Mac Low & Ferrara
1999). Secondly, this value for the critical mass roughly corresponds to the mass a halo would need
to reach a virial temperature high enough to enable more efficient (atomic line) cooling for hydrogen
before the epoch of reionization. There exist many models that describe how a small dark matter
halo could evolve into a starless galaxy, either by the blowing out of gas by supernova-driven winds,
a photoionizing background preventing star formation or a too small baryonic mass in the galaxy to
develop the instabilities that lead to star formation (Dekel & Silk 1986; Mac Low & Ferrara 1998;
Mac Low & Ferrara 1999; Verde et al. 2002; Davies et al. 2006; Bullock et al. 2000; Somerville
2002; Trentham et al. 2001; Ricotti 2009). The predictions from these models however, have not yet
been confirmed by observations. A few ‘candidates’ for dark galaxies are discussed in the literature,
in most cases an isolated HI-cloud, but most are suspected to be part of tidal features or could be
high-velocity clouds (Davies et al. 2004; Kent et al. 2007; Duc & Bournaud 2008).

Another debate with respect to the predictions of ΛCDM on small scales revolves around the
conviction that CDM haloes have cuspy inner density profiles. This might or might not be consis-
tent with the rotation curves for dark matter dominated galaxies. The Aquarius Project (Springel
et al. 2008) studies the structure of Galaxy-sized and smaller CDM haloes in order to address both
above-mentioned subjects of discussion. In this project a suite of six different cosmological N-body
simulations of the formation of Milky Way-like systems were run at different resolution levels. In
the largest run the gravitational softening length is just 20.5 pc and the total number of particles
is 4,397,586,154. The simulations follow bound structures as small as ∼ 105M⊙ and has enough
resolution to detect several layers of substructure. This can be seen in Figure 1.1 from Springel et
al. (2008). The overall substructure mass fraction however is much lower in subhaloes than in the
main halo. On all scales substructures reside preferentially in the outer regions of their parent haloes
and have a higher concentration than field haloes of the same mass or of the same circular velocity.
These three properties can all be explained by the subhaloes being influenced by their parent halo:
tidal stripping removes the outer, substructure-rich, parts of subhaloes, the subhalo does not accrete
new substructures and tidal truncation and mass loss result in a higher concentration for subhaloes.
The structure of dark matter haloes and their surroundings are thus highly influenced by hierarchical
clustering and the process of merging.

1.2 Dwarf galaxies

One advantage of working on dwarf galaxies is that several are so nearby that reasonably detailed
information is available on the properties of individual stars. Moreover dwarf galaxies give the op-
portunity to study galaxy formation and evolution on a small scale. On the other hand many, and
especially the nearest dwarf galaxies known, are also satellites and thus influenced by a more massive
system. One can deliberate long about the correct definition of a dwarf galaxy. Here we will only
mention a working definition used in the review on dwarf galaxies in the local group by Tolstoy, Hill
& Tosi (2009): a dwarf galaxy is a system fainter than MV ≤ −17 and is more spatially extended than
globular clusters (Tamman 1994). This roughly coincides with the mass limit at which the baryonic
content of the galaxy could be affected by outflows (Tolstoy, Hill & Tosi 2009). One can distinguish at
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Figure 1.1: Figure 13 from Springel et al. (2008): “Images of substructure within substructure. The top left-hand

panel shows the dark matter distribution in a cubic region of side 2.5× r50 centred on the main halo in the Aq-A-1

simulation. The circles mark six subhaloes that are shown enlarged in the surrounding panels, and in the bottom

left-hand panel, as indicated by the labels. All these first generation subhaloes contain other, smaller subhaloes

which are clearly visible in the images. SUBFIND finds these second generation subhaloes and identifies them as

daughter subhaloes of the larger subhaloes. If these (sub)subhaloes are large enough, they may contain a third

generation of (sub)subhaloes, and sometimes even a fourth generation. The bottom panels show an example of such

a situation. The subhalo shown on the bottom left-hand side contains another subhalo (circled) which is really

made up of two main components and several smaller ones (bottom, second from left-hand side). The smaller of the

two components is a third generation substructure (bottom, third from left-hand side) which itself contains three

subhaloes which are thus fourth generation objects (bottom right-hand side).” r50 here denotes the radius at which

the mean enclosed overdensity of the halo is 50 times the critical density at that redshift.
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least two types in this regime, of which the two and best known are the early type dwarf-spheroidals
(dSphs) and the late-type star-forming dwarf irregulars (dIrrs). Additionaly centrally concentrated
actively star forming and extreme compact dwarfs have been discovered in the last decade (BCDs
(blue compact dwarfs) and UCDs (ultra-compact dwarfs)), more recently joined by the very-low sur-
face brightness, ultrafaint dwarfs (uFds). The ultra-compact dwarfs populate the region, or boundary,
between dwarf galaxies and globular clusters. Their compactness is comparable to that of globular
clusters but they are identified to be dwarf galaxies from spectra (Tolstoy, Hill & Tosi 2009). Ba-
sic properties of a number of types of galaxies are compared in Figure 1.2 from Tolstoy, Hill & Tosi
(2009).

On the high-mass end of the dwarf galaxy spectrum the boundary is even more ambiguous, as
can be seen in Figure 1.2. There is no clear break between the late-type and spheroidal dwarfs on
one side, and the larger late-type galaxies on the other. And while there is a clear, physically founded,
distinction between properties of elliptical and spirals, this is not the case for the dwarf galaxies.
In addition, due to the large range in distance, surface brightness, concentration and size, the tech-
niques and the difficulty in studying dwarf galaxies varies significantly. Kinematics and metallicity
for irregulars are for instance quite easily obtained using their interstellar medium while this is not
possible for dwarf spheroidals. Almost all we know about the dwarf spheroidals kinematic properties
and metallicity is from their evolved stellar populations which are harder to study in the more distant
late-type dwarfs (Tolstoy, Hill & Tosi 2009). This difference in amount and detail of the data greatly
complicates the understanding of dwarf galaxies and the relation between their properties and the
different classes (Walker et al. 2009).

Dwarf galaxies in general are found to have higher mass-to-light ratios than the normal spirals or
ellipticals. The dwarfs form stars less efficiently and have problems accreting new gas (if they become
satellites) and keeping their own due to their smaller mass. Figure 1.3, from Sales et al. (in prep.),
shows the galaxy efficiency ηgal = Md/(Mvir fbaryons), where Md is in this case the amount of baryons
collected by the galaxy and fbaryons is the universal baryon fraction, as a function of halo mass. This
relation has been obtained combining the Aquarius simulations and a semi-analytic model of galaxy
formation (Starkenburg et al. 2011). It can clearly be seen that the galaxy efficiency is much lower for
halo masses about and below 1010M⊙. A significant fraction of the haloes of this size have quite some
gas but do not form many stars. Dwarf galaxy stellar population analysis and star formation histories
in simulations, on the other hand, have shown that many dwarfs probably possess a bursty star
formation history ( Stinson et al. 2007; Pelupessy, van der Werf & Icke 2008; Wadepuhl & Springel
2011; Okamoto et al. 2010). This bursty behaviour is suggested to originate from internal as well as
external processes. Supernova outflows due to strong star formation might inhibit star formation in a
dwarf galaxy untill the gas has fallen back and cooled. But mergers and accretion processes could just
as well be a cause for a sudden episode of enhanced star formation. In the Aquarius simulations it has
been found that the small dark matter haloes (and even subhaloes) have substructures themselves
(see Figure 1.1) and that they merge with similar and smaller subhaloes before falling into the bigger
systems. Therefore, in the context of the ΛCDM paradigm the above considerations mean that the
substructures falling into a small dark matter halo must be predominantly dark.

For our research we are interested both in the dwarf irregulars and the dwarf spheroidals. The
latter systems are usually devoid of gas and dominated by old and intermediate-age stars, though
their star formation histories seem to be complex. The radial light profiles of spheroidals are shallow
and can be fitted by various functional forms, all declining at large radii. The spheroidals are gen-
erally thought not to be rotational supported, even though they can appear flattened, but whether
this is actually true for all known spheroidals is not yet clear. These small galaxies seem to have
low densities of luminous matter but high total mass densities and are mainly found in dense cosmic
environments. They may seem to be related to the large elliptical galaxies but while a consensus



1.2 Dwarf galaxies 7

Figure 1.2: Figure 1 from Tolstoy, Hill & Tosi (2009): “Here are plotted the relationships between structural

properties for different types of galaxies (after Kormendy 1985), including as dotted lines the classical limits of

the dwarf galaxy class as defined by Tammann (1994). (a) The absolute magnitude, MV, versus central surface

brightness, µV, plane; (b) The MV versus half light radius, r1/2, plane. Marked with colored ellipses are the

typical locations of elliptical galaxies and bulges (light red), spiral galaxy disks (light blue), galactic nuclei (dashed

purple), and large early-(spheroidals) and late-type systems (dashed gray). Galactic globular clusters are plotted

individually as small gray points. M31, the Milky Way (MW), M33 and LMC are shown as blue open triangles.

Some of the blue compact dwarfs with well-studied color-magnitude diagrams are marked as blue solid squares.

The peculiar globular clusters ω Cen and NGC 2419 are marked close to the globular cluster ellipse, M32 in the

region of elliptical galaxies, and the SMC near the border of the dwarf class. The ultracompact dwarfs (UCDs)

studied in the Virgo and Fornax clusters are marked with purple crosses. Local Group dwarf galaxies are plotted as

open pentagons, blue for systems with gas, and yellow for systems without gas. The recently discovered ultrafaint

dwarfs are given star symbols, and the same color code.” For references see Tolstoy, Hill & Tosi (2009).
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Figure 1.3: From Sales et al. in prep.: Gas fraction fgas (blue circles) and galaxy formation efficiency ηgal (red

asterisks) for our model galaxies as a function of host mass, as predicted by our semi-analytic model. The dashed

blue and solid red curves indicate the respective median trends. The data comes from a semi-analytic model by

Starkenburg et al. (2011) based on the Aquarius suite of simulations.
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more or less exists for the formation of large ellipticals through the mergers of spirals, the formation
of spheroidal dwarf galaxies is still a matter of debate. Grebel, Gallagher & Harbeck (2003) mention
three, not necessarily independent, scenarios which are subject of discussion in the literature. The
spheroidals could have lost their gas on the way or have been prevented to form new stars through
the same physical processes (reionization, feedback, environment) that have affected the lowest mass
dark matter halos (Larson 1974; Dekel & Silk 1986). This has also been found through simulations
to be a possible trajectory for the genesis of the Local Group dwarf spheroidals (Sawala et al. 2011)
and probable blown-outs have been observed (Young et al. 2007; Wilman et al. 2005). Another
suggestion is that the spheroidal dwarfs are fragments of larger galaxies, expelled during heavy in-
teractions or mergers (Gerola, Carnevali & Salpeter 1983) or developed in tidal tails (see for instance
the discussion around the object VIRGOHI 21 (Davies et al. 2004; Kent et al. 2007; Duc & Bournaud
2008)). Take the opposite perspective: some recently found ultra-faint dwarf galaxies close to the
Milky Way may be related to streams, for example from Sagittarius, within the Milky Way halo and
could therefore also be overdensities along those streams instead of original dwarf galaxies (Tolstoy,
Hill & Tosi 2009). The third suggestion is that the spheroidals were originally irregular, field, dwarf
galaxies but lost their gas and became rotation-free spheroidal galaxies due to ram-pressure stripping
and tidal interactions (e.g. Kormendy 1985; Sofue 1994; Mayer et al. 2001a, 2001b).

All the scenarios described above have their pros and cons. Regarding the idea of irregulars be-
coming spheroidals, arguments against it mainly revolve around two exceptional spheroidals in the
Local Group and the apparantly lower metallicity of spheroidal dwarf galaxies in comparison to irreg-
ular dwarfs (Grebel, Gallagher & Harbeck 2003). Two of the spheroidals in the Local Group, Tucana
and Cetus, are quite distant from any of the larger galaxies. They posses the same characteristics as
the spheriodals close to, or in, the Milky Way or M31 halo but are out of reach for significant tidal
forces. There are, however, still counter-arguments to this problem. It could be that both Tucana and
Cetus did interact with other members of the Local Group but ended up on the edge of the Group
(Kazantzidis et al. 2011). They could for example be ejected due to three-body interactions (Sales et
al 2007). With respect to the metallicity difference, that seems to be due to the difference in measur-
ing the metallicity for the respective types. As for irregular dwarfs the metallicity data comes from
the HI gas and star formation regions the metallicity is naturally higher than that found in the dwarf
spheroidals, old or intermediate-aged, evolved stars. The dwarf irregulars are generally too distant
to be able to observe individual stars with satisfying precision. Furthermore, as the spheroidals are
devoided of young stars, no ‘current’ metallicity can be obtained for them. On top of this, if the trla-
tions found in dwarf spheroidals for metallicity with respect to stellar age are expanded to younger
stars, the young stars in dwarf irregulars seem to fit in. In that light spheroidals could very well be
dwarf irregulars that lost their gas (Tolstoy, Hill & Tosi 2009).

Overall it looks like the dwarf galaxies around us have been severely influenced by external or
internal ‘tidal’ interactions. Not only can they be affected by the tidal forces due to confrontations
with, or even accretion by, much more massive galaxies, following the ΛCDM paradigm the smaller
galaxies or subhaloes should also encounter similar-sized subhaloes and accrete much smaller, pos-
sibly dark, subsubhaloes themselves. Even these haloes that have not been able to form stars might
have influenced the evolution of dwarf galaxies around the Milky Way.

1.3 Merging galaxies

In the hierarchical paradigm baryonic matter falls into dark matter haloes, forms galaxies and grows
through merging, just like their host haloes. The tidal torques that arise in this process often give
rise to tidal bridges, tails, and streams of stars during the interaction. A pair of interacting galaxies
during an encounter will convert a part of their orbital energies into random motions of their indi-
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vidual stars. For mergers where the respective galaxies are of comparable size, major mergers, this
process can be quite spectacular as the orbits decay so quickly that the galaxies are merged in a few
crossing times. This process of a major merger has been well studied in numerical simulations and it
has been demonstrated that major mergers between spiral galaxies generally produce remnants that
resemble elliptical galaxies, which are pressure supported and whose projected mass distributions
scale as ∼ r1/4 (e.g. Cox et al. 2008; Barnes & Hernquist 1992). This idea that elliptical galaxies
may just be the byproduct of major mergers of spirals is commonly known as the ‘merger hypothesis’
(Toomre 1977). The major mergers, between spirals as well as ellipticals, answered the question
of the morphological origin of the objects formerly known as peculiars, from Arp’s Atlas of peculiar
galaxies (Arp 1966). These galaxies were found to have tails and bridges or other highly irregular
structures and seemed highly disturbed. By simulating the dynamics of interactions they were found
to resemble the observations at different stages of the merging process. Simulations of interacting
galaxies could explain not only the bridges and tails of peculiar galaxies but also the ongoing pro-
cesses within the galaxies and the behaviour of the dark matter halo and the spheroid before, during
and after the interaction or merger. These kind of simulations have given a tremendous insight in
galaxy formation and evolution (e.g. Toomre & Toomre 1972; Barnes & Hernquist 1992; Cox et al.
2008).

Apart from the purely dynamical effects on the dark matter, stars and gas, mergers are also often
characterized by starbursts. Just like the stars, the gas also responds to the tidal field. Bournaud
(2011) describes the response of the gas and the star formation in interactions and mergers. The
disruptive tidal field of a companion galaxy can expell material and create tidal tails. However, if the
merger is more advanced and the galaxies begin to overlap the tidal field can become compressive.
The main culprit for the development of long tidal tails and central gas inflows, is the reaction of
the gas disk on the tidal forces which reveal themselves as gravitational torques. These torques
originate from the symmetry-breaking of the potential by the tidal field and can for instance create
an interaction-driven pair of grand-design spiral arms. Inside corotation the gas concentrates on the
leading side of the valley of the potential while outside corotation the gas concentrates on the trailing
side, thus creating a spiral pattern. Related is the observed inflow of gas to the center in mergers. This
is more pronounced in barred galaxies but a spiral arm can also develop a tidal bar which channels
gas into the central region. Inside corotation the gas undergoes negative torques, therefore looses
angular momentum and flows rapidly into the central region of the galaxy. This inflow then might be
able to power a nuclear starburst. Outside corotation the gas gains angular momentum and flows out
to larger radii in the long tidal tails which we recognised as merger characteristics (Bournaud 2011).
Di Matteo et al. (2007, 2008) studied a suite of merger simulations and found that while some cases
could power a very strong starburst (increasing their star formation rates (SFRs) by factors of 10-100)
most interacting galaxies only increase their SFR by a factor of a few and this increase only lasts for
a few Myr. Couterintuitive, the star formation enhancement by the merger was found to be less if the
first pericentric passage was very close and with strong tidal fields. This is explained by observing
that if the first pericentric passage causes a very strong reaction in the disk, there will be less gas in
the disk to fuel the starburst later on in the merger.

If one of the galaxies is much smaller than the other the merger is called a minor merger. From the
moment the secondary galaxy is inside the virial radius of the main object, it will slowly be stripped of
its dark matter halo and stars and eventually be torn apart and absorbed by the main halo and galaxy.
The stripped satellites are expected to wrap around the host galaxy in streams throughout the halo
(e.g. Helmi & White 2001; Mayer et al. 2002). But although the infalling satellite is so much smaller
than the primary, it still can have a large influence on the main galaxy (Quinn & Goodman 1986),
causing fine structures as ‘shells’, ‘ripples’, ‘plumes’, boxy isophotes, ‘X-features’ (Barnes & Hernquist
1992), heating and warping of a disk (Toth & Ostriker 1992; Quinn, Hernquist & Fullager 1993;
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Walker, Mihos & Hernquist 1997; Huang & Carlsberg 1997; Velázquez & White 1999) and possibly
bulge formation (e.g. Barnes & Hernquist 1992; Quinn, Hernquist & Fullagar 1993; Schweizer 1990).
Cox et al. (2008) describe it as: “... it is likely that the more prevalent minor mergers give rise to the
wide variety of galaxy morphology that defines many classification systems”. An increasing amount
of these varying effects of minor mergers, stellar streams, thick disks and other fine structures in disks
and haloes, are indeed found in the Local Universe (e.g. Ibata et al. 2001ab; Dalcanton & Bernstein
2002; Bekki & Chiba 2006).

The strength of the effect that the minor merger, or accretion event, has on a galaxy however,
seems to be related to the mass ratio between the merging galaxies. Merging events with smaller
companions will cause less strong starbursts (Cox et al. 2008) and less heating (Toth & Ostriker
1992). Moreover the effect a minor merger has on the primary galaxy also strongly depends on the
structure and composition of the galaxies and the characteristics of the encounter. Gas-rich mergers
will produce stronger star formation enhancements and the presence of a bar, or the occurance of
a bar instability during the encounter, will drive gas to the center more efficiently (Di Matteo et al.
2007). Not all mergers result in a starburst, as explained earlier. The presence of strong tidal fields
can even work against star formation enhancement as they can remove a large amount of gas from
the galaxy disks early in the merger. The ejected gas is then only partly re-accreted in a much later
stage of the merging event.

The realization that minor mergers could heat a disk is now used to explain the existence of
thick disks in galaxies, including the Milky Way (e.g. Villalobos & Helmi 2008). Toth & Ostriker
(1992) derived an analytic relation between mass ratio of the merging galaxies and the amount
of disk heating induced in the primary. Assuming a circular orbit and a local energy deposition in
the primary they estimate the drag on the satellite by the disk and the halo of the primary using
Chandrasekhar’s formula

Fdrag =
4πG2M2

satρ(v < vrel)lnΛ

v2
rel

(1.1)

where vrel is the relative velocity of the disk or halo particles with respect to the satellite particles and
lnΛ is the Coulomb logarithm (∼ 1 for both the halo and the disk). For the part of the energy that is
deposited in the disk the local virial theorem is used to estimate the response of the disk, using the
thin-disk approximation. The part of the energy that is added to the vertical energy density of the
disk will cause a thickening of the disk. For the Mestel disk Toth & Ostriker give as working example
this becomes

∆H(Mestel disk) =

�

0.49Rat the sun

1+ 4.34H/r

�
�

Msat

Mdisk, at the sun

�

(1.2)

where the numerical term on the right hand mostly comes from a correction by the halo. For a Mestel
disk this can be rewritten as dependent on the circular velocity and the vertical velocity dispersion

�

∆H

H

�(Mestel disk)

≃ 0.0814
�

vcirc

σz

�2� Msat

Mdisk(r)

�

. (1.3)

Toth & Ostriker used this relation as an argument that the high merger rate predicted by the CDM
paradigm could not be realistic as the percentage of galaxies with a thin, cold disk would then be
much lower than the percentage that is observed in the local universe. This idea placed a constraint
on the impact minor mergers could have on disks. After this claim more numerical simulations of
‘sinking in’ satellites were performed with varying results. Widely different initial conditions and
codes seemed to lead to very different results. Walker, Mihos & Hernquist (1996) found that a
satellite of 10 per cent of the disk mass caused a thickening of 60 per cent of the stellar disk at
the solar circle while Huang & Carlberg (1997) found that satellites up to 20 per cent of the disk
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mass on nearly-circular orbits produce no observable thickening of the disk. Further studies were
performed by, among others, Velázquez & White (1999), Font et al. (2001), Hopkins et al. (2008),
Qu et al. (2011), Moster et al. (2010) and Purcell, Kazantzidis & Bullock (2009). The main objective
of most of these studies was to explore a suite of accretion events more realistically than done before.
Criticism on older simulations was for instance the fact that most satellites were set on circular or
nearly-circular orbits while now radial orbits are argued to be much more realistic (Kazantzidis et
al. 2009; Hopkins et al. 2008). Also the inclusion of gas in the primary disk can influence the disks
response to a satellite accretion (e.g. Moster et al. 2010). Hopkins et al. advocate that as an infalling
satellite is generally on a radial orbit instead of a nearly-circular one, and as the orbit will decay more
violently than the smooth circular decay Toth & Ostriker used, the energy lost by the satellite and
deposited locally in the host should go quadratically with the satellite mass instead of linearly. This
means that the thickening of the disk also should depend quadratically on the ratio between the mass
of the satellite and the mass of the disk. Hopkins et al. come to the relation

∆H

Re,disk
∝ (1− fgas)

�

Msat

Md

�2

. (1.4)

This means that the effect of minor mergers on disks should be much less than expected if the relation
is linear. A number of papers have tried to compare different simulations to look for a general trend.
Hopkins et al. combine simulations from Villalobos & Helmi (2008), Younger et al. (2008) and
Velázquez & White (1999) arguing that the trend in these simulations supports a quadratic relation.
Kazantzidis et al. (2009) on the other hand mention that the thickening in their simulations is
significantly more than predicted by the quadratic relation of Hopkins et al. They furthermore argue
that the used simulations have an initial too thick disk making the minor merger less efficient in
thickening it further. For a ‘proper’, thin, disk the thickening would have been larger, according to
Kazantzidis et al. Velázquez & White on the other hand argue that the thickening predicted by Toth
& Ostriker is much too high compared to what they find in their simulations.

Purcell, Kazantzidis & Bullock employ simulations of mergers in the regime of mass ratios∼ 1 : 10,
according to them common in the merger history of Milky Way-like galaxies. More precisely, their
satellite has a mass Msat ≃ 3Mhost disk. The results of Purcell, Kazantzidis & Bullock show that for all
different orbits the host disk is thickened by roughly a factor 3 with respect to its initial thickness.
This is much more than Villalobos & Helmi find for similar mass ratios. One reason for this might be

that Villalobos & Helmi have thicker disks initially, for a vertical distribution described by sech2
�

z

2z0

�

Villalobos & Helmi initially have z0 = 0.35 kpc while Purcell, Kazantzidis & Bullock use z0 = 0.215
kpc. Moster et al. constructed similar host disks to Purcell, Kazantzidis & Bullock, purposely to be able
to compare the results fairly. They also perform similar simulations using a thinner host disk. This
shows that while the initial disk is thinner the final scaleheight is similar, so thicker disks are more
robust to accretion events. Moster et al. also compare disk with a gas component to disks without
gas, and argue that the presence of gas reduces the final scaleheights of disks due to absorption of
kinetic impact energy by the gas. However, even while the gasless disks of Moster et al. have similar
properties to the disk of Purcell, Kazantzidis & Bullock, they find a final thickening of a factor of
∼ 2 with respect to the initial thickness instead of the factor ∼ 3 found by Purcell, Kazantzidis &
Bullock. Parameters that are suggested to partly explain this discrepancy are the exact masses of the
disk and satellite (dark matter and stellar mass), the profiles and concentrations for the stellar and
dark matter components and the initial conditions regarding the velocity dispersions as well as the
simulation code itself.

This study is also partly aimed at studying the heating of disks through minor mergers. There
is however a big difference with previous studies. Up untill now most simulation studies dealing
with minor mergers involved dwarf galaxies falling into a Milky Way-like host galaxy. Mergers of
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dwarf galaxies with comparable and smaller objects are hardly ever studied. A smaller halo falling
into a dwarf galaxy probably has a mass in the regime that is expected not to be able to form stars.
This means that minor mergers for dwarf galaxies should predominantly be with dark satellites. A
dark satellite falling into the halo of a dwarf galaxy might thus be able to heat and thicken the
dwarf galaxy’s disk and might even cause a starburst. Multiple occurences of these events during the
lifetimes of the known dwarf galaxies could have an effect on in the characteristics and morphologies
of dwarf galaxies as we observe them now in the Local Group.

1.4 Outline of this thesis

This thesis describes simulations of mergers of a dwarf galaxy and a dark satellite. The above intro-
duction has explained the background of hierarchical galaxy formation, the morphology and kine-
matics of dwarfs in our Local Group and the process of merging. The detailed methods used in our
simulations and a description of their initial conditions can be found in Chapter 2. Then, in Chapter
3, we will describe the results of the simulations of isolated dwarf galaxies. The merger cases will be
described in Chapter 4 and 5. These results will then be summarized in Chapter 6 where the main
conclusions of this study are presented.



Chapter 2

Methods

To investigate the result of mergers between dwarf galaxies and their satellites we carry out a set of
’controlled’ simulations, i.e. in isolation. The initial conditions and parameters in the simulations are
motivated by previous studies from the literature. To estimate the probability of a significant merger
between a dark satellite and a dwarf galaxy we have analysed the Aquarius simulations, a suite of
cosmological dark matter simulations with very good resolution (Springel et al. 2008). In order to
have a significant effect on the dwarf galaxy the merger is required to have a mass ratio of about
Mvir, sat/Mvir, main ∼ 0.2 and to occur while the system was in isolation. Further requirements were
that the host ends up as a Milky Way-like satellite and that it is supposed to host a luminous galaxy
according to semi-analytic models based on the Aquarius simulations (Starkenburg et al. 2011). The
properties of the satellite and its host, in Aquarius, formed the basis of the simulations’ setup. These
properties included the virial mass and virial radius of the host dark matter halo at time of infall of
the satellite and z = 0, the time of infall, position and velocity of the satellite with respect to the
host and the mass of the satellite at the time of infall. The time of infall refers to the moment at
which the satellite crosses the virial radius of its host halo (and it does not leave the host halo again).
The orbit of the selected satellite around a dwarf halo in the Aquarius-C simulation can be found in
Figure 2. The dotted line shows the virial radius of the dwarf sized dark matter subhalo in the Aq-C-2
simulation. The dashed line with data points then show the smaller dark matter halo falling in. Data
describing this infall are given in table 2.1. Both the plot and the data are provided by Laura Sales.

tinfall (Gyr) 6.14
Mvir main at infall time (M⊙ h−1) 6.64× 109

rvir main at infall time (kpc h−1) 21.88
Mvir main final (M⊙ h−1) 8.47× 109

rvir main final (kpc h−1) 33.14
position satellite (kpc h−1) −6.30 11.96 19.17
velocity satellite (km s−1) 19.05 −23.20 −3.96
Mvir satellite at infall time (M⊙ h−1) 5.96× 108

Table 2.1: Data describing the masses, position and velocities of the dark satellite and host dwarf galaxy at the

point where the satellite crosses the virial radius of the host. Provided by Laura Sales.

14
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Figure 2.1: Orbit of a dark satellite falling into a dwarf size dark matter halo in the Aquarius simulation Aq-C-2.

The dotted line shows the virial radius of the subhalo on which the plot is centered. From Laura Sales.

2.1 Simulations

The simulations of a dark satellite merging with a dwarf galaxy in isolation were performed us-
ing a modified version of the N-body TreePM/SPH code GADGET (Springel, Yoshida & White 2001;
Springel et al. 2005). The code was modified to include the star formation process and supernova
feedback by Schaye & Dalla Vecchia (2008) and Dalla Vecchia & Schaye (2008), respectively. Essen-
tially all cosmological codes following the dark matter structure formation represent a collisionless
fluid (dark matter) by particles. The difference between the codes is thus how the gravitational
field is computed. GADGET is mostly a TreeSPH code (Hernquist & Katz 1989) which uses a hier-
archical multipole expansion to compute the gravitational interactions and uses smoothed particle
hydrodynamics (SPH) to follow the gas dynamics. This means that here the gas is also represented
by particles. The gravitational force of distant particles is then found by grouping these particles
into ever larger cells. Their gravity is then accounted for by a single multipole force which reduces
the computational costs from O (N2) to O (N logN) with respect to direct summation methods. The
TreeSPH method gives only an approximation of the true force but the error of the computation can
be controlled by changing the opening criterion of the tree: one can reach higher accuracy by walking
the tree to lower levels.

GADGET also offers the possibility to work with a TreePM code for computing the gravitational
field. A hierarchical tree algorithm has no intrinsic resolution limit but it can be slower than a
particle-mesh (PM) method. The latter works better on longer ranges but has problems on smaller
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scales related to the mesh size used. Xu (1995) developed a method to combine both algorithms
by computing the long-range gravitational force by means of a PM algorithm while a hierarchical
tree algorithm is used on short-range scales. This method is also implemented in GADGET. SPH
is a Lagrangian method for following the physical processes affecting the gas. The advantage of
Lagrangian methods in cosmological simulations over Eulerian methods (mesh codes) is that a wide
dynamic range can be studied as the resolution is automatically increased in higher density regions.
There are, however, newer mesh codes that can handle a higher dynamical range by using adaptive
mesh refinement (AMR codes). A disadvantage of SPH is that it uses artificial viscosity. This results
in the shocks not having their true discontinuities but being broadened by the artificial viscosity over
the SPH smoothing scale. One the other hand, some mesh codes make also use of artificial viscosity.

2.1.1 Smoothed particle hydrodynamics

Smoothed particle hydrodynamics (SPH; Gingold & Monaghan 1977; Lucy 1977; Monaghan 1992)
uses particles to sample a fluid in a Lagrangian sense. The continuous fluid quantities are then being
defined by a kernel interpolation technique. How SPH is implemented in GADGET2 is summarized
by Springel (2005). GADGET2 (and 3) define the thermodynamic state of each fluid element by a
function of the entropy per unit mass A ≡ P/ργ = A(s). For a fluid particle with coordinates ri,
velocity vi and mass mi the density estimate that GADGET uses is

ρi =

N
∑

j=1

m jW (|ri j|,hi) (2.1)

where ri j ≡ ri − r j, and W (r,h) is the SPH smoothing kernel which is set to the spline kernel (Mon-
aghan & Lattanzio 1985). W (r,h) is also used for the collissionless particles to smooth the single
particle density distribution with the normalized gravitational softening kernel ε, δ̃(x=W (|x|, 2.8ε).

W (r,h) =
8

πh3
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In the GADGET formulation of SPH the adaptive smoothing radius hi is defined such that a kernel
volume of a particle contains a constant mass for the estimated density of that particle: 4π

3
hiρi =

Nsphm̄ where m̄ is an average particle mass and Nsph is the typical number of smoothing neighbours.
Then the additional equations to describe reversible fluid dynamics in SPH become

dvi

dt
= −

N
∑

j=1

m j

 

fi

Pi

ρ2
i

∇iW (|ri j|,hi) + f j

Pj

ρ2
j

∇iW (|ri j|,h j)

!

(2.3)

where the coefficients fi are

fi =

�

1+
hi

2ρi

∂ ρi

∂ hi

�−1

(2.4)

and
Pi = Aiρ

γ

i
, (2.5)

the equations of motion and the particle pressure respectively.
As already metioned, SPH needs artificial viscosity to describe shocks in a fluid. To this end a

viscous force is implemented in GADGET

dvi

dt
|visc = −

N
∑

j=1

m jΠi j∇iW̄i j (2.6)
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where Πi j ≤ 0, and Πi j 6= 0 only when particles approach each other in physical space. Πi j is

defined in a parametrization as derived by Monaghan (1997) using a signal velocity v
sig
i j

between two
particles:

Πi j =







−
�

α

2

� wi j v
sig
i j

ρi j
if vi j · ri j < 0

0 otherwise
(2.7)

where wi j = vi j · ri j/|ri j| is the relative velocity projected onto the separation vector and α is typically

in the range α ≃ 0.5-1.0. The signal velocity can be estimated as, in the simplest form, v
sig
i j
=

ci + c j − 3wi j , where ci is the sound speed for particle i. In the equations of motion the artificial
viscosity results in an excess pressure assigned to the fluid particles

Pvisc ≃
1

2
ρ2

i jΠi j =
α

2
γ

 

wi j

ci j

+
3

2

�

wi j

ci j

�2!

Ptherm (2.8)

where ρi j denotes the arithmetic mean of ρi and ρ j and ci j the mean sound speed. This viscous pres-
sure depends not explicitly on the particle separation or smoothing length but on a Mach-number-like
quantity w/c. It assumes though that the sound speeds and densities of the respective particles are
roughly equal at the moment of computation. In order to reduce spurious angular momentum trans-
port in the presence of shear flows an additional viscosity-limiter is used in GADGET2 and GADGET3
following Balsara (1995) and Steinmetz (1996). The viscous tensor is now multiplied by ( fi + f j)/2
with

fi =
|∇× v|i

|∇ · v|i + |∇× v|i
(2.9)

a measure for the amount of shear in the fluid around particle i, based on standard estimates for
divergence and curl in SPH (Monaghan 1992, Springel 2005).

Using the signal-velocity approach for the artificial viscosity leads to the use of a Courant-like
hydrodynamical timestep

△t
(hyd)
i

=
CCouranthi

max j(ci + c j − 3wi j)
(2.10)

where the maximum is determined over all neighbouring particles j of particle i.
The version of GADGET that has been used here includes radiative cooling using tables for hy-

drogen and helium, assuming ionization equilibrium in the presence of the Haardt & Madau (2001)
model for the z = 0 ultraviolet background radiation from quasars and galaxies. The cooling tables
are generated using the publicly available package CLOUDY (version 06.02; Ferland 2000).

Schaye & Dalla Vecchia (2008) introduce an analytic conversion of the empirical Kennicutt-
Schmidt law of star formation to a pressure law, which is subsequently implemented in the code.
The observed Kennicutt-Schmidt law is (Kennicutt 1998)

Σ̇⋆ = (2.5± 0.7)× 10−4M⊙yr−1kpc−2

�

Σg

1M⊙pc−2

�(1.4±0.15)

, (2.11)

and if corrected for using a Chabrier IMF instead of a Salpeter IMF

Σ̇⋆ = 1.5× 10−4M⊙yr−1kpc−2

�

Σg

1M⊙pc−2

�1.4

. (2.12)

Assuming that the disk scaleheight is of the order of the local Jeans length for a self-gravitating
disk and an effective equation of state for the multiphase interstellar matter that is polytropic when
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averaged over large scales (Ptot = Ptot,c

�

ρg
ρg,c

�γeff
where γeff is the polytropic index) the empirical

law for surface densities can be transformed to densities in the Schmidt law

ρ̇⋆ = A
�

1M⊙pc−2
�−n
×

� γ

G
fg Pc

�(n−1)/2
ρg,c

�

ρg

ρg,c

�(n−1)γeff/2+1

(2.13)

with the Schmidt index n =
2(nS−1)
γeff

+ 1 and nS the index of the empirical Kennicutt-Schmidt law

(here nS = 1.4). In the above equation A is a numerical factor, fg is the gas fraction in the galaxy
and Pc is the pressure at the star formation threshold. Implementing this equation for star formation
essentially means that gas with densities exceeding a threshold density for the onset of gravitational
instability is expected to be multiphase and star forming and thus follows the effective equation of
state with pressure P ∝ ρ

γeff
g . The gas then forms stars stochastically, meaning that the probability

that a gas particle with star formation rate ρ̇⋆ is converted into a star particle in a time-step ∆t is

min
�

ṁ⋆∆t

mg
, 1
�

with

ṁ⋆ = 5.99× 10−10M⊙yr−1
�

mg

1M⊙

�
�

fg Ptot/k

103cm−3K

�0.2

(2.14)

where k is the Boltzmann constant, mg is the gas mass of the particles for which ṁ⋆ is computed. In
the equation the index nS = 1.4 from the observed law has been implemented and γ = 5/3. Note
that a star particle is to be interpreted as a simple stellar population.

Feedback from supernovae in Dalla Vecchia & Schaye (2008) is implemented in a way comparable
to Springel & Hernquist (2003) with the modification that the winds are local and not decoupled
hydrodynamically. The kinetic feedback is specified through two parameters, the wind mass loading
parameter η, with the initial wind mass loading Ṁw in units of the star formation rate Ṁw = ηṀ⋆, and
the wind velocity vw. Once a star particle reaches an age corresponding to the maximum lifetime of

stars that end their lives as supernovae type II (tSN = 3×107 yr) a fraction fw =
ηv2

w

2εSN
of the energy the

supernovae of the star particle is converted to stochastically selected neighbouring gas particles, now
called wind particles, which get the wind velocity vw added to their velocity in a random direction.
A wind particle is not allowed to be kicked again, is not allowed to convert into a star particle and
remains a wind particle for a time tw = 1.5× 107 yr. The values used for the above parameters are
described in Section 2.3.

2.2 Initial conditions

2.2.1 Stars and dark matter

Initial conditions for the primary are build according to the algorithm by Springel, Di Matteo and
Hernquist (2005). The dwarf galaxy consists of a dark matter halo, a stellar disk and a bulge. The
halo has a Hernquist (Hernquist 1993) profile but the inner density profile is set to be equal to a
NFW-profile with the same dark matter mass within r200 and a concentration of c = 9. Also the bulge
is modelled with a Hernquist profile where the scalelength is a free parameter that is here set to
0.1 times the disk scalelength. The disk component is modelled with an exponential radial surface
density profile and an isothermal sheet in the vertical direction

ρ⋆ =
M⋆

4πz0h2 sech2
�

z

2z0

�

exp
�

−
R

h

�

(2.15)
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with the radially constant vertical scalelength z0 = 0.1h, the disk scalelength. This disk scalelength
is set assuming that the disk is centrifugally supported and that its thickness is negligible compared
to its scalelength. The disk’s angular momentum is Jd = md J with md = Md/Mvir the fraction of the
total mass in the disk and J the angular momentum of the halo, where

J = λG1/2M
3/2
200 r

1/2
200

�

2

fc

�1/2

, (2.16)

and fc depends only on the concentration of the halo and λ is the spin parameter, which in these
simulations is set to λ= 0.033. The disk scalelength h is then found solving

Jd = Md

∫ ∞

0

Vc(R)

�

R

h

�

exp
�

−
R

h

�

dR, (2.17)

with

V 2
c (R) =

G
�

Mdm(< R) +Mb(< R)
�

R
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2GMd

h

R

2h

�

I0
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R

2h
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K0
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2h
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− I1

�

R

2h

�

K1

�

R

2h

��

(2.18)

where the In and Kn are Bessel functions.
The velocity of both collissionless (stars and dark matter) components can be derived approxi-

mately once the density distribution is known. For the dark matter and bulge particles it is assumed
that the velocity distribution only depends on the energy and the vertical component of the angular
momentum. This results in 〈vRvz〉 = 〈vz vφ〉 = 〈vRvφ〉 = 0 and 〈vR〉 = 〈vz〉 = 0. The velocity distribu-
tion can then be approximated as a triaxial Gaussian with axes aligned with R, φ and z. The velocity
dispersions for R and z, σ2

R and σ2
z are now equal tot their second moments which can be obtained

from the Jeans equation

〈v2
R〉bulge/halo = 〈v

2
z 〉bulge/halo =

1

ρ

∫ ∞

z

ρ(z′,R)
∂Φ

∂ z′
dz′, (2.19)

and

〈v2
φ〉bulge/halo = 〈v

2
R〉+

R

ρ

∂
�

ρ〈v2
R〉
�

∂ R
+ v2

c (2.20)

where, in both equations, ρ is the density of the component under consideration, Φ is the total
gravitational potential and v2

c = R∂Φ/∂ R is the circular velocity. If the first moment in the azimuthal
direction , 〈vφ〉, does not vanish this implies a streaming motion in that direction. The bulge is set
to have no net rotation so 〈vφ〉bulge = 0. For the dark halo it is set to a fixed fraction of the circular
velocity 〈vφ〉halo = fsvc where fs depends only on the spin parameter, λ, and the concentration,
c, of the halo (Springel & White 1999). Then the azimuthal velocity dispersion is equal to σ2

φ
=

〈v2
φ
〉 − 〈vφ〉

2.
For the disk also a triaxial Gaussian distribution is assumed for simplicity. In general the velocity

structure of a disk can be much more complicated. Observations suggest that both the radial velocity
dispersion and the vertical velocity dispersion in a galaxy are proportional to the surface density of
the disk, and thus proportional to each other through the whole disk (Hernquist 1993; Kregel, van
der Kruit & Freeman 2005; Kregel & van der Kruit 2005). Therefore we assume

σ2
R = 〈v

2
R〉 = fR〈v

2
z 〉 = fRσ

2
z (2.21)
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with

〈v2
z 〉disk =

1

ρ disk

∫ ∞

z

ρdisk(z
′,R)
∂Φ

∂ z′
dz′, (2.22)

and the azimuthal second moment is also calculated in a way similar to the second moment for the
halo and bulge

〈v2
φ〉disk = 〈v

2
R〉disk+

R

ρ disk

∂
�

ρdisk〈v
2
R〉disk

�

∂ R
+ v2

c . (2.23)

The parameter that describes the ratio between the radial and the vertical velocity dispersion fR is
usually set to fR ∼ 1. In order to have stable disks however, we will set it to a different value for some
of our simulations. To specify the mean streaming in the disk, the azimuthal velocity dispersion is
related to the radial velocity dispersion through the epicycle approximation

σ2
φ =

σ2
R

η2 , (2.24)

where

η2 =
4Ω2

κ2 =
4

R

∂Φ

∂ R

�

3

R

∂Φ

∂ R
+
∂ 2Φ

∂ R2

�−1

. (2.25)

Finally the azimuthal mean streaming is

〈vφ〉=

�

〈v2
φ〉 −

σ2
R

η2

�1/2

. (2.26)

This means that as the azimuthal streaming depends on σR, different values of fR will also influence
the azimuthal velocity dispersion and streaming through equations 2.22, 2.21 and 2.24.

In our experiments, and from galaxy to galaxy, the ratio of the vertical and radial velocity disper-
sions may change under influence of other changing parameters. If the Toomre stability parameter Q

is required to be kept fixed from disk to disk, the radial velocity dispersion will depend on the surface
density because Q =

σRκ

3.36GΣ
where κ is the epicyclic frequency, G the gravitational constant and Σ the

surface density of the disk. The Toomre Q describes the stability of differentially rotating disks. If the
value of this parameter is fixed then for an exponential disk σR is proportional to the mass of the disk
if the radial disk scalelength is fixed as well. This dependency goes as

σR

σ′R
∝

Md

M ′
d

(2.27)

The vertical velocity dispersion on the other hand has a dependency

σz

σ′z
∝

�

Md

M ′
d

�1/2

(2.28)

on the mass of the disk, see equation (2.22). In Chapters 3 and 4 we will present results for four
different simulations with varying disk mass. In these simulations the value of the Toomre parameter
(Q) has been kept fixed which means that the ratio between σz and σR, fR, is changed for each
individual galaxy following

f ′R = fR

�

Md

M ′
d

�1/2

. (2.29)

Furthermore, the value of fR is set such that the disk in isolation is generously stable (Q ∼ 2) at
least out to one scalelength. This results in a much larger radial velocity dispersion than the vertical
dispersion whereas Springel, Di Matteo & Hernquist (2005) keep both velocity dispersions equal,
fR = 1. A more elaborate discussion of this choice can be found in Section 3.1.
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2.2.2 Gas

For the dwarf galaxies with gas the initial conditions are built very similarly. The gas in the disk is a
fixed fraction of the disk mass, Md = M⋆ + Mgas, and also has an exponential surface density distri-
bution. The vertical distribution of the gas particles however is determined by requiring hydrostatic
equilibrium:

−
1

ρg

∂ P

∂ z
−
∂Φ

∂ z
= 0, (2.30)

where Φ (again) is the gravitational potential due to all components. The vertical distribution of the
gas cannot be chosen freely as was done for the stellar component. The vertical scaleheight describes
the temperature of the gas in a disk and this temperature is dependent on many physical processes
within the gas. The equation of state is assumed to stay close to an effective equation of state (EOS)
of the form P = P(ρ). This means that initially the gas height for a given surface density is governed
by the pressure due to self-gravity through this EOS. Later on the pressure, density and temperature
will be influenced by many physical processes such as cooling and star formation. Here the equation

of state is assumed to be effectively polytropic Ptot = Ptot,c

�

ρg

ρg,c

�γeff
which means that the vertical

distribution of the gas in the disk is governed by the two equations

∂ ρg

∂ z
= −

ρ2
g

γeffP

∂Φ

∂ z
(2.31)

and

Σgas(R, z) =

∫

ρg(R, z)dz. (2.32)

The problem of determining the potential and the resulting gas distribution in a self-consistent way
that arises through this approach is solved for both in an iterative way. The velocity field for the gas
only consists of an azimuthal streaming velocity

v2
φ,gas = R

�

∂Φ

∂ R
+

1

ρg

∂ P

∂ R

�

. (2.33)

In the H2 and H4-simulations described in Chapter 3 and farther, the disk scalelength for the
gas in the disk is set to a multiple of the stellar scalelength. In addition to setting a different disk
scalelength for the gas, we have run test simulations with different values for the gas fraction, fg ,
the star formation density threshold, ρthresh, and the index for the effective equation of state, γeff. A
more thorough discussion on the reasons for these changes and the results can be found in Section
3.2.

2.2.3 Dark matter satellites

The initial conditions for the dark satellites were generated using a code provided by Alvaro Villalobos
(see Villalobos & Helmi 2008). This code sets up a halo with a NFW mass density profile (Navarro,
Frenk & White, 1996) given a value for the virial mass of the halo. A relation between concentration
and virial mass of haloes is assumed so that effectively the NFW profiles are reduced to a single
parameter family. This mass-concentration relation was updated in the code following Muñoz-Cuartas
et. al. (2010) c = 102.099M−0.097

vir (their results are comparable with those of Macciò, Dutton & Van
den Bosch 2008). The virial radius of the halo is defined as the radius at which the mean density is
∆vir(z)ρc(z) where ρc(z) is the critical density of the universe and ∆vir(z) is the virial overdensity in
the solution to the dissipational collapse of the spherical top-hat model: Mvir(z) =

4π
3
∆vir(z)ρc(z)R

3
vir.
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Starting at this virial radius an exponential truncation is included since the mass of a NFW profile
formally diverges with radius. The truncation decays on a scale rdec (Springel & White 1999), with
rdec a free parameter, and exponent ε:

ρ(r) =
ρs

c(1+ c)2

�

r

Rvir

�ε

exp
�

−
r − Rvir

rdec

�

(r > Rvir) (2.34)

with the NFW mass density profile being

ρNFW(r) =
ρs

(r/rs)(1+ r/rs)
2 . (2.35)

The exponent ε is set by requiring continuity between equations (2.35) and (2.34) and their loga-
rithmic slopes. Then ε = −1−3c

1+c
+

Rvir
rdec

. Depending on the value of rdec the total mass of the halo

will become larger than Mvir, for rdec = 0.1Rvir this is Mtot ∼ 1.1Mvir so about 10 per cent larger.
The velocity of each halo particle is computed from the distribution function associated to the mass
density profile following Kazantzidis, Magorrian & Moore (2004). Finally the velocities are generated
using the rejection method (Press et al. 1992).

The satellite is left to relax in isolation for 2 Gyr. The density profile is found to remain fairly
stable and not to change significantly during that time as can be seen in Figure 2.2. Two satellites
with different mass have been used, one with Mvir = 5.96× 108 M⊙ h−1 as found in the original
Aquarius simulation, see Section 2, and one with Mvir = 2.0× 109 M⊙ h−1 = 0.2Mvir, main.

2.3 Numerical parameters

Evolving the dwarf galaxy and dark satellite in N-body/SPH simulations requires fixing a few param-
eters. For the N-body part the most important are the softening length and the number of particles. In
all our simulations the softening length for the dark matter halo of the dwarf galaxy is εDM,host = 0.034
h−1 kpc while that for the dark matter satellite and all baryonic particles is εDM,sat = εbaryon = 0.02
h−1 kpc. The dark matter halo of the dwarf galaxy is always represented by 492708 particles and
the bulge has 34313 particles if present. In the simulations without gas (disk1, disk2 and disk3) the
stellar disk has 68627 particles, in the simulations with gas the total number of particles for the disk
is 98238 of which a fraction fgas × 98238 is gas particles and 1− fgas × 98238 is s star particle. The
dark satellite with a mass of 5.96× 108 M⊙ h−1 has 145485 particles and the satellite with a mass
of 2.0× 109 M⊙ h−1 has 490487 particles. The number of particles in each component, combined
with the fraction of total mass in that component will give the mass per particle mbaryon, mDM,host
and mDM,sat. To describe the structure of the dwarf galaxy we need to specify also the parameters
giving the fraction of total mass in the disk and bulge, md and mb, the gas fraction of the disk fgas,
the scalelength of the bulge, hbulge, and the scaleheight, z0, of the disk with respect to the disk scale-
length h, the scalelength of the gas disk, hgas, with respect to the scalelength of the stellar disk h

and the value describing the ratio between the radial and vertical velocity dispersion, fR. Other fixed
parameters involving the processes governed by SPH and subgrid models include the energy given
to a supernova, εSN , its wind efficiency, η, and wind velocity, vw, as described in Section 2.1.1, the
star formation density threshold, ρthresh, and the exponent for the multiphase equation of state γeff.
Finally, describing the orbit of the satellite with respect to the dwarf, is the inclination of the merger,
i. Tables 2.2 and 2.3 show the parameters that are kept constant in all simulations. All varying
parameters are summarized in table 2.4.
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Figure 2.2: Evolution of the density profile of the satellite with Mvir = 2.0× 109 M⊙ h−1 in isolation.

Unchanging parameters: Mvir z0 hbulge εbaryon εDM,host εDM,sat mDM,sat
(M⊙ h−1) (h−1 pc) (h−1 pc) (h−1 pc) (M⊙ h−1)

all simulations 1.0× 1010 0.1h 0.1h 20 34 20 4.1× 103

Table 2.2: Parameters governing the configuration and resolution of the dwarf galaxy and dark satellite that are

fixed to these values for all simulations.

Unchanging parameters: η vw εSN

km s−1 erg M−1
⊙

all simulations 2 600 1.8× 1049

Table 2.3: Parameters governing the feedback by supernovae that are fixed to these values for all simulations,

except for the simulations where the feedback is completely turned off.
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Changing parameters: md mb fg h hgas Ntot mbaryon mDM,host fR ρthresh γeff Tc i Msatellite
(h−1 pc) (h−1 pc) (M⊙ h−1) (M⊙ h−1) nH (cm−3) (◦) (M⊙ h−1)

disk1 no merger 0.04 0 0 0.67 - 561335 5.86× 103 1.96× 104 9 - - - - -
disk2f9 no merger 0.02 0 0 0.67 - 561335 2.93× 103 2.00× 104 9 - - - - -
disk2f18 no merger 0.02 0 0 0.67 - 561335 2.93× 103 2.00× 104 18 - - - - -
disk3 no merger 0.008 0 0 0.67 - 561335 1.17× 103 2.02× 104 45 - - - - -
disk1 merger 0.04 0 0 0.67 - 1051822 5.86× 103 1.96× 104 9 - - - 30 2.0× 109

disk2f9 merger 0.02 0 0 0.67 - 1051822 2.93× 103 2.00× 104 9 - - - 30 2.0× 109

disk2f18 merger 0.02 0 0 0.67 - 1051822 2.93× 103 2.00× 104 18 - - - 30 2.0× 109

disk3 merger 0.008 0 0 0.67 - 1051822 1.17× 103 2.02× 104 45 - - - 30 2.0× 109

no merger 0.04 0.014 0.3 0.53 0.53 625059 4.1× 103 1.9× 104 1 0.1 4/3 105 - -
frontal merger 0.04 0.014 0.3 0.53 0.53 770544 4.1× 103 1.9× 104 1 0.1 4/3 105 80 5.96× 108

polar merger 0.04 0.014 0.3 0.53 0.53 770544 4.1× 103 1.9× 104 1 0.1 4/3 105 80 5.96× 108

planar merger 0.04 0.014 0.3 0.53 0.53 770544 4.1× 103 1.9× 104 1 0.1 4/3 105 10 5.96× 108

no merger no fb 0.04 0.014 0.3 0.53 0.53 625059 4.1× 103 1.9× 104 1 0.1 4/3 105 - -
planar merger no fb 0.04 0.014 0.3 0.53 0.53 770544 4.1× 103 1.9× 104 1 0.1 4/3 105 10 5.96× 108

H2 0.04 0.014 0.3 0.53 1.065 625059 4.1× 103 1.9× 104 1 0.1 4/3 105 - -
H4 1 0.04 0.014 0.3 0.53 2.13 625059 4.1× 103 1.9× 104 1 0.1 4/3 105 - -
H4 2 0.04 0.014 0.5 0.53 2.13 625059 4.1× 103 1.9× 104 1 0.1 4/3 105 - -
H4 3 0.04 0.014 0.7 0.53 2.13 625059 4.1× 103 1.9× 104 1 0.1 4/3 105 - -
H4 4 0.04 0.014 0.3 0.53 2.13 625059 4.1× 103 1.9× 104 1 0.1 1 105 - -
H4 5 0.04 0.014 0.3 0.53 2.13 625059 4.1× 103 1.9× 104 1 0.1 1.4 105 - -
H4 6 0.04 0.014 0.3 0.53 2.13 625059 4.1× 103 1.9× 104 1 10 4/3 105 - -
H4 7 0.04 0.014 0.3 0.53 2.13 625059 4.1× 103 1.9× 104 1 200 4/3 105 - -
H4 8 0.04 0.014 0.3 0.53 2.13 625059 4.1× 103 1.9× 104 1 10 1 105 - -
H4 9 0.04 0.014 0.3 0.53 2.13 625059 4.1× 103 1.9× 104 1 10 1.4 105 - -
H4 10 0.04 0.014 0.5 0.53 2.13 625059 4.1× 103 1.9× 104 1 200 4/3 105 - -
H4 11 0.04 0.014 0.7 0.53 2.13 625059 4.1× 103 1.9× 104 1 200 4/3 105 - -
H4 12 0.04 0.014 0.5 0.53 2.13 625059 4.1× 103 1.9× 104 1 10 4/3 105 - -
H4 13 0.04 0.014 0.5 0.53 2.13 625059 4.1× 103 1.9× 104 1 10 1 105 - -
H4 14 0.04 0.014 0.5 0.53 2.13 625059 4.1× 103 1.9× 104 1 10 1.4 105 - -
H4 15 0.04 0.014 0.7 0.53 2.13 625059 4.1× 103 1.9× 104 1 10 4/3 105 - -
H4 16 0.04 0.014 0.7 0.53 2.13 625059 4.1× 103 1.9× 104 1 10 1 105 - -
H4 17 0.04 0.014 0.7 0.53 2.13 625059 4.1× 103 1.9× 104 1 10 1.4 105 - -
H4 1 Tc = 104 0.04 0.014 0.3 0.53 2.13 625059 4.1× 103 1.9× 104 1 0.1 4/3 104 - -
30 merger H4 12 0.04 0.014 0.5 0.53 2.13 1115546 4.1× 103 1.9× 104 1 10 1.4 105 30 2.0× 109

planar merger H4 12 0.04 0.014 0.5 0.53 2.13 1115546 4.1× 103 1.9× 104 1 10 1.4 105 10 2.0× 109

polar merger H4 12 0.04 0.014 0.5 0.53 2.13 1115546 4.1× 103 1.9× 104 1 10 1.4 105 80 2.0× 109

frontal merger H4 12 0.04 0.014 0.5 0.53 2.13 1115546 4.1× 103 1.9× 104 1 10 1.4 105 80 2.0× 109

planar merger H4 1 0.04 0.014 0.3 0.53 2.13 1115546 4.1× 103 1.9× 104 1 0.1 4/3 105 10 2.0× 109

T
a
b
le

2
.4

:
A

ll
sim

u
la

tio
n
s

listed
w

ith
th

e
p
a
ra

m
eters

fo
r

w
h
ich

th
e

va
lu

es
va

ry
fo

r
d
ifferen

t
sim

u
la

tio
n
s.



Chapter 3

Objects in isolation

To make sure changes in the morphology and kinematics of the dark matter satellite in our merger
simulations are not due to instabilities in its initial configuration, this is relaxed for 2 Gyr in isolation
before placed in a simulation with external influences, i.e. a host galaxy. We also perform simulations
of the dwarf galaxy in isolation to make sure it is in equilibrium initially, as well as to separate clearly
the effect induced by the dark satellite from internal processes. Our isolated dwarf simulations also
allow us to understand the effect of changing the various parameters on the local star formation rates
and morphological properties of isolated systems. Moreover, in order to investigate the effect of a
merger with a dark satellite on a dwarf galaxy it is best if the simulated isolated dwarf is stable in its
configuration and star formation rate. These should be representative of real dwarf galaxies.

3.1 Dwarf galaxies without gas

As described in Section 2.2, the ratio between the radial and vertical velocity dispersion is related
to the stability of the disk. As we aim to study the heating induced by a merger on the disk of the
dwarf galaxy, it is important that this disk initially is stable. In Figure 3.1 we plot the variation with
radius R of the Toomre stability parameter Q and the velocity dispersions for four different values
of f = σ2

R/σ
2
z . In this figure it can be seen that σz remains the same while σR and Q change with

varying f . σφ is defined as a function of σR, and so should change with varying f as σR depends on
f . In order to obtain reasonable radial velocity dispersions (i.e. not very large) while also making
sure that almost the whole disk is quite stable we set f = σ2

R/σ
2
z = 9 for the experiment denoted as

disk1.
In the case of experiments disk2 and disk3 we have changed the mass of the disk to the follow-

ing: Md, disk2 = 0.5Md, disk1 and Md, disk3 = 0.2Md, disk1. Recall that the radial and vertical velocity
dispersion vary in a different way with the mass of the disk (see Section 2.2.1). This implies that if
the Toomre stability parameter of the disk is kept constant, then the value of the ratio f = σ2

R/σ
2
z

will change as well. For disk2 we should have f2 = 2 f1 = 18 and for disk3 the ratio should be
f3 = 5 f1 = 45. These values are used for the simulations denoted as disk2f18 and disk3. In order
to see how big the effect of the initial stability of the disk is on the heating by the merger, we have
performed also a simulation for disk2 with f2 = 9 = f1. The initial variation of Q, σR, σz and /σφ
with R can be found in Figure 3.2. As the thickness of the disks does vary significantly while the disk
is relaxing the disks are first run in isolation before the satellite is placed in the simulation. Figure
3.3 shows the values for the Toomre stability parameter, Q, and the velocity dispersions after letting
the disk galaxies relax and stabilize in isolation. There can be seen that all disks evolve into a more
stable configuration and that the smallest disk has stabilized more in its outskirts than the other disks.
This could well be related to that disk being much less massive and therefore also becoming radially

25
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Figure 3.1: Q, σR, σφ and σz with changing value for f = σ2
R
/σ2

z
. From left to right, top to bottom: f = 1, 4, 9

and 16

less extended than the other disks while stabilizing. In the inner parts the disks with an equal fixed
value for Q, disk1, disk2f18 and disk3, do still have very similar values for Q with radius. The one
disk with a different value for Q, disk2f9, is seen to be less stable than disk2f18 over the whole range
in radius. When run in isolation the disks also change their vertical density profile. The less massive
disks already become slightly thicker than the more massive disks. Figure 3.4 shows this evolution
in vertical surface density for the most and the least massive disks, disk1 and disk3. Disk3 needs
longer to relax to a stable vertical distribution and that stable distribution is thicker than the vertical
profile for disk1. Disk3 might need more time to reach equilibrium because it is initially colder in σz

while it has the same vertical scale as disk1. Figure 3.3 shows that for disk3 both σz and σφ change
significantly compared to changes in these parameters for the other three disks.

3.2 Dwarf galaxies including gas

The dwarf galaxy simulations with gas in the disk were initially set up in the same way as the dwarf
case (Mvir = 1010M⊙) presented by Dalla Vecchia & Schaye 2008. When this isolated galaxy is run
over a timescale of 2 Gyr (comparable to the expected duration of the mergers to be simulated) it
shows an initial peak in the star formation rate with a steep decline which appears to be somewhat
artificial and a very low, slowly declining star formation rate after this (see Figure 3.5). Literature
studies of dwarfs (both observational and theoretical) show that these generally have a low but
on average almost constant star formation rate and individually often depict a bursty behaviour
(Okamoto et al. 2010; Stinson et al. 2007; Immeli et al 2004; Sawala et al. 2010, 2011; Hunter
et al. 1998; Pelupessy et al. 2008; Weisz et al. 2011). Figure 3.5 shows that a simulation without
the inclusion of feedback (from supernovae winds) does not have the steep decline after the initial
peak but only a slow continuous decline. This could suggest that either the feedback was too strong
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Figure 3.2: Q, σR, σφ and σz with changing disk mass and so changing value for f = σ2
R
/σ2

z
if Q is kept constant.

From left to right and from top to bottom: Md = Md, initial and f = 9, Md = 0.5Md, initial but still f = 9 (so Q

does change!), Md = 0.5Md, initial and f = 18 and Md = 0.2Md, initial and f = 45

Figure 3.3: The same as Figure 3.2 but after being run in isolation (without a merger) for 6 Gyr.
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Figure 3.4: Change of the vertical surface density profile of disk1 and disk3 without a merger while it is relaxed

in isolation for 6 Gyr.

in the original model and blew out the gas, or initially so many star particles were formed that due
to their feedback again most of the gas was blown out. Figure 3.6 shows how the gas content in the
inner regions (within 0.5 kpc and within 3 kpc) decreases with time. Especially in the most central
region, (within 0.5 kpc, see Figure 3.6a) the gas content is lost after the initial peak in star formation
for the simulations including supernova feedback although at larger radii, gas is still present in this
case. Considering that also the initial central gas surface density is quite high (above 100 M⊙ pc−2 as
can be seen in Figure 3.7b), the gas is probably lost due to the high initial star formation.

Generally observational studies show that the gas extends farther out than the stellar disk. In our
initial simulations the exponential gas disk had the same scalelength as the stellar disk, which led to
the central surface density of the gas to be much higher than observed for dwarf galaxies (Walter &
Brinks 2001; Hunter, Elmegreen & Baker, 1998; Swaters et al. 2002; van der Kruit & Freeman 2011).
Van der Kruit & Freeman (2011) review that the HI surface density averaged over the whole HI disk
seems to be constant from galaxy to galaxy with a well-defined maximum surface density for disk
galaxies, of approximately 10 M⊙ pc−2. We should note that the star formation threshold for the gas
density in simulations is usually close to this value when translated into surface density. This led us
to revisit our initial conditions.

Extending the gas disk farther out than the stellar disk and so building a disk gas surface density
which is closer to observed disk surface densities has a direct effect on the star formation rate. Figure
3.8 shows that the initial peak that was present for the disks with hgas = hstars is much reduced.
However the star formation rate over the whole time period of 4 Gyr is rather low (∼ 0.001M⊙
year−1 for most of the time) and the initial peak is still present. This urges us to look at the parameters
influencing the star formation in a more general way.

There are a number of numerical parameters that can influence the star formation as it is imple-
mented in the simulation code. One parameter is of course the index for the Kennicutt-Schmidt law
(see Section 2.1) which we will leave as it is. However, we will re-examine and explore changes in
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Figure 3.5: Star formation rate for the initial settings of the dwarf with gas, in isolation and with and without

feedback.

(a) Gas mass within the inner 0.5 kpc (b) Gas mass within the inner 3 kpc

Figure 3.6: Gas mass in the inner regions with time for simulations with and without supernova feedback.
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(a) Stellar disk surface density. (b) Gas disk surface density with a disk scalelength

equal to the stellar disk scalelength hgas = h.

(c) Gas disk surface density with a disk scalelength

twice the stellar disk scalelength hgas = 2h.

(d) Gas disk surface density with a disk scalelength

four times the stellar disk scalelength hgas = 4h.

Figure 3.7: Initial surface densities for stars and gas for different scalelengths for the gas disk.

the index for the polytropic equation of state, γeff, the initial fraction of gas in the disk, fg , and the
density threshold for star formation, ρthresh.

The polytropic equation of state that we use introduces a minimum pressure explicitely that guar-
antees that the available resolution is sufficient for resolving the Jeans mass (Parry et al. 2011).
Failure to resolve the Jeans mass or Jeans length is known to lead to artificial fragmentation as parti-
cles then can have masses greater than the local Jeans mass (Bate & Burkert 1997). For a polytropic
equation of state, Ptot ∝ ρ

eff
g , the Jeans mass and length scale as

MJ ∝ f 3/2
g ρ

(3γeff−4)/2
g (3.1)

LJ ∝ f 1/2
g ρ

(γeff−2)/2
g . (3.2)

The initial value for γeff = 4/3 now gives a Jeans mass independent of the gas density. For a smaller
value of γeff the Jeans mass decreases with increasing gas density which ensures collapse but might
lead to spurious fragmentation. For a larger value, γeff > 4/3 collapse is expected, while the Jeans
length decreases with increasing gas density (γeff < 2). We thus choose to explore this parameter by
performing simulations with γeff = 1 and γeff = 1.4.

The initial gas fraction in the disk, fg , determines the gas reservoir that can be used for star
formation. The Jeans mass and length and the Kennicutt-Schmidt law are also weakly dependent on
fg . In general irregular (disky) dwarf galaxies appear to have a higher gas fraction than larger spirals
or irregulars (with the exception of those that have become satellites and so are stripped of their gas).
Therefore we explore different values of fg , namely fg = 0.5 and fg = 0.7 instead of fg = 0.3.
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Figure 3.8: Star formation rate for a dwarf galaxy with gas, where the gas disk has a different scalelength than

the stellar disk: hgas = hstars (the original dwarf) in isolation, hgas = 2hstars in isolation, hgas = 4hstars in isolation

and hgas = 4hstars with a merger.

The star formation threshold density is in numerical simulations one of the key parameters gov-
erning star formation. Theoretically the initial value of nH = 0.1 cm−3 corresponds to a surface
density of Σthresh = 7.3M⊙ pc−2 (Schaye 2004). This is close to the empirically found value of
Σthresh ∼ 10M⊙ pc−2 and also falls in the range of theoretically predicted values for a star formation
threshold due to the thermogravitational instability that is triggered on the transition from the warm
gas phase to the cold gas phase Σthresh ≈3-10 M⊙ pc−2 (Schaye & Dalla Vecchia 2008; Schaye 2004).
However, numerically the threshold density is also related to the resolution. Better resolution will
increase the maximum density that is resolved. Parry et al. 2011 state that for an irradiated primor-
dial gas with an isothermal density profile, as they set in the Aq-C-4, Aq-C-5 and Aq-C-6 simulations,
the maximum density that is resolved is increased by a factor of four if the gravitational softening is
decreased by a factor two. Moreover, House et al. 2011 argue that generally a too low star formation
threshold is used in numerical simulations which creates a ‘dispersion floor’ as the gas does not cool
enough before stars are formed. Governato et al. 2010 succesfully simulated the first bulgeless disk
galaxy using a star formation density threshold of 100 cm−3 with a spatial resolution of about ∼ 100
pc. We therefore explore two higher values for the star formation density threshold, namely 10 cm−3

and 200 cm−3. These values are based on the relations between numerical parameters found for the
Aq-C simulation by Parry et al. Extrapolating their findings for the Aquarius-C simulations to our
simulation, our much smaller gravitational softening and much larger number of particles indicate
that a threshold density of 10-200 cm−3 should be used. Governato et al. do have similar resolution
and softening length and choose their density threshold for star formation to be 100 cm−3 based on
Tasker & Bryan (2008) and Saitoh et al. (2008). Tasker & Bryan however show that the multiphase
ISM is strongly affected by the processes involved with star formation but that its exact structure
does not have to be modelled in detail to obtain the correct general star formation properties for disk
galaxies. On the other hand, having a higher density threshold with a higher star formation efficiency
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does affect the locations and burstiness of star formation and thus the complexity of the disk in their
simulations. Saitoh et al. argue that this is an important reason to aim for higher resolution sim-
ulations which can employ high density thresholds for star formation. Moreover they claim that a
higher density threshold not only reproduces the complexity of the ISM, star forming regions and the
eventual stellar disk much better, but is also more insensitive to free parameters in the star formation
model and reproduces the empirical laws more naturally.

We have explored different values for the parameters γeff, fg and ρthresh. All simulations that have
been performed are listed in table 2.4. Values for configuration and wind parameters which are kept
constant for all simulations are summarized in tables 2.2 and table 2.3 respectively. The results for
the star formation rate of the isolated dwarf galaxy are shown in Figures 3.9, 3.10 and 3.11. In these
figures one of the three changing parameters is kept constant while the other is allowed to vary. In
Figure 3.9 the gas fraction fg is kept fixed at the old value, fg = 0.3, in Figure 3.10 the value for γeff is
fixed at the value γeff = 4/3 and in Figure 3.11 the density threshold ρthresh is fixed on the new value
ρthresh = 10 cm−3. In general it can be seen that increasing the density threshold has the effect that
the star formation is delayed. The gas, presumably, needs more time to reach the required density to
form new stars. Changing the gas fraction itself increases the star formation rate slightly, but mostly
in the beginning of the simulation. The star formation rates after 4 Gyr are very comparable for
fg = 0.3 and fg = 0.7. Finally, changing the parameter governing the effective equation of state does
not seem to have a strong structural effect.

Figure 3.12 shows the gas mass with respect to the initial gas mass for the simulations in question.
This figure clearly shows that none of the galaxies forms stars very efficiently, that a large fraction of
the gas remains present but is not dense enough to form stars, and that there is little difference to be
found from simulation to simulation. Figures 3.13 to 3.16 show the star formation rate with respect
to the local surface density of the gas. These figures show that the star formation approximately does
follow the Kennicutt law (dashed line) for all cases. The lower plot shows the star formation rate and
surface density computed in cilindrical rings centered on the center of the disk with each ring having
the same area. The upper plot shows the star formation rate and surface density around star forming
gas particles in the simulation. The area considered around the individual particle is the same as
the area for the cilindrical bins, 0.1 kpc2. Generally one can see that while the star formation in the
center averaged over cilidrical bins generally lies on or slightly above the Kennicutt law but below the
density threshold, the average around star forming particles lies above the density threshold but can
lie below the Kennicutt law. This shows that local star forming regions lie in denser environments (the
local surface density average is higher than the average over the whole cilindrical ring at that radius
from the center) but that the star forming clouds itself are very local peaks so that the star formation
rate is not as high as the average density would predict following the Kennicutt law. These figures
show that as the density threshold for star formation is increased there is be less star formation but
the star formation that is present is much more efficient so that globally the star formation rates are
comparable. For a density threshold of ρthresh = 200 cm−3 there are but very few locations of star
formation but the local density in these star forming clumps is so high compared to its surroundings
that the density averaged over 0.1 kpc2 lies below the Kennicutt law.

Figures 3.17 to 3.20 show scatter plots of the temperature and density of gas particles at three
different times in the simulations. These figures support the view that the gas behaves very similarly
in all the simulations performed, and that there is less gas above the threshold if the density threshold
in increased. In all these figures most of the gas is located in the third quadrant, so the gas is cold
and in diffuse form.

Finally Figure 3.21 shows the percentage of gas particles that satisfy the star formation criteria:
the percentage of gas particles having a density that is above the density threshold and the percentage
of gas particles having a temperature that is below the threshold temperature. This plot emphasizes
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that the density threshold is in general the stricter criterium: almost all of the gas is below the
temperature threshold for all simulations but only a small fraction of the gas particles is above the
density threshold. The value of the temperature threshold does however have an indirect effect on
the star formation rate. One test simulation has been performed changing the temperature threshold
from 105 K to 104 K. The effect can be seen as the dotted green line in Figure 3.21: initially less
gas is below the temperature threshold, therefore the gas cools further and gets more dense, so a
larger fraction of the gas is above the density threshold. This effect wears out quickly however as the
gas stabilizes in the new situation. After that the fraction of gas below the temperature threshold or
above the density threshold is comparable to the other, Tc = 105 K, simulations. The evolution of the
total gas mass in the isolated dwarf galaxy for the Tc = 104 K simulation can be found in Figure 3.12.
There also can be seen that in the first Gyr the gas is consumed faster than for the other simulations
so the star formation rate is higher as there is more gas above the star formation density threshold.
However, in the second Gyr the gas consumption slows down so that the star formation rate after 2
Gyr is probably comparable to that of the Tc = 105 K simulations.

One clear observation can be made regarding all these star formation rate histories. Despite
significant variations in the numerical parameters governing star formation, they all still are in the
same range; there are individual differences at different points in time but averaged over the whole
4 Gyr they are very similar. This means that none of the explored parameters has a strong impact on
the star formation rates for these models. In order to change the star formation rates to values more
comparable with those found in other simulations for galaxies of approximately the dynamical mass
cosidered here (∼ 0.01M⊙yr−1), we have to look for other parameters globally governing the star
formation process. This is beyond the scope of this thesis but we will discuss some options here.

The rate at which gas particles form stars in the used model is implemented based on a ana-
lytic approach to convert the observed two-dimensional surface density criterion (associated to the
Kennicutt law) into a three-dimensional volume density based Schmidt law in a physical way. The
rate of star formation thus effectively depends strongly on the Kennicutt law that is assumed. The
Kennicutt law that has been used so far is that found by Kennicutt (1998) by measuring global star
formation rates and surface densities for spiral galaxies and starburst galaxies. A similar law just
taking the global star properties of the spirals, however, already has a significantly different slope.
This slope converges closer towards the slope of the general Kennicutt law when the SFR and sur-
face density is measured more locally in these spirals (Kennicutt 1998). But other studies also have
found indications that the Kennicutt law might have a steeper slope in the outskirts of spirals and in
dwarf galaxies (Roychowdhury et al. 2009; Bigiel et al. 2008; Bigiel et al. 2010). This could in fact
have a major influence on the star formation rates in our simulated isolated dwarfs since it gives a
steeper dependence on the gas, and hence a higher star formation rate for a given gas mass above
the threshold density.

Other parameters that could be explored more thoroughly are those associated to the modelling of
feedback, i.e. in our case the wind parameters. The wind parameters used were optimized for larger
galaxies, where the resolution is generally somewhat poorer. The winds in our simulations therefore,
could well be overly efficient. Figure 3.5 shows that shutting of the supernovae winds completely
does result in a higher star formation rate for a longer time. In this case the star formation rate does
drop but that could well be because the star formation is so high that the gas present is consumed
and therefore starts to form stars less fast. Exploring slower and less efficient winds in combination
with different gas fractions and star formation thresholds could give us a better view or insights into
how to model the physical conditions present in dwarf galaxies.
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Figure 3.9: Star formation rate for a dwarf galaxy with gas, where hgas = 4hstars, γeff = 1, 4/3, 1.4, fg = 0.3
and ρthresh = 0.1, 10 and 200 cm−3.

Figure 3.10: Star formation rate for a dwarf galaxy with gas, where hgas = 4hstars, γeff = 4/3, fg = 0.3, 0.5, 0.7

and ρthresh = 0.1, 10, and 200 cm−3.
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Figure 3.11: Star formation rate for a dwarf galaxy with gas, where hgas = 4hstars, γeff = 1, 4/3, 1.4, fg = 0.3,

0.5, 0.7 and ρthresh = 10 cm−3.
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Figure 3.12: Mass in gas in percentages of the initial mass in gas, where hgas = 4hstars, γeff = 1, 4/3, 1.4,

fg = 0.3, 0.5, 0.7 and ρthresh = 0,1, 10 and 200 cm−3.
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Figure 3.13: Star formation rate-surface density plot for the simulation with a gas fraction of 0.3, a star formation

density threshold of 0.1 cm−3 and an effective equation of state parameter γe f f = 4/3. Upper plot: surface density

measured in a region of 1 kpc2 around each star forming particle. Lower plot: sfr and surface density in cilindrical

bins of equal area (1 kpc2) around the center of the disk

Figure 3.14: Star formation rate-surface density plot for the simulation with a gas fraction of 0.5, a star formation

density threshold of 0.1 cm−3 and an effective equation of state parameter γe f f = 4/3. Upper plot: surface density

measured in a region of 1 kpc2 around each star forming particle. Lower plot: sfr and surface density in cilindrical

bins of equal area (1 kpc2) around the center of the disk
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Figure 3.15: Star formation rate-surface density plot for the simulation with a gas fraction of 0.3, a star formation

density threshold of 10 cm−3 and an effective equation of state parameter γe f f = 4/3. Upper plot: surface density

measured in a region of 1 kpc2 around each star forming particle. Lower plot: sfr and surface density in cilindrical

bins of equal area (1 kpc2) around the center of the disk

Figure 3.16: Star formation rate-surface density plot for the simulation with a gas fraction of 0.3, a star formation

density threshold of 200 cm−3 and an effective equation of state parameter γe f f = 4/3. Upper plot: surface density

measured in a region of 1 kpc2 around each star forming particle. Lower plot: sfr and surface density in cilindrical

bins of equal area (1 kpc2) around the center of the disk
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Figure 3.17: Temperature-density plot for the simulation with a gas fraction of 0.3, a star formation density

threshold of 0.1 cm−3 and an effective equation of state parameter γe f f = 4/3. The plots are at 1, 2, 3 and 4 Gyr.

Figure 3.18: Temperature-density plot for the simulation with a gas fraction of 0.5, a star formation density

threshold of 0.1 cm−3 and an effective equation of state parameter γe f f = 4/3. The plots are at 1, 2, 3 and 4 Gyr.
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Figure 3.19: Temperature-density plot for the simulation with a gas fraction of 0.3, a star formation density

threshold of 10 cm−3 and an effective equation of state parameter γe f f = 4/3. The plots are at 1, 2, 3 and 4 Gyr.

Figure 3.20: Temperature-density plot for the simulation with a gas fraction of 0.3, a star formation density

threshold of 200 cm−3 and an effective equation of state parameter γe f f = 4/3. The plots are at 1, 2, 3 and 4 Gyr.
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Figure 3.21: Percentages of the gas below the temperature threshold (Tc = 105 K) and above the density threshold

ρc for different simulations.



Chapter 4

Mergers without gas

4.1 Introduction

In order to extend the studies on thickening of disks to higher mass ratio ranges and to study the
thickening in dwarf galaxies we performed a set of four simulations. Four different disks, described in
Section 3.1, are subjected to an accreting satellite. The disks have different masses, Mdisk2 = 0.5Mdisk1
and Mdisk3 = 0.2Mdisk1, the stability of the disks is the same for disk1, disk2_f18 and disk3 as their
initial velocity dispersions are set in order to keep Q constant, while disk2_f9 has the same relations
between the initial velocity dispersions as disk1 but therefore has a different initial value for Q. The
satellite, its orbit and initial position and velocity are kept the same over the different simulations.
The merger is followed for 6 Gyr and the inclination of the orbit is 30 degrees. A comparison of the
mergers for the four different disks can be found in Section 4.2, while these results are compared to
results of Hopkins et al. (2008), Velázquez & White (1999), Villalobos & Helmi (2008), Moster et al.
(2010) and Purcell, Kazantzidis & Bullock (2009) in Section 4.3.

4.2 Results

The satellite clearly influences all four disks. The first pericenter passage is a very significant event.
After this passage the satellite, even though it is much more massive than the disk, is almost com-
pletely destroyed, as can be seen in Figure 4.1, and the particles of the dark satellite slowly settle on
orbits around the host halo center. All disks develop tails, rings and warps. For the most heavy disk,
disk1, these features and some heating is about all the damage the satellite does. However for the
lightest disk, disk3, the satellite seems to cause a rearrangement in the whole disk. This difference
can be seen in Figure 4.2 where we show the evolution in time of disk1 and disk3. The axes are
re-aligned such that they are along the principal axes of the disk, the x-axis along the major axis and
the z-axis along the minor axis, respectively. All the following analysis is performed, and its findings
are plotted, in the principal axes reference frame.

The idea that the satellite perturbs the lighter disks more strongly is evidenced by the vertical
number density profiles. In Figure 4.3 we can see that immediately after the first passage, around
0.7 Gyr, the lighter disks are much more perturbed than disk1. The difference between the two disk2
experiments can be explained by the fact that disk2_f18 has a lower vertical velocity dispersion with
respect to its radial and angular velocity dispersions than disk2_f9. Therefore it might be more easily
disturbed in the vertical direction. The disk on average is initially more stable in the plane and is
probably therefore more easily disturbed vertically. It can also be seen that the initial stability of
both the disk2 does not have a large impact on the final vertical density profile, i.e. after 6 Gyr of
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(a) disk1 (b) disk2f9

(c) disk2f18 (d) disk3

Figure 4.1: Mass of the satellite within the tidal radius during the merger events for all four disks. The initial tidal

radius is given in equation 4.1 where rsat denotes the initial position of the satellite with respect to the center of

the host dwarf galaxy.
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Figure 4.2: Response of disk1 (left) and disk3 (right) on the disruption by the dark satellite. The distribution of

‘star’ particles is shown in the principal axes reference frame at each time.
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evolution. Both the disk2 have a comparable final vertical density profile while that of the lighter
disk3 is much broader (a thicker and hotter disk) and that of disk1 is narrower (a thinner and colder
disk). The big difference between disk1 and disk3, not only in final density profiles but also in speed
of the reaction of the disk to the satellite, can be seen in Figure 4.4. This Figure shows the radial and
vertical surface density profiles for the merger case. The vertical profile evidences that while disk1
thickens in steps, disk3 reaches its final thickness directly after the first pericenter passage. For the
isolated case the less massive disk also has a thicker vertical distribution than disk1 as is discussed
in Section 3.1. Figure 4.4 moreover shows that while the vertical profile changes due to the merger
the radial surface density is very comparable to the isolated case (the initial, t = 0 Gyr, profile) for
both disk1 and disk3. During the merger the radial profile is seen to change slightly, going back to a
configuration similar to the original one later on in the simulations. This is in agreement with Purcell,
Kazantzidis & Bullock, who find only slight changes in the radial scalelength for all their simulations.

Figure 4.1 shows the mass loss of the satellite during the accretion event for all four the disk
models. Ideally one would use the gravitational potential to estimeate the tidal radius and mass loss
of the satellite. This, however, is computationally expensive and we use an approximation for the
tidal radius of the satellite instead. Initially the tidal radius is computed as

rtidal =

�

Mvir,sat

Mhost(within rsat)

�1/3

(4.1)

where rsat denotes the initial position of the satellite with respect to the center of the host dwarf
galaxy. Following the merger the mass of the satellite within the tidal radius is measured. The
tidal radius itself is recomputed every timestep using the satellite’s mass within the tidal radius from
the previous timestep. The tidal radius is updated only if that causes it to decrease in size. This
causes the tidal radius to decrease sharply after each pericenter passage while it stays almost constant
in between. The mass within the tidal radius then decreases in steps, going one step down every
pericenter passage, though it increases for a very short time during pericenter as the satellite gets
compressed in one direction and elongated in the other at pericenter. This effect disappears however
if radii smaller than the initial tidal radius are considered.

Figure 4.5 shows how the vertical density profile of all four disks changes over time at different
radii in units of the scalelength of the disks. Comparing the profiles for disk1 at different radii, one
can see that disk1 maintains its disky appearance, evidenced by the exponential density profiles, even
in the outskirts. The experiment disk3 on the other hand, appears to be very boxy in its outskirts, as
the density distribution at large radii does not fall off exponentially anymore but seems to be nearly
constant with height above the plane. Farther out all disks react faster to the merger and flares (it
is more fragile in this region). This is of course also related to the plumes and tails that can be seen
during the merging event. But even after the satellites settles in at the host center the outer disk is
much more perturbed than the inner disk. This is in agreement with earlier studies (Kazantzidis et
al. 2009; Velázquez & White 1999). Moreover, Velázquez & White (1999) found that the relation
between radius and thickening is linear by rough approximation though Kazantzidis et al. (2009)
claim that the flaring in the outskirts is more than a linear relation can explain. This means that
one should be careful in comparing the thickening of disks with reference to the radius at which it is
measured.

4.3 The mass ratio - disk thickening relation

Figures 4.5 and 4.3 show that there indeed seems to be a relation between the amount of thickening
and the ratio of the mass of the disk and the mass of the satellite.
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Figure 4.3: Change in the Z profile during the merger for all four disks. The last value in the legenda indicates the

value for z0 fitted with Σz ∝
1
z0

sech2
�

z

2z0

�

at t = 6 Gyr
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(a) Radial profile

(b) Vertical profile

Figure 4.4: Profiles plotted and fitted for disk1 and disk3 in the simulations with the satellite.
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(a) Within 0-1 scalelength in radius (b) Within 1-2 scalelength in radius

(c) Within 2-3 scalelength in radius (d) Within 3-4 scalelength in radius

Figure 4.5: Density profile for the Z direction in rings.

In order to determine the form of this relation the data described above is compared and combined
with data from Villalobos & Helmi (2008), Velázquez & White (1999), Purcell, Kazantzidis & Bullock
(2009) and Moster et al. (2010). Hopkins et al. (2008) argue that the data from these first three
papers and Younger et al. (2008) show that the relation is quadratic. It should be pointed out,
however, that some of the data used is treated incorrectly by Hopkins et al. and overall, different
definitions for the mass ratio are used and the range in mass ratios used to find the dependencies is
very small. The indepedent variable for all data is said to be the mass of the satellite over the mass
of the disk as is used in equations 1.3 and 1.4. For the data of Velázquez & White this is indeed what
is done. For the data of Villalobos & Helmi however the plotted value of M2/M1 is the value of the
total mass of the satellite over the virial mass of the host, not Msat/Mdisk. Correcting these points in
the plots would indeed change the fitted relation already and very significantly so.

Figure 4.6 shows the thickening of disks due to mergers with respect to ratio between the virial
mass of the satellite and the mass of the disk itself. The thickening is measured as the change
in the scaleheight at the ‘solar radius’, and in these plots it is normalized to the initial value of the
scalelength. This means that the radius at which the difference in disk thickness is measured has been
converted to be approximately the same factor of scalelengths of the disk for data from Villalobos &
Helmi and for data from this thesis as for the disks of Purcell, Kazantzidis & Bullock, Moster et al. and
Velazquez & White. Velázquez & White, Moster et al. and Purcell, Kazantzidis & Bullock all simulate
Milky Way-like disks and measure at a solar radius of 8.5 and 8.0 kpc with their disks having a radial
scalelength of 3.5 and 2.84 kpc, respectively. We convert their solar radius to a solar-like radius for
the smaller disks of the experiments presented in this thesis and the disks of Villalobos & Helmi by
approximating it to be at 8/3 scalelengths. In this way the thickening is measured at respectively
equal radii for all disks. This is very important even though we measure ∆H/R because of flaring in
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the outer regions of the disks as is explained in Section 4.2.
In the top panel in Figure 4.6 we plot in a linear scale, while the bottom is in logarithmic scale.

The data points are from this thesis, Villalobos & Helmi (2008), Velázquez & White (1999), Purcell,
Kazantzidis & Bullock (2009) and Moster et al. (2010) as listed in the figures. The points from Moster
et al. are extracted directly from their figures instead of from tables so they are not as precise as the
other data points. Moster et al. performed accretion simulations with and without a gas component
in the host disk which partly describes their spread in∆H/R. They also found that, just as was shown
by Purcell, Kazantzidis & Bullock, for an initial thinner disk the thickening is larger. This also is one of
the possible explanations why the points of Purcell, Kazantzidis & Bullock lie distinctively higher than
all other points. Furthermore, Purcell, Kazantzidis & Bullock do decribe their final disks as flaring.
Moster et al. also noticed that the disks of Purcell, Kazantzidis & Bullock experienced significantly
more thickening than theirs, despite the fact that the disk parameters used by Moster et al. were
modelled after Purcell, Kazantzidis & Bullock. In Section 1.3 in this thesis is described how Moster et
al. attempt to answer why their thickening is less. Influences other than initial disk thickness include
the total masses of the disk and satellite, the orbit of the satellite and the profiles and concentrations
of both the satellite and the host galaxy. In all studies it is clear that many parameters influnce the
particular effect a merger has on a disk, globally as well as locally. In general Figure 4.6 shows that
the data could be fit by a linear relation between disk thickening and satellite:disk mass ratio, but it
clearly is not well fit by a quadratic function. This implies that though the reasons why Hopkins et al.
changed the relation from Toth & Ostriker are generally supported, their arguments and mathematics
seem to be flawed. The analysis and dependence by Toth & Ostriker clearly describe the relation for
satellite accretion and disk thickening better.

One of the reasons for the large scatter is possibly that all studies use different measures for
the thickening of the disk, Velázquez & White use < z2 >1/2, while Purcell, Kazantzidis & Bullock
estimate < |z| >, median(|z|) and fit a double sech2 to find a z0,thin and a z0,thick, i.e. they fit two disks
simultaneously. For the data of this thesis and of Moster et al. and Villalobos & Helmi a single sech2

has been fitted to find a scaleheight. This means that in order to compare the different simulations
in a fair way some measures had to be converted in others. We measure the values for < z2 >1/2, z0

and < |z| > for all simulations from Villalobos & Helmi and this thesis at different radii. The values
for all three measures at different radii for both sets of simulations can be found in Figure 4.7. These
are then used to fit a relation between the different measures, as is plotted in Figure 4.8. There
is significant scatter between the different scalheight measures but the ratio between them remains
fairly constant with radius. Finally, these transformations are used to convert the measurements of
< z2 >1/2 and < |z| > provided by the different authors to a value for the scaleheigth of a single
sech2 distribution, z0. As the radius at which the thickening is measured does have an influence on
the measured thickening, the difference in scaleheight between the initial disk and the final disk is
divided by the radius at which it is measured. This reduces the differences in measurements between
the different data sets further. One should note, however, that there can still be a discrepancy between
the values found for∆H/R around the solar radius and in the outskirts of the disks due to disk flaring
as a result of the minor merger, as Purcell, Kazantzidis & Bullock noticed for their disks.

Figure 4.9 shows the relation for all studies discussed here between thickening of the disk due
to a minor merger and the ratio between the disk mass and the total virial mass of the host. This
last parameter is closely related to the galaxy efficiency used by Sales et al. (in prep.). The relation
between galaxy efficiency and thickening of the disk due to a minor merger seems clearer than the
relation of the thickening with disk-satellite mass ratios. Smaller disks in a dark matter host halo will
thicken more easily than larger disks in the same host halo. The symbols in the figure are color coded
based on the ratio Mvir,sat/Mdisk that was presented in Figure 4.6. This, again, shows that mergers
with a larger mass ratio between the total satellite mass and the disk mass of the host will thicken
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(a) linear-linear plot

(b) log-log plot

Figure 4.6: The thickening induced by a satellite with respect to the ratio of the mass of that satellite to the mass of

the disk for different studies (Villalobos & Helmi (2008), Velázquez & White (1999) Purcell, Kazantzidis & Bullock

(2009), Moster et al. (2010) (light blue; taken from figures instead of from tables) and the data presented in this

thesis). The lines are simple polynomials fitted to the points.
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(a) z0, < |z|> and (< z2 >)1/2 for my data

(b) z0, < |z|> and (< z2 >)1/2 for data from Villalobos & Helmi (2008)

Figure 4.7: The thickening induced by a satellite measuring z0, (< z2 >)1/2 and < |z| > at different radii for

two different studies.The color codings denote the different measures of scaleheight used and the different lines are

different experiments. The values in the legend give the values for the Mvir, sat-Mdisk ratio.
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Figure 4.8: Fitted relations between z0, (< z2 >)1/2 and < |z| > fot data from this study and data from Villalobos

& Helmi (2008). Note that there is quite some scatter within the different measures of scaleheight.

the host disk more.
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Figure 4.9: The thickening induced by a satellite with respect to the ratio of the mass of the disk to the virial mass of

the host for different studies: Villalobos & Helmi (2008; upside down triangles), Velázquez & White (1999; stars),

Purcell, Kazantzidis & Bullock (2009; upright triangles), Moster et al. (2010; squares) and the data presented in

this thesis (circles). The symbols are color coded for the satellite-disk mass ratio which was shown in Figure 4.6:a

lighter red color means that Mvir,sat/Mdisk is larger.



Chapter 5

Mergers with gas

5.1 Introduction

The gas in merging galaxies responds to the tidal forces and torques by flowing radially inwards and
outwards. A summary of this can be found in Section 1.3 following Bournaud (2011). The outflowing
gas will form part of the plumes, bridges and tails which are observed in peculiar galaxies. It has
been suggested that tidal dwarf galaxies could form in these outflows. The outflowing gas is lost
and eventually could be re-accreted, depending on the gravitational potential of the host and the
outflow velocities. Inflowing gas, on the other hand, accumulates near the center and can fuel a
starburst if a sufficient amount of gas is flowing in and if the gas gets sufficiently dense. Di Matteo
et al. (2008) show that only a small amount of the mergers trigger a starburst in their suite of
hydrodynamical simulations. Moreover the mergers that do trigger a starburst are mostly major
mergers. We performed simulations of mergers with dark matter halo mass ratios of 1:5 and 1:16,
minor mergers. The primary system, however, is a dwarf galaxy, which have less baryonic content.
With respect to the disc-satellite mass ratio these can be though of as major mergers. Therefore it is
very interesting to see the effect of such a merger on the gas in the disk of a dwarf galaxy.

5.2 Results

The first merger simulations that we performed involved a satellite of a total mass comparable to the
disk mass of the dwarf galaxy. The disk setup and the parameters governing the fraction of gas in the
disk, the effective equation of state and the star formation threshold here are as the initial isolated
disks described in Section 3.2. Though we considered the main characteristics and star formation
rates in the disk unrealistic we still performed simulations of mergers of this disk with a dark satellite
of Mvir = 5.96×108M⊙. The satellite was put on three different orbits in the halo of the host system.
Following the properties found for a satellite in a dwarf system in the Aquarius simulations as given
in table 2.1 gives a ’polar’ orbit: the satellite approaches the central dwarf galaxy with an inclination
of almost 90 degrees. The ’frontal’ orbit uses the same initial positions but the initial velocity of
the satellite is directed straight at the center of the host (a purely radial orbit). This induces the
satellite to directly plunge through the disk of the dwarf galaxy at first pericenter. Two more orbits
with different inclinations are explored, one prograde, almost in the plane of the disk, and a second,
also prograde, with an inclination of 30 degrees. Figure 5.1 shows the star formation rates for the
isolated dwarf galaxy, the merger of the dwarf galaxy with a dark satellite on the polar, planar and
frontal orbit and for the isolated galaxy without the implementation of supernova feedback and a
merger case with the satellite on the planar orbit without feedback. The exact properties of all these
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Figure 5.1: Star formation rate for the initial settings of the dwarf galaxy with gas, in isolation and with an

infalling satellite, and with and without feedback.

simulations can be found in tables 2.2 through 2.4.
As can be seen in Figure 5.1 even though the star formation rate is very low after the initial peak

for the isolated dwarf system the dark satellite does not have a significant effect on the star formation
rate. Suspecting the initial burst of star formation caused a dilution of the gas and thereby almost
inhibited further star formation, we performed a simulation in isolation and with the satellite on a
planar orbit without supernova feedback. Even in this case the merger does not have an effect on the
star formation rates of the dwarf galaxy. Figure 5.2 supports this view. The figure shows the gas mass
within the inner 1 kpc for the host system for the isolated case and the case with the satellite on the
planar orbit, both with and without the implementation of supernova feedback. It is clear from Figure
5.2 that the merger with a dark satellite in these cases does not induce a gas flow to the center of the
host and does not enhance the star formation in the host system. As this is the case for three quite
different orbits of the satellite we suspect that the cause of the absence of any significant effect of
the merger on the host lies with a too small mass ratio between the virial masses of the dwarf system
and the satellite or in the setup of the dwarf galaxy and in the density of the satellite. In Section 3.2
a number of reasons are given why we needed to change the initial conditions for the dwarf galaxy.
These changes were seen to have an effect on the star formation rates. Therefore we now explore a
subset of those initial conditions in the case of the merger with a dark satellite.

Considering the results presented in Section 3.2, we subsequently performed simulations of the
merger of a dwarf galaxy and a dark satellite using the dwarf galaxy models H4 1 and H4 14. The
properties that changed for these simulations with respect to those discussed above can be found
in table 2.4. Besides changes in the initial conditions of the host dwarf system and the physical
parameters governing star formation, we also changed the mass of the satellite. For satellites falling
into a Milky Way-like galaxy the satellites generally really perturb the host disk if they have a mass
ratio of approximately 1:5 or larger. Therefore we set the mass of our new satellite to 0.2Mvir, host =
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Figure 5.2: Gas mass within the inner 1 kpc in percentages with respect to the total gas mass for the initial settings

of the dwarf galaxy with gas, in isolation and with an infalling satellite on a planar orbit, and with and without

feedback.

2×109M⊙. Haloes of this size are in a transition region, and may be completely dark but some could
also host a luminous galaxy.

Merger simulations of dwarf galaxy model H4 14 are performed with the more massive satellite
on the planar, polar, frontal and i = 30 orbits. The star formation rates for these simulations can be
found in Figure 5.3. The figure shows that most of the mergers do not change the star formation
rates by more than a factor 2 or 3, they are slightly smaller around the first pericenter and slightly
larger later on. However, the merger on the planar orbit has a significant burst of star formation
with an increase in the SFR of a factor 10. This starburst however, is not centrally concentrated,
but shows two epicentres. Figure 5.4 shows how in the second encounter the dark satellite catches
gas from a spiral arm that was formed as a result of the first close tidal interaction. There are two
main star forming regions: the gas that starts to form stars in the center of the dark satellite, and
the star formation in the center of the host system. This means that the satellite on the planar orbit
did induce a starburst but not just the conventional one where gas is channelled to the center of the
primary system due to tidal forces from the encounter. One could even see this as a way for dark
systems to light up, even though the satellite will eventually be ripped apart and absorbed by the
dwarf galaxy.

Figure 5.6 shows the consumption of gas for all merger cases and the isolated case for the H4 14
model and a planar merger case for the H4 1 model. The H4 1 model has the conventional values for
the star formation parameters, ρthresh = 0.1 cm−3, γeff = 4/3 and there is 30 % gas in the disk. Model
H4 14 has a gas fraction fo fg = 0.5, a star formation threshold of ρthresh = 10 cm−3 and γeff = 1.4.
In the H4 1, planar merger, simulation a similar event takes place as with the H4 14, planar merger
simulation. As there is less gas in total the star formation rate peak due to the satellite catching in
some gas, cannot be as high as for model H4 14. That this is indeed the case, can be seen in Figure
5.5. Keep in mind however that the isolated model H4 1 also has a slightly lower star formation rate
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Figure 5.3: Star formation rate for the H4 14 model for the dwarf galaxy with gas, in isolation and with an

infalling satellite on 4 different orbits.

Figure 5.4: Snapshots around the time of the second encounter for the H4 14 model for the dwarf galaxy with

gas and the dark satellite on the planar orbit. Shown are the dark matter halo of the satellite (dark blue; 2% of

all particles shown), the gas in the disk of the dwarf galaxy (red; 20% of all particles shown) and the locations of

current star formation (green).
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Figure 5.5: Star formation rate for the H4 14 and the H4 1 model for the dwarf galaxy with gas, with an infalling

satellite on the planar orbit.

than model H4 14 as is discussed in Section 3.2 and shown in Figure 3.11. And with respect to Figure
5.6 one should note that the percentage of the consumed gas with respect to the initial total gas mass
is decreasing faster initially for the H4 1 model than for the H4 14. After 6 Gyr the gas consumption
is similar again.

The above simulations show that though the mergers with dark satellite do perturb the gas disk
of the dwarf galaxy models the effect on the star formation is small, and only an increase of a factor
of few is observed in most cases. The only exceptions are when gas gets caught in the center of
the dark satellite and therefore then gets dense enough to form stars. Considering the discussion in
Section 3.2 about the star formation in the dwarf galaxy models the problem lies more with the star
formation prescription in general. The satellites do effect the gas just as the stars. This is shown in
Figure 5.7. The fraction of gas in the inner 1 kpc does not change dramatically due to the merger
but effects can be seen around the first pericenter for most of the simulations and after the second
pericenter for the planar orbit and polar orbit for the model H4 14. Increasing the star formation in
the isolated dwarf galaxy should enhance these small effects. Then the dark satellites probably would
induce a starburst-like event.
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Figure 5.6: Total gas mass in percentages with respect to the initial gas mass for the H4 14 and the H4 1 model

for the dwarf galaxy with gas, with an infalling satellite on a planar orbit for the H4 1 model and on 4 different

orbits for the H4 14 model.

Figure 5.7: Same as Figure 5.6 except plotting the gas mass within the inner 1 kpc in percentages with respect to

the initial total gas mass.



Chapter 6

Summary and conclusions

The structure we see in the Universe is thought to have been formed in a hierarchical manner. The
ΛCDM standard cosmogony prescribes that galaxies, and structures in general, grow through merg-
ing. For galaxies this means that not only the dark matter haloes merge to form one bigger halo
but that also the baryonic content of those haloes is subjected to this process. In a CDM paradigm
however, there should be starless haloes; haloes below a certain (mass) threshold have not been able
to form stars due to ionizing radiation, too low a baryonic mass to develop the instabilities that lead
to star formation, and gas loss. In cosmological simulations based on the cold dark matter theory
these small dark haloes are abundant. Dwarf galaxies, for example those in the Local Group, are
above that threshold but seem to have a larger mass-to-light ratio and have had less efficient star
formation than larger galaxies. These dwarf galaxies sometimes have bursty star formation histories,
and show a wide variety in gas content, structural properties, kinematics and metallicity. According
to cosmological simulations like the Aquarius simulations (Springel et al. 2008), these satellites, or
the dwarf galaxies that will become satellites can have substructure themselves. They accrete smaller
haloes and occasionally can have a major merger. The satellites in that case however then should be
predominantly dark.

A number of the Local Group dwarfs are clearly influenced by the dominant large galaxies as the
Milky Way and have been subject to tidal effects. They are expected to eventually end up as the
streams which are observed in the Milky Way halo and around other galaxies or to perturb or heat
the disk if their pericenter is close enough. These minor mergers can perturb the disk of a host galaxy
but there is no agreement in the literature on the dependence of the thickening of the disk on the
ratio between the total satellite mass and that of the disk itself. For example Toth & Ostriker (1992)
propose a linear dependence, while Hopkins et al. (2008) on the other hand claim that the relation
is quadratic.

This thesis presents a suite of controlled simulations of dwarf galaxies and dark satellites. The
initial conditions are inspired by data from the Aquarius-C-2 simulation provided by Laura Sales. Our
dwarf galaxy model is based on the Mvir = 1010M⊙ dwarf model by Dalla Vecchia & Schaye (2008).
The dark satellite is modelled following a Navarro, Frenk & White (1996) profile. We evolved both
satellite and dwarf galaxy in isolation and simulate their mergers both with and without gas in the
dwarf galaxy.

For the simulations without gas three dwarfs with different disk masses are modelled. While the
masses vary the Toomre stability parameter Q is kept fixed. In this way the thickening of the galaxy
disks due to the same infalling satellite can be measured with respect to the changing disk mass.
Combining simulations from Villalobos & Helmi (2008), Moster et al. (2009), Purcell, Kazantzidis &
Bullock (2009) and Velázquez & White (1999) we find that the thickening of a disk depends linearly
with Mvir,sat/Mdisk and not quadratically as suggested by Hopkins et al. One reason for this difference,
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is that we have considered a much larger range of mass ratios over which the thickening is measured.
However, we have also noticed several incorrect assumptions in the Hopkins et al. analyses. The mass
ratio of the satellite to the disk is clearly of importance in the thickening process: while keeping the
other possible parameters fixed the thickening increases visibly for lower disk masses. For our lowest
mass dwarf galaxy the disk hardly has an exponential radial density profile any more, the luminosity
distribution is more boxy and the disk seems completely destroyed. Therefore such dissipationless
mergers with a dark satellite, will turn a disky dwarf into a spheroidal-like system.

In the simulations with gas, the challenge was to establish whether a dark satellite could induce
a starburst in a dwarf galaxy. We first focused on setting up a realistic starforming dwarf galaxy.
This turned out to be quite difficult: in general most of our systems have too low star formation
rates. We have explored varying the parameters characterizing star formation, namely the initial cold
gas distribution, the star formation density threshold, the effective equation of state and the fraction
of gas present in the disk based upon literature studies and observations. This did affect the star
formation rates for the isolated dwarf galaxy only for a short time, on average the star formation rate
stayed on a similar low level.

Nonetheless, we performed simulations between two of our starforming dwarfs and a dark satel-
lite. The satellites are placed in the dwarf systems’ haloes on four different orbits with inclinations of
0 (planar), 30 and 90 (polar) degrees and a purely radial orbit. For three of these orbits the satellite
affects the disk but does not increase the star formation by more than a factor 2 to 3. The satellite on
the planar (i ≈ 0) orbit however, does induce a starburst, with an increase in the star formation by
almost a factor of 10. This increase in star formation is at least partly due to the dark satellite accret-
ing gas from the dwarf system and so facilitating star formation in its central region. The starburst is
present in the simulations including the dark satellite for both dwarf galaxy models although the star
formation rates are lower for the simulations with a lower initial gas fraction.

These simulations show that a dark satellite is very well able to significantly perturb a dwarf
galaxy: to thicken the stellar disk and even to induce a starburst. Further research however, should
first be done on the isolated dwarf galaxies especially regarding the star formation. When the star
formation process and the parameters influencing it are better understood, our understanding of the
probability of a dark satellite inducing a starburst in a dwarf galaxies can be significantly improved.
For further research we therefore propose to explore the parameters governing the supernovae feed-
back and possibly different star formation laws. We then will have a better view on how to model a
realistic dwarf galaxy that then can be subjected to mergers with dark satellites.



Bibliography

[1] Arp, H., 1965, ApJ, 142, 402
[2] Arp, H., 1966, ApJS, 14, 1
[3] Balsara, D. S., 1995, Journal of Computational Physics, 121, 357
[4] Barnes, J.E., Hernquist, L., 1992, ARA&A, 30, 705
[5] Bate, M. R. and Burkert, A., 1997, MNRAS, 288, 1060
[6] Bekki, K. and Chiba, M., 2006, ApJ, 637, L97
[7] Benson, A. J., Lacey, C. G., Frenk, C. S., Baugh, C. M. and Cole, S., 2004, MNRAS, 351, 1215
[8] Bigiel, F., Leroy, A., Walter, F., et al., 2008, AJ, 136, 2846
[9] Bigiel, F., Leroy, A., Walter, F., et al., 2010, AJ, 140, 1194
[10] Bournaud, F., Invited lecture at Evry Schatzman School 2010, 2011, arXiv:1106.1793
[11] Bullock, J. S., Kravtsov, A. V. and Weinberg, D. H., 2000, ApJ, 539, 517
[12] Cox, T.J. Jonsson, P., Somerville, R. S., Primack, J. R. and Dekel A., 2008, MNRAS, 284, 285
[13] Dalcanton, J. J. and Bernstein, R. A., 2002, ApJ, 124, 1328
[14] Dalla Vecchia, C. and Schaye, J., 2008, MNRAS, 387, 1431
[15] Davies, J. I., Disney, M. J., Minchin, R. F., Auld, R. and Smith, R., 2006, MNRAS, 368, 1479
[16] Davies, J., Minchin, R., Sabatini, S., et al., 2004, MNRAS, 349, 922
[17] Dekel, A. and Silk, J., 1986, ApJ, 303, 39
[18] Di Matteo, P., Bournaud, F., Martig, M., et al., 2008, A&A, 492, 31
[19] Di Matteo, P., Combes, F., Melchior, A.-L. and Semelin, B., 2007, A&A, 468, 61
[20] Duc, P.-A., Bournaud, F., 2008, ApJ, 673, 787
[21] Ferland, G. J., 2000, Revista Mexicana de Astronomia y Astrofisica Conference Series, 9, 153
[22] Font, A. S., Navarro, J. F., Stadel, J. and Quinn, T., 2001, ApJ, 563, L1
[23] Gilmore, G., Wilkinson, M. I., Wyse, R. F. G., et al., 2007, ApJ, 663, 948
[24] Gingold, R. A. and Monaghan, J. J., 2001, MNRAS, 181, 375
[25] Governato, F., Brook, C., Mayer, L., et al., 2010, Nature, 463, 203
[26] Grebel, E. K., Gallagher, J. S. III and Harbeck, D., 2003, ApJ, 125, 1926
[27] Haardt F. and Madau P., 2001, In Proc. XXXVIth Recontres de Moriond, Clusters of Galaxies and

the High Redshift Universe Observed in X-rays, eds Neumann, D. M. and Van, J. T. T.
[28] Hayashi, H. and Chiba, M., 2006, Publ. Astron. Soc. Japan, 58, 835
[29] Helmi, A. and White, S. D. M., 2001, MNRAS, 323, 529
[30] Hernquist, L., 1993, ApJS, 86, 389
[31] Hernquist, L. and Katz, N., 1989, ApJS, 70, 419
[32] Hopkins, P. F., Hernquist, L., Cox, T. J., Younger, J. D. and Gurtina, B., 2008, ApJ, 688, 757
[33] House, E. L., Brook, C. B., Gibson, B. K., et al., 2011, MNRAS, 415, 2652
[34] Huang, S. and Carlberg, R. G., 1997, ApJ, 480, 503
[35] Hunter, D. A., Elmegreen, B. G. and Baker, A. L., 1998, ApJ, 493, 595
[36] Ibata, R., Irwin, M., Lewis, G., Ferguson, A. M. N. and Tanvir, N., 2001b, Nature, 412, 491
[37] Ibata, R., Irwin, M., Lewis, G. and Stolte, A., 2001a, ApJ, 547, 133

62



63

[38] Immeli, A., Samland, M., Gerhard, O. and Westera, P., 2004, A&A, 413, 547
[39] Kazantzidis, S., Magorrian, J. and Moore, B., 2004, ApJ, 601, 37
[40] Kazantzidis, S., Łokas, E. L., Mayer, L., Knebe, A. and Klimentowski, J., 2011, ApJL, 740, L24
[41] Kazantzidis, S., Zentner, A. R., Kravtsov, A. V., Bullock, J. S. and Debattista, V. P., 2009, ApJ,

700, 1896
[42] Kennicutt, R. C. Jr., 1998, ApJ, 498, 541
[43] Kent, B. R., Giovanelli, R. and Haynes, M. P., 2007, ApJ, 665, L15
[44] Klypin, A., Kravtsov, A. V., Valenzuela, O. and Prada, F., 1999, ApJ, 522, 82
[45] Kormendy, J., 1985, ApJ, 295, 73
[46] Kregel, M. and van der Kruit, P. C., 2005, 2005, MNRAS, 358, 481
[47] Kregel, M., van der Kruit, P. C. and Freeman, K. C., 2005, 358, 503
[48] Larson, R. B., 1974, MNRAS, 169, 229
[49] Lucy, L. B., 1977, Astronomical Journal, 82, 1013
[50] Macciò, A. V., Dutton, A. A. and van den Bosch, F. C., 2008, MNRAS, 391, 1940
[51] Mac Low, M.-M. and Ferrara, A., 1998, In Lecture Notes in Physics Vol. 506: The Local Bubble

and Beyond, 559, Proceedings of the IAU Colluquium No. 166, ed. Breitschwerdt, D., Freyberg,
M. J. and Truemper, J., Springer-Verlag

[52] Mac Low, M.-M. and Ferrara, A., 1999, ApJ, 513, 142
[53] Mayer, L., Governato, F., Colpi, M., et al., 2001a, ApJ, 547, L123
[54] Mayer, L., Governato, F., Colpi, M., et al., 2001b, ApJ, 559, 754
[55] Mayer, L., Moore, B., Quinn, T., Governato, F. and Stadel J., 2002, MNRAS, 336, 119
[56] Mihos, J. C. and Hernquist, L., 1994, ApJ, 437, 611
[57] Mo, H. J., Mao, S. and White, S. D. M., 1998, MNRAS, 295, 319
[58] Monaghan, J. J., 1992, ARA&A, 30, 543
[59] Moore, B., Ghigna, S., Governato, F., et al., 1999, ApJ, 524, L19
[60] Moster, B. P., Macciò, A. V., Somerville, R. S., Johansson, P. H. and Naab, T., 2010, MNRAS,

403, 1009
[61] Muñoz Cuartas, J. C., Macciò, A., Gottlöber, S. and Dutton, A., 2010, In Proceedings of Cosmic

Radiation Fields: Sources in the early Universe (CRF 2010), 16, Ed. Raue, M., Kneiske, T., Horns,
D., Elsaesser, D. and Hauschildt, P.

[62] Navarro, J. F., Frenk, C. S. and White ,S. D. M., 1996, ApJ, 462, 563
[63] Okamoto, T., Frenk, C. S., Jenkins, A. and Theuns, T., 2010, MNRAS, 406, 208
[64] Okamoto, T. and Frenk, C. S., 2009, MNRAS, 399, L174
[65] Parry, O. H., Eke, V. R., Frenk, C. S. and Okamoto, T., 2011, arXiv:1105.3474
[66] Pelupessy, F. I., van der Werf, P. P. and Icke, V., 2004, A&A, 422, 55
[67] Press, W. H., Schechter, P., 1974, ApJ, 187, 425
[68] Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P., 1992, Numerical recipes. The

art of scientific computing, Cambridge: University Press
[69] Purcell, C. W., Kazantzidis, S. and Bullock, J. S., 2009, ApJ, 694, L98
[70] Qu, Y., Di Matteo, P., Lehnert, M. D. and van Driel, W., 2011, A&A, 530, 10
[71] Quinn, P. J. and Goodman, J., 1986, ApJ, 309, 472
[72] Quinn, P. J., Hernquist, L. and Fullagar, D. P., 1993, ApJ, 403, 74
[73] Read, J. I., Pontzen, A. P. and Viel, M, 2006, MNRAS, 371, 885
[74] Rees, M. J. and Ostriker, J. P., 1977, MNRAS, 179, 541
[75] Ricotti, M., 2009, MNRAS, 392, L45
[76] Roychowdhury, S., Chengalur, J. N., Begum, A. and Karachentsev, I. D., 2009, MNRAS, 397,

1435
[77] Saitoh, T. R., Daisaka, H., Kokubo, E., et al., 2008, Publ. Astron. Soc. Japan, 60, 667



64 Bibliography

[78] Sales, L. V., Helmi, A., Starkenburg, E., et al. in prep.
[79] Sales, L. V., Navarro, J. F., Abadi, M. G. and Steinmetz, M., 2007, MNRAS, 379, 1475
[80] Sawala, T., Guo, Q., Scannapieco, C., Jenkins, A. and White, S., 2011, MNRAS, 413, 659
[81] Sawala, T., Scannapieco, C., Maio, U. and White S., 2010, MNRAS, 402, 1599
[82] Schaye, J., 2004, ApJ, 609, 667
[83] Schaye, J. and Dalla Vecchia, C., 2008, MNRAS, 383, 1210
[84] Schweizer, F., 1990, In Dynamics and Interactions of Galaxies, ed. Wielen, R., Springer, 60, New

York
[85] Sofue, Y., 1994, ApJ, 423, 207
[86] Somerville, R. S., 2002, ApJ, 592, L23
[87] Springel, V., 2005, MNRAS, 364, 1105
[88] Springel, V., Di Matteo, T. and Hernquist, L., 2005, MNRAS, 361, 776
[89] Springel, V., Frenk. C. S. and White, S. D. M., 2006, Nature, 440, 1137
[90] Springel, V., Yoshida, N. and White, S. D. M., 2001, New Astronomy, 6, 79
[91] Springel, V., Wang, J., Volgesberger, M., et al., 2008, MNRAS, 391, 1685
[92] Springel, V. and White, S. D. M., 1999, MNRAS, 307, 162
[93] Springel, V., White, S. D. M., Jenkins, A., et al., Nature, 435, 629
[94] Stinson, G. S., Dalcanton, J. J., Quinn, T., Kaufmann, T. and Wadsley, J., 2007, ApJ, 667, 170
[95] Starkenburg, E., et al., 2011, in prep.
[96] Steinmetz, M., 1996, MNRAS, 278, 1005
[97] Strigari, L. E., Bullock, J. S., Kaplinghat, M., et al., 2007, ApJ, 669, 676
[98] Strigari, L. E., Bullock, J. S., Kaplinghat, M., et al., 2008, Nature, 454, 1096
[99] Swaters, R. A., van Albada, T. S., van der Hulst, J. M. and Sancisi, R., 2002, A&A, 390, 829
[100] Tamman G. A., 1994, In Dwarf Galaxies, 3, ed. Meylan, G. and Prugniel, P., Eur. South. Obs.

Astrophys. Symp., 49, Garching: ESO
[101] Tasker, E. J. and Bryan, G. L., ApJ, 673, 810
[102] Tolstoy, E., Hill, V. and Tosi, M., 2009, ARA&A, 47, 371
[103] Toomre, A., 1977, In The Evolution of Galaxies and Stellar Populations, eds. Tinsley, B. M., and

Larson, R. B., Yale University Observatory
[104] Toomre, A. and Toomre, J., 1972, ApJ, 178, 623
[105] Toth, G. and Ostriker, J. P., 1992, ApJ, 389, 5
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