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Abstract

The gravitational instability scenario suggests that the large scale structure ob-
served in the universe today grew from small perturbations in the density and
velocity field. The evolution of these perturbations is a nonlinear process and
can be recreated using N-body simulations. They are used as laboratories by
astronomers to study the formation and evolution of different types of structure.
The primordial cosmological density field is commonly assumed to be a Gaus-
sian random field, whose properties are dictated by the cosmological parameters
and the content of the universe. Most N-body simulations start from a realiza-
tion of a purely random Gaussian field. In the case of certain applications, it
would be desirable to be able to zoom in on a region with specific properties.
To this end, one can use a constrained field formalism. This can be done by
constructing user-specified initial conditions for N-body simulations. By im-
posing constraints on the Gaussian density and velocity perturbation field, the
evolution and formation of the structure can be influenced.
This research reviews a number of methods of constructing constrained realiza-
tions. The first systematic was Bertschinger (1987), stating that a constrained
realization is the sum of the ensemble average of all fields subject to the desired
set of constraints and a field containing the random fluctuations of the power
spectrum. The constrained realization was generated using Monte Carlo simu-
lation techniques in Fourier space. Hoffman & Ribak (1991) realized that the
statistics of the residual field were independent of the numerical values chosen,
making the algorithm designed by Bertschinger efficient for a large number of
constraints. Applications of the Hoffman-Ribak method are studied, in particu-
lar the constrained peak formalism by van de Weygaert & Bertschinger (1996).
This allows us to impose up to 18 different constraints per object, sculpting
the local density field and the dynamics of the evolution. The computational
implementation is used in this research to generate a number of constrained
realizations which can be used as initial conditions for N-body simulations. A
coordinate change in this method, proposed by Binney & Quinn (1991) is stud-
ied.
Other methods are also mentioned, such as the convolution method of Salmon
(1996). By calculating the convolution of white noise with a filter specified by
the power spectrum, a Gaussian random field can be created. Filtering this field
with a specific filter creates the new Gaussian field with the same statistics as
the desired field.
The various methods described are used in projects, such as the CLUES project
to simulate the large scale structure in our Local Group, the void simulations
done by van de Weygaert & van Kampen (1993) to study the formation of voids
in different cosmological contexts under various sets of constraints and the study
of the evolution of the Extra Galactic Magnetic Field of Dolag et al. (2005).
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Chapter 1

Introduction

Due to constantly improving technology, the field of astronomy has been expe-
riencing an amazingly rapid development. Up till the beginning of the nineties,
viralized galaxy super clusters were believed to be the largest structures in the
universe. (Oort, 1983) Deeper and high resolution observations done by various
redshift surveys proved this not to be the case. They revealed that matter in
the universe is arranged in a web like structure, consisting of nodes, connected
by planar and filamentary overdensities, surrounding near-empty regions. The
web is woven by threads called filaments and sheetlike structures called walls
and at their intersections, nodes are formed. The clusters and super clusters of
galaxies can be found in the nodes, filaments and walls. The near-empty regions
in the universe are called voids. This structure was given the name of ’Cosmic
Web’. (Bond et al., 1996) One of the results of such a redshift sky survey can
been seen in figure 1.1. The figure shows that the same structural behavior
is seen at higher redshifts, but at smaller scales. This is an indication for the
gravitational instability scenario. In this framework structure formation grows
through mergers of smaller substructure under the influence of gravity, indicat-
ing that more massive structure will form as time progresses. (Zel’dovich, 1970)

Figure 1.1: Results of the 2dF galaxy redshift survey, giving a clear picture of the
web like composition of the matter in the universe.

4



1.1 Nature of the primordial density field

The gravitational instability scenario beholds that the large scale structure seen
today grew from tiny perturbations in the primordial density and velocity field.
These perturbations are believed to have originated from quantum fluctuations
blown up in an inflationary era in the evolution of the universe. Evidence for this
theory can be found in the temperature fluctuations in the Cosmic Microwave
Background radiation (CMB). These fluctuations originate due to various gravi-
tational effects, where the overdense regions will appear at a higher temperature
in observations. The variations in temperature are therefore an imprint of the
primordial power spectrum at the surface of last scattering, around 300.00 years
after the Big Bang.

Figure 1.2: Cosmic Microwave Background Radiation. The image reveals 13.7 billion
year old temperature fluctuations (shown as color differences) that correspond to the
seeds that grew to become the galaxies. This image shows a temperature range of 200
micro Kelvin. Image Courtesy to the WMAP-project.

Quantum fluctuations blown up in an inflationary era create perturbation fields
that are Gaussian distributed. Even if inflation is not invoked in the evolution
theory of the universe, the central limit theorem argues that a Gaussian dis-
tribution could still arise if the density field is a superposition of independent
Fourier modes, each with their own Gaussian probability distribution.

f(x) =

∫
dk

(2π)3
f̂(k)e−ik·x (1.1)

where f(x) is the density perturbation field in real space and f̂(k) are the
different modes in Fourier space. The properties of a Gaussian random field
are fully specified by its power spectrum P (k). (Scherrer, 1992) The simplest
inflationary ΛCDM model predicts a so-called scale-invariant primordial power
spectrum for the density, given by P (k) ∝ kn. On large scales, there is a
slight preference for the value of n = 1, which was predicted by Peebles & Yu
(1970), Harrison (1970) and Zel’dovich (1970). The complete power spectrum
is quantified by the transfer function and the normalization constant. An fit for
the transfer function for an universe dominated by dark matter over baryonic
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matter and the presence of radiation and a cosmological constant was made by
Bardeen et al. (1986), (BBKS).

T (k) =
ln(1 + 2.34q)

2.34q
[1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4]−1/4 (1.2)

where q ≡ k/hΓ Mpc−1. The function Γ was defined by BBKS to be equal to
Ωmh, where Ωm is fraction of matter density with respect to the total density
content. Sugiyama (1995) refined this expression further to:

q =
k(T0/2.7K)2

Ω0h2exp(−Ωb −
√

h/0.5Ωb/Ω0)Mpc−1
(1.3)

where T0 is the present temperature, Ω0 is the total matter content, Ωb is the
fraction of baryonic matter content. One way to determine the normalization
constant is using the definition of cosmological parameter σ2

8 , which is defined
as the root-mean-square density variation when smoothed with a tophat-filter
of radius of 8h−1 Mpc. In Fourier space, this is given by:

σ2
8 =

1

(2π)3

∫
W 2

TH(k)P (k)dk (1.4)

in which WTH is the Fourier expression of the top-hat filter. The value for
parameter σ8 used in this research originates from the WMAP7 data and is
equal to 0.809. (Komatsu et al., 2009)

Figure 1.3: Plot of the primordial power spectrum in a ΛCDM model. The different
marks represent the different kind of observations done in order to reproduce the
power spectrum. Seen is the k1 preference of Peebles & Yu (1970), Harrison (1970)
and Zel’dovich (1970) before the turn-point.
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1.2 Evolution

The evolution of the primordial density and velocity perturbations is described
by a set of fluid equations. (see Appendix A for the specific equations) Because
the perturbations are of main interest for the astronomers, comoving coordinates
are chosen to describe the evolution. On large scales, the universe is considered
to be homogeneous and isotropic with a mean density of ρu and a velocity that
is equal to the expansion of the universe Hr where H is the Hubble parameter.
This is considered our static background in the comoving coordinate system.
The density perturbation field with respect to this static background is defined
as:

f(x, t) =
ρ(x, t) − ρu

ρu
(1.5)

A nonzero f(x, t) will attract or repulse matter due to the excess gravity, induc-
ing a corresponding velocity perturbations v(x, t) with respect to the velocity
of the universe. When the amplitudes of the density perturbations are much
smaller then one, the nonlinear terms in the set of three fluid equations can be
discarded. The solutions for the density and velocity perturbation fields can
then be found analytically. (see Appendix A)
A positive density perturbation for example, will grow without a bound as long
as the pressure forces do not counteract the infall of matter. When the pressure
forces become large enough, the overdensity starts to contract, ultimately col-
lapsing in a gravitationally bound structure. This can become a galaxy, cluster
or super cluster, depending on the scale of the initial overdensity. In our explo-
ration of the cosmic web and the development of appropriate tools to analyze
structure, morphology and dynamics, it is assumed that the cosmic web is traced
by a population of discrete objects, which are the galaxies in real observations.
But the formation of galaxies is a nonlinear process: when the density pertur-
bations become in the order of unity, the different scales in the perturbation
fields start to interact. The nonlinear terms in the fluid equations can no longer
be neglected, making it impossible to find the solutions analytically.

In order to gain insight in the formation and evolution of structure, N-body
simulations are used. They are able to deal with the entire evolution of a sys-
tem through the full range of linear up to highly nonlinear stages, where the
particles are the traceable objects. These N-body simulations can be considered
laboratories to help cosmologists understand the universe as observed today.
The different processes that play a role in the formation of various types of
structures can be studied. By comparing the obtained simulation results with
the observations, different cosmological models and the influence of various con-
straints can be studied. For example, the value of cosmological parameters can
be tested by re simulating the large scale structure in a region of the universe
and comparing this with observations done. This is done by various research
groups, such as the Millenium Project (Springel et al., 2005). One of the results
of the Millenium Simulation can been seen in figure 1.4, where our local universe
is simulated.
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Figure 1.4: The cosmic web in a box: three slices of the Millenium Simulation of
the ΛCDM model. The frames show the projected dark matter distribution in slices
of 15h−1Mpc, extracted at z = 0 corresponding to 13.6 Gyrs after the Big Bang.
The hierarchical structure can been seen. Image courtesy of V. Springel and Virgo
consortium.

To recreate a certain structure based on observations, specific initial con-
ditions should be present in the N-body simulation. One can influence the
structure and and its environment by imposing constraints on the density and
velocity perturbation field used for the initial conditions. For example, if the
desired result of the N-body simulation should be a super cluster, a peak of
a certain height with respect to the background has to be found in the initial
conditions. An example of different constraints is found in figure 1.5, where
constraints are imposed on the density and velocity field.

A trivial way to obtain specific initial conditions is to generate unconstrained
random realizations and reject those who not meet the desired constraints. How-
ever, in the cases where extreme conditions or the formation of a very large struc-
ture are longed for, this method becomes impractical. Different procedures were
proposed to create user-specified initial conditions for N-body simulations. In
this project, I have focused on the method of Hoffman & Ribak (1991), based
on the formalism by Bertschinger (1987).
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Figure 1.5: Depicturing the different types of constraints, using the Hoffman-Ribak
method.
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Chapter 2

Constrained Field

Formalism

When the importance of constrained realizations was realized, various methods
to generate these were suggested. Bertschinger (1987) was the first to tackle the
constrained realization problem. His formalism, extensions and applications will
be discussed in the upcoming section. Another method to pass the review is the
convolution method by Salmon (1996) and some of its applications.

2.1 One plus one equals one

Bertschinger (1987) was the first to set up a formalism to construct a constrained
Gaussian realization. By adding two fields, the mean field f̄(x) and the residual
field F (x) a constrained realization can be built.

f(x) = F (x) + f̄(x) (2.1)

The mean field f̄(x) is equal to the ensemble average of all fields obeying a
desired set of constraints. By the virtue of the ergodic theorem, the ensemble
average can been seen as the average over the normalization volume and is
in this research denoted by angle brackets. In other words, the mean field is
considered to be the most likely field. It is the weighted sum of the correlation
functions between the field and the imposed constraint function, defined as
ξi = 〈f(x)Ci〉, where the constraint functions Ci are linear functionals of the
field denoted as Ci = Ci[f(x)] = ci. The constraint correlation function is an
indication of the measure of influence of the constraint on the field throughout
the volume. The weights for each field constraint correlation are determined
by the imposed constraint cj and the inverse of the cross-correlation function
between the different constraints ξij = 〈CiCj〉. This defines the mean field as:

f̄(x) = ξi(x)ξ−1
ij cj (2.2)

The second field is the residual field F (x). This field embodies the field fluctua-
tions in the power spectrum and therefore is completely specified by the choice
of power spectrum. An illustration of this can been seen in figure 2.1, where in
the left panel the mean field is shown, in the middle panel the residual field and
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in the right plot the sum of the two, the constrained realization.

Figure 2.1: Illustration with from left to right, an illustration of the mean field, the
residual field and the constrained realization. Constraints were imposed on the height,
shape and curvature of a peak in the center of the simulation box. These fields were
created using the program of Van de Weygaert and Bertschinger (1996).

2.1.1 Introduction to Gaussian random fields

The large scale structure is believed to have grown under the influence of gravity
from primordial density and peculiar velocity perturbations that are Gaussian
randomly distributed. As explained in the first chapter, this is based on infla-
tion and the central limit theorem. On large scales, these fields are considered
homogeneous and isotropic with zero mean. Gaussian fields are specified by
their probability distribution function, which gives the probability that the field
will have values f(xi) up to f(xj) + df(xj) for j = 1, ..., N . Since the fields are
by definition Gaussian distributed, the joint probability distribution function
is defined by a set of N Gaussian probabilities all specified by their mean and
variance (Bardeen et al., 1986):

PN (f(x1), .., f(xN ))df(x1), .., df(xN ) =
1

[(2π)Ndet(M)]1/2
e−Adf(x1), .., df(xN )

(2.3)
where N is the number of points and A is defined as:

A ≡ 1

2

N∑

i=1

N∑

j=1

f(xi)Kijf(xj) (2.4)

=
1

2
f tKf (2.5)

where f is an N -dimensional column vector with entries fi and f t is its transpose.
The matrix K is the inverse of the covariance matrix M . In case of a Gaussian
field, M is specified by the autocorrelation function ξ(r).

Mij = ξ(xi − xj) = 〈f(xi)f(xj)〉 (2.6)

In the continuous limit the summations can be replaced with integrals. The
joint probability distribution becomes:

P [f ] = e−S[f ]D[f ] (2.7)
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where D[f ] is a measure of the distribution function and S[f ] is referred to as
the action integral, analogous to the action integral in path form in quantum
mechanics. The expression for S[f ] can be obtained from eq. 2.4:

S[f ] =
1

2

∫
dx1

∫
dx2f(x1)K(x1 − x2)f(x2) (2.8)

The action integral can be rewritten into the form of 1
2 f

tKf . Since the action
integral determines the joint probability distribution function, constructing a
Gaussian random field comes down to correctly sampling the action integral of
the field.
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Figure 2.2: Plot of a Gaussian random field. Upper left panel is an unfiltered
realization. Upper right panel is the same realization, filtered with a Gaussian filter
on a scale of 2h−1 Mpc. Lower left panel is the same realization, filtered on a scale
of 5h−1 Mpc while the same realization is seen in the lower right panel filtered on a
smoothing scale of 10h−1 Mpc.

Gaussian random fields can be used for setting up initial conditions for N-body
simulations. By letting such a realization evolve in time, structure will evolve
due to the influence of gravity and become non-Gaussian.

2.1.2 User-specified conditions

Nevertheless, there are many interesting problems in which one is interested in
generating special purpose conditions which are obeyed to give some specific
outcome of the simulation. For example, one would like to reconstruct the
large scale structure in a particular region of the universe, such as is done by
a number of groups, CLUES and the Virgo consortium being just a few of
them. Generating special purpose initial conditions can be done by imposing
numerical values at certain points in the simulation. This technique is called
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the constrained field formalism. The set of desired constraints can be written
as:

Γ = Ci[f ;xi] = ci i = 1, ..., M (2.9)

where M is the number of constraints and ci is the imposed numerical value. The
constraint functions Ci are linear functionals of the field f(xi) and the position
xi and therefore also Gaussian distributed. This means that the probability
distribution of a Gaussian random field f(x) subject to a set of constraints Γ is
equal to:

P [f | Γ] =
P [f ]

P [Γ]
(2.10)

where P [Γ] is the probability function of the set of constraints and P [f ] the
probability function of the random field f(x), which is given by eq. 2.3.
A similar expression for the probability distribution function for the set of con-
straints can be derived. The joint probability function for the set of constraints
is equal to:

P (C1, C2, ..., CM )dC1, dC2, ..., dCM =
1

[(2π)Mdet(Q)]1/2
e−BdC1, ..., dCM

(2.11)
with

B ≡ 1

2

M∑

i=1

M∑

j=1

Ci(Q
−1)ijCj (2.12)

The covariance matrix of the set of constraints is defined as:

Q = 〈Ci(xi)Cj(xj)〉 (2.13)

The complete conditional probability distribution function for a Gaussian field
subject to set of constraints can be defined as:

P [f | Γ] = e−
1

2
(ftKf−C

tQ−1
C) D[f ]

D[Γ]
(2.14)

where the notation of eq. 2.7 was used and C is a M -dimensional column vector
with entries Ci = Ci[f : xi] = ci and Ct is its transpose. Note that the imposed
set of constraints is now incorporated in the action integral S[f ], which now can
be rewritten to:

S[F ] =
1

2
FtKF (2.15)

where F (x) is the residual field and is defined as the difference between a Gaus-
sian field satisfying the constraint set Γ, f(x), and the most likely set satisfying
the constraint set Γ, f̄(x):

F (x) ≡ f(x) − f̄(x) (2.16)

The problem of constructing a Gaussian constrained field is reduced to properly
sampling the action integral of the residual field F (x). However, when imposing
a set of constraints on a Gaussian random field, the residual field is implicitly
subject to a set of constraints Γ0, imposing the residual field to be zero at the
positions of the constraints by definition. This can been seen in figure 2.3.
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Figure 2.3: An illustration of, from left to right, a mean field, a residual field and a
constrained realization. Because of the large scale of the object, harldy any fluctuations
are seen. Notice that clearly the residual field is the difference between the constrained
realization and the mean field. These illustrations were made using the algorithm by
Van de Weygaert and Bertschinger (1996).

Bertschinger (1987) solved this problem by using Markov Chain Monte Carlo
methods to sample the action integral. This was done in Fourier space, since
the Fourier modes are mutually independent and the action integral is therefore
diagonal:

S[f ] =

∫
dk

(2π)3
| F̂ (k) |2
2P (k)

(2.17)

where F̂ (k) are the Fourier transforms of the residual field F (x). The algorithm
requires Θ[(M2+1)N ] operations to generate one independent realization, where
M is the number of constraints and N is the number of degrees of freedom,
roughly equal to the number of density points. Note that for a large number of
constraints or a high grid density, the system converges slowly and the algorithm
becomes expansive.

2.2 The Hoffman-Ribak method

Hoffman and Ribak (1991) solved the issue of sampling the residual field. They
realized that the variance of the residual field was given by:

〈F 2(x) | Γ〉 = σ2
0 − ξi(x)ξ−1

ij ξj(x) (2.18)
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where σ2
0 = 〈f(x)f(x)〉. Note that the variance depends on position x and is

therefore neither homogeneous and isotropic. Since it is defined as the difference
of two Gaussian fields with zero mean, it is also a Gaussian field with zero mean.
This indicates that the distribution is completely specified by its variance. Equa-
tion 2.18 shows that the variance is independent of the imposed numerical value
and that therefore the complete conditional probability distribution function of
the residual field independent is of the numerical values of the constraint set.
(Additional proof of this statement can be found in Appendix C and was done
by van de Weygaert & Bertschinger (1996)). By realizing that the statistics of
the residual field are independent of the numerical values of ci, the method of
repeatedly sampling the action integral is unnecessary: the residual field F (x)
might as well been sampled from the field subject to a set of constraints Γ as
from the field subject to some arbitrary set of constraints Γ̃. Hoffman and Ribak
developed the following algorithm to construct a constrained realization:

1. Create a random, unconstrained realization f̃(x), which is a homogeneous
and isotropic Gaussian random field determined by its power spectrum.

2. Calculate the values c̃j of the realizations corresponding to the constraints

Ci(x) |xi
for i = 1, ..., M . These values define a set of constraints Γ̃ = c̃j .

3. Evaluate for this constraint set Γ̃ the corresponding mean field ˜̄f(x) using:

˜̄f(x) = 〈f̃(x) | Γ̃〉 = ξi(x)ξ−1
ij c̃j (2.19)

4. Calculate the residual field of the random realization ˜̄f(x).

F̃ (x) = f̃(x) − ˜̄f(x) (2.20)

5. Now calculate the desired mean field f̄(x) subject to the desired set of
constraints Γ = cj an add this to the calculated residual field F (x).

f(x) = ˜̄f(x) + ξi(x)ξ−1
ij (cj − c̃j) (2.21)

The field f(x) created according to this method obeys the set of imposed con-
straints.

2.2.1 Fourierspace

Bertschinger (1987) demonstrated already how generating a constrained realiza-
tion is easily done in Fourier space. The expression found by Hoffman and Ribak
can also generated in Fourier space. The Fourier components for the individ-
ual entries of eq. 2.21 should be derived. (see van de Weygaert & Bertschinger
(1996)). By assuming that the constraints are linear functionals of the field, they
can be written as the convolutions of the field f(x) and some kernel H(x;xi).

Ci[f ;xi] =

∫
dxH(x;xi)f(x) = ci (2.22)
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The Fourier transform of the density field is defined to be:

f(x) =

∫
dk

(2π)3
f̂(k)e−ik·x (2.23)

Defining the Fourier transform of the kernel as:

H(x;xi) =

∫
dk

(2π)3
Ĥi(k)e−ik·x (2.24)

Because of the convolution theorem, the Fourier expression of the constraint
function becomes:

Ci[f ;xi] =

∫
dk

(2π)3
Ĥi(k)f̂∗(k) = ci (2.25)

Having evaluated the constraint Ci[f ;xi], we can find the Fourier expressions
for the constraint-constraint correlation function ξij :

ξij ≡ 〈CiCj〉 (2.26)

= 〈
∫

dk1

(2π)3
Ĥ∗

i (k1)f̂(k1)

∫
dk2

(2π)3
Ĥj(k2)f̂

∗(k2)〉 (2.27)

=

∫ ∫
dk1

(2π)3
dk2

(2π)3
Ĥ∗

i (k1)Ĥj(k2)〈f̂(k1)f̂
∗(k2)〉 (2.28)

where we used the derived Fourier expression for the constraint function. Using
the power spectrum definition of Bertschinger (1992) modified by a factor of
(2π)3 for Fourier convention:

(2π)3P (k)δD(k1 − k2) = 〈f̂(k1)f̂
∗(k2)〉 (2.29)

The Fourier integral expression for the constraint correlation function then be-
comes:

ξij =

∫
dk

(2π)3
Ĥ∗

i (k)Ĥj(k)P (k) (2.30)

This quantifies the coupling between the different constraints in Fourier space,
since some of these are correlated. The same calculation can be done for the
constraint-field correlation function providing the expression:

ξi(x) =

∫
dk

(2π)3
Ĥi(k)P (k)e−ik·x (2.31)

In all, this leads to the following expression for the constrained field:

f(x) = f̃(x) + ξi(x)ξ−1
ij (cj − c̃j) (2.32)

=

∫
dk

(2π)3
[
˜̂
f(k) + P (k)Ĥi(k)ξ−1

ij (cj − c̃j)]e
ik·x (2.33)
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2.3 Applications of the Hoffman-Ribak Method

Generating a constrained realization using the Hoffman-Ribak method in Fourier
space is evaluated on a three-dimensional grid with N grid points, where the
Fourier transforms are replaced by discrete Fourier sums. The total costs of
generating a constrained realization comes down to Θ[(M2 + log N)N ]. (van de
Weygaert & Bertschinger, 1996) The most time consuming processes are the
evaluation of the correlation functions ξij and ξi, requiring the calculation of
M2 + M Fourier integrals.
For certain applications of the Hoffman-Ribak method, the computational cost
can be reduced. In order for this to happen, further restrictions have to be im-
posed on the convolution constraints. The first option is that the constraints are
sampled of the same physical quantity at many different places. The advantage
of this restriction is that for all constraints, the constraint-field correlation ma-
trix can be evaluated from the same general correlation function. This then also
holds for the constraint-constraint correlation function. The second requirement
is that the grid points are evenly spaced. In this case, the kernels differ just by
a phase factor.
These two additional restrictions make it possible to replace the discrete Fourier
sums with Fast Fourier Transforms. The complete computational cost becomes
Θ[N log N ].

Using the above restrictions, the Hoffman-Ribak method becomes an effective
method for a large number of constraints, suitable for creating initial conditions
for recreating large scale structure in a region of the universe. Ganon & Hoffman
(1993) was one of the first to do this. More details of their research is found in
chapter five. On a smaller scale, the Hoffman-Ribak method was used for spec-
ifying initial conditions for certain structures. A few of these applications are
also mentioned in chapter five, but the constrained peak formalism by van de
Weygaert & Bertschinger (1996) is explored here.

2.3.1 Constrained peak formalism

The constrained peak formalism is developed to generate a Gaussian random
field subject to a number of peaks or dips. By imposing up to eighteen con-
straints per object on the local density field and the peculiar velocity or gravi-
tational potential perturbation field, the matter distribution can be sculpted to
influence the evolution as the user desires.

Scale and position: parameter values

A peak is defined as a local maximum in the density field, when filtered on
appropriate scale. In this research, a Gaussian filter is used, which is important
in the derivation of the constraint kernels Ĥi in addition to defining the scale
of the peak. The filtered density field in real space is defined as:

fG(x) =

∫
dyf(y)WG(x,y) (2.34)
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where WG is the expression for the filter function. This leads to the following
Fourier expression using the convolution theorem:

fG(x) =

∫
dk

(2π)3
f̂(k)Ŵ ∗(k)e−ik·x (2.35)

where W (k) is the expression for a Gaussian filter in Fourier space:

W (k) = e−k2R2

G
/2 (2.36)

with RG defined as the smoothing scale. The scale of the peak is one of the
parameters in this formalism and is an indication of the resulting structure after
evolution. Besides the scale of the peak, the position xd can be chosen freely.
These three imposed position-coordinates can be merely seen as parameters ap-
pearing in the kernel H(x,xi) causing a phase shift k · xd.
For a peak or dip, up to eighteen constraints can be specified besides the scale
and position of the peak. The first ten constraints will determine the density
distribution of the immediate surroundings of the peak and therefore includes
the density field and its derivatives. By finding the appropriate constraint func-
tions, height, shape, compactness and orientation of the peak or dip can be
determined. The specification of the gravitational field introduces eight other
constraints in the form of the peculiar gravitational acceleration and the tidal
force field, sculpting the remaining density distribution in the simulation box.

Constraints on the density field

The density field around a peak at a position xd can be locally described by the
second-order Taylor expansion of the density contrast profile around the peak.

fG(x) = fG(xd) +▽ · fG(xd) +
1

2

3∑

i,j=1

∂2fG

∂xi∂xj
(xd)(xi − xd,i)(xj − xd,j) (2.37)

The requirement that the smoothed density field has a maximum of a certain
height, shape, compactness and orientation translates into constraints on the
values of the smoothed density field fG(x) at xd, the gradient ▽·fG(xd) and on
the second derivative tensor ▽i ▽j fG(xd). Note that when a certain constraint
is imposed, the constraint function has to be equal to the imposed value:

Ci[f ;xi] =

∫
dk

(2π)3
Ĥi(k)f̂∗(k) = ci (2.38)

First constraint is the height of the peak fG(xd). This is usually expressed in
units of the variance σ0 = 〈fGfG〉1/2.

fG(xd) = νcσ0(RG) (2.39)

where νc can be chosen freely and therefore imposed. Combining eq. 2.39 and
eq. 2.35, the constraint function can be rewritten to:

∫
dk

(2π)3
f̂(k)Ŵ ∗(k)e−ik·xd = νcσ0(RG) (2.40)
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The corresponding constraint kernel Ĥj(k) and the constraint value cj are recog-
nized, when comparing the derived formula with the definition for the constraint
formula (eq. 2.38):

Ĥi(k) = Ŵ (k)eik·xd ci = νcσ0(RG) (2.41)

The second set of constraints applies to the first-order derivatives of the density
field at position xd. To ensure that the peak is a local maximum, the divergence
of the density field should be equal to zero. The Fourier expression for the
gradient is defined as:

∂fG

∂xi
=

∂

∂xi

∫
dk

(2π)3
f̂(k)Ŵ ∗(k)e−ik·xd (2.42)

In which i = 1, 2, 3 represent the three directions. The combined set of the three
constraint expressions then yields:

∫
dk

(2π)3
− ikf̂(k)Ŵ ∗(k)e−ik·xd = 0 (2.43)

Again, the kernel Ĥ(k)j and the numerical value of cj can be easily recognized
in the above formula.

Ĥj(k) = iklŴ (k)eik·xd cj = 0 (2.44)

for j = 2, 3, 4 and l = j − 1.

The last set of constraints corresponds to the shape, compactness and orien-
tation of the density field around the position of the peak. The density field
subject to a peak can been seen to be ellipsoidal (see quadratic term in eq.2.37)
by using a change of coordinate system x′ where the axes are aligned with the
eigenvectors of ▽i ▽j fG with −λ1, −λ2 and −λ3 the eigenvalues. The density
field in this coordinate system can be described as:

fG(x′) = fG(xd) − 1

2

3∑

i=1

λix
′2
i (2.45)

The shape of an ellipsoid is completely specified by the two axial ratios a12 ≡
a1/a2 and a13 ≡ a1/a3. The suggested coordinate system transformation has
the advantage that imposing constraints on the axial ratios and therefore the
shape, results in imposing constraints on the ratios of eigenvalues:

(
λ2

λ1

)
= a2

12

(
λ3

λ1

)
= a2

13 (2.46)

The magnitude of the eigenvalues depend on the steepness of the density profile
at the peak, which is specified by the Laplacian ▽2fG. The steepness is usually
expressed in terms of σ2(RG) = 〈▽2fG ▽2 fG〉1/2, which creates the expression
for the constraint:

▽2fG = −xdσ2(RG) = −
3∑

i=1

λi (2.47)
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where the minus sign insures xd to be positive in the case of a peak. The
eigenvalue λ1 can then found to be:

λ1 =
xdσ2(RG)

1 + a2
12 + a2

13

(2.48)

where λ2 and λ3 are multiplications of λ1 with a2
12 and a2

13 respectively.
The orientation of the peak in coordinate system x′ with respect to the simula-
tion box axes is specified by the three Euler angles α, β and ϕ. An illustration
of the angles can been seen in figure 2.4.
It can be represented by the corresponding transformation matrix Aij , which

Figure 2.4: The Euler angles α, β and ϕ.

is given by:

A =




cosα cosϕ − cosβ sin α sin ϕ sin α cosϕ + cosβ cosα sin ϕ sin β sin ϕ
− cosα sinϕ − cosβ sin α cosϕ − sinα sin ϕ + cosβ cosα cosϕ − sinβ cosϕ

sin β sin α − sinβ cosα cosβ





This means that the change of coordinate system can be represented as:

x′
i =

3∑

j=1

Aij(xj − xj,d) j = 2, 3, 4 (2.49)

where xj,d is the position of the peak in coordinate system x. Thus, x
′2
i will

transform according to:

x
′2
i =

3∑

j=1

3∑

k=1

AijAik(xj − xj,d)(xk − xk,d) (2.50)
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Combining the transformation of x
′2
i and the description of the density field (eq.

2.45), the full expression for the density field in the coordinate system x can be
derived:

fG(x) = f(xd) −
1

2

3∑

j,k=1

(
3∑

i=1

λiAijAik

)
(xj − xj,d)(xk − xk,d) (2.51)

The set of second derivatives of the density field can be recognized, when com-
paring eq. 2.51 and eq. 2.37:

∂2fG

∂xi∂xj
= −

3∑

i=1

λiAijAik (2.52)

The Fourier expression for the Laplacian of the density field must be obtained
in order the find the expression of the kernel Ĥj to be:

Hj(k) = −kiklŴ (k)eik·xd cj = −
3∑

k=1

λkAkiAkl (2.53)

where j = 5, .., 10 and i, l = 1, .., 3.

Constraints on the gravitational field

When a patch of matter evolves, its shape and density distribution will change.
The path followed by the patch and the shape are defined by the forces it expe-
riences and the density changes due to expansion or compression. This means
that the dynamics of the matter distribution are described by the gravitational
potential field. Including the derivatives of the gravitational potential perturba-
tion field φ(x) in the choice of constraints allows the dynamics to be sculpted.
But in the linear evolution regime and for a growing mode solution, the diver-
gence of the potential perturbation field, the peculiar gravitational acceleration
g(x) is proportional to the peculiar velocity v(x) (Peebles, 1980),

v(x, t) =
2

3

f(Ω)

HΩ
g(x, t) (2.54)

where f(Ω) is defined as the dimensionless linear growth factor and approxi-
mated by Peebles to Ω0.6. (Peebles, 1980) The peculiar velocity at a specific
position xd can be described by a Taylor expansion where the velocity deforma-
tion tensor, consists of three modes:

vG,i(x) = vG(xd) + a

3∑

j=1

[
1

3a
(▽ · vG)(xd)δij + σij(xd) + wij(xd)

]
(xj − xd,j)

(2.55)
where σij is defined as the shear and can be described by the trace-free sym-
metric part of ∂vG,i/∂rj :

σij =
1

2a

[
∂vG,i

∂xj
+

∂vG,j

∂xi

]
− 1

3a
(▽ · vG)δij (2.56)
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In the linear regime the shear elements σij are proportional to the tidal tensor
components Eij . The vorticity wij is described by the anti-symmetric part of
this tensor:

wij =
1

2a

[
∂vG,i

∂xj
− ∂vG,j

∂xi

]
(2.57)

Since vorticity will not grow in the linear regime, it will be further discarded.
The trace of the velocity field gradient represent the deformation of the peak and
is the only component responsible for a change in density. Note that constraining
the peculiar velocity gradient is equal to imposing a constraint on the density
field, since the two are coupled via the continuity equation:

▽ · v
a

= Hf(Ω)fG(x) (2.58)

From this relationship we can infer the relation between the Fourier components
of the smoothed velocity field v̂G,i and the Fourier components of the density

field f̂G.

v̂G = −f(Ω)Ha
iki

k2
f̂(k)Ŵ ∗(k) (2.59)

This relationship will be used to obtain expressions for the constraint functions
of the peculiar velocity and the tidal tensor.

The first three constraints concern the peculiar velocity at the position of the
peak itself, v(xd). It is useful to specify the constraints in units of the variance
of the peculiar velocity of the peak, σv,pk(RG) = 〈vG,pkvG,pk〉. The constraint
expression becomes:

vG,i(xd) = v̄iσv,pk(RG) (2.60)

where i = 1, 2, 3 represents the three directions. The variance of the velocity of
the peak is less then the overall dispersion of the velocity of the field because of
the gravitational pull of the peak itself. The two variances are related by:

σv,pk(RG) = σv(RG)
√

1 − γ2
v γv ≡ σ2

0

σ−1σ1
(2.61)

where the dispersion of the velocity of the field is defined as:

σv(RG) = f(Ω)Hσ−1(RG) (2.62)

with σj(RG) being the spectral moments:

σ2
j (RG) ≡

∫
dk

(2π)3
P (k)Ŵ (k)k2j (2.63)

The peculiar velocity at position xd is defined as:

vG,i(xd) =

∫
dk

(2π)3
v̂G(k)Ŵ ∗e−ik·xd (2.64)

Using the relation between the Fourier components of the density and peculiar
velocity field (eq. 2.59) and the derived expression for the numerical constraint,
the constraint function can be derived:
∫

dk

(2π)3
f̂G(k)

(
−Hf(Ω)a

iki

k2
Ŵ ∗(k)

)
e−ik·xd = v̄if(Ω)Haσ−1(RG)

√
1 − γ2

v

(2.65)
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The corresponding kernels and constraints can be found to be:

Ĥj(k) = Hf(Ω)a
ikj

k2
Ŵ (k)e−ik·xd cj = v̄iaf(Ω)Hσ−1(RG)

√
1 − γ2

v (2.66)

Because the tidal tensor Eij is trace-less, which means that
∑

εk = 0, only
two eigenvalues need to be specified independently. In combination with the
orientation of the shear, five additional constraints are needed to characterize
the tidal field sculpting the density field. They quantify the deformation of the
patch of matter. It is most practical expressed in terms of the eigenvectors and
eigenvalues:

EG,ij =
1

a

(
▽ · v − 1

3
▽2 vδij

)
=

3∑

k=1

εkTkiTkj (2.67)

where the elements of T are the components of the various eigenvectors of the
tidal tensor, whose angles are defined by the Euler angles αE , βE and ϕE . In
constrained theory there is a strong correlation present between the tidal tensor
and the Laplacian of the density field, which depictures in the tendency of the
tidal force field to align with the principal axes of the ellipsoid in the one-peak
formalism. It is therefore convenient to express the elements of the tidal force
field with respect to the reference system defined by the axes of the peak:

Tki =

3∑

m=1

T̃kmAmi (2.68)

where A is the transformation matrix for the principal axes with respect to the
standard reference frame. The eigenvalues of the tidal tensor, ε1, ε2 and ε3,
specify the magnitude of the tidal field. They determine the morphology of the
structure that is to evolve.

Structure
Peak ε1 > 0 ε2 > 0 ε3 > 0
Filament ε1 > 0 ε2 > 0 ε3 < 0
Wall ε1 > 0 ε2 < 0 ε3 < 0
Void ε1 < 0 ε2 < 0 ε3 < 0

The eigenvalues of the tidal tensor are usually specified in units of the dispersion
of the off-diagonal elements of the tidal tensor EG,ij

σE(RG) = Hf(Ω)σ0(RG)

√
1 − γ2

15
γ ≡ σ2

1

σ0σ2
(2.69)

The Fourier components ÊG,ij of the tidal tensor can be found to be:

ÊG,ij = f(Ω)H

(
kikj

k2
− 1

3
δij

)
Ŵ ∗(k)f̂(k) (2.70)
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The constraint expression therefore becomes:

∫
dk

(2π)3

(
f(Ω)H

(
kikj

k2
− 1

3
δij

)
Ŵ ∗(k)

)
f̂(k)e−ik·xd = εiσE (2.71)

in which the kernel and the constraints can be recognized.

Note that when the density and velocity perturbations are in the order of unity,
the linear regime breaks down and the peculiar velocity and peculiar gravi-
tational acceleration will no longer be proportional to each other. In order
to prevail this problem, the constraints can be imposed on the peculiar grav-
itational potential field, which evolves linearly for a longer time. The same
expressions for the constraints and the constraint kernels will then be found, up
to a proportionality constant.

2.4 Constraint probability

To asses the likelihood of a set of imposed constraints, the χ2 can be calculated.
This is defined as:

χ2 =

M∑

i,j=1

Ci(Q
−1)Cj = ciξ

−1
ij cj (2.72)

where M is the number of constraints. The constraint set can be considered
likely when the χ2 per degree of freedom, χ̄2 = χ2/M , is in the order of unity.

In the case of the full eighteen constraints on a peak, we can find the χ2 in
the following matter. The density and gravity field around an arbitrary point
xd in a Gaussian random field can now be characterized by the following eighteen
constraints, combined in the parameter set Υ.

Υ = (f, η1η2, η3, ζ1, ζ2, ζ3, ζ4, ζ5, ζ6, v1, v2, v3, E1, E2, E4, E5, E6) (2.73)

where f is the value of the field at xd, the divergence of the field is denoted by ηi,
and ζA are the six independent components of the Laplacian of the density field,
with A = 1, 2, 3, 4, 5, 6 referring to the six components ij = 11, 22, 33, 12, 13, 23
of the tensor. The gravitational potential field is defined by the peculiar velocity
vi, while the five independent components of the tidal tensor are denoted by EA

with A = 11, 22, 12, 13, 23 referring to the ij = 11, 22, 12, 13, 23 components.

The joint probability distribution function of these eighteen parameters can
be found by calculating the corresponding correlation matrix Q = 〈CCt〉. The
entries of the constraint-constraint correlation matrix were analytically derived,
which is possible due to the restriction that the constraints are linear func-
tionals of the field itself. In this case the definition for the power spectrum by
Bertschinger (1992) can be used. A few of the derivations will be presented here.

The first entry of the matrix is the correlation between the field at a certain
position and itself.

ξ11 = 〈C1C1〉
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= 〈fG(x)fG(x)〉

= 〈
∫

dk1

(2π)3
f̂(k1)Ŵ (k1)e

−ik1·x
∫

dk2

(2π)3
f̂∗(k2)Ŵ

∗(k2)e
ik2·x〉

=

∫
dk1

(2π)3

∫
dk2

(2π)3
Ŵ (k1)Ŵ

∗(k2)e
−ik1·xeik2·x〈f̂(k1)f̂

∗(k2)〉

=

∫
dk1

(2π)3

∫
dk2

(2π)3
Ŵ (k1)Ŵ

∗(k2)e
−i(k1−k2)·x(2π)3δD(k1 − k2)P (k)

=

∫
dk

(2π)3
Ŵ 2(k)P (k)

Note that by comparing the derived expression for the constraint-constraint cor-
relation function with the definition of the spectral moments (see eq. 2.63), the
entry of the correlation is equal to σ2. This derivation is just a mathematical
example since the two same situations always correlate which each other.
Another entry in the correlation matrix is the correlation between the density
field and the set of its second derivatives ▽i▽j f . In this calculation, six entries
of the constraint-constraint correlation matrix are derived at once.

ξ1m = 〈C1Cm〉 m = 5, 6, 7, 8, 9, 10

= 〈fG(x)
∂2fG(x)

∂xi∂xj
〉

= 〈
∫

dk1

(2π)3
f̂(k1)Ŵ (k1)e

−ik1·x
∫

dk2

(2π)3
f̂∗(k2)Ŵ

∗(k2)ik2iik2je
ik2·x〉

=

∫
dk1

(2π)3
dk2

(2π)3
ik2iik2jŴ (k1)Ŵ

∗(k2)e
−i(k1−k2)·x〈f̂(k1)f̂

∗(k2)〉

=

∫
dk1

(2π)3
dk2

(2π)3
− k2ik2jŴ (k1)Ŵ

∗(k2)e
−i(k1−k2)·x(2π)3δD(k1 − k2)P (k)

= −
∫

dk

(2π)3
kjkiŴ

2(k)P (k)

Again comparing with the equation for spectral moments it is found that for
i = j, this is equal to σ2

1 , and zero when i 6= j. This means that there is a
negative correlation between the density field and the Laplacian of the density
field. Note that this value is a total for the complete Laplacian.
As an example two constraints that have no influence on each other whatsoever,
the correlation function between the first derivatives and the second derivatives
of the density field are calculated.

ξlm = 〈ClCm〉 l = 2, 3, 4; m = 5, 6, 7, 8, 9, 10

= 〈∂fG(x)

∂xi

∂2fG(x)

∂xj∂xk
〉

= 〈
∫

dk1

(2π)3
k1if̂(k1)Ŵ (k1)e

−ik1·x
∫

dk2

(2π)3
f̂∗(k2)Ŵ

∗(k2)ik2jik2keik2·x〉

=

∫
dk1

(2π)3
dk2

(2π)3
k1iik2jik2kŴ (k1)Ŵ

∗(k2)e
−i(k1−k2)·x〈f̂(k1)f̂

∗(k2)〉

=

∫
dk1

(2π)3
dk2

(2π)3
− k1ik2jk2kŴ (k1)Ŵ

∗(k2)e
−i(k1−k2)·x(2π)3δD(k1 − k2)P (k)
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= −
∫

dk

(2π)3
− kikjkkŴ 2(k)P (k)

By comparing the last equation to the definition of spectral moments, it shows
that this will always be equal zero, since there is an odd number of wave numbers
present.
The constraint correlation function can also be calculated for the divergence of
the gravitational potential field, or in the linear regime, the peculiar velocity
field. Here the between the various components of the peculiar velocity field is
derived.

ξlm = 〈ClCm〉 l, m = 11, 12, 13

= 〈vG,i(x)vG,j(x)〉

= 〈
∫

dk1

(2π)3
v̂i(k1)Ŵ (k1)e

−ik1·x
∫

dk2

(2π)3
v̂∗j (k2)Ŵ

∗(k2)e
ik2·x〉

= 〈
∫

dk1

(2π)3
− f(Ω)Ha

ik1,i

k2
f̂(k1)Ŵ (k1)e

−ik1·x
∫

dk2

(2π)3
− f(Ω)Ha

ik2,j

k2
f̂∗(k2)Ŵ

∗(k2)e
ik2·x〉

=

∫
dk1

(2π)3

∫
dk2

(2π)3
f(Ω)2H2a2−k1,ik2,j

k4
Ŵ (k1)Ŵ

∗(k2)e
−i(k1−k2)·x〈f̂(k1)f̂

∗(k2)〉

=

∫
dk1

(2π)3

∫
dk2

(2π)3
f(Ω)2H2a2−k1,ik2,j

k4
Ŵ (k1)Ŵ

∗(k2)e
−i(k1−k2)·x(2π)3δD(k1 − k2)

=

∫
dk

(2π)3
f(Ω)2H2a2−kikj

k4
Ŵ 2(k)P (k)

This has a value for i = j equal to −f2(Ω)H2a2σ2
−1 but not for i 6= j. This

means that there is a correlation between a velocity in a certain direction and
itself, but there is no correlation between the velocities in the different directions.

The complete constraint-constraint correlation matrix is found in figure 2.7.

An insightful expression can be found by reducing this 18 × 18 matrix into
nine 2 × 2 matrices by transferring the set of variables ζ1, ζ2, ζ3, E1, E2 into a
new set x, y, z, Ey, Ez:

x = −ζ1 + ζ2 + ζ3

σ2
y = −ζ1 − ζ3

2σ2
z = −ζ1 − 2ζ2 + ζ3

2σ2
(2.74)

Ey =
E1 − E3

2
Ez =

E1 − 2E2 + E3

2
(2.75)

The constraint-constraint correlation matrix changes accordingly and can be
found in figure 2.8.
The joint probability distribution function for the set of constraints Υ can de-
fined as:

P [Υ] = Ae−Q/2dνd3ηdxdydzdζ4dζ5dζ6d
3vdEydEzdE4dE5dE6 (2.76)

where the normalization constant A is given by:

A =
3655

1024π9(1 − γ2)3(1 − γ2
v)3/2(f(Ω)H)4σ3

−1σ0σ3
1σ3

2

(2.77)
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and

Q =

18∑

i,j=1

Ci(Q
−1)ijCj (2.78)

= ν2 +
(x − x∗)2

1 − γ2
+ 15y2 + 5z2 +

3η · η
σ2

1

+

6∑

A=4

15ζ2
A

σ2
2

+
3(v − v∗)2

σ̃2
v

(2.79)

+
(Ey − E∗

y)2

σ2
E

+
(Ez − E∗

z )2

3σ2
E

+
6∑

A=4

(EA − E∗
A)2

σ2
E

(2.80)

where σ̃v and σE are defined as:

σ̃v ≡ f(Ω)Haσ−1

√
1 − γ2

v σE ≡ f(Ω)Hσ0

√
1 − γ2

15
(2.81)

while the various coupling quantities are defined:

x∗ = γν (2.82)

v∗ = γvf(Ω)H
σ−1

σ1
η (2.83)

E∗
y = γyf(Ω)Hσ0 (2.84)

E∗
z = γzf(Ω)Hσ0 (2.85)

E∗
A = γf(Ω)H

σ0

σ2
ζA A = 4, 5, 6 (2.86)

Note in the above description of the correlation matrix, the correlations between
the different constraints become very clear, since there are cross terms present.

Extensions of the HR-method

Constrained realizations can be used to study noisy and incomplete data. When
a region is of the universe is obscured due to, for example, the Galactic plane,
the surrounding region can be reconstructed in order to gain insight in the struc-
ture in the zone of avoidance.
Count-in-cells of IRAS galaxies shows that on large angular scales the distribu-
tion is Gaussian and that for example the Hoffman-Ribak method can be used
to create constrained Gaussian initial conditions to re simulate the large scale
distribution. But on small angular scales, the distribution appears to be non-
Gaussian. (Coles & Jones, 1991) The distribution of the galaxies appears to
come from a underlying lognormal distribution. This is defined as transforming
a Gaussian field f(x) via:

fLN(x) = ef(x) (2.87)

Mathematically it can be derived from the Euler equation, which in the linear
regime is given by:

∂f

∂t
+ f ▽ v ∝ 0 (2.88)

1

f

∂f

∂t
∝ ▽v (2.89)

∂ ln f ∝ ▽v (2.90)
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This indicates a lognormal distribution for the density field. The probability
distribution of a Gaussian random unconstrained field is in this case given by:

PLN (f(x1), .., f(xN ))df(x1), .., df(xN ) =
1

[(2π)Ndet(M)]1/2
e−Adf(x1), .., df(xN )

(2.91)
with A defined as:

A ≡ 1

2

N∑

i=1

N∑

j=1

ln f(xi)Kij ln f(xj) (2.92)

where K is the inverse matrix of the correlation matrix. The probability distri-
bution of the set of constraints, which are also lognormal distributed, is equal
to:

PLN (C1, C2, ..., CM )dC1, dC2, ..., dCM =
1

[(2π)Mdet(Q)]1/2
e−BdC1, ..., dCM

(2.93)
with

B ≡ 1

2

M∑

i=1

M∑

j=1

lnCi(Q
−1)ij lnCj (2.94)

where Q is the constraint correlation matrix is (see eq.2.13 for the definition).
Using the vector notation for the field f and the set of constraints Γ and the
notation of eq.2.7 for the probability distribution function, the conditional prob-
ability distribution function can be written as:

PLN (f | Γ) =
PLN (f)

PLN(Γ)
(2.95)

= e−
1

2
(ln f

tK ln f−lnC
tQ−1 lnC) D[f ]

D[Γ]
(2.96)

When f and cj are Gaussian distributed, the conditional probability distribution
function of the constrained field is a shifted Gaussian around the mean field. The
same can been seen when the two distributions are lognormal: the conditional
probability distribution function is that of shifted lognormal distribution. This
means that every composition of f(x) subject to the same set of constraints will
have a lognormal distribution. The residual field is such a composition and will
therefore have a lognormal distribution. Since the variance of the probability
distribution function is no longer independent of the chosen numerical values for
the constraints, the Hoffman-Ribak method con no longer be used to construct
constrained realizations of lognormal fields.
But since the lognormal field is easily related to the underlying Gaussian density
field, a simple transition was thought of by Sheth (1995). A new field should
be defined such that E ≡ ln(fLN ). The conditional probability distribution
function for this field becomes again the shifted Gaussian function and the
Hoffman-Ribak method can be used again.

2.4.1 Change of coordinate system.

When constructing a realization of a random density field in the neighborhood
of a peak with a specific interest in gravitational and tidal forces, a change of
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coordinate system is desired. Binney & Quinn (1991) formulated an description
for the density field in spherical harmonics:

f(x) =

√
2

π

∑

lmn

flm(knr)κnjl(knr)Y m
l (θ, φ) (2.97)

Since this description contains the eigenfunctions of the angular momentum
operator, constraints on the angular momentum can be easily imposed. For e.g
the study of angular momentum, we know its is far more convenient to work
with a basis of spherical coordinates. For a localized set of constraints with a
center of symmetry, the problem can be solved directly. For an N-body study
of the generation of galaxy angular momentum, a constrained formalism within
a spherical harmonics basis seems therefore a convenient choice.

2.5 Other methods

Creating Gaussian constrained fields by adding a residual field, defined by the
power spectrum, to an ensemble mean field, completely specified by the con-
straints, is not the only way to do this. Over the years, the importance of
constrained realizations was realized and other methods were found create the
specified initial conditions. A few of them will be presented here.

2.5.1 Convolution method

Frenk et al. (1985) thought of Gaussian random field as a convolution of white
noise, with a power spectrum equal to P0 ∝ k0, and a transfer function given
by the square root of the power spectrum determined by the chosen cosmology:

T =
√

Peiφ (2.98)

where the phase φ is irrelevant. By choosing the power spectrum, the appropri-
ate Gaussian random field is created. In the case of the ΛCDM cosmology, the
power spectrum is defined as:

PΛCMD(k) ∝ T 2
ΛCDMP0 (2.99)

Since white noise is uncorrelated in real space, the integral of the probability
distribution can be solved in real space rather then in Fourier space.
This research was extended by Salmon (1996) to generate initial constrained
realizations. A constrained realization is defined by imposing constraints on a
Gaussian random field. As is mentioned before, constraining a Gaussian random
field will provide again a Gaussian field with a new mean and variance, defined
as:

µc = µ̄ + (cj − c̄j)ξ
−1
ij ξi (2.100)

σ2
c = σ̄2 − ξiξ

−1
ij ξj (2.101)

where the notation of van de Weygaert & Bertschinger (1996) is adapted. The
barred quantities are the quantities of the Gaussian random field. Instead of
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creating the constrained field directly, the process of filtering an unconstrained
Gaussian random field is studied.

fc = f̄ + △iξ
−1
ij ξj (2.102)

where fc is obtained filtered realization and △i is defined as:

△i = (ci − c̄i) (2.103)

This is a linear transformation, so a Gaussian random realization is created. It
can be shown that the mean and variance of this filtered field are equal to the
desired mean and variance of the constrained field. This means that these fields
are indistinguishable and therefore the same.
This method of generating Gaussian constrained realizations has many advan-
tages. For example, this method does not require the grid points in the N-body
simulations to be evenly spaced, making it suitable for all sorts of grids in N-
body simulations. Another advantage is that the same white noise can be used
for all simulations: a change of cosmological model is simply a change of trans-
fer function. Choosing a different transfer function does not alter the initial
conditions drastically and therefore the same type of structure should emerge,
creating an excellent laboratory for comparing different cosmologies.
Pen (1997) has implemented this method and used FFT’s to calculate the con-
volution. The advantage of the not-evenly spaced grid points remain, since the
FFT can be done on the different grid scales. The power spectrum is still de-
fined in real space on each grid point. If the power spectrum is determined
discretely in Fourier space, large errors would rise on the small wavenumbers.
The convolution of the density field and the transfer function is done in Fourier
space, after which the result is FFT-ed back to real space. Another advantage
of this method is that the average density in the simulation box does not have
to be equal to the average density of the universe.

Applications

One of the main advantages of the convolution method described above is that
applicable to all sorts of grids. Bertschinger (2001) was one of the first to grasp
the possibilities this method provided. He develop an algorithm to create multi-
scale Gaussian constrained fields. This application is interesting when studying
the evolution and formation of a certain structure, since a higher resolution
can be achieved at the area of interest. This method is called adaptive mesh
refinement. One of these results can been seen in figure 2.5, where the inner
structure in the lower realization is the product of adaptive mesh refinement.
Note by comparing this with the realization above, the inner structure created
with this method is of higher resolution.
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Figure 2.5: Results of the adaptive mesh refinement research of Bertschinger (2001).
Shown are tidal fields in a volume of 64 Mpc across where the lower realization is the
product of adaptive mesh refinement in the inner cube. Image courtesy to Bertschinger
(2001).

The advantage of this package is that the large scale density perturbations
can be related to smaller scale ones. The convolution with multi-scale reso-
lution enforces a constraint on the white noise functions that made them co-
herent at the relevant scales, and not completely independent. This ensures
that the small-scale structures that will develop in the high resolution simula-
tions through gravitational collapse will know in which large-scale structure they
form, at low resolution. The package Bertschinger designed is used by number
of projects, for example in the Horizon project by Prunet et al. (2008). One of
the goals of this project is to study the galaxy formation on small scales, which
can be done in great precision with this adaptive mesh refinement method for
the convolution method. An illustration of the project can be found in figure
2.6. (Horizonproject, n.d.)
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Figure 2.6: Simulation of a galaxy cluster, done by the Horizon project. Credit for
the realization: Romain Teyssier.
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Figure 2.7: The correlations described in the peak constrained formalism by van de Weygaert & Bertschinger (1996).
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Figure 2.8: The correlations described in the peak constrained formalism by van de Weygaert & Bertschinger (1996). Here the new variables are
incorporated.
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Chapter 3

Realizations

Constrained random fields are an useful tool for studying the evolution and
formation of structure. The type of structure depends on the imposed con-
straints of the field. The influence of various constraints on the density and
gravitational potential perturbation field can be studied easily, since the rela-
tion between cause and effect becomes directly apparent during the simulation.
One frequent application of constrained field realizations are used as initial con-
ditions for N-body simulations. As long as the density perturbations are small,
the different modes in Fourier space will not interact and the evolution will
evolve linearly. This can be described by a set of linearized fluid equations.
(see Appendix A) When the density perturbations become large, the modes in
Fourier space will interact and the nonlinear evolution sets in. This is then
simulated with an N-body simulation.

By constructing various realizations and imposing different constraints, the in-
fluence on the matter distribution will be explored in this chapter. In the
simplest cases, these realizations will contain a single object, either a void or a
peak, but scenarios containing multiple objects will also pass the review. First
the consequence of imposing constraints on the density field itself are studied,
where the various realizations are compared with a reference configuration. The
dynamics of the matter distribution is sculpted by constraining the peculiar ve-
locity field. The correlations between the different constraints are studied and
their consequences are derived.

35



3.1 Cosmological parameters

The program used to create these realizations is based on the constrained peak
description by van de Weygaert & Bertschinger (1996), which is designed to
create initial conditions for N-body simulations. This can be done either in the
form of unconstrained Gaussian random fields or constrained realizations.
The first option generates Gaussian random fields, where the statistics of these
Gaussian fields can be influenced by the user by choosing the desired power
spectrum from a set of five pre-chosen power spectra. In this research the
adiabatic ΛCDM power spectrum defined by BBKS is used. (Bardeen et al.,
1986) The normalization properties of the power spectrum are subject to the
value of the cosmological parameter σ2

8 and the most recent estimates of WMAP
suggest σ8 = 0.809. Other relevant cosmological parameters for the ΛCDM
cosmology are chosen in line with recent estimates from WMAP7, such as Ωm =
0.27 and the Hubble parameter H = 100h km/s/Mpc with h = 0.71. (Komatsu
et al., 2009)
Also, a constrained realization can be created. Here both the mean field and
the complete constrained realization can be constructed, along with the residual
field. Naturally, the same parameters described above are used to generate the
residual field.

3.2 Presentation of the simulation results

In this chapter, different sets of initial conditions will be presented. All results
presented in this chapter are simulated in a cubic three-dimensional box of size
L = 100h−1 Mpc and with a number of particles of 256 in each direction, unless
otherwise denoted. All fields are smoothed with a Gaussian filter with user-
specified smoothing scale RG.
The simulation results are frequently represented by three slices through the
simulation box and a corresponding density profile. The first three panels of a
figure are slices through the center of the simulation box along the x-, y- and
z-axis, creating a better understanding of the three-dimensional structure of
the peak in the center. The color bar provides an indicates of the fraction of
overdensity. Overdense regions are colored towards red, while the underdense
regions are colored towards blue. The color green is appointed for small or zero
over- and underdensities. The density profile was sampled along the three di-
rections through the center of the simulation box.

3.3 Creating a constrained realization

This program is built based on the formalism of Bertschinger, stating that a
constrained realization is the sum of a mean field f̄ and a residual field F (x).
The three fields can be studied separately. An example of each of the fields is
plot in figure 3.1 for a constrained realization with an elongated peak in the
center of the simulation box with a height of 3σ. From left to right, one can see
the mean field, the residual field and the complete constrained realization with
the according density profiles.
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In the first panel, the mean field is plotted. As defined, this field is com-
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Figure 3.1: A single elongated peak at the center of the simulation box. The panel
consists of the mean field, residual field and the constrained realization respectively.
All three fields are smoothed with a Gaussian filter with smoothing scale of 4h−1 Mpc.

pletely specified by the set of chosen constraints.

f̄(x) = ξi(x)ξ−1
ij cj (3.1)

In the corresponding density field profile of the mean field, the elongation along
the z-axis becomes apparent in the width of the density profile in that particular
direction.
The middle panel shows the residual field, containing the random fluctuations
in the power spectrum. Here it becomes immediately apparent that the residual
field is not a random generated field, since the definition specifies it to be zero
at the position of imposed constraints. At the position of the peak, where the
height is specified, the residual field has a value of zero. This shows again in
the according density profiles, where the density is equal to zero at the specified
position of the peak, which is in this case the center of the simulation box.
In the last panel, the complete constrained realization is shown, the sum of the
mean field and the residual field.

f(x) = f̄(x) + F (x) (3.2)

In the upper panel, both the mean and residual field can be recognized.
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3.3.1 Residual field

The residual field contains the fluctuations in the power spectrum and is in the
program generated using an algorithm from Press et al. (1992) based on the
suggestion from Knuth (1981). At the position of the constraints, the residual
field is equal to zero. This means that for a certain set of constraints, the
residual field should always be zero at the same points. But the substructure
would differ around the area due to the random number generator. Despite of
this fact, the different realizations for the same set of constraints will have the
same outcome. This was first realized by Ganon & Hoffman (1993).
Here initial conditions were generated for a spherical peak in the center of the
simulation box with a height of 2σ0. The generation of the residual field was
done four times in a row and the results of these are shown in figure 3.2, were
from each realization the same slice is presented. Note that the constrained
peak area is similar in all panels, but the surrounding structure differs. The
color bar indicates the relative overdensity δρ/ρ at a specific point.

Figure 3.2: Single spherical peak in the center of the simulation box. The peak is
on a scale of 4h−1 Mpc and the density field is smoothed with a Gaussian filter with
a smoothing radius of 4h−1 Mpc.

3.4 Simulation limitations

When working with simulations, one always has to be careful of its limitations.
In this part, a study is done to the possible limitations of the scale and position
of a specified object.

3.4.1 Scale

The simulation box has a finite length, which puts limits on the scale of the peak
that can be chosen. In this part a default spherical peak is created with the same
height and curvature, but on different scales. The results are combined in figure
3.3. The first column shows the mean unfiltered field, the second consists of the
unfiltered constrained realization and the last shows the constrained realization
smoothed with a smoothing scale equal to the peak scale. Note that for peaks
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on scales larger then 8h−1 Mpc the size of the box becomes a limitation. This
is due to the fact that the program uses an FFT and therefore needs periodic
boundary conditions. The consequence is that the average density is secured at
a certain value, in this case the average density of the universe. By imposing
a large size overdense object in the simulation, the surroundings of the object
have to become underdense in order for the average density to be constant and
there is no room for substructure.

Figure 3.3: A single spherical peak at the center of the simulation box. The panel
consists of the mean field, unfiltered constrained field and the filtered constrained
realization respectively. The mean and filtered constrained realization are filtered
with a Gaussian filter with smoothing radius equal to the scale of the object.

39



3.4.2 Position

One of the main limitations of the simulation is the fact that the size is not
infinite. One could be curious what should happen when constraints are imposed
in a way that a part will extend outside the simulation box. In order to test
this, a spherical peak was placed on the edge of the simulation box, at position
(x, y, z) = (99, 99, 99), ensuring to extend outside it. Slices and density profiles
at appropriate values were plotted to study the results. Shown in figure 3.4,
the extensions of the peak which would have fallen outside the simulation box
appear in the different corners of the simulation as if it was a continuous sphere.
This guarantees the user that wherever a object is imposed, it will appear in
the simulation box.
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Figure 3.4: A single spherical peak at the corner of the simulation box. The three
slices are taken through appropriate places in the simulation box. The field is smoothed
with a Gaussian filter with smoothing scale of 4h−1 Mpc.
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3.5 Density constraints

The first few realizations in this chapter are focused on imposing constraints on
the local density field. This can be specified by ten constraints in total. The
first is the height of the peak or dip, specified by imposing a constraint on the
density field itself. The height is given in the dimensionless parameter δ, which
is specified according to:

δ =
δρ

ρ
= νσ0 (3.3)

This will provide a relative overdensity of underdensity at a position in the
simulation box.
The first derivatives in three directions should be specified to be zero, ensuring
the peak or dip to be a local maximum or minimum. If this is not specified, the
study at that specific point is not a valid one, since one is then only studying a
part of the structure.
The set of second derivatives of the density field specify the shape, orientation
and the compactness of the peak or dip. The combination of specifying the
axial ratios a12 and a13 for the shape of the peak or dip, the curvature xd for
the steepness of the profile and the Euler angles α, β and ϕ for the orientation,
gives the second derivatives of the density field the following values:

▽i ▽j f = −
3∑

k=1

λkAikAjk (3.4)

where Ajk and Aik are elements from the transformation matrix and λk is an
eigenvalue in one of three directions, defined by:

λ1 =
xdσ2(RG)

1 + a2
12 + a2

13

λ2 = λ1a
2
12 λ3 = λ1a

2
13 (3.5)

In general, all constraints are correlated. As we have shown in chapter 2, in the
case of the constrained peak formalism, this is true for all. From the constraints
mentioned above, the height of the peak or dip and the Laplacian of the density
field are correlated. This is immediately shown in the correlation matrix (figure
2.7 and figure 2.8).
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3.5.1 Single Objects: Peaks

In this part, the different sets of constraints on the local density field will be
studied. The influence on the matter distribution of varying the height, the
curvature, shape and orientation of an object will be examined. This will be
done by comparing the various set of constraints with a reference configuration,
created below.

Reference configuration

To realize a default scenario to compare our other simulation realizations to, a
spherical peak on a scale of 4h−1 Mpc in the center of the simulation box is cre-
ated. The height is set at 3σ and the first derivatives are set at zero to ensure a
local maximum. The second derivatives are constrained by choosing both axial
ratios equal to one, creating a spherical shape, and the curvature term is set at
the value of ten. The orientation of the peak is chosen to be aligned with the
simulation box axes. The realization is smoothed with a Gaussian filter with
smoothing radius equal to 4h−1 Mpc.
The results of this realization are shown in figure 3.5. Mind that the structure
of the peak in the center is surrounded by a large underdense region. This is
due to the requirement that the average density in the simulation box is equal
to the average density of the universe.
The fourth panel presents the density profiles through the center of the simu-
lation box along the three axis. Note that in these density profiles the imposed
constraints can also be recognized. The height, shape and curvature are the
imposed set of constraints that can be recognized in the density profiles, since
these are the same in all three directions.
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Figure 3.5: Single spherical peak in the center of the simulation box. The density
field is smoothed with a Gaussian filter with smoothing radius 4h−1 Mpc and the
smoothing radius is equal to the peak scale.
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Peakheight

The influence of the height of the peak on the surrounding matter distribution
is examined. This is done by realizing many spherical peaks in the center of the
simulation box with various heights. The values for the other constraints (the
first and second derivatives) are chosen similar as in the default scenario, while
the height differs between 1σ and 10σ.
The results are shown in figure 3.6. From left to right, from top to bottom, the
increasing heights are presented in the same slice of the simulation box.
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Figure 3.6: Single spherical peak in the center of the simulation box. The density
field is smoothed with a Gaussian filter with smoothing radius 4h−1 Mpc and the
height of the peak is different in each plot. From left to right and from top to bottom
the height of the peak is equal to 1σ, 2σ, 3σ, 5σ, 7σ and 10σ.

What should be noticed is that the underdense regions surrounding the imposed
structure disappears as the height of the peak increases. This is due to the
correlation between the height of the peak and its curvature, which will be
explained in the upcoming chapter. In this case it is interesting to compare
the χ2 distribution, to find a indication of the likelihood of the constrained
field realization. The expression for the complete χ2 can be found in eq. 2.74.
Because all constraints are the same in the realizations, the χ2 is in this case an
indication of the likelihood of the height of the peak. The most likely realization
is the realization with a peak with height of 2σ, where the sum of the χ2 is
approximately equal to number of degrees of freedom. The scenario with peak
height of 1σ creates a χ2 of around 15, while the scenario for a height of 10σ
provides a χ2 of 14.23.
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Curvature

The effect of the changing surrounding matter distribution is due to the cor-
relation found between height and curvature can also be studied by changing
the imposed curvature value. This is done in the next two realizations , where
the values of respectively xd = 20σ2 and xd = 5σ2 are chosen. The curvature
at the scale of the peak is therefore either very steep (xd = 20σ2) or relatively
less steep (xd = 5σ2). The other constraints, such as the height, shape and
orientation are again chosen to be equal to default scenario values.
The results of the realizations can be found in figure 3.7 (xd = 20σ2) and figure
3.8 (xd = 5σ2).
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Figure 3.7: Curvature term is xd = 20σ2. The density field is smoothed with a
Gaussian filter with smoothing radius 4h−1 Mpc and the smoothing radius is equal to
the peak scale.

As can been seen in the linear profiles through the simulations, the increase
value of the curvature creates an onderdense region surrounding the specified
structure. Since the average density of the simulation is imposed to be equal
to the average density of the universe, the density outside the underdense re-
gion should be mostly overdense. There is not a large amount of substructure
present. This is not true for smaller values of curvature. In that case, there is
no need to compensate for a large underdense area, so that smaller substructure
is present in the simulation.
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Figure 3.8: Curvature term is xd = 5σ2. The density field is smoothed with a
Gaussian filter with smoothing radius 4h−1 Mpc and the smoothing radius is equal to
the peak scale.

We are interested in various aspects of the initial conditions realizations and
in particular their underlying correlations. From the correlation matrix in figure
2.8, it can been seen that the height and the Laplacian of the density field are
correlated.

Qf▽2f =

(
〈f f〉 〈f ▽2 f〉
〈▽2f f〉 〈▽2f ▽2 f〉

)
(3.6)

=

(
σ2

0 −σ2

1

3

−σ2

1

3
σ2

2

5

)
(3.7)

By introducing the new set of variables, the correlation matrix changes accord-
ingly to:

Qνx =

(
〈νν〉 〈νx〉
〈xν〉 〈xx〉

)
(3.8)

=

(
1 γ
γ 1

)
(3.9)

where ν and x are defined respectively as f/σ0 and −▽2f
σ2

, where ζ1, ζ2 and
ζ3 are defined as the first, second and third component of the Laplacian of the
density field. The constraints are correlated by:

Q =

2∑

i,j=1

yjQ
−1
ij yj (3.10)

45



where y is vector with the constraints. The inverse correlation matrix is equal
to:

Q−1 =

(
1

1−γ2

−γ
1−γ2

−γ
1−γ2

1
1−γ2

)

This gives the following outcome for the correlation between the constraints:

Q =

2∑

i,j=1

yjQ
−1
ij yj (3.11)

=

(
ν

x

)( 1
1−γ2

−γ
1−γ2

−γ
1−γ2

1
1=γ2

)
(ν x) (3.12)

=
ν2 + x2 − 2γνx

1 − γ2
(3.13)

= ν2 +
(x − x∗)2

1 − γ2
(3.14)

where x∗ is defined as γν. For a peak aligned with the simulation box axes
and spherically shaped, the parameter x reduces to the curvature xd. As the
coupling term x∗ indicates, this means that height and curvature are correlated.

Shape

The shape of the structure can be adapted by varying the axial ratios. All
simulations up till this point have shown a spherical shaped peak. However in
the universe very few perfect spherical structures are found, more common are
ellipsoidal shapes. By imposing the axial ratios a12 and a13 to be respectively
1 ad 2.5 an ellipsoid is created, elongated in the z-direction. Other imposed
constraints are those of the reference configuration.
The results of the simulation are shown in figure 3.9. In the three slices through
the simulation box the elongated peak is clearly visible. Also in the density
profile the wider form in the z-direction is apparent by noting that the density
profile along the z-axis is much wider then the other two.

Notice that there is but a slight underdense in the elongated direction of the
specified structure. This can be explained due to the correlations represented
in the correlation matrix.

Q =





〈f f〉 〈f ▽2
1 f〉 〈f ▽2

2 f〉 〈f ▽2
3 f〉

〈▽2
1ff〉 〈▽2

1f ▽2
1 f〉 〈▽2

1f ▽2
1 f〉 〈▽2

1f ▽2
3 f〉

〈▽2
2ff〉 〈▽2

2f ▽2
1 f〉 〈▽2

2f ▽2
1 f〉 〈▽2

2f ▽2
3 f〉

〈▽2
3ff〉 〈▽2

3f ▽2
1 f〉 〈▽2

3f ▽2
1 f〉 〈▽2

3f ▽2
3 f〉



 (3.15)

=
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(3.16)

By choosing the new parameters, the same part of the correlation matrix plays a
role as with the curvature and again the correlation between ν and x is studied.
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Figure 3.9: Single peak, elongated in the z-direction. in the center of the simulation
box. The density field is smoothed with a Gaussian filter with smoothing radius 4h−1

Mpc and the scale of the peak is 4h−1 Mpc.

By incorporating the definitions for the constraints (see eq. 2.47 and eq.2.48,
the parameter x can be rewritten as:

x =
−1

σ2

( −xdσ2

1 + a2
12 + a2

13

+
−xdσ2a

2
12

1 + a2
12 + a2

13

−xdσ2a
2
13

1 + a2
12 + a2

13

)
(3.17)

=
1

σ2

(
xdσ2

8, 25
+

xdσ2

8, 25
+

6, 25xdσ2

8, 25

)
(3.18)

The correlation between the height and the curvature is therefore more present
in the z-direction, creating the probability to create more substructure in that
direction.
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Orientation

The orientation of an object can be changed by imposing values on the Euler
angles α, β and ϕ. In this section, values for α and β were both chosen to be
45 degrees. This means that the structure will have rotated 45 degrees with
respect to the x- and z axis of the simulation axes. The other constraints were
again chosen to be the same as the default scenario.
The results of the simulation are shown in fig 3.10. Note that the density profile
is equal to that of spherical peak in the center of the simulation box. This is to
be expected since the imposed change of orientation created a spherical shaped
peak in the center, along which the density profiles are sampled.
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Figure 3.10: Single peak, elongated in the z-direction and turned with respect to
the principal axis, in the center of the simulation box. The density field is smoothed
with a Gaussian filter with smoothing radius 4h−1 Mpc.

Correlation can be found between the orientation and the shear of the peak,
as was explained in the former chapter. These two tend to align. This will be
explained further in section 3.6.2.
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3.5.2 Single Objects: Voids

The peak formalism worked out by van de Weygaert & Bertschinger (1996) de-
scribes peaks as well as dips, since the latter are negative density extremum.
The same set of constraints can be imposed, resulting in the same correlations.
In this part of the research, a few realizations for voids were created. The first
realizations shows the default scenario for a spherical peak, but in this case with
a negative height of 3σ. The similarities can been seen between figure 3.5 and
figure 3.11 by comparing the contour plots and the density profiles.
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Figure 3.11: Single spherical void in the center of the simulation box. The den-
sity field is smoothed with a Gaussian filter with a smoothing radius of 4h−1 Mpc
respectively and the void scale is also 4h−1 Mpc.

With respect to the created spherical void, the shape is changed. The constraint
values for the height, curvature and orientation remain the same. The axial ra-
tios a21 and a31 are defined as 1 and 2.5, creating the shape of the void to be
elongated in the z-direction. Note that these are the same values chosen for the
axial ratios to create an elongated peak. The similarities between figure 3.12
and figure 3.9 are therefore evident.
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Figure 3.12: Single elongated void in the center of the simulation box. The den-
sity field is smoothed with a Gaussian filter with a smoothing radius of 4h−1 Mpc
respectively and the scale of the void is 4h−1 Mpc.

And just as was done when we studied the peak constraints, we also address
the curvature. Here the rest of the numerical values is the same as the case of
the spherical peak/void, but with a different value for the curvature, namely
xd = 20. Note the similarities between figure 3.7 and figure 3.13.
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Figure 3.13: Single spherical void in the center of the simulation box. The den-
sity field is smoothed with a Gaussian filter with a smoothing radius of 4h−1 Mpc
respectively and the scale of the void is 4h−1 Mpc.
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3.5.3 Multiple Objects

In the former realizations, we tried to get a better understanding of the con-
straints on the local density field around peaks and dips. This is appropriate set
of initial conditions for N-body simulations for studying the evolution of specific
object, such as a super void or a galaxy. N-body simulations also provide the
opportunity to study the formation of large scale structure, where possible grav-
itational influence of diverse peaks and dips can be taken into account. In this
part, some insight will be gained in the initial conditions for multiple objects.
Although the objects can be placed randomly in the simulation box, for graphic
reasons are the objects all placed in the same z-plane.

The first realization contains two peaks, both at the scale of 4h−1 Mpc. One
peak is stationed at the center of the simulation box, spherically shaped and has
a height of 3σ. The second peak is stationed slightly away from the center, at
(x, y) = (65, 65), has a height of 4σ and axial ratios of a12 = 1.1 and a13 = 0.8.
The curvature in both cases is not specified.
The results of the simulation can been seen in figure 3.14. Note that the mat-
ter distribution of the two peaks will influence each other in the area between
the two peaks. This can been seen in the left plot of the panel by the large
overdense region containing both peaks. In the density profile the influence can
been observed as well. Note that the density profile in all three directions is
wider on the right side of the center of the simulation box.

Figure 3.14: The density field was filtered with a Gaussian filter on a smoothing
scale of 4h−1 Mpc and the smoothing scale is equal to the peak scale of both peaks.

The peaks are spatially correlated as long as they are closer to each other than
the correlation length. This is a measure of the range over which fluctuations in
one region of space are correlated with (influence) those in another region. Two
points which are separated by a distance larger than the correlation length will
each have fluctuations which are relatively independent, that is, uncorrelated.
The correlation can be described by the correlation matrix . The elements of
this matrix consist of the two-point correlation functions, which is a function of
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distance:

Q =

(
〈f(x1)f(x1〉 〈f(x1)f(x2)〉
〈f(x2)f(x1)〉 〈f(x2)f(x2)〉

)

The correlation of the density field at a position with itself is σ2
0 , as shown in

figure 2.7. The correlation between the two peaks is defined as:

〈f(x1)f(x2)〉 = 〈f(x1 + r)f(x2)〉

= 〈
∫

dk1

(2π)3
f(k1)e

−ik1·(x1+rWG(k1)

∫
dk2

(2π)3
f∗(k2)e

ik2·x2W ∗
G(k2)〉

=

∫
dk

(2π)3
P (k)WG(k)W ∗

G(k)e−ik·(x1+r)eik·x1

=

∫
dk

(2π)3
P (k)WG(k)W ∗

G(k)e−ik·r

where r is the distance between the two peaks. For two objects at the same
scale, the correlation matrix can be solved analytically to:

Q =

(
σ2

0 ξ(r)
ξ(r) σ2

0

)

The correlation function can be rewritten to contain the correlation length r0:

〈f(x1)f(x2)〉 ∝ e
−ik· r

r0 (3.19)

Note that the distance between the two objects is smaller then the correlation
length, the exponent is large. When the distance r is considerably larger then
the correlation length r0, the exponent will become close to zero and the two
objects are spatially uncorrelated. This is shown in the next realization where a
third peak was added to the simulation. This peak is situated at (x, y) = (25, 25)
in the same z-plane. The scale is set at 5h−1 Mpc, the height is chosen to be
3.5σ and the axial ratios are both imposed at 2.

Figure 3.15: The density field was filtered with a Gaussian filter on a smoothing
scale of 4h−1 Mpc and the peak scale for two of the peaks is 4h−1 Mpc and for one
5h−1 Mpc.
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Note that the centered peak and the peak at (x, y) = (25, 25) are still weakly
correlated, as can been seen in the contour plots and the corresponding density
profile. Now the same simulation was done, except the third peak becomes a
void with the same constraints. Again, the same correlations are seen.

Figure 3.16: The density field was filtered with a Gaussian filter on a smoothing
scale of 4h−1 Mpc and the peak scale for two of the peaks is 4h−1 Mpc and for the
void 5h−1 Mpc.

Subject to the assumption that galaxies trace the mass distribution, the two
point correlation function of the overdensities could be deduced to the two
point correlation function for galaxies. Observation reveals that the two-point
correlation function then could best represented by a power law of the form:

ξ(r) =
(r0

r

)γ

(3.20)

For galaxies, the best-fit parameters for ξ(r) are r0 = 5.51 Mpc and γ = 1.80.05.
We now can put a quantitative measure on the correlations, which can be found
in the table below where the two point correlation functions for the different
peaks are calculated. As expected, the correlation between the centered peak
and the peak at (65, 65) is the strongest.

Peak position (25, 25) (50, 50) (65, 65)
(25, 25) 1 0.055 0.024
(50, 50) 0.055 1 0.138
(65, 65) 0.024 0.138 1
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Substructure

When studying objects, one is also interested in the distribution of the substruc-
ture of the surrounding regions. A close-up was taken of the central regions
of a simulation containing a single object to study surrounding substructure.
The left panel shows a slice of the simulation box containing the unfiltered
constrained realization of a Gaussian field containing a spherical object with
a height/depth of 3σ. The central region of this plot is filtered at different
smoothing scales to reveal the substructure. The smoothing scale RG is equal
to 1h−1 Mpc, 2h−1 Mpc and 3h−1 Mpc from left to right respectively. As can
been seen in both the figures, smoothing the region with a smaller RG uncovers
the substructure quite nicely. Under the upper panel, the density profiles are
shown. Note that the height of the simulated peak decreases as the smoothing
scale increases.

Figure 3.17: Single peak in the center of the simulation box. The density field is
smoothed with a Gaussian filter with, from left to right, a smoothing radius of 1h−1,
2h−1 and 3h−1 Mpc respectively and the scale of the peak is3h−1 Mpc.

Figure 3.18: Single void in the center of the simulation box. The density field is
smoothed with a Gaussian filter with, from left to right, a smoothing radius of 1h−1,
2h−1 and 3h−1 Mpc respectively and the scale of the void is 4h−1 Mpc.
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3.6 Velocity constraints

After imposing the constraints on the local density field, the dynamics of the
matter evolution can be specified by imposing constraints on the gravitational
potential field. Because the simulation is limited to the linear evolution regime,
constraints are imposed on the peculiar velocity field instead.

v ∝ g ∝ ▽φ

a
(3.21)

The peculiar velocity is generated by a difference in density, implying a density
dipole distribution. The strength of the peculiar velocity can be described in
units of its dispersion:

fv = viσv,pk (3.22)

The orientation of the peculiar velocity field can be adjusted to obtain the user-
specified initial conditions.

To study the influence of the peculiar velocity on the matter distribution, a
set of default constraints is chosen for the local density field. All the simula-
tions were created with a spherical peak on a scale of 4h−1Mpc in the center of
the simulation box. The height of the peak is chosen to be 2.5σ, while the cur-
vature term is not imposed. The velocity constraints were varied with direction
and with amplitude in order to study their effect on the matter distribution in
the simulation box.

3.6.1 Peculiar velocity

In this section, the influence on the matter distribution of imposing constraints
on the peculiar velocity field itself at the position of the object are studied. The
direction and amplitude of a peculiar velocity in a single direction will be varied,
before moving on to realizations with multiple velocities.

Direction

In this variant, the velocity is imposed to align with the simulation box axes.
Here the default scenario of the peak was given a peculiar velocity of 850 km/s
in the x-direction. The peculiar velocity in the y- and z-direction are chosen to
be zero. As can been seen in figure 3.19 the density contour plots show a clear
dipole density distribution, where there is an overdense region in the direction of
the velocity and an underdense region in the opposite direction of the velocity.
The influence of an imposed peculiar velocity field can also been seen in the
density profile. Note that the density profile left from the center of the sim-
ulation box, in the opposite direction of the velocity, is much lower than the
density profile on the right side of the simulation center, in the direction of the
velocity. So here the dipole distribution is also clearly visible.
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Figure 3.19: Density field containing a spherical peak in the center of the simulation
box and a peculiar velocity field of 850 km/s in the x-direction. The field is smoothed
with a Gaussian filter on a smoothing scale of 4h−1 Mpc.

The same results are obtained for the default scenario with a peculiar velocity
in the y- and z-direction with the same strength, see figure 3.20 and figure 3.21.
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Figure 3.20: Density field containing a spherical peak in the center of the simulation
box and a peculiar velocity field of 850 km/s in the y-direction. The field is smoothed
with a Gaussian filter on a smoothing scale of 4h−1 Mpc.

The peculiar velocity is correlated with the first derivatives of the density field,
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Figure 3.21: Density field containing a spherical peak in the center of the simulation
box and a peculiar velocity field of 850 km/s in the z-direction. The field is smoothed
with a Gaussian filter on a smoothing scale of 4h−1 Mpc.

as can been seen in figure 2.7 and figure 2.8.

Q =

(
〈▽if ▽i f〉 〈▽if vi〉
〈vi ▽i f〉 〈vi vi〉

)
(3.23)

=

(
σ2

1

3
1
3f(Ω)Hσ2

0
1
3f(Ω)Hσ2

0
1
3f(Ω)2H2σ2

−1

)
(3.24)

In the constrained peak formalism, using the new set of variables, the above
found correlation matrix does not change. The correlation in one direction can
therefore be found to be:

Q =

1∑

i,j=1

yjQ
−1)ijyj (3.25)

=
v2

i + γ2
vf(Ω)2H2 σ2

−1

σ2

1

η2
i − 2γvf(Ω)H σ−1

σ1

ηivi

3σ̃2
v

(3.26)

(3.27)

When the velocity field is positioned at the peak or dip of a structure, the first
derivatives are equal to zero, such that the imposed velocity is the real velocity
in the simulation. When the velocity field is not positioned at a local maximum
or minimum, the first derivatives of the density field will not be zero. When the
values for the first derivatives are large at the chosen position for the peculiar
velocity, it indicates that the structure is compact. This means that the gravi-
tational influence of the substructure is stronger then the force exercised by the
peculiar velocity. This means that the peculiar velocity will be smaller. On the
other hand, when the first derivatives are small, the influence of the gravity is
negligible, so that the peculiar velocity at that position becomes large.
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Amplitude

The above derivation suggests that a large peculiar velocity ensures that there
is little (sub)structure. This is a statement which can be tested by imposing
different amplitudes on the peculiar velocity in the field. The default configura-
tion for the local density field is created and the strength of the peculiar velocity
field is varied. The peculiar velocity is orientated in the x-direction. By doing
this, some understanding of the limitations in the amplitude of the peculiar
velocity is found. The program creates a standard by calculating the dispersion
of the peak and the dispersion of the field in units of km/s using the definitions
from the former section. For the default scenario created, σv,pk ≈ 639 km/s and
σv ≈ 710 km/s.
The resulting contour plots are shown in figure 3.22 and the corresponding den-
sity profiles in figure 3.23. In both figures, the dipole matter distribution is
clearly visible and for stronger peculiar velocities even more so. The disap-
pearance of the substructure is best seen in the corresponding profiles. For the
relatively low peculiar velocities the density profiles contain a large number of
fluctuations. When the strength of the peculiar velocity increases, the number
of random fluctuations decrease.
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Figure 3.22: From left to right, from top top to bottom, the velocity is equal to
250 km/s, 500km/s , 750 km/s, 1000 km/s, 1250 km/s and 1500 km/s, all in the x-
direction. The plots are smoothed with a Gaussian filter with a smoothing scale of
4h−1 Mpc.
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Figure 3.23: The corresponding density profiles due to the different strengths of
velocities. The same setup is used as with the different strengths of velocities. The
plots are smoothed with a Gaussian filter with a smoothing scale of 4h−1 Mpc.

Multiple velocities

In this part of the research the matter distribution is studied for a Gaussian field
subject to two peaks with varying velocity characteristics. The default Gaussian
density field is created with two spherical peaks at positions (x, y) = (25, 75)
and (x, y) = (75, 25), both in the same z-plane. The height and curvature are
the same and imposed at 2σ and xd = 13σ.
In the first figure, peak 1 (at position (x, y) = (25, 75)) is given a peculiar
velocity of 1000 km/s in the positive x direction, while peak 2 (at position
(x, y) = (75, 25)) has a peculiar velocity with the same strength, but in the
opposite direction.
The results of the simulation can be found in figure 3.24, which shows respec-
tively in the two upper panels the mean and residual field, while in the lower
two panel the constrained realization and the density profile through the cen-
ter of the simulation box of the latter are plotted. In the contour plots of the
mean field and the constrained realization, the dipole distribution is clearly vis-
ible. The resulting matter distribution is shaped in a plane perpendicular to
the x-axis. In the density profile along the x-direction a slight hint of the dipole
distribution can be found.
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Figure 3.24: Two peaks with equal velocities in the opposite directions. The plots
are smoothed with a Gaussian filter with a smoothing scale of 4h−1 Mpc.

The default local density field is contained, but the features of the pecu-
liar velocity are changed. Peak 1 is given a peculiar velocity in the positive
x-direction with a strength of 1250 km/s while peak 2 is imposed to have a pe-
culiar velocity in the negative x-direction of 750 km/s. What one would expect
is the same shape of matter distribution as in figure 3.24, both with a stronger
dipole distribution in the neighborhood of peak 1 than in the neighborhood
of peak 2. The results of these simulation is shown in figure 3.25 shows this
(expected) result, with the mean field (upper left plot) as the most pronounced
realization of the two dipoles.

Another possibility is to change the direction of the peculiar field instead of
the amplitude. This is done in one last configuration concerning peculiar veloc-
ity fields. Again, the Gaussian density field is subject to the same two peaks,
but now peak 1 has a peculiar velocity of 1000 km/s in the positive x-direction,
while peak 2 is subject to a peculiar velocity field of the same strength but in
the positive y-direction.
The results of the simulation are shown in figure 3.26. The two dipole densities
create a large overdensity in the corner of the simulation. When these initial
conditions are used for a N-body simulation, a large scale structure will evolve
in this corner due to the two implied different dipole density distributions.
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Figure 3.25: Two peaks with unequal velocities in the opposite directions. From left
to right, from top to bottom, the mean field, the residual field, the constrained field
and the density profile of the constrained field are plotted. The plots are smoothed
with a Gaussian filter with a smoothing scale of 4h−1Mpc.
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Figure 3.26: Two peaks with velocities in perpendicular directions. From left to
right, from top to bottom, the mean field, the residual field, the constrained field and
the density profile of the constrained field are plotted. The plots are smoothed with a
Gaussian filter with a smoothing scale of 4h−1 Mpc.
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3.6.2 Shear constraints

The second term of the peculiar velocity multi pole expansion describes the
shear of the realization. Since this is proportional to the second derivative of
the gravitational potential a quadrupole distribution of matter is expected. The
shear is defined by the trace free symmetric elements of the tidal field tensor,
which is proportional to the shear in the linear regime:

σij ≡ 1

2a

(
∂vG,i

∂xj
+

∂vG,j

∂xi

)
− 1

3
(▽ · vG)δij (3.28)

This is measure of the difference in attraction of the gravitational force. It is
responsible for the creation of elongated and planar structures such as can been
seen in the Cosmic Web. A positive shear component will create an expansion in
that specific direction, indicating that the gravitational force is large enough to
expand the structure, while a negative shear component will create an structure
contraction.

The strength of the shear can be specified in terms of the dispersion of the
off-diagonal components of the tensor:

σij = ǫiσE (3.29)

For convenience, the imposed values in this research are given in km/s/Mpc.
Here s11 is the shear in the x-direction, s22 in the y-direction, s33 in the z-
direction and the rest a combination of these three directions. Since the tidal
tensor is traceless, only two of these components can be chosen by the user. In
this research, only shear components parallel to the box axes are studied, indi-
cating that s12, s13 and s23 are imposed to be zero in all upcoming simulations,
just as the orientation angles αE , βE and ϕE .
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Walls

To create the initial conditions for a sheetlike structure, contraction of the mat-
ter distribution in one direction is required and expansion in the other two
directions. Translating this to the program variables it means that two shear
components have to be positive, while the third is negative. (++-)
In the this simulation, an elongated peak at a scale of 15h−1 Mpc in the center
of the simulation box is created. The height is set on 3σ, while the axial ratios
a21 and a31 are specified to be 1 an 0.2 respectively. The curvature term is
numerically set to xd = 15. The shear components are imposed to s11 = 50
km/s/Mpc and s22 = 50 km/s/Mpc. This means that there will be expansion
of the matter distribution in the x- and y-direction, while the matter in the
z-direction is contracted.
The results of the simulation can been seen in figure 3.27. The quadrupole
distribution is visible in the two upper panels of the plots. Note that although
the constrained realization is shown, there is just a small number of fluctuations
in the density. This is due to the extreme set of constraints imposed and the
requirement that the average in the simulation box must be equal to the average
density in the universe.
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Figure 3.27: The initial conditions generated for a sheet-like structure in the large
scale structure. The constraints imposed on the sphere are s11 = 50 km/s/Mpc and
s22 = 50 km/s/Mpc. The plots are smoothed with a Gaussian filter with a smoothing
scale of 3h−1 Mpc.

When creating the same situation, both with different values for the shear com-
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ponents, one would expect the matter distribution to be re sculpted. By choos-
ing s11 = 75 km/s/Mpc and s22 = 25 km/s/Mpc, the extraction of the matter
should be more profound in the x-direction then in the y-direction. The results
can be found in figure 3.28. The quadrupole distribution is more apparent in
the x-direction then in the y direction.
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Figure 3.28: The initial conditions generated for a sheet-like structure in the large
scale structure. The constraints imposed on the sphere are s11 = 75 km/s/Mpc and
s22 = 25 km/s/Mpc. The plots are smoothed with a Gaussian filter with a smoothing
scale of 3h−1 Mpc.

Filaments

Filaments are found in the cosmic web as the strings, connecting the different
kind of structures present. Initial conditions for a threadlike structure should
have contraction of matter in two dimension, while in the third dimension there
should be an expansion. For the program this means that there should be shear
value positively defined, while two are negatively chosen. (+–)
Again the density field was subject to an elongated peak with the axial ratios
a21 = 0.1 and a31 = 0.1, and a slightly lower height (2σ). The shear components
are chosen s11 = 100 km/s/Mpc and s22 = −50 km/s/Mpc. One would expect
expansion of the matter distribution in the x-direction and contraction in the
other two directions.
The simulation results can be seen in figure 3.29, exhibiting a clear quadrupole
pattern.
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When changing the values of the shear components to s11 = 100 km/s/Mpc
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Figure 3.29: The initial conditions generated for a filament structure in the large
scale structure. The constraints imposed on the sphere are s11 = 100 km/s/Mpc and
s22 = −50 km/s/Mpc. The plots are smoothed with a Gaussian filter with a smoothing
scale of 5h−1 Mpc.

and s22 = −25 km/s/Mpc, the matter distribution gets re sculpted according
to the expectations: more contraction in the z-direction then in the y-direction
of the matter distribution. Results are shown in figure 3.30 The quadrupole
distribution is more profound in one direction then in the other.

As discussed earlier in this chapter, the orientation of the object and the shear
of the peak are correlated. If the both the orientation and the shear are ori-
entated along the simulation box axes, there exist a correlation between the
Laplacian of the density field and Laplacian of the gravitational potential in the
same direction, which can be coupled to the shear via the tidal tensor. The
correlation shows in the correlation matrix.

Q =

(
〈▽2

i f ▽2
i f〉 〈▽2

i f ▽2
i φ〉

〈▽2
i φ ▽2

i f〉 〈▽2
i φ ▽2

i φ〉

)
(3.30)

=

(
σ2

2

5
1
2Hf(Ω)σ2

1
1
2Hf(Ω)σ2

1
1
3H2f2(Ω)σ2

0

)
(3.31)
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Figure 3.30: The initial conditions generated for a filament structure in the large
scale structure. The constraints imposed on the sphere are s11 = 100 km/s/Mpc and
s22 = −25 km/s/Mpc.The plots are smoothed with a Gaussian filter with a smoothing
scale of 5h−1 Mpc.

When the object and the shear are not specified along the simulation axes,
the components ▽k▽lf k 6= l and ▽i▽jφ for i 6= j become nonzero. The various
components of the Laplacian of the density field and gravitational potential field
will correlate when k = i and l = j, imposing the two physical quantities to
align. In the correlation matrix, this is visualized as:

Q =

(
〈▽i ▽j f ▽i ▽jf〉 〈▽i ▽j f ▽i ▽jφ〉
〈▽i ▽j φ ▽i ▽jf〉 〈▽i ▽j φ ▽i ▽jφ〉

)
(3.32)

=

(
σ2

2

15
1
15Hf(Ω)σ2

1
1
15Hf(Ω)σ2

1
1
15H2f2(Ω)σ2

0

)
(3.33)

A complete overview of the various realizations is presented in Apendix D.
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Chapter 4

GRF’s in spherical

harmonics

The method thought of by Hoffman and Ribak has some computational con-
siderations. As noted in the paper of van de Weygaert & Bertschinger (1996),
the main limitation of the application is that of the evaluation of the correla-
tion functions ξij and ξi requires the procedure of M2 + M Fourier integrals,
where M is the number of constraints put on the Gaussian density field. By
replacing this number of Fourier integrals with two Fast Fourier Transforms, the
computational costs reduce to Θ(N log N) where N is proportional to the size
of the simulation box cubed. As can been seen, for a large dynamic range, the
diagonalization is a slow process. Binney and Quinn found a solution for this
problem by writing the simulations in spherical coordinates instead of Cartesian
coordinates. In a spherical coordinate system, the particular matrix is block di-
agonal, which suggests that diagonalizing is done by diagonalizing a number of
N -dimensional matrices rather then one N3 matrix, which reduces computa-
tional cost.

4.1 Density field in spherical harmonics

In spherical coordinates, the density field can be described in spherical harmon-
ics multiplied by a spherical Bessel function rather then in planar waves. The
derivation of the description of the density field in spherical harmonics from the
time-independent Schrodinger equation can be found in E.

f(x) =

√
2

π
κnflm(kn)jl(knr)Y m

l (θ, φ) (4.1)

In this equation κn is a normalization constant and flm are the amplitudes of
the density field. The spherical Bessel functions, denoted by jl(knr), are the
radial solutions to the time-independent Schrodinger equation and consist of a
combination of sines and cosines.

The spherical harmonics, denoted by Y m
l (θ, φ), are the solution for the two
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Figure 4.1: Graphs of the first order spherical Bessel functions

angles in the spherical coordinate system. These angular solutions can then
again be separated into an exponential function, with only a dependence on the
longitudinal angle φ, and a Legendre polynomial Pm

l , which only depends on
the polar angle θ.

Y m
l (θ, φ) =

[
2l + 1

4π

(l − m)!

(l + m)!

]1/2

Pm
l (cosθ)eimφ (4.2)

where Pm
l (cosθ) is an associated Legendre polynomial. By scaling each point

of the Y m
l ’s radially by the absolute value and coloring it according to value, it

can been seen that poles are created. The number of poles depend on the value
of the integer l.

Figure 4.2: Different low-order spherical harmonics are plotted.

A list of spherical Bessel functions and spherical harmonics can be found in the
Appendix E.1.

This basis of spherical Bessel functions and spherical harmonics is orthonor-
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mal and complete.

〈k′l′m′ | klm〉 = 2kk′

π

∫
r2drjl′ (kr)jlkr (4.3)

×
∫

dωY m′

l′ (θ, φ)Y m
l (θ, φ) (4.4)

= δ (k − k′)δll′δmm′ (4.5)

So to create a Gaussian distributed density field in spherical harmonics, it has
to be proven that the amplitudes are Gaussian distributed, This can be done
by sampling the probability distribution function, or more precise, the action
integral S[f ].

In the upcoming sections, a general expression for the action integral is found,
an expression for the integral in Fourier space and for an action integral with
spherical harmonics as base.

4.2 General base

The density field is Gaussian distributed, which means that the probability
distribution function is of the form:

P [f ] ∝ e−S[f ] (4.6)

In this formula, S[f ] is referred to as the action integral. In real space this is
defined as:

S[f ] ≡ 1

2

∫ ∫
d3x1d

3x2f(x1)K(x1,x2)f(x2) (4.7)

In this formula, K is the inverse of the correlation matrix Mij , which is composed
of the two point correlation function ξij .

∫
dxK(x1 − x)ξij(x − x2) = δD(x1 − x2) (4.8)

A general solution for the action integral in spherical coordinates in k-space will
be found. For this the Dirac notation is used, which described the state of a
physical system in a complex Hilbert space. The state of a system is represented
by the projection | f〉 onto a basisvector | x1〉 and written as:

〈x1 | f〉 =

∫
〈x1 | x2〉〈x2 | f〉dx2 = f(x1) (4.9)

where the unity matrix is defined as :

I =

∫
| x2〉〈x2 | dx2 (4.10)

This means that the action integral can be rewritten to Dirac notation:

S[f ] =
1

2
〈f | x1〉〈x1 | K | x2〉〈x2 | f〉 (4.11)

Using the definition for the unity matrix, a general expression for the action
integral can be found. This is true whatever bases is chosen:

S[f ] =
1

2
〈f | K | f〉 (4.12)

69



4.3 Fourier space

When changing from real x-space to Fourier or k-space, the formula for the
action integral will include the change of base projections. Notice that in this
definition, the identity matrix again is used. The action in integral in k-space
can be rewritten to be:

S[f ] =
1

2
〈f | x1〉〈x1 | k1〉〈k1 | x1〉〈x1 | K | x2〉〈x2 | k2〉〈k2 | x2〉〈x2 | f〉(4.13)

=
1

2
〈f | k1〉〈k1 | K | k2〉〈k2 | f〉 (4.14)

Since the inverse covariance matrix K is diagonal is k space:

〈k1 | K | k2〉 = K(k1)δD(k1 − k2) (4.15)

The action integral is now defined to be:

S[f ] =
1

2
〈f | k1〉K(k1)〈k1 | f〉 (4.16)

The above result is compared with the solution found by (van de Weygaert &
Bertschinger (1996). There the action integral was found to be equal to eq. 4.7.
Rewriting this in Dirac notation in real space, the action integral is equal to
eq. 4.13. The relationship between spherical coordinate systems in x-space and
k-space is equal to:

〈k | x〉 =
1√
2π

eik·x (4.17)

So solving the action integral, it can be found that:

S[f ] =
1

2
f(x1)

eik1·x1

√
2π

〈k1 | x1〉〈x1 | K | x2〉〈x2 | k2〉
e−ik2·x2

√
2π

f(x2)(4.18)

=
1

2

∫ ∫
f(x1)

eik1·x1

√
2π

〈k1 | K | k2〉
e−ik2·x2

√
2π

f(x2)dx1dx2 (4.19)

When working in the diagonalization of the matrix K in k-space, it can be
found:

S[f ] =
1

2

∫ ∫
eik·x1

√
2π

f(x1)K(k)
e−ik·x2

√
2π

f(x2)dx1dx2 (4.20)

When studying the above equation, the definition for the Fourier transform from
the paper van de Weygaert & Bertschinger (1996) can be recognized:

f(k) =

∫
dk

(2π)3
f(x)e−ik·xdx (4.21)

The action integral can be rewritten to:

S[f ] =
1

2
4π2

∫ ∫
f∗(k)K(k)f(k)dx1dx2 (4.22)

Since K is diagonal in k-space, eq. 4.15 holds. By convolution theorem, it is
found: ∫

dk

(2π)3
K(k)P (k)eik·(x1−x2) = δD(x1 − x2) (4.23)
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This implies that K(k) is equal to 4π2/P (k), where P (k) is the power spectrum.
So the action integral can be found to be:

S[f ] =
1

2

∫
f∗(k)f(k)

P (k)
dk (4.24)

=
1

2

∫ | f(k) |2
P (k)

dk (4.25)

Again the action integral indicates that the amplitudes are Gaussian distributed.

4.4 Density field in Spherical harmonics

When change from a k-space to a base consisting spherical harmonics, another
change of coordinate systems is introduced:

〈k1 | klm〉 =
2πil

k
Y m

l (θ′, φ′) (4.26)

The action integral can now be rewritten to:

S[f ] =
1

2

∫
d3k〈f |k〉K(k)〈k|f〉 (4.27)

=
1

2

∫
d3k

∑

lm

〈f |klm〉〈klm|k〉K(k) ×
∑

l′m′

〈k|kl′m′〉〈kl′m′|f〉(4.28)

=
1

2

∫
k2dkK(k)

∑

lml′m′

〈f |klm〉 × (4.29)

∫
dωk〈klm|k〉〈k|kl′m′〉〈kl′m′|f〉 (4.30)

The last part of this integral is equal to:

∫
dωk〈klm|k〉〈k|kl′m′〉 =

4π2

k2
δll′δmm′ (4.31)

The term 〈klm|f〉 is rewritten to be flm(k) and the integral form of the action
S becomes:

S[f ] =
∑

lm

∫
f⋆

lm(k)flm(k)

2P (k)
dk (4.32)

In which P (k) is the powerspectrum and defined to be:

P (k) =
1

4π2K(k)
(4.33)

So it is shown that the amplitudes flm(k) in discrete k-space are Gaussian
distributed and the phases uniformly distributed.
In the above derivation, the relationships between the real spherical coordinate
x-space, a continuous spherical k-space and a discrete spherical k-space are
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derived. When using eq. 4.21, a description of the density field in discrete
k-space can be found:

f(x) =

∫
f(k)e−ik·xdx (4.34)

= 〈f | x〉〈x | k〉 (4.35)

= 〈f | klm〉〈klm | x〉〈x | k〉 (4.36)

where the term 〈x | k〉 represent the Fourier transform with the relationship
earlier defined (eq. 4.17) and the relationship found in Binney & Quinn (1991)
is used:

〈x | klm〉 =

√
2

π
kjl(kr)Y m

l (θ, φ) (4.37)

So the density field in spherical coordinates in discrete k-space, up to a normal-
ization constant, can be described by:

f(x) =

√
2

π
κnflm(k)kjl(kr)Y m

l (θ, φ) (4.38)

Note that when calculations, such as Fourier Transforms, are done in a certain
volume, the integral is replaced by a sum.

4.5 Constrained realizations: Binney and Quinn

formalism

The requirement that the overdensity f peaks at the origin, destroys the trans-
lation invariance of the field. The density field in spherical coordinates will then
look as follows:

f(x) =

√
2

π

∑

lmn

κnflm(kn)jl(kNr)Y m
l (θ, φ) (4.39)

in which flm is a three dimensional set of amplitudes. The wave numbers
are chosen in a way that ρ vanishes on the bounding sphere r = rmax. The
normalization constant κn is defined as:

κn ≡
√

π

r
3/2
maxjl+1(knrmax)

(4.40)

The density field is required to be Gaussian, so that the statistical distribution
is completely specified by it’s power spectrum. In the above formula, it has to
be shown that the amplitudes are Gaussian distributed. This can be done by
means by the action integral. As mentioned earlier, the probability distribution
function of a Gaussian density field is The density field is smoothed with the
filter function w(kn) which tends to go to zero for large kn.

f̄(x) =

√
2

π

∑

lmn

w(kn)κnflm(kn)jl(knr)Y m
l (θ, φ) (4.41)
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We assume that our coordinate system is aligned with the principal axes of the
peak positioned at the origin and Taylor expanded around this position.

f(x) = f(0) +
1

2
[λxx2 + λyy2 + λzz

2] (4.42)

Mathematically, it is preferred to work with the four equivalent numbers:

I0 ≡
√

2πf̄(0) (4.43)

I00 ≡ −
√

2π(λx + λy + λz) (4.44)

I20 ≡ π
√

10

[
λz − 1

2
(λx + λy)

]
(4.45)

I22 ≡ π
√

15

2
(λx − λy) (4.46)

These variables have coefficients that will compensate the constants coming
from the Y m

l ’s. For convenience, additional symbols I1m = 0 for m = 0, 1 and
I21 = 0 are defined. This gives us seven constraints. (including the fact that the
first derivatives have to be equal to zero, ten constraints are noted) The density
field is smoothed on some scale k−1

0 and can be rewritten to be:

√
π

2
f̄(x) = 1√

4π

∫
f0(k)j0(kr)kw(k)dk + (4.47)

∑
m Y m

1 (θ, φ)

∫
f1m(k)j1(kr)kw(k)dk + (4.48)

∑
m Y m

2 (θ, φ)

∫
f2m(k)j2(kr)kw(k)dk + ... (4.49)

By expanding the spherical Bessel functions in powers of r and filling in the
appropriate terms for the Y m

l ’s, the set of constraints can be rewritten:

I0 =
∑

n

f0(kn)κnw(kn) (4.50)

I00 =
∑

n

f0(kn)κnk2
nw(kn) (4.51)

I1m =
∑

n

f1m(kn)κnknw(kn) (4.52)

I2m =
∑

n

f2m(kn)κnk2
nw(kn) (4.53)

Notice that the above equations each only contain one set of indices (l, m). This
means that flm is no longer dependent on the different pairs of (l, m). So with
one pair indices dealing at the time, the density amplitude can be noted as
flm(kn) = fn. Now it has to be proven that fn is Gaussian distributed.
So, if the sum is expanded until it consists of N terms, the N number of f0(kn)
amplitudes have to satisfy two linear equations in which no other amplitudes
appear, while the sets of the N amplitudes f10(kn), f11(kn), etcetera, only have
to satisfy one linear equation per set. However, the two described cases, l = 0
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and 2 ≤ l < 0, can be merged by defining for each l a set of N -vectors cj by:

cj
n ≡






κnw(kn) l = 0, j = −1
κnk2

nw(kn) l = 0, j = 0
κnknw(kn) l = 1, j = 0
κnk2

nw(kn) l = 2, j = 0

By defining I−1 ≡ I0 and I0 ≡ Ilm for l = 0, 1, 2, the seven linear equations can
be rewritten to:

∑

n

cj
nfn = Ij where j =

{
0,−1 if l = 0
0 if 0 < l ≤ 2

(4.54)

and fn ≡ flm(kn). If we think of fn as the components of a vector in a N -
dimensional space, above equation states that this vector lies in a certain gen-
eralized plane. Gram-Schmidt orthonormalization can be used to find a basis
of vectors vj (j ≥ 0) such that the first two of those vectors span the same sub-
space as the vectors cj . For the case 2 ≤ l < 0 this means that an orthonormal
set of vectors vj must can be found, for which for example the first vector, v0,
is parallel to c0. In the case of l = 0, the vectors v−1 and v0 are simply linear
combinations of c−1 and c0. Mathematically, this can been seen as:

vj =
∑

k≤0

γjkc
k (j ≤ 0) (4.55)

where γjk is a number in the case 2 ≤ l < 0 and for l = 0 a two-by-two matrix.
In order to show that the density amplitudes vector f is a random Gaussian
distribution, the vector is broken into a component parallel and a component
perpendicular to the field of the constraining vectors cj :

f = u +
∑

α≥1

bαvα (4.56)

in which bα is a real coefficient and where u is defined as:

u ≡
∑

j≤0,k≤0

γjkI
jvk (4.57)

Regardless of the values for bα, it can been seen that cj · f = Ij . This means
that bα are random variables. Now it must be proven that their probability
distribution is Gaussian. Therefore, the inverse correlation matrix K is defined
to be:

Kαβ ≡
N∑

n=1

vα
nvβ

n

Pn
(4.58)

which has eigenvalues of σ2
α. This can been done using the action integral, which

is now a quadratic function of the coefficients bα:

S =
1

2

∑

n

1

Pn



u2
n +

∑

α≥0

unvα
n (bα + b∗α) +

∑

α,β≥0

bαvα
nvβ

nb∗β



 (4.59)

74



The linear term in bα is replaced with bα = b̃α +aα, where aα are complex vari-
ables where the real and imaginary parts independently Gaussian distributed.
The real numbers b̃α solve:

N∑

n=1

vα
n

Pn



un +
∑

β≥0

vβ
n b̃β



 = 0 (4.60)

In order to diagonalize the matrix K, a final variable transformation is intro-
duced: aα ≡∑β≥0 Rαβaβ . Now the action integral can be rewritten to:

S =
1

2

∑

n

1

Pn



u2
n + 2

∑

α>0

unvα
n b̃α +

∑

α,β≥0

b̃αvα
nvβ

n b̃β



+
1

2

∑

α>0

| aα |2
σ2

α

(4.61)

Real and imaginary parts are Gaussian distributed with zero mean and variance
σ2

α. So the amplitude vector f can be written in the form of:

f = u +
∑

α>0

b̃αvα + aα

∑

β>0

kα
β vβ (4.62)
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Chapter 5

Applications

The most frequent usage of the constrained field formalism is generating initial
conditions for N-body simulations. These are applied as laboratories to ana-
lyze the (nonlinear) evolution and formation of structure through gravitational
forces. By imposing various sets of constraints on a Gaussian random field,
their different influences on the formation of the structure can be studied. An
example of this can be found in the research of van de Weygaert & van Kampen
(1993), where the depth of a void was varied to explore the consequences for
its development. Also different cosmological models were explored to find their
impact on the structure formation. The equivalent can be done on larger scales
by simulating the large scale structure of a region of the universe. This is among
others done by Ganon & Hoffman (1993) in an attempt to find initial condi-
tions resembling our Local Group. Besides structure formation, the evolution
of anything with a cosmological origin can be studied. Such an example is the
Extra Galactic Magnetic Field, as was done by Dolag et al. (2005) in search for
the origin of cosmic rays. All will be reviewed in this chapter, with a specific
interest in their application of the constrained field description.

5.1 Specific objects: voids, galaxies, halos, etc.

Constraining Gaussian random fields is a perfect tool to study the influence of
the various parameters, since the consequence of altering a constraint becomes
directly visible in the results. The constrained simulations in earlier years were
mostly focused on cluster of galaxies, since these objects are the most massive
structures in the universe. When redshift sky surveys revealed the weblike struc-
ture in the universe, it became apparent that a large fraction in space consisted
of voids. (de Lapparent et al., 1986), (Geller & Huchra, 1989) They were be-
lieved to be created from the underdense region in the initial Gaussian density
field. (Hoffman & Shaham, 1982) Instead of attracting material and collapsing
with respect to the expansion of the universe, voids grew larger and emptier
during their evolution. (Faber & Burstein, 1988) Astronomers discovered that
voids play an important role in the formation and evolution of the large scale
structure of the universe. (Icke, 1984),(Bertschinger, 1985) To obtain a com-
plete cosmological picture, a better understanding of voids was needed.
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Simulations to the rescue..

The first simulations studying voids contained an isolated, spherical symmet-
ric void with idealized density and velocity profile. (Peebles, 1982), (Hoffman
et al., 1983), (Hausman et al., 1983) Here the gravitational interactions with
nearby objects were neglected, just as the inhomogeneities created at the ori-
gin of the void. Ikeuchi & Umemera (1984) were one of the first to follow the
evolution of a underdense region in the gravitational instability scenario. The
extension of this research was done by van de Weygaert & van Kampen (1993).
The different aspects aspects of voids, such as shape, substructure distribution
and density and velocity profiles was explored for different cosmological mod-
els using constrained initial conditions. Although up to ten constraints can be
specified for a dip in a Gaussian density field (see constrained peak formalism
by van de Weygaert & Bertschinger (1996)), only the depth of the void was
constrained in this research. The scale of the void was chosen to be the same in
all simulations to make comparison between the obtained results simpler. The
constrained initial conditions were from two different fields, as suggested by the
formalism of Bertschinger (1987). The mean field consisted of an approximate
spherical underdense region and the residual field was completely determined
by the chosen power spectrum. The superposition of the two fields created the
inhomogeneities expected at the edge of the void. One of the many results of
the study were shown in figure 5.1, where the substructure in a specific void is
generated.

Figure 5.1: Substructure of a void. In the left panel, the underdense regions are
plotted, while in the right plot the same was done for the high density regions, where
the break is set at ρ = 0.5ρ̄. Image courtesy to van de Weygaert & van Kampen
(1993).
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If it works for one...

If it is possible to generate constrained realizations for one type of structure,
it is bound to work for other various objects. The constrained field formalism
is suitable for all sorts of configurations, such as X-ray clusters (Evrard, 1990),
voids (van de Weygaert & van Kampen, 1993), (clusters of) galaxies. (Evrard
et al., 1990), (Klypin et al., 2003), (Mezler & Evrard, 1994), (van Haarlem
& van de Weygaert, 1993) and dark matter halos (Romano-Diaz et al., 2009),
(Romano-Diaz et al., 2010), (Evrard et al., 2008). An example of the latter is
shown in figure 5.2, where three dark matter halos are simulated.

Figure 5.2: Projection of the three main halos (MW, M31, M33) along the z-
direction, including the gas distribution. Image courtesy to the CLUES Project.

78



5.1.1 Testing theories

Since the constrained field description makes it possible to create different types
of objects, it can be used as a laboratory to test and refine theories. An example
of such is the ZOnes Bordering On Voidness technique by Neyrinck (2008). This
method is an answer to increasing studies of voids, but the lack of definitions in
this field. There is no predetermined shape for a void and by the theory of void
mergers, there will be no definite shape. A problem is then to find voids in a
simulations. Neyrinck developed a method, free from parameters, which should
find voids in a particle distribution. Here voids are treated as underdense regions
with a surrounding depression. By calculating a statistical significance for each
found void, a physical interpretation can be made. Since observational effects
makes it impossible to apply this method to real data, it was tested and refined
using constrained simulations. A result of one of this test runs can been seen
in figure 5.3. Other theories using constrained N-body simulations for test runs
and refining are for example structure functions to obtain quantitative measures
of large scale structure done by Babul & Starkman (1992) or the Watershed Void
Finder by Platen et al. (2007).

Figure 5.3: ZOBOV method applied to the Millennium Simulation. The particles
are colored green when they belong to the void and black when they are not. The red
dot is the absolute density minimum found. In the lower plot a correction was made
for subvoids. Image courtesy to Neyrinck (2008)
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5.2 Local Universe

The formation of particular structural features within a specific cosmological
context can also be studied on large scales. By creating initial conditions to
suite a specific region of the universe, the formation of the (large scale) struc-
ture can be studied.
Ganon & Hoffman (1993) were the first to apply the constrained field formalism
as instrument in an attempt to create initial conditions resembling our Local
Group. The constraints in this simulation were retrieved from the POTENT
method (Dekel et al., 1990), where the smoothed velocity potential was sam-
pled on a finite number of positions to create a set of numerical values. The
unconstrained realization, from which the residual field was sampled, was com-
pletely determined the SCDM cosmology power spectrum. (Blumenthal, 1984)
The simulation was done on a three-dimensional cubic lattice with 323 grid
points with a spacing of 5h−1 Mpc. The obtained constrained density fields
were smoothed with different smoothing radii and some of the results can been
seen in figure 5.4. Here the unconstrained realization is shown in the upper left
panel, together with two constrained realizations smoothed on different radii
and the reference density field as obtained with POTENT in the most lower
right panel.

Figure 5.4: Realizations by Ganon & Hoffman (1993). From left to right,from up
till down, an unconstrained realization with the Standard Cold Dark matter model,
a constrained realization with the constraints on the velocity potential obtained by
POTENT, smoothed on a scale of 5h−1 Mpc, a constrained realization with the con-
straints on the velocity potential obtained by POTENT, smoothed on a scale of 12h−1

Mpc and a density field as obtained by velocity potential obtained by POTENT.
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The simulation was done for different residual fields. Ganon & Hoffman (1993)
noted that although the unconstrained random realizations differed consider-
ably, the resulting maps were very similar. This means that the fluctuations in
the power spectrum are particularly small with respect to the over- and under-
densities in the simulation.

Present-day projects

Nowadays, various project groups recreate our Local Universe at high resolu-
tions for different purposes. In these simulations, the different structures of
the surroundings of the Milky Way can be recognized and their evolution and
formation can be studied. One of the projects accomplishing this is CLUES,
which stands for Constrained Local UniversE Simulations. The goal of the
project is provide constrained simulations of the universe which can be used as
a laboratory for astronomers. From constrained initial conditions, the forma-
tion and evolution of the the Milky Way, Andromeda Galaxy and twenty-eight
other galaxies is simulated using different cosmological parameters, all based
on different WMAP estimates. (Gottlober et al., 2009) One of the realizations
of the simulation results can be found in figure 5.5, where a slice of the large
scale dark matter distribution of the Local Universe is shown. In the center of
the simulation the Milky Way is situated, surrounded by the Virgo-Cluster, the
Coma-cluster and the Great Attractor, all connected via the filaments and walls
of the Cosmic Web.

Figure 5.5: Large scale dark matter density distribution of the Local Universe. The
image shows a slice through the center of the simulation box. The box size is equal to
180h−1 Mpc and the number of particles is equal to 10243. Our galaxy can be found
in the center of the simulation box. Image courtesy to the CLUES Project.
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Another project to study the evolution and formation of large scale structure
is the simulation by Springel et al. (2005), where the large scale structure of our
Local Group was simulated. A few years later, the simulation was done again,
but in a smaller simulation box to create a higher resolution. The results were
checked by running another simulation with the same initial conditions and
fewer particles to check that features in the higher-resolution run were also seen
at lower resolution. One of the many simulation results can be found in figure
5.6, where the Local Universe is simulated. The Local Group can be found in
the center of the simulation, while the Great Attractor is found on the left and
the Cetus Wall on the lower right.

Figure 5.6: This visualization shows our ”Local Universe”, as simulated in the con-
strained realization project. The Local Group is in the center of the sphere. In the
initial orientation of the sphere, the Great Attractor is on the left, and the Cetus
Wall on the lower right. Image courtesy to Springel et al. (2005) and the Max-Planck-
Institute for Astrophysics
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5.2.1 Reconstruction method

The main approach of generating specified initial conditions for large scale struc-
ture N-body simulations is setting up a constrained realization and compare this
with the observations done. This method requires assumptions about the power
spectrum and several cosmological parameters, such as the Hubble parameter
and the matter content of the universe. Methods were thought of to neutral-
ize all the assumption made by the user. One of these methods is called the
reconstruction method. In this method, an observed galaxy distribution is ex-
trapolated back in time using different evolution theories to obtain the initial
conditions in the same region of space. These results are then evolved using
N-body simulation and by comparing the results, a better understanding of the
cosmological model can be obtained.
Narayanan & Weinberg (1998) combined the best features of earlier done re-
search to create the hybrid reconstruction method. By extrapolating the grav-
itational potential backwards in time, the initial density field can be recovered
via the Poisson equation. When these conditions are now again evolved, as-
sumptions about galaxy biasing, a value for the parameter Ω and shape of the
power spectrum are implicitly done. By comparing the simulations realizations
with the observations, these parameters can be estimated. A realization from
Narayanan & Weinberg (1998) is found in figure 5.7, where in left panel the true
initial conditions can be found and in the right panel the initial conditions are
shown derived with the hybrid reconstruction method.

Figure 5.7: Demonstration of the hybrid reconstruction method. In the left panel, the
true initial conditions are shown. The right panel contains the initial conditions derived
with the hybrid reconstruction. Both realizations are smoothed with a Gaussian filter
with a smoothing radius of 3h−1 Mpc.
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5.2.2 Extra Galactic Magnetic Field

Not only the structure formation within a cosmological model can be tested: the
study can be extended to all variables who are believed to have a cosmological
origin. An example is the distribution of the Extra Galactic Magnetic Field
(EGMF), which is of particular interest in the study of the search of the origin
of Ultra High Energy Cosmic Rays (UHECRs).

Cosmic Ray theory

UHECRs are particles or nuclei originating from an astronomical source, moving
with a kinetic energy comparable to or higher then the Greisen-Zatsepin-Kuzmin
limit, which is a theoretical upper limit on the energy of a cosmic ray from a
distant source due to interaction with the CMB. (Greisen, 1966), (Zatsepin &
Kuzmin, 1966)
Since the flux of cosmic rays is low, they can only be observed when they inter-
act, for example when they enter the earth’s atmosphere. Here they will collide
with the molecules, producing a cascade of secondary lighter particles, called
an air shower. An example of such a shower is shown at figure 5.8, where the
different colors stand for different particles. These air shower particles are the
ones which can be detected at earth.

Figure 5.8: Cosmic ray air shower created by a 1TeV proton hitting the atmosphere
20 km above the Earth. Image Courtesy to the AIRES project.

By studying air showers, the nature, direction and the energy of the primary
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particle can be determined. The primary particle is believed to be a proton or
a light nuclei of cosmic origin, since restrictions were made on the fraction of
photons [Ave et al. (2002)] and the discovered preference for high energy air
showers for light nuclei. (Bird et al., 1993). So the primary particle is most
likely a charged particle, it is difficult to track the cosmological source, since
its path through the universe will be deflected by the EGMF. By studying the
strength and the geometry of the EGMF, a better understanding of the angular
distribution of air showers and the deflection of UHECRs is created. Since the
EGMF is believed to have a cosmological origin and will have evolved over time
under the influence of structure formation, N-body simulations are a perfect
instrument to study its evolution.(Kronberg et al., 1999)

Simulations

The first numerical studies on the evolution EGMF combined the magneto-
hydrodynamics of the magnetized interstellar medium with the gravitational
evolution of dark matter. (Dolag et al., 1999), (Dolag et al., 2002), (Ryu et al.,
1998), (Sigla et al., 2003) Since the EGMF can only be observed by Faraday
rotation in galaxy clusters, the simulation results and observational results are
compared in these areas. Using this method, an appropriate evolution sce-
nario for the EGMF could be found. The problems were varied in the different
researches, but one common problem was discovered. In relative underdense
regions compared with galaxy clusters, such as filaments or voids, the EGMF
can only be found by extrapolating the data from overdense regions. This is
not an accurate way to describe the geometry and strength in these underdense
regions, where there is little to no data found on the EGMF.
Dolag et al. (2004) was the first to make use of constrained realizations. The
initial conditions for the dark matter density distribution were constrained to
reproduce the large scale structure around the Milky Way. The approach and
the data were copied from Mathis et al. (2002). Here observations from the
IRAS 1.2-Jy galaxy survey were smoothed and evolved linearly back in time
to be used as Gaussian constraints as proposed by the Hoffman-Ribak method.
This constrained realization was showed to be a appropriate initial set to ob-
tain the large scale structure of the universe within 110 Mpc of the Milky Way.
Advantages of the constrained field formalism in this field is that the scientist
is not forced to choose an observer position, making it possible to create all-sky
maps of deflection. To check whether this model is suitable, again the Fara-
day rotation within the simulation and observed galaxy clusters are compared.
When they are in agreement, the evolution of the EGMF is quite good simu-
lated and its geometry and strength in underdense regions should be a good
representation of the truth.
The simulation was done twice with different strength and orientation of the
magnetic field. The results are presented in Dolag et al. (2004) and Dolag et al.
(2005). By studying the complete EGMF, an associated map of particle de-
flections is constructed. (see figure 5.9) These maps show that the EGMF in
voids, filaments and sheets have negligible influence in deflecting the path of a
high energetic particle. Even the crossing of a galaxy cluster adds such a minor
deflection to the trajectory that identifying the cosmological source becomes a
reality.
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Figure 5.9: Full sky maps of expected deflection angles for protons with the arrival
energy E = 1 × 1020 eV. The simulation is stationed within a 100 Mpc around the
Milky Way and in the lower panel, energy losses due to interaction with the CMB are
neglected. Image courtesy to Dolag, Grasso, Springel and Tkachev.
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The obtained numerical results are used when observational data is inter-
preted, in search for the source of cosmic rays. The Pierre Auger Southern
Observatory in Argentina is built to study simultaneously the direction and en-
ergy of the primary particle. The sixteen hunderd ground detectors, covering
an area of three thousand square kilometers, detect the Cherenkov radiation the
secondary particles produce in water. This gives an indication of the nature of
the primary particle and its arrival direction. The four complementary sites of
six optical telescopes measure atmospheric fluorescence light produced by the
air shower.

Sources of the cosmic rays have to be within 200 Mpc of the earth due to
the GZK-effect. By observing the directions and energy of the cosmic rays,
an anisotropic distribution is found. A correlation was found between the ar-
rival directions of cosmic rays and positions of nearby Active Galactic Nuclei,
suggesting that these are the most likely candidate for being the cosmological
source of cosmic rays.

Figure 5.10: Sky map showing the detected air shower events by the Pierre Auger
observatory. Low energy cosmic rays appear to originate from evenly distributed
sources (blue dots), while the high energetic cosmic rays (crosses) show a correlation
with the distribution of Active Galactic Nuclei (red stars). This is an indication that
AGN’s are a likely source for high energetic cosmic rays. Image Courtesy to the Pierre
Auger collaboration (2004).
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Chapter 6

Summary and Discussion

The gravitational instability scenario states that the large scale structure in the
universe grew under the influence of gravity from primordial density and veloc-
ity perturbations. These perturbation fields are believed to be Gaussian and
can be used as initial conditions for N-body simulations to study the formation
and evolution of different types of structures. In order to generate a specific
structure, user-specified initial conditions are desired. This can be done by im-
posing numerical values on the Gaussian random field and is called Constrained
Field Formalism.
Various methods are proposed to generate constrained realizations. In this
project, the main focus lies on the description of Bertschinger (1987) who was
the first one to realize the importance of constrained realizations. He stated
that a constrained realization could be created by adding a mean field f̄(x),
which is defined as the ensemble average of all fields obeying the desired set of
constraints, and the residual field F (x), containing the random fluctuations of
the power spectrum.

f(x) = f̄(x) + F (x) (6.1)

The imposed set of constraints were assumed to be linear functionals of the field
itself.

Hoffman & Ribak (1991) realized that when the imposed constraints are linear
functionals if the field itself, the statistics of the residual field are independent of
the numerical values of the imposed constraints, so that the residual field can be
sampled from any realization. This reduces the computational cost considerably,
making the method suitable for a large number of constraints. A constrained
realization can then be written as: (van de Weygaert & Bertschinger, 1996)

f(x) =

∫
dk

(2π)3
[
˜̂
f(k) + P (k)Ĥi(k)ξ−1

ij (cj − c̃j)]e
ik·x (6.2)

In this realization,
˜̂
f(k) is the mean field of a random realization from which

the constraints are calculated, P (k) is the power spectrum, Ĥi(k) is a kernel
containing a Gaussian filter with a constraint-specified factor, ξ−1

ij is the con-
straint correlation matrix, cj is the set of constraints specified by the user and
c̃j is the set of constraints found in a random realization.
The Hoffman-Ribak method is applied in various projects: re simulating the
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large scale structure to test different cosmological models (Ganon & Hoffman,
1993) or studying a specific object to gain insight in the evolution processes.(van de
Weygaert & van Kampen, 1993) As an example of the latter, the constrained
peak formalism is studied in this research. By specifying up to eighteen con-
straints per over- or underdensity, the initial local density perturbation and
peculiar velocity fields can be specified. This will influence the evolution of the
initial conditions in the N-body simulation.
The constrained realization based on the constrained peak formalism are ex-
plored. The computational implementation is used to create user specified ini-
tial conditions for N-body simulations to form walls, filaments, peaks and voids.
The simulations were done on a periodic cubic three dimensional lattice with a
size of L = 100h−1 Mpc and a number of particles equal to 2563. Because of the
periodic boundary conditions, the average density of the simulation box must be
equal to the average density of the universe. This is a large disadvantage of this
method, since the generated constrained realization will not always provide us
with a realistic image. For certain extreme constraints, an overdense region will
always be surrounded by an underdense region. This will then naturally influ-
ence the evolution of a specified structure. An example of such a situation can
be found in figure 6.1. There are always other limitations when using a simula-
tion, such as the scale of the object with respect to the size of the simulation box.
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Figure 6.1: Extreme numerical constraints will ensure that overdense regions are
surrounded by underdense regions in the Hoffman-Ribak method. Notice that blue is
the underdense region, while red is the overdense region.

The Hoffman-Ribak method is based on the assumption that the perturbation
fields are Gaussian distributed. But on small scales, the density distribution is
believed to be lognormal. (Sheth et al., 1994) Sheth (1995) solved this problem
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by defining a new as field as the natural logarithm of the density field, ensuring
its Gaussianity and making it again applicable for the Hoffman-Ribak method.

The main advantage of the Hoffman-Ribak method is that it is applicable to
construct a constrained realization subject to a large number of constraints.
Because all constraints are linear convolutions with the density field, implemen-
tation in Fourier space is straightforward, keeping the algorithm quite efficient.
Efficiency is true for more algorithms, such as the proposed change of coordinate
system by Binney & Quinn (1991). By writing the density fields into spherical
coordinates, a formalism was set up appropriate for studying galaxy- and cluster
formation.

f(x) =

√
2

π
κnflm(kn)jl(knr)Y m

l (θ, φ) (6.3)

An advantage of this choice of coordinate system is the possibility to implement
constraints on the angular momentum. Just as for the Hoffman-Ribak method,
artificial boundary conditions are induced, imposing again the requirement that
the average density of the simulation box is equal to the average density of
the universe. A major disadvantage of the Binney-Quinn method over the HR-
method is the fact that it is only suitable for a local set of constraints, containing
an obvious center of symmetry.

Other methods are thought of to create constrained realizations. Salmon (1996)
used the technique of Frenk et al. (1985), where a Gaussian random field was
created as the convolution of white noise with a filter, defined as the square
root of the power spectrum. By imposing constraints on a Gaussian random
field, a new Gaussian field is created with different mean and variance. Salmon
(1996) noticed that by filtering a Gaussian random field with a specific filter, a
new Gaussian random field appeared with the same mean and variance as the
constrained realization. Since Gaussian fields are determined by their statistics,
the two obtained fields are indistinguishable. The advantage of this method is
the use of white noise. Since this is uncorrelated in real space, the convolution
does not have to be calculated in Fourier space. Omitting an FFT makes the
algorithm computationally faster and suitable for a large number of constraints.
Also the grid points do not have to be evenly spaced without an FFT, making
the method suitable for adaptive mesh refinement.
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All the methods described above have their advantages and their problems.
But all methods described above can generate constrained realizations, which
gain insight in the formation and evolution of structure after evolution. One
last, colorful result of constrained realizations can be found in figure 6.2.

Figure 6.2: Dark matter distribution within a galaxy. The image shows a slice
through the center of the simulation box. Image courtesy to the Millenium Project.
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Appendix A

Linear evolution of

perturbation fields

When describing the evolution of the structure of the universe, it is preferred
to specify the evolution of the fluctuations in quantities that deviate from the
background. It is therefore more convenient to work in comoving coordinates,
so that the comoving position of an object becomes:

x(t) =
r(t)

a(t)
(A.1)

in which a(t) is the expansion factor of the universe and chosen so that a(t0) = 1
for t0 being the present epoch.
On large scales the matter and radiation content of the universe can be consid-
ered to be a continuous flüıdum. Evolution of a fluid is dictated by the three
fluid equations: the continuity equation, describing the conservation of mass,
the Euler equation, describing the acceleration of the fluid elements and the
Poisson equation, specifying the sources of the gravitational field and thereby
coupling the density and the gravitational potential perturbation field. The
fluid equations in comoving coordinates of matter perturbations:

∂v

∂t
+

1

a
(v · ▽)v +

ȧ

a
v +

1

a
▽ φ = 0 (A.2)

∂f

∂t
+

1

a
▽ (1 + f)v = 0 (A.3)

▽2φ = 4πGa2fρ̄ (A.4)

In the case of small density and velocity perturbations, the higher order terms
in the continuity and Euler equation, representing the nonlinear coupling terms,
can be neglected. In that case, the set of fluid equations for matter perturbations
in comoving coordinates can be linearized yielding:

∂v

∂t
+

ȧ

a
v +

1

a
▽ φ = 0 (A.5)

∂f

∂t
+

1

a
▽x v = 0 (A.6)

▽2φ = 4πGa2fρ̄ (A.7)
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A.1 Solutions

We will solve this for an universe containing of a cosmological constant, dark
matter, baryonic matter and radiation with values consistent with the ΛCDM
model.

A.1.1 Solution for density perturbations

In order to solve the linearized equations for perturbations in the density field,
the time derivative of the linearized continuity equation is substituted in the
divergence of the linearized Euler equation. Combining the result with the
Poisson equation yields:

∂2f

∂t2
+ 2

ȧ

a

∂f

∂t
= 4πGfρ̄ (A.8)

The result is a second-order partial differential equation in time alone. The
solution can be split into a spatial component and a time component.

f(x, t) = D1(t)f1(x) + D2(t)f2(x) (A.9)

in which D1(t) and D2(t) are the universal density growth factors for the linear
evolution of density perturbations and f1(x) and f2(x) represent the correspond-
ing spatial configuration of the cosmic primordial matter distribution. The first
half of the solution is called the growing mode solution and the second half
the decaying mode solution. The growth factors depend on the cosmological
background and evolve according to:

∂2D

∂t2
+ 2

ȧ

a

∂D

∂t
= 4πGfρ̄ (A.10)

Solving the above system for an universe with matter, radiation and a cosmo-
logical constant, the Hubble parameter is given by the following relationship:

H2(t) = H2
0 [Ωr,0a

−4 + Ωm,0a
−3 + (1 + Ω0)a

−2 + ΩΛ,0] (A.11)

By differentiating this expression once and twice and adding them, it is found:

Ḧ + 2HḢ = H2
0H

(
3
Ωm,0

2a3
+ 4

Ωr,0

a4

)
(A.12)

≈ H2
0H

3

2

Ωm,0

a3
(A.13)

Ḧ + 2HḢ = 4πGHρm (A.14)

This is also a second order differential equation with the solution in a spatial and
a time component. This equation, describing the evolution of H , is multiplied
by D(t) and subtracted with H(t) times the equation for D(t), yielding:

DḦ − HD̈ + 2H(DḢ − HḊ) = 0 (A.15)

Remembering that H(t) = ȧ/a, it is found:

a2 d

dt
(ḊH − HḊ) +

da2

dt
(ḊH − HḊ) = 0 (A.16)
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This results in the differential equation:

d

dt

[
a2H2 d

dt

(
D

H

)]
= 0 (A.17)

with the solution yielding:

D(t) = H(t)

∫
dt

a2H2(t)
(A.18)

A.1.2 Gravitational potential perturbations

The density distribution and the gravitational potential distribution are coupled
via the Poisson relation. (eq. A.7) Notice that when working in an universe
with matter and a cosmological constant, the dark matter remains uniformly
distributed and does not have to be taken into account. The gravitational
potential can then be found by taking the integral over the Green’s function.

φ(x, t) = −Gρma2

∫
dx′fm(x′, t)

1

| x′ − x | (A.19)

where the integral is over comoving space. Since the integral contains the evo-
lution of the density perturbations, the gravitational potential perturbations
evolve according to an universal potential perturbation growth factor, which
yields for the growing mode solution:

φ(x, t) = Dφ(t)φ0(x, t) =
D(t)

a(t)
φ0(x, t) (A.20)

Since the peculiar gravitational acceleration is equal to the gradient of the grav-
itational potential perturbation, it evolves in the growing mode solution accord-
ing to:

g(x, t) = Dg(t)g0(x, t) =
D(t)

a2(t)
g0(x, t) (A.21)

A.1.3 Velocity perturbations

In the linear regime, the peculiar velocity consists of a pure gradient potential
flow:

v = v|| (A.22)

The relation between the peculiar gravitational acceleration and the peculiar
velocity is found in the Poisson equation:

▽ · v = −a ▽ · ∂

∂t

( ▽φ

4πGρ̄a2

)
(A.23)

= a ▽ · ∂

∂t

(
g

4πGρ̄a

)
(A.24)

Because v and g are both gradients of the potential, they can be left out. The
found relation between g and the linear density growth factor is used to find:

v =
1

D

dD

dt

(
g

4πGρ̄

)
(A.25)
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Notice that the peculiar velocity is directly and linearly proportional to the
peculiar gravitational acceleration. The proportionality factor is:

1

D

dD

dt
= H(t)

a

D

dD

da
≡ Hf (A.26)

so we find:

v =
Hf

4πGρ̄
g (A.27)

From this relationship the growth factor for peculiar velocities in the growing
mode solution can be derived:

Dv(t) = aD(t)Hf(Ωm) (A.28)

In the above equation, f(Ωm) is defined as the dimensionless linear growth
factor. Its first approximation was made by Peebles in 1980 and was found to
be f ≈ Ω0.6

m . Lahav et al. (1991) worked out this estimate for the dimensionless
linear growth factor for an universe with matter and a cosmological constant:

f(Ωm, ΩΛ) ≈ Ω0.6
m +

ΩΛ

70

(
1 +

Ωm

2

)
(A.29)

As can been seen, the dimensionless growth factor mainly depends only the
matter content of the universe.
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Appendix B

Defining most likely field

The set of constraints imposed on a Gaussian random field are incorporated in
the action integral in the following way:

S[f ] =
1

2

∫ ∫
f(x1)K(x1 − x2)f(x2)dx1dx2 − Ctξ−1

ij C (B.1)

where ξij is the ijth element of the constraint correlation matrix, C is a vector
containing the set of constraints, f is the density perturbation field and K is the
inverse of the correlation matrix. The ith constraint Ci(xi) can be written as a
convolution with a delta Dirac function. Since the inverse correlation matrix K
and the autocorrelation function are the inverse of each other, multiplication of
these two create a Dirac delta function. Combining these two facts, one get the
following equation.

Ci(xi) =

∫
dx1

∫
dx2ξ(x1)K(x1 − x2)Ci(xi − x2) (B.2)

In Fourier space the following definition is found, using the convolution theorem:

Ci(xi) =

∫
dk

(2π)3
Ĉi(k)P (k)K̂(k−ik·xi

e (B.3)

where Ĉi is the Fourier transform of Ci and is the Fourier transform of ξ(x) and
K̂(k) is the Fourier transform of K(x). Studying the definition for the power
spectrum by Bertschinger (eq. 2.29), a similar expression can be described for
Pi(k):

(2π)3P̂i(k1)δD(k1 − k2) = 〈Ĉi(k1)f̂
∗(k2)〉 (B.4)

Combining the two results for the power spectrum, a relation between the
Fourier components of the constraint function and the density field can be found:

Ĉi(k) =
P̂i(k)

P (k)
f̂(k) (B.5)
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Appendix C

Proof statistics residual

field

Hoffman and Ribak realized that the entire conditional probability distribution
function of the residual field was independent of numerical values of the con-
straint set Γ. This can be proven by choosing two constraint sets of equal size.
The first is denoted by Γ1 = Ci[f : xi] = c1,i for i = 1, ..., M and the second
one is denoted by Γ2 = Ci[f : xi] = c2,i for i = 1, ..., M . The mean fields of the
sets are denoted by f̄1(x) and f̄2(x). Now a random field f1 ∈ Γ1 is chosen and
translated by a field T2,1(x) into the field fT (x):

fT (x) = f1(x) + T2,1(x) (C.1)

where
T2,1 ≡ f̄2(x) − f̄1(x) = ξi(x)ξ−1

ij (cj,2 − cj,1) (C.2)

This implies that the mean field f̄1(x) is transformed into the mean field f̄2(x).
By restricting the constraints to be linear;

Ci[f1 + f2;x] = Ci[f1;x] + Ci[f2;x] (C.3)

the obeyed constraint set for the new field fT can be recognized as Γ2. This
is true regardless of the chosen field f1(x) ∈ Γ1. By noting that the inverse
translation transforms the field f2(x) back into f1(x), it is found that:

P [f1 | Γ1] = P [f2 | Γ2] (C.4)

The conditional probabilities for the corresponding residual fields are equal to:

P [F1 | Γ1] = P [f1 | Γ1] = P [f2 | Γ2] = P [F2 | Γ2] (C.5)

If the residual field is transformed under the translation, it is found to be in-
variant. This implies:

P [F | Γ1] = P [F1 | Γ1] = P [F | Γ2] = P [F2 | Γ2] = (C.6)
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Appendix D

Overview configurations

A complete overview of the configurations generated in chapter three. First a
table of the density constraints will be presented, followed by peculiar velocity
and shear constraints. Density constraints (peaks)
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Velocity constraints

# objects Rf [Mpc] constraints values

1 4h−1 height ν = 2.5σ
shape a12 = a13 = 1
velocity vx = 850 km/s

1 4h−1 height ν = 2.5σ
shape a12 = a13 = 1
velocity vy = 850 km/s

1 4h−1 height ν = 2.5σ
shape a12 = a13 = 1
velocity vz = 850 km/s

1 4h−1 height ν = 2.5σ
shape a12 = a13 = 1
velocity vx = 250 km/s

1 4h−1 height ν = 2.5σ
shape a12 = a13 = 1
velocity vx = 500 km/s

1 4h−1 height ν = 2.5σ
shape a12 = a13 = 1
velocity vx = 750 km/s

1 4h−1 height ν = 2.5σ
shape a12 = a13 = 1
velocity vx = 1000 km/s

1 4h−1 height ν = 2.5σ
shape a12 = a13 = 1
velocity vx = 1250 km/s

1 4h−1 height ν = 2.5σ
shape a12 = a13 = 1
velocity vx = 1500 km/s

2 4h−1 height ν = 2.5σ
shape a12 = a13 = 1
velocity vx = 1000 km/s

4h−1 height ν = 2.5σ
shape a12 = a13 = 1
velocity vx = −1000 km/s

2 4h−1 height ν = 2.5σ
shape a12 = a13 = 1
velocity vx = 1250 km/s

4h−1 height ν = 2.5σ
shape a12 = a13 = 1
velocity vx = −750 km/s
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Shear Constraints

# objects Rf [Mpc] constraints values

1 15h−1 height ν = 3σ
curvature xd = 15
shape a12 = 1, a13 = 0.1
shear s11 = 50km/s/Mpc, s22 = 50 km/s/Mpc

1 15h−1 height ν = 3σ
curvature xd = 15
shape a12 = 1, a13 = 0.1
shear s11 = 75km/s/Mpc, s22 = 25 km/s/Mpc

1 15h−1 height ν = 2σ
curvature xd = 15
shape a12 = 0.1, a13 = 0.1
shear s11 = 100km/s/Mpc, s22 = −50 km/s/Mpc

1 15h−1 height ν = 2σ
curvature xd = 15
shape a12 = 0.1, a13 = 0.1
shear s11 = 100km/s/Mpc, s22 = −25 km/s/Mpc
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# objects Rf [Mpc] constraints values Note

Reference 1 4h−1 height ν = 3σ
curvature xd = 10σ2

shape a12 = a13 = 1
orientation α = β = ϕ = 0

1 4h−1 height ν = 1σ
1 4h−1 height ν = 2σ Curvature, shape and orientation equal to reference
1 4h−1 height ν = 3σ Curvature, shape and orientation equal to reference
1 4h−1 height ν = 5σ Curvature, shape and orientation equal to reference
1 4h−1 height ν = 7σ Curvature, shape and orientation equal to reference
1 4h−1 height ν = 10σ Curvature, shape and orientation equal to reference
1 4h−1 height ν = −3σ Shape and orientation equal to reference. Curvature xd = −10σ2

1 4h−1 curvature xd = 5σ2 Height, shape and orientation equal to reference
1 4h−1 curvature xd = 20σ2 Height, shape and orientation equal to reference
1 4h−1 curvature xd = −20σ2 Shape and orientation equal to reference. Height ν = −3σ
1 4h−1 shape a12 = 1, a13 = 2.5
1 4h−1 shape a12 = 1, a13 = 2.5 Orientation equal to reference. Heigth ν = −3σ and curvature xd = −10σ2

1 4h−1 orientation α = β = 45 Height, shape and curvature equal to reference
1 4h−1 orientation α = β = 45 Shape equal to reference. Height ν = −3σ and curvature xd = −10σ2

2 4h−1 height ν = 3σ
shape a12 = a13 = 1

4h−1 height ν = 4σ
shape a12 = 1.1, a13 = 0.8

3 4h−1 height ν = 3σ
shape a12 = a13 = 1

4h−1 height ν = 4σ
shape a12 = 1.1, a13 = 0.8

5h−1 height ν = 3.5σ
shape a12 = a13 = 2

3 4h−1 height ν = 3σ
shape a12 = a13 = 1

4h−1 height ν = 4σ
shape a12 = 1.1, a13 = 0.8

5h−1 height ν = −3.5σ
shape a12 = a13 = 2

1
0
6



Appendix E

General solution

time-independent

Schrodinger equation in

spherical coordinates

In a spherical coordinate system, the density field can be described by spherical
harmonics multiplied by a spherical Bessel function instead of planar waves.
This can be retrieved from the time-independent Schrodinger equation, which
is given by:

Ĥϕ = Eϕ (E.1)

with the Ĥ Hamiltonian operator and the energy E can be given as h̄2k2/2m,
where h̄ is the Planck constant h divided by 2π, k is the wave number and m is
the mass of the particle. In spherical coordinates the operator Ĥ can be given
as follows:

Ĥ =
p̂2

r

2m
+

L̂

2mr
(E.2)

where for the radial momentum p̂r can be found:

p̂r = −ih̄
1

r

∂

∂r
r (E.3)

and for the angular momentum L̂:

L̂ = h̄2

[
1

sinθ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂2φ

]
(E.4)

The solution for the wave function can be found by separating of variables:

ϕklm(r, θ, φ) = Rk(r)Y m
l (θ, φ) (E.5)

For the radial part of the solution, the time-independent Schrodinger equation
becomes: [

−
(

1

r

d2

d2r
r

)
+

l(l + 1)

r2

]
Rkl(r) =

2mE

h̄2 Rkl(r) (E.6)

107



By substituting the variables E ≡ h̄2k2/2m and x ≡ kr, the above equation
becomes a spherical Bessel differential equation:

d2

d2r
R(x) +

2

x

dR(x)

dx
=

[
1 − l(l + 1)

x2

]
R(x) = 0 (E.7)

For the angular momentum, the solutions can be found by solving the time-
independent Schrodinger equation for the angular momentum squared and the
angular momentum in the x, y or z direction. Since the last three operators all
commute with the angular momentum squared operator, the eigenfunctions are
the same.

L̂2ϕlm = h̄2l(l + 1)ϕlm (E.8)

L̂zϕlm = h̄mϕlm (E.9)

The solutions for the eigenfunctions are called spherical harmonics and denoted
by the symbol Y m

l (θ, φ). When solving the above equations for the angular

momentum operator L̂z, it can be found that:

∂

∂φ
Y m

l = imY m
l (E.10)

This determines only the φ-dependence of the solution, which means that the
eigenfunctions Y m

l can be separated by variables into:

Y m
l (θ, φ) = Φm(φ)Θm

l (θ) (E.11)

The set of functions Φm(φ) is defined by:

Φm(φ) =
1√
2π

eimφ (E.12)

with m being a positive or negative integer or zero. Then the Y m
l has the form

of:

Y m
l (θ, φ) =

1√
2π

eimφΘm
l (θ) (E.13)

When substituting the above equation into the time independent Schrodinger
equation with the angular momentum squared operator and inserting the ex-
pression for the angular momentum operator squared, the following expression
for the set of functions Θm

l (θ, φ) can be found with variable µ ≡ cosθ:

d

dµ

[
(1 − µ2)

dΘm
l

dµ

]
+

[
l(l + 1) − m2

1 − µ2

]
Θm

l = 0 (E.14)

The solutions to these functions are the so-called associated Legendre polyno-
mials Pm

l (µ) multiplied by a factor.

Θm
l (µ) =

[
2l + 1

2

(l − m)!

(l + m)!

]1/2

Pm
l (µ) (E.15)

where Pm
l (µ) are given by a differential form of the formula of Rodrigues:

Pm
l (µ) = (−1)m(1 − µ2)m/2 dmPl(µ)

dµm
(E.16)
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where Pl(µ) is given by the actual formula of Rodrigues:

Pl(µ) =
1

2ll!

dl

dµl
(µ2 − 1)l (E.17)

This will give the final solution for the wave function to be:

ϕk = jl(knr)Y m
l (θ, φ) (E.18)

E.1 Expressions for the spherical harmonics and

spherical Bessel functions

Below here there are some expressions for a few of the spherical harmonics and
the spherical Bessel functions;

Spherical Bessel Functions Spherical harmonics

Y 0
0 =

(
1
4π

)1/2

Y 1
1 = − 1

2

(
3
2π

)1/2
sin θeiφ j0(x) = sin x

x

Y 0
1 = 1

2

(
3
π

)1/2
cos θ j1(x) = sin x

x2 − cos x
x

Y −1
1 = 1

2

(
3
2π

)1/2
sin θe−iφ j2(x) =

(
3
x3 − 1

x

)
sin x − 3

x2 cosx

Y 2
2 = 1

4

(
15
2π

)1/2
sin2 θe2iφ j3(x) =

(
15
x3 − 6

x

)
sin x

x −
(

15
x2 − 1

)
cos x

x

Y 1
2 = − 1

2

(
15
2π

)1/2
sin θ cos θeiφ

Y 0
2 = 1

4

(
5
π

)1/2
(3 cos2 θ − 1)

Y −1
2 = 1

2

(
15
2π

)1/2
sin θ cos θe−iφ

Y −2
2 = 1

4

(
15
2π

)1/2
sin2 θe−2iφ
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