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Chapter 1

Introduction

When we look around us, we see a lot of structure, on many different scales. Looking down,
we see the Earth. Looking up at the sky we see the Sun, or at night the Moon, planets
and stars. On a much larger scale, we can see the light of the Milky Way galaxy stretched
across a dark sky. You may also see our neighbour, the Andromeda galaxy. On the southern
hemisphere, you see our companion galaxies the Magellanic clouds. Using our astronomical
instruments, we can see structures on even larger scales. For example, one can clearly see
clusters of galaxies with a telescope, and sometimes even the filaments that connect them.
For a better view of structure on large scales, we need to measure distances in order to build
a three-dimensional picture. Thus we can not only see clusters and filaments, but also void
regions without any galaxies. These would not be visible without the distance measurement,
because structures in the fore- and background intersect with them. A slice through such a
three-dimensional map of galaxies is shown is Figure 1.1.

The discovery of the cosmic microwave background (CMB) radiation, and its subsequent
mapping by experiments like COBE and WMAP (Bennett et al., 1996; Komatsu et al., 2011),
has confirmed the Big Bang theory, which states that the universe started out as very small
and dense point that expanded rapidly and cooled down in the process. We also learned that
our universe started out extremely homogeneous: the structures seen today were seeded in
tiny perturbations (in the order of ∼ 10−5) in the early universe. The slight overdensities
started to collapse under their own gravity and formed the large scale structure mentioned
above. In addition, they seeded many smaller structures like galaxies, stars and planets.

We know that the matter distribution went from nearly homogeneous to the structure we
see today, but how this process of evolution works exactly is still under study. Many of these
studies construct a theoretical model of the physics that dominates structure formation on
large scales, and test this model in computer simulations. If the structures in the simulation
results look like the structures we observe, the model is a good approximation of reality.
Models that are based on the Lagrangian perturbation theory, like the linear Zel’dovich ap-
proximation and the more advanced Adhesion model (Zel’Dovich, 1970; Sahni et al., 1994),
already give a good approximation of the evolution of the large scale structure. In these
models the initial perturbations are transformed into peculiar velocities for the particles at
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Introduction

Figure 1.1: The large scale structure of the universe. The Sloan Digital Sky Survey obtained
distances for thousands of galaxies. A clear structure of clusters, filaments and voids is visible in the
distribution of galaxies. Figure by SDSS-III collaboration (2011).

the start of the simulation. The structure then forms, because the particles move towards
certain regions and away from others. The trajectories of the particles will inevitably cross in
high density regions, causing unphysical behaviour. How the model deals with this trajectory
crossing is of great influence on the accuracy of the model.

These models give a very good approximation of the universe before high density structures
form. However, once they have formed, the evolution of structure becomes highly non-linear
and the approximation breaks down. In the non-linear regime you will need a model that
incorporates gravitational forces in a non-linear way. These are commonly called N-body
simulations. They simulate the physical processes of structure formation: all particles exert
a gravitational force on each other and this drives the structure formation in these simula-
tions, just like in reality. This allows the models to remain accurate in the non-linear regime.
Most modern simulations also include gas pressure, which is important to accurately simulate
the formation of high density regions. N-body simulations are subject to a certain cosmol-
ogy, which determines the properties of the universe’s spacetime. An import cosmological
ingredient is dark energy. This is an unknown form of energy responsible for an accelerating
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expansion of spacetime. Observations suggest that our universe has such an energy compo-
nent (Riess et al., 1998, e.g.), on which we will elaborate in Chapter 2. Since we are not yet
able to determine what the origin of this dark energy is, it is an import subject in the latest
studies with N-body simulations.

Recent works have shown that the specific implementations of dark energy models can have
a mild influence on the development of structures. This is reflected in various observables
like the (large scale structure) power spectrum (Baldi, 2011), the halo mass function (de
Boni et al., 2011) and the shapes of voids (Lee and Park, 2009; Lavaux and Wandelt, 2010).
The focus of our project is on the latter of these three. Voids originate in Gaussian random
fluctuations, which are approximately spherical. As the cosmic structures evolve, the voids
will deviate from this sphericity. It appears that in certain models, where the growth rate
of structures is high, the voids get more ellipsoidal shapes after a certain time. We hope to
confirm this finding for five dark energy models of our own. A more extensive background
for this will be provided in Chapter 4.

The basis of our analysis of void shapes will be the Lagrangian formalism. This is quite
different from the common Eulerian framework, where the contents of the universe are studied
in a fixed coordinate frame. In the Lagrangian formalism the properties are not described for
certain coordinates, but for a certain test volume of matter which can move around, expand
or collapse and change in shape. The deformation of a volume in the Lagrangian analysis
reflects the shape of a structure in the Eulerian framework. A more detailed description of
the Lagrangian formalism is given in Chapter 3.

A technique called the Monge-Ampère-Kantorovitch reconstruction (MAK) allows us to
obtain the necessary information for the Lagrangian analysis. This technique attempts to
reconstruct where the matter originated that now forms the large scale structure. Simply
put, the MAK reconstruction tries to transport an initial uniform field of particles to a given
set of particle positions (these can be from dark matter or from galaxies) in such a way that
the minimal amount of energy is used in the transportation. Since nature always tries to find
the path of lowest energy, this reconstruction is a good approximation of where the matter in a
structure actually originated. The reconstructed displacements of mass are an approximation
of the peculiar velocity as well, providing dynamical information that cannot be observed.
Chapter 3 describes this reconstruction technique in detail and provides the algorithm used
for it.

The information obtained from this reconstruction can be used in the Lagrangian analysis.
The deformation of a volume can be calculated from the displacements of mass. In our case
it is used to calculate the ellipticity of a void. When this method is applied to a few time
steps from an N-body simulation, it allows us to study the evolution of the void shapes.
This is done for different dark energy models to study the influence of dark energy on void
ellipticity. Since we have access to the dark matter distribution in these simulations as well
as the positions of haloes (clumps of dark matter, which are the seeds for galaxies) we can
also check if dark matter and galaxies follow the same trends. Whether these models show a
significant difference in their influence on void shapes can be read in Chapters 5 and 6.
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Chapter 2

The Universe

In this chapter we will elaborate on the contents of the universe and on the physics of its
evolution. We will start with the birth of the universe, the Big Bang. In the next sections we
will look at the dark side of our universe. Dark matter and dark energy play an important
role in structure formation, so we will shortly introduce those concepts. In Section 2.3 of this
chapter we will explain cosmology, the physics of the universe as a whole. This section will
also explain how dark matter and dark energy can influence the cosmology.

2.1 The Big Bang

The large scale structure is thought to originate from only moments after the Big Bang, i.e.
the birth of the universe, from the epoch of inflation. During this epoch, the universe expanded
by a factor of at least ∼ 1060 in a very short time (∼ 10−33 s; Lyth and Riotto, 1999). The tiny
energy fluctuations that were present before inflation, expanded along with the universe. As a
result the fluctuations got ‘frozen’ and were imprinted in the dark matter. After inflation, but
still within the first second of its existence, the contents of the universe went through various
phases with different states of energy and matter. While it was expanding even further, the
contents of the universe cooled down, and various particles like quarks and electrons were
created. These subsequently clumped together to form protons and neutrons. After a few
minutes, nuclei like deuterium and helium were formed as well. The universe then contained
a plasma of photons, nuclei and electrons. The free electrons are coupled to the photons
because they are very effective at scattering photons. Because of this coupling, the high
pressure of the photon fluid is shared with the baryons. As a result, the gravitational collapse
of high density fluctuations is prevented by the pressure build-up in the photons. These
counteracting effects cause harmonic oscillations in the plasma fluid. Resonances in these
oscillations occurred on certain scales, which determined the scales at which structures were
formed later. When the plasma cooled down to the point where the photons could not ionize
a recombined proton-electron pair anymore, the photons decoupled from the matter and all
nuclei and electrons were combined to form atoms. The decoupled photons were then, for
the lack of free electrons, free to travel to Earth where we could observe them as the CMB.
The perturbations in the density of the matter are visible as temperature anisotropies, (see
Figure 2.1).
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Chapter 2

Figure 2.1: The cosmic microwave background as imaged by the WMAP satellite. The fluc-
tuations visible in this map are the seeds for the large scale structure. Figure from Komatsu et al.
(2011).

2.2 Dark matter

Starting with early observations of the dynamics of galaxy pairs, groups and clusters,
questions had been raised whether we can see all mass present in galaxies (Zwicky, 1937).
This question came back into focus when evidence for missing mass came from the observation
of the rotation speed of galaxies. In the 1970s stronger proof was presented that there was
indeed more mass than we could see. Using the light distribution and an estimated mass-to-
light ratio, a prediction for the shape of the rotation curve was made. This curve shows a peak
in the bulge region and has a Keplerian decline in the disc region (v ∝ r−

1
2 ). It was compared

to the velocity curve of a galaxy, constructed from the observed Doppler shift of the 21-cm
line of neutral hydrogen gas. This curve showed the same peak in the bulge region, but there
was hardly any decline in the disk region (see Figure 2.2 for sketches of both curves). Given
that the mass-to-light ratio is approximately constant throughout the disk, this means that
the mass density in the disk remains significantly high all the way to the edge where hardly
any matter can be observed. Because this is a significant amount of mass that does not seem
to emit any radiation, it was called ‘dark matter ’. An extensive review of early observations
and discoveries related to the missing mass in rotation curves is given by Faber and Gallagher
(1979).

From this time on many candidates for dark matter have been proposed, ranging from
omni-present tiny particles like neutrinos to elusive compact objects like MACHO’s or black
holes. Many of these candidates have been rejected, and none have been verified as the species
we are actually looking for. But for our purposes it is irrelevant what this dark matter exactly
is. It is only important that the dark matter candidate interacts with the rest of the universe
exclusively through the gravitational force and that the electromagnetic interaction is very
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weak or non-existent.

r

v

Predicted
Observed

Figure 2.2: A sketch of the rotation
curve for a spiral galaxy. The dashed
curve shows what was expected on the
basis of the light distribution. The solid
curve shows the trend that was actually
measured.

Dark matter is an important aspect in the devel-
opment of the large scale structure displayed in Fig-
ure 2.3. It is the driving force behind the gravitational
collapse of the seeds for these structures. Radiation or
gas pressure can prevent the collapse of baryonic mat-
ter. Dark matter only interacts with other particles
through gravity, so it does not feel pressure. There-
fore it will always cause density perturbations to grow
and form structures. This was particularly true in the
early universe before recombination. Radiation has
a high pressure, thus it tends to smooth its (energy)
distribution, much like gas does on small scales. Be-
cause the baryonic matter was tightly coupled to the
radiation before recombination, its mass distribution
was also smoothed out. This effect can be quantified
by the Jeans mass. The Jeans instability theorem de-
scribes the balance between the inward gravitational
force and outward pressure in a baryonic gas. From
the balance of these force one can derive a characteristic mass, the Jeans mass. Structures
with a mass lower than the Jeans mass can not collapse because the pressure is greater than
the gravity. Only structures above the Jeans mass have enough gravity to overcome the pres-
sure and collapse. Before recombination the Jeans mass was very high for baryonic matter
(MJ > 1015M�; Ryden, 2003), because of the high radiation pressure. Therefore, baryons
did not grow structures below this limit. Dark matter on the other hand was not coupled to
the radiation as it does not interact through electromagnetic forces. Hence it effectively has
a Jeans mass of zero, and grows structures on all scales.

After recombination the radiation pressure does not affect the baryons anymore and the
Jeans mass drops dramatically to a value of MJ ∼ 106M� (approximately the mass of a large
globular cluster or small dwarf galaxy). The baryonic matter is now also free to collapse down
to these scales. Because dark matter has already been growing structures on all scales, the
baryons will simply be pulled towards the overdensities in the dark matter. Baryons and dark
matter now have the same behaviour, so the main effect of dark matter is a faster collapse
of structures than would have been the case with just baryonic matter. Approximately 80%
of all matter is dark, so structures collapse much faster than they would have without it.
Because there is so much dark matter, it also influences the evolution of the universe as a
whole. As gravity is the only force exerted by dark matter, it tends to accelerate the collapse
of the universe. In practice, this means it just slows down the expansion. The evolution of
the universe, and the dark matter’s role therein, will be explained in the next section.
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Figure 2.3: The Millennium simulation: one of the largest N-body simulation to date. This
is a 15 Mpc thick slice from the simulation, centered on the largest cluster in the simulation. The
colours represent the dark matter density. Image courtesy of VIRGO Consortium.

2.3 Friedman-Robertson-Walker-Lemâıtre models

When we compare the universe we see around us today to what it looked like at the epoch
of recombination, we see that big changes have occurred. The universe went from a nearly
uniform gas to structures with high over- and underdensities on all scales. To study this
transition, we need to know some properties of the universe. The collapse of structures is not
only an effect of gravity, but it is also influenced by properties of space like (global) curvature
and expansion rate. We begin with a few assumptions. Most important is the cosmological
principle: the notion that the universe is isotropic (the same in all directions) and homoge-
neous (the same everywhere). This is certainly not valid on small scales, but it does seem
to hold on scales > 300 Mpc. This assumption implies that we live in a three-dimensional
space that is flat (no curvature), spherical (positive curvature) or hyperbolic (negative cur-
vature). These properties can be described by a metric for spacetime. A metric expresses
how a distance in a spacetime depends on displacements in each coordinate. The metric that
meets our criteria is called the Friedman-Robertson-Walker-Lemâıtre metric (Walker, 1937,
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and reference therein):

ds2 = dt2 − a2(t)
[
dr2 + R2

cSk( r
Rc

)2
(
dθ2 + sin2 θdφ2

)]
. (2.3.1)

This expression contains the size of a line element ds, the coordinates (t, r, θ and φ), the scale
factor a(t) (a measure for the expansion of space) and the curvature function Sk( r

Rc
). This

curvature function represents the Gaussian curvature of space and the associated changes of
the metric. When the universe has flat space the curvature index is k = 0 and S0( r

Rc
) = r.

For positively and negatively curved space the indices are k = +1 or k = −1 respectively.
The corresponding function for positive curvature is S+1( r

Rc
) = r sin(r/Rc), and for negative

curvature S−1( r
Rc

) = r sinh(r/Rc). Observational evidence from the WMAP mission is cur-
rently consistent with flat space. Curved space is still possible, but only with a large radius
of curvature Rc (Komatsu et al., 2011).

The scale factor is a measure for the expansion of the universe: a(t) = R(t)/Rc. Usually it
is normalized to a(t0) = 1 at present time. The value (and evolution) of a(t) is not specified.
Einstein’s field equations of general relativity have to be used to specify a(t). With the above
metric, the analytic solution to these field equations are the Friedman equations:

H2 =
(

ȧ

a

)2

=
8πG

3
ρ− kc2

R2
ca

2
+

Λc2

3
, (2.3.2)(

ä

a

)
= −4πG

3

(
ρ +

3p

c2

)
+

Λc2

3
. (2.3.3)

The first equation is for the expansion rate of the universe, described by the Hubble parameter
H(t). It depends on the energy density ρ, the curvature parameter k and on the cosmological
constant Λ. Einstein added this constant to his field equations to create a static universe.
Although the notion that the universe is static has long since been rejected, Λ is now used as
a form of dark energy to explain the accelerating expansion of the universe. This dark energy
will be explained in the next section.

The second equation is for the acceleration of the expansion rate. It also depends on ρ
and Λ and on the pressure p. The left hand side is sometimes replaced by the deceleration
parameter

q = − äa

ȧ2
= −H−2 ä

a
for historical reasons. To be able to solve these equations we need to know the relation
between the pressure and the density, which is given by the equation of state. The pressure
term can then be replaced by an additional density term using this relation. Each component
of the universe has its own equation of state. Baryonic and dark matter are usually assumed
to be pressureless dust (p = 0) and radiation has p = 1

3ρc2.

The energy contribution of the different components of the universe is usually written in
terms of the critical density ρc. The critical density is the density of a flat, matter dominated
universe for a given Hubble parameter:

ρc(t) =
3H(t)2

8πG
. (2.3.4)
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Figure 2.4: The evolution of universes with different contents, as measured by the scale factor a(t).
The thick blue line is an approximation of our own universe. It is evident that the age and the final
destiny of a universe depend on the amount of matter and dark energy. All universes are normalized
to have the same scale factor and Hubble constant at present time.

We can now define a matter density parameter that gives the density as a fraction of the
critical density:

Ωm(t) =
ρm(t)
ρc(t)

=
8πG

3H2
ρm(t). (2.3.5)

In analogy to this we can construct density parameters for the other components of the
universe as well:

Ωr(t) =
8πG

3H(t)2
ρr (2.3.6)

ΩΛ(t) =
c2

3H(t)2
Λ (2.3.7)

Ωk(t) = − c2

H(t)2R2
ca(t)2

k (2.3.8)

Here, Ωr is the density parameter for radiation. Radiation did not appear in the previous
formulas because it was contained in the full energy density. We now introduce it as a separate
component because it evolves differently from (dark) matter.

We can now rewrite the first Friedman Equation (Eq. 2.3.2) in terms of the current values
of these density parameters (e.g. Ωm,0 = ρm,0/ρc,0). This gives a better understanding of how
each component evolves. The energy density has been split into the separate contributions
from radiation and (dark) matter,

H2 = H2
0

(
Ωr,0a

−4 + Ωm,0a
−3 + Ωk,0a

−2 + ΩΛ,0

)
. (2.3.9)
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Figure 2.5: The contents of the universe now and before recombination. Picture from NASA.

Ωm,0 evolves as a(t)−3 because the matter density decreases proportional to the increase in
volume. The radiation energy density falls even faster with time than the matter density.
In addition to the dilution by the stretching of space, each photon also loses energy as its
wavelength increases proportional to a(t). The contribution from radiation was important
in the early universe, but since then it has reduced to an insignificant Ωr,0 ∼ 10−5 (see
Figure 2.5). The energy density of the cosmological constant Λ does not change with time.
This also means that Λ is insignificant in the early universe, because the densities of the other
components are much higher for small values of a(t). An important aspect of observational
cosmology is the determination of these constants. The most recent constraints from WMAP
data (Komatsu et al., 2011) combined with supernova and Cepheid observations (Hicken et al.,
2009; Riess et al., 2009) are (see Figure 2.5):

Ωb,0 = 0.0458± 0.0016 (2.3.10)
ΩDM,0 = 0.229± 0.015 (2.3.11)
ΩΛ,0 = 0.725± 0.016 (2.3.12)
H0 = 70.2± 1.4 km s−1 Mpc−1 (2.3.13)

The values listed above are determined for a flat universe (Ωk = 0). The errors are much
larger if Ωk is not fixed. Komatsu et al. (2011) also determined some constraints on how
flat the universe actually is by inspecting the angular size of the largest fluctuation in the
CMB. A value of ∼ 1o would correspond to a flat universe. A larger diameter means there
is a positive curvature and a smaller means a negative curvature. In a standard cosmological
model the curvature is within −0.0178 < Ωk,0 < 0.0063. These values are slightly different
from the ones used in this project, since the dark energy models for the simulations were
based on WMAP data release 3 (those values are listed in Chapter 6).

2.4 Dark energy

In the previous section a new component of the universe was introduced in the Friedman
equations: dark energy. It was introduced in the form of a cosmological constant Λ for its

13



Chapter 2

simplicity, but dark energy may be more complicated. The general defining property of dark
energy is a negative pressure. This implicates that, as a volume expands it will contain more
dark energy. The cosmological constant from the previous section has a constant energy
density such that the increase in energy content is always proportional to the increase in
volume of the expanding space. In this section the more general concept of dark energy will
be discussed and the evidence for its presence will be presented.
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There are many different models for dark energy, but by definition it needs to have negative
pressure. This is necessary to explain the accelerating expansion of the universe. The relation
between the amount of dark energy and the pressure it exerts is governed by the equation
of state (EoS). For the cosmological constant it reads PΛ = −ρΛ. Other models do not have
a fixed relation between the density and pressure. The EoS of such models is written is
P = w(a)ρc2, where w(a) depends on the scale factor a(t), but is somewhere in the range
−1 ≤ w ≤ −1

3 .
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Evidence for dark energy can be found in many different ways. Among them are the
evolution of the galaxy cluster mass function (Vikhlinin et al., 2009), the power spectrum
of the CMB (Komatsu et al., 2011) and the evolution of void shapes (Lee and Park, 2009).
The most compelling evidence, however, is from detailed observations of the redshifts of
supernovae type Ia (Riess et al., 1998). Supernovae of type Ia can be used as standard
candles, because they always have nearly the same absolute magnitude. For this reason it
is possible to determine the distance to these faraway objects independent of their redshift,
by only using the apparent magnitude and the distance modulus. The relation between the
distance and the redshift is linear in a universe expanding at a fixed rate H(t) = H0, which is
often used to determine distances to faraway objects. However, Riess et al. (1998) found that
the supernovae at a given redshift were fainter and thus further away than would be expected
from that redshift (see Figure 2.6). This means that the expansion rate at the time when
these supernovae exploded was lower than the expansion rate is nowadays. In other words,
the expansion of the universe seems to be accelerating.

This acceleration provides some constraints on dark energy, but it cannot by itself proof how
much there is. This becomes clear when the equation for the deceleration parameter, a form
of the second Friedman Equation (Eq. 2.3.3), is written in terms of the density parameters
for pressureless matter (p = 0) and dark energy,

q = −
(

äa

ȧ2

)
=

4πG

3H2

(
ρ +

3p

c2

)
− Λc2

3H2
=

Ωm

2
− ΩΛ. (2.4.1)

The observed acceleration of expansion not only depends on dark energy, but also on the
amount of matter in the universe (some examples are provided in Figure 2.6). The constaints
on the amount of matter and dark energy can then be displayed by probability curves in
an Ωm − ΩΛ diagram (see Figure 2.7). The CMB provides additional information to solve
this ambiguity. The curvature of space is related to the other components through Ωk =
1−Ωtotal = 1−Ωm−ΩΛ. Since the WMAP mission has constraint the curvature to −0.0178 <
Ωk,0 < 0.0063 (Komatsu et al., 2011, and references therein), the intersection of the line
Ωtotal = 1 with the high probability region in Figure 2.7 provides a good estimate of the
values for Ωm and ΩΛ.

2.5 Dark energy models

In Section 2.4 we have already had a short introduction into dark energy. That section
focused on a cosmological contant Λ as the simplest form of dark energy. Although Λ provides
an excellent explanation for the observed effects, there are some problems in setting up a
physical theory that provides a cosmological constant. In this section we will look at dark
energy in a broader sense and we will treat some more advanced models with a physical basis.

The basis for a dark energy model lies in the equation of state. In its simplest form,
which we know as the cosmological constant, the equation of state is P = w0ρc2 where w0 is a
constant usually between −1 and −1

3 . If we want to do something a bit more advanced we can
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make a parametrisation where we split w into a constant and a linearly evolving component.

P = [w0 + (1− a)wa] ρc2 (2.5.1)

Here w0 is the present (a = 1) value for w, and wa determines how fast it varies with time.
The most common values for these constants are w0 ≈ −1 and −1 < wa < 1. WMAP has
constrained these parameters to w0 = 0.93±0.13 and wa = 0.41±0.72 (Komatsu et al., 2011).
These methods are mostly used to study the influence of evolving dark energy on structure
formation in the universe. They do not necessarily have an underlying physical theory. Of
course there also are models that are based on physical theories, where the equation of state is
constructed from the known behaviour of some component that offers an explanation for the
accelerated expansion. The most popular example of this is the class of dark energy models
based on quintessence that will be used in this project.

2.5.1 Quintessence

Quintessence, Latin for ‘fifth element’, is a theoretical form of energy that is a candidate for
dark energy. The basic concept of the theory is a scalar field φ that is subject to a potential
V (φ). The form of the potential can vary from model to model within the quintessence theory.
In a related class of models, the scalar field is coupled to gravity. These models are based on
scalar-tensor theory, and are called ’extended quintessence’ models (EQ).

In a basic quintessence universe we still have the Friedman equation:

H2 = H2
0 (Ωr + Ωm + Ωk + Ωφ), (2.5.2)

However, in this case the dark energy term Ωφ depends on a variable energy density:

Ωφ =
8πG

3H2
0

ρφ. (2.5.3)

The energy density of the scalar field ρφ satisfies the continuity equation:

dρφ

dt
+ 3H

(
ρφ +

Pφ

c2

)
= 0, (2.5.4)

which has the solution:

ρφ = ρφ,0 exp
(
−3

∫ a

a0

1 + w(a′)
a′

da′
)

, (2.5.5)

where w(a′) is the time dependent equation of state parameter w = ρφc2/Pφ. The density
and pressure depend on the scalar field φ and on the potential it resides in:

ρφ = 1
2 φ̇2 + V (φ), (2.5.6)

Pφ = 1
2 φ̇2 − V (φ). (2.5.7)

The Klein-Gordon equation for the evolution of this scalar field is given by de Boni et al.
(2011) as

φ̈ + 3Hφ̇ +
∂V (φ)

∂φ
= 0. (2.5.8)
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We can now define a specific model by choosing a potential. Brax and Martin (1999) suggested
a potential based on supergravity (SUGRA for short):

V (φ) =
M4+α

φα
e4πGφ2

. (2.5.9)

Both M and a ≥ 0 are free parameters. A similar potential was already suggested a decade
earlier by Peebles and Ratra (1988):

V (φ) =
M4+α

φα
. (2.5.10)

A model with this potential is named after its inventors: the RP-model.

2.5.2 Extended Quintessence

In scalar-tensor theory we also have a scalar field φ and it is again subject to a potential
V (φ), but now the scalar field is coupled to gravity (a tensor field) as well. Such theories are
often defined by a Lagrangian. For this system it is:

L =
1
2
F (φ)R− 1

2
∂µφ∂µφ− V (φ) + Lfluid. (2.5.11)

The first term, 1
2F (φ)R, is the coupling term between the scalar field and gravity and curva-

ture in the form of the Ricci scalar R. The second is a kinetic term, 1
2∂µφ∂µφ, just like the

φ2 we encountered in the other quintessence models. V (φ) is the potential of the scalar field
and Lfluid is the classical Lagrangian of all other components that do not depend on φ. The
coupling function is defined as:

F (φ) ≡ 1
κ∗

+ ξ(φ2 − φ2
0). (2.5.12)

The constant κ∗ = 8πG∗ is a modification of the Newtonian gravitational parameter κ = 8πG,
reflecting the modified gravity. As a result of general relativity, this locally reduces to:

1
κ∗

+ ξφ2
0 =

1
κ

. (2.5.13)

The coupling constant can be either positive or negative, indicated as EQp or EQn respec-
tively.

In the EQ models of de Boni et al. (2011) the energy density and pressure of the scalar
field are:

ρφ = 1
2 φ̇2 + V (φ)− 3HḞ (φ) + 3H2

[
1
κ∗
− F (φ)

]
, (2.5.14)

Pφ = 1
2 φ̇2 − V (φ) + F̈ (φ) + 2HḞ (φ)− (2Ḣ + 3H2)

[
1
κ∗
− F (φ)

]
, (2.5.15)

and the Klein-Gordon equation for the evolution of φ is:

φ̈ + 3Hφ̇ +
∂V (φ)

∂φ
=

1
2

∂F

∂φ
R, (2.5.16)

with the Ricci scalar R = 6(Ḣ + H2). For the potential V (φ) they use the one from the RP
model (Eq. 2.5.10). More information on extended quintessence can be found in Pettorino
and Baccigalupi (2008).
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Figure 2.8: The evolu-
tion of the w parameter
for dark energy mod-
els. The equation of state
parameter is defined as
w ≡ P/ρ. Figure data from
de Boni et al. (2011). 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
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A test for these models is the measurement of the Jordan-Brans-Dicke parameter from the
perihelion shift of the planets (Brans and Dicke, 1961). This parameter is defined as:

ωJBD ≡
F (φ)(
∂F
∂φ

)2 . (2.5.17)

The Cassini mission yields a constraint of ωJBD > 4 × 104 in the solar system (Bertotti
et al., 2003). It is however possible that this parameter is not scale invariant; it may have a
different value at larger scales. Acquaviva et al. (2005) found a lower limit of ωJBD > 120 on
cosmological scales from WMAP and 2dF data.

The properties of the dark matter models are listed in Table 2.1. The ΛCDM model is
based on the parameters in the 3-year data release of WMAP. The parameters are: Ωm =
0.268, Ωb = 0.044, ΩΛ = 0.704, h = 0.704. The values are also used for the quintessence
models, with the exception of ΩΛ. The cosmological constant has equation of state parameters
w0 = −1 and wa = 0. The evolving dark energy models all have w0 = −0.9 as this value gives
the most dark energy influence while it is still allowed within the constraints of the WMAP
data. The alpha parameter specifies the quintessence potential of Equation (2.5.9) or (2.5.10).
For the extended quintessence models ωJBD specifies the coupling constant, as it is related
to ξ. The coupling is presented in this form for possible comparison to observational values.

2.6 Structure formation

This project is all about the evolution of structures in an expanding universe, so a qual-
itative description of structure formation is desirable. The starting point are the equations
that describe the cosmic fluid. These are the continuity equation, the Euler equation and the
Poisson equation, which will be explained in more detail in Chapter 3. For this description
the equations need to describe the fluid in comoving coordinates. And in stead of the density,
velocity and gravitational potential, these equations should describe the density perturbation
δ, the peculiar velocity v and the perturbation potential φ. The equations are presented in
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Model α wJBD w0 wa σ8

ΛCDM - - -1.0 0.0 0.776
RP 0.347 - -0.9 0.0564 0.746
SUGRA 2.259 - -0.9 0.452 0.686
EQp 0.229 120 -0.9 0.0117 0.748
EQn 0.435 -120 -0.9 0.0805 0.729

Table 2.1: Parameters of the analysed dark energy models. α defines the quintessence potential;
wJBD is the Jordan-Brans-Dicke parameter (Eq. 2.5.17); w0 and wa are the closest matches to the
parametrization constants of equation (2.5.1), determined with a χ2 fit; and σ8 is the normalization
parameter for the power spectrum at the CMB. Numbers from de Boni et al. (2011) and Bos (2010).

this form in the lecture notes by R. van de Weygaert1. In the order given above, the equations
are:

∂δ

∂t
+

1
a
∇ · v(1 + δ) = 0 (2.6.1)

∂v
∂t

+
1
a

(v · ∇)v +
ȧ

a
v = −1

a
∇φ (2.6.2)

∇2φ = 4πGa2ρδ (2.6.3)

These equations contain higher order terms like v(1+δ) and (v ·∇)v that make them hard to
solve analytically. If we restrict ourselves to the early evolution of perturbations in the linear
regime, these equations can be simplified. In the linear regime the density perturbations
are very small δ << 1. In addition, the velocities are so small that matter can not cross a
perturbation in a characteristic expansion time. These two conditions allow the higher order
terms mentioned above to be dropped, to yield:

∂δ

∂t
+

1
a
∇ · v = 0 (2.6.4)

∂v
∂t

+
ȧ

a
v = −1

a
∇φ (2.6.5)

∇2φ = 4πGa2ρδ (2.6.6)

The divergence of the Euler equation is taken to find a new equation:

∂

∂t
∇ · v +

ȧ

a
∇ · v = −1

a
∇2φ. (2.6.7)

When the linear continuity equation and the Poisson equation are combined with this one, it
results in an equation that describes the evolution of density perturbations:

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
= 4πGρδ. (2.6.8)

In words, this equation describes how the acceleration of the growth of the perturbation
depends on the gravitational force due to the perturbation, but also how it decelerates due to

1These notes can be downloaded from his website at:
http://www.astro.rug.nl/~weygaert/tim1publication/lss2009/lss2009.linperturb.pdf
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the expansion of the universe through the so called ‘Hubble drag’ term, which is the second
term on the left side. Rewritten, and by substituting the background density with Ωm from
Equation (2.3.5), this becomes

δ̈ + 2Hδ̇ =
3
2
H2Ωmδ. (2.6.9)

The form of this equation depends on the cosmology of the universe. In the case of an
Einstein-de Sitter universe, the scale factor grows as a ∝ t2/3, which means H ∝ 2/(3t) (see
Ryden, 2003). Consequently the equation to be solved then has the following form:

δ̈ +
4
3t

δ̇ − 2
3t2

δ = 0. (2.6.10)

The solution for this equation is in the form of a power law and consists of two parts.

δ(t) ≈ D1t
2/3 + D2t

−1 (2.6.11)

The term with D1 is usually called the growing mode, and the D2 term the decaying mode.
With increasing time, the decaying mode becomes negligible. Hence density perturbations
grow according to

δ(t) ∝ t2/3 ∝ a(t) (2.6.12)

in the linear regime. This evolution is not valid for nonlinear overdensities where δ & 1.

The second important epoch for structure formation is the one where dark energy com-
pletely dominates, which will happen in the far future. In this case, the Hubble parameter
becomes the constant H0, because all other components in Equation (2.3.9) vanish with in-
creasing a(t). For the same reason, the matter density term can be dropped from right hand
side of Equation (2.6.9) to yield

δ̈ + 2H0δ̇ = 0. (2.6.13)

The solution to this equation can simply be found by integrating the solution for δ̇. This
solution has an exponential term and an integration constant

δ(t) = C1 e−2H0t + C2. (2.6.14)

Obviously, the inverse exponential term will quickly vanish with time, independent of the val-
ues for the constants C1 and C2. With only a constant term left, the growth of perturbations
is halted and they are frozen in this state. It will take a long time before the dark energy will
completely dominate our universe, so this scenario will not have to be considered in studies
of the past evolution of structures.

The general solution for the structure growth Equation (2.6.9) was given by Heath (1977).
Neglecting the decaying mode solution, i.e.

δ(t) = D(z)δ0, (2.6.15)

the linear growth factor as a function of redshift is given by

D(z) =
5Ωm,0H

2
0

2
H(z)

∫ ∞

z

1 + z′

H(z′)3
dz′. (2.6.16)

This growth factor depends on the cosmological model through both the relation between
redshift and time and the Hubble parameter.
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Figure 2.9: The cosmic web. Figure from Colless et al. (2003).

At some point the evolution of density perturbations becomes nonlinear. The density
contrast becomes too high and the matter flows are influenced by tidal forces. The structures
seen today are all formed in the nonlinear regime. In the regions between two underdensities
the matter flows meet up. This results in a high density that prevents the matter flows to
continue in a straight line. These regions then become walls and filaments. The matter flows
along these walls and filaments towards the higher overdensities where clusters start to form.
The clusters, filaments, walls and voids together form the cosmic web that is observed in
galaxy redshift surveys like 2dF (Figure 2.9). The cosmic web continues to evolve, increasing
the overdensities of clusters and underdensities of voids. In the process some clusters, filaments
or voids may merge, increasing the density contrast even further.
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Lagrangian reconstruction: MAK

Eulerian vs Lagrangian. When we think about movements and dynamics, we usually
choose a restframe and study the motions with respect to this frame. This is the Eulerian
way of studying dynamics. Complementary to this is the Lagrangian way. In Lagrangian
studies we look at the changes that any small volume element (a test particle) undergoes
while it is moving through space. We track these particles by their initial position q. For
example, in the Eulerian view of fluid dynamics, we may see that at a certain point the fluid
flows from right to left, and that the density of the fluid is higher on the right side than on
the left. In the Lagrangian view, we would see that the coordinates x of our test particle are
changing, and that the particle is expanding in the process. In this chapter we will mostly
take the Lagrangian point of view.

3.1 Lagrangian perturbation theory

The equations of motion for a general fluid are respectively the Poisson equation, the Euler
equation and the continuity equation. The Eulerian form of these equations is:

∂ρ

∂t
= −ρ∇ · v (3.1.1)

∂v
∂t

= −∇p

ρ
−∇Φ (3.1.2)

∇2Φ = 4πGρ (3.1.3)

The continuity equation governs the conservation of mass by compensating the density in
a volume element for in- and outflow of matter. The Euler equation shows the change in
velocity of a test particle moving in a gravitational potential Φ, influenced by the pressure
from its surroundings. Finally, the Poisson equation describes the gravitational potential
corresponding to a mass distribution ρ. The Poisson and continuity equations are rather
straightforward, so we will focus on the Euler equation. In cosmological simulations we work
with a pressureless medium (dark matter), so the pressure term in the Euler equation is
discarded. Now we want to write it in Lagrangian form, which translates into the use of the
Lagrangian derivative:

d

dt
=

∂

∂t
+ (v · ∇). (3.1.4)
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Figure 3.1: Multistreaming in the
Zel’dovich approximation. This
graph shows the initial (Lagrangian)
position (q) as a function of the final
(Eulerian) position (x) in a high den-
sity region. Multistreaming happens
when the Zel’dovich approximation
is used beyond the linear regime. In
a multistreamed region, multiple q-
positions are mapped to the same
x-position. Figure from Brenier et al.
(2003)

The additional term v · ∇ is caused by the fact that we do not use a fixed coordinate system
in the Lagrangian form. When there is a quantity that does not explicitly depend on time,
but does depend on the spatial coordinates, measured by ∇, and if these coordinates change
with time, i.e. there is a velocity v, that quantity changes with time too. The Euler equation
in Lagrangian form becomes:

∂v
∂t

+ (v · ∇)v = −∇Φ. (3.1.5)

In Lagrangian perturbation theory we study the mapping of the Lagrangian coordinates q
to their Eulerian coordinates x in a model of our universe. This is done in a Lagrangian way,
because the fluid equations can more easily be solved. The map can be written as an ordered
sequence of moments of displacement,

x(q, t)− q = x(1)(q, t) + x(2)(q, t) + x(3)(q, t) + · · · , (3.1.6)

where

1 >

∣∣∣∣∣∂x(1)

∂q

∣∣∣∣∣ >

∣∣∣∣∣∂x(2)

∂q

∣∣∣∣∣ >

∣∣∣∣∣∂x(3)

∂q

∣∣∣∣∣ > · · · . (3.1.7)

Each increasing order of complexity allows one to more accurately model the development
of increasingly nonlinear structures. In the next section, a first order approximation of La-
grangian perturbation theory is explained in the form of the Zel’dovich formalism. After that
we will move on to more advanced Lagrangian theories.

3.2 Zel’dovich

The Zel’dovich approximation was one of the first methods that explored the Lagrangian
point of view in cosmology. It is a linear theory that describes the evolution of perturbations
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in the early universe. The positions of particles evolve like

x(t) = a(t)q + D(t)p(q), (3.2.1)

where q is the initial position and the cosmological expansion is represented by a(t). The
initial displacement vector at a given location is p(q), an D(t) is the global growth rate
of these displacements , i.e. the linear perturbation growth factor. These displacements are
related to the linear velocity potential φ, but may also be written in terms of the gravitational
potential Φ:

p(q) = ∇φ =
2

3H2a3
∇Φ. (3.2.2)

We can study the deformation of a small region around q by taking the derivative:

Jij =
∂xi

∂qj
= a(t)δij + D(t)

∂pi

∂qj
. (3.2.3)

This is the Jacobian matrix and can be diagonalised by using its principal axes as the coor-
dinate system. The matrix then takes the form

Jij = δij(a(t)− λiD(t)). (3.2.4)

Here, the the eigenvalues λ of Jij are sorted by size. Because mass is preserved, we can use
this change in volume from the deformation to calculate the density at a certain point as

ρ(q, t) =
ρ0a(t)3

[a(t)− λ1(q)D(t)][a(t)− λ2(q)D(t)][a(t)− λ3(q)D(t)]
. (3.2.5)

In a collapsing region the density becomes infinite when a(t)− λ1D(t) = 0. Evolution should
be stopped when this happens, to prevent orbit crossing. Orbit crossing is defined as the
occurrence of an intersection of the trajectories of particles. A region where orbit crossing
has occurred is called a multistream region (Figure 3.1). Multistream regions develop in the
Zel’dovich approximation, because there is no mechanism to stop the movement of colliding
particles. This means that density in a multistream region will decrease after the orbit
crossing, because the particles are moving away in opposite directions. This is unphysical
behaviour, so any multistream regions that develops should not be considered in the analysis.
By keeping track of the sign of the λ values, one can determine which particles have undergone
orbit crossing and should be excluded. The accuracy of this model can be robustly tested by
calculating the force due to the gravitational potential from the particle distribution after a
certain time. The acceleration due to this force can be compared to the acceleration that the
particle has due to Equation (3.2.1).

3.3 Adhesion

The adhesion model provides a solution to the multistreaming problem of the Zel’dovich
approximation. Adhesion is an analytical model based on hydrodynamics. It does not simu-
late particles that move in a gravitational potential, but it provides a set of hydrodynamical
equations and solutions that are valid everywhere. We already saw the equations of motion
for a general fluid in Section 3.1. Now we want to write the Euler Equation (Eq. 3.1.5) in

24



Lagrangian reconstruction: MAK

Zeldovich Adhesion

Figure 3.2: Comparison of Zel’dovich approximation and adhesion. The models were evolved in two
dimensions according to the Zel’dovich approximation and adhesion. Multistreaming has occurred
in the Zel’dovich model. The viscosity in the adhesion model prevents multistreaming and filaments
are formed. The models are equal in low density regions and only differ where multistreaming has
occurred. Image courtesy of Hidding et al. (2011).

a form where the linear growth factor D(t) is used as the time parameter. In this comoving
form it will be easier to use for cosmological purposes. The comoving velocity

u =
dx
dD

(3.3.1)

is introduced in the Euler Equation by substituting:

v = a
dx
dt

= a
dD

dt

dx
dD

= aḊu. (3.3.2)

After the substitution the equation is rewritten to find:

∂u
∂D

+ (u · ∇) u = − 1(
aḊ

)2 (bu +∇Φ) , (3.3.3)

where bu is a rest term containing all linear a and D terms that are introduced by going to
a comoving frame. In this form, it can easily be appreciated that the Euler equation for the
Zel’dovich approximation becomes

∂u
∂D

+ (u · ∇) u = 0. (3.3.4)

This result can also be obtained by calculating

u =
dx
dD

=
d

dD
[a(t)q + D(t)p(q)] = p(q), (3.3.5)

which is constant with respect to D(t).
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After this coordinate transformation, the adhesion model introduces an additional term for
viscosity in the Euler equation to prevent multistreaming:

∂u
∂D

+ (u · ∇) u = ν∇2u. (3.3.6)

This equation is called Burgers’ equation and was first used for large scale structure studies by
Gurbatov and Saichev (1984). Of course, the viscosity should not prevent the free streaming
of the dark matter fluid. Hence, the viscosity is taken to the inviscid limit: ν → 0. This
means that the viscosity only ‘activates’ when the gradient of the velocity is infinite. This
only happens when a multistream region is developing.

Burgers’ equation has an analytical solution when the velocity has a potential form: u =
−∇Φ. The solution is

u(x, D) =

∫∞
−∞

x−q
D exp [G/2ν]∫∞

−∞ exp [G/2ν]
, (3.3.7)

where we have extracted the parameter G(x,q, D) = Φ0(q)− (x− q)2/2D. Φ0 is the initial
potential for our velocity. In the inviscid limit this rather difficult solution can be numeri-
cally calculated with the steepest descend method. It boils down to calculating the global
maximum:

Φ(x, D) = max
q

[
Φ0(q)− (x− q)2

2D

]
. (3.3.8)

This maximum can easily be found by lowering the parabola (x−q)2

2D onto the potential Φ0(q).
The point where the parabola touches the potential is the q coordinate of the global maximum.
In the linear regime, when D � 1, the parabola is very thin, and always touches the potential
at a point q close to the value of x. However, when D gets bigger and the parabola gets
wider, it can not descend into deepest well of the potential anymore. The parabola will then
touch the potential at two points on the rim of the well. The whole range of q in between is
then mapped to a single value of x, i.e. a shock has formed at x.

In this case, where a region is completely collapsed in one direction, a thin sheet of infinite
density is formed. This seems unphysical, but the sheet still has a finite mass and surface
density, so it has a real potential. If the sheet also collapses in the other directions, it becomes
a line or a point of infinite density but finite mass. With the multistreaming problem solved,
the adhesion approximation gives much more realistic results. Compared to N-body simula-
tions with the same initial conditions, the adhesion approximation can accurately reproduce
statistical properties like the cluster mass function (Sathyaprakash et al., 1995). Minor draw-
backs are that the positions where adhesion forms structures do not exactly coincide with the
corresponding structures in the N-body simulation, and that it does not produce small scale
structures.
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3.4 The Monge-Ampère-Kantorovitch reconstruction

3.4.1 The MAK problem

The Monge-Ampère-Kantorovitch problem is a nonlinear Lagrangian approach to recon-
structing the orbits of galaxies. By finding out where the matter of a galaxy came from, we
can obtain an approximation of its current velocity. This velocity can be used to study the
dynamics of galaxies in the cosmic web, or to extract the cosmological redshift from the total
redshift to obtain a more accurate distance measurement. Alternatively, the reconstructed
displacements of mass can be used in Lagrangian studies, e.g. to find the shapes of cosmic
structures. We will use the MAK reconstruction to do a Lagrangian analysis of void shapes,
a concept first introduced by Lavaux and Wandelt (2010).

The MAK reconstruction requires the current mass distribution of either galaxies or dark
matter as input and assumes a uniform initial mass distribution. The goal of the MAK
reconstruction is to find the map q→ x for the optimal transportation of mass from the
initial position q to the final position x, or vice versa. For our reconstruction we must assume
that the map is convex, which essentially means that any point q cannot be mapped to more
than one point x. This Lagrangian map should be of potential form, so we can write

x(q) = ∇qΦ(q). (3.4.1)

Well known examples that satisfy these conditions are the Zel’dovich approximation (before
multistreaming) and the adhesion model. In reality our assumption is not valid in multistream
regions like filaments and clusters, but it will allow us to find a unique reconstruction. The
error introduced by falsely matched particles in these regions is small, since the particles in
these high density regions are close together.

Let us consider the physics of the reconstruction. When we move particles from their initial
to their final positions, the mass must be conserved. We can write this in an equation as:

ρd3q = ρ(x)d3x, (3.4.2)

where ρ is the initial uniform density field, and ρ(x) the prestent one. In terms of the Jacobian
matrix J this is:

det(J) = det(∇qx) =
1

ρ(x)
. (3.4.3)

Inserting the potential form of the Lagrangian map we get:

det(∇qi
∇qj

Φ(q)) =
1

ρ(∇qΦ(q))
. (3.4.4)

We can apply the same steps to the inverse Lagrangian map to obtain the same equation in
a more suitable form. The inverse Lagrangian map is

q(x) = ∇xΘ(x). (3.4.5)
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Figure 3.3: A one dimensional reconstruction to illustrate the meaning of the cost function.
The row of final particles is the same as the row of initial particles, but displaced by a distance of one
to the left. For the purpose of this illustration the initial and final rows were separated by a vertical
displacement, but the horizontal distance is the only dimension considered in the reconstruction.
Both displayed solutions are optimal for a linear cost function, but only the top one is optimal for the
quadratic cost function.

It has the same properties as the Lagrangian map. Therefore, none of our assumptions for
this map are lost. Following the same procedure with this map, we obtain the equation:

det(∇xi
∇xj

Θ(x)) = ρ(x), (3.4.6)

which is the Monge-Ampère equation. The result of the MAK reconstruction must satisfy
this equation.

With our initial assumption of convexity, the Monge-Ampère equation has a unique solu-
tion. Solving this equation is equivalent to solving the optimal mass transportation problem
posed by Monge (1781). He described how one could optimise the transportation of mass by
minimising the total cost of the transportation. He used the transport distance as the cost
function, but one can chose any suitable function for the cost of the transportation. In 1942
Kantorovich proved that the displacements of masses must be potential for the transport
to be optimal. He also provided a method to find the optimal displacements for any cost
function. This in the Monge-Kantorovitch problem. For our purposes we have to use the
quadratic distance as the cost function for the transportation (see Frisch et al., 2002, and
references therein). In other words, the integral

I =
∫

1
2
|x(q)− q|2 ρ d3q (3.4.7)

must be minimal. The map of q → x that minimizes this integral is the unique solution to
the Monge-Ampère Equation (3.4.6) (a formal proof can be found in Benamou and Brenier,
2000). The Monge-Ampère-Kantorovitch (MAK) problem is finding this minimal map that
satisfies the Monge-Ampère equation. In our discrete case this integral is replaced by a sum.

I =
1
2
ρ

N∑
i=1

∣∣xj(i) − qi

∣∣2 (3.4.8)

We need to find the discrete map j(i) that minimises this sum. The Auction algorithm has
been developed by Bertsekas (1988) to solve the MAK problem in the discrete case.
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A small test case is drawn in Figure 3.3 to illustrate the meaning of the cost function. This
arrangement can be reconstructed in two ways: all 10 initial particles are matched to the final
particle that is 1 position to their right; or all except the first initial particle are matched
to the final one at their own coordinate, but the first initial particle must then be matched
to the last final particle at a distance 10. When the cost function is linear, both solutions
are optimal, since I1 =

∑10
i=1 1 = 10 equals I2 = 10 +

∑10
i=2 0 = 10. But the quadratic cost

function favours many small displacements over one large displacement. This is also what
one would expect to happen in structure formation. For the quadratic cost function the total
costs are I1 =

∑10
i=1 12 = 10 and I2 = 102 +

∑10
i=2 0 = 100. Consequently, only the top

solution is optimal, which is hardly surprising since this method was designed to produce a
unique reconstruction.

3.4.2 The Auction algorithm

This section provides a short description of the Auction algorithm that solves the assignment
problem to produce the Monge-Ampère-Kantorovitch (MAK) reconstruction. The goal of the
Auction algorithm is to find the mapping between two sets of data, in this case coordinates,
that minimises the integral over a certain cost function. In our case the most suitable cost
function is the square of the distance between the two points, because this cost function
solves the Monge-Ampère Equation (3.4.6) (Benamou and Brenier, 2000). For this purpose
the algorithm performs a virtual auction where one set of points are the bidders and try to
buy the objects in the other set. The auction is done in rounds, because favourable objects
receive bids from multiple bidders but can only be assigned to one of them, leaving the rest
unassigned after this round. In subsequent rounds the unassigned bidders will bid on other
objects. The following steps are done to make a reconstruction.

For each bidder that is not yet assigned, the two objects with the lowest cost need to be
selected. The cost (C) is the amount a bidder (B) is willing to pay for an object (O). This
cost depends on the cost function, i.e. the quadratic distance to the object, and on the price
of the object. The price (p) of an object is the amount that has been paid for the object in
a previous round. In the first round all objects have a price of zero. The cost of an object for
a bidder is calculated with:

C(O,B) = fc(O,B) + p(O,Bp) = (x(O)− x(B))2 + p(O,Bp), (3.4.9)

where fc is the cost function and p(O,Bp) is the price that was paid for the object by the
previously assigned bidder (Bp). This calculation is done for all unassigned bidder-object
combinations. For each bidder the two objects with the lowest cost are selected, the best
object is marked as O1, and the second best as O2.

Each bidder next places a bid on its most desired object. The price p that bidder B is
willing to pay depends on how favourable the best object is compared to the second best
object, as well as on the price previously paid for this object,

p(O1, B) = C(O2, B)− C(O1, B) + p(O1, Bp). (3.4.10)
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Example: Table 3.1 lists the steps in the reconstruction of the three pairs of points drawn in
Figure 3.4. The example is in one dimension, so only the horizontal distance is considered. The
algorithm starts by calculating the costs for each bidder-object pair based on Equation (3.4.9).
It then selects the best and second best objects for each bidder and calculates the height of
the bid on the best object (Equation 3.4.10). In the first round all bidders place their bids
on the closest object, because the prices p(O1, Bp) of all objects are zero. Bidder B1 bids on
object O2 and gets the assignment because there are no other bidders. Bidders B2 and B3

both place bids on O3, but B3 wins because his second best object costs so much more. In
round two B2 is the only unassigned and thus active bidder. Because the price of object O3

has been set to 3 in the previous round, B2 now places a bid on O2 which only costs 2 (1
for the distance and 1 for the price set by B1). Because B2 places a higher bid on O2 than
B1 did in the previous round, it gets the assignment and B1 is returned to the unassigned
pool. In round three B1 is the only active bidder. This round is more or less the same as the
previous round as B1 shifts its bid to O1. With no previous bids on O1, it immediately gets
assigned and the reconstruction is complete.

O1 and O2 are the best and second best objects for this bidder respectively. Once all bids
have been placed, we can start assigning objects to the highest bidders. The condition for
assignment is that the bidder is willing to pay more for this object than the previously assigned
bidder.

p(O1, B) > p(O1, Bp) (3.4.11)

Each bidder B that meets this condition, gets the assignment to its preferred object O1.
The new price for this object now becomes the height of B’s bid. The bidder Bp that was
previously assigned to this object is returned to the unassigned pool. Note that for the first
bidder this condition reduces to C(O2, B) − C(O1, B) > 0, which is always true. However,
for the next bidder that also placed a bid on this object, the bid will be compared to the new
price that was placed by this first bidder. When all bids have been processed, a new round
starts for all bidders that are not assigned to an object, thus return to Equation 3.4.9.

B1

O1

B2

O2

B3

O3

Figure 3.4: Example.

We will obtain the optimal assignment by follow-
ing this procedure until all bidders are assigned to a
unique object. With the huge number of particles we
typically work with in studies of the large scale struc-
ture, this procedure will take a very long time. Specifi-
cally, when there is only one particle left unassigned in
a certain area, a single round of bidding will typically
swap the assignment of another particle with this par-
ticle, leaving the other particle unassigned. There are
endless combinations that must be investigated one
after the other. The algorithm only progresses when
an object that is not yet assigned becomes the most favourable for assignment.

A solution to this problem is explained in Bertsekas. He suggests that the condition for
assignment (Eq. 3.4.11) should be modified to increase the threshold for assignment by an
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amount ε:

p(O1, B) > p(O1, Bp) + ε. (3.4.12)

As a result, the bidder can only acquire an object when he is willing to pay ε more than the
previous bidder did. So each time an object is assigned to a new bidder, the cost of this object
increases at least by an additional amount of ε. This will make objects that have not been
assigned yet more attractive with respect to objects that have had multiple assignments.

The modification will not produce the optimal assignment of particles, but it provides a
rough mold of the optimum. If we now start a new assignment with a lower value for ε, but
keeping the obtained prices of the objects, we can obtain a new and more accurate assignment
in much less computation time. This process can be repeated several times. If we set ε = 0 for
the final step we obtain our original condition (3.4.11) that will definitely result in the optimal
mapping we are looking for. With a proper number of steps and good values of epsilon, this
method will take less computation time than the unmodified algorithm described above.

This modification increases the efficiency of the algorithm, because the costs set in previous
rounds will keep most bidders away from the most popular objects. The bidders that have
less to spend can’t afford to bid on these popular objects, and will immediately be directed
towards less favourable, but less expensive objects. The least popular objects are now much
easier to assign, reducing the computation time.

An additional speed-up can be achieved by reducing the problem of the last few assignments
that are very hard to make. If we use the ε-method described above with multiple rounds, the
first few rounds are not meant to have an accurate result. We can therefore simply terminate
the calculation once we drop below a certain threshold of unassigned particles. The particles
that remain unassigned will have a lower cost in the next round, making them more attractive.
By reducing the threshold in each subsequent round, we will gain more accuracy when we
need it.

Round 1 Round 2 Round 3
C (Eq. 3.4.9) p =

As.
Cost

Bid As.
Cost

Bid As.
O1 O2 O3 (Eq. 3.4.10) O1 O2 O3 O1 O2 O3

B1 1 0 1 1− 0 + 0 = 1 O2 − 1 2 4 1 O1

B2 4 1 0 1− 0 + 0 = 1 − 4 2 3 2 O2 O2

B3 9 4 1 4− 1 + 0 = 3 O3 O3 O3

Table 3.1: Auction example. Listed for each round are: the costs for each bidder-object pair (Eq.
3.4.9); the height of the bid of each bidder on the object with the lowest cost (Eq. 3.4.10); and the
assignments that are in place at the end of the round.
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Figure 3.5: A MAK reconstruction of the local universe. The velocities in the local universe
were reconstructed with MAK. Image from Lavaux (2010)

3.4.3 Applications

The MAK reconstruction has many applications in astronomy. Frisch et al. (2002) investi-
gated the reconstruction of initial density perturbations. In a similar effort Sirko and Spergel
(2005) reconstructed the primordial power spectrum with galaxies from the Sloan Digital Sky
Survey. Mohayaee and Tully (2005) used MAK to constrain cosmological parameters and to
reconstruct peculiar velocities of galaxies in a small galaxy redshift catalogue.

In a more recent effort, Lavaux (2010) use the MAK reconstruction method on the local
universe. They made a reconstruction of the peculiar velocities in the local universe that is
caused by the large clusters. For their data they used two catalogues: the Two-Micron All Sky
Redshift Survey (2MRS; based on the 2MASS survey) and the Nearby Galaxy 3, 000 km/s
(NBG-3k) distance catalogue for more accurate data of galaxies with a low redshift. They did
a three-dimensional reconstruction and extracted a thin slice around the supergalactic plane.
This slice is displayed in Figure 3.5. It shows the full extent of the reconstruction, up to a
distance of 100 Mpc, but survey is only complete up to ∼ 60 Mpc. The reconstruction was
extended to prevent boundary effects in the completely sampled area. This reconstruction of
the orbits of galaxies gives an approximation of the velocity field in the local universe. MAK
is better suited for these types of reconstructions than other Lagrangian techniques, because
it reconstructs the velocities of the galaxies themselves, while other techniques reconstruct
velocities on grid point. Moreover, the nonlinear approach of MAK makes it overall more
accurate than linear reconstruction techniques. Finally, the only information required for a
MAK reconstruction is the positions of galaxies. Where other methods need more, MAK can
reconstruct orbits from positions only, assuming a uniform distribution initially.
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3.4.4 Other reconstruction methods

There are other reconstruction methods with the same intention as MAK. The Zel’dovich-
Bernoulli reconstruction is based on inverting the Zel’dovich approximation. It uses the
current positions and velocities of galaxies and extrapolates the evolution back in time. This
method works rather well in the linear regime, but the problem is that the current velocities
are often unknown. Nusser and Dekel (1992) developed a method to approximate the velocities
from the density field, but this extra step produces a highly inferior reconstruction, often with
orbit crossing in the initial field that should be approximately uniform.

The Least Action reconstruction first introduced by Peebles (1989) is more similar to MAK.
It assumes a uniform initial mass distribution and requires a current galaxy distribution as
input. It then defines an action for the displacement of a certain galaxy to any initial position.
The total action is then minimized by interchanging the reconstructed positions of two galaxies
such that total action decreases. A disadvantage of this method is that the reconstruction is
not always a unique solution, and with a number of possible results the reconstruction may
end up in a local minimum in stead of a global one. The MAK reconstruction is much faster
and it is guaranteed to be unique. However, it does not perform as well as the Least Action
method in highly nonlinear regions (see Mohayaee and Tully (2005) for a comparison).
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Voids and dark energy

4.1 Voids

Figure 4.1: A growing void. Two snapshots of a void evolving in a ΛCDM simulation. The left
panel is the void at a(t) = 0.15 and the right panel at a(t) = 1. Figure from van de Weygaert and
Platen (2009).

A void is a vast empty region of space with a diameter of 20− 50h−1 Mpc. They were first
discovered in two independent redshift surveys by Gregory and Thompson (1978) and Joeveer
et al. (1978). In their studies of dense structures in early redshift surveys of galaxies they
discovered that the structures were seperated by large empty regions. In the first mentioned
study these regions were called voids. This discovery resulted in more extended redshift
surveys, which eventually led to conclusion that galaxy distribution forms a web-like structure
composed of clusters, filaments and voids.
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Figure 4.2: An early observation
of the Coma void by Gregory
and Thompson (1978).

The seeds for the formation of voids were tiny underdensities in the initial density field.
Because the density is lower in these regions, the matter is pulled towards surrounding over-
densities and vacates the underdense region (see Figure4.1). There is a continuous outflow
of gas and dark matter as it is pulled into the filaments and clusters by gravity. The voids
continue to grow in both size and underdensity, i.e. the density contrast between clusters and
voids increases, as the high density structures around them undergo gravitational collapse
(see figure 4.1). Because they are depleted from all gas, hardly any galaxies can form in these
regions.

It appears that there is an hierarchical aspect to void evolution. A large underdense region
consists of many small voids, separated by thin walls or filaments. There is a continuous
outflow of matter along the filaments or walls into clusters, gradually reducing their size and
density, until they become indistinguishable and the voids that they separated are essentially
merged. A simulation of a void showing this behaviour is shown in the top row of Figure 4.3.
It takes longer for substructure to completely disappear than the current age of the universe.
The fainted substructures may not be visible in most observed voids, but it is probably still
there. On the other hand, the walls and filaments that form the boundary may merge with
other boundary structures, effectively causing the void in between to disappear. This is what
happens in the bottom row of Figure 4.3. Such a void, that is collapsing in one direction
but may be expanding in another, is called a pancake or filament void (see Figure 4.4).
Whether a void is expanding or collapsing is extremely hard to observed. One needs dynamical
information to separate the expanding voids from the collapsing ones. But at cosmological
distances the redshift can not be used as a measure for velocity, so another method is required.
We will do a Monge-Ampère-Kantorovitch reconstruction to obtain the necessary dynamical
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Figure 4.3: Evolution of growing and collapsing voids. In the top row a large, fragmented
underdense region gradually empties. The substructure visible in the first panel gets fainter toward
the last panel. The subvoids will merge as the void evolves, to eventually only leave the large void. In
the bottom panel two filaments are merging, causing the void in between to disappear. Figure from
van de Weygaert and Platen (2009).

Figure 4.4: A sketch of
some types of voids.
True voids expand in all
directions, while pancake
voids collapse in one direc-
tion and filament voids are
collapsing in two directions.
The collapse is caused by
the boundaries that are
gravitationally attracted to
each other, with a merger
as the result. This figure
from Lavaux (2010) shows
the two possible types in a
two dimensional space.

information and study the difference between these types of voids.

How empty voids are is still an open question. Observations do show a few stray galaxies in
voids that do not contribute significantly to the density of the void (van de Weygaert et al.,
2011). But voids may be filled with dwarf galaxies that are to faint to observe. This idea
comes from N-body simulations that show there is a significant amount of dark matter left in
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voids. In high resolution simulations of voids by Gottlöber et al. (2003), this dark matter is
many clustered in small haloes. Only a few haloes are formed that are large enough to host
galaxies with observable brightness. However, it is unknown whether dwarf galaxies actually
form in these small haloes, leaving this question unsolved.

During their evolution voids are subject to tidal forces from the high density structures
around them. They already start as non-spherical Gaussian perturbation that show some
degree of alignment (Bond, 1987). Both this ellipticity and alignment are enhanced by the
tidal forces. The tidal forces are the strongest towards large neighbouring clusters of galaxies.
Thus the voids are stretched mostly in the direction of this cluster, such that their longest
axis points towards the cluster. A neighbouring void will feel the tidal forces from the same
cluster, causing the alignment between these voids to increase. These neighbouring voids
are usually separated by a wall or filament connected to the cluster, so the long axis of the
voids must to some degree also be aligned to these structures. These predicted shapes and
alignments were indeed found by Platen et al. (2007) in N-body simulation.

In this project we study the evolution of the shapes of voids. The boundary and thus
the shape of a void depends on the exact definition of a void. The matter density gradually
increases when moving from the center of a void towards its boundaries. When we define the
boundary as an isodensity surface, the void will have a very lumpy but more or less ellipsoidal
shape. Alternatively, we can interpret the large scale structure as a cosmic foam, and allow
voids to fill the entire volume, while their boundaries are infinitely thin. Such voids would
have a smooth surface, but their shape can not be represented by a simple geometrical form.
In addition, this method does not consider different density levels which may hold information
on the shape of a void. In the next section we will discuss some void finders, each with its
own definition of a void boundary.

4.1.1 Void finders

There are three classes of void finding algorithms: (i) searching for empty regions in a
particle distribution; (ii) finding low density regions in a density field; and (iii) using dynamical
information to find expanding regions. The first is used on observed galaxy distributions or
on simulations that identify galaxy candidates. The second is better suited for a dark matter
density field from a simulation, as it is more sensitive to small substructures. It can also be
applied to a galaxy distribution by first converting it to a density field. The dynamical method
is not widely used because it can not be applied to observations. However, a reconstruction
method that can provide the dynamical information may be used for this class of void finders.

Most algorithms that find voids in a galaxy distribution try to identify empty regions of a
certain shape (cubes, spheres, ellipsoids), e.g. Brunino et al. (2007). Some algorithms then
take steps to deviate from this geometrical shape to make a better approximation of the true
shape of the void. For example, Gottlöber et al. (2003) (spheres) and Müller et al. (2000)
(cubes) place a single large object in each empty region, and then attach smaller objects (down
to a certain limit) of the same shape to the surface of the larger one. Another possibility
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is drawing many spheres in empty regions and merging overlapping spheres to obtain a void
approximation. The ‘voidfinder’ of Hoyle and Vogeley (2002) divides the field into a grid. For
each grid point they draw a sphere with the largest possible radius that leaves it empty. Then
all overlapping spheres are merged to form an irregularly shaped void. In these methods it is
of course possible to ignore galaxies below a certain mass or luminosity, as voids can contain
some stray galaxies.

A similar merging scheme can be used for finding voids in a density field. In this case
the spheres that are to be merged are drawn around local minima in the density field. The
spheres are expanded until the mean density of the region it delimits, reaches a certain limit
(e.g. Colberg et al. (2005)). In such merging schemes it is necessary to either use only rather
large spheres or to set conditions for the merging. Otherwise two voids can be merged by
small spheres that cross the border between both voids, resulting in strange shapes and sizes.

A very intuitive void finding technique that has been developed by Platen et al. (2007) is
the Watershed Void Finder. The algorithm is analogous to the flooding of a landscape. A
density field is first obtained from a particle distribution by the Delauney Tesselation Field
Estimator (DTFE) from Schaap and van de Weygaert (2000). All local minima in the density
field are than marked as sources for flooding. As water flows from the sources the level
gradually rises, filling the underdense regions (basins). When the water hits a saddlepoint
in the density field, two neighbouring basins can merge. A dam is erected at this point to
prevent the merging. When the water level rises further, this dam is extended and new dams
are erected to prevent any merging. When the field is completely flooded, all that remains is
a web-like structure of dams. These are the boundaries of the voids. This technique is known
in mathematical morphology as the Watershed Transform, which is the origin of the name
Watershed Void Finder.

An example of a void finder that uses dynamics is the one by Hahn et al. (2007). They
derive a gravitational potential from the density distribution and analyse the equations of
motion for a test particle in this potential. From this they obtain the tidal field tensor Tij at
the position of the test particle. They classify voids as the regions where the eigenvalues of
the tidal field tensor are all positive, i.e. the points that are gravitationally unstable. This
last step is the same for void finding with MAK that we use in this project. Figure 4.5 shows
how some of the mentioned void finders perform on a simulation.

4.2 Dark energy and voids

There have been many attempts in recent years to find observational evidence that can put
constraints on the equation of state for dark energy. Suggested probes are, among others,
the luminosity versus distance relation of supernovae type Ia, weak gravitational lensing and
the mass function of galaxy clusters. A recent addition to this list by Park and Lee (2007)
is the evolution of the shape of voids. Because voids are like huge bubbles in the cosmic
foam, their shapes are determined by weak forces on large scales. In particular there are
two counteracting forces that have a strong influence on the shapes of voids. On the one
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(a) Mueller (b) Gottlöber (c) Hoyle & Vogley

(d) Hahn (e) Platen (f) Neyrinck

Figure 4.5: Various void finders. The green region is the void found by the algorithm and the
red dot is the associated center. The blue dots are galaxies embedded in the simulated dark matter
background. Figures from Colberg et al. (2008).

hand we have the expanding universe. The stretching of space in and around the void will
make it more spherical in shape, just like an oddly shaped balloon will get more spherical
when it is blown up enough. On the other hand, we have shearing forces from massive galaxy
clusters near a void. They will distort the shape of the void, resulting in a less symmetric and
therefore more elliptical shape. Because dark energy influences the growth rate of structures,
it also influences the void shapes through the shearing forces from these structures.

At the core of our analysis of void shapes is the displacement field, which we call Ψ. It is
simply the reconstructed displacement from the initial position q to the final position x:

Ψ(q) ≡ x(q)− q (4.2.1)

You may recall from Section 3.4 that in the case of MAK this can be written in the more
familiar potential form:

Ψ(q) = ∇qΦ(q), (4.2.2)

with ∇q the Lagrangian derivative of Φ(q). We define the tidal shear tensor as

Ti,j(q) =
∂Ψi(q)

∂qj
=

∂2Φ(q)
∂qi∂qj

. (4.2.3)
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The Jacobian matrix is related to the tidal shear tensor Ti,j(q):

Ji,j(q) =
∂xi(q)
∂qj

=
∂(qi + Ψi(q))

∂qj
= δi,j + Ti,j(q), (4.2.4)

where δi,j is the Kroneker delta. Then we calculate the eigenvalues of the tidal shear tensor
and sort them in descending order. These eigenvalues (λi) can be used for the shape analysis.
The major axis length of the ellipsoid that approximates the void shape is 1 + λ1 and the
minor axis length is 1 + λ3 (these are the eigenvalues of the Jacobian). These eigenvalues can
also be used to calculate the density at a point q:

ρ(q) = ρ0(q) |Ji,j | =
ρ0(q)

(λ1 + 1)(λ2 + 1)(λ3 + 1)
. (4.2.5)

From this it is obvious that, if λi > 0 for all i, the region must be underdense and we are
dealing with a void. When only λ1 > 0 and λ2, λ3 < 0 the region may or may not be
underdense. In this case the value of

∑
λi > 0 can be used to determine whether a region is

underdense.

The probability distribution of ellipticities of voids, as measured by the eigenvalues λ1 ≥
λ2 ≥ λ3 of the tidal shear tensor Tij , was derived by Doroshkevich (1970):

p(λ1, λ2, λ3; σRL
) =

3375√
5πσ6

RL

exp

[
− 5δ2

ν

2σ2
RL

+
15δν(λ1 + λ2)

2σ2
RL

]

exp

[
15(λ2

1 + λ1λ2 + λ2
2)

2σ2
RL

]
(λ1 − λ2)(λ2 − λ3)(λ1 − λ3) . (4.2.6)

In words, p(λ1, λ2, λ3; σRL
) is the probability to find the values λ1, λ2 and λ3, as a function

of σRL
. To evaluate the probabilities for void shapes it is convenient to define the shape

parameters

µ =
(

1 + λ2

1 + λ1

)1/2

, ν =
(

1 + λ3

1 + λ1

)1/2

, ε = 1− ν. (4.2.7)

The prolateness is measured by µ and the aspect ratio for the major an minor axes ν is used
to define the ellipticity ε. In addition we define the parameter δ = λ1 +λ2 +λ3 that measures
the local underdensity. The above probability distribution can then be written as a function
of the shape parameters µ and ν and δ by substituting:

λ1(µ, ν) = −µ2 + ν2 − (δ + 2)
µ2 + ν2 + 1

(4.2.8)

λ2(µ, ν) = −1 + ν2 − (δ + 2)µ2

µ2 + ν2 + 1
(4.2.9)

λ3(µ, ν) = −1 + µ2 − (δ + 2)ν2

µ2 + ν2 + 1
(4.2.10)

The distribution function of void ellipticities can be obtained by calculating:

p(1− ε; σRL
) = p(ν; σRL

) =
∫ 1

µ=ν

∫ ∞

δ=0
p(λ1(µ, ν), λ2(µ, ν)|δν ; σRL

)
4(δν − 3)2µν

µ2 + ν2 + 1
dµ. (4.2.11)
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Figure 4.6: Ellipticity distribution in voids
calculated analytically and measured in a simu-
lation. The other curve is the theoretical distri-
bution in the whole space as calculated by Park
and Lee (2007). Figure from Lavaux and Wan-
delt (2010)
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Figure 4.7: Evolution of ellipticity for two
dark energy models. Figure from Lavaux and
Wandelt (2010)

The fraction on the right side is a correction term for using Equation (4.2.6) to calculate the
probability for ellipticities. We integrated over [ν, 1] because from λ2 ≥ λ3 follows µ ≥ ν and
from λ1 ≥ λ2 that µ ≤ 1. Such probability curves, constructed by Park and Lee (2007) and
Lavaux and Wandelt (2010), are shown in Figure 4.6.

The above shows how to calculate the ellipticity distribution of voids, but not how this
distribution is changing with time. This is hidden in the seemingly unimportant parameter
σRL

, the root-mean-square fluctuation of the matter density field smoothed in Lagrangian
coordinates on a scale of RL. This parameter depends explicitly on the redshift z:

σ2
RL

(z) = D(z)2
∫ ∞

−∞
∆(k)2W (kRL)2d ln k, (4.2.12)

where D(z) is the linear growth factor of the universe, ∆(k) is the power spectrum and
W (kRL) is a top-hat filter for smoothing. How the growth factor D(z) changes with redshift
depends on the dark energy model through the evolution of its Hubble parameter:

D(z) =
5Ωm,0H

2
0

2
H(z)

∫ ∞

z

1 + z′

H(z′)3
dz′. (4.2.13)

Lavaux and Wandelt (2010) investigated how the evolution of the mean ellipticities of voids
depends on the equation of state of dark energy (see Figure 4.7).
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Chapter 5

MAK implementations and
applications

In this chapter some initial tests and analyses of MAK reconstructions will be presented,
before moving on to the void shape analysis in Chapter 6. This will give some more insights
into the workings of the MAK reconstruction and how inaccuracies present themselves.

5.1 2D reconstruction

To get a feeling of what the algorithm does exactly, we start by showing the result of a MAK
reconstruction in two dimensions. We took a slice from an N-body simulation and only used
the x- and y-coordinates. 1002 (final) particles were randomly selected and then matched to a
regular grid of 100×100 initial particles with a reconstruction. The code for the reconstruction
was provided by Lavaux and Wandelt (2010)1, and was modified for our needs. The algorithm
only calculates what particles started at what initial positions. It does not consider how a
particle moved from that initial position to its final position. Therefore the lines drawn in
Figure 5.1 are straight lines connecting the initial and final position of a particle. Together,
all the straight lines together seem to be curved along filaments on their way to the clusters.
They have a pattern much like the trajectories one might find in a simulation using the
adhesion approximation. This is not so surprising when we recall from Chapter 3 that a
MAK reconstruction shares some properties with the adhesion approximation.

5.2 3D reconstruction

The next step was making a three-dimensional reconstruction. We used a 1283 N-body
simulation in a (100 Mpc)3 periodic box for our data, provided by R. van de Weygaert.
Making a full reconstruction would take several weeks on a single multi-core machine, so we

1It can be obtained from http://www.iap.fr/users/lavaux/code.php
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Figure 5.1: A two-dimensional MAK reconstruction, to illustrate what the algorithm does.

took a subset of 643 particles for this reconstruction. To be able to compare our reconstruction
to the simulated data, we used the particle IDs to select the particles that formed a regular
643 grid at t = 0 in the simulation. A slice of the distribution and density of these 643

dark matter particles is displayed in Figure 5.2. The slice is centered on the largest cluster
in the simulation. Now the algorithm had to connect these gridded positions to their final
positions in the most optimal way. The result of the reconstruction is displayed for the
same slice in Figure 5.3. We compared the reconstructed positions to the final positions
in the simulation. The accuracy of the MAK reconstruction is measured by the distance
between the simulated and the reconstructed final position of a certain grid particle. The
connecting lines in Figure 5.3 are the reconstructed displacements, colour-coded to show the
error of the reconstruction. The bottom panel of this figure highlights the inaccuracies in the
reconstruction: it only shows the lines with an error in excess of 5 Mpc. As expected, the
highest inaccuracies occur in high density regions.

Figure 5.4 was made to gain a better understanding of what deviations occur in the recon-
struction. For each particle in the simulation, we plot its final position in the simulation (xsim)
against its final position as reconstructed by MAK (xMAK). The distribution of errors in the
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Figure 5.2: The density field of the test simulation. The density was derived from the dark
matter distribution that is represented by the red dots. It was estimated with MAK according to
Equation (6.2.7) with a Lagrangian smoothing scale of 5 Mpc.

reconstruction ∆x = |xMAK − xsim| for the whole box is displayed in the inset in this figure
(this quantity is also used for the colors in Figure 5.3). Two zoom-ins are displayed above
the graph, showing the region inside the green boxes. It is obvious that the reconstruction
is least successfull in high density regions. This is expected, because the evolution is highly
non-linear in these regions. Remarkable are the cross-like patterns appearing around high
density regions. This emerges because we are comparing the same set of particle positions.
Take for example the large cluster in the left zoombox. Apparently, the MAK reconstruction
failed to assign a significant amount of particles to the cluster from the region above it. This
is the horizontal tail emanating from the cluster. These particles, that were not assigned
to the cluster, had to be replaced by other particles from below the cluster, resulting in the
vertical tail below it.

In a reconstruction where particles from the wrong area are assigned to a high density
region, this error may propagate to other regions. The particles above the cluster that were
not assigned to it have to divert to the region above. The particles that were supposed to be
in this region again have to go somewhere else. This may explain why most points are below
the red line in the right zoombox. However, this region is by no means representative for the
whole simulation. In some regions a similar propagation may be observed, but in most cases
the points are spread evenly around the line of perfect reconstruction.
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Figure 5.3: The MAK reconstruction of the test simulation. The colors of the lines indicate
the error of the reconstruction measured by ∆x = |xMAK −xsim|. The vertical red highlight indicates
the points that are used in Figure 5.4.
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Figure 5.4: Performance of the MAK-reconstruction. The final positions as reconstructed
by MAK are compared to the actual positions from the simulation. The red line is a one-to-one
correspondence. The plotted points are from a 20 Mpc wide bar going vertically through the largest
cluster, shown as a red bar in Figure 5.3. The upper panels are zoom-ins on the green boxes in the
lower one. It is clear that performance is worst in high density regions. The inset shows a logarithmic
histogram of the deviation from exact reconstruction ∆x = |xMAK − xsim|.
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Voids in dark energy models

As mentioned before, one of the goals of this project is to use the information obtained from
a reconstruction to analyse void shapes. To this end, we used N-body simulations of several
dark energy models provided by de Boni et al. (2011). The dark energy models are expected
to influence the shapes of voids, the result from a study by Lavaux and Wandelt (2010) (see
Section 4.2). In addition to the dark matter particle information from these simulations, we
also have information on dark matter haloes. The dark matter data and the halo positions
and masses extracted from the simulations were kindly provided to us by Bos (2010). The
halo information can be useful as a test case for observational data, because haloes are one
step in between the dark matter distribution and actual galaxies.

6.1 Simulations

The simulations were done by de Boni et al. (2011), using the GADGET3 code, in a box
containing 7863 dark matter particles with a mass of 3.7·109 M�h−1. The box has a sidelength
of 300 Mpc h−1 on all sides, and has periodic boundary conditions. The cosmology of the
simulated universe was based on the results in the third data release of the WMAP project.
The initial conditions were normalized such that the σ8 value matches that of the CMB,
with a correction for the linear growth factor D(z) of the specific model at the time of
recombination (see Table 2.1). The simulations incorporate baryonic as well as dark matter.
For the baryonic matter it includes radiative cooling and heating, star formation and the
consequent feedback from winds and supernovae. The cosmological parameters used in these
simulations are Ωm = 0.268, Ωb = 0.044, ΩΛ = 0.704, h = 0.704, n = 0.947, where Ωm,
Ωb and ΩΛ are the density parameters of respectively all matter, baryonic matter and dark
energy, h determines the Hubble parameter through H0 = h/100 km s−1 Mpc−1, and n the
index of the primordial power spectrum. ΩΛ is only used in the ΛCDM model, since the
others do not use a cosmological constant for the dark energy.

6.1.1 Haloes

Dark matter haloes were extracted from the simulations with the SUBFIND algorithm
(Springel et al., 2001). SUBFIND first uses the Friends-of-Friends (FoF) method to select high
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Figure 6.1: The particle distribution and densities in the dark matter and the halo data.
Both panels show the ΛCDM model at z = 0. The haloes, plotted in the right panel, were derived
from the dark matter distribution shown in the left panel. The density contours were determined with
MAK according to Equation (6.2.7) with a Lagrangian smoothing scale of 5 Mpc. All haloes were
given equal masses in the calculation, reducing the density contrast in overdense regions significantly.
Note that the voids are emptier when measured with haloes, because bound structures are hard to
form in an underdense expanding environment.

density areas. A FoF region is build by starting with a certain particle, and adding all its
neighbours within a specific distance to its group. The group is extended further by applying
the same rules to new group members iteratively. The FoF method is very efficient for finding
groups of higher densities, but it usually doesn’t match very well to physical entities. To find
haloes that do look like physical entities like galaxies, SUBFIND searches within FoF groups
for gravitationally bound structures. It selects candidates for haloes by constructing groups
around local density maxima. It iterates over all particles sorted by background density. The
particles located at local maxima become halo centers. Particles that have a neighbour with
a higher density than itself will join the group of that neighbour (because of the sorting, that
neighbour has already been assigned). If two of its neighbours have a higher density, but are
not in the same group, the groups of the neighbours are merged. Once the candidates have
been selected by following this procedure, the algorithm checks for each group which particles
are gravitationally bound. All non-bound particles are discarded from the group. If the rest
is still bound, they form a new halo. The halo distribution is displayed in Figure 6.1 along
with the dark matter distribution from which it was derived.

Even though this algorithm retrieves both halo positions and halo masses, the latter were
not used in this project. This has two reasons. Firstly, we want to use haloes because they
represent galaxy-like structures. In their analysis of the dark energy simulations, de Boni
et al. (2011) included a comparison of the hydrodynamics in the haloes to observed galaxies.
They found good agreement in the relation between the simulated X-ray luminosity and

48



Voids in dark energy models

0 50 100 150 200 250 300
x (Mpc)

0

50

100

150

200

250

300

y
(M

pc
)

(a) z = 1

0 50 100 150 200 250 300
x (Mpc)

0

50

100

150

200

250

300

y
(M

pc
)

(b) z = 0.5

0 50 100 150 200 250 300
x (Mpc)

0

50

100

150

200

250

300

y
(M

pc
)

(c) z = 0.25

0 50 100 150 200 250 300
x (Mpc)

0

50

100

150

200

250

300

y
(M

pc
)

(d) z = 0.1
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(e) z = 0

Figure 6.2: Evolution of the ΛCDM
model. Plotted for each time step are the
positions of the haloes in a 3.7 Mpc slice and
the associated density fields determined with
MAK according to Equation (6.2.7) with a
Lagrangian smoothing scale of 5 Mpc. In-
specting the halo positions, the strongest evo-
lution is visible in the first timestep, which
gradually reduces to almost no visible evolu-
tion in the last timestep.
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Figure 6.3: Density fields at z = 0 for all
five models. Plotted for each model are the
positions of the haloes in a 3.7 Mpc slice and
the associated density fields determined with
MAK according to Equation (6.2.7) with a
Lagrangian smoothing scale of 5 Mpc.. Al-
though the models have diverged the most
from each other at z = 0, hardly any dif-
ference between the models can be found by
visual inspection of these slices. We will have
to rely on a statistical analysis to find differ-
ences in their evolution.
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the temperature compared to the observerd relation. By using the haloes extracted from a
simulation and comparing the results to the dark matter data, we can see how well galaxies
follow the same trends as the dark matter distribution. This way we can find out how to
interpret result from observations of galaxies. Since the mass of a galaxy is hard to determine,
we would prefer to use only the positions. Therefore, we leave out the masses and only use
the positions of haloes in our comparison. Another reason for this is that, although in theory
the displacement of particles of variable mass could be reconstructed, the Auction algorithm
can only deal with uniform masses as it requires a one-to-one mapping of discrete particles.

The effect of using equally massive haloes is obvious when we compare the densities from
the halo data to the dark matter density. In Figure 6.1 we see that clusters in the dark matter
sample have a much higher mass concentration than in the halo sample. This can be expected
since the haloes found in galaxy clusters are much more massive than haloes in the field. By
neglecting this mass difference we diminish the overdensities in our halo reconstruction. In
numbers, the largest cluster visible in this image has an overdensity that is thirty times larger
in the dark matter distribution than it is in the haloes, calculated with Equation (6.2.7).

6.2 Analysis

From our reconstruction we obtain sets of matched initial positions q and final positions x.
These are first used to calculate the displacement field Ψ

Ψ(q) = x(q)− q (6.2.1)

This displacement field is not used directly, but first a Lagrangian smoothing with a Gaussian
kernel is applied. This is done by taking the Fourier transform of the displacement field,

Ψ̂(k) =
1

(2π)1.5

∫
Ψ(q) eikq dq, (6.2.2)

and then applying the Gaussian smoothing kernel in Fourier space before transforming back:

Ψ(q) =
1

(2π)1.5

∫
Ψ̂(k) e−

1
2
k2R2

eikq dk, (6.2.3)

Here R is the smoothing scale, which we set to 5 Mpc. After smoothing we calculate the tidal
shear tensor as:

Ti,j(q) =
∂Ψi(q)

∂qj
=

∂2Φ(q)
∂qi∂qj

(6.2.4)

This derivative of the displacement field is calculated in Fourier space:

∂Ψ(q)
∂q

=
∂

∂q
1

(2π)1.5

∫
Ψ̂(k) e−

1
2
k2R2

eikq dk =
1

(2π)1.5

∫
ikΨ̂(k) e−2πikq dk (6.2.5)

Then we calculate the eigenvalues of the tidal shear tensor and sort them in descending
order. These eigenvalues (λi) can be used for the shape analysis described in Section 4.2.
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Figure 6.4: The distribution of λ values in the reconstruction of haloes in the ΛCDM model at
z = 0. The shape of the distributions is rather similar for other models and other times: there is only
a small systematic decrease (of ∼ 0.2) in the eigenvalues from z = 1 to z = 0. Since the values are
sorted in descending order, the distribution shifts towards negative numbers from λ1 to λ3. The far
left panel shows the distribution of the sum of the eigenvalues. This is an approximation for the local
underdensity.

Figure 6.5: An ellipse with ellipticity
ε = 0.29. A unit sphere has major and minor
axis lengths a = 1 and c = 1. When this
sphere is stretched by a tidal shear tensor
with eigenvalues λ1 = 1 and λ3 = 0, its
axis lengths become a = 2 and c = 1 which
corresponds to an ellipticity of ε = 0.29.
The eigenvalue λ2 affects the semi-major
axis, which is irrelevant for the ellipticity
calculation.

a=2
λ1 =1

c=1
λ3 =0

ε=0.29

The distributions of the eigenvalues and their sum can be inspected in Figure 6.4. The
ellipticity parameter is:

ε = 1−
√

1 + λ3

1 + λ1
(6.2.6)

An ellipse with a typical void ellipticity of ε = 0.29 is illustrated is Figure 6.5. Its major
axis length is a = 1 + λ1 and the minor axis length is c = 1 + λ3. The density at a point q
corresponding to these eigenvalues is:

ρ(q) = ρ0(q) |Ji,j | =
ρ0(q)

(λ1 + 1)(λ2 + 1)(λ3 + 1)
(6.2.7)

This equation has been used to calculate the densities displayed in Figures 6.1, 6.2 and 6.3. In
Figure 6.2 we clearly see that the density contrast is lower in the earlier stage of the evolution
of ΛCDM. The ΛCDM shows the strongest evolution of all models. In Figure 6.3 we show
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Figure 6.6: Pancake and filament voids identified in the smaller
100 Mpc simulation of Section 5.2. Pictured above is a typical pan-
cake void region (green area), with some true voids embedded in it.
Only a few pancake voids do not have an embedded true void. On the
right side a typical filament void is displayed. Most filament voids are
between two clusters or completely surrounded by overdense regions. 40 45 50 55 60 65 70
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the haloes and densities in all models at z = 0. As expected, the overdensities in this model
are not quite as high as in the ΛCDM model at z = 0.

6.3 Void ellipticity

6.3.1 Dynamical types

Because we want to study all voids, we must distinguish between three dynamical types.
We define a filament void as an underdense region with only one positive eigenvalue, i.e. a
region expanding in one direction. A pancake void expands in two directions, while for a
true void all eigenvalues have to be positive. We need an additional constraint to restrict
ourselves to underdense regions, otherwise walls and filaments may be included. We use the
sum of the eigenvalues as an approximation for the (under)density1, and require

∑
λi > 0

for all void-like regions. The distributions of the eigenvalues and their sum can be inspected
in Figure 6.4. In this project we will mostly discuss the collection of all three void types,
which will be referred to as ‘all voids’. Our selection criteria for this collection are λ1 > 0
and

∑
λi > 0. In the distribution we see that λ1 > 0 nearly everywhere, so we can conclude

from the distribution of
∑

λi (Fig. 6.4a) that approximately half of our Lagrangian volume
is included in the all voids selection. However, Figure 6.4d tells us that only a very small
fraction of our data may be classified as a true void. This is a major disadvantage when we
want to study the statistical properties in these regions. For this reason most of our analysis
will be done using all voids.

1This approximation can be verified by doing a Taylor expansion of Equation (6.2.7) for the local density
to the first order.
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Figure 6.7: Void types at z = 0. The types
are derived from the reconstruction of haloes
and are displayed as a 3.7 Mpc thick slice,
i.e. one grid cell width, in Lagrangian space.
In the image, blue regions are true voids
which are usually surrounded by green pan-
cake voids. The filament voids, highlighted
in yellow, are usually found as thin layers
around pancake voids, although sometimes
they actually filament-like structeres that be-
come underdense due to strong tidal forces
inside a large void or in between high density
structures. Red shaded areas are overdense
regions and are not included in this study.
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Figure 6.8: Ellipticity distribu-
tions for the different types of
voids. Lavaux and Wandelt (2010)
proved that true voids have a lower
mean ellipticity with a more peaked
distribution than all voids. We see
that this is indeed true for our sim-
ulation. We also show a distribution
for pancake voids (but also including
the true voids). As expected, it lies
between the other two distributions.

How the different void types present themselves can be inspected in Figure 6.7. It shows
the Lagrangian distribution of the different types of voids in all five models at present time. In
the figure, the true voids seem to reside in the most underdense regions and are encompassed
by pancake voids. Together these two types occupy most of the underdense area: ∼ 6.7% and
∼ 33.5% of the whole Lagrangian volume respectively. These numbers only deviate below
the 1% level between the models. The filament voids mostly form a thin border around the
pancake void regions. They only rarely form a void themselves in between overdense areas,
like the one shown in Figure 6.6. Sometimes a filament structure extending into a large void
can become underdense due to the strong divergent forces in the void. Such a filament will
also be classified as a filament void. All these different manifestations of filament voids only
account for ∼ 7% of the Lagrangian volume. The rest of the Lagrangian volume, ∼ 53%
is occupied by overdense regions. Because the Lagrangian coordinates represent the initial
uniform distribution of haloes, the Lagrangian volume occupied by a certain structure is a
measure for the number of haloes residing in it. When all particles have equal mass, it even
measures the mass of the structure. However, we have not included the halo masses in this
study, so the Lagrangian volumes mentioned above only represent a number of haloes.

6.3.2 Ellipticity distributions

For our next step we calculate the ellipticity in void-like regions. The ellipticity at a point
q is:

ε(q) = 1−

√
λ3(q) + 1
λ1(q) + 1

. (6.3.1)

Now we want to inspect the distribution of ellipticities in voids. We first select the points in
underdense regions where

∑
λi > 0 and sort the list of ellipticities at these points. To plot
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the probability function of the ellipticity ε for these regions, we take the derivative of the
cumulative ε distribution,

P (ε) =
n(< ε + ∆ε)− n(< ε)

N ∆ε
. (6.3.2)

Here n(< ε) means the number of points where the ellipticity is smaller than ε, and ∆ε is
the stepsize for this derivative calculation. In Figure 6.8 we show what these distributions
look like for the different types of voids. This curve was derived from the 100 Mpc simulation
described earlier.

Some of the probability curves for our dark energy models can be seen in Figure 6.9. The
curves in the upper graphs of this figure show the evolution of the ellipticities of voids for
two models. As may be expected from their equation of state, the ΛCDM model evolves
noticeably faster than the SUGRA model. In the bottom graphs of this figure the ellipticities
in different models at a certain time are displayed. At z = 1 in the left graph the distributions
hardly differ. The reason is that the models were normalized at recombination. The dark
energy that would cause differences in ellipticity only becomes dominant just before z = 1.
However, in the right graph at z = 0, we do see significant differences between the models.
At this time the dark energy has apparently had enough time to influence the ellipticities to
a measurable level.

6.3.3 Void Evolution

To study the evolution of all models it is more convenient not to look at the distribution of
ellipticities, but just at the mean. For each model at each timestep we took the mean of all
ellipticities at the points that have

∑
λi > 0. These mean ellipticities are plotted against the

redshift of the corresponding timestep in Figure 6.10. We see that there is indeed a significant
difference between the models. The first thing that stands out is that the models still lie close
together at z = 1 because of the normalization (as we already saw in Figure 6.9c). The
evolution of the ellipticity after z = 1 heavily depends on the equation of state of dark energy.
For convenience we will show Figure 2.8 from Section 4.2 again. Looking at these two figures
side-by-side it is not so hard to explain the observed ellipticity evolution. The SUGRA model,
which initially has the highest value of w, shows the least change with redshift. On the other
hand the ΛCDM model with the lowest value of w shows the strongest evolution. The RP,
EQn and EQp models show a very close resemblance to each other in both figures. The RP
and EQp models are hardly distinguishable at all in the ellipticity evolution. The EQn model
is also very close to these two, but it has a slightly higher w-value at z = 1, which may explain
why it does not evolve as much as the other two. We will have to do some more analysis to
determine whether these three models are significantly different.

To be able to say something about the significance of the points in Figure 6.10 we will have
to do some statistical tests. We used the jackknife method to calculate an upperbound for the
errors on our values. For every point in Figure 6.10, that each represents the result of a re-
construction with ∼ 803 particles, we took 8 subsets of 323 particles for the jackknife analysis.
In addition, we did a Kolmogorov-Smirnov test (KS-test) on the cumulative ellipticity curves
from which the curves in Figure 6.9 were derived. The KS-test gives the confidence level that
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Figure 6.9: Ellipticity distributions found for all voids in the halo data. In the top row the evolution
from z = 1 to z = 0 in the SUGRA and the ΛCDM models is displayed. It is clear that both models
evolve, but the ΛCDM model on the right evolves faster than the SUGRA model on the left. The
bottom row shows the state of all five models at a fixed point in time. At the early stage of z = 1 in
the bottom left panel, the models are more or less equal. At present time z = 0 shown on the right,
there is a clear separation between most of the models.
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Figure 6.10: Mean ellipticity as a function of redshift in all voids in the halo samples of the five
dark energy simulations.

two samples are drawn from the same distribution. The RP and EQp models could not be
distinguished with a high confidence: the probability of being equal ranges from P = .02 at
z = 0.25 up to P = .99 at z = 0.1. All other models at all other times (even z = 1) could be
clearly distinguished at a confidence level of P < 0.05. The upperbound error estimates were
not included in the calculation of the KS-statistics.

With these statistics we can claim with much more certainty that indeed the ellipticity
evolutions of all dark matter models in Figure 6.10 are significantly different from each other,
except for the RP and EQp models. Although none of the models are clearly separable at
z = 1 due to the error, they diverge in their evolution towards z = 0 such that only the
RP and EQp models are indistinguishable. When comparing these results to Figure 2.8, the
big difference between the SUGRA, the ΛCDM and the other models is not surprising. The
fact that the RP and EQp model are hardly distinguishable, while the EQn model is clearly
separated from these two, is not explained by Figure 2.8. The equation of state parameter for
the RP model is actually much closer to EQn than to EQp. However, the equation of state
does not fully describe a model. Possibly modified gravity due to the coupling in the extended
quintessence models has more influences on the void shape than the equation of state. An
additional remarkable feature is the fact that the ellipticities of the EQn and SUGRA models
seem to decrease in the first timestep. In the case of EQn this decrease is not significant
within the errors, but it is for the SUGRA model. We have not found an explanation for this.
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Conclusions

7.1 The MAK reconstruction

The Monge-Ampère-Kantorovitch reconstruction is an excellent method for Lagrangian and
dynamical studies of the large scale structure. Authors like Frisch et al. (2002) and Brenier
et al. (2003) have already shown that this method can produce an accurate reconstruction of
velocities of dark matter particles in a simulation. With the prospect of applying this method
to large galaxy redshift surveys, they also reconstructed velocities in redshift space and got
equally promising results. For the same reason, we applied the method to gravitationally
bound haloes in hydrodynamical simulations. We found that the reconstruction was very
accurate. It was most inaccurate in high density regions due to a slight inconvenience: there
is a non-trivial problem in incorporating the masses of haloes in the reconstruction. However,
this problem only affects the high density regions where the reconstruction already was the
least accurate. In the rest of the volume the MAK reconstruction shows the same results for
haloes as it does for dark matter.

MAK is a most promising method in those case where we cannot obtain all the dynamical
information we need. It allows us to obtain an approximation of the full dynamical infor-
mation, while it only requires the positions of objects as input. Since Brenier et al. (2003)
have shown that the reconstruction is nearly as effective in redshift space as it is in normal
coordinates, this method will be very useful in studies of large redshift surveys of the large
scale structure.

7.2 Void shapes

In this project we presented an analysis of the evolution of void shapes. We showed that
this evolution was different in simulations with different models for dark energy. Furthermore,
the reconstruction was performed on dark matter haloes, which are somewhat representative
for galaxies. This was done as a test case for applying this analysis to observed galaxy
distributions, the ultimate goal for this method. We found that our results were similar to
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those of Lavaux and Wandelt (2010). The ellipticity of voids increases as they evolve, and
the lower the w parameter for the dark energy, the higher this increase is.

From these two findings we can conclude that this is a promising technique in our search
for dark energy. We can use the MAK reconstruction method on large redshift surveys to
measure void ellipticities. This will allows us to exclude certain models for dark energy based
on void shapes in simulations. How tight the constraints on models from this method will be
is still uncertain and will require more extensive studies.
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read and commented on my report. Finally, thanks go to de Boni et al. (2011) for allowing
my to use their data in this project.

62



Bibliography

Acquaviva, V., Baccigalupi, C., Leach, S. M., Liddle, A. R., and Perrotta, F. (2005). Structure
formation constraints on the Jordan-Brans-Dicke theory. Phys. Rev. D, 71:104025.

Baldi, M. (2011). Clarifying the effects of interacting dark energy on linear and non-linear
structure formation processes. MNRAS, 414:116–128.

Benamou, J.-D. and Brenier, Y. (2000). A computational fluid mechanics solution to the
monge-kantorovich mass transfer problem. Numerische Mathematik, 84:375–393.

Bennett, C. L., Banday, A. J., Gorski, K. M., Hinshaw, G., Jackson, P., Keegstra, P., Kogut,
A., Smoot, G. F., Wilkinson, D. T., and Wright, E. L. (1996). Four-Year COBE DMR
Cosmic Microwave Background Observations: Maps and Basic Results. ApJL, 464:L1–+.

Bertotti, B., Iess, L., and Tortora, P. (2003). A test of general relativity using radio links
with the Cassini spacecraft. Nature, 425:374–376.

Bertsekas, D. P. The Auction Algorithm for assignment and other network flow problems.
Interfaces.

Bertsekas, D. P. (1988). The Auction Algorithm: A Distributed Relaxation Method for the
Assignment Problem. Annals of Operations Research, 14:105–123.

Bond, J. R. (1987). Testing cosmic fluctuation spectra. In Nearly Normal Galaxies. From the
Planck Time to the Present, pages 388–397.

Bos, E. G. P. (2010). Voids as Probes fo the Nature of Dark Energy. MSc Thesis.

Brans, C. and Dicke, R. H. (1961). Mach’s principle and a relativistic theory of gravitation.
Phys. Rev., 124:925–935.

Brax, P. H. and Martin, J. (1999). Quintessence and supergravity. Phys. Let. B, 468:40–45.
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Gottlöber, S.,  Lokas, E. L., Klypin, A., and Hoffman, Y. (2003). The structure of voids.
MNRAS, 344:715–724.

Gregory, S. A. and Thompson, L. A. (1978). The Coma/A1367 supercluster and its environs.
ApJ, 222:784–799.

Gurbatov, S. N. and Saichev, A. I. (1984). Probability distribution and spectra of potential
hydrodynamic turbulence. Radiophysics and Quantum Electronics, 27:303–313.

Hahn, O., Porciani, C., Carollo, C. M., and Dekel, A. (2007). Properties of dark matter haloes
in clusters, filaments, sheets and voids. MNRAS, 375:489–499.

Heath, D. J. (1977). The growth of density perturbations in zero pressure Friedmann-Lemâıtre
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