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1 INTRODUCTION

1. Introduction

The events preceding the Epoch of Reionization (EoR) show the necessity of having a reionization

phase in the evolution of the Universe. The recombination epoch marks the stage in the evolution of the

Universe where matter starts to dominate the evolution of the structure in the Universe. During recombi-

nation the free protons and electrons in the plasma of the photon-baryon fluid proceeded to recombine.

Neutral hydrogen and helium started to form as soon as it became energetically favorable. Heavier ele-

ments are negligible. This recombination marked the start of the photon-baryon fluid decoupling. After

decoupling at z ≈ 1100, the Universe became transparent to photons, that we observe nowadays as the

Cosmic Microwave Background (CMB). Without the influence of the photons baryons were free to fall

into the potential wells of dark matter (DM) that were seeded by primordial inhomogeneities and con-

tinue to evolve with them.

As the Universe expands the background radiation cools and redshifts out of the visible part of the spec-

trum and the Universe becomes “dark”. This epoch is called the Dark Ages (DA). After recombination

the Universe turns neutral and remains so until the first structures collapse to form the first radiation

emitting astrophysical sources. This is the stage in which densities grow to high enough values so that

they ignite the first stars and QSOs which proceed to reionize the Universe. As the Universe evolves

further the number and radiation output of these sources increase until eventually the ionized regions

around them percolate to fill the whole Intergalactic Medium (IGM) and heat it. The epoch in which the

Universe undergoes the transition from neutral to ionized is called the Epoch of Reionization.

Given that hydrogen is by far the most abundant element in the Universe the level of ionization is de-

termined by the value of its ionized fraction (xHII). Initially xHII is almost zero, but as the first sources

turn on and start to ionize the Universe it gradually grows to 1. This reionization starts off with small

ionized bubbles around the sources that continue to expand outwards as more of the surroundings get

ionized. Eventually ionized bubbles merge with the bubbles of neighbouring sources until they fill the

whole Universe.

When the Universe turned from neutral to ionized is constrained by observational evidence using the

Lyman-α (Ly-α) forest. The Ly-α forest is the part of the spectrum from a source which shows jagged

features. The dips in this spectrum are thought to be caused by absorption of the radiation from distant

QSOs in the Ly-α line. Using observations of nearby QSOs the neutral fraction for the Universe at z < 6

is estimated to be about 10−4, showing that the Universe at these redshifts is highly ionized. The main

constraint on the end of the reionization process is given by the Ly-α-forest seen in the spectra of the

high redshift Sloan Digital Sky Survey (SDSS) quasars (Fan et al., 2003, 2006). The key evidence is in
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1 INTRODUCTION

the observation of the Gunn-Peterson troughs at z > 6.3 (Gunn and Peterson, 1965). This is interpreted

as increased absorption by Ly-α absorbers. This is interpreted as evidence for an increase in the neutral

fraction of hydrogen at z > 6.3, marking the tail end of the reionization process.

Another important constraint on reionization comes from CMB experiments that measure the Thomson

scattering optical depth. This constraint is an integral constraint on the global electron density. This

optical depth has been determined to be τ = 0.084 ± 0.016 (Dunkley et al., 2009). It attains its value

when CMB photons scatter off residual electrons left over after recombination and off electrons that

were freed during the EoR. Instantaneous reionization would have occurred at z ∼ 11 to get this optical

depth. However, instantaneous reionization is not physical and a more gradual process is more likely.

This means that reionization could have occurred within an approximate window of redshifts in the

range of 6.5 . z . 20.

To ionize hydrogen an energy of 13.6 eV is required, which falls in the ultraviolet part of the radiation

spectrum. The sources responsible for reionization must therefore be able to emit sufficient radiation

with energies equal to 13.6 eV or above such that the Universe is fully reionized by z = 6.5. Possible

candidates for reionization are the first or second generation of stars, miniqsos (powered by black holes)

or even annihilating or decaying DM.

How the EoR exactly evolved is uncertain. Many different reionization scenarios are allowed within the

current constraints. In addition to the constraints already mentioned a number of weaker ones exist, such

as the Soft X-ray background (SXRB) measurement, which puts limits on reionization via miniqsos; the

infrared background, this constrains the radiation spectrum of the first stars. Most of the weaker con-

straints are severely model-dependent, rendering them less useful. For the exact evolution of reionization

to be known direct observations are required.

The EoR can be detected with the 21-cm line of neutral hydrogen. This hyperfine transition line of atomic

hydrogen (in the ground state) arises due to interactions between the electron and the proton spins. The

triplet state has electron and proton spin parallel with respect to each other, antiparallel for the singlet

state. Since this is a forbidden transition the lifetime of the triplet state is extremely long: about 2.85×1015

seconds (∼ 10 Myr). However, because of the abundance of neutral hydrogen in the Universe the 21-cm

line is visible. For 21-cm radiation to be emitted the triplet state must constantly be pumped, several

mechanisms exist that do this.

Collisions between particles can populate the triplet state. Collisions can occur between several particles,

for example H-H (electron exchange causing the required spin flip), H-e (electron exchange or the colli-

sion causing a spin flip) or H-p (collisions). Each of these has its own efficiency in pumping the electrons
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to the upper level. Collisions are not bound by electronic transition rules to which radiative transitions

are subject and can therefore excite an electron in the singlet state directly to the triplet state.

The Wouthuysen-Field effect is the radiative mixing of levels. A Ly-α photon can excite an electron from

the singlet state to an excited state (see the solid lines in Figure 1 for allowed transitions). The electron

can then either decay back to the same level or, more likely, decay to the triplet state. These transitions

require an energy of 10.2 eV, i.e. a Ly-α photon. The cross section for this line is large, enhancing the

probability of this transition to occur.

Fig. 1: Image adopted from Field (1958). 21-cm radiation is emitted when an electron decays from the 1 1S 1/2

level to the 1 0S 1/2 level. Solid lines denote electronic transitions which help mix the levels which is a prerequisite

before 21-cm radiation can be emitted.

X-ray photons have no chance of mixing levels directly via the Wouthuysen-Field effect. Because of their

high energies, any interaction they will have is ionization. However, it is possible for them to contribute

to level mixing indirectly. Shull and van Steenberg (1985) have shown that secondary processes are very

important for heating, exciting and ionizing hydrogen atoms in the IGM. X-ray photons have long mean

free paths but when they interact with the IGM they deposit a large amount of energy in it.

Secondary processes occur when an X-ray photon ionizes an atom. A fraction of the energy is lost in

ionization but the remainder is transferred to the electron. The interaction probability for this electron is

much higher than the photons’ and it quickly dissipates its energy by either heating the IGM, ionizing

atomic hydrogen or exciting it. The secondary excitations mix levels via exciting electrons to the excited

state or directly to the triplet state. Secondary ionizations cascade down and repeat the process, until the

point where all the energy has been dissipated such that the remainder is transferred as heat.
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The ground state of the 21-cm line is described by its spin temperature Ts. The spin temperature is

defined in terms of the ratio of level populations of the hydrogen atom,

nu

nl
=

gu

gl
e−T∗/Ts . (1)

Here nu is the number of electrons in the triplet state and nl the number of electrons in the singlet state.

The g’s denote the statistical weights of the levels with a ratio of 3/1 (triplet vs. singlet). T∗ =
E10
kB

=

0.0681 K and denotes the excitation temperature of the 21-cm line. Since the spin temperature Ts � T∗

in astrophysical applications, there are ∼3 times as many electrons in the upper level as in the lower level.

The type of astrophysical source influences Ts because they change level populations of neutral hydro-

gen. Field (1958) found that the spin temperature is given by

T−1
s =

T−1
CMB + yαT−1

k + ycT−1
k

1 + yα + yc
, (2)

where the spin temperature Ts is a weighted mean of the CMB temperature and the kinetic temperature

Tk. The coefficients yα and yc are due to Ly-α coupling and collisional coupling respectively. The yα cou-

pling term describes the Wouthuysen-Field effect and secondary collisional excitations and yc describes

collisions. In the absence of X-ray sources the contribution for collisions can often be ignored because

the average density in the IGM is too low to be of importance.

In the absence of any other coupling mechanisms the spin temperature is coupled to the CMB tempera-

ture. In this case the 21-cm radiation is not visible (see equation 2).

Within the near future several telescopes are expected to measure the 21-cm line. These include Low

Frequency Array (LOFAR), Murchison Wide-field Array (MWA) and Giant Metrewave Radio Telescope

(GMRT). These will eventually be followed up by Square Kilometre Array (SKA), promising even higher

resolution, sensitivity and frequency range. For the remainder of this report we will assume observations

of LOFAR.

Radio telescopes observe brightness temperatures, which can be derived from the radiative transfer equa-

tion as

Tb = Tb(0)e−τν + Ts(1 − e−τν). (3)

Here Tb(0) is the temperature of the (black body) source. The apparent Tb(0) decreases as the optical

depth τν increases. e−τν is then the transmission fraction and consequently (1 − e−τν) is then the absorp-

tion fraction. Ts is the spin temperature of the medium through which the radiation propagates. Tb is

the brightness temperature received. An interferometer (such as LOFAR) measures fluctuations in the

brightness temperature, which is the temperature difference between the brightness temperature and the

CMB temperature.
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LOFAR will directly detect the neutral hydrogen during the EoR through the 21-cm transition. However,

the noise per resolution element in these measurements is expected to be much higher than the 21-cm

signal itself. Furthermore, the resolution will be on the order of 3 arcmin which will be insufficient to

individually resolve the ionizing sources. Hence, the detection of the 21-cm signal with LOFAR will

be of a statistical nature. The statistics should quantify how reionization proceeded, allowing for direct

constraints on the evolution.

In order to help investigate the evolution of reionization a radiative transfer code was developed, called

Bubble Expansion Around Radiative Sources (BEARS). Its purpose is to simulate cosmological EoR

signals in a fast and cheap way. Using BEARS we obtain maps of the differential brightness temperature

δTb and of Ts. These maps are corrupted by incorporating the effects of limited resolution on it (beam

smearing). Furthermore, foregrounds from the sky are added. These add noise to the maps, decreasing

the signal to noise ratio. A corrupted 21-cm map corresponds to what LOFAR will observe.

The purpose of this project is to statistically characterize the EoR process when all the contributions to

the signal are taken into account, including the evolution of the spin temperature. In order to do this we

investigated methods to create mock 21-cm Probability Density Function (PDF)s in order to examine the

influence of the component distributions of the neutral fraction, the cosmological density field and the

spin temperature. While the analytical forms of the neutral fraction and the cosmological density field

are known, this is not the case for the spin temperature distribution. Our aim was to parametrize the spin

temperature contribution with a multi-parameter model. This parametrization could help us understand

the evolution of the Ly-α photon distribution and of the kinetic temperature distribution. Aside from this

we want to investigate if it is possible to extract higher order statistics from simulated data sets of the

EoR signal that have been corrupted such that they are representative of what LOFAR will observe.

We have three important results to show. The first result shows that it is possible to create mock 21-

cm PDFs using either direct integration using the analytical form of the distributions of the neutral

fraction, the cosmological density field and the spin temperature contribution Q = (Ts − TCMB)/Ts,

or via multiplication of random samples drawn from these component distributions. This can be used as

a tool to investigate the influence of the distributions of the various components on the 21-cm signal.

Our second result is the discovery that the distribution of the parameterQ (defined asQ = (Ts−TCMB)/Ts)

is an excellent tracer of early reionization physics. This distribution is obtained through the Ts simula-

tions and has been parametrized with a multi-parameter model. The evolution of these parameters can be

connected to the evolution of the Universes’ early reionization phase. We show that Q traces mostly the

IGM temperature evolution and the Ly-α photon distribution evolution.
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Our third result is that it is possible to reconstruct moments from corrupted 21-cm maps. Accurate esti-

mation of these moments allows us to accurately reconstruct higher order statistics such as the skewness

and kurtosis of the 21-cm signal. These statistics can quantify how the EoR proceeds.

This report is structured as follows: in section 2 details of the simulation used to obtain the strength of

the cosmological signal are described. We proceed with using these simulations in section 3 where the

statistical properties of the signal are computed and analyzed. In section 3.3 the distribution of the Q
component in the cosmological signal is discussed. The methods used to create mock 21-cm PDFs are

discussed as well. The details of the fitting process of this distribution are described in section 3.7. The

influence of LOFAR on the signal is discussed in 4. We conclude in section 5.

2. Simulations

The advantage of running simulations is that one knows exactly at each grid point (x, y, z) the values of the

physical environment (such as the neutral fraction xHI , the spin temperature Ts, the kinetic temperature

Tk and the cosmological overdensity δ) and the cosmology for the simulation box (h,Ωm,Ωb,ΩΛ, ns and

σ8). This makes analyzing the details of the realization straightforward.

2.1. N-body simulation

The publicly available GADGET-2 code (see Springel et al., 2005) has been used to obtain a cosmo-

logical particle distribution. This simulation is the same as the one used in Thomas et al. (2009). The

initial conditions have been generated with CMBFAST using glass-like initial conditions (Seljak and

Zaldarriaga, 1996) and were linearly evolved down to z = 127 using the Zel’dovich approximation.

The boxsize for the simulation was 100 h−1 comoving Mpc with 5123 particles. This box has a DM

particle mass resolution of 4.9 × 108 h−1 M�. The simulated Universe is a flat ΛCDM Universe with

Ωm = 0.238,Ωb = 0.0418,ΩΛ = 0.762, σ8 = 0.74, ns = 0.951 and h = 0.73. From this simulation we

obtain 35 snapshots between redshifts 12 to 6. Halos were identified using a Friends-of-Friends algo-

rithm as described in Davis et al. (1985), with a linking length of 0.2. The smallest halo mass that can be

resolved is on the order of 1010 h−1 M�. The particle distributions were converted to density fields via a

Gaussian smoothing kernel with standard deviation 2 × 100/512 h−1 comoving Mpc.
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2.2. Radiative post-processing with BEARS

The density fields and the halo catalogue are put into the BEARS code (Thomas et al., 2009; Thomas

and Zaroubi, 2010). BEARS is a spherically symmetric 1D radiative transfer code. The free parameters

allowed include the source spectrum, the source lifetime, redshift of turn-on and lastly, the clumping

factor of the surrounding matter. Because of its high speed, using BEARS allows one to explore a wide

variety of reionization scenarios quickly. From Thomas et al. (2009) we adopt the QSO and hybrid

models. The QSO model has miniqsos as reionizing sources whereas the hybrid model is composed of a

mixture of stars and QSOs.

BEARS places in each halo a radiation source. The number of ionizing photons emitted depends on the

halo mass and is therefore assigned via a semi-analytical model. The radiative transfer equations are

solved in 1D and these return profiles of the spin temperature Ts, the kinetic temperature Tk and the

neutral fraction xHI . These profiles are then embedded around the halos found in the halo catalogue.

The differential brightness temperature δTb can then be computed. Unlike most other codes, BEARS

does not assume that Ts � TCMB, but computes the spin temperature Ts selfconsistently. Especially in

early reionization this is important since fluctuations in δTb are not only driven by primordial density

fluctuations but also by fluctuations in Ts.

2.3. The absorption and emission regime of the 21-cm PDF

Absorption and emission of the 21-cm line are two important concepts that frequently arise when dis-

cussing the 21-cm signal. It is also relatively poorly adressed in the literature as other authors have often

assumed that Ts � TCMB in their simulations. The latter is a good assumption for mid-to-late reioniza-

tion, but it also means that the 21-cm signal is always seen in emission, which is patently wrong at the

early stage of the process.

It was only with the latest generation of radiative transfer codes that the spin temperature was computed

self-consistently, allowing for signals visible in absorption with respect to the CMB (Baek et al., 2009;

Pritchard and Furlanetto, 2007; Thomas et al., 2009; Thomas and Zaroubi, 2010). A region is defined to

be visible in absorption when δTb < 0. It is called visible in emission when δTb > 0. From equation 4 it

is obvious that absorption is possible only when Ts < TCMB, and emission when Ts > TCMB.
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2.4 Simulation results from BEARS 2 SIMULATIONS

Fig. 2: Kinetic temperatures for the simulation of the QSO model. Slices are shown from redshifts 10, 8, 7, 6 from

top left to bottom right. The Universe starts out cold but as photons propagate throughout it (and eventually get

absorbed), it gradually heats up. Image courtesy of Thomas and Zaroubi (2010).

2.4. Simulation results from BEARS

Here we will simulate different reionization scenarios in order to explore their influence on the various

statistics that we consider in this project. The reionizing sources chosen for the QSO model are miniq-

sos. The hybrid model is composed of a mixture of miniqsos and stars. These miniqsos have a power

law energy spectrum (∝ E−1), which has relatively more high energy photons than e.g. stars. For this

reason they are thought to be extra efficient in reheating the Universe. The limits on the spectrum are

from 200 eV up to 100 keV. The normalization is done such that they emit at 10% of the Eddington

luminosity. Star populations are assigned luminosities using the population synthesis code of Bruzual

and Charlot (2003). Furthermore, the stellar masses and ages were determined by the simulation. The

mass distribution follows a Chabrier IMF.

The spin temperature can be coupled to the kinetic temperature Tk or the CMB temperature (see equation

2). These temperatures, combined with the coupling strength coefficients, determine the value of the spin

temperature. The dominant coupling strength coefficient is the Ly-α coefficient describing secondary

collisional excitations. This coefficient is ∝ J0/Tk where J0 is the local Ly-α flux density. The distribution

of the local Ly-α flux density therefore influences the distribution of the spin temperature. Fluctuations

in this flux density will give rise to fluctuations in the spin temperature and therefore in the 21-cm signal.
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Fig. 3: Spin temperatures for the simulation of the QSO model. Slices are shown from redshifts 10, 8, 7, 6 from top

left to bottom right. log TCMB is 1.48, 1.39, 1.34 and 1.28 respectively. For spin temperatures lower than these values

the Universe is visible in absorption, emission otherwise. z = 10 shows a Universe mostly visible in absorption,

but has already turned to emission by z = 8. Image courtesy of Thomas and Zaroubi (2010).

Compare Figures 2 and 3 (the kinetic temperature map and the spin temperature map). There is no visible

difference between the two images for most of the map. The spin temperature and the kinetic temper-

ature are fully coupled, i.e. the radiation field intensity is sufficient to fully couple the temperatures.

Conversely, if the radiation field intensity is too low then Ts will not be coupled to Tk. This will give

rise to fluctuations in the spin temperature. These fluctuations are caused by the distribution of Ly-α flux

density in the Universe, as well as the distribution of the kinetic temperature.

Figures 4a and 4b show that the Universe is partially visible in absorption at z = 10. This happens in the

voids of the map. Hot bubbles have formed around the radiative sources where the Universe is seen in

emission. By z = 8 and lower however the Universe is entirely visible in emission. This is mostly due to

reheating of the Universe (compare with the map of the kinetic temperature in Figure 2). The differences

between the QSO and hybrid model are minimal: the most pronounced features are the average size of

the emission bubbles in the early Universe and the speed of the emission bubbles disappearing due to

ionization. These are more spread out as there is relatively more energy in X-ray photons.
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(a) Differential brightness temperatures for the simulation of the QSO model.

Slices are shown from redshifts 10, 8, 7, 6 from top left to bottom right. The

absorption phase at z = 10 is shortlived: the Universe is already mostly visible

in emission by z = 8. Ongoing ionization of the Universe drives the differen-

tial brightness temperature to 0 as ionizing bubbles start to overlap (see z = 8

to 6). Image courtesy of Thomas and Zaroubi (2010).

(b) Differential brightness temperatures for the simulation of the hybrid

model. Slices are shown from redshifts 10, 8, 7, 6 from top left to bottom

right. Like the QSO model, the absorption phase at z = 10 is shortlived. The

size of the emission bubbles is comparatively smaller. Ongoing ionization

of the Universe drives the differential brightness temperature to 0 as ioniz-

ing bubbles start to overlap (see z = 8 to 6). Image courtesy of Thomas and

Zaroubi (2010). 12
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3. Statistics

The differential brightness temperature for an optically thin medium in an expanding Universe is written

as

δTb = 20 mK (1 + δ)
(xHI

h

)(
1 − TCMB

Ts

)(
Ωbh2

0.0223

)[( (1 + z)
10

)(0.24
Ωm

)]1/2[H(z)/(1 + z)
dv‖/dr‖

]
. (4)

The strength of the 21-cm signal depends partially on its environment. The neutral fraction xHI , the

cosmological matter density contrast δ, the spin temperature Ts and the peculiar velocity contribution

dv‖/dr‖ are all quantities defined in 3D. Furthermore, the strength of the signal depends on the cosmol-

ogy. Parameters such as Ωb (baryonic content of the Universe) and Ωm (matter content in the Universe)

enter the equation as well. The distribution of samples of δTb in a simulation box composes the 21-cm

PDF. The shape of the PDF will be determined by the physical environment and the cosmology. For

some examples of the 21-cm PDF, see Figures 4a and 4b.

3.1. The 21-cm PDF, its skewness and kurtosis

The 21-cm PDF is important because it characterizes the shape of the 21-cm signal. The evolution of

the PDF may help constrain the evolution of reionization. Statistics (such as moments of samples of the

21-cm signal) characterize this evolution quantitatively. From these moments the skewness and kurtosis

can be computed.

The second, third and fourth moments have been computed for the full data sets (containing 5123 data

points) and likewise for the limited data sets. The word limited refers to the fact that LOFAR observations

do not yield ∼ 103 × 5123 independent data samples. A 100 Mpc box was simulated, however, a 5◦ × 5◦

field of view corresponds to a box of size ∼ 1 Gpc. Rather, at a given redshift the number of independent

samples is limited by the resolution, field of view and frequency resolution of a telescope. If the 21-cm

PDF does not evolve considerably with redshift one can bin in the frequency direction to increase the

number of samples. This can be done safely as long as the “coherence” of the 21-cm signal is preserved

along the frequency direction.

Since the full data set is much larger than the number of independent samples we compute the estimated

moments 50 times via a Monte Carlo approach. The error contours in Figures 8, 9 and 10 represent the

2σ limits of the relevant quantities. This is done to estimate what the result of taking a limited number

of samples is on the statistic.

The moments as estimated from the full data set are in reasonable agreement with the moments as esti-

mated from the limited data set using the Monte Carlo approach. They do not agree perfectly (especially
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for the higher order moments) because of the influence of outliers. The difference between the fourth or-

der moment for the limited and full data set is about 0.9%. The estimate of the moment from the Monte

Carlo approach is taken to be the mean of the distribution of moments. Because we will only have ac-

cess to a limited number of data samples after observations we choose to plot only those results of the

estimation from the limited number of samples in Figures 8, 9 and 10. Likewise for the statistics shown

in Figures 11 and 12.

Observations with LOFAR will yield a noisy data set. We assume the noise data to be known. These

data sets will allow us to reconstruct the EoR signal. The noisy data set is computed by first taking the

uncorrupted dataset containing the pure cosmological signal. This uncorrupted dataset is smoothed with a

kernel that corresponds to the LOFAR resolution and then renormalized to preserve the original variance.

The noise map (or noise data) is subject to the same process. The smoothed and renormalized noise is

then added to this dataset (for details on adding the noise, see section 4.1). This yields the dataset which

is called the noisy data. In principle interferometric effects will have to be taken into account as well.

Disentangling the components so the EoR data can be extracted is made easy by the additivity property

of the cumulants κ of a distribution. This additivity property is that κn(x + y) = κn(x) + κn(y) for n ≥ 2.

In all figures the estimate of the statistic from noisy data is plotted and compared with the statistic as

determined from the “pure” signal case as a check on the results.

Computing the statistics

The skewness and kurtosis are used to quantify the evolution of the reionization process. These are

composed of combinations of moments of samples. The estimation of the moments of samples from data

will therefore be discussed first. These estimates of the moments are then used to compute the skewness

and kurtosis. Accurate estimation of the moments is required before the skewness and kurtosis can be

computed. The second moment is commonly called the variance. The variance is the simplest statistic

for the problem of detecting the EoR signal.

Mathematically the sample variance is defined as

σ2 = E((X − µ)2)

=
1
n

n∑

i=1

(yi − 〈y〉)2. (5)

This is the biased sample variance but the number of samples n is always large enough such that the

difference with the unbiased estimator is negligible. The yi correspond to samples of a data set.
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Since LOFAR is an interferometer (which measures only fluctuations), µ = 〈y〉 = 0 and the sample

variance becomes the second raw moment µ2. Furthermore, it has the property of being positive every-

where. It is also the easiest statistic to estimate from noisy data, because it is the lowest order meaningful

statistic.

As explained in Jelić et al. (2008), the EoR signal is expected to be detected statistically as an excess

variance over the noisy data. Making use of the fact that the distributions have zero mean, it is possible

to derive how to compute the second moment of the EoR signal when the second moments of the noisy

data and noise data are given. The excess variance is the second moment of the EoR signal:

µ2(EoR) = µ2(noise + EoR) − µ2(noise). (6)

Here we have used that the second cumulant κ2 = µ2. The third moment is important in estimating the

skewness of a distribution. The third central moment is defined as

µ3 =
1
n

n∑

i=1

(yi − 〈y〉)3. (7)

In a similar manner as above we can derive that

µ3(EoR) = µ3(noise + EoR) − µ3(noise), (8)

where we have used that the third cumulant κ3 equals µ3.

The fourth moment is important for estimating the kurtosis of a distribution. Using cumulants and rewrit-

ing to central moments (using that the fourth cumulant κ4 = µ4 − 3µ2
2) we can derive that

µ4(EoR) = µ4(noise + EoR) − 3µ2(noise + EoR)2 − µ4(noise) + 3µ2(noise)2 + 3µ2(EoR)2. (9)

Note that this statistic requires the estimate of the variance of the EoR signal. Any uncertainties in the

variance will propagate into the uncertainty of the fourth moment.

The main problem with computing the statistics however is that it is difficult to accurately extract higher

order moments from noisy data. From the definition of moments (µn =
∫

xn f (x)dx) it can be seen that if

at some point x f (x) as obtained from observations (due to noise or other contaminating effects) deviates

from the “pure” fpure(x) the estimate of the nth order statistic is off by xn(| f (x)− fpure(x)|). This deviation

gets larger for each order of the statistic. Later on this effect is seen in the size of the error contours on

the estimates of the EoR signal from noisy data.

Now that the estimates of the moments of distributions are known the skewness and kurtosis can be

computed. In estimating these statistics the mean of the estimate of the moments is used as the proper
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value. Error bars on the figures on skewness and kurtosis are computed with error analysis using the

uncertainties on the moments (unlike the Monte Carlo approach used in estimating the moments).

Skewness is defined mathematically as

γ1 =
µ3

σ3 , (10)

where µ3 is the third central moment of a distribution and σ its standard deviation (the root of the second

central moment).

It has the following interpretation: for a normal distribution, the skewness is zero. If the distribution is

not normal and has outliers then it is said to have positive skewness if the outliers lie right of the mean,

and negative otherwise. Skewness can also be thought of as a measure of symmetry of a distribution in

units of σ3.

The excess kurtosis is defined mathematically as

γ1 =
µ4

σ4 − 3, (11)

where µ4 is the fourth central moment of a distribution and σ its standard deviation. For the normal

distribution, σ2 = 1 and the excess kurtosis has a value of 0. Unlike the standard definition of kurtosis,

this definition can turn negative.

It has the following interpretation: for a normal distribution, the excess kurtosis has a value of zero. This

is the standard “peakedness” of a distribution. If a distribution is more “peaked”, i.e. higher kurtosis,

then the peak is higher than that of the normal distribution but the distribution also has wider and thicker

tails. Negative kurtosis has a more rounded peak and thinner tails. A high value for the kurtosis means

that most of the variance of the PDF is due to extreme deviations (the PDF gets thicker and longer tails).

Another way of thinking about the kurtosis (a fourth order statistic) is that it is a measure of fluctuations

in the skewness (a third order statistic).

3.2. The 21-cm PDF from the simulations

Evolution of the 21-cm PDF for different reionization scenarios is always subject to the same physical

principles. In global lines the evolution of the 21-cm PDF of the QSO and hybrid model will therefore

be similar as well. For this reason we will use Figure 4a as the main example in discussing the evolution.

The same physical principles can be applied to Figure 4b just as easily.

Most authors argue that in early reionization (and ignoring spin temperature fluctuations) the shape of

the 21-cm PDF is expected to be Gaussian. This is because the Universe is largely neutral everywhere
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(a) 21-cm PDF of the QSO model.
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(b) 21-cm PDF of the Hybrid model.

Fig. 4: Each subsequent distribution in both panels has its value decreased with an additional factor of 100 for

clarity of presentation. Lines from top to bottom display distributions for the redshifts 12.19, 11.88, 11.41, 11.04,

10.48 and 9.36.

and fluctuations in the PDF are then driven by primordial fluctuations in the density field δ. These latter

fluctuations in δ are Gaussian in the linear regime. However, when fluctuations in the spin temperature

are taken into account the resulting 21-cm PDF is no longer Gaussian. The 21-cm PDF shown in Figure

4a is clearly non-Gaussian (where the top line corresponds to the highest redshift, decreasing as you go

down the lines). Note that the ordinates are in logarithmic scale.

In the top line of Figure 4a a roughly bimodal PDF is seen, one peak centered in absorption and the other

in emission. If Ly-α photons exist to decouple Ts from TCMB to Tk (which is lower than TCMB at this

time), an absorption signal arises. The amplitude of the absorption signal is mostly determined by the

temperature of the IGM and the strength of the coupling of Ts to Tk. The absorption peak is much larger

in amplitude than the emission peak by about two orders of magnitude in this early reionization phase.

The Universe is mostly visible in absorption at z = 12.19.

The second line (at z = 11.88) shows the Universe with a relatively stronger absorption signal than

emission signal. The absorption signals that exist have higher amplitude. This increase in amplitude is

due to better coupling of Ts to Tk. Tk is still low because heating has not started yet because photons

still need to percolate throughout the Universe. As more Ly-α photons come into existence the coupling
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strength increases and this has the effect of better coupling Ts to Tk, which will continue to increase the

amplitude of the absorption signal for as long as the IGM is not significantly heated.

For the cold IGM (regions devoid of photons with the ability to heat the IGM) at these redshifts the matter

temperature is on the order of a factor ∼ 10 lower than the CMB temperature (see Couchman, 1985). This

can enhance the amplitude of the δTb signal 10-fold. The trend to more negative δTb is a consequence of

a steadily dropping spin temperature towards Tk. This is due to increasing Ly-α flux density.

At the same redshift we see a peak is start to appear around δTb = 0. This is a consequence of the first

ionized regions appearing in the Universe. The timescale for recombination in the IGM is large enough

that when something gets ionized, it stays ionized. Compare with the lowest line in Figure 4a where a

significant fraction of the points is ionized and stays at δTb = 0. Once the Universe is ionized no further

evolution of the PDF is expected.

For the late Universe (the lower lines in Figure 4a), the emission peak is mostly dominated by struc-

tures that are not that overdense that they have been ionized (because of the expected correlation be-

tween ionization fraction and high-density regions, ignoring recombination). These are the intermediate

δ structures. The IGM has been heated to high temperatures and in this case Ts � TCMB and the 21-cm

signal is independent of Ts. Summarizing: δ � 1,Ts � TCMB and xHI = 1. An intermediate δ structure

will continue to collapse, thereby increasing the amplitude of its 21-cm signal, until the point where it

becomes ionized and shifts back towards δTb = 0.

3.3. Fitting the 21-cm PDF and the Q distribution

From equation 4 it can be seen that the key components of the 21-cm PDF (aside from the cosmology)

are the cosmological overdensity field (1 + δ), the neutral fraction xHI and the spin temperature contri-

bution Q = (Ts − TCMB)/Ts. The differential brightness temperature is an observable (after removal of

foregrounds and instrumental noise), the contribution of the cosmological overdensity field is in princi-

ple known and the ionized fraction can be extracted directly from the 21-cm maps, for example with the

difference PDF (see Gluscevic and Barkana, 2010). The only unknown is the underlying distribution of

the quantity Q. Q is an excellent tracer of the early physics of the reionization process. To illustrate that

it is possible to reconstruct the 21-cm distribution from (1 + δ), xHI and Q maps data from simulations is

taken. These provide all required quantities.

Two methods of creating mock 21-cm PDFs have been investigated, the first one being direct integration

of the component distributions of the neutral fraction, the cosmological density field and Q. The second

method is straightforward multiplication of random sample values.
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From direct integration

If the analytical form of all functions in equation 4 are known then the resulting 21-cm distribution can

be computed via direct integration. Formally, the distribution P(t) of the product of n distributions is

defined as

P(t) =

"
P1(x)P2(y) . . . Pn(z)δ(xy . . . z − t)dxdy . . . dz (12)

The delta-function makes this a difficult integral to compute numerically. Therefore, for the case where

the Universe is completely neutral the distribution of the neutral fraction is taken to be single-valued (1).

This allows us to rewrite equation 12 as

P(δTb) =

∫
1
δ

P1(δ)P2(δTb/δ)dδ (13)

Here P1(δ) is the PDF of the cosmological density field and P2(δTb/δ) is the contribution of the quantity

Q. For P2(x) our multi-parameter model was used to compute the integral (see section 3.5). This function

has limits set on x: xupp = 1 is the upper limit for the case where Ts � TCMB. The lower limit is set

by the coldest temperature of the IGM, given by Couchman (1985). The expected temperature of the

IGM without heating is thought to be Tk(z) = 2.6 × 10−2(1 + z)2. The theoretical lower limit is then

xlow = (2.6 × 10−2(1 + z)2 − TCMB,0(1 + z))/(2.6 × 10−2(1 + z)2). To see the feasibility of this approach

see Figure 5, which shows the result of computing equation 13.

Note that the horizontal axis does not show δTb but rather Q. This is a result of the variable of P2(x).

In going from equation 12 to equation 13 the coordinate transformation δQ = u was made, and via

integrating over u we obtain δTb = u. Since δ is mostly of order unity the algorithm uses most of the

points where u ' Q.

From randomly chosen samples

Another method to obtain an estimate of the 21-cm distribution is via multiplication of randomly chosen

samples. Suppose we have N samples of the quantities in equation 4, say, xHI,1, . . . , xHI,N and likewise

for the other quantities, we can construct a δTb,1 by multiplying (1 + δ)1xHI,1Q1 with the remaining

factors in equation 4. Doing this for all N samples yields N samples for δTb. In taking these samples

we take care that the combination of samples are representative of their distributions. A comparison of

this method with the data taken from the simulation is shown in Figure 6. Some deviations with the

data are expected since the variables are not uncorrelated. For example, for the highest density regions

one expects to find relatively high Q-factors because of relatively higher Tk. Regardless, the fact that the

sample multiplication works well means that the correlation is rather weak.
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Fig. 5: Direct integration of distributions to compute the 21-cm distribution, using equation 13.

From simulation snapshots

Using the simulation snapshots of δ, xHI and Ts we can compute snapshots of δTb using equation 4. These

computed snapshots contain samples of δTb values and this allows us to compute the PDF of δTb directly

by creating a histogram. In this section we will use the results from the QSO simulation. This PDF is

uncorrupted by the problems that the real data will suffer from. Instrumental noise, Radio Frequency

Interference (RFI), beam smearing, incomplete calibration will all degrade the signal-to-noise ratio of

the cosmological signal.

The 21-cm PDF is essentially a product of 3 separate distributions, the Gaussian / lognormal distribution

of the density field (depending on the amount of nonlinearity in structure formation), the bimodal distri-

bution of the neutral fraction xHI (in the BEARS code) and lastly, the distribution ofQ = (Ts−TCMB)/Ts.

The quantity Q = (Ts − TCMB)/Ts is an excellent tracer of decoupling mechanisms in the early stages

of reionization, as well as tracing the first heating of the IGM. What types of reionizing sources there

exist in the Universe might be constrained via estimating the timescales required to heat the cold IGM to

above the TCMB temperature.
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from the simulation.

The distribution of the spin temperature itself was examined at first, but it has a shape unsuitable for

investigating the physics. One of the reasons is that the domain of the spin temperature is essentially

(0,∞), whereas for Q this is (strictly speaking) (−∞, 1]. However, in practice the lower limit of Q is

bounded by the lower limits set on Tk by Couchman (1985) (the theoretical minimum value of Q is on

the order of −10).

It turns out that the shape ofQ has very distinct properties in the onset of reionization (for some examples,

see Figure 7). Therefore we set out to model it. For instance, if Ts is fully coupled to Tk (which it almost

always is, except perhaps for very early reionization) then Q is a measure of the temperature of the IGM.

If Ts is not fully coupled to Tk then Q is a measure of the first Ly-α photons propagating throughout the

Universe.

For several redshifts the distribution of Q points is shown in Figure 7. A rich structure is seen in the

distribution. Points where Q < 0 correspond to regions where δTb < 0. Conversely, points where Q > 0

correspond to regions where δTb > 0.
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Fig. 7: From top to bottom: distribution of Q for the QSO model for a range of redshifts. The dashed red line is the

fit from equation (16). The solid blue line is the simulated data.

Globally, from high redshift to low redshift, points shift towards lower Q, corresponding to a cooling

down of the Universe due to its expansion. After a short time this trend is reversed and points shift

towards higherQ (the onset of heating), to finally end with all points being atQ = 1 (all points sufficiently

hot such that Ts � TCMB).

The physical significance of the Q-distribution is as follows: at the highest redshifts, in the DA, no

sources exist and in the absence of coupling mechanisms the spin temperature is coupled to TCMB. As

the first sources form, photons start to come into existence and these decouple Ts from TCMB to Tk. Even

though the energy requirements for this process are very low (because of the small energy level spacing

in the ground state of neutral hydrogen) it does not proceed instantanously. Depending on the amount of

sources, their distribution and the source properties it can take several hundred Myr to fully couple Ts to

Tk in the entire Universe.

The IGM in the DA has Tk much lower than TCMB and continues to grow colder because of the ongoing

expansion of the Universe. The shift of Q to lower values reflects this process. Because the energy

requirements for heating are much higher than those for Ly-α level mixing the timescale on which the
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IGM gets reheated is much larger as well. This means there will be a phase in reionization in which the

spin temperature will be fully coupled to the cold gas. This gives rise to a Universe mostly visible in

absorption with Q < 0 and thus with δTb < 0.

In a slightly later stage points start to move from their lowest value of Q towards larger values of Q. This

is a result of heating processes that heat up the IGM. As heating is driving Tk towards TCMB and beyond

the value of Q will increase (and eventually change sign). In the later stages of reionization the IGM will

be much hotter than TCMB and with an abundance of Ly-α coupling photons Ts will generally exceed

TCMB everywhere, causing Q to be 1 everywhere (Q = 1 when Ts � TCMB).

Note that changes at low Q can happen much faster than those at high Q: the temperature difference

between two points at Q2 and Q1 is: ∆Ts = TCMB

(
1

1−Q2
− 1

1−Q1

)
. Here Q2 > Q1. As Q2 approaches 1, the

temperature difference approaches infinity. A small energy input in the absorption regime is sufficient

to push points into the emission regime. This is seen in the third and fourth panel of Figure 7: the large

peak in absorption in the third panel has almost vanished in the fourth panel, even though the redshift

difference between the two is small. The progression of points in the emission regime fromQ = 0 towards

Q = 1 takes much more time.

3.4. Skewness and kurtosis results

The definitions of the skewness and kurtosis require that the moments of the distributions are known.

The results from the estimation of the moments are therefore presented first, followed by the results of

the estimation of the skewness and kurtosis.

Estimating the second moment

The results of the estimation can be seen in Figure 8 for both models. This Figure has been obtained by

using equation 6. The top panel corresponds to the QSO model. The bottom panel corresponds to the

hybrid model. The estimate of the EoR signal agrees well with the true EoR signal. The error contour is

very thin, reflecting the fact that the method is precise. However, sometimes the true value lies outside

the contour. This underlines the importance that a small set of strong outliers can have on estimation of

the statistic: when they are not included the estimate of the EoR signal does not agree with the real value.

Repeated estimation of the EoR signal with a Monte Carlo method does not yield accurate standard

deviations on the estimate. In this case the estimate is wrong for z < 6.5 for the QSO model. This is

because the Universe is strongly ionized by now, but with a few outliers (which represent points that

have not ionized yet).
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Estimating the third moment

The results of the estimation can be seen in Figure 9 for both models. The third moment has been

estimated using equation 8. The method succeeds rather well in estimating the global features of the

third moment. However, the third moment suffers from the same problem as the second moment does:

some outliers have such strong influence that the estimation does not always coincide with the true value.

A nice example of how difficult it is to estimate moments accurately is the third moment of the noise.

From the theory we expect this to be zero (the noise is modelled by a Gaussian which is symmetric and

therefore the third moment is expected to be zero). The third moment is centered around zero but the

estimate is not as accurate as it could be.

Estimating the fourth moment

The results of the estimation can be seen in Figure 10 for both models. The fourth moment has been

estimated using equation 9. The estimate of the fourth moment is the most accurate in the redshift range

11.8 & z & 10.2 for the QSO model. For the hybrid model this range is 11.3 & z & 9.5. This is because

the fourth moment of the EoR and noise is stronger than that of the noise. Another problem is that the

estimate of the EoR signal is dependent on the estimate of the fourth moment of distributions of the EoR

signal + noise and noise, which are difficult to estimate. For the remaining redshift ranges the estimate is

again precise but inaccurate. However, it is able to capture global features of the signal.

The skewness for the 21-cm PDF is shown in Figure 11 for both models. However, as the evolution of

the skewness is similar for both models (as they are subject to the same physical principles) we choose

to discuss only the QSO model. Six stages in the evolution of the skewness can be distinguished in this

image. The transition between these six can be connected to several stages of the reionization process

(see Table 1).
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Stage A (z = 12.2 − 11.8) The skewness is negative in this regime and grows to positive values.

Outliers lie mostly to the left of the mean. The increase is not interpreted

as outliers shifting more towards the mean or to the right of the mean, in-

stead the mean is shifting farther left (compare with Figure 4a). The mean

shifting to more negative values of δTb is because at z = 12.2 Ts is not

fully coupled to Tk, instead it is somewhere inbetween Tk and TCMB. As

the coupling grows stronger with redshift the spin temperature approaches

Tk and eventually couples, enhancing the strength of the absorption signal.

This causes the mean to shift towards more negative values.

Stage B (z = 11.8 − 11.4) The skewness is positive in this regime and stays approximately constant

over this redshift range. The PDF in Figure 4a however does change con-

siderably. In this redshift regime the emission peak at positive δTb values

is gaining in strength while the center of the absorption peak is shifting to-

wards increasingly negative values. The skewness being negative indicates

that the absorption signal is still significant in the Universe. The first traces

of ionized regions start to appear, judging from the rising peak at δTb = 0.

That the skewness stays constant is a coincidence of the mean of the distri-

bution shifting left (which would increase the skewness) in such a way that

it compensates for the outliers (which stay predominantly left of the mean).

The underlying cause of this is points still in the process of coupling Ts to

Tk.

Stage C (z = 11.4 − 10.4) Stage C sees a decrease in the skewness in this redshift range. From Figure

4a we see that the Universe is now mostly visible in emission. The mean

of the PDF is rapidly shifting towards positive values but does not become

positive yet. This shift to positive values is because the gas is continually

being heated and since Ts is coupled to Tk the average differential bright-

ness temperature rises. The shift to the right is the cause of the skewness

becoming more negative, there are now essentially more points left of the

mean.
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Stage D (z = 10.4 − 10.2) This redshift regime is interesting because the skewness undergoes a tran-

sition from negative values to positive values. After z = 10.7 the mean of

the PDF makes the transition from negative to positive values. Most of the

gas in the Universe now has temperatures above the CMB temperature. In

this redshift regime the absorption peak is sufficiently weak that emission

is now the dominant component in the Universe. So clearly this regime is

the transition between an absorption- and an emission-dominated Universe.

The time between z = 12.2 and z = 10.7 is approximately 115 Myr. This

is the timescale required for the first photons to permeate the Universe and

heat it to above CMB temperatures. The increase of the emission peak is

the cause of the skewness becoming positive.

Stage E (z = 10.2 − 8.5) In this regime the skewness stays roughly constant. The mean of the PDF

is slowly shifting to the left. This effect alone would increase the skewness,

however, as ionization of the Universe proceeds more points in the PDF

shift towards δTb = 0, balancing this increase. The net effect is that the

skewness stays approximately constant.

Stage F (z = 8.5 − 6.0) The mean is rapidly converging to δTb = 0. As reionization proceeds points

shift towards δTb = 0. The effect of the mean converging and points shifting

left would lead to an expected decrease in skewness. However, there are a

few points in the Universe with high δTb that function as “extreme outliers”,

causing a sharp rise in the skewness.

However, the global trend is a rise from negative values to positive values, with a flat plateau inbetween

8.4 . z . 10.2, and a rise afterwards. The first rise is due to the ongoing heating of the Universe, moving

from an absorption-dominated phase to an emission-dominated phase. The plateau is the result of the

following effect: δTb points are shifting towards δTb = 0 because of ongoing ionization in the Universe ,

which would increase the skewness. However, the overall distribution of δTb points is shifting such that

the mean moves to the left as well so that the end result is a constant skewness. For z < 8.4 a sharp rise in

the skewness is seen. The mean of the distribution is very near δTb = 0 with the remaining non-ionized

points in the Universe causing positive skew.

Estimating skewness from noisy data is considerably more difficult: it is a higher order statistic and un-

certainties in estimating higher order moments complicate the process. In theory the problem is straight-

26



3 STATISTICS 3.4 Skewness and kurtosis results

6789101112
Redshift z

10-1

100

101

102

103

104

�

2
 o

f 
th

e
 2

1
-c

m
 P

D
F

�2 (EoR)
�2 (noise)

�2 (EoR+noise)
�2 (est.)

120 140 160 180 200
Frequency [MHz]

10-1

100

101

102

103

104

(a) µ2 of the QSO model.
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Fig. 8: The solid black line is µ2(EoR). The solid blue line is µ2(noise). The dashed green line is µ2(EoR + noise).

The dotted red line is the estimate of µ2 from the noisy data as given by equation 6. The contour areas represent

the 2σ domains of the estimation of the values from the limited number of samples. The light-grey shaded area

represents the range of µ2 values for the noise. The darker grey shaded area represents the range of µ2 values of the

EoR signal. The orange area represents the range of µ2 values of the estimation of the EoR signal.

27



3.4 Skewness and kurtosis results 3 STATISTICS

6789101112
Redshift z

�1.5

�1.0

�0.5

0.0

0.5

�

3
 o

f 
th

e
 2

1
-c

m
 P

D
F

1e5

�3 (EoR)
�3 (noise)

�3 (EoR+noise)
�3 (est.)

120 140 160 180 200
Frequency [MHz]

�1.5

�1.0

�0.5

0.0

0.5

1e5

(a) µ3 of the QSO model.

6789101112
Redshift z

�2.0

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0

�

3
 o

f 
th

e
 2

1
-c

m
 P

D
F

1e5

�3 (EoR)
�3 (noise)

�3 (EoR+noise)
�3 (est.)

120 140 160 180 200
Frequency [MHz]

�2.0

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

2.0
1e5

(b) µ3 of the hybrid model.

Fig. 9: The solid black line is µ3(EoR). The solid blue line is µ3(noise). The dashed green line is µ3(EoR + noise).

The dotted red line is the estimate of µ3 from the noisy data as given by equation 8. The contour areas represent

the 2σ domains of the estimation of the values from the limited number of samples. The light-grey shaded area

represents the range of µ3 values for the noise. The darker grey shaded area represents the range of µ3 values of the

EoR signal. The orange area represents the range of µ3 values of the estimation of the EoR signal. Note that the

ordinate is in units of 105.
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Fig. 10: The solid black line is µ4(EoR). The solid blue line is µ4(noise). The dashed green line is µ4(EoR + noise).

The dotted red line is the estimate of µ4 from the noisy data as given by equation 9. The contour areas represent

the 2σ domains of the estimation of the values from the limited number of samples. The light-gray shaded area

represents the range of µ4 values for the noise. The darker grey shaded area represents the range of µ4 values of the

EoR signal. The orange area represents the range of µ4 values of the estimation of the EoR signal.
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Fig. 11: Skewness (γ1) of the δTb distribution. The solid black line is γ1(EoR). The solid blue line is γ1(noise).

The dashed green line is γ1(EoR + noise). The dotted red line is the estimate of γ1 from the noisy data as given by

equation 14. The contour areas represent the 2σ domains of the estimation of the values from the limited number

of samples. The light-gray shaded area represents the range of γ1 values for the noise. The darker grey shaded

area represents the range of γ1 values of the EoR signal. The orange area represents the range of γ1 values of the

estimation of the EoR signal.
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forward to solve:

γ1(y) =
µ3(y)
µ2(y)3/2 =

µ3(x + y) − µ3(x)
(µ2(x + y) − µ2(x))3/2 , (14)

where x is shorthand for noise, y is shorthand for the EoR signal. However, even though the error bars

grow with respect to the µ2 case, we still succeed in estimating γ1 correctly for 11.7 & z & 7.3. Global

features are captured for the remaining redshifts but outliers are such that the estimate is inaccurate. This

is mostly due to the difficulty in estimating µ3.

Our estimate of the excess kurtosis is shown in Figure 12 for both models. The evolution of the kurtosis

will only be discussed for the QSO model. The kurtosis can only be estimated accurately for 11.4 & z &

10.8 for the QSO model. The estimation for the hybrid model is inaccurate. Global features are captured

roughly for the remaining redshifts but difficulties in estimating µ4 cause the estimation of the kurtosis to

be inaccurate. Similarly as the skewness we can identify six stages in the evolution of the excess kurtosis

(see Table 2). The redshifts of the changes in the kurtosis do not coincide in all cases with the redshifts

of changes in the skewness. We will discuss them separately. To avoid confusion, we will number them

in roman numerals.

Stage I (z = 12.2 − 11.4) Decreasing kurtosis. The differential brightness temperature δTb is slowly

growing increasingly negative in the process of coupling Ts to Tk. As this

coupling increases the values of δTb lie increasingly close together (con-

verging to maximum coupling). The Universe in this stage is in a near uni-

form state: largely neutral, spin temperature Ts between TCMB and Tk.

Stage II (z = 11.4 − 10.4) Increasing kurtosis. In this regime the mean δTb shifts from positive to neg-

ative. As shown for the skewness, this regime contains the transition from

an absorption-dominated Universe to an emission-dominated Universe.

Points at negative δTb now shift towards positive δTb and in doing so shift

through the mean. At z = 11.0 the rate of increase in the kurtosis slows

down. The rate at which outliers move or are created must then slow down

as well. The mechanism that shifts points from negative δTb to positive is

primarily connected to heating rate. The minimum in the kurtosis is located

at z = 11.4. At this redshift the absorption and emission peak are approx-

imately equal in height, with the mean to the right of the absorption peak.

This configuration of peaks causes the lowest value for the kurtosis.
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Stage III (z = 10.4 − 8.3) In this regime the kurtosis decreases. The mean varies between 13 and 23

mK. The data points in absorption completely vanish in this regime and

the central peak at δTb = 0 continues to grow. The trend for points is to

shift from high δTb values to δTb = 0 because of ongoing ionization. This

explains the decrease in the mean δTb from z = 10.2 to z = 8.5. This can

be seen as a decrease in outliers, and therefore decreasing kurtosis. The

decrease in the mean sets in when the peak at δTb = 0 is larger than the

emission peak and continues to grow.

Stage IV (z = 8.3 − 6.0) In this final regime the kurtosis is strongly increasing. The mean is still

shifting towards δTb = 0 and the peak at δTb = 0 is still growing. This

increase in the height of the peak causes the kurtosis to stay high, even

though there are comparatively fewer outliers due to the final neutral spots

in the Universe becoming ionized (driving xHI → 0 in equation 4). There

are still some spots in the Universe that haven’t been ionized yet and these

function as outliers, causing the kurtosis to rise.

Globally, the excess kurtosis is positive everywhere. To analyze the kurtosis it makes sense to think in

terms of outliers. If the kurtosis is positive, there is a higher probability of outliers (as compared with

a Gaussian distribution). Conversely, if it is negative, there is a lower probability of outliers. For all

redshifts there are outliers at high values for δTb. This causes the kurtosis to be positive everywhere.

Trends in the kurtosis are that it drops rapidly to a global minimum in early reionization until z ' 11.4,

after which it picks up again to about z ' 10.4, followed by a slow decrease until z ' 8.4. Lastly, the

kurtosis rises sharply.

The first drop until z ∼ 11.4 is a result of the mean shifting towards more negative δTb values as Ts is

being coupled to Tk. As most of the Universe is in the absorption regime the difference between 〈δTb〉
and points in the absorption regime gets smaller, reducing the kurtosis.

The stage where the kurtosis picks up (10.4 . z . 11.4)) is the regime where the mean of the 21-cm

PDF shifts from the absorption regime towards the emission regime. The transition from absorption to

emission happens on a short timescale, causing most of the points in the 21-cm PDF to move quickly

towards emission. The change of the mean towards emission happens on a longer timescale so in effect

there are more outliers, causing the kurtosis to rise.
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The following decrease for 8.4 . z . 10.4 has the same cause as the plateau in this redshift regime for

the skewness. The sharp increase in kurtosis for z . 8.4 shares the same cause as the skewness: ongoing

ionization of the Universe drives 〈δTb〉 → 0, but high δTb points still exist.

Estimating the kurtosis of the EoR signal can be done in theory. Additivity of moments again yields

γ2 =
µ4(y)
µ2(y)2

=
µ4(x + y) − 3µ2(x + y)2 − µ4(x) + 3µ2(x)2 + 3µ2(y)2

(µ2(x + y) − µ2(x))2 . (15)

Note that this statistic depends on the estimate of the second moment of the EoR signal µ2(y). Any

uncertainty in this statistic will propagate into the uncertainty of the estimate of the kurtosis. There is no

valid estimation within the redshift range 6 . z . 7 and this gives rise to the artifacts in Figure 12.

3.5. The Q distribution and its fitting parameters

The individual components used in modelling the Q-distribution will be described. Our aim was to use

a model with as little parameters as possible. Furthermore, these parameters should be connected to the

physics.

The top panel in Figure 7 (with data taken from the QSO model) shows the necessity of having a dis-

tribution that looks like an inverted lognormal component in our model. Strictly speaking Q follows a

ratio distribution here: Ts is approximately Gaussian at this epoch and the ratio of (Ts − TCMB)/Ts looks

like an inverted lognormal. However, since the analytical form of the ratio distribution is complicated the

lognormal distribution was inverted. How this is done will be detailed later.

The second panel shows that an inverted lognormal distribution alone is not sufficient to model the

absorption part. We have added a Gaussian to model the points that are colder (lowerQ-value). Generally

this Gaussian component lies to the left of the peak of the inverted lognormal component. As the Universe

heats up (see the flat plateau for Q < 0 in panels 4 and 5) the Gaussian is suitable to model the last

remaining cold spots in the IGM.

In the bottom three panels a bump is seen around Q = 1/3. How this bump comes into existence is

discussed later in the text, but for now we decide to model this with a Gaussian distribution.

Points that approach Q = 1 are undergoing heating (Ts is certainly coupled to Tk in this regime) and

the shape of points moving from lower Q to Q = 1 is such that it can be modeled via an exponential

distribution. The temperature difference in Q-bins increases as one approaches Q = 1. The distribution

will then naturally tend to an exponential.
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(a) Excess kurtosis of the QSO model.
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Fig. 12: Excess kurtosis (γ2) of the δTb distribution. The solid black line is γ2(EoR). The solid blue line is γ2(noise).

The dashed green line is γ2(EoR + noise). The dotted red line is the estimate of γ2 from the noisy data as given by

equation 15. The contour areas represent the 2σ domains of the estimation of the values from the limited number

of samples. The light-gray shaded area represents the range of γ2 values for the noise. The darker grey shaded

area represents the range of γ2 values of the EoR signal. The orange area represents the range of γ2 values of the

estimation of the EoR signal.
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To summarize: the absorption part is modelled with a Gaussian distribution and an inverted lognormal

distribution. This inverted lognormal distribution L(x) is defined as follows: for x < 0, L(x) = f (−x)

and for x ≥ 0, f (x) = 0, where f (x) is the usual lognormal distribution with parameters µ and σ. The

parameters µ and σ are always such that modelling the lognormal in this way does not give rise to

discontinuities.

The emission part is modelled with an exponential and Gaussian distribution. The full distribution is

given as follows:

P(x) = αG(x|µ1, σ1) + βL(x|µ2, σ2) + γG(x|µ3, σ3) + (1 − α − β − γ)E(x|λ), (16)

where E(x|λ) = λ exp(λ(x−1)). The parameters α, β and γ are the normalized fractions of each component

of the model. The inequality α+ β+ γ ≤ 1 has to be satisfied in the fitting. Furthermore, the distributions

themselves need to be properly normalized (i.e.
∫

f (x)dx = 1).

3.6. Particular feature: Q = 1/3

One interesting feature of the Q-distribution is the bump around Q = 1/3. It is clearly visible in the data

in the redshift range 10.70 . z . 11.88. The question is how this peak comes into existence. It can be

explained by looking at the definition of the spin temperature. Using equation 2 and writing

Tk = ηTCMB, (17)

assuming that yc = 0 (collisions unimportant which is a valid assumption on the scales we are looking

at) we can derive

yα =
−ηQ

1 − η + ηQ . (18)

yα is the Ly-α coupling strength coefficient and η is a measure of the temperature of the IGM. Equation

18 has two limiting cases for Q = 1/3: yα → ∞ for η → 3/2 and yα → 1/2 for η → ∞. We discard

the last possibility because it is unphysical, leaving us with the situation where we have lots of Ly-α

photons in a relatively cold region (the yα coupling strength is proportional to the local flux density of

Ly-α photons). This points at the Q = 1/3 feature being connected to having lots of Ly-α photons in a

spherical shell around the source.

In order to explain the bump there are two components to be analyzed: the “rise” of the bump towards

Q = 1/3 and the “fall” onwards from Q = 1/3. Points do not preferentially stay around Q = 1/3

because of the ongoing heating of the Universe. The bump is the result of cold IGM spots getting heated

to ∼ 3
2 TCMB and flowing “in” to the bump minus the spots in the bump getting heated to temperatures

35



3.6 Particular feature: Q = 1/3 3 STATISTICS

1.2 1.3 1.4 1.5 1.6 1.7
�

0.20

0.25

0.30

0.35

0.40

Q

Fig. 13: Contourplot of yα versus Q and η. The top left corner can be ignored: those contain values outside the

domain of validity of equation 18. Light values denote small values, the dark blue values denote large values.

beyond ∼ 3
2 TCMB and thus flowing “out”. The bump disappears when most points in the Universe are

hotter than 3
2 TCMB (i.e. no more inflow and the phenomenon disappears).

The answer is of a geometrical nature: the fact that a bump is seen means that there are many points

around Q = 1/3. Assuming Ts = Tk this corresponds to a zone where Tk is around 3
2 TCMB. Because

of the spherical symmetry employed in BEARS, every radiative source has a shell around it where the

temperature is on the order of 3
2 TCMB. As time proceeds this shell will expand radially outwards until it

disappears when most of the Universe is heated to temperatures exceeding 3
2 TCMB and these shells start

to merge with those of other nearby sources.

The fall of the bump after Q = 1/3 naturally corresponds with the volume decrease in shell size of those

points with temperatures exceeding Tk = 3
2 TCMB. The increase seen in the number of points with Q > 1

2

(beyond the bump) is explained by the fact that the size of the temperature bins for the largest Q values

is much larger and more points fall within that region.
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Fig. 14: All panels correspond to the corresponding parameters in equation 16. The legend is in the format -


∣∣∣ , where function can be G1 for the Gaussian defined in the absorption regime, G2 for the Gaussian

in the emission regime, L for the inverse lognormal function or E for the exponential function. Only those points

of the parameters have been plotted where the probability of their component exceeds 0.05.

3.7. Evolution of the fitting parameters of the Q distribution with redshift

In Figure 14 we present the evolution of the fitting parameters of equation 16 with redshift. Only points

whose components have weights larger than 0.05 are plotted in the Figure. The top left panel shows

the sum of the probabilities of the absorption (α + β) and the emission (γ + δ) components. For clarity,

δ = 1 − α − β − γ and it thus models the fractional probability of the exponential component. While

the absorption component is dominant in the early Universe it decreases almost monotonically with a

corresponding rise in the emission component.

The rest of the panels are best interpreted alongside with the help of Figure 7. We see that the parameters

µ1 and σ1, describing the location and shape of the first Gaussian, partially model the absorption peak

in early reionization. However, later on the fitting algorithm uses this component to model the much

smaller remains of the cold IGM in the Universe. It fills two roles and one should be careful not to mix

37



3.8 Influence of changing parameters on the results 3 STATISTICS

the two stages. µ1 starts at −0.5, decreases towards −3 and then increases to −0.5. σ1 is small at first

and grows gradually broader. This change in parameters corresponds with a decrease in importance: α

goes to zero as these parameters change. In all cases the first Gaussian can be thought of as modelling

the points in the Universe that are “lagging behind” on heating, i.e. points that are not subject to the

dominant physical process at work. In early reionization because it is left of the inverted log normal

peak and in late reionization because it models the low Q values while the majority of points is at high

Q. The inverted lognormal distribution parametrizes the ratio distribution where Gaussians are involved.

The additional Gaussian can then be thought of as modelling the nongaussianity in Ts.

Similarly, µ2 and σ2 are the inverse lognormal component to the absorption peak, which (as we can see

in Figure 7) almost completely vanishes after some time. This is why the contribution of the lognormal

is negligible for lower redshifts (β→ 0). It represents the majority of the points in the absorption regime:

first the lognormal component models most points cooling down with the expansion of the Universe,

followed by modelling most points heating up from the absorption to the emission regime. After this last

phase its contribution is essentially zero. It is the contribution of those Ts points which follow a Gaussian

or nearly Gaussian distribution.

For the emission parameters µ3, σ3 and λ the situation is much simpler. These model one physical mech-

anism at work: they represent the ongoing heating of points in the Universe (as opposed to heating and

cooling for the earlier case). The Gaussian is required to model the bump seen around Q = 1/3 and the

exponential the increase of points seen towards Q = 1. Looking at the data in detail there are several

bumps between the absorption peak and before Q. Each of these smaller bumps can be connected to a

heating bubble around a source as the Universe is being reheated. However, the bump at Q = 1/3 is the

most pronounced.

3.8. Influence of changing parameters on the results

BEARS is well suited to explore a wide variety of source properties such as their lifetime, radiation

spectrum and clumping factor of their surroundings. Of these properties the radiation spectrum is the

most influential.

The largest influence is expected to be found in the distribution of Q: changes in Q are governed by

changes in the efficiency of the coupling mechanisms as well as the evolution of the temperature of the

IGM. The low end of the radiation spectrum is mostly responsible for coupling Ts to Tk (which could

be constrained by the speed of the initial shift from negative Q to even more negative Q), while the high

end of the radiation spectrum is mostly responsible for heating the IGM (which could be constrained
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by the speed of points shifting from negative Q to higher Q). Photons at 13.6 eV are the most efficient

at ionizing the IGM. The growth in size of ionizing bubbles might constrain this particular part of the

radiation spectrum.

Changes are expected for the 21-cm PDF as well: sources that are efficient at heating will shorten the

duration of the absorption phase of the Universe, while sources that are inefficient at heating (such as

stars as the only reionizing sources) will prolong the duration of the absorption phase. This will show

in the statistics as well: changes of skewness and kurtosis will happen on shorter (longer) timescales

depending on how fast (slow) sources heat up the IGM.

4. Observational effects

4.1. LOFAR properties

It is unlikely that the next generation of radio telescopes will be able to image the EoR signal directly.

This is because the observations of the EoR will suffer from instrumental noise, beam smearing, RFI,

calibration errors and so on. Furthermore, the sensitivity, resolution and noise properties of these tele-

scopes are not good enough. The EoR signal will therefore be detected statistically at first. In order to

detect the cosmological signal as accurately as possible the foregrounds (among other effects) have to be

removed. In this paper we will assume that this removal is feasible (see for example Jelić et al., 2008).

Also calibration errors are assumed to be negligible (see Lampropoulos et al., 2010, in prep). The RFI

errors can be taken out of the data via flagging it. The noise contribution that we do take into account is

frequency-dependent non-RFI errors from the sky. The limited resolution of LOFAR causes the images

to be smeared as well (commonly called beam smearing).

4.2. Noise calculation and addition

A standard LOFAR setup is assumed: the size of a LOFAR station is assumed to be 30 m, and we take

2 km for the maximum baseline length (corresponding to an approximate size of the LOFAR core). The

level of noise expected is on the order of 100 mK. The field of view is roughly 5◦ × 5◦. The contribution

from non-RFI noise is taken from a Gaussian distribution. As a first-order approximation we generate

5123 pixels with values corresponding to a Gaussian distribution with the appropriate noise parame-

ter (the frequency-dependent sky noise). However, the noise is also subject to the LOFAR resolution.

Therefore this distribution is smoothed with a kernel with the same size as the LOFAR resolution. Since

39



4.3 Measuring higher order statistics with LOFAR 4 OBSERVATIONAL EFFECTS

smoothing causes the standard deviation of the distribution to change the values are renormalized such

that the smoothed noise map has the appropriate standard deviation.

The expected standard deviation for the noise (at 150 MHz, with 400 hours of observation and 1 MHz

frequency bandwidth) is expected to be on the order of 52 mK. For this reason we model it as

σnoise = 52 mK
(

ν

150 MHz

)−2.55
. (19)

The maps of the differential brightness temperature are smoothed with the same kernel. To create a

corrupted 21-cm map, the smoothed noise is added to the smoothed map of the 21-cm signal.

In the following sections it is assumed that the noise properties are known. Estimating the noise with

LOFAR is in principle possible by, for example, doing observations on an extended calibrated source.

The difference between the observed temperatures along the different line of sights is then a sample from

the noise distribution. Repeating this should allow one to reconstruct the parameter σ of the Gaussian

distribution.

4.3. Measuring higher order statistics with LOFAR

Measuring higher order statistics with LOFAR can be done. However, the problem is that each successive

statistic can be thought of as representing fluctuations in the lower-order statistic. The higher order the

statistic to be estimated is, the more samples are required to obtain an accurate estimation of the statistic.

A few factors influence how easily data can be obtained from LOFAR. An example is its field of view.

The field of view represents the area in the sky that the telescope can collect data from. The larger the

field of view, the more data samples can be taken (with constant resolution). The resolution is another

important metric: it represents the number of independent elements that a telescope can detect from the

sky. The resolution of an interferometer like LOFAR depends on the baseline length and the wavelength

of the radiation to be detected. The larger the baseline, the better the resolution and the more samples that

can be taken. However, for larger baseline lengths it becomes more difficult to remove foregrounds and

do proper calibration. The EoR signal might get under- or overfitted out of the signal. For this reason the

LOFAR properties are taken to be that of the LOFAR core. Another important quantity is the frequency

resolution. The frequency direction is similar to the time direction. Extra samples can be obtained by

binning in the frequency direction provided that changes in the 21-cm signal do not change strongly with

time. We assume a frequency bandwidth of 1 MHz for LOFAR, combined with a frequency resolution of

0.8 kHz. The simulation snapshots in which significant changes take place are more than 1 MHz apart,

justifying this assumption of binning in the frequency direction.
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4.4. Finding Q from 21-cm maps

In principle it is possible to find the distribution ofQwhen one has the distribution of δTb, xHI and (1+δ).

The problem is that there are multiple distributions Q that give rise to the same δTb when direct inversion

methods are used. It is straightforward to see why: the continous integral of equation 13 can be reduced

to a matrix equation by writing the integral as a Riemann sum:

P(δTb) =

∫
1
ω

P1(ω)P2

(
δTb

ω

)
dω

≈
N∑

i=1

1
ωi

P1(ωi)P2

(
δTb

ωi

)
∆ωi. (20)

For N → ∞ they become the same. The discretization allows us to reduce this to a simple ¯̄Ax̄ = b̄

equation. Suppose that ¯̄A contains the 1
ωi

P1(ωi)∆ωi components, x̄ the P2
( δTb
ωi

)
components and b̄ all

P(δTb) that need to be solved for. Then, to find x̄ (i.e. Q), an inverse of ¯̄A is required such that ¯̄A−1b̄ = x̄.

However, ¯̄A is only invertible if and only if its rank is N. It fails to meet this criterion (there is only one

linearly independent column in ¯̄A) and such there is no unique inverse.

5. Conclusions

In this report we have shown how to create 21-cm PDFs from integration of the component distributions,

or via samples of the component distributions and lastly, computing the 21-cm PDF using the simulation

data.

From these PDFs we have shown that it is possible to compute moments. This has been done for the pure

and uncorrupted data and also for the data which had noise added to it. Via the Monte Carlo approach

employed it was shown that it is possible to estimate a few of the higher order moments accurately from

noisy data as the estimate from the pure case agrees with the estimate from the noisy case for the second

and third moment. Estimating the fourth moment proves to be difficult.

Because this estimation of the second and third moment was possible we have shown that it is also

possible to estimate more complicated statistics from the noisy data, such as the skewness. The kurtosis

depends on the estimate of the 4th moment and is accurate only in a limited redshift range.

Lastly, in examining simulation data a quantity Q was found, which is an excellent tracer of early

reionization. It contains information about two components: propagation of the very first Ly-α photons

throughout the Universe and the second one being the heating from these first photons.

What remains to be done however is to find a statistic that enables us to extract the size of the ionized

bubbles as a function of redshift. Knowing this would put constraints on the proceedings of reionization.
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This requires statistics of a different type: so far we have used one-point PDFs and interpreted these,

but the next step is to try and estimate correlation functions from (noisy) data. Estimating the extent of

ionized bubbles requires spatial data and therefore two-point PDFs.

We have shown that reconstructing the Q distribution is not possible using direct inversion methods.

However, our parametrization of the Q distribution combined with our 21-cm mock PDF creation meth-

ods might aid in finding the distribution of Q using maps of the 21-cm signal only, combined with known

functions for the density field and ionized fraction distributions. Reconstructing the distribution of Q
would greatly aid in constraining source properties as we have shown.

In principle simulations could also be used to investigate the influence of cosmological parameters (such

as σ8 (a measure of fluctuations in the power spectrum on scales of 8h−1 Mpc) or ns (the slope of the

power spectrum)) on the 21-cm signal.
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