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Chapter 1
Introduction

The story of the Big Bang has many sides. It is not only the Story of the cre-
ation of Life, the Universe and Everything; it is also one of the greatest success
stories of science in the twentieth century and it sets the stage on which the
formation of structure in the Universe plays its part.
Questions on the origin of structure have haunted many a philosopher, but
since developments in quantum mechanics have shaken our understanding
of causality, this theory serves us well in finding answers to these questions.
Tiny quantum fluctuations were blown out of proportion by cosmic inflation
during the first moments after the Big Bang. By gravitational interaction these
fluctuations then grew to become the structures we now find our selves em-
bedded in. It is our mission to describe this process. Current observations
show us both ends of the pipeline, but relatively little of what is in between.
Moreover, the largest agent of gravitational collapse, dark matter, is also the
largest unknown.
At the one end we see the cosmic microwave background radiation (fig. 1.1),
which shows the conditions of the Universe only 340000 years after the Big
Bang.
At the other end we can look at the distribution of galaxies as it is now (or
up-to a few billion years in the past). In figure 1.2 we see a slice of the Sloan
survey. In this image we see a web-like structure consisting of clusters inter-
woven by filaments and walls, leaving vast volumes of empty space: the voids.
This structure we call the Cosmic Web. (van de Weygaert and Bond, 2005a,b)
Knowing the statistics of the conditions in the Universe at the time of recom-
bination, given the right physics, we should be able to derive the statistics of
the cosmic web. However, even if we knew the right physics, this problem is
mathematically very hard.
One way to treat this problem is to run N-body simulations of which we see
a famous example in figure (1.3). The results can then be compared to obser-
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Figure 1.1: WMAP 5 year CMB temperature anisotropy map: The fluctuations are of
the order of a ten thousandth of a degree. This is the fingerprint of the
pristine condition the Universe was in when it was only 340000 years old.
(Komatsu et al., 2009) Source: http://lambda.gsfc.nasa.gov/

vations. Even though the structures found largely agree with what we see in
surveys, the simulations don’t get it quite right. Despite the immense difficul-
ties in either measuring dark matter halo properties in real galaxies, or putting
virtual galaxies inside simulated haloes, there are numerous inconsistencies.

There is to much substructure in the simulations. Galaxies should be popu-
lated by numerous dark matter sub-haloes, and should be accompanied with
a large body of satellite dwarfs. These dwarfs are not seen in the numbers
predicted by the N-body simulations (Klypin et al., 1999). A possibly related
problem is that voids seem to be more empty than seen in simulations (Pee-
bles, 2001). Dark matter halo profiles have a sharp cusp in simulations, while
observations suggest that the profile should show a cut-off (Navarro et al.,
1996; de Blok, 2010). Furthermore it is unknown how galaxies get there angu-
lar momentum. (Perivolaropoulos 2008 gives a review of several problems in
ΛCDM cosmology.)

To understand where these discrepancies come from, we need both analytic
and heuristic models. The theory of the cosmic web describes how small per-
turbations grow into the different morphological structures we observe today.
What property of the initial conditions at one location made it a cluster, and at
another a filament? Given this problem, the theory of adhesion can be useful
in several distinct ways.
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Figure 1.2: Slice from SDSS: Numerous surveys have mapped the distribution of galax-
ies in our neighbourhood. One of the most famous is the Sloan Digital Sky
Survey, of which a slice is shown above. We can clearly see in this picture
the foam like structure of the distribution of galaxies. (Abazajian et al.,
2009)

1.1 Goals of this project

Given the output of an N-body code, we need to be able to detect and classify
the structures that we have no trouble spotting with our own eyes. Numerous
algorithms exist that detect voids, filaments and clusters (Platen et al., 2007;
Aragón-Calvo et al., 2007a; Aragon-Calvo et al., 2010). These have to be tested
against a sample of which the morphological composition is known before-
hand. This can be done using the Voronoi model. A more versatile option is
to use the adhesion model to this end. Adhesion is a first order non-linear
method to approximate the early stages of gravitational instability.

The theory of the Cosmic Web tries to predict the presence of morphological
structures directly from the initial conditions. The main tools to achieve this
(Press-Schechter, peak-patch and others) are of a local character. They study
several properties of the initial conditions filtered at different scales. Adhesion
is probably the simplest approximation that incorporates the global evolution
of the Cosmic Web. As such it can serve to test these tools as well as giving
a physical interpretation to approximations that often are of a highly abstract
nature.

Third, since adhesion is physically very simple, yet relatively accurate, we can
see whether we can reproduce results from N-body simulations. This would
eliminate possible explanations from more elaborate physics.
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Figure 1.3: Slice from the Millennium simulation: (Springel et al. 2005). We clearly see
the same foam-like structure as in figure (1.2).

1.2 Outline

This work is organised in eight chapters. We start by giving a qualitative nar-
rative of the subject, after which we dive into the theory of LSS. In chapter
3 & 4 we will abstract more and more into the realm of a solid theoretical
framework applied to some toy models. Chapter 5 covers the numerical tech-
niques in detail. In chapter 6 we treat the qualitative aspects of the dynamics
of the cosmic web, folowed by a more quantitative study for different initial
conditions. We wrap up discussing the possibilities and limitations of the
model. Note that nearly all equations and derivations are written down for
the three dimensional model. It is however often more instructive to illustrate
the concepts in one or two dimensions.
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Chapter 2
Theory of modern cosmology
and large scale structure

We start with a concise introduction to LSS making the reader familiar with
important quantities, as well as giving a derivation of the most important
equations. This section can be skipped if the reader is already familiar with
the subject; conventions are summarised in the appendix.

2.1 Standard cosmology

For a science trying to describe the dynamics of the entire Universe, standard
cosmology has surprisingly little ingredients.
Most of the equations we work with, ultimately derive from the theory of
general relativity, which describes gravitational interaction. Though it should
be emphasised that the Newtonian equations suffice for deriving all of the
equations we use in this project.
We assume the cosmological principle which states that the Universe is ho-
mogeneous and isotropic on the largest scales. There is a large body of evi-
dence that this is a correct assumption, including cosmic gamma-ray bursts,
the microwave background and quasar surveys. The standard model of par-
ticle physics describes the other three fundamental forces, that is, the electro-
magnetic, weak nuclear, and strong nuclear force.
The previous ingredients form what we could call classical cosmology, which
suffers from a number of problems that are elegantly solved by having the
Universe undergo a period of very rapid expansion called inflation. From
these ingredients we need to make two basic assumptions with respect to
the formation of structure. The main process responsible for the formation
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of structure is gravitational instability. The density perturbations that initiate
this instability are small and Gaussian, as can be derived from inflation.
The geometry of the Universe is described by the Robertson-Walker metric

ds2 = c2dt2 − a2(t)
(

dr2 + S2
k

(
r

R0

)
dΩ2

)
(2.1)

where

Sk

(
r

R0

)
=


sin

(
r

R0

)
(k = 1)

r
R0

(k = 0)

sinh
(

r
R0

)
(k = −1)

and R0 is the curvature radius at present time.
The expansion of the Universe is described by the Friedman equations(

ȧ
a

)2
=

8πG
3

ρ(t)− kc2

R2
0

1
a(t)2 +

Λc2

3
(2.2)

ä
a

= −4πG
3

(
ρ(t) +

3p
c2

)
+

Λc2

3
(2.3)

which can be derived from the Einstein equation. The precise way the Uni-
verse evolves depends on the different constituents that make up the cosmic
inventory, each with it’s own equation of state

P = wρc2

One of the more important numbers that we need is the critical density

ρcrit =
3H2

0
8πG

= 5.5× 1041 h2kg
Mpc3

Which is roughly equal to the mass of the Galaxy per cubic Mpc.
The Friedman equations in case of ’dust’ are easily derived from the Poisson
and continuity equations. Often these equations are written in terms of H =
ȧ/a and

Ω = ρ/ρcrit =
8πG
3H2

0
ρ

which are measurable quantities. The first Friedman equation can be rewritten
as (

H
H0

)2
= Ωra−4 + Ωma−3 + Ωca−2 + ΩΛ

Where Ωi are the different energy components of the Universe.
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Figure 2.1: Scale factor: Solutions to the Friedman equation. The Friedman equation
allows for many types of solutions, depending on the energy contents of
the Universe.

2.2 Concordance model

There are several key observations that led to the current picture of the Big
Bang. The CMB anisotropy (Komatsu et al., 2009), large scale clustering
(Eisenstein et al., 2005), Big Bang nucleosynthesis (Schramm and Turner, 1998),
and measurement of distant supernovae (Riess et al., 1998; Perlmutter et al.,
1999) consistently point to a model with flat space-time curvature, a dominant
70% dark energy contribution and only 30% matter of which 4% baryonic.
The other 26% matter is hypothesised to be cold dark matter. This unknown
substance should be nearly pressureless, and have small velocity dispersion
(hence cold). It is the main agent of gravity in our Universe.

2.3 Co-moving coordinates and density perturba-
tion

Structure forms on the background of a homogeneous and expanding uni-
verse. This background is described by the Friedman equation and is the
part that we’re not interested in for the moment. This is why we separate the
Friedman equation out of those of LSS. That is, we assume this separation to
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be possible and neglect possible effects of inhomogeneities on the FRW uni-
verse. Recently several papers have been published that argue the inverse of
this assumption, the presence of a cosmic back-reaction (Clifton et al., 2008),
even so the effect should be negligible for our purpose. Inhomogeneities are
then described by the density perturbation

1 + δ(x) ≡ ρ(x)
ρ̄

. (2.4)

Also we would like to describe everything in coordinates that are independent
of the Hubble expansion. This is done using co-moving coordinates

r ≡ ax, (2.5)

where r are the physical and x the comoving coordinates. This also affects the
derivative

∇r =
∇x

a
. (2.6)

These two transformations will lead to basic equations that look slightly dif-
ferent from their more familiar counterparts. But first we have to define some
new quantities.
If we look at physical velocity in terms of comoving coordinates

u = ṙ = aẋ + ȧx = v + vH

We see that we can separate into peculiar velocity v and Hubble flow.

v ≡ aẋ. (2.7)

To move from standard gravitational potential to a perturbation, we need to
subtract the global contribution from the potential.

äx = −∇x

a
Φu,

Φu = −1
2

aäx2,

thus the potential perturbation is given by

φ ≡ Φ +
1
2

aäx2. (2.8)

The peculiar acceleration is defined as

g(x, t) ≡ −∇xφ

a
. (2.9)

Let’s say the physical acceleration comes from a universal contribution äx
together with the peculiar acceleration.

r̈ = äx + 2ȧẋ + aẍ = äx + g(x, t),
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and
v̇ = ȧẋ + aẍ,

then

g(x, t) =
1
a

d(av)
dt

. (2.10)

2.4 Initial conditions

We know from the CMB that the early universe can be accurately described
as a Gaussian random field (Komatsu et al., 2003). This has been predicted by
inflation theories (Guth, 1981; Linde, 1982), but can also be justified using the
central limit theorem.
Given a field with m points, having coordinates x1, x2, . . . xm, and values f1, f2, . . . fm.
A Gaussian random field has all of its statistical properties described by the
means 〈 fi〉 and the covariance matrix Mij ≡ 〈∆ fi∆ f j〉, where ∆ fi ≡ fi − 〈 fi〉.
The covariance matrix can be seen as a multidimensional extension of the stan-
dard deviation σ. The joint probability that the value at xi lies in the interval
[ fi, fi + d fi] is given by the multivariate Gaussian

P( f1, . . . fm)d f1 . . . d fm =
exp

[
1/2 ∑i ∑j ∆ fi (M−1)ij ∆ f j

]
√

(2π)m det(M)
d f1 . . . d fm. (2.11)

We have defined the density perturbation to have 〈δ〉 = 0 and using the added
knowledge of isotropy and homogeneity,

Mij = 〈δ(xi)δ(xj)〉 ≡ ξ(|xj − xi|), (2.12)

where ξ(r) is the two-point correlation function.
It is often convenient to express density fields in Fourier space

f̂ (k) =
∫

dx f (x)eik·x (2.13)

f (x) =
∫ dk

(2π)3 f̂ (k)e−ik·x (2.14)

We find the power spectrum to be the Fourier transform of the two-point corre-
lation function,

ξ(r) =
∫ d3k

(2π)3 P(k)eik·r , (2.15)

where

〈δ̂(k)δ̂∗(k′)〉 = (2π)3P(k)δD(k− k′) (2.16)
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Again because of homogeneity, in Fourier space the phases need to be uni-
formly random and the moduli should be Rayleigh-distributed. This means
the imaginary and real part are independent and Gaussian-distributed with
σ2 = P(k).
In this study we will use pure power-law, as well as CDM power spectra. A
pure power-law power spectrum is given by

P(k) = Akn. (2.17)

Whereas a CDM power spectrum includes a transfer function representing
post-inflation physics:

P(k) = AT2(k)kn. (2.18)

Throughout this project we use the transfer function by Bardeen et al. (1986),
which is an analytic fit to numerical simulations solving the Boltzmann equa-
tion.

TCDM =
ln(1 + 2.34q)

2.34

[
1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4

]− 1
4 , (2.19)

where q = k/Ωh2.

Figure 2.2: CDM power spectrum: the CDM power spectrum as given in BBKS. In the
limits of k → 0 the slope tends to n = 1, whereas in the limit to infinity
(smallest scales) it behaves as a power law with n = −3.
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The convention is to normalise the power spectrum using the linearly extrap-
olated value of σ8.

σ8 =
[∫ ∞

0
dk4πk2P(k)Ŵ2

TH(k)
]1/2

, (2.20)

where ŴTH is the Fourier transform of a spherical top-hat function of radius
R = 8 h−1 Mpc

ŴTH(k) =
3(sin 2πkR− 2πkR cos 2πkR)

(2πkR)3 . (2.21)

A standard choice is σ8(t0) ≈ 1. To normalise the initial conditions this value
is extrapolated linearly as σ8(t) = D+σ8(t0). Where D+ is the growing mode
solution (see section 2.6).

2.5 Equations of motion

We start with the standard Newtonian fluid equations describing the evolution
of the matter distribution in the Universe.

∇2
r Φ = 4πGρ Poisson (2.22)

du
dt

= −∇r p
ρ

−∇rΦ Euler (2.23)

dρ

dt
= −ρ∇r · v Continuity (2.24)

In comoving coordinates these are transformed to a very similar form (see
appendix).

∇2
x φ = 4πGa2ρ̄δ Poisson (2.25)

dv
dt

+
ȧ
a

v = −∇x

a
φ Euler (2.26)

dδ

dt
+ (1 + δ)

∇x

a
v = 0 Continuity (2.27)

The most important change is the term Hv in the Euler equation. It is known
as the Hubble drag.

2.6 Linear theory

The set of derived equations is non-linear in two respects
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• there is a cross-term of ∇δv in the continuity equation

• (v ·∇)v in the Euler equation is higher order.

To get rid of these we assume |δ| � 1 and (v ·∇)v be negligible. Then we are
left with the set of linearised equations

∇2φ = 4πGρ̄a2δ Poisson (2.28)

v̇ +
ȧ
a

v = −1
a
∇φ Euler (2.29)

δ̇ +
1
a
∇ · v = 0 Continuity (2.30)

If we take the divergence of the Euler equation and combine with Poisson,

∂

∂t
(∇ · v) +

ȧ
a
(∇ · v) = −1

a
∇2φ = −4πGaρ̄δ

and we know from continuity that

∇ · v = −a
∂δ

∂t

then

−a
∂2δ

∂t2 − 2ȧ
∂δ

∂t
= −4πGaρ̄δ

or

δ̈ + 2
ȧ
a

δ̇ = 4πGρ̄δ (2.31)

We are still in a matter only universe so ρ ∝ a−3 and to put all FRW dynamics
in one parameter a we can substitute

4πGρ̄ =
3
2

ΩH2 =
3
2

1
a3 Ω0H2

0

and get

δ̈ + 2
ȧ
a

δ̇ =
3
2

1
a3 Ω0H2

0 δ (2.32)

Given a function a(t) to describe the dynamics of the Universe as a whole, we
can solve the linearised equations of LSS. In general this gives two solutions
known as the growing mode and decaying mode. The latter one is usually ignored
as decay tends to be a self-destructive feature. Also both modes are separable
in spatial and time evolution

δ(x, t) = D+(t)∆+(x) + D−(t)∆−(x)
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Although adhesion theory along with Zel’dovich approximation is a slightly
more non-linear approach (they are derived from the non-linear basis equa-
tions), we will see that the growing mode solution comes back in these for-
malisms and acts as de facto time parameter. That is, from now on we will
forget about the dynamics of the Universe as a whole. The growing mode
will act as be it time, but it can always be remapped to standard time units
like expansion factor, redshift or Gyr, given the ingredients of any FRW uni-
verse. The Einstein-de Sitter universe is one of the simplest possible as it has
Ωm = Ω0 = 1 and can be solved ”on the back of an envelope”. The growing
mode solution in an EdS universe is proportional to the expansion factor and
can be normalised to

D+(t) = a(t). (2.33)

In general, one can show that the growing mode solution is approximated by

D+(t) = H(t)
∫ dt

a2(t)H2(t)
(2.34)

for any model having just matter and Λ contributions. In a universe dom-
inated by dark energy with −1 < w < −1/3, there is no linear growth in
structure. This also holds for the future of the concordance universe where
D+ peters out to ∼ 1.35. (see fig. 2.3)

Figure 2.3: Growing mode solution in Einstein-de Sitter and Concordance model. No-
tice that in the Concordance model linear structure formation eventually
stops, leveling off at D+ ∼ 1.35.
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2.7 Non-linear structure formation

After perturbations grow to δ > 1 we enter the non-linear regime. This regime
is characterised by the following complications.

• anisotropic collapse

• hierarchical multiscale behaviour

• asymmetry between voids and clusters

We want to obtain a good description qualitative as well as quantitative of the
large scale structure formation, despite the non-linearities.
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Chapter 3
Zel’dovich approximation

The Zel’dovich approximation (hf. ZA) is the first step from the basic equa-
tions of structure formation to the adhesion approximation. We will derive it
from the Lagrangian perturbation and show its mirth in simplifying the first
stages of non-linear collapse. We will then see that ZA breaks down at some
stage. It is in trying to see when and where ZA breaks down, that we will
find the origin of adhesion.

In 1970 Zel’dovich (Zel’Dovich, 1970) published this very simple approxima-
tion to structure formation. The linearised equations describe the change of
density in each individual volume element. A different approach is to take
mass elements, and see how they occupy space. This way a single volume el-
ement might contain multiple particles streaming in different directions. This
is the Lagrangian approach. In this particular Lagrangian approximation par-
ticles are given an initial velocity (or displacement), and this velocity does not
change.

x = q + D+v0(q) (3.1)

The greatest virtue but also the main problem with the Zel’dovich approxi-
mation is that it is a local theory. Whenever global effects start to play a role
it breaks down. Particles start to cross paths and at very late times all that
remains is a thermal gas.
More than just a first approximation of how particles would move in a quasi
linear regime, Zel’dovich comes with an important formalism that describes
anisotropic collapse to first order. To understand where the Zel’dovich ap-
proximation comes from we need to elaborate on the Lagrangian formalism.
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3.1 Eulerian vs. Lagrangian

There are two important perspectives when studying fluid dynamics of any
sort. There is the ”normal” view of coordinates fixed to some kind of refer-
ence: Eulerian. When describing ocean currents, we could use fixed coordi-
nates of latitude and longitude to describe the gyros of the northern pacific.
Next there is the view of moving along with the fluid elements, which is re-
ferred to as Lagrangian. Again using the ocean metaphor, we could dump a
freight container of rubber ducks in the sea (this happens so now and then
(Ebbesmayer et al., 2007)) and follow the conditions of each duck, and also
find the proximity of the surrounding ducks as a measure for duck-density.
The transition to-and-fro Lagrangian view is pivotal to this project.

Figure 3.1: Eulerian and Lagrangian representations of a one-dimensional duck-
universe.

When dealing with equations, this transition is embodied in the full convective
time derivative

d
dt

=
∂

∂t
+ u ·∇r . (3.2)

In comoving coordinates we get an extra 1/a,

d
dt

=
∂

∂t
+

1
a

v ·∇x. (3.3)

To transform from Lagrangian view to Eulerian coordinates we have to inte-
grate velocities over time

x(q, t) = q +
∫ t

0
v(q, t′)dt′
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Lagrangian and Eulerian representations also embody two different numer-
ical approaches. Lagrangian coordinates allow for a discretisation of mass,
Eulerian coordinates for that of volume.

3.2 Expansion, vorticity and shear

If we decide to see the structure formation in terms of mass elements, it is
not enough to think of rigid particles. During the evolution, elements are
deformed. We can expand the equations of motion into three modes of defor-
mation: expansion θ, vorticity ωij and shear σij.

1
a

∂vi
∂xj

=
1
3

θδij + σij + ωij. (3.4)

The tensor ∂jvi/a has trace θ, a traceless symmetric part σij and ωij is its anti-
symmetric part,

θ ≡ 1
a

∂ivi (3.5)

σij ≡
1
2a

(
∂jvi + ∂ivj

)
− 1

3
∂kvkδij (3.6)

ωij ≡
1
2a

(
∂jvi − ∂ivj

)
(3.7)

Any two of these tensors multiplied will give 0, so any cross-terms in calcula-
tions using these quantities will drop out.

3.3 Lagrangian perturbation

Suppose we take a particle that adheres to the aforementioned non-linear
equations of structure formation. We follow this particle from the start of
our simulation at t0 to some later time t. At t0 this particle is situated at co-
moving coordinates q. Since these coordinates leave no ambiguity as to which
particle we are talking about we can use the vector q as a label for this particle
and it’s immediate differential surroundings, even at later times. We can make
a map x(q, t) to find the current Eulerian coordinates of the particle

L(t) : q → x(q, t) (3.8)

which we will refer to as the Lagrangian map. We now wish to make a per-
turbational expansion of this map. First we define the displacement s ≡ x− q

x(q, t) = q + s′(q, t) + s′′(q, t) + . . . (3.9)
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where

1 �
∣∣∣∣∂s′

∂q

∣∣∣∣ � ∣∣∣∣∂s′′

∂q

∣∣∣∣ � . . .

Out of mass conservation

ρ(x, t)dx = ρ̄(t)dq,

we find the density from the Jacobian of the Lagrangian map

1 + δ(x, t) =
ρ

ρ̄
= det

(
∂x
∂q

)−1

Using the perturbation from equation (3.9) we can find that

∂x
∂q

= 1 +
∂s′

∂q
+ . . .

and

det
(

∂x
∂q

)
≈ 1 + ∇q · s′ + . . .

then

δ′(x, t) = −∇q · s′ (3.10)

We may insert this expression into the Poisson equation with the potential
perturbation φ′.

∇2φ′ = 4πGρ̄a2δ′ = −4πGρ̄a2∇q · s′

If we then assume that the displacement is a potential field s′ = ∇χ, that is
∇q × s′ = 0, we can invert the Poisson equation to

∇φ′ = −4πGρ̄a2s′

If we then combine this with the linearised Euler equation, we get

s̈′ + 2
ȧ
a

ṡ′ = 4πGρ̄s′ (3.11)

Which is identical to equation (2.31). We can use the same growing and de-
caying mode solutions we found earlier. Ignoring the decaying mode again

x = q + D+(t)u0(q) (3.12)

Note, from now on we will drop the time parameter from the notation of D,
as the growing mode solution will act as the new de facto time parameter.
Where u0(q) is the displacement field, which we can relate to a displacement
potential because of the earlier assumption of potential motion
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u0(q) = −∇qΦ0(q) (3.13)

Next we would like to relate the displacement potential to the gravitational
potential and the peculiar velocity.

v = aẋ = −aḊ+∇qΦ0 = −aD+H f (Ω)∇qΦ0

where f (Ω) ≡ aḊ+/ȧD+ = d log D+/d log a is the dimensionless linear velocity
growth factor, which is often approximated as a power law (Peebles, 1980)

f (Ωm) ≈ Ω0.6
m

Using the result that in the linear regime v ∝ g,

v =
2 f (Ω)
3ΩH

∇xφ

a

we get

Φ0(q) =
2

3D+a2H2Ω
φ(x, t) ≡ Aφ(x, t) (3.14)

where A−1 = 3/2D+a2H2Ω.
In Fourier space we find the following relations. Say

δ0(x) =
∫ dk

(2π)3 δ̂0(k)e−ik·x,

then
Ψ̂(k) =

1
k2 δ̂(k),

û0(k) = −i
k
k2 δ̂(k),

and

d̂ij(k) = −
kik j

k2 δ̂(k).

3.4 Generalised Zel’dovich formalism

There is another more general approach to the Zel’dovich approximation. We
introduce a new comoving velocity u ≡ (dx/dD+) and rewrite the equations
of motion in terms of u

v = aẋ = aḊ+u

Then we can rewrite Euler’s equation

∂u
∂D+

+ (u ·∇x)u =
1

(aḊ+)2 (Bu−∇xφ) (3.15)
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where B = −(2aȧḊ+ + a2D̈+) = − ∂
∂t

(
a2Ḋ+

)
.

If we then take equation (3.12), which implies ẋ = Ḋ+u and using

−∇xφ = ∂(av)/∂t = 2aȧẋ + a2 ẍ

then
∇xφ = B∇xΦ = Bu

and the right-hand term in equation (3.15) drops out, leaving

∂u
∂D+

+ (u ·∇x)u = 0 (3.16)

Also from equation (3.14) this leads us to quantify B = A−1. This can be
understood as the gravitational acceleration being cancelled by the Hubble
flow.
If we take a step back, we can rewrite equation (3.15) (which is still the full
Euler equation) to the case of potential motion using u = −∇xΦ and integrat-
ing

∂Φ
∂D+

+
1
2
(∇xΦ)2 = − 1

aḊ2
+

(Φ + Aφ) (3.17)

This is often referred to as the Bernoulli equation (Kofman and Pogosyan,
1995). We can appreciate the right hand side vanishing for the Zel’dovich
approximation, but we could imagine other approaches from this point. The
reason why non-linear LSS is so complicated is because it is non-local. It is
precisely the non-local term in the Bernoulli equation that is set to nil in the
case of the Zel’dovich approximation. Other members of the family include
higher order Lagrangian perturbation, truncated Zel’dovich, frozen flow, and
last but not least adhesion approximation. Every member has a distinct way
of dealing with the non-local right hand term (see Sahni and Coles, 1995, for
a review). Different approaches have been tested against N-body simulations
in comparative studies. (Coles et al., 1993; Melott et al., 1994)

3.5 Anisotropic collapse

Along with the equation comes a beautiful interpretation of early structure
formation, namely that of collapsing ellipsoids. To see what a local perturba-
tion will do; collapse as a wall, filament, cluster or expand to become void, we
can study the eigenvalues of the deformation tensor.
If we look at the density evolution in the Zel’dovich approximation, as before

ρ

ρ̄
= det

(
∂x
∂q

)−1
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and using expression (3.12)

ρ

ρ̄
= det

(
δij − D+dij

)−1

where we defined the deformation tensor

dij ≡
∂2Φ0

∂qi∂qj

We know this determinant to be equal to that of the diagonalised Jacobian
matrix.

ρ(q, t) =
ρ̄

(1− D+λ1(q))(1− D+λ2(q))(1− D+λ3(q))
(3.18)

where λ1 > λ2 > λ3 are the eigenvalues of the deformation tensor.

Figure 3.2: Ellipsoidals: each signature of eigenvalues corresponds to a mode of ellip-
soidal collapse.

As can be seen in figure (3.2), the signatures of the eigenvalues indicate the
shape of an ellipsoidal overdensity. The corresponding eigenvectors give the
direction of the principal axes of the ellipsoid.
Equation (3.18) contains singularities where eigenvalues are positive. Locally
the density becomes infinite when D+ = 1/λ1. At this moment the structure
is collapsed in one direction but still free-streaming in two other directions. In
the Zel’dovich formalism this signals the formation of a pancake. If λ1 ≈ λ2,
the ellipsoid will collapse in two directions at the same time, and a filament
forms. At a density peak all eigenvalues will be positive: a cluster appears.
If all of the eigenvalues are negative, the particle will never collapse and can
be said to live in a void. The distribution of eigenvalues in Gaussian random
fields was calculated by Doroshkevich (1970), giving the probability of 8% that
all eigenvalues are negative (van de Weygaert and Bond, 2005a) (by symmetry,
this also gives a probability of 8% that all eigenvalues are positive, and 42%
both for the two remaining signatures).

27



Figure 3.3: Integrals of the density: from left to right, top to bottom: a primordial
Gaussian density field with P(k) = k−1, the potential, displacement field
and the maximum eigenvalue of the deformation tensor.
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3.6 Caustics

From equation (3.18) we can see that the density in a gravitationally collapsing
pressureless medium develops singularities. A singularity will then develop
into a region where particles are streaming in multiple directions. The caustics
that form this way can be described by catastrophe theory.

Figure 3.4: Multistream region: the function x = 1
3 q3 + αq with α = +1, 0,−1 shows

how a multistream region develops. From the second panel onward the
density reaches infinity locally: a caustic is formed.

The theory was developed by René Thom, and further extended by Vladimir
Arnold. Catastrophes can be classified using Arnold’s ADE classification on
the potential generating the caustic. One of the most common singularity of
this type is the cusp singularity, illustrated in figure (3.5). Zel’dovich attracted
the attention of Arnold to the problem of singularities in the large scale struc-
ture. They produced an overview of all possible singularities in 2-D structure
formation (Arnold et al., 1982).
Since the application of caustics in large scale structure formation has a some-
what turbulent past, a historic note is appropriate. The concept was used
by the proponents of the Hot Dark Matter top-down scenario of structure
formation. This theory was discarded for the Cold Dark Matter hierarchical
scenario, in which large scale structure is build from the bottom up, by se-
ries of mergers. However, the use of CDM does not mean there will be no
caustics. Caustics will emanate from any pressureless medium with a suffi-
ciently heterogenic velocity field. The question remains what role the dark
matter caustics play in the Universe in the context of hierarchical structure
formation. For example, there are dark matter models that predict the anni-
hilation of dark matter in caustics (Hogan, 2001), this might in turn cause the
Universe to reionise (Belikov and Hooper, 2009). Attempts to detect caustics
using weak lensing (Gavazzi et al., 2006) have thus far not been successful.
Also caustics are usually not resolved in cosmic N-body simulations.
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Figure 3.5: Cusp singularity: The canonical example of a cusp singularity, in isometric
and top-down projection. The green line marks the singularity that sepa-
rates the free-flow from the multi-stream area. At the cusp, the density is
infinite.

Figure 3.6: Caustics in a swimming pool: Caustics can be found in daily life.
Notice the similarity with figure (??b). (courtesy of Rob Patrick:
http://www.flickr.com/photos/alkalinezoo/)
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Chapter 4
Burgers’ dynamics

We saw how ZA has the potential of predicting how the first structures are
formed. Voids start growing at locations with a divergent velocity field. In
between these voids we find pancakes and where pancakes intersect filaments
that connect a field of galaxy clusters. ZA does not tell us what happens after
the formation of the first shocks. If we take the ZA equation of motion

∂u
∂D+

+ (u ·∇x)u = 0 (4.1)

and add a viscosity term

∂u
∂D+

+ (u ·∇x)u = ν∇2
x u (Burger’s equation) (4.2)

we arrive at Burgers’ equation. The viscosity term would prevent particle orbit
crossing, thus preserving shocks after they form. This allows us to track the
emergence of the cosmic web to much later times than ZA is capable of.
The use of Burgers’ equation as a model for large scale structure was intro-
duced by Gurbatov and Saichev (1984) and was advocated mainly by Soviet
astrophysicists in the late 80’s and early 90’s (Shandarin, 1988; Gurbatov et al.,
1989; Shandarin and Zeldovich, 1989; Kofman et al., 1990; Shandarin, 1991;
Kofman et al., 1992).
Adhesion theory is also referred to as the ”sticky particle” model, but since it
is not dealing with particles as such this is something of a misnomer. What
we mean by the word ”particle” is a test particle or bead moving with the
fluid. Moreover we will see, once particles are inside shocks, they lose their
”sticking” ability. That is why we prefer the name ”Burgers’ dynamics”.
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4.1 Burgers’ equation

Burgers’ equation was put forward by the Dutch mathematician Johannes
Martinus Burgers around 1940 as a possible model for describing certain cases
of turbulence.

∂u
∂D+

+ (u ·∇x)u = ν∇2
x u (Burger’s equation) (4.3)

We study the case of potential flow, where u = −∇Φ. Using the Hopf-Cole
transformation (Hopf, 1950)

U = eΦ/2ν,

this transforms Burgers’ equation into the diffusion equation

∂U
∂D+

= ν∇2U (4.4)

Which leads to the following solution.

u(x, D+) = −2ν∇ ln U(x, D+) (4.5)

U(x, D+) =
∫

exp
[

Φ0(q)
2ν

]
exp

[
−(x− q)2

4D+ν

]
d3q (4.6)

this last term can also be written as a convolution with a Gaussian kernel

U(x, D+) =
(
U0 ∗ KD+ν

)
K(q; D+, ν) = exp

[
− q2

4D+ν

]
Transformed back, the entire expression expands to

u(x, D+) =

∫ ∞
−∞

x−q
D+

exp [G/(2ν)] d3q∫ ∞
−∞ exp [G/(2ν)] d3q

(4.7)

where

G(x, q, D+) ≡ Φ0(q)− (x− q)2

2D+

4.2 Inviscid limit

In the inviscid limit we take the limit of ν → 0 1. So all contribution of the
integral comes from the point where G(x, q, t) has a global maximum. Using
steepest descent method to calculate the limit ν → 0 one gets

1this is different from ν = 0, because that would bring us back to the pure Zel’dovich approx-
imation.
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Φ(x, D+) = max
q

[
Φ0 −

(x− q)2

2D+

]
(4.8)

This is often illustrated by means of a parabola scanning the velocity potential
as in figure (4.1). We could imagine scanning the initial velocity potential with
a parabolic needle. The apex of this needle gives the coordinate x, while it is
touching the potential at point q. Whenever the parabola has two touching
points (given the 1-D example), two particles occupy the same location. This
means that at that location there is a shock containing all particles in between
the two touching points. The thickness of the needle depends on time, making
particles and shocks move.

Figure 4.1: Parabolic interpretation: The interpretation of the Hopf-Cole solution by
means of a scanning parabola. The width of the parabola is proportional
to D+. The shaded area gives the particles in Lagrangian space that have
collapsed to form structure. We can see this area evolve when we increase
D+ in the second figure.

We model the movement of a particle by putting it at the apex of a parabola
that touches the velocity potential; to fix the derivative

x = q− D+∇qΦ0

then integrate and call the constant of integration h

Φ0(q) =
(x− q)2

2D+
+ h(x, D+)

When parabola from different particles q coincide, the particles ’stick’ and
have to move on together. So in stead of just calculating x from the above
relation we have to find a global fit

Φ(x, D+) = max
q

[
Φ0(q) +

(x− q)2

2D+

]
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which shows that equation (4.8) behaves as intended. This reduces the prob-
lem to finding points on the surface of the potential where the parabola has
multiple touching points.

4.3 Dynamics of shocks

In the one dimensional case, the parabola will have two touching points where
there is a shock. If we call these points a and b, the mass of the shock will
be the Lagrangian interval ms = ρ̄(|qb − qb|) and have position xs. We are
recording the exact moment the particles a and b collide (see figure 4.3). The
parabola

P =
(x− q)2

2D+
+ h

then has two touching points with Φ0 at a and b. This gives two equations
with two unknowns

(xs − qa)
2

2D+
+ h = Φa

(xs − qb)
2

2D+
+ h = Φb

then we subtract them

−xs(qb − qa)
D+

= Φb −Φa
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and

us =
∂xs

∂D+
= −Φb −Φa

qb − qa
(4.9)

that is, momentum is conserved in shocks. However easy this may seem in
the case of a point singularity, the dynamics within filaments and sheets is
non-trivial. (Bogaevsky, 2004; Bec and Khanin, 2007) As degrees of freedom
remain, densities within shocks continue to evolve.

4.4 Convex hull interpretation

However, it was shown by Vergassola et al. (1994) that when we rewrite the
formulas, there is a more powerful interpretation in the form of the Legendre
transform. We can write down an expression for the velocity potential

Φ(x, D+) = max
q

[
Φ0(q)− (x− q)2

2D+

]
(4.10)

= max
q

[
Φ0(q)− x2 − 2x · q + q2

2D+

]
(4.11)

Since x and D+ are constants in the expression we can manipulate them within
the maximum without consequence.

D+Φ(x, D+) = max
q

[
D+Φ0(q)− q2

2
+ x · q

]
− x2

2
(4.12)

≡ H(x, D+)− x2

2
(4.13)

We define the Lagrangian potential

ϕ(q, D+) ≡ D+Φ0(q)− q2

2
(4.14)

and its counterpart

H(x, D+) ≡ D+Φ +
x2

2
. (4.15)

Then
H(x, D+) = max

q
[ϕ(q, D+) + x · q] , (4.16)

that is, H is the Legrendre transform of ϕ. The coordinate q at which the
maximum is found gives us the Eulerian map E : x 7→ q

q(x, D+) = arg max
q

[ϕ(q, D+) + x · q]
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The Legendre transform has the property that only the convex part of the
Lagrangian potential has a contribution. If we perform an inverse Legendre
transform on H we can retrieve the convex hull of the Lagrangian potential.

ϕc(q, D+) = min
x

[H(x, D+)− x · q]

To represent the solution in the form of a convex hull problem stresses a few
properties that were neglected up to this point. The problem is one of global
minimisation. We are helped by the fact that we are looking for a monotonic
map

if qa ≤ q ≤ qb then xa ≤ x ≤ xb.

This monotonicity is a necessity to calculate the inverse map, and also it is a
property of the convex hull.
The entire construction is illustrated in figure 4.2. This figure should be fol-
lowed starting at the top-left at the potential, going down to the coordinate
mapping and then right to the densities. Panel (a) shows the velocity poten-
tial Φ0 in black, and the Lagrangian potential ϕ and its convex hull ϕc for
three different time-steps, increasing from red to blue. The anchor points of
the convex hull with the Lagrangian potential are the regions that are still
non-singular. These are shaded accordingly and can be followed down to-
wards the mapping in panel (b). Here we can see the Zel’dovich mapping
over-plotted with the adhesion mapping. In the non-singular (shaded) re-
gions these two mappings coincide. These regions can be seen to shrink, and
disappear, with time increasing. From the mapping we move to the densities,
where we can see the peaks coincide with the singular regions in the mapping.
As non-singular (shaded) regions disappear in panels (a) and (b), peaks in the
density merge in a tree of hierarchical collapse. We will now highlight some
aspects of each of the three panels in this figure.

4.4.1 Legendre-Fenchel conjugate and convex hulls

The Legendre-Fenchel conjugate

f ∗(y) = max
x

[ f (x)− xy] ,

also known as the Legendre transform, was first used by Legendre to express
a function in terms of its own derivative

f ∗( f ′(x)) = f (x).

This is only possible if the map M : x 7→ f ′(x) is one-to-one. Suppose f ′(x) is
continuous, then f (x) needs to be a convex function and f ′(x) is monotonic.
We can still find the Legendre transform for non-convex functions. Let fc(x)
be the convex hull of f (x), then f ∗(y) = f ∗c (y). The convex hull is defined as
the shortest enclosing path around a set of points.
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Figure 4.3: Construction of convex hull: for each line, we find the unique touching
point, such that the line does not intersect the potential somewhere else.

For each slope y, we take the line k : x → xy and let it drop onto f (x), then
f ∗(y) attains the value where the line first touches f (x) (see figure 4.3).

4.4.2 Maxwell’s rule

Figure 4.4: Maxwell’s rule: the total area of the Zel’dovich mapping minus the adhe-
sion mapping should vanish. This can also be seen in figure (4.2b).
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The conservation of momentum can also be seen in figure (4.2b). We look
at this part in more detail in figure (4.4). The location of the shock follows
Maxwell’s rule, which states that the integrated area of the Zel’dovich map-
ping over the shock interval should be equal to that of the adhesion mapping.

4.4.3 Hierarchical collapse

Figure 4.2 shows a formal method of taking an initial density perturbation,
and turning it into a system of hierarchical collapse. We need little imagi-
nation to see that this tool can indeed be very powerful to understand the
formation of structure in the Universe. From the Eulerian map, we retrieve
the density

ρ

ρ̄
= det

[
∂q
∂x

]
.

This can be seen in figure 4.2, comparing panel b with panel c. The simplest
case is that of one-dimensional self-similar collapse as illustrated in figure 4.5.

Figure 4.5: Merger cascade: A cascade of a 1D self-similar model with n = 1 (brown
noise). This shows hierarchical collapse in it’s purest form.

In the top panel of figure (4.5) is the initial density, which is very noisy. Below
the density is the potential, which is still sharply peaked. The sharp peaks
result in a density evolution that is singular from the first moment. This results
in a cascade of clusters, which is shown in the right panel. The direction of
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the clusters change when there is a merger, according to the conservation
of momentum. Since the collisions are completely inelastic, energy is not
conserved.
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Chapter 5
Numerical Algorithms

While Burgers’ equation has an analytical solution, it only gives velocities in
integral form, so we still need some numerical techniques to calculate this
solution. In the case of the inviscid limit, we need to find a global minimum
for each particle. Or if ν > 0, we need to integrate over time. We followed two
algorithms, to compute the corresponding structure and implemented these
into C++ codes.

5.1 Periodic boundary conditions

All of our simulations are done using periodic boundary conditions. Players of
games, may recognise the Universe Pacman lives in. The topology of this uni-
verse can be described as the surface of a torus. This method only resembles
the real Universe if the minimum image criterion is observed, this means there
are no interactions that reach over half of the simulation box. For ΛCDM sce-
narios this forces us to choose box a size large enough to contain the largest
non-linear Fourier modes. In the case of the scale free scenarios, we need
to take care when n + d → 0. Periodic boundary conditions make it easy
to create initial conditions in Fourier space. We don’t need to bother about
boundary effects in the numerous tools we use to analyse our simulations. 1

5.2 Convolution method

This method is described by Weinberg and Gunn (1990). It solves the viscid
Burgers’ equation and is relatively easy to implement. They observed that the

1It does add a few complications in the implementation some of the algorithms. Most of these
complications are solved using binary number tricks, assuming the box size to be 2n.
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solution

u(x, D+) =

∫ ∞
−∞

x−q
D+

exp [G/(2ν)] d3q∫ ∞
−∞ exp [G/(2ν)] d3q

(5.1)

is nothing more than a Gaussian convolution of the transformed potential.

U = eΦ/2ν

U(x, D+) =
(
U0 ∗ KD+ν

)
=

∫
U0(x− q)K(q)dq

K(q; D+, ν) = exp
[
− q2

4D+ν

]
First we transform the initial potential Φ0 to U0. Then for every time step we
create a Gaussian kernel and perform a convolution. A convolution is usually
done in Fourier space using the convolution theorem

( f ∗ g) = F−1( f̂ ĝ)

However Weinberg & Gunn argue that numerical precision is lost in the pro-
cess of transforming to-and-fro Fourier space. We want to utilize every bit of
numerical significance we can get, to keep ν as low as possible. So instead
we perform the convolution in real space. This is possible because the kernel
is symmetric. The convolution is simply performed, first in the x-direction
then y and last z. This makes the operation nearly as fast as the Fourier based
alternative. We are then left with a straight forward time integration of

u =
1

2ν
∇x log U

There are numerous algorithms to do this, but a simple leap-frog scheme
suffices for our purposes (Weinberg and Gunn, 1990). We emphasise that this
algorithm is very fast and easy to implement.

5.3 Discrete scale-space

There are two places where careful application of scale-space analysis is in
order. The first is when solving the heat equation

∂u
∂t

= α∇2u (5.2)

in the Weinberg & Gunn model. The following argument is extracted from an
article Lindeberg (1990) 2

2which has restricted access, however there are several non-reviewed articles on the subject
available on Lindeberg’s website.

42



If we are to solve such an equation numerically, there is an intuitive method of
getting the analytical solution which is the aforementioned Gaussian convolu-
tion. However because we have a grid sampled potential field, it is not enough
to simply convolve with a sampled Gaussian. To do this thoroughly one needs
to solve the discretised diffusion equation. Then the resulting convolution is
no longer with a pure Gaussian but with a discrete Gaussian.

T(xn; t) = e−t In(t) (5.3)

where In(t) are the modified Bessel functions of integer order. The difference
between the true discrete Gaussian and a sampled continuous Gaussian are
the greatest when σ is small. This applies to both solving the discrete diffusion
equation and doing scale-space analysis on a grid. Neglecting this numerical
effect on the WG model, results in wiggly shock fronts.

Figure 5.1: Discrete Gaussian kernel: This figure shows the difference between the
sampled and discrete Gaussian kernels.

To do the convolution in the Fourier domain we need the Fourier transform
of the kernel T(n, t)

T̂(k, t) = et(cos k−1) (5.4)
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5.4 Fast Legendre Transform

There are several packages available on the web that compute a convex hull.
One of the best ones is part of CGAL (cga). However, these are not entirely
suitable to perform a Legendre transformation on a grid, since they are based
on triangulations. These tend to become degenerate on a perfect grid. One so-
lution is to offset each particle by a tiny amount. Yet conventional algorithms
are not optimized for a gridded situation, since they are made for problems
with point sets that occupy the full variety of their n-dimensional space. A
faster algorithm was presented, in detail, by Noulez & Vergassola (hf. NV)
(Noullez and Vergassola, 1994). It uses the fact that the Lagrangian map is
monotonic

if xa ≤ x ≤ xb then qa ≤ q ≤ qb

or in case of larger dimension, more precisely

(qb − qa) · (xb − xa) ≤ 0

It is important to realise that the monotonicity relation is true, even component-
wise. Then, finding the Legendre transform can be done using an incremental
algorithm not dissimilar to the Fast Fourier Transform. We start in the mid-
dle, finding the map x → q on one axis, thereby splitting the search area for
the following part in two. Then repeat this process on increasingly smaller
searching areas. The algorithm has a running time O((N log2 N)d).

5.4.1 Sub-pixel post minimization

We saw previously that the Eulerian and Lagrangian perspectives embody
two different discretisations, that of volume and mass. The initial conditions
are both; or to put it more precisely: during the linear stage of structure
formation, the distinction between Lagrangian and Eulerian coordinates is
superfluous. Yet we can assign two meanings to this data. Either we have
velocities or spacial deformations of mass elements, or we have the change
in density of volume elements. In the Lagrangian case this gives us non-
discretised (or floating point) information on the location of each individual
particle. In the Eulerian case this should then give us floating point density
maps. However, the NV algorithm transforms discrete coordinates only. If
we calculate the Legendre transform of the Lagrangian potential using FLT,
the result is a map from integer to integer vectors. This is in fact a waste of
information since we should be able to extract a map from integer to floating
point vectors.
To resolve this, we added a second minimization step to the algorithm using
a interpolation of the potential. The minimum within the LT would shift on
sub-pixel level due to the xq term in the LT. Thus it is meaningful to find this
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shift, but this would not work if we didn’t have an interpolation routine that
is continuous in the first derivative. We use a cubic spline routine which is
described in the appendix.
To illustrate the effect of this step, we present the a figure in the same setup
as figure 4.2. We should stress that this method is not fast3 and we feel it
has room for improvement in efficiency, especially in the 3D case where the
interpolation involves matrix multiplications of rank 64. However, as can be
seen in figure (5.4), the results are stunning.

Every N-body algorithm has a limited resolution, one way or another. When-
ever a large number of particles assemble on a small area, this becomes a prob-
lem. This problem is fundamental to any model that needs to discretise mass
as well as volume for performance reasons. By interpolating the potential we
assume a smooth initial conditions on the smallest scales. The initial condi-
tions of a cosmological simulation have the property that the discretisation in
terms of mass is identical to that of volume. When performing a Legendre
transform to get the map E : x 7→ q, we choose the volume-discretisation. Us-
ing the technique of sub-pixel optimisation we break the mass discretisation.
Shocks however are still infinitely thin. Their location is known only at pixel
precision, but their masses are accurate. The other way around we can choose
the mass-discretisation and end up with the Lagrangian map L : q 7→ x. This
will give us the exact location of a shock on a precision smaller than the pixel
width, but the mass will have an uncertainty. We could raise the question of
how we can know the exact location of a shock if we don’t know if a certain
particle belongs to the shock or not. The sticking of this particle would change
the velocity of the shock slightly, thus knowing it’s ”exact location” becomes
meaningless.

3a 2563 particle model takes ∼ 30 min to complete the FLT on a single core. The post-
optimisation stage takes 2 to 3 hours for a reasonably smooth model.
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5.5 Density

Having monotonicity in the Lagrangian and Eulerian maps, means that cal-
culating densities has become much easier than in N-body simulations. There
are multiple ways of finding the density, but the best behaving seems to be to
calculate the Jacobian of E : x 7→ q.

ρ

ρ̄
= det JE ≡ det

[
∂qi
∂xj

]

Care needs to be taken when using the discretised version of this formula. In
2-D the determinant represents the area of the parallelogram spanned by the
derivatives ∂qi/∂xj. But on a grid this area will not be a parallelogram but a
more general convex quadrilateral. In practice the effect will be worst case as
the quadrilaterals will evolve towards triangles (the faces of the convex hull).

Figure 5.3: Calculating the determinant of the Jacobian gives the area of a parallelo-
gram (blue), yet on a grid we need to have the area of a convex quadrilateral
(pink).

In three dimensions the problem (as usual) gets more complicated: the general
hexahedron is degenerate. There is in general no single unique polyhedron
given eight points in space. There are two common choices to break this
degeneracy. The long diagonal method splits the hexahedron into six tetrahe-
dra. This has the downside of adding a preferential direction. The tetrakis
hexahedron defines an additional vertex at the barycentre of each face. Effi-
cient algorithms to calculate the volume of these polyhedra can be found in
(Grandy, 1997).
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Figure 5.4: Smooth 2-D density maps: on the right we see the enhanced versions of
the images on the left. From top to bottom: scale free scenario with n = 0,
the enhanced version is also filtered with a Gaussian to show the clusters
more clearly; in the middle an early snapshot from CDM initial conditions;
on the bottom a zoom-in on the previous CDM density map.
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Chapter 6
Hierarchical evolution of the
Cosmic Web

We can now study the dynamics of the cosmic web from the two different per-
spectives, we discussed earlier. In this chapter we will qualitatively describe
the phenomena seen in 2-D simulations. In three dimensions the dynamics
will no doubt be more complicated, but also harder to track.
Every component (be it cluster, filament, wall or void) has its representation
in Lagrangian space as well as the familiar Eulerian forms (see figure 6.1). We
will look at each of these components and see what we can learn from the
interplay between both representations.

6.1 From Voronoi to Adhesion

6.1.1 Voronoi model

If we make a contour plot of the potential along with the quasi Voronoi dia-
gram, we can see the connection between the adhesion model and the Voronoi
model of the LSS (Icke and van de Weijgaert, 1987). Suppose we have a po-
tential corresponding to a sparse void sample with equal weight, then the
adhesion tessellation will match the Voronoi tessellation of this point sample.
In this sense adhesion can be seen as a generalisation of the Voronoi model.
Scale free models with rising power slope, will evolve as a weighted Voronoi
model with weights that change with time (see figure 6.2).

The link between adhesion and the Voronoi model can find an application if
we compare the model of the flow complex (Giesen, 2008) with the work of Bo-
gaevsky (2004). One conclusion that can be drawn from these mathematical
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Figure 6.1: the Cosmic Web in Lagrangian view: Different elements of the cosmic web
(blue) superimposed over their Lagrangian representation (red).

Figure 6.2: Comparison with Voronoi model: Two time frames of a scale-free model.
Plotted are the adhesion tessellation over a contour plot of the potential.
Note the similarity with the definition of a weighted Voronoi tessellation.

50



models is that there won’t be a stable cluster at every vertex of the Cosmic
Web. If a Voronoi node is not inside it’s dual Delaunay face, it will only act as
a ”way-point” trafficking clumps of matter to their destination. It gets inter-
esting when a stable cluster evolves into a way-point.

Just as the Voronoi model is equipped with a dual representation (the Delau-
nay triangulation), adhesion has the Legendre duality between Eulerian and
Lagrangian representations.

6.1.2 EL-Duality

We sketched a system where the transitions between Eulerian and Lagrangian
space is formalised by the Legendre transform. This formalism was illus-
trated in one dimension, but to highlight the cosmic web, we need to move
on to two spacial dimensions. The convex hull becomes three dimensional. In
the mathematical language of Legendre transforms we say L and E are each
others dual. Dual spaces have the property of turning points into planes and
vice-versa (see figure 6.3).
If we look at the convex hull in the two dimensional case (this implies the con-
struction of a 3D convex hull) we can see that a point singularity corresponds
to a single face on the convex hull. All the mass (or every particle) associated
with the face has collapsed to that single point. The other way around a single
vertex of the convex hull in Lagrangian space corresponds to a certain volume
in Eulerian space. If we plot a graph of this construction we find a Voronoi-
like tessellation in E where the edges correspond to the filaments otherwise
found in the density distribution, while in L we find something resembling a
Delaunay triangulation. As we can see in figure 6.3, adhesion has buried in it’s
formalism the spine of the cosmic web. From the Voronoi model onward we
can make the adhesion model more complicated by using a smooth potential.

6.1.3 Smooth potential models

In the case of a smooth potential (e.g. CDM), there are some features added
to the duality relationship. There will be connected patches of the potential
that are part of the convex hull; these are the free-streaming regions where
the Zel’dovich approximation still holds. In the Lagrangian representation we
find an ”archipelago” of voids, true island universes. Also there are multiple
ways the convex hull reconnects with the potential from singular regions. For
example a filament is recognised on the convex hull as a region with curvature
in one direction only. But contrary to the picture before, a filament does not
need to connect to clusters, it can dissolve into the void. (Frisch and Bec,
2001) During decay the Lagrangian area (mass) of the voids shrink. They
evolve towards point size, which brings us back to the previous models. We
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see an evolution from a universe where structure starts to grow in patches
asymptotically towards a fully connected Voronoi model.
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Figure 6.3: From convex hull to cosmic spine: Self-similar model with n = −0.5,
Shown on the top are the convex hull ϕc and its triangulation, where circles
are void volume. In the middle is the Legendre transform H and the be-
longing tessellation, where circles are cluster mass. The bottom two panels
show the density with the skeleton superimposed.

53



6.2 Geometric analysis

We saw in the previous paragraph how the cosmic spine was embedded in the
adhesion method. Actually finding all the singularities and building the web,
is not a trivial task. We describe step by step how we get from the computation
of a Legendre transform to the solid knowledge of the inner structure of the
web, allowing us to calculate numerous statistics. This is not possible if we
have merely an image or a density distribution. First we give mathematical
concepts that define the spine in adhesion theory, then we illustrate these
using discretised versions of these concepts on a simulation. In this we are
helped by the fact that we have a sub-pixel precision Eulerian map, which
enables types of analysis that are not feasible on a coarse grid.

6.2.1 Mathematical definitions

We assume Eulerian and Lagrangian spaces E, L ⊂ Rn, x ∈ E and q ∈ L.
Previously we defined the maps

E : x 7→ q

and
L : q 7→ x.

This does not mean E and L are each others inverses, as in all interesting cases
L is not invertible. Also in the case of sharp horned initial conditions 1 E is
not invertible. In this case the maps can be referred to as a ”Devil’s Staircase”
(Vergassola et al., 1994).
The range of a map gives us the set of coordinates it maps to.

Definition 1 (Range) Given the mapping M : x 7→ q the range of M is defined as

RM = {q | ∃ x : M(x) = q} .

Note that if a particle q ∈ RE , does not mean that it is a free particle, it can
also lie on the boundary of the set of free particles. The range can also be
expressed in terms of the convex Lagrangian potential ϕc: let Q ⊂ L be the set
of points for which ϕc = ϕ, that is, the set of ”anchor points” of the convex
hull. The range RE is the closure (interior plus boundary) of Q.
Two volume elements are said to belong to the same tile (element of the tes-
sellation) if there is a path connecting the two in Lagrangian space:

Definition 2 (Tile) Let q1 = E(x1) and q2 = E(x2). If there exists a continuous
path γ(q1, q2) ⊂ RE , then x1 and x2 are in the same tile.

1P(k) ∝ kn, where n > 0
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Figure 6.4: Tessellating E: there is no connected path between q1 and q2 that lies com-
pletely in RE (pink)

Definition 3 (Tessellation) The set of all tiles of E is the tessellation of E . The
tessellation is space filling. This means that every element of E is also an element of
exactly one tile.

The following definition classifies closed singularities as the boundary between
two or more tiles: A point x belongs to a connected singularity if every neigh-
bourhood of x has members of different tiles. However, there exists singu-
larities that do not separate regions in RE . To classify these we need a better
definition.

Definition 4 (Singularity) Let X be an infinitesimal neighbourhood around x (say
an area with radius ε > 0 around x). If Q = E(X) is not connected, x belongs to a
singularity. The number of connected regions in Q ∩ RE indicates the dimensionality
of the singularity.

As with the range, the singularity can also be defined in terms of the convex
hull. If φc has a vanishing second derivative at a point q

det

[
∂2φc

∂qi∂qj

]
= 0,

there is a singularity. In this case q /∈ RE and x = L(q) must be a singular
point on E . This time the multiplicity of the eigenvalue λ = 0 indicates the
dimensionality of the singularity.

6.2.2 Numerical implementation

In practice, using derivatives to find singularities results in number loss. The
best way to find the skeleton is using the map E directly. The definitions that
are given above are easily portable to discrete maps. The main difficulty lies

55



Figure 6.5: Grid deformation of E : zooming in on the Eulerian map of a 2-D scale-free
simulation, we clearly see the clusters as triangles, filaments as lines and
voids as the knots where lines meet. If we zoom in further, we can see
the pixel structure of the original grid. Void pixels are still more or less
square, while filaments are extremely elongated and clusters pixels evolve
towards near triangle quadrilaterals. We can also see that the Lagrangian
structure of the voids are much more fine-grained than the pixel size. The
inset shows the corresponding (logarithmic) density map.
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in the concept of connectedness. In the case of a point sample, connectedness
can only be defined on the basis of a certain threshold. It seems natural (and
easy to implement) to pick the pixel size as a constraint. A connected region is
then found using a simple flood fill algorithm. However as we can see in figure
(6.2.2) the structure of the map is often smaller than the pixel size. Even using
pixels there are multiple kinds of connectivity, two examples illustrated in
figure (6.6).

Figure 6.6: Pixel connectivity: given a grid of pixels, even the concept of a neighbour
is open to discussion. The most used examples of 4- and 8-connectivity are
illustrated here.

Probably the best way to find morphological features in this map, would be
to look for contrasts in the shape of the quadrilaterals. For example, the two
voids on the lower right part of the largest panel in figure (6.2.2) would be
connected if we only look at the pixels they occupy. Yet they are separated
by a decent filament. Once we agree on a method for computing connected-
ness, the translation of the above definitions becomes straight forward. An
infinitesimal neighbourhood can be approximated by a group of four (or in
3-D: eight) points spanning a single volume element. The fact that connect-
edness has a flexible definition when it is applied to point samples, does not
have to be a draw back. If we vary the threshold, we can study the behaviour
of the outcome under this variation. An example of this can be found in alpha
shapes (Edelsbrunner, 2010, see).
For the moment we will restrict ourselves to simple grid based connectivity.
The results of the procedure (using 4-connectivity on a grid) are illustrated in
figure (6.7).
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Figure 6.7: Adhesion tessellation: Using the output of a 2-D CDM simulation, we can
find the adhesion tessellation. In the top-left panel is the density (loga-
rithmic color); the top-right panel is the Lagrangian volume density. The
bottom left panel shows the range function RE and in the last panel we see
the tessellation, with each tile given a random color.
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6.3 Voids

Expansive voids are the dominant driver of the evolution of the Cosmic Web
in adhesion. Adhesion theory naturally contains an intuitive definition of a
void; simply a non-singular connected region. We might think of void as a
more or less spherical under-density; while in reality voids (and as defined in
adhesion) can have much more complicated shapes and non-trivial topology
(Platen et al., 2007).

6.3.1 Void definitions

Voids are commonly understood to be cosmic under-densities; but the hierar-
chical nature of the large scale structure makes it hard to put a lower boundary
on the concept of a void. Also a void embodies an important dynamical con-
cept, that of gravitational repulsion, which would lead us to define a void
in terms of divergent velocity fields. It is therefore useful to say something
on the properties of voids to get an idea of the difficulties when comparing
different studies into the matter.

Simple voids Simple voids have a single centre, spherical topology, divergent
velocity field. This can be understood to represent the ”classic” idea of
a void. Such a void is surrounded by a shell of denser matter: walls,
filaments and clusters.

Extended voids Extended voids are voids with a non-trivial topology. One
case would be a void in the shape of a torus, which can still have a di-
vergent velocity field; but another case of an extended void is a void with
a cluster in its centre. The velocity is no longer divergent throughout the
void, but from outside the dynamical influence of the object still is that
of a void. We could say that we should be able to create a shell near the
boundary of the void through which the velocity field is divergent.

Super voids Super voids are the void equivalent of super clusters. They are
so rich in substructure that we can identify smaller voids within the
super void.

The difference between the definitions can be very important when consider-
ing void merging. In adhesion theory once a structure is collapsed it will only
dissipate slowly; even worse, in the Lagrangian view, regions once separated
will never rejoin. Once stuck, a particle cannot ’unstick’. We can however
adapt our definition to our interpretation of what we think a void is. This has
the downside of adding threshold parameters, making unbiased void detect-
ing more difficult.
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Figure 6.8: Number of voids as a function of time: On the top panel we show the
Lagrangian view of collapsed vs. free particles. Free particles are shown in
black.

6.3.2 Percolation theory

Percolation analysis was advocated by Shandarin (Shandarin, 1983)(Klypin
and Shandarin, 1993) as a way of measuring the connectiveness of the cosmic
web. The Universe starts with no structure. There are only free-streaming par-
ticles, so we consider the Universe as one big void. Then in patches structure
starts to form. Slivers of filaments start to grow until they connect. We can
see this happen if we look at the map of stuck/free particles in Lagrangian
coordinates. We move from a universe connected by under-densities to one
connected by over-densities. While this is a relatively straightforward picture
in 2-D, in 3-D the connectivity of over-dense and under-dense regions don’t
exclude each other. Rather the topology of the cosmic web will be that of a
sponge, as was shown by Gott et al. 1986 (Gott et al., 1986). This will make it
more complicated to perform an analysis of the void tessellation in 3-D.

6.3.3 Void sociology

In the evolution of the cosmic web we see voids continuously expanding at the
expense of weaker voids. If we look at this process in Lagrangian coordinates
we see voids evaporating by mass-decretion, their particles slowly joining the
surrounding filamentary structures. We can describe the life of a void from
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the moment it is separated from it’s parent void to it’s collapse between the
surrounding over-densities. This is illustrated in figure 6.9 As we see matter
streaming out of voids, substructures attenuate. This could result in void
merger, but we don’t see this in our simulations.

6.3.4 Alignment

Also visible is the alignment of structures within larger voids. When a void
gets squashed, the filament survival is greater if the filaments are oriented or-
thogonal to the direction of squashing. Also the other way around, substruc-
ture can get stretched by the larger scale motions, also resulting in alignment.
The effect was previously discussed in (Platen et al., 2008), where it is ascribed
to the large scale tidal forces.

6.4 Wall dynamics

The type of processes that occur in LSS formations depend on the dimension-
ality of the structure. We have identified voids as regions where particles are
free-streaming in three dimensions. Then particles will hit a wall, streaming
in two remaining free directions, until it is captured by a filament, after which
it ends up in a cluster. This picture of environmental history can be seen
most beautifully when we take three thin slices out of a simulation box that
are aligned with a wall. We can see the result in figure 6.10. The slice was
extracted upon visual inspection of the simulation box. In the edge-on view
we see particles raining down on the wall from the surrounding voids. These
then stream towards the filaments and finally end up in clusters. In this pro-
cess the wall shows fragmentation into several thin filaments.

This is an example where adhesion correctly models the stream of matter
from voids to clusters. It should be noted that this motion is internal to the
structures that are themselves evolving much slower. It is often mentioned in
the literature that adhesion breaks down inside singularities (Shandarin, 1995,
for example). We must conclude that at least in this case, adhesion does give a
good description of dynamics within a wall. Of course, to be sure, we would
have to compare this with a real N-body simulation.

6.5 Merging and fragmentation of clusters

A prediction of Cosmic Web theory (Bond et al., 1996) is the dependence of the
number of filaments connected at a cluster with its mass. In 3-D an adhesion
cluster has four joining filaments by definition. In a real simulation when two
clusters with four filaments each meet, they will join. The new cluster will
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This shows a slice through a 3-D W&G
simulation, illustrating adhesion dy-
namics within a wall. Particles rain
down from the surrounding voids onto
the wall, then flowing to the filaments
to finally end up in clusters. Also in
the xy-projection one can beautifully
see the fragmentation into smaller fil-
aments within the wall.

Figure 6.10: Wall dynamics in face-on and edge-on views.

have (at least temporarily) six filaments. In adhesion this won’t happen. As
Bernardeau and Valageas (2009) showed, if we look at a 2-D simulation, two
clusters cannot join. They will merge and fragment, two new clusters going
more or less opposite ways, orthogonal to the merging direction. Clusters will
only merge if they are the complete set of clusters spanning a vanishing void.
In 3-D, two clusters merging, will fragment into three new clusters and vice
versa; four clusters (each the node of a tetrahedron shaped void) are needed
to merge into a single cluster.
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Chapter 7
Results

7.1 Simple statistics

The simplicity of adhesion allows us to perform statistics at resolutions that
normally require supercomputers to compute. The simplest example would
be the cluster mass function and the void volume function.

7.1.1 Void volume

To calculate the volume of a void, we use the Lagrangian map L as well
as the Eulerian map E . First we find the range function RE (q). Then for
each connected volume in RE we calculate the volume. Shani et al. (1994)
already calculated the same without having access to the more accurate sub-
pixel mapping L. Since fluid elements in voids have not entered a caustic, we
can use ZA by our definition of a void. The volume is then given by

VE = ∑ dVE =
N

∑
i=1

dVL
d

∏
j=1

[
1− D+λj(qi)

]
, (7.1)

where N is the number of connected free volume elements, and d the dimen-
sion. (Sahni et al., 1994) The void volume function was calculated analytically
by Sheth and van de Weygaert (2004). Using the adhesion tessellation we
looked at the void volume distribution in a 3-D box with 2563 particles, and
initial conditions for a 1024h−1 Mpc simulation. This way we have enough
resolution to find a cut-off in the distribution at larger scales. We fitted a
Schechter function to find a characteristic scale length.
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Figure 7.1: Cluster mass function at two time steps using 2563 particles with 1024 Mpc
CDM initial conditions. This graph includes all singularities without check-
ing whether a particle is in a cluster or filament. The vertical lines indicate
the characteristic masses.

7.2 Adhesion as a geometric tool

Other than using adhesion to study the evolution of the cosmic web, it can
also be used to detect the web within time steps of an N-body simulation,
or even on galaxy surveys like SDSS or 2dF. There are numerous algorithms
available that do this (for example watershed (Platen et al.), MMF (Aragón-
Calvo et al., 2007a) or skeleton finder by Sousbie et al. (2009)). Adhesion has
the advantage of ’cleaning things up a bit’ in the process. The down side is
that adhesion can’t help evolving the density distribution on large scales as
well as the small scales. This could be cured by filtering the potential with a
hi-pass filter. This also allows for a scale-space hierarchical approach to the
problem. It is clear from figure (7.3) that the adhesion method is not able to
pick out much detailed structure.
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Figure 7.2: Void volume function at two time steps using 2563 particles with 1024 Mpc
CDM initial conditions. Voids become less numerous at later times, so
the quality of the fit diminishes rapidly. The vertical lines indicate the
characteristic volumes.

Figure 7.3: Adhesion shape finder: We created a mock sample from an adhesion time
frame. On the left we coloured the area by the signature of the eigenvalues
of the deformation tensor, as explained in the section on Zel’dovich approx-
imation. On the right is shown the Lagrangian view after an appropriate
time step.
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7.3 Results on 2-D scale-free models

We now present some results on 2-D scale-free models. These results are illus-
trative for the possibilities in 3-D. We took a set of random phases and applied
three different scale-free power-spectra to them. They were normalised by tak-
ing a common value of the power spectrum from the CDM spectrum at a fixed
wavelength, such that the results show a nice evolution at a similar time-scale
as CDM would give at that particular wavelength. We show results for three
time-steps (at D+ = 0.1, 0.3, 0.5). Where time-evolution is not shown we took
the results for D+ = 0.3. The density is plotted in figure (7.4). The colour
coding is logarithmic, and the images are filtered with a small Gaussian, to
show the clusters more clearly. The images clearly show the characteristic dif-
ferences between the models of different power spectrum slope. The model
with n = 0.5 shows dominant clusters and little hierarchy, where with de-
creasing n the filaments get more pronounced, and the large scale structure
becomes more fractal. Also visible is the greater influence of large scale tidal
fields in the model with n = −0.5. These observations are supported by the
Lagrangian view of the same snapshots in figure (7.5). 1

One of the more surprising conclusions would be, that the model with the
least small scale power shows the most sub-structure. This can be explained,
as models with high power in small scales will, on these scales, go non-linear
much sooner. Thereby these small scale structures get destroyed by aggres-
sively expanding voids; so to say there is a large transfer from small scale
perturbations to large scale structures. On the other hand, models with dom-
inating large scale modes will have some of their small scale structures de-
stroyed in the collapse of larger voids, but within the surviving voids there
will be richer substructure.

The most important difference with the theory of the Cosmic Web by Bond
et al. (1996) is that the influence of the voids alone would be enough to recreate
the Cosmic Web. Bond et al. show that the pattern of the cosmic web is already
present in the initial conditions in the terms of the presence of rare events in
in the medium. These events can be strong tidal configurations or Morse
singularities in either the density or the potential. Based on the way adhesion
builds the Cosmic web, we could say that this picture is not complete. The
expansion of a set of ever stronger voids erases some of the structures that
would have formed if the neighbouring void would not be there. On the other
hand we have shown in the previous chapter, that the evolution of the cosmic
web cannot be described by the expansion of the voids alone, as this leads to
pathetic behaviour in the merging of clusters.

1To get a good feel for how the Cosmic Web evolves in adhesion theory, one should see the
motion pictures that are available on the web: www.astro.rug.nl/~hidding/go/go.html. The
medium of printed paper is not sufficient to capture all of the insights these videos purvey.
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7.3.1 Filament strength

Cosmic web theory predicts a correlation between the length of a filament and
its density. (van de Weygaert and Bond, 2005a) We did find a power-law rela-
tion between the density of a filament and the mass of the adjacent clusters in
the 2-D scale-free simulations. This can be explained by the geometric config-
uration of the structures in Lagrangian space. Since the filament that connects
two clusters share an edge with each of these in the Eulerian mapping, the
density of the filament will depend on the cluster mass, by approximately a
square root law. This correlation can be seen in figure (7.6), where we mea-
sure a power slope of γ ≈ 0.6. This number stays constant for all models at
all times. However we find no correlation at all between filament density and
length, which we plotted in figure (7.7). Since this relation is a well tested
prediction of Cosmic Web theory (van de Weygaert and Bond, 2005a; Colberg
et al., 2005), we must conclude that adhesion theory is at flaw here, at least in
the two dimensional case.
The correlation between cluster mass and filament density is reproduced by
adhesion, but we have to ask ourselves if the mathematical reason behind it
is indeed comparable with the physical reason it should have. Both the mass
of the cluster and the density of the filament come from the strength of the
neighbouring void.
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Figure 7.4: Mass density for scale-free models: Three different scale-free models (from
top to bottom: n = 0.5, 0.0,−0.5, using the same random phases). We
plotted the density filtered with a small Gaussian to bring out the clusters.
From left to right there are three time-steps. Notice that the model with
n = 0.5 has dominant clusters, and the large scale structure is dominated
by features expanded from small scale initial perturbations, giving voids
that tend to be spherically shaped. The n = −0.5 has more prominent
filaments and the large scale structure is dominated by the tidal field of
large scale initial perturbations.
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Figure 7.5: 2-D Volume density for scale-free models: this figure shows the same three
models as in figure (7.4), now in Lagrangian ”volume density” view. We
see that though the n = −0.5 model has less clusters than the n = 0.5, they
are heavier.

71



Figure 7.6: Correlation of filament density with cluster mass: We find a clear correla-
tion between filament density and cluster mass. The slope of the power-law
is similar for all three models (n = 0.5, 0.0,−0.5 from top to bottom). Also
this slope does not change significantly with time.
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Figure 7.7: Non-correlation of filament density with filament length: We find no corre-
lation between filament length and density what so ever (n = 0.5, 0.0,−0.5
from top to bottom). We do see the increase in filament density towards
negative n, this can be seen also in density maps in figure (7.4)
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7.3.2 Quadrilateral deformation

From the quadrilaterals that we obtain from the Eulerian map, density is not
the only parameter that we can retrieve. We saw that the quadrilaterals evolve
towards triangles in the case of clusters, and to elongated bars in the case of
filaments, while remaining mostly square in the case of voids. To segregate
these shapes we look for a set of discriminating scalar shape parameters. We
investigated two such parameters.

Figure 7.8: Quadrilateral deformation:In this quadrilateral we show the geometric cen-
tre G, which can be found using the average of the four corner points; and
the intersection of the two diagonals M. The distance between these two
points can be used as a parameter for deformation.

The most obvious candidate as a measure of elongation is the fraction between
circumference and the square root of the surface of the quadrilateral ε. To
measure the deformation we find the difference between the geometric centre
and the intersection of the two diagonals of the quadrilateral ∆. This quantity
too has to be divided by the square root of density to make it dimensionless.

We applied these measures to the three different scale-free models presented
earlier this chapter. The results are presented in figures (7.9), (7.10) and (7.11).
The three colours correspond to the independent detection of the morphologi-
cal elements using the adhesion tessellation. The voids are red, filaments blue
and clusters green. We see that the parameters work as expected. Especially
in the model with positive n, the three morphologies are clearly separated
using any combination of two of the parameters. There is some pollution in
the filamentary structures from the voids. This originates from the filaments
that escape detection in the tessellation because they do not form the borders
between two distinct voids. In the same way there is pollution in the clusters
from the filaments. The best combination of statistics seems to be the density
with the elongation. Each morphological element is neatly put in one of three
corners of a triangle on this plane.
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In the model with n = 0.5 we can see two dimensional substructures with the
voids and linear ”smears” with the filaments. This suggests that the shape
parameters are spatially correlated. This effect disappears in the model with
negative power slope. This can be explained, as in the first model small scale
perturbations dominate, the tidal distortions are dominated by the local en-
vironment (each void to its own). In the latter there is much more cross-talk
from the larger scales down. This erases any spatial coherence there might be
in the shape parameters.
In the n = −0.5 model the distinction between voids, filaments and clusters
are getting less pronounced. This implies it will be harder to track the more
fine-grained structures in these models.
The shape parameters promise to be a good way to track the finer structures in
the Eulerian map directly. Also this method could be applicable to a broader
family of Lagrangian codes.
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7.3.3 Tidal fields

The tidal field gives a measure of shear distortion induced by the gravitational
field. It is the symmetric traceless part of Hessian matrix of the potential.

Tij =
∂2φ

∂xi∂xj
− 1

3
δD

ij ∇2φ (7.2)

Using the eigenvectors and values of the tidal field, we can map the strength
and direction of this field and correlate it with the local density. The tidal field
is a central quantity in the theory of the Cosmic Web. (Bond et al., 1996; van de
Weygaert and Bond, 2005a) It is generally known that the tides are correlated
with the density peaks. Outside the peaks the tidal strength should be the
greatest in the filaments. Adhesion allows us to check this by segregating the
density correlation by morphology. Indeed we see tidal bridges between the
clusters, where the filaments are. This effect is enhanced by the fact that fil-
aments are over-densities themselves. For the different 2-D scale-free models
under discussion, we plotted the magnitude of the tidal field in figure (7.12).

In figures (7.13), (7.14) and (7.15), the tidal field is plotted over the density.
The field has been smooth with a radius of 8 pixels. The length of the bars
is the strength of the field, the direction the compressional component. The
strongest points have been left out to keep the images tidy. Again it is clear
that most of the tidal influence originates in the clusters. We were unable to
reproduce the results from Platen et al. (2008), as the filaments seem to be too
weak, at least in this 2-D model.
The correlation between tidal field strength and density is plotted in figure
(7.16) for the different scale-free models. We can distinguish the different be-
haviours of the tidal strength for the morphological components. There is no
correlation in the voids; where they have stronger tidal fields, it is because the
proximity of a cluster. We can see the tidal field getting stronger inside denser
filaments, and a very tight correlation with the mass of the clusters.

Although this application of adhesion seems more or less trivial, it shows us
the power of having an independent classification of the morphology of the
cosmic web. Another way to perform this analysis would be to take an N-body
simulation and find the elements using structure finding algorithms. However
a lot of these algorithms (not counting the watershed method) depend on the
analysis of the Hessian of the potential (MMF for example), which we used to
calculate the tidal field.
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Figure 7.12: Tidal field strength: this figure shows the tidal field strength (colour-coded
logarithmically) for the same nine 2-D snapshots as in figure (7.4) (from
top to bottom: n = 0.5, 0,−0.5). We clearly see the difference in terms of
dominating clusters in the top row and stronger filaments at the bottom.
Also visible is the quadrupole character of the field. The tidal influence of
the clusters is the greatest directly in between them, showing tidal bridges
in the filaments.
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Figure 7.13: Tidal field for n = 0.5.
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Figure 7.14: Tidal field for n = 0.0.
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Figure 7.15: Tidal field for n = −0.5.
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Figure 7.16: Correlation between tidal strength and density: the black line shows the
average over each 512 points. The three models show similar behaviour in
the correlation. There is a very tight linear correlation in the clusters and
no correlation in the voids. The filaments show stronger tidal strength
than clusters for the same density.
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Chapter 8
Discussion

We have seen several separate examples, where adhesion theory can teach us
how the cosmic web evolves. Also there were some cases where adhesion did
not behave as expected. It should be clear that adhesion has severe limitations.
We will put these loose examples together, and find some areas where future
research is useful.

8.1 Large scale evolution of the cosmic web

Adhesion allows us to define a new language for discussing the evolution of
the cosmic web. This language is enhanced by the formalism of the comple-
mentary Lagrangian and Eulerian view points. We can separate the evolution
into internal and external.

Internal Describes the motion of individual particles within a structure. Any
sort of fragmentation or dilution is considered to be internal. For exam-
ple, two voids can only merge when a wall dissolves; which means that
matter within the wall has to stream out of the wall.

External Describes the motion of an entire identifiable structure. For example,
a void getting crushed between walls.

External processes are described in the EL-dual formalism. With internal pro-
cesses this is harder. Once formed, structures are impossible to delete using
just internal processes. However in principle, walls and filaments can get in-
finitely stretched. At some point along the way we have to give up the notion
that there is a wall, because it would never be detected in a real situation.
Also, from the geometric Lagrangian point of view, walls can only dissolve if
the neighbouring voids are nearly completely empty. This means processes
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like void merger (Sheth & van de Weijgaert 2004 ??) will not be seen in the
adhesion formalism. It would be an interesting exercise to see which of the
two processes (external or internal) dominate at any time. An overdose of the
one makes the other insignificant.

Adhesion can only give an accurate model for the formation of large scale
structure if the gravitational relaxation time-scale is short compared to the
Hubble time. We could also turn this argument around and say that if adhe-
sion gives the right answers on external structure, relaxation time-scales must
be short, which might constrain properties of the internal structure.

8.2 Validity of adhesion

We should stretch that the dynamics in adhesion is completely dominated by
the voids. The entire shape of the convex Lagrangian potential is determined
by the patches that correspond to the voids. Because of this, clusters show
strange behaviour. It is often mentioned in the literature that adhesion ceases
to be valid inside singularities. We have seen the internal dynamics of a wall
being well modelled, as well as the external dynamics of clusters being flawed
in adhesion. Also the mass distribution in filaments was not as expected.
We could say adhesion breaks down wherever clusters have a conflicting and
dominant dynamical influence over that of the voids.

8.3 Future work

8.3.1 Caustics

There used to be two major competing schemes for the formation of galaxies.
The theory of Hot Dark Matter (in the form of massive neutrinos) predicted
galaxies forming from fragmenting pancakes in a top-down process. Cold
Dark Matter gave the bottom-up process that we use today. To use caustics to
describe large scale coherence in the framework of hierarchical galaxy forma-
tion would have been contraband in both camps (which were divided by the
Iron curtain).

Recent observations have given tentative hints at the influence of large scale
motions on galaxy formation; in particular correlations in star formation his-
tories of galaxies thought to be in the same wall or filament. (Fleenor and
Johnston-Hollitt, 2009; Ceccarelli et al., 2008; Zitrin and Brosch, 2008) Also
predictions of spin alignment (Aragón-Calvo et al., 2007b) and their observa-
tion (Godłowski and Flin, 2010) leads us to conclude that large scale dynamics
of the cosmic web can be an important driver of galaxy evolution.
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Adhesion based algorithms can give us the locations and classifications of
shocks in a simulation. At the same time more physically realistic high res-
olution simulations can give us information on the physical processes within
different classes of caustics. Resolving shocks is typically a weak point in SPH
codes, so this line of research might yield some unexpected results.

8.3.2 Legendre transforms

Our current implementation of the Legendre transform is not optimised for
parallel processing. A parallel implementation makes fast Legendre trans-
forms for bigger 3-D simulations feasible. Even bigger optimisations could be
achieved in the sub-pixel enhancement phase of the calculation.

8.3.3 Dynamics within nodes

The work by Bogaevsky (Bogaevsky, 2004, 2002) distinguishes two kinds of
nodes in the cosmic network. Stable nodes which accumulate matter, and
unstable ones which act as way-points in the network. These nodes can change
behaviour during the evolution of the cosmic web. It would be extremely
interesting if this could be observed in simulations.

8.3.4 Forced Burgers dynamics

To include the influence of clusters, we need to include gravity. This could
possibly be done by performing the solution of the Burgers equation sequen-
tially, updating the potential after each step. More formally we would have to
include a force term in Burgers equation. This is described in Bec and Khanin
(2007) as well as Frisch and Bec (2001). Also these results should be compared
with N-body simulations.

8.4 Conclusion

In the introduction we set out three goals. We wanted to obtain a tool that
creates a test sample for morphological algorithms. The data the Legendre
transform based code puts out, is extremely well suited to do this. Also we
can vary the detection difficulty, in terms of hierarchy and larger spans in
density contrast, by changing the initial conditions.
We have tried to reproduce some results from the theory of the Cosmic Web.
This attempt was largely hampered by the fact that clusters merge badly in
adhesion. Comparison with models that do include a dynamical gravitational
component, can tell us which properties should be attributed to the complex
interplay of tidal forces, and which can be explained by kinematics from the
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initial conditions only.
The morphological segregation that adhesion offers, gives us a powerful tool
to study the dynamical influence of the different components separately. We
have seen an example of this in the tidal field of the evolved density.
The dual approach of Eulerian and Lagrangian views has given us a perspec-
tive on adhesion that allowed us to understand some of the complex processes
that occur inside the simulations.
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T. Budavári, L. N. Carey, S. Carliles, M. A. Carr, F. J. Castander, D. Cinabro,
A. J. Connolly, I. Csabai, C. E. Cunha, P. C. Czarapata, J. R. A. Davenport,
E. de Haas, B. Dilday, M. Doi, D. J. Eisenstein, M. L. Evans, N. W. Evans,
X. Fan, S. D. Friedman, J. A. Frieman, M. Fukugita, B. T. Gänsicke, E. Gates,
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Appendix A
Conventions

In the literature there are a lot of different conventions on the naming of
variables; especially when dealing with the amount of different coordinate
systems and potentials, this can be quite confusing. In this appendix we hope
to clarify our own choices.

r Physical coordinate

x Comoving coordinate

q Comoving Lagrangian coordinate

t Time

a Hubble expansion factor

D+ Growing mode solution

u In section 2 this is the physical velocity ∂tr, in section 3 & 4 the comoving
velocity with respect to the growth factor ∂Dx.

v Comoving velocity a∂tx.

ρ Density

δ Density perturbation

Φ Gravitational potential, later on the linear velocity potential

φ Gravitational potential perturbation

u0 Zel’dovich displacement field

Φ0 Zel’dovich displacement potential u0 = −∇qΦ0(q)

dij Zel’dovich deformation tensor
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Appendix B
Newtonian Friedman
equations and the Einstein-de
Sitter universe

A lot of cosmology text books start with an introduction into general relativity,
while in fact Newton’s laws are all we need if we don’t bother about pressure
terms or the cosmological constant. We start with the Poisson equation, as-
suming spherical symmetry, ẍ = ẋ = 0 and ρ ∝ a−3.

∇2Φu =
1
r2

(
∂

∂r

(
r2 ∂

∂r

)
Φu

)
= 4πGρ

Φu =
2πG

3
ρr2

r̈ = äx = −∇x

a
Φu

ä
a

= −4πG
3

ρ (B.1)

which is the acceleration equation.

Continuity equation in the case of matter

3ρȧ = −ρ̇a

2äȧ = −8πG
3

ρaȧ
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then using partial integration∫
ρaȧ dt = a2ρ−

∫
a(ρ̇a + ρȧ) dt = a2ρ + 2

∫
ρaȧ dt

∫
ρaȧ dt = −a2ρ + C

then

(
ȧ
a

)2
=

8πG
3

(
ρ +

C
a2

)
(B.2)

The Einstein-de Sitter model has the integration constant C = 0. If we make
the ansatz a = (t/t0)n and have ρ = ρ0a−3 then(

ȧ
a

)2
=

8πG
3

ρ0a−3

ȧ2a = Const., n =
2
3

a =
(

t
t0

) 2
3

At t = t0, a = 1 and H ≡ ȧ/a that is

t0 =
2
3

H−1
0

Also we can now calculate the density in such a Universe

ρ0 =
3H2

0
8πG

and we see that this Universe can only be the case if ρ = ρcrit.
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Appendix C
Comoving equations of motion

C.1 Euler equation

The Euler equation is the embodiment of Newtons law of inertia in a fluid. We
will neglect pressure terms from now on since we’re dealing with scenarios
that are ”dark matter only”.
If we put together equations 2.9 and 2.10 we obtain the comoving version

d(av)
dt

= −∇xφ (C.1)

Writing this out in full

∂(av)
∂t

+
1
a

v ·∇x(av) = −∇xφ (C.2)

then using d(av)/dt = ȧv + a ∂v
∂t

∂v
∂t

+
ȧ
a

v +
1
a

v ·∇x(v) = −∇x

a
φ (C.3)

The term Hv is the most important change with respect to the version in
physical coordinates, which is known as the Hubble drag.

C.2 Continuity equation

Continuity takes care of the conservation of mass: the change of density is
equal to the rate of inflow.

ρ̇ + ∇r · ρu = 0

δ̇ +
∇x

a
(δ + 1)v + (

˙̄ρ
ρ̄

+ 3
ȧ
a
)(δ + 1) = 0
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using that ρ ∝ a−3 (assuming matter only) we see that

˙̄ρ
ρ̄

= −3
ȧ
a

and we lose the last term

δ̇ +
∇x

a
(δ + 1)v = 0 (C.4)

C.3 Poisson equation

The last equation adds gravity to our system

∇2
r Φ = 4πGρ

∇2
r (φ + Φu) = 4πG(δρ̄ + ρ̄)

This we then separate into two equations (the assumption that we can do this
was discussed earlier)

∇2
r Φu = −∇

2
x

a2
1
2

aäx2 = −3
ä
a

= 4πGρ̄

and

∇2
r φ =

∇2
x

a2 φ = 4πGδρ̄

The first equation is the Newtonian variant (differing by the pressure terms)
of the Friedman equation. The second is the one we’re interested in

∇2
xφ = 4πGa2ρ̄δ (C.5)

A full treatment of these equations can be found in Peebles (1980) (Peebles,
1980).
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Appendix D
Cubic splines

To do the interpolation we need a cubic spline since the derivatives should
vary smoothly for the minimization to work.

3

∑
i,j,···=0

aij...xiyj . . .

Cubic interpolation has the benefit that it works in k-dimensions; the number
of free parameters p = 4k which we can fit to the values at 2k points at 2k

different configurations of derivatives (i.e. f , fx, fy, fxy for k = 2). This always
gives an isotropic interpolation. The values of aij... are then calculated by solv-
ing a matrix equation (with a nice integer valued inverse) which is worked out
in the appendix. To do the actual minimization we use a multi-dimensional
Broyden-Fletcher-Goldfarb-Shanno routine from the GNU Scientific Library.
This is then initialized with the location found in the FLT. The cubic spline
has the benefit of having a unique isotropic interpolation scheme for any di-
mension. The function we have to fit is

3

∑
i,j,···=0

aij...xiyj . . .

In d-dimensions this gives us N = 4d free paramaters. These have to be fit to
every combination 2d of derivatives on 2d corner points. We will work out the
example for d = 2.

f (x, y) =
3

∑
i,j

aijxiyj

Corners of the interpolation cube will be denoted by combinations of 0 and 1.

f (0, 0) = a00
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f (0, 1) =
3

∑
j=0

a0j

f (1, 0) =
3

∑
i=0

ai0

f (1, 1) =
3

∑
i=0

3

∑
j=0

aij

d
dx

f (0, 0) = a10

d
dx

f (0, 1) =
3

∑
j=0

a1j

d
dx

f (1, 0) =
3

∑
i=1

iai0

d
dx

f (1, 1) =
3

∑
i=1

3

∑
j=0

iaij

d
dy

f (0, 0) = a01

d
dy

f (0, 1) =
3

∑
j=1

ja0j

d
dy

f (1, 0) =
3

∑
i=0

ai1

d
dy

f (1, 1) =
3

∑
i=0

3

∑
j=1

jaij

d
dx

d
dy

f (0, 0) = a11

d
dx

d
dy

f (0, 1) =
3

∑
j=1

ja1j

d
dx

d
dy

f (1, 0) =
3

∑
i=1

iai1

d
dx

d
dy

f (1, 1) =
3

∑
i=1

3

∑
j=1

ijaij

This can be expressed in the matrix equation x = [ f (0, 0), f (0, 1), f (1, 0),
f (1, 1), fx(0, 0), fx(0, 1), fx(1, 0), fx(1, 1), fy(0, 0), fy(0, 1), fy(1, 0), fy(1, 1), fxy(0, 0),
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fxy(0, 1), fxy(1, 0), fxy(1, 1)]T and α = [a00, a10, a20, a30, a01, a11, a21, a31, a02,
a12, a22, a32, a03, a13, a23, a33]T

Aα = x

with

A =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 2 3 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 2 0 0 0 3 0 0 0
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 2 3 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 2 0 0 0 3 0 0
0 0 0 0 0 1 2 3 0 2 4 6 0 3 6 9


It is fortunate that this matrix has a nice integer valued inverse. When d =
3 this procedure results in a matrix multiplication of rank 64 which is not
printed here. This kind of operation might become faster when performed on
a graphical processing unit.
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Appendix E
About the code

The code supplies several smaller routines based on the same ”numerical
tower”. The entire program is made in C++ with the exception of several
helper scripts in Python (mainly used for file-format conversion). The soft-
ware will be available under the GPL licence at http://www.astro.rug.nl/∼hidding.
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