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CHAPTER 1

INTRODUCTION

The fact that we seem to be drawing a fairly decent picture of the global physics governing
the observable universe in the form of “concordance” cosmology, does not in the slightest
imply that we understand the intricate details that abound in the structures of our
cosmos. We can summarize the universe as a whole in a few equations and parameters.
However, we are only beginning to understand what the implications of our models are
for other structures in the universe. Neither do we know the exact underlying causes of
the behaviour of our universe as we observe it.

It is in the nature of (astro)physicists to try to understand every natural phenomenon
on every possible scale. In this light, cosmology and particle physics can be seen as two
extreme approaches to this goal (see figure 1.1). Results from cosmology can be used
to provide hints on where to look for new particles in particle physics and vice versa:
new-found particles can be used to explain cosmological results or even lead towards new
approaches for observing the universe. These two different yet complementary fields will
undoubtedly lead to new insights in the laws of physics.

One of today’s greatest puzzles is that of the nature of the dark components of our
universe: dark matter (DM) and dark energy (DE). Making up respectively 21.7% and
73.8% of the total cosmic energy content (Komatsu et al., 2010), a total of 95.5%, our
ignorance of its true nature is embarassing. Up to now, attempts at understanding
these enigmas of modern science have been largely theoretical in nature. We have no
compelling evidence of the precise nature of DM and DE (Komatsu et al., 2010; Aman-
ullah et al., 2010). Whereas by now we largely agree on several physical properties of
DM, e.g. that the bulk of it must be cold1 and that it interacts with baryonic matter
mainly through gravity, we have no such clues about DE, making it an even greater
mystery. The best we can manage on the subject is a plethora of highly abstract and
generalised field theories. Observational constraints, however, are continuously closing
in and although we still have quite a lot of unexplored parameter space, it may not be
long before we approach some equilibrium and will be able to exclude some of our most
esoteric models.

Until the time when we can use our observations and experiments to pin down the
1Where “cold” means slowly moving with respect to the Hubble expansion, at the time of decoupling

of the DM species from the rest of matter and radiation. It is contrasted with “hot” DM, which moves
relativistically.
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CHAPTER 1. INTRODUCTION Patrick Bos

Figure 1.1: Uroboros, the cosmic snake biting its own tail. It represents the different
scales of physical phenomena and the hope that one day the most extreme scales can
be described by the Grand Unified Theory, the holy grail of current day physics. Image
from Primack and Abrams (2007).

5



July 6, 2010 1.1. BACKGROUND AND DEFINITIONS

nature of DM and DE, we must prepare ourselves. We should follow recent attempts
like ESA’s EUCLID mission (Cimatti et al., 2009) and try to find reliable probes for
determining the exact nature of dark energy. In this thesis we aim to do just that by
trying to find probes of the nature of DE. Specifically, we are interested in the effects of
time dependent DE models. In this, we specifically concentrate on voids. Recent studies
(Park and Lee, 2007; Lee and Park, 2009; Lavaux and Wandelt, 2010) have pointed out
that voids may be very sensitive probes of DE.

Before we delve into the specifics of the DE models we review some of the necessary
background and definitions from cosmology and cosmic structure formation. Following
this general introduction, we will treat time dependent models of dark energy. In the
final section of this chapter, we will provide the arguments of why we expect voids to be
an interesting probe of dark energy.

The outline of the rest of this thesis is as follows. First we will give a description of the
data (both quantitatively and qualitatively) in chapter 2. Structure finding algorithms,
like halo and void finders, are invaluable to our analysis and we will elaborate on them
in chapter 3. In chapter 4 we list the results from our analysis of the data. We conclude
with a summary and discussion chapter 5 and conclusions in chapter 6.

1.1 Background and definitions

The standard reference point for cosmological research like our own is that of “con-
cordance” cosmology (Ostriker and Steinhardt, 1995). This model of the universe is
based on the cosmological principle that states that, on large scales, the universe is ho-
mogeneous and isotropic. Under these two assumptions, we can derive from Einstein’s
equations the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric. We end up with
the Friedmann equations that govern the dynamics of homogeneous and isotropic uni-
verses (see appendix B for a slightly more detailed derivation).

In this model the universe is made up of four main components: baryonic matter,
dark matter, radiation and dark energy (as modelled by a cosmological constant Λ).
The relative energy densities of these components are usually given as a fraction of the
socalled critical density ρc. The critical density is the density of a spatially flat universe
(one of the three possibilities in a FLRW metric). We then define for each component i
the density parameter

Ωi ≡ ρi

ρc
. (1.1)

The actual densities, obtained from the most recent (7th year) release of the WMAP
data (Komatsu et al., 2010; Larson et al., 2010) are the following:

Ωb = 0.0445, Ωr = 0.005, Ωd = 0.217, ΩΛ =
Λ

3H2
= 0.738 . (1.2)

The dynamics of our universe in terms of these contributions may be inferred from the
Hubble parameter H:

H2 = H2
0

[
Ωr

a4
+

Ωb + Ωd

a3
+

1−∑
i Ωi

a2
+ ΩΛ

]
, (1.3)

where a is the cosmological scale factor and H ≡ ȧ/a. Another important dynamical
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aspect is described by the Friedmann equation for the acceleration of the expansion ä:

ä

a
= −4πG

3

(
ρ+

3P
c2

)
, (1.4)

where ρ is the energy density and P is the pressure of the universal components.
In the realm of structure formation, we usually do not talk about the total density ρ,

nor do we use Ω. The essence of structure formation is that it deals with departures from
the initial homogeneous state of the universe. This means that it is far more illustrative
to look at perturbations from the average state of things. In the case of densities we
define the density contrast parameter δi(x):

δi(x) =
ρi(x)− ρ̄i

ρ̄i
, (1.5)

where ρ̄i is the average density of that specific component. We usually do not write the
subscript for the matter density contrast δm, but simply define

δ = δm = δb + δdm . (1.6)

Analogously to the density contrast parameter, we can define perturbative measures
of the velocity of objects and the gravity pulling on them. We call these the peculiar
velocity and gravity. The velocity from the Hubble expansion is subtracted from the
total velocity which leaves the peculiar velocity v:

v = u−Hr , (1.7)

where u is the total physical velocity and Hr is the velocity caused by the expanding
universe. The peculiar gravity is defined similarly.

The above equations, together with equations from the dynamic equations of struc-
ture formation (which we describe below), have proven to give an accurate description
of the universe. The cosmic web that we observe in large galaxy surveys can be mod-
elled using the framework of concordance cosmology. Be that as it may, no model is
perfect and as long as there is room in the observational constraints we should explore
every possibility left. One avenue of possibility is that of time dependent models of dark
energy. These models we will explore in the next section.

1.2 Dark energy

The history of dark energy starts when Einstein first introduces a cosmological constant
Λ in his equations2. He used it to ‘correct’ for the fact that his model described an
expanding or contracting universe, because he believed the universe to be static. When,
later on, Hubble showed that in fact the universe is expanding, Λ was discarded, only
to return by the end of 20th century.

By this time, it was inferred from observations of SNe type Ia that the universal
expansion was in fact accelerating (Riess et al., 1998; Perlmutter et al., 1999). Later
observations still yield the same result (Leibundgut, 2001; Amanullah et al., 2010). This

2The term “dark energy” is coined much later. Its first appearance in the literature was in a preprint
version of Huterer and Turner (1999).
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cosmic behaviour can be explained by assuming a non-zero value for Einstein’s cosmo-
logical constant. In analogy to dark matter, the source of this cosmological constant
would soon be called “dark energy”3. Recent reviews on dark energy are Frieman et al.
(2008) and Caldwell (2009).

Figure 1.2: Three possible futures for the universe. “If dark energy is constant,
as the new Chandra results suggest, the expansion should continue accelerating for-
ever. If dark energy increases, the acceleration may happen so quickly that galax-
ies, stars, and eventually atoms will be torn apart, in the so-called Big Rip. Dark
energy may also lead to a recollapse of the Universe, in the Big Crunch. The il-
lustration also shows the early decelerating expansion of the Universe, followed by
the accelerating phase that started about 6 billion years ago.” Image and text from
http://chandra.harvard.edu/photo/2004/darkenergy/more.html.

In 1.2 we show the expansion of the universe in several cases. A model with a
cosmological constant with a constant density of ΩΛ ≈ 0.7 will undergo accelerated
expansion forever. If, however, the amount of dark energy increases or decreases with
time, the universe may see a more violent end. In the first case the universal expansion
would eventually accelerate so quickly that all matter and even atoms will be torn apart.

3Note that dark energy and the cosmological constant are not the same. Dark energy represents
the right-hand side of Einstein’s field equation (the part describing the energy content of the universe),
whereas the cosmological constant is on the left-hand side of the equation as part of the description of
the curvature of the universe.
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In the second case, the universe would undergo the reverse of a Big Bang called a Big
Crunch.

The precise nature of dark energy will be a decisive factor in the fate of the universe.
Modeling this cosmic component is therefore of the utmost importance. In what fol-
lows, we will elaborate on the general theory needed to describe models of dark energy.
Furthermore, we shall introduce the models that we have considered in this thesis.

1.2.1 Modeling (time dependent) dark energy

On cosmological (Mpc) scales our universal constituents (matter, radiation, dark energy,
etc.) can be described as continuous “cosmological fluids”. On large scales we thus need
not concern ourselves with the discreteness of matter and other constituents. Rather we
simply describe each constituent j by the general equation of state for a cosmological
fluid:

Pj = wjρj , (1.8)

where we use natural units of c = 1. We typically assume for matter that wm = 0,
i.e. all matter in the universe is a pressureless “dust”. Radiation is best described as
a relativistic fluid for which wr = 1/3. wDE is constrained by the fact that it must
cause an acceleration of the rate of expansion (Kowalski et al., 2008; Hicken et al., 2009;
Amanullah et al., 2010). We can see what this means by looking at equation 1.4 for the
acceleration of the expansion factor. We can replace P by the expression in equation 1.8
(setting c = 1):

ä

a
= −4πG

3
(ρ+ 3wρ) . (1.9)

a is positive by definition, so this means that for the acceleration ä to be positive, we
must have

ρ+ 3wρ < 0 , (1.10)

from which we can conclude that

wDE < −1
3
. (1.11)

Solutions for a(t) in a universe with dark energy can be found by looking at the
most general form of the Friedmann equation in a flat universe (

∑
j Ωj = 1) containing

constituents j: (
H

H0

)2

=
∑

j

Ω0,j exp
(
−3

∫ a

a0

1 + wj(a′)
a′

da′
)
, (1.12)

where the equation of state parameter wj can be time dependent. For a constant wj we
have

(
H

H0

)2

=
∑

j

Ω0,j exp
(
−3(1 + wj) ln

a

a0

)
=

∑

j

Ω0,j

(
a

a0

)−3(1+wj)

. (1.13)

Focussing on the dark energy component (neglecting the influence of other components)
we have (

ȧ

a

)2

∝ a−3(1+wDE) , (1.14)
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Figure 1.3: Constraints on
the dark energy equation of
state parameter w(a). The
value of w(a) is taken to be
constant in each bin. Im-
age from Amanullah et al.
(2010), composed using all
of the most recent data
(from SNe and the WMAP
seven year data) from Hicken
et al. (2009); Holtzman et al.
(2008) and Komatsu et al.
(2010).

which has two solutions of the form

a ∝
{
t

2
3

1
1+wDE if w 6= −1 ,

et if w = −1 .
(1.15)

By taking the time derivative of the equation for w 6= −1 it is again easily seen that
for accelerated expansion to happen, we need 2

3
1

1+wDE
− 1 > 0, from which we see that

wDE < −1
3 .

In many studies the lower boundary of wDE > −1 is also adopted. We call the
region below this value the “phantom regime” (Hawking and Ellis, 1973; Linder, 2008).
Dark energy in this regime will cause a Big Rip in which the expansion accelerates
so rapidly that eventually even the strong atomic forces will not be strong enough to
keep atoms together. Interestingly enough, neither theoretically nor observationally (see
figure 1.3) can this form of DE be ruled out. Involving superluminal velocities, it may
cause problems with causality (Caldwell, 2009). We will therefore not consider models
in this regime.

1.2.2 Models of dark energy used in this thesis

We describe below the specific models of dark energy that we have investigated. As
explained above, dark energy has its influence on cosmology through the Friedmann
equation. Hence, we show how for each model this equation is derived.

Our reference model is a universe containing cold dark matter and a cosmological
constant: ΛCDM. We compare this model to four different models of time dependent
dark energy. We use two quintessence models, in which the dark energy is described
as a scalar field under the influence of a potential. The other two models are extended
quintessence models, where the scalar field is coupled to gravity.

In the following we set a0 = 1. We assume a universe with flat geometry, i.e. without
curvature. The equations used to determine w(a) are given. The resulting relations for
the different models are shown in figure 1.4.
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Figure 1.4:
Evolution of the
equation of state
parameter w = P/ρ
of dark energy for
different models.

Cosmological constant

Dark energy in a ΛCDM cosmology is modelled by a cosmological constant with wΛ =
−1. The Friedmann equation for this model in a flat universe is given as

(
H

H0

)2

=
Ω0,m

a3
+

Ω0,r

a4
+ Ω0,Λ . (1.16)

This situation also applies to concordance cosmology.

Quintessence

We first consider a dynamical model of dark energy as described by a simple non-
interacting scalar field φ. A scalar field is a basic quantity of field theory that assigns
to each point in space a scalar value. The essential point in describing dark energy
as a scalar field φ is that it gives dark energy a new degree of freedom. We can use
this degree of freedom to describe the dynamical properties that we would like the dark
energy to have (Frieman et al., 2008). This is done by introducing a potential V (φ) in
the equation of motion of the scalar field (described below). From quantum field theory
we learn that the equation of motion of a scalar field is the Klein-Gordon (KG) equation,
which is a relativistic version of the Schrödinger equation. We list the KG equations
for the specific models of quintessence we have used. The equation of motion and the
potential completely describe the dynamics of the model of dark energy.

Dark energy modelled by a scalar field φ in a potential V (φ) is called “quintessence”
dark energy (Wetterich, 1988; Ratra and Peebles, 1988). This model has w = w(a) and
the Friedmann equation is

(
H

H0

)2

=
Ω0,m

a3
+

Ω0,r

a4
+ Ω0,φ exp

(
−3

∫ a

a0

1 + wφ(a′)
a′

da′
)
, (1.17)

where

wφ =
Pφ

ρφ
=

1
2 φ̇

2 − V (φ)
1
2 φ̇

2 + V (φ)
. (1.18)
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Note that when the kinetic term φ̇ vanishes, we regain the ΛCDM value of w = −1. The
cosmological constant can thus be seen as a special case of the more general quintessence
model of dark energy. We can solve for φ using the KG equation:

φ̈+ 3Hφ̇+
∂V (φ)
∂φ

= 0 . (1.19)

The crucial part in this model is the potential V (φ) which determines the model’s
properties. If we choose it properly we can use it to overcome both the fine-tuning
problem4 and the coincidence problem5. Another desirable characteristic is that the
model can be motivated by particle physical considerations. In practice, this means that
the model is derived on a quantum field theoretical basis using the Lagrangian formalism
and keeping constraints like Lorentz invariance in mind. Quintessence models fulfill all
these desiderata by construction. We refer to Linder (2008) and Copeland et al. (2006)
for comprehensive reviews on the general dynamical properties of quintessence models.

We have used an inverse power law potential (Ratra and Peebles, 1988) and a gener-
alised inverse power law potential (Brax and Martin, 2000). The latter potential expands
upon the former by including corrections from supergravity (Freedman et al., 1976), the
supersymmetric version of general relativity. These models, which we will later refer to
as RP and SUGRA respectively, have the following potentials:

VRP(φ) =
Λ4+α

φα
(1.20)

VSUGRA(φ) =
Λ4+α

φα
exp

(
4πGφ2

)
, (1.21)

where α > 0 and Λ are free parameters.
These are both “tracker” potentials. This means that they have the convenient

property that the current day φ0 is independent of its initial conditions. In other words:
φ will always approach a certain value, meaning that we can use these potentials to solve
the coincidence problem. With these potentials, at early epochs the field’s density will
closely track the radiation density. After matter-radiation equality it will roll down the
potential to become the dominant cosmic component it is nowadays. This solution thus
also solves the fine-tuning problem. It naturally leads to the right energy scale of dark
energy.

Extended Quintessence

Both a cosmological constant and quintessence are represented as free scalar fields. They
do not interact with the other species in the universe. We could easily imagine a different
case in which a scalar field couples to the rest of the universal components through
gravity (Boisseau et al., 2000). Specifically, we consider here the socalled “extended

4The natural (Planck) energy scale for dark energy from particle physics is more than 100 orders of
magnitude larger than realistic estimates. To remove this large contribution from the models a negative
term of almost the same size must be introduced. Fine-tuning is necessary to get exactly the behaviour
we need dark energy to have. This problem is called the fine-tuning problem. Quintessence can remove
this problem, as it can naturally lead to the right amount of dark energy.

5The coincidence problem is that it seems very coincident that accelerated expansion started when it
did. If it had started earlier, structure as we know it might never have formed. We leave it to the reader
to decide whether this is an actual problem or just one of the coincidences of life.
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quintessence” (EQ) models of Perrotta et al. (2000); Baccigalupi et al. (2000); Perrotta
and Baccigalupi (2002); Pettorino et al. (2005) and Pettorino and Baccigalupi (2008).
The way we represent an interaction in field theory is by adding the socalled interaction
term to the action of the field. This term is a (Lorentz invariant) product of the quantities
that represent the fields that we want to interact. In our case these are the gravitational
field represented by the Ricci scalar R and the extended quintessence field φ. The action
then becomes (Baccigalupi et al., 2000)

S =
∫
d4x

√−g
[
1
2
F (φ)R− 1

2
∂µφ∂µφ− V (φ) + L′

]
, (1.22)

where L′ contains the terms of the Lagrangian without φ. F (φ) is given by

F (φ) =
1

8πG
+ ξ

(
φ2 − φ2

0

)
, (1.23)

where ξ determines the strength of the interaction and φ0 = φ(t0).
The two models we consider are those with a positive and a negative value of ξ

(referred to as EQp and EQn hence forward). These two models differ slightly in the era
of matter dominance (i.e. from z > 1 to the radiation dominated era), but are otherwise
largely similar (Pettorino and Baccigalupi, 2008).

Of course, interaction works both ways. Were we to implement these models very
strictly, we would have to alter our N-body code by making the gravitational constant
G time dependent (Pettorino and Baccigalupi, 2008). Luckily, we can make the model
approach the limit of GR by making sure that wJBD À 1, where

wJBD ≡ F (φ)
[∂F (φ)/∂φ]2

=
1

8πG + ξ
(
φ2 − φ2

0

)

4ξ2φ2
. (1.24)

Using this relation we can determine the allowed values of ξ. The lower limit for wJBD,0

(and thus the upper limit for the interaction term ξ, because wJBD,0 ∝ ξ−2) can be de-
termined by observations. On cosmological scales this limit, as obtained using WMAP1
and 2dF data, is set at |wJBD,0| > 120 (Acquaviva et al., 2005). Because we want the
interaction to be as strong as possible within observational limits we indeed set ξ using
this value; wJBD,0 = 120 for EQp and wJBD,0 = −120 for the EQn model. Thus the
limit of GR is reached and we need not alter our N-body code.

The value of w for the EQ models is again determined by the density and pressure:

ρφ =
1
2
φ̇2 + V (φ)− 3HḞ (φ) + 3H2

(
1

8πG
− F (φ)

)
(1.25)

Pφ =
1
2
φ̇2 − V (φ) + F̈ (φ) + 2HḞ (φ)−

(
2Ḣ + 3H2

)(
1

8πG
− F (φ)

)
, (1.26)

where the field φ evolves according to the KG equation:

φ̈+ 3Hφ̇+
∂V (φ)
∂φ

=
1
2
∂F (φ)
∂φ

R . (1.27)
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1.2.3 General parameterization

In the literature on quintessence a general parameterization of the time dependence by
Linder (2003) is often used:

w(a) = w0 + wa(1− a) . (1.28)

The first obvious advantage of a parameterization is that we can use it as a general frame-
work for comparative purposes. As sketched above, the details of different quintessence
models require lots of unrelated parameters, which make comparing different models
very difficult. This specific parameterization was shown to fit to a large number of mod-
els very well (Linder, 2003). In fact, current observational errors would render further
parameterization useless, as the fitting errors are smaller than what can be reached in
observations. In other words, parameterization in w0-wa space “faithfully preserves the
information to better than the precision level of the data” (Linder, 2010). With only
two parameters, it is also a very manageable parameterization.

Model WMAP3 RP SUGRA EQp EQn

wa 0.0 0.0564 0.452 0.0117 0.0805

Table 1.1: Fits of dark energy model parameters wa to the w(a) relations in figure 1.4,
determined using a χ2 fit.

Indeed, the models we have used can also be fit to this parameterization. Using a
simple χ2 fitting procedure with wa as a free parameter (w0 are fixed to the values that
were chosen for the simulations) we find the best fits as given in table 1.1 (and again in
table 2.1).

1.2.4 Probes of dark energy

In the years since its discovery by the use of SNe Ia, the number of probes of dark energy
has steadily increased. A few of these probes we list here.

The first probe of the accelerating expansion were the measurements of supernovae
type Ia (Riess et al., 1998; Perlmutter et al., 1999). SN Ia are assumed to be excellent
standard candles over large distances (Phillips, 1993). This means that by measuring
their apparent magnitude we can directly infer their distances, because we know their ab-
solute magnitudes. By comparing the measured distance moduli m−M to the expected
values from cosmological models, they found that there was a discrepancy. This discrep-
ancy was shown to prove that the universal expansion must have been accelerating for
the last 5 Gyr.

Another important piece of evidence for dark energy was found in the anisotropy of
the cosmic microwave background (CMB). The CMB probes the distribution of matter
in the very early stages of the universe (about 380000 years after the Big Bang). The
angular power spectrum of CMB temperature anisotropies (Amanullah et al., 2010)
contains a lot of cosmological information. This can be inferred by modelling the coupling
of radiation and matter at those times and predicting the effects this will have. One of
these effects is that of gravity producing sound waves in the matter-photon distribution.
These waves make their imprint on the CMB power spectrum and this can be used to
constrain cosmological parameters. These measurements indicate that the universe is
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nearly spatially flat, which means that
∑

i Ωi = 1. When we combine this measurement
with the independent measurements of the large scale structure that tell us that matter
only constitutes about a quarter of the total energy of the universe we can conclude that
there must be some other cosmic component making up the rest of the energy. Dark
energy nicely fills this gap (Frieman et al., 2008).

Other probes of dark energy include gravitational lenses, baryonic accoustic oscilla-
tions, x-ray clusters and the ages of the oldest stars as compared to the inferred age of
the universe (Frieman et al., 2008). Recently, these different probes have been combined
to further pin down dark energy and other cosmological parameters (Amanullah et al.,
2010). Through the combination of different measures, degeneracies can be broken and
the allowed parameter space can be significantly reduced. For this reason, it is of great
importance to find even more probes of dark energy. In the next section we discuss
why voids may be a good additional probe. Voids may be able to provide a precision
probe of the nature of dark energy, i.e. of its equation of state w(z). The need for
good probes of the equation of state is especially pressing. This quantity is very hard
to measure; intrinsically due to its relatively small effect as well as due to observational
errors (Frieman et al., 2008).

1.3 Voids

Why use voids as a probe of these models of dark energy? To answer this question we
must first get a firm grasp on the idea of what a void is. This is a matter of great debate,
that has been ongoing since the first mention of voids (Gregory and Thompson, 1978).

Ranging from a few to several tens of megaparsecs, voids are enormous regions that
are practically devoid of galaxies. They have been known to be a prominent feature
of the galaxy distribution since the first redshift surveys (Chincarini and Rood, 1975;
Gregory and Thompson, 1978; Einasto et al., 1980). In the SDSS survey (see figure 1.9)
these relatively empty regions are clearly visible. The voids are enclosed by the other
features of the cosmic web: “walls”, filaments and the massive clusters at their vertices.

We clearly see the voids in galaxy distributions (see e.g. figure 1.9) and in simulations
(e.g. in the center of figure 1.5). An important question is how we should quantify these
empty regions. This question has lead to a large number of different definitions and
void finding algorithms based on those definitions (see figure 1.10, which was taken from
Colberg et al. (2008), for a comparison between algorithms). These definitions are not
necessarily in agreement on important aspects like void sizes and shapes. It is therefore
crucial to know as much as we can on the different methods used.

In order to fully understand the void in whatever shape or form, we need to under-
stand not only what they might look like today, but also how they are formed and how
they can evolve. To achieve this, we will delve into the story of large scale structure
formation, as seen from the void perspective.

1.3.1 Void evolution

To illustrate the basic tenets of void evolution we review some results on the simplest
possible model of a void as an isolated underdensity (δ < 0). This underdensity induces
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Figure 1.5: Slice of the GIF simulation in which N-body simulations were combined
with semi-analytic models to study the formation and evolution of galaxies. A relatively
empty region is visible in the center of the box. Although we can clearly distinguish this
feature by eye, it is a non-trivial matter to quantify these structures.
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an effective outward peculiar gravity that makes the underdensity expand6. The initial
density profile of the void is an upward slope towards the overdense regions surrounding
it. This slope causes matter in the central parts of the void to undergo a larger outward
acceleration than the matter on the underdensity’s outskirts. If we assume the under-
density to be an isotropic sphere, we can define shells i with δ = δi, where δi(ri) < δj(rj)
if ri < rj . The inner shells will eventually overcome the outer shells due to their large
peculiar acceleration. After this shell crossing event, the peculiar gravity will no longer
be larger and the shells will merge and expand outwards together (van de Weygaert and
Platen, 2009).

This process will cause the void to evolve toward a spherical ‘bucket-shape’ (Icke,
1984; van de Weygaert and van Kampen, 1993). This is illustrated in figure 1.6 where
a one-dimensional density profile is shown for different timesteps. The sweeping out of
matter in the inner regions leaves behind a very flat density profile with δ ≈ −0.8 at the
time of shell crossing. Matter accumulates at the edges where it is driven ever outward
due to its peculiar velocity and the Hubble flow. The way in which this happens was
predicted to cause any asphericity in the initial underdensity to disappear. An initial
isolated underdensity will form a spherical void (Icke, 1984).

Figure 1.6: “Spherical model for the evolution of voids. Left: a pure (uncompensated)
tophat void evolving up to the epoch of shell-crossing. [. . . ] initial (comoving) radius
[was] ri = 5.0h−1Mpc. Right: a void with [the average profile of a void in a CDM
cosmology. Same initial density deficit w.r.t. the surroundings and same initial (charac-
teristic) radius.] The tendency of this void to evolve into a tophat configuration by the
time of shell crossing is clear. Shell-crossing, and the formation of a ridge, happens only
if the initial profile is sufficently steep” (van de Weygaert and Platen, 2009).

In reality voids will not be isolated. They will soon encounter other voids, clus-
ters, filaments and walls. Icke (1984) proposed that due to the voids evolving towards

6The more common way of looking at this process is that the overdense regions around the under-
density start collapsing. Matter leaves the underdense regions to flow towards these ever increasing
overdensities where structures like clusters, galaxies and stars will start forming. It is simply a matter
of perspective; describing structure formation from both points of view is equivalent and should lead to
the same results.
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sphericity, they will drive matter outward and squeeze it in between meeting voids. This
would form walls from which the matter would eventually be evacuated, leaving only
filaments and clusters. However, this model was oversimplified, as it turned out that
only the inner parts of voids can be properly described by a spherical profile. Due to
the influence of surrounding structures, voids will in general not be spherical (van de
Weygaert and van Kampen, 1993).

Two other important factors in the evolution of voids are the merging of voids and
the collapse of voids. Voids are not the simple isotropic structures we would like them
to be. They contain a lot of substructure and in a lot of cases small voids can be
identified within larger ones; there is a hierarchy of voids (Dubinski et al., 1993; Sheth
and van de Weygaert, 2004). This “void-in-void” hierarchy evolves through the process
of voids meeting up and merging into larger voids. The substructures in these merger
voids survive for a long time, but gradually dilute. In contrast, voids that live inside a
large overdensity (“voids-in-clouds”) may eventually collapse due to the overdensities’
mutual attraction. In this case collapse will happen fastest in one direction, causing the
void to become more and more ellipsoidal, until it totally flattens. The existence of both
merging and collapsing voids shows that the simple spherical model will be unlikely to
describe the majority of voids. In the next section we will therefore describe a more
sophisticated model of the void shape distribution.

1.3.2 Void shapes

First emphasized by Bond et al. (1996) and recently confirmed in N-body simulations
by Platen et al. (2008), the shapes of voids are intimately connected to the tidal forces
induced by the large scale distribution of matter in the universe. The traceless tidal
tensor Tij completely describes the tidal force field. It is defined as the second derivative
of the gravitational potential φ:

Tij =
∂2φ

∂xi∂xj
− 1

3
∇2φδij . (1.29)

According to Park and Lee (2007) the elliptical shape parameters of a void can be
directly linked to the local tidal tensor. In what follows, we list only the most important
relations; see Park and Lee (2007), Lavaux and Wandelt (2010) and Biswas et al. (2010)
for a more extensive derivation of these relations.

The sphericity s = c/a and the oblateness p = b/a can be related directly to the
eigenvalues of the tidal tensor λ1 > λ2 > λ3:

λ1(p, s) =
1 + (δv − 2)s2 + p2

p2 + s2 + 1
(1.30)

λ2(p, s) =
1 + (δv − 2)p2 + s2

p2 + s2 + 1
, (1.31)

where δv =
∑3

i=1 λi.
Park and Lee (2007) then go on to derive the dependence of the ellipticity distribution

of voids on the cosmological model. The probability density distribution P for the
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Figure 1.7: “Probability density distribu-
tions of the void ellipticity predicted by our
analytic model for the four different sets
of cosmological parameters at two different
smoothing scales: RL = 5 and 8h1Mpc in
the upper and the lower panel, respectively.
For each case, the void density contrast is
set at δv = 0.9.” Image from Park and Lee
(2007).

sphericity s = 1− ε they derive is as follows;

P(1− ε; z) = P(s; z,RL) =
∫ 1

s
P[p, s|δ = δv;σ(z,RL)]dp

=
∫ 1

s
dp

3375
√

2√
10πσ5(z,RL)

exp
[−5δ2v + 15δv(λ1 + λ2)

2σ2(z,RL)

]

× exp
[
−15(λ2

1 + λ1λ2 + λ2
2)

2σ2(z,RL)

]
(2λ1 + λ2 − δv)

× (λ1 − λ2)(λ1 + 2λ2 − δv)
4(δv − 3)2ps

(p2 + v2 + 1)3
.

(1.32)

They show that this distribution is sensitive to changes in the cosmological parame-
ters (see figure 1.7). This dependence comes from the inclusion of σ(z,RL) which is the
linear rms fluctuation of the matter density field smoothed on a scale of RL (which is
related to the void size in Lagrangian coordinates) at redshift z, defined as:

σ2(z,RL) ≡ D2(z)
∫ ∞

0

k2dk

2π2
P (k)W 2(kRL)d ln k , (1.33)

where D(z) is the linear growth factor, W (kRL) is a top-hat window function and P (k)
is the linear power spectrum.

In general they claim that equation 1.32 implies that the mean ellipticity of voids
decreases with redshift z. More importantly, they show that the model’s rate of ellipticity
decrease is sensitive to changes in the cosmological parameters. According to this model,
the redshift dependence of the mean ellipticity can be used to discriminate between
different values of wa (Lee and Park, 2009). Similar results were later found by Lavaux
and Wandelt (2010). This is illustrated in figure 1.8, where a clear distinction can be
made between the ellipticity evolution of the two models.

These results give the strong impression that voids are a promising probe of the
nature of dark energy. One of the central tests of our project is to see whether indeed
we can use this probe in our simulations.
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Figure 1.8: Differences in the mean elliptic-
ity evolution between models with w = −1
and w = −0.5. Both the results from theory
(the red and blue lines) and the results from
the corresponding N-body simulations (tri-
angles and squares) are shown. Figure from
Lavaux and Wandelt (2010).
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1.3.3 Observing voids

One important aspect remains to be addressed. We want to probe the nature of dark
energy using voids, but how does one observe the near empty regions of voids? Obviously
this is a crucial question, one that many have tried to answer, but no single answer
seems to be perfect. When redshift surveys were still small and manageable one could
try analysing all the data. At the time this worked well (Kirshner et al., 1981). With
the advent of wide and deep surveys (like the SDSS, see figure 1.9) we need to find more
efficient ways of working through the data.

There are actually two questions that need to be asked. At the heart of the problem
lies the simple fact that we cannot observe the voids itself. On the other hand, we can
observe the galaxies in walls, filaments and clusters around the voids. The first question
then is: how do we establish the locations, shapes and sizes of voids from a sample of
galactic observations like in figure 1.9?

This question is answered by a large and diverse number of void finding algorithms
that have been developed over the past decade. To give the reader a taste, we describe
three basic classes of these algorithms. Each class has a number of implementations that
may differ in details. For a complete overview of these algorithms see Colberg et al.
(2008) and Lavaux and Wandelt (2010). The basic three classes of void finders are the
following:

• Void finders that identify regions free of any galaxies. Most of these algorithms
do this by trying to find the largest empty spheres in the galaxy distribution.
Examples are found in Hoyle and Vogeley (2002); Müller et al. (2000) and Foster
and Nelson (2009).

• Other void finders try to identify geometrical structures in the dark matter density
field. The Watershed Void Finder by Platen et al. (2007), which we used in this
thesis, is an example of this class. The main difference between these voids and
those in the above class is that they allow for a more flexible treatment of the
shape of voids. Other examples include ZOBOV (Neyrinck, 2008) and the void
finders in Plionis and Basilakos (2002); Colberg et al. (2005) and Shandarin et al.
(2006).
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Figure 1.9: Slice out of the galaxy distribution of the Sloan Digital Sky Survey. The
pattern of the cosmic web is clearly visible. High density regions (walls and filaments of
galaxies) surround the relatively empty regions that we call voids.
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• The third class of void finders incorporates dynamical aspects by checking for
gravitationally unstable points in the dark matter distribution. Examples of these
include the finders by Hahn et al. (2007) and Lavaux and Wandelt (2010).

Most of these algorithms are compared in Colberg et al. (2008). They find that the
shapes and sizes of voids from different finders can differ significantly (see figure 1.10).
It is thus of vital importance to make the right choice of void finder for the task at hand.
We will use the Watershed Void Finder (more on this in section 3.2).

Figure 1.10: “A compilation of void finders. The 9 frames illustrate the performance of
different void finders with respect to a central voids in the milli-Millennium simulation.
The N-body dark matter particles are depicted as black points. The blue dots locate
(semi-analytically modelled) galaxies within the central void region. For each void finder,
the identified void region is coloured green with the void centre marked by a red point.”
Image from Colberg et al. (2008), text from van de Weygaert et al. (2009).

The second problem with observing voids that needs to be addressed is that of redshift
distortions. Being the only distance estimator for the bulk of our data, the redshift is

22



CHAPTER 1. INTRODUCTION Patrick Bos

a major complication, but also a vital asset, to many of our analyses7. Because of its
dependence on the velocity in the radial direction, a large scatter is introduced into our
distance coordinate.

For voids this has serious implications that need to be taken into account. Because
of the outflow of matter from voids, we will mainly see galaxies moving out of the voids.
This means that the galaxies at the front and back of the void (i.e. the sides closest to
and farthest from us) will have redshifts that make the void seem larger. At the side
closest to us, the galaxies will move towards us with respect to the Hubble flow, thus
seeming less far as approximated through the redshift. Those galaxies at the farthest
side will move away from us even faster. Voids will in effect seem stretched out in the
line of sight. In fact, this was proposed by Ryden and Melott (1996) as a way to use
voids to infer cosmological information. Recent studies confirm this idea (Percival and
White, 2009; Jennings et al., 2010).

In effect, voids will seem larger than they truly are. We should not expect the shape
distribution of voids to change. Because the voids are randomly oriented towards us,
there will be cases in which the void seems stretched along its major axis and so seem
more elliptical. There will be an equal amount of cases in which the void seems streched
along a minor axis which will make it seem less elliptical. On average there should
then be little effect on the shape distribution. This is confirmed by Hoyle and Vogeley
(2002). Some other redshift distortion effects, like the “fingers of god”, may cause noise
that could pose a problem.

7In that it is not unlike alcohol; “the cause of, and solution to, all of life’s problems,” H.J. Simpson.
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DATA

Our analysis is based on numerical N-body simulations of dark matter (DM) particles
in several cosmological backgrounds, most of which include evolving dark energy. In
this section we outline the basics of producing such simulations with the GADGET-3 code.
We describe the actual datasets used in our analysis and we elaborate on the necessary
preprocessing.

2.1 Producing simulations with GADGET

For our numerical experiments we have used a version of the GADGET N-body simula-
tion code (Springel, 2005). It uses a combination of hierarchical tree and particle-mesh
algorithms for calculating respectively the short and long range gravitational forces.
Particle-mesh methods are the fastest schemes for computing the gravitational field, but
on the scale of one or two mesh cells it is inaccurate, leading to errors for high density
regions (Springel, 2005). Tree algorithms are slower in most cases, but are scale invariant
and therefore solve the high-resolution problem at small scales. In GADGET-2, tree-forces
are used for (sub-)mesh cell scales. These are summed with the particle-mesh forces that
are truncated at small scales using an exponential factor:

φk = φshort
k + φlong

k (2.1)

φlong
k = φk exp(−k2r2s) (2.2)

φshort
k = φk(1− exp(−k2r2s)) , (2.3)

where the φk’s are the Fourier transforms of the gravitational potentials and rs is the
spatial scale of the split between long and short range forces. In practice, a certain
radius is chosen at which the short scale (tree) force is not calculated anymore to limit
computational costs. Because of the exponential drop-off with high k (low spatial scales),
the contribution of the short scale potential to the force drops to about 1% at r ≈ 4.5rs.
The total force on a particle is thus more accurate than when using a particle-mesh
only. This is at the expense of some extra computational costs for building and walking
the tree up to a certain radius. For a more detailed description of these algoritms read
Springel (2005), Xu (1995) and Bagla and Ray (2003).
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GADGET uses smoothed particle hydrodynamics (SPH) for approximating hydrody-
namical behaviour. This means that it treats particles as smoothed spheres with a
certain radius. Effectively, this causes viscosity when particles start overlapping. As we
have only used non-collisional DM-particles in our simulations, we have made no use of
the SPH functionality of the code.

The version of the GADGET code that we used (P-GADGET-3) still uses the above
techniques, but adds one feature crucial to our research: the ability to specify the mode of
evolution of dark energy. This is done through an extended dark energy implementation,
described in Dolag et al. (2004). In the comoving coordinate space simulation of GADGET
the only thing that needs to be altered for evolving dark energy models to be properly
included is the Hubble parameter, which must be written in its full expansion factor
dependent form (the square root of equation 1.12):

H(a) = H0

√
Ωm

a3
+

1− Ωm − Ωφ

a2
+ Ωφ exp

(
−3

∫ 1

a

1 + w(a′)
a′

da′
)
. (2.4)

The extended GADGET-3 implementation expects the integral over a′ to be tabulated in
advance so it can be read in during the simulations.

2.2 Dark matter particles

The basic data for our analyses are the several cosmological simulation boxes with pe-
riodic boundary conditions, containing DM particles only. The initial conditions were
set up by displacing particles from a regular N by N by N grid to their positions at
z = 60.0 using the Zel’dovich approximation of the linear phase of structure formation
(Zel’Dovich, 1970). The approximated particle positions ~x and velocities ~v are:

~x(~q) = ~q +D(z)~ψ(~q) (2.5)

~v(~q) = aD(z)Hf(Ω)~ψ(~q) , (2.6)

where ~q is the initial (grid) particle position, D(z) is the linear perturbation growth
factor, f(Ω) is the dimensionless linear velocity growth factor and ~ψ is the displacement
field that is derived from the initial random Gaussian potential φ(x). D(z) and f(Ω)
are given as:

D(z) =
5Ωm,0H

2
0

2
H(z)

∫ ∞

z

1 + z′

H3(z′)
dz′ (2.7)

f(Ω) ≡ a

D

dD

da
. (2.8)

We have used low and high resolution datasets, both for separate purposes. Both
datasets are snapshots of P-GADGET-3 simulations of DM particles in universes with
different modes of dark energy. We further describe these two sets below.
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Figure 2.1:
Evolution of the
equation of state
parameter w = P/ρ
of dark energy for
different models.
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2.2.1 High resolution

Quantitative description

The high resolution particle boxes used for this project were kindly provided by Klaus
Dolag and Volker Springel1. This set consists of five cosmological N-body simulations
of 7683 dark matter particles in which different models of dark energy were used on the
same initial conditions. The models are described in section 1.2.2.

The general cosmological parameters adopted for the simulations are the WMAP
3-year data values: Ωm = 0.268, ΩΛ = 0.732, Ωb = 0.044, h = 0.704, σ8 = 0.776 and
n = 0.947.2

Model α wJBD w0 wa σ8

WMAP3 (ΛCDM) – – −1.0 0.0 0.776
RP 0.635 – −0.9 0.0564 0.746
SUGRA 0.635 – −0.9 0.452 0.686
EQp 0.635 120 −0.9 0.0117 0.794
EQn −0.229 −120 −0.9 0.0805 0.729

Table 2.1: Dark energy model parameters used in the simulations. For a description of
the models see section 1.2.2. σ8 is normalized at the CMB (see text). wa is determined
using a χ2 fit (see section 1.2.3).

The specific DE model parameters are summarized in table 2.1. The physical linear
size of a box is 300h−1Mpc and the particles have masses of 0.443× 1010h−1M¯. These
parameters are consistent with current observational constraints (Acquaviva et al., 2005;
Amanullah et al., 2010; Komatsu et al., 2010). The tables of w(a), needed for the
extended DE implementation, were calculated for the different models by Klaus Dolag

1Respectively of the Max-Planck-Institut für Astrophysik, Garching and Zentrum für Astronomie der
Universität Heidelberg.

2Respectively the density of matter, the density of Dark Energy, the density of baryonic matter, the
hubble parameter (h = H0/100), the normalization parameter of the power spectrum with a top-hat
filter radius of 8h−1Mpc and the index of the primordial power spectrum.
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Figure 2.2:
Evolution of struc-
ture as measured
through σ8 for
the WMAP3 and
SUGRA models.

(see figure 2.1). For the WMAP3 model we have snapshots at z = 0.1, z = 0.25, z = 0.51,
z = 1.00 and z = 2.04, while for the other models we only have a snapshot at z = 0.

The DE models were normalized at the CMB using the relation

σ8,DE = σ8
DΛCDM(zCMB)
DDE(zCMB)

, (2.9)

where we assume zCMB = 1089 and D is the linear growth factor, which is dependent
on the DE model through H (equation 2.7). This rescaling will cause differences in the
amount of clustering, characterized by the normalization parameter σ8. σ8 probes the
power spectrum at a scale of 8h−1 Mpc, whereas the CMB probes higher scales. In figure
2.2 we show the resulting values of σ8 for two different models (taken from our own low
resolution data, see below). It is clear that this will influence structure formation. In
section 4.5 we will see that its impact is significant.

Qualitative description

In figure 2.3 we show DTFE density slices (see section 4.2 for a description of this density
estimator) with a thickness of about 1h−1 Mpc, taken from the center of the boxes of
the WMAP3 simulation at several redshifts. Generally, the evolution of structure from
a more homogeneous state to a more pronounced cosmic web is clearly visible. We can,
however, zoom in on two specific processes, and that is the evolution of the supercluster
just below the center and the evolution of a void-region to the left of it; a zoomed in
version of this part of the image is shown in figure 2.4.

In figure 2.4 on the right of the panels we see the evolution of what we may call a
supercluster. What begins at z = 2 as a slightly overpronounced web of filaments, al-
ready containing small seperate groups or clusters, quickly transforms into one elongated
massive structure with a length of about 40h−1 Mpc. In the center we see a massive
cluster evolving as a merger of the smaller clusters and groups at lower redshifts. The
hierarchical clustering paradigm is thus nicely illustrated.

On the other hand we have the left hand side of the panels where we can see the
evolution of several voids (black regions in the upper panels, dark blueish in the lower
ones). We roughly define these as regions with relative densities of ρ/ρ0 < 0.2 (van de
Weygaert and van Kampen, 1993; van de Weygaert and Platen, 2009). Overall we see
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Figure 2.3: Density slices of the simulation boxes of the WMAP3 model at different
redshifts. Downwards and from left to right: z = 2.04, z = 1.00, z = 0.51, z = 0.25,
z = 0.1 and z = 0. The colors have been chosen such that clusters are yellow (ρ/ρ0 & 200)
and voids are black (ρ/ρ0 . 0.2).

28



CHAPTER 2. DATA Patrick Bos

 0.2

 200

 1

 10

 100

ρ/
ρ 0

75

100

125

y 
(M

pc
)

"slice006.ssv" matrix "slice016.ssv" matrix

75

100

125

y 
(M

pc
)

"slice026.ssv" matrix "slice034.ssv" matrix

75

100

125

y 
(M

pc
)

"slice040.ssv" matrix "slice045.ssv" matrix

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

ρ/
ρ 0

75

100

125

y 
(M

pc
)

"slice006.ssv" matrix "slice016.ssv" matrix

75

100

125

y 
(M

pc
)

"slice026.ssv" matrix "slice034.ssv" matrix

75

100

125

50 100 150 200

y 
(M

pc
)

x (Mpc)

"slice040.ssv" matrix

100 150 200

x (Mpc)

"slice045.ssv" matrix

Figure 2.4: A zoom-in of the images in figure 2.3. The colors have been chosen such
that clusters are yellow (ρ/ρ0 & 200) and voids are black (ρ/ρ0 . 0.2).
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that most of the evolution of voids takes place between redshifts 2 and 0.5. This is
fortunate given our goal of probing dark energy, because as Huterer and Turner (2001)
showed the redshift range 0.2 . z . 2 is the most promising for probing w(z). The
voids quickly grow from initial seeds with radii of about 1h−1 Mpc, to voids ranging
in size from 2 to 30h−1 Mpc. We also see that in this process the number of voids
actually decreases due to voids merging. At the later timesteps we can still discern a lot
of substructure in voids that is caused by this process. Especially when we take a look
at the bottom panels we can still clearly discern walls in the larger voids that survived
the merging process that took place billions of years before (Sheth and van de Weygaert,
2004).

We can compare these modes of evolution to those in different cosmological models.
We show in figure 2.5 two density slices at z = 0 of the WMAP3 and SUGRA simulations.
There are some clear differences between these simulations. The size and depth of voids
are smaller in the SUGRA case. Filaments are still more diffuse and clusters are less
pronounced and clumpier. As seen from hierarchical clustering theory, they are less
evolved than in the WMAP3 model.

The evolution of the equation of state parameter hence seems to have a significant
impact on structure formation: a higher value of w (i.e. closer to zero, as it is negative)
slows down structure formation. This makes sense when we remember from above that
the evolution of voids takes place around z = 1, and at this time w(z) differs a lot for
the two models (see figure 2.1); from a difference of 0.2 at z = 0.5 to a difference of 0.4
at z = 2. From the σ8 measurements in figure 2.2 we expected this as well.

In chapter 4 we try to quantify these structural differences.
As can be seen in figure 2.1, the other DE models differ less dramatically from the

WMAP3 model. We can clearly see in figure 2.6 that this leads to a larger degree of
similarity in the shapes and sizes of the structures present in the simulations.

More information on these data can be found in Dolag et al. (2010, in preparation).

2.2.2 Low resolution

For testing purposes we ran a few additional simulations of 2563 DM particles. The
physical parameters used for the initial conditions of these sets are exactly the same as
those of the high resolution simulations. We used these simulations to investigate the
influence of mass resolution on the statistics used in our analyses and to rule out possible
effects of cosmic variance by using several randomly generated initial conditions.

2.3 Redshift space

The GADGET particle boxes contain velocities and positions of all particles, which enables
us to calculate the redshift of particles as seen from a certain position. Using the original
x, y, z coordinates and the redshifts we transform the particles to what we will call redshift
space. This transformation is done as follows.

First, we place the observer at some point in the box. Because of the boxes’ period-
icity, we can then wrap around the particles that are further out than half the boxsize
in one of the x, y, z directions. This will place the observer in the center of the box (this
latter step can be omitted at the cost of the aesthetics of symmetry).
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Figure 2.5: Density slices of the simulation boxes of the WMAP3 (top) and SUGRA
(bottom) models at z = 0.
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Figure 2.6: Density slices of the simulation boxes of the WMAP3 (top left), RP (top
right), EQn (bottom left) and EQp (bottom right) models at z = 0.
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Next, we transform to spherical coordinates r, θ, φ and calculate the radial component
of the velocity

vr = ~vpec · r̂ (2.10)

for each particle. We use these to calculate the redshift as seen by the observer in the
center of the box:

z = zr + zcos =

√
1 + vr/c

1− vr/c
− 1 +

rH

c
≈ vr

c
+
rH

c
, (2.11)

where zr is the Doppler redshift caused by the particle’s radial peculiar velocity vr and
zcos is the cosmological redshift due to expansion of the universe. The approximation is
valid when vr ¿ c. We have thus obtained two spatial coordinates and a redshift, all of
which can actually be measured in observations. The redshift can be transformed back
to a radial distance in redshift space, i.e. an approximation of the distance that will
contain an intrinsic error due to particle velocities in the line of sight:

rz−space = zc/H . (2.12)

The results of this transformation for the WMAP3 and SUGRA boxes are shown in
figure 2.8. Large clusters in real space are transformed into the well known fingers of
god, whereas voids seem a bit larger and emptier in redshift space. The “fingers” seem
rather dramatic, but the effect is readily explained by figure 2.7. The high velocity end of
the distribution is completely due to the high velocities in clusters3. These high velocity
dispersions cause the redshift distortions we see in the figure. Differences between the
two models are similar to those in real space, with the added difference in the fingers,
i.e. the clusters, which in the SUGRA box are shorter, meaning that their internal
velocity dispersions are lower. This is likely due to their lower masses, caused by slower
evolution.

3For this plot we used a very simple, but effective definition of clusters as overdensities of δ > 200.
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Figure 2.8: Redshift space density slices of the simulation boxes of the WMAP3 and
SUGRA models at z = 0.
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CHAPTER 3

STRUCTURE FINDING

N-body simulations produce at least 6N data points (positions and velocities). Redshift
surveys of N galaxies contain at least 3N data points (right ascension, declination and
redshift), not to mention the information in spectra. Our simulations contain about
half a billion individual particles. The reduction of these data to insightful quantitative
measures thus poses a great challenge. We need intelligent algorithms to reduce this
information to an amount we can deal with.

For this we use algorithms that identify the underlying large scale structures present
in the particle distributions. In section 1.3 we briefly touched upon the concept of void
finders. Our research concerns the shapes and sizes of voids, making this tool invaluable.
We will elaborate on it below. Before that, we focus on halo finders which allow us to
make predictions on the feasibility of our methods in real galaxy surveys.

3.1 Haloes

For every simulation box at all redshifts the SUBFIND algorithm of Springel et al. (2001)
was used to find the gravitationally bound haloes (groups of adjacent particles, repre-
senting concentrated clumps of dark matter) that can colloquially be identified as galaxy
haloes. SUBFIND first defines a catalogue of halo-like structures using a Friends-of-Friends
(FoF) algorithm. SUBFIND then searches the resulting FoF particle groups for self-bound
substructures. This two-stage process has the advantage that a structural hierarchy is
automatically created, with the FoF-groups in some cases containing on the order of
100 bound “subhaloes”. It is these subhaloes that we are interested in; the FoF-groups
are generally too large and structurally incoherent, whereas the subhaloes have sizes
and masses comparable to those of galaxy haloes. In the remainder of this text we will
therefore define “haloes” as these SUBFIND subhaloes.

A nice overview of halo finders and properties in N-body simulations can be found
in Aragón Calvo (2007). Below we describe in more detail these two algorithms used for
finding the haloes and the resulting halo catalogues used in our analysis.
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3.1.1 Friends-of-Friends group finder

First used in Press and Davis (1982) and Davis et al. (1985), the Friends-of-Friends
(FoF) group finding algorithm is a simple but effective way of discerning structure in
particle distributions. It groups particles together when their distance is less than a
certain fraction b of the mean interparticle distance. The resulting set of groups thus
depends on b only; the algorithm makes no further assumptions about shapes or sizes
of groups. For relatively large b (≈ 0.5), groups tend to be somewhat oversized and
structurally ill defined, while for b . 0.25 FoF-groups are more centrally concentrated
and regularly shaped.

As we are interested in finding haloes, which we roughly define as concentrated
clumps of dark matter, we follow Springel et al. (2001) in using b = 0.2 to determine
FoF-groups which we use as input for the SUBFIND halo finder. Only groups with at least
10 particles are included in the group catalogue. In figure 3.1 we show the distribution
of the centers of these groups overlaid on the density field. Clearly the groups trace
the general structures present in the field; clusters, filaments and walls are all covered,
whereas voids remain largely empty. It must be noted though that a lot of substructure
is lost in the group distribution and will thus be lost in the halo distribution as well.
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Figure 3.1: In the left panel we show the distribution of haloes (green) and FoF-groups
(red) in the same slice as in figures 2.3 through 2.8. In the right zoom-in panel we
additionally split the haloes by mass; green dots have M < 1012M¯, blue open diamonds
have 1012M¯ < M < 1013M¯ and the two magenta filled circles are even more massive;
the left one has a mass of 2.4 · 1013M¯, the lower right one has 3.1 · 1014M¯.

3.1.2 SUBFIND halo finder

The SUBFIND algorithm by Springel et al. (2001) was mainly developed to identify sub-
structure in the FoF-groups. It uses the physical criterion of gravitational boundedness
to filter out some FoF-groups entirely and to find the subhaloes that make up the large
clusters and which are assumed to be the sites where galaxies form (Springel et al., 2001).
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Situation 1

ρ = 0.09
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nearest 10 particles
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(a) Particle i will start a new (sub)group, because
there are no particles with ρ > ρi amongst the
10 nearest neighbours.

Situation 2
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(b) Particle i will join the group of the two particles
that have already formed a group.

Situation 3
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(c) Particle i is a ‘saddlepoint’. The two subgroups
and particle i will form a new (sub)group.

Figure 3.2: The three situations the SUBFIND halo finder can encounter in its determi-
nation of (sub)groups. See text for further explanation.
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The algorithm first approximates the density field and assigns a density to each
particle. It then orders all particles by density and starts the algorithm with the highest
density particle; call the particle under consideration i. We search its neighbourhood
for the Nngb nearest particles, which is a free parameter; Nngb = 10 in Springel et al.
(2001). We then determine the subset of these Nngb particles that has ρ > ρi (obviously
for the first particle this means that the subset is empty) and of this subset we select
the two closest to i. We distinguish three possible situations (illustrated in figure 3.1.2):

1. There are no particles with ρ > ρi. Then i is a local maximum and we start
growing a (sub)group around it.

2. The subset consists of one or two particles that are already in a (sub)group. In
this case particle i joins them.

3. We get two particles in different subgroups. We then call particle i a ‘saddlepoint
of the density field’ and the two subgroups will be marked as ‘subhalo candidates’.
At the end of the algorithm these candidates will be checked for self-boundedness.
Particle i will be added to the two subgroups, which together will form a new
(sub)group.

After all particles have been processed in this way we have produced a subhalo candidate
list. Before checking for boundedness, we need to take care of the fact that some particles
can be part of multiple subhalo candidates. This may occur when the new subgroup
of the above third situation again merges with another subgroup. This is accomplished
by simply checking for boundedness in order of decreasing subgroup size, i.e. in the
reverse order in which the subhalo candidates have been found. The subhalo identifier is
overwritten after every boundedness check, so the particles will only carry the identifier
of the last subhalo it belongs to, which is the smallest one. Thus the algorithm identifies
the smallest possible subhaloes. After these have been taken out, the larger haloes need
another test of self-boundedness, because the deletion of the particles from the small
subhaloes usually causes a portion of the remaining particles to become unbound. After
this we then have a complete set of all the smallest possible, gravitationally bound haloes
in the dataset.

3.1.3 Halo data

For our void shape analysis we were provided with halo catalogues of all the DE simula-
tions at redshifts of z = 0, z = 0.1, z = 0.25, z = 0.51, z = 1.00, z = 2.04, z = 2.98 and
z = 3.80 (at higher redshifts of z = 5.20 and z = 8.43 the halo finder finds significantly
less haloes than at lower redshifts, thus making these halo sets unsuitable for comparison
with the low redshift haloes). The halo data include positions, velocities and masses, as
well as a host of other parameters we will not use. The halo position is simply defined
as the mean position of its particles:

x =
1
N

N∑

i

xi , (3.1)

where xi are the particle positions of the halo and N is the number of particles in the
halo. The velocity is calculated analogously. Halo mass is simply the sum of the particle
masses.
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We plot halo positions in figure 3.1. We see in the left panel that indeed some FoF-
groups end up without a corresponding self-bound halo (the red dots without a green
one on top). In the right panel a zoom-in of the massive cluster reveals that indeed
large FoF-groups contain a lot of self-bound substructures. In fact this image clearly
illustrates the need for a substructure finding algorithm; whereas the two largest haloes
(the magenta circles) clearly reside in the cluster centers and may have shown up in real
clusters as a cD galaxy, the FoF-groups of the cluster in the center of the image do not
coincide with its central halo at all. They simply add up all the cluster matter into a
few large, but fairly random groups, possibly discarding highly relevant substructure.
Furthermore, the large number of smaller haloes in the cluster illustrates that a lot of
information is gained in using SUBFIND haloes instead of FoF-groups.

In table 3.1 we list some further characteristics of the halo catalogues. Interestingly,
these numbers imply the same conclusions as figures 2.5 and 2.6 did. We see at every
redshift that the haloes in the SUGRA model are less massive than those of the other
models, implying that evolution of structure in the SUGRA universe is slower. Also, the
fact that at more recent times there are slightly more haloes than in other models hints
at a lower rate of halo mergers, the main driving force behind hierarchical structure
evolution.

3.2 Voids

A large fraction of the total volume of the universe consists of what we call voids;
relatively empty regions of space, captured in between the walls, filaments and clusters
of the cosmic web. Depending on your definition, voids can make up from 13 to 100% of
the total volume (Colberg et al., 2008); evidently the implementation of these different
definitions in void finding algorithms yields vastly different results. If we are to do
statistics on voids we therefore need a plausible definition and a corresponding void
finder. Based on Colberg et al. (2008) we chose to use the Watershed Void Finder
(WVF) (Platen et al., 2007). This void finder seem to do the best job in reproducing
what we would identify by eye as voids. It works by “growing” voids from the minima
of the dark matter density field.

Below we elaborate on this void finding algorithm. For a great general overview on
void properties and to see the WVF in action, see Platen (2009).

3.2.1 Watershed Void Finder

The basic principle behind the WVF algorithm is perhaps best illustrated by its analogy
with flooding an area of hills and valleys with water, see figure 3.3 and its caption.
The valleys can be identified with voids and the ridges can be identified with walls and
filaments.

From Platen et al. (2007), the basic steps taken in the algorithm are the following:

1. Create a density field from the particle distribution (e.g. using the DTFE (Schaap,
2007; Schaap and van de Weygaert, 2000)).

2. For practical processing purposes the field must be sampled on a regular grid. It is
subsequently smoothed by a Gaussian kernel, the density values are discretized and
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z Model Nhaloes mmean σm mmax

0.00 WMAP3 567119 1.1 · 102 7.0 · 102 1.7 · 105

SUGRA 582882 9.5 · 101 4.9 · 102 8.9 · 104

RP 575618 1.0 · 102 6.0 · 102 9.6 · 104

EQn 577526 1.0 · 102 5.6 · 102 9.4 · 104

EQp 572176 1.0 · 102 6.0 · 102 9.7 · 104

0.10 WMAP3 561496 1.0 · 102 5.9 · 102 9.5 · 104

SUGRA 573099 9.0 · 101 4.3 · 102 7.3 · 104

RP 569134 9.8 · 101 5.3 · 102 9.5 · 104

EQn 569398 9.5 · 101 4.9 · 102 8.6 · 104

EQp 565901 9.7 · 101 5.3 · 102 9.6 · 104

0.25 WMAP3 551935 9.4 · 101 4.9 · 102 8.8 · 104

SUGRA 558191 8.3 · 101 3.6 · 102 5.1 · 104

RP 556933 9.0 · 101 4.4 · 102 7.8 · 104

EQn 556652 8.8 · 101 4.1 · 102 6.5 · 104

EQp 554948 9.0 · 101 4.5 · 102 7.8 · 104

0.51 WMAP3 530669 8.3 · 101 3.6 · 102 5.1 · 104

SUGRA 525572 7.4 · 101 2.7 · 102 3.9 · 104

RP 531403 8.0 · 101 3.3 · 102 4.5 · 104

EQn 527737 7.8 · 101 3.1 · 102 4.3 · 104

EQp 529353 8.0 · 101 3.3 · 102 4.5 · 104

1.00 WMAP3 469725 6.7 · 101 2.1 · 102 1.9 · 104

SUGRA 446675 6.0 · 101 1.7 · 102 1.6 · 104

RP 464471 6.5 · 101 2.0 · 102 1.8 · 104

EQn 455982 6.3 · 101 1.9 · 102 1.7 · 104

EQp 463068 6.5 · 101 2.0 · 102 1.8 · 104

2.04 WMAP3 289375 4.6 · 101 8.5 · 101 6.3 · 103

SUGRA 248194 4.2 · 101 6.9 · 101 3.4 · 103

RP 278477 4.5 · 101 8.0 · 101 5.2 · 103

EQn 264882 4.4 · 101 7.6 · 101 3.7 · 103

EQp 275137 4.5 · 101 7.8 · 101 4.2 · 103

2.98 WMAP3 144188 3.6 · 101 4.5 · 101 1.9 · 103

SUGRA 113083 3.3 · 101 3.8 · 101 1.5 · 103

RP 135668 3.5 · 101 4.3 · 101 1.9 · 103

EQn 125526 3.4 · 101 4.1 · 101 1.7 · 103

EQp 131470 3.5 · 101 4.2 · 101 1.7 · 103

3.80 WMAP3 63392 3.0 · 101 2.8 · 101 1.1 · 103

SUGRA 45273 2.8 · 101 2.4 · 101 9.1 · 102

RP 58349 3.0 · 101 2.7 · 101 1.0 · 103

EQn 52012 2.9 · 101 2.6 · 101 9.5 · 102

EQp 55148 2.9 · 101 2.6 · 101 9.9 · 102

Table 3.1: Characteristics of the halo catalogues obtained from the DE simulations,
provided by Klaus Dolag. Masses are in units of 1010M¯.
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Figure 3.3: “Three frames illustrating the principle of the WST” (Watershed Transform,
the mathematical formalism behind the WVF). “The left-hand frame shows the surface
to be segmented. Starting from the local minima the surrounding basins of the surface
start to flood as the water level continues to rise (dotted plane initially below the surface).
Where two basins meet up near a ridge of the density surface, a ‘dam’ is erected (central
frame). Ultimately, the entire surface is flooded, leaving a network of dams that defines
a segmented volume and delineates the corresponding cosmic web (right-hand frame).”
From Platen et al. (2007).

the map is cleaned of pixel noise using operations from mathematical morphology
(a field concerned with image analysis).

3. Field minima are determined; these are pixels that are surrounded by higher den-
sity pixels only.

4. The field is then flooded, starting at the positions of the minima and adding to its
basin the adjacent pixels that are subsequently flooded when the flooding threshold
becomes higher than the adjacent pixel’s value (this is illustrated in figure 3.3).

5. Once a pixel is reached by two basins, i.e. the level of flooding makes the two basins
join, this pixel is identified as a segmentation boundary. The flooding continues
until all pixels have either been identified as part of a segment, or void, or as a
boundary.

6. A final correction is made to deal with the effects of the intrinsic hierarchical na-
ture of the void distribution: boundaries with underdensities lower than a certain
threshold (say δ < −0.8, the characteristic mature void density of a (highly simpli-
fied, top-hat spherically expanding) void model (Neyrinck, 2008; Sheth and van de
Weygaert, 2004)) are removed. This step can be omitted at the cost of having to
deal with some noise effects and the small scale irregularities in the void density
profiles.

The result of this procedure on the WMAP3 dataset is shown in figure 3.4 for two
different smoothing radii. In both cases the void boundaries follow the filamentary
structures quite precisely. In the rf = 6.0h−1Mpc image it is immediately apparent
that a lot of void substructure is lost, which may lead one to believe that smoothing
is a bad thing. Nonetheless, without smoothing of pixel-to-pixel noise, a lot of false
identifications will occur. For practical reasons we can not go below the pixel size of
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0.78125h−1Mpc1. Because we also use some density fields with even higher pixel sizes
and we want our methods to be consistent between datasets we chose 1.5h−1Mpc as our
minimum filtering radius.
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(a) Void distribution only; random colors.
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(b) Void borders (black lines) overlaid on the density field.

Figure 3.4: The distribution of voids in the same slice of the WMAP3 simulation as in
previous images. For the left panels we used a Gaussian filter radius rf,G = 1.5h−1 Mpc,
for the right panels rf,G = 6.0h−1 Mpc.

Two notable features of the WVF are that it is essentially parameter free (the only
1The discrete Fourier transformations used in the algorithm would produce effects of aliasing.

42



CHAPTER 3. STRUCTURE FINDING Patrick Bos

parameters used are for filtering out discreteness noise) and that it does not make any
geometric assumptions so voids can take any shape. This latter feature is especially
important, since we need an unbiased shape determination to investigate void shape
statistics. We see in figure 3.4 that indeed the irregular shapes of the voids are perfectly
conserved.

3.2.2 Void properties

Having determined our void distribution we can calculate a few properties of each of
the voids, including some fits of shape parameters. We define the geometric center of a
void as the volume averaged center of the void’s grid cell positions. Its volume we can
determine by simply counting the number of cells.

The shape of a void can be fitted by a ellipse in the following way. We can calculate
the void’s inertia tensor Iij :

Iij =
∑

k

(
δij~x

2
k − xkixkj

)
, (3.2)

where we sum over all cells k belonging to the void, where ~xk is the distance vector of
the k-th void cell to the void’s center and where δij is the Kronecker delta. We can use
a sum instead of a full integral because of the discrete nature of the grid on which the
voids are defined. Like Shandarin et al. (2006), we assume the density of the void to
be uniform (thus focussing on the geometrical properties of the void only and avoiding
possible complications introduced by the overdense regions in and around the void).

Following Shandarin et al. (2006) we can now fit an ellipsoid to the void by deriving
the properties of an ellipsoid having the same (diagonalized) inertia tensor as the void.
For an ellipsoid we can derive the following relationships between the ellipsoid semi-axes
a, b and c (for which a > b > c) and the eigenvalues of the inertia tensor Ixx, Iyy and
Izz:

a2 =
5
2

(Iyy + Izz − Ixx) (3.3)

b2 =
5
2

(Izz + Ixx − Iyy) (3.4)

c2 =
5
2

(Ixx + Iyy − Izz) . (3.5)

Using these values from the diagonalized void inertia tensor we can define its shape pa-
rameters: the ellipticity2 ε = 1− c/a or conversely the sphericity s = c/a, the oblateness
(flattening) p = b/a and the prolateness q = c/b (Aragón Calvo, 2007, p. 136). We can
also calculate the ellipse’s volume V = 4

3πabc.
We compare the void distribution to their fitted ellipses in figure 3.5. On first glance

the ellipses seem to approximate the void shapes very well. Of course the fits are never
perfect due to the porosity of void interiors and irregularity of the void edges. This causes
the ellipse volumes to differ from the actual void volumes (determined by counting the

2For consistency, we follow Park and Lee (2007) in using the term ellipticity for this quantity. This
term may not be the most adequate, as its semantics imply a general description of the shape of an
ellipsoid, whereas the total shape of an ellipsoid needs at least two parameters. “Asphericity” may
therefore have been a better term.
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void grid cells from the WVF output) by an average factor of 1.08. This slight error in
the void size estimate has no influence on the shape parameters of the voids.

One more important feature of the WVF is that, as Platen et al. (2008) showed, the
orientation of the void ellipsoid of a WVF void is intimately coupled to the tidal field.
This is especially important for our project, as the coupling of the tidal tensor to void
shapes is exactly what the theory from Park and Lee (2007) is based on.

We will use these approximate shape parameters in our analysis in chapter 4.
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Figure 3.5: The void distributions from figure 3.4 overlaid with some fitted ellipses.
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CHAPTER 4

ANALYSIS

4.1 Introduction

In this section we will study in detail the contents of our datasets. Our main objective
is to ascertain the viability of the use of voids as a probe of the nature of dark energy.
To this end we use a variety of statistical tools. We introduce the techniques used and
present the statistics obtained.

At the core of many of the methods for structural analysis in astronomy lies the need
for a careful determination of the (dark matter) density field. We chose to work with
the Delaunay tessellation Field Estimator (Schaap and van de Weygaert, 2000; Schaap,
2007; Platen et al., 2007). When intricate structures, like those in the cosmic web, are
involved, this method has significant advantages over e.g. TSC and SPH. This concerns
its ability to resolve the substructre in high-density regions, its sensitivity to shape so
that it can follow filaments and flattened sheets, and the successful interpolation through
low-density regions.

To further quantify the distribution of matter in our simulations we have obtained
one-point distribution functions. This statistical measure is the first order characteriza-
tion of the density field. We apply this measure over a range of scales. The first measure
of clustering is the two-point correlation function, which we have also determined.

The main part of our analysis consists of the determination and dissection of void
statistics. To ascertain the level of “voidiness” we apply the extensively studied (Lachièze-
Rey and Maurogordato, 1987; Einasto et al., 1991; Sheth, 1996) void probability function
(VPF) by White (1979). The VPF has some shortcomings when dealing with high res-
olution simulations. To overcome these, we developed a modified version of the VPF
(mVPF). We analyse the results and assess the viability of these functions as probes
of the nature of dark energy. We show that redshift space distortions will significantly
obscure the signal we are looking for.

In order to account for detailed size and shape distributions of our void samples we
need a void finding algorithm that takes these properties into account. To this end we
will use the Watershed Void Finder described in section 3.2.1. We compare our findings
to those of Lee and Park (2009) and Lavaux and Wandelt (2010). We find that the
claims from these previous works may be based on a formerly hidden degeneracy with
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Figure 4.1: Delaunay tessellation of a 2D
distribution of points (the vertices of the
fat lines). The Delaunay tessellation is the
dual graph of the Voronoi tessellation (dot-
ted lines). Voronoi tessellation borders are
drawn at the sites of equal distance to the
two nearest points. A Voronoi cell contain-
ing point p is thus made up of all the space
that is closer to p than to any other point
in the distribution. The Delaunay tessella-
tion can be defined in terms of the Voronoi
tessellation. Its lines connect points p and q
only if they have adjacent Voronoi cells.

σ8. This was a surprising result; it sheds new light on the premises of the hypothesis
from Park and Lee (2007) that void shapes depend on mean ellipticity.

4.2 Density field

We used the Delaunay tessellation Field Estimator (DTFE) by Schaap and van de Wey-
gaert (2000); Schaap (2007) to estimate the 3D matter density fields in our simulations.
Density fields are an invaluable tool in the field of structural analysis. One can build
highly efficient algorithms that bypass the need for processing all the points in the full
particle set. One example is the WVF algorithm, which uses density fields as input.
Another advantage is that discreteness effects caused by the limited mass-resolution of
N-body simulations are avoided. Density field estimators usually take care that these
effects are smoothed out.

The DTFE uses the volumes of Delaunay tessellation cells to estimate densities.
First, it builds a Delaunay tessellation out of a set of points (see figure 4.1). It then
calculates a density for each point using the volume of its socalled “contiguous Voronoi
cell” WVor,i (the shaded cell in figure 4.1). These quantities relate like

ρ ∝WVor,i . (4.1)

Finally, it interpolates between the points at which the densities were determined. The
interpolated values are determined for a regular 3D grid.

Our simulation boxes have periodic boundary conditions. To accomodate for this,
the DTFE adds a particle layer around the box to avoid tessellation errors at the edges.
The particles that are added to one side are taken from the opposite side. This creates
the illusion of a periodic box in the relevant central area. As long as all relevant particles
are surrounded by a thick enough layer, there will be no errors in the density estimation.
This is because the tessellation is stable as long as all its surrounding particles are there.
If there are too little particles, i.e. the neighbours of the relevant particles change, the
tessellation will be different and periodic boundary conditions will not be satisfied. The
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thickness of the extra particle layers should be determined by the particle density at the
edges.

We used the DTFE because it is especially well suited for cosmological particle distri-
butions. The tessellations preserve the great amount of detail in clusters and filaments.
Furthermore, it is highly sensitive to the shape of the matter distribution and it can
successfully interpolate through low-density regions. The latter two properties make it
especially well suited to our purposes of probing the shapes of the lowest-density regions.

Other density estimators like the triangular shaped cloud (TSC) algorithm have
intrinsic scale assumptions (the pixel scale in the case of TSC). In figure 4.2 these
estimators are compared. The TSC densities in the right panel are more diffuse in high
density regions. The DTFE preserves substructure in clusters and filaments. The TSC
algorithm behaves even worse in low density regions like the voids. Noisy artefacts
are clearly visible in the larger voids, whereas the DTFE voids are far smoother. This
especially makes the DTFE far better suited for our void analyses than the TSC method.
Comparisons in Schaap (2007) of the kernels of DTFE, TSC and SPH (smoothed particle
hydrodynamics) methods and in Pelupessy et al. (2003) of the DTFE to SPH density
estimation both favored the DTFE on similar premises.

The price to pay is that the DTFE is quite a memory and cpu intensive algorithm.
The computation of the tessellation needs about 25 gigabytes for 2563 particles. To deal
with the large numbers in our high resolution datasets of 7683 particles, we needed a
special parallel algorithm1.
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Figure 4.2: DTFE (left) vs TSC (right) density fields.

1Erwin Platen kindely provided us with this parallel version of the DTFE that splits the total cube
in smaller cubes. The density field in a sub-cube can then be calculated independently of the other sub-
cubes. The boundary conditions are similar. At the edges where the sub-cube touches other sub-cubes
a layer of particles is taken from the neighbouring sub-cube.

47



July 6, 2010 4.3. POINT DISTRIBUTION STATISTICS

4.3 Point distribution statistics

Both redshift surveys and N-body simulations provide us with a set of object coordinates
in three-dimensional space. They can represent stars, galaxies or discretizations of a
continuous dark matter density field. Whatever their origin, they share the fact that we
can use spatial statistics to characterize their clustering. The field of spatial statistics
deals with random point sets. It delivers a handhold for the characterization of any
point distribution. For a comprehensive overview on these statistics in cosmology and
the study of large scale structure we refer to Martinez and Saar (2002, ch. 3).

We focus on the lower order statistics as higher orders are hard to interpret, are
difficult to determine reliably due to propagation of errors and are not the focus of our
analysis2. We obtain one-point probability density functions and two-point correlation
functions. The first will serve as a direct measure of the density distribution and the
second will inform us on the “average degree of irregularity as a function of characteristic
length scale” (Peebles, 1973), i.e. the amount of clustering on different scales.

4.3.1 One-point probability density function

The one-point probability density function (pdf) gives a direct measure of the distribu-
tion of matter. Its usefulness stems from the simplicity to which it reduces the complex
richness of the full density distribution. It is a natural first measure of the density
distribution.

Definition and estimation

The one-point pdf f1(ρ) is defined through the probability P (ρ) of a location in a density
distribution having density ρ:

P (ρ) = f1(ρ)dρ . (4.2)

This function can be estimated in several ways. We could simply estimate the density
field on a grid (e.g. using the DTFE) and count the number of times a density ρ is
found. Divide this by the total number of density cells and we have an estimate of f1(ρ).
This method has a drawback: it is not a direct measure of the particle distribution due
to the step of averaging to a grid. Information will inevitably be lost in this step and
this introduces a systematic error.

A more advanced method was developed by Szapudi (1998). He treats the discrete
particle distribution as a function space in which the particles act as discrete step-
functions. This is a mathematically exact method. This would seem the best method,
but its implementation is non-trivial.

The method we used is based on counts in cells and for this we have three main
reasons:

• We wanted a direct measure of the particle distribution, independent of density
field estimators.

2“Since the two-point correlation function and its Fourier counterpart, the power spectrum, do not
contain phase information, higher order statistics are needed for full description of the (highly non-
Gaussian) galaxy density field,” (Szapudi, 1998). Clearly, we will not need this. As Peebles (1973) put
it: “One observes that analysis in extragalactic astronomy almost always is beclouded with difficulties
of interpretation. It is hoped that by concentrating on a statistical measure that does admit of direct
and simple interpretation one may be able to deal more directly with ambiguities of the phenomena.”
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• The method should be easy to implement and should not be too computationally
intensive.

• It would be nice if the results would be reusable for other statistics.

These reasons led us to conclude that counts in cells were the way to go. Counts in cells
are simply the number of particles in randomly placed cells with volume V . They can do
more than merely provide an approximation of f1(ρ). Their wide range of uses includes
estimation of the void probability function of section 4.4, the estimation of N -th order
correlation functions (White, 1979; Martinez and Saar, 2002) and the estimation of basic
cosmological parameters like σ8.

By counting the number of particles in randomly placed cells of volume V we can
estimate f1(ρ) on a linear scale of ∼ V 1/3. Our method of estimation is as follows. We
throw Nsph spheres of radius R at random positions in our particle distribution. We
then count the number of particles Nsph,i in each sphere. This number is proportional
to the density in the sphere:

ρ =
Nsph,i

NR
, (4.3)

where

NR =
Vsph

Vbox
Ntot (4.4)

is the average number of particles in a sphere of radius R. We repeat this procedure
for a range of radii. We used an efficient algorithm based on a “grid search” method.
This divides the particles in grid cells with a linear size that is optimized for the scale
at which the statistical measure is taken.

The distribution that follows from this is not strictly equal to f1(ρ). What we really
measure is the probability P (N,V ) that a randomly placed sphere of volume V contains
N particles. This function is explicitly dependent on V and f1(ρ) would not be uniquely
defined by our counts in cells approximation. However, due to the discrete nature of
matter, a density ρ must always be defined on a certain smoothing scale. We can thus
state that indeed

f1(ρ(V )) = P (ρ, V ) , (4.5)

where we replaced P (N,V ) by P (ρ, V ) using equation 4.3. By taking the counts in cells
of different volumes we can thus easily determine the one-point pdf on different scales,
which is an added bonus of our method.

Results

The above procedure results in the scale dependent pdfs of figures 4.3 and 4.4.
In figure 4.3 the dependence on the scale of approximation is immediately apparent.

The distribution at 1h−1 Mpc is wider than that at 4h−1 Mpc. The density variations
on this scale are hence larger than at larger scales. This is an effect of the cosmological
principle that on large scales the universe becomes more and more homogeneous. An-
other interesting fact that can be learned from these plots is that it seems that there
are far more empty regions on a 1h−1 Mpc scale than on a 4h−1 Mpc scale. From the
different lines we can learn about the evolution of density perturbations. At high red-
shift, the pdf is nicely centered around δ = 0 and the deviations from this value become
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Figure 4.3: The one-point pdf f1(ρ) (density normalized to the average density) approx-
imated at two different scales (1 and 4h−1 Mpc). The different lines represent different
redshifts of the WMAP3 simulation.
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Figure 4.4: The one-point pdf f1(ρ) (density normalized to the average density) approx-
imated at a scale of 1h−1 Mpc. The left panel shows f1(ρ) the WMAP3 simulation in
real and in redshift space. The right panel shows the five different DE models at z = 0.

more normally distributed as the redshift goes up. This is a probe of the evolution from
a homogeneous initial state to the current situation in which structure dominates.

From figure 4.4 we learn two important facts. We can see that redshift space distor-
tions may cause some complications in our further measurements. The significant change
in the shape of f1(ρ) when transforming to redshift space (left panel) is contrasted with
the very slight changes due to the different models of DE (right panel). Useful as it may
be, it is clear that both the intrinsic scatter in the DE model pdfs and the redshift space
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distortions make this statistic unsuited for discriminating between models of DE.

4.3.2 Two-point correlation function

Our approximation of the one-point pdf can show density statistics on any scale. Where
we to try this, we would need to calculate a new pdf for every scale we are interested in.
The two-point correlation function is built specifically for the purpose of showing the
amount of clustering on any scale. It encapsulates scale dependent clustering information
in one function. It was extensively used and studied in the 70’s (Peebles, 1973; Peebles
and Groth, 1976; Groth and Peebles, 1977; White, 1979) and in later years (Davis and
Peebles, 1983; Landy and Szalay, 1993; Hamilton, 1993). Through the use of this statis-
tic we could potentially probe the influence of different DE models on the manner of
clustering.

Definition and estimation

The two-point correlation function ξ(r = |x1 − x2|) is defined in its relation with the
joint probability dP12 that two infinitesimally small spheres centered on x1 and x2 with
volumes dV1 and dV2 each contain a point of the distribution:

dP12 = n̄2 [1 + ξ(r)] dV1dV2 , (4.6)

where n̄ is the mean number density of particles in the distribution. In general, ξ(x1, x2)
is dependent on both positions, but for a homogeneous point field (which is a fair as-
sumption on large scales) we can simplify to

ξ(x1, x2) = ξ(|x1 − x2|) = ξ(r) . (4.7)

It will only depend on the distance r between the two volumes, because there is no
direction dependence in a homogeneous distribution.

In order to estimate ξ(r) we thus need to estimate the probability of two particles
being a distance r apart. Many methods have been developed and forwarded to accom-
plish this (Davis and Peebles, 1983; Rivolo, 1986; Landy and Szalay, 1993; Hamilton,
1993). A number of popular methods use a Monte Carlo estimation of the total volume
in which the particle distribution is defined. This is a very useful way to deal with the
complicated shapes of galaxy distributions from surveys. There are, however, a number
of statistical issues that need to be overcome. This can greatly increase the complexity
of the algorithm.

Our particle distributions live in the highly regular environment of a periodic box.
Because of this we do not need the flexibility of Monte Carlo approximations. One of the
simplest estimators is the one by Rivolo (1986). The Rivolo estimator’s results hardly
differ from those of other, more complicated estimators (see figure 3.7 of Martinez and
Saar (2002)). This simple approach will thus more than suffice.

The Rivolo estimator is given by the following equation:

ξ̂RIV(r) =
V (W )
N2

N∑

i=1

ni(r)
Vi(r)

− 1 , (4.8)

where V (W ) is the total volume of the box, N is the total number of particles in the
sample used for the estimation, the sum is over all particles, ni(r) is the number of
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neighbours of particle i in the distance interval [r, r+ dr] and Vi(r) is the volume of the
shell centered on particle i with radius r and thickness dr.

Results
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Figure 4.5: Two-point correlation functions for several timesteps of the WMAP3 simu-
lation.

In figures 4.5 and 4.6 we show two sets of resulting two-point correlation functions.
The one thing that strikes the eye is that there are no features to distinguish the different
models and timesteps with. The only thing that seems to change from DE model to DE
model and from redshift to redshift is the height of the entire function. For the redshift
evolution this can be easily understood. The distribution becomes more homogeneous.
This causes small scale correlations to drop, because the high odds of finding a neighbour
at small distances at low redshifts is caused by the growth of dense structures. However,
we would expect the models of dark energy to show at least some clearly distinguishing
features. The two-point correlation function show no such features. This suggests that
the only way to distinguish between models of dark energy is by the amount of clustering
they have produced by z = 0. This agrees with what we saw in figures 2.5, 2.6 and 2.2.

4.4 Void Probability Functions

4.4.1 Void probability function

Context and definition

The void probability function (VPF) was first defined by White (1979). In section 4.3.1
we discussed the counts in cells probability P (N,V ) that a cell of volume V contains N
particles. The VPF is a special case of this function for N = 0. The resulting function
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Figure 4.6: Two-point correlation functions for the different DE model simulations at
z = 0.

P0(V ) is defined as the probability that a randomly placed region of volume V is empty
of particles. In spatial statistics this quantity is known as the emptiness probability
(Martinez and Saar, 2002).

In the years preceding the VPF’s discovery, a lot of work was done on clustering
statistics. Because of this, the main focus of White (1979) was the hierarchy of N-point
correlation functions and their interconnectedness. Specifically, the relative influence of
lower- versus higher-order correlations was investigated. In this context the VPF was
shown to be fundamental to all the other N-point correlation functions. It is in fact
directly related to all N-point correlation functions ξi(x1, x2, . . . , xi) (Maurogordato,
2006; White, 1979):

P0(V ) = exp

( ∞∑

i=1

(−n)i

i!

∫
· · ·

∫
ξi(x1, x2, . . . , xi)dV1 . . . dVi

)
. (4.9)

The VPF is easily calculated. This, together with the above relationship makes it
extremely useful for probing higher order correlations. The higher order correlations are
hard to calculate themselves, but because the VPF contains all of them you can subtract
the contributions of lower order (two- and three-point) correlations to obtain the sum of
the higher order correlations. As Betancort-Rijo et al. (2009) notes, this does not mean
that the VPF determines uniquely all these correlations. The VPF contains an integral,
which means that the contributions from different correlations cannot be distinguished.
“Two samples could have the same VPF and still differ in some aspect of the clustering,”
(Betancort-Rijo et al., 2009). Nevertheless, the VPF can be considered as an interesting
clustering measure, complementary to the lower order clustering measures (White, 1979)
.
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As White himself briefly mentions, “it is also of intrinsic interest in view of the large
‘holes’ in the galaxy distribution which are apparent in some recent complete redshift
surveys (Gregory and Thompson, 1978).” This is our main focus. The VPF is likely the
simplest and easiest to interpret statistic of the (spherical) void volume distribution in
a particle box. It will give us insight on the typical sizes of empty regions in the particle
distributions. If the evolution of void sizes is affected by models of dark energy, this
should clearly show in the VPFs.

Determination

We can easily determine an estimate of the VPF by using the counts in cells we deter-
mined earlier (section 4.3.1). We count the spheres with zero particles in them at all radii
and divide by the total number of spheres with that radius. Given a sufficient number of
spheres this gives a decent approximation of the chance for a sphere of a certain radius
to have zero particles in it. We used a million spheres, which is more than enough at
most radii. The function already converges when using only 100000 spheres. At higher
radii where the VPF drops to zero (there are no more empty regions with those radii)
noise levels will rise, but this is inevitable.

Note that some authors (e.g. Vogeley et al. (1991)) use the reduced VPF. This
derived statistic measures the deviation of the VPF from a random distribution. It can
be used to measure the degree of hierarchical scaling in the galaxy distribution. Under
the assumption of a hierarchical galaxy distribution, the N-point correlation functions
can be greatly simplified. The reduced VPF can be used to test this assumption, because
its behaviour in a hierarchical scenario can be predicted as well, due to its dependence
on the N-point correlation functions. We will not use the reduced VPF. The reduced
VPF, though useful in its own right, contains no extra information that is relevant to
this study.

Results

In figure 4.7 we show a number of VPFs for our particle sets. To the left we show
VPFs of the high resolution data. The first panel shows the evolution of the VPF in the
WMAP3 model. Below that is a comparison of the five different DE model VPFs in real
space. In the third panel we plot the VPFs of the WMAP3 and SUGRA models both
in real space and in redshift space. The fourth panel again shows redshift space VPFs
of these models, but with four different observer locations, resulting in four different
redshift space samplings. This was done to take into account environmental effects like
the “fingers of god”.

The two right panels show the VPFs for our halo distributions. The top right panel
shows the evolution of the WMAP3 model in the halo distribution. The bottom right
panel contains a comparison of the different DE model halo VPFs. Both of these panels
contain a zoom-in on a part of the function.

Except for the two time evolution panels, all the VPFs are determined at z = 0.

Discussion

The DM distribution VPFs seem rather potent on first glance. In the upper two left
panels we can see that indeed in principle the differences in the void distribution are
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Figure 4.7: Void probability functions. The left panels show VPFs of the complete DM
particle sets. The right panels show VPFs for the derived halo distributions.
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measurable using VPFs. The fact remains that they are rather small, especially the
differences between models. The largest difference is between the WMAP3 and SUGRA
models.

The WMAP3 time evolution panel shows us the expected result that voids grow in
time. Note that the plots are logarithmic and so the growth is actually quite large.
The odds of finding empty regions at the higher scales increases by several orders of
magnitude through time.

In the third panel we compare the SUGRA and WMAP3 models in redshift space.
Although both VPFs shift upwards significantly, meaning that voids become larger as
indeed we saw before in figure 2.8, the relative difference between the models’ VPFs is
preserved.

The lower panel shows that the specific way of transformation to redshift space has
its impact on the VPF. We transformed the two DM particle boxes to redshift spaces in
four different ways, by placing the observer at four different locations. In every redshift
space realization we see that still the relative difference between model VPFs is preserved.
Also, at small radii the VPFs are stable under different redshift space transformations.
However, at large radii the VPFs of different redshift spaces diverge. Redshift space
distortions have a clear impact on the large scale part of the VPFs.

For our purpose, this makes the VPF useless at these radii. The differences between
models are smaller than the scatter caused by the redshift space transformation. At low
radii the VPF may still be useful though.

Looking at the VPFs of the halo distributions we find even stronger distortions. We
see in the upper plot that the effects of VPF density dependence start to dominate. The
density of halo particles at z = 2.04 is half that at z = 0 (see table 3.1). Because, at this
density, spheres are twice as likely to be empty the z = 2 VPF is shifted to the right of
the lower redshift ones, even though it is not twice as far, meaning that indeed it should
in fact be to the left like in the DM distributions plot (top left panel). In the zoom-in
box we show that the z = 0.25 data indeed still lies to the left of the z = 0 data; the
halo density difference between those redshifts is far lower. In general though it is clear
that the lower number density of the halo distributions has a negative impact on the
measurability of the VPF differences.

The same conclusion can be drawn from the bottom right panel, showing the halo
distribution VPFs of different models at z = 0. The order seen in the second highest
panel to the left is still there; the void size information is not lost completely. Never-
theless, the differences are very small, certainly smaller than the scatter introduced by
a redshift space transformation.

We can conclude that the VPF is unsuited for probing different models of DE. Red-
shift distortions are too large for the differences to be measurable in halo samples. As
these are meant to represent galaxies, we can disqualify the VPF for use in galaxy surveys
as a measurement of the nature of DE.

4.4.2 Modified void probability function

Motivation and definition

The VPF was originally devised as a mathematically useful measure of clustering; its
application to voids was secondary. In recent years, however, voids themselves have
become the objects of study. The need for specific void statistics is more pressing. This
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led us to take the VPF as our starting point for defining a slightly more appropriate
measure of the void distribution.

Voids are never truly and absolutely empty (Sheth and van de Weygaert, 2004).
This fact lead us to define a modified void probability function (MVPF) based on a
certain density threshold instead of pure emptyness3. We define the MVPF Pδ(V ) as
the probability that a void i has an overdensity δi of δi 6 δ.

Like the VPF, we can use the counts in cells to determine this function. First
determine the expected mean number of particles NR in a sphere of radius R:

NR =
Vsph

Vbox
Ntot . (4.10)

We divide all the counts in cells by NR and subtract by 1. In this way we convert the
count in a cell i to an overdensity δi in that cell:

δi =
Ni

NR
− 1 . (4.11)

Pδ(V ) is then the number of cells i having δi < δ, divided by the total number of cells.
This measure has an important advantage over the normal VPF: a higher particle

density does not quench the MVPF at higher radii as it does the normal VPF. The
higher the mass resolution (more particles, which is usually a good thing), the less likely
it will be to find a totally empty sphere. For very high mass resolution simulations this
would actually mean that you will stop probing actual voids, but rather start probing the
interparticle separation only. The MVPF takes into account the fact that voids are never
truly empty; neither in theory (Sheth and van de Weygaert, 2004) nor in observations
(Kirshner et al., 1981), as recent findings of void galaxies show (Stanonik et al., 2009a,b).

Sensitivity of the MVPF to DE models

One thing that needs to be determined is the sensitivity of the range of MVPFs as
function of δ to the differences in the DE models considered. We did this by simply
trying out a range of δ values on all the models and computing the differences. The
higher the difference, the higher the sensitivity of that MVPF to the differences between
DE models.

The results are shown in figure 4.8. We clearly see that for all model comparisons,
the largest differences are obtained when using the δ = −0.8 MVPF. Note that the value
of δ = −0.8 is the predicted value for the density of voids from simple spherical models
(Icke, 1984; Sheth and van de Weygaert, 2004). The MVPF−0.8 is most sensitive around
R = 1.0± 0.2h−1 Mpc.

A point of concern is that the differences do not exceed 0.08 and on average lie around
0.03. On a scale of 0 to 1 these are rather small values. We thus need the MVPF to
be more stable than the VPF under redshift space transformations to be useful for our
purpose.

Results

In figure 4.9 we show the P−0.8(V )’s for several simulations. The panels contain the
same models at the same positions as in figure 4.7. Left are again the high resolution

3After finishing our development and analysis of the mVPF we found that a similar method had been
developed for 2D particle distributions by Ryden and Melott (1996).
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Figure 4.8: Differences in the MVPFs of different DE models. This shows the sensitivity
of different MVPF configurations to the differences between DE models. The higher the
difference, the higher the sensitivity at that scale.
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Figure 4.9: Modified void probability functions with δ = −0.8. Again, the left panels
show MVPFs of the complete DM particle sets and the right panels show MVPFs for
the derived halo distributions.

59



July 6, 2010 4.4. VOID PROBABILITY FUNCTIONS

data results (time evolution, model comparisons and redshift space comparisons) and
right we show the results for the halo distribution.

Discreteness effects

The most obvious feature in the left panels is the sawtooth pattern that emerges in all
simulations at all redshifts. There are two strong indications that this feature is caused by
the mean interparticle distance (MIPD), i.e. the discreteness of the particle distribution.
The pattern starts at about the MIPD of 300/768 = 0.39h−1 Mpc. However, the radius
R of a sphere of volume V corresponds to an underdense sphere of diameter 2R. If the
MIPD causes the first sawtooth the MIPD in voids should hence be about 2R = 0.8h−1

Mpc.
In figure 4.10 we see that indeed this is the case with an MIPD of about 1h−1 Mpc.

The two other peaks are at about
√

2(2R) and
√

3(2R), possibly corresponding to the
stretched out artefacts of the diagonal distances in respectively the sides and the cubes
of the initial condition particle grid cells.

 100
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 120

 110  115  120  125  130

M
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Figure 4.10: Zoom-in of an underdense region in a slice through the particle box in the
WMAP3 simulation.

The second indication that the MIPD causes the sawtooth pattern is presented in
figure 4.11. The MVPFs of two low resolution simulations are compared to the high
resolution one. The sawtooth pattern is shifted by a factor of 3 in radius compared to
the high resolution simulation. This corresponds exactly to the factor 3 increase of the
MIPD; from 300/768 = 0.39 to 300/256 = 1.17h−1 Mpc4.

Either we can correct for this pattern using the MIPD in voids (thereby shifting the
corrected MVPF down a bit) or by taking the MVPF on a density field instead of on

4We see that the high resolution and “low res 3” simulation MVPFs nicely converge at higher radii.
This was to be expected; the initial conditions were exactly the same, except for the number of particles.
One of the disadvantages of the VPF, its density dependence, is indeed no longer present in the MVPF.
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Figure 4.11: Modified void probability functions with δ = −0.8. Comparison of low
resolution (2563 particles) to high resolution (7683 particles) dataset MVPFs. “Low res
3” is a simulation with the same cosmological input parameters as the high resolution
simulation. “Low res 1” uses a different power spectrum.

the particle distribution itself or we must discard the data at and below these scales.
Assuming that it is possible to correct (the density method seems especially promising,
seeing as the MVPF is defined in terms of δ anyway) we now take a look at what we
can actually do with these diagrams.

Discussion

In the left panels of figure 4.9 we see that the MVPF gives us a larger usable range in
radii. Whereas the VPF drops off to zero at radii of about 1h−1 Mpc, the MVPF seems
to go on far beyond that. The differences between models and different redshifts are very
well measurable. The redshift space panels show us that again the model differences are
invariant to redshift space transformations from different locations.

One important difference with the VPF is shown in the bottom left panel. The
MVPF is far more stable under different redshift space transformations than the VPF.
This must be due to the smaller uncertainties at these radii in the MVPF compared to
the VPF (which at those radii starts to become very small). In the zoom-in panel we
see that the scatter introduced by different redshift transformations is on the order of
0.002.

The halo panels on the right side of figure 4.9 show us two things. First, the top
panel shows us that the uncertainty introduced by the small number of haloes at high
redshift causes the MVPF to behave quite irratically. In the lower panel we see that
the MVPFs of different models are still ranked in height in the same order as in the
second left panel. The information on different models can still be extracted from the
halo distribution using the MVPF.

In the zoom-in box we see that the differences are on the order of 0.005. This would
mean that by using the MVPF on halo distributions in redshift space we can at least
discard a few models. If the measured MVPF at e.g. R = 1.5h−1 Mpc would be lower
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than the predicted WMAP3 value by 0.003, then we can be quite sure that the MVPF
is not of a SUGRA model, because the scatter that could have been introduced by
the redshift transformation can not bring the difference up to the required 0.005. It
will, however, be nearly impossible to use the MVPF to actually pinpoint a DE model.
The redshift space transformation scatter is still too large and this will ever remain a
fundamental observational error5.

4.5 Void Morphology Parameters

In this section we investigate void sizes and shapes. This allows us to test the claims
of Lee and Park (2009) and Lavaux and Wandelt (2010) on the redshift dependence of
mean void ellipticities. The claim is that the average ellipticity ε̄ drops as a function
of redshift. Moreover, the exact rate of decrease is predicted to depend strongly on the
value of wa, i.e. on the redshift evolution of the equation of state parameter w of dark
energy.

Our main aim in this is to explore the possibility of discerning models through
their shape parameter distributions. We examine several void morphology parameters
as determined by the WVF algorithm (section 3.2). We do this on six different length
scales using six different smoothing radii. We can thus compare the sensitivity of different
void sizes to the DE models.

4.5.1 Volume and shape distributions

Introduction: definitions and description

In figures 4.12, 4.13 and 4.14 we show estimated void (effective) radii r6, ellipticities ε,
oblatenesses p and prolatenesses q. Given the estimated void ellipse semi-axes a > b > c
(see section 3.2) these quantities are defined as:

r =
√
abc, ε = 1− c

a
, p =

b

a
and q =

c

b
. (4.12)

The figures show plots of the probability density distributions7 p(x) of the shape param-
eters, i.e.

∫∞
−∞ p(x)dx = 1 where x is V , ε, p or q.

Figure 4.12 shows the probability density distributions of the five different high res-
olution DE model simulations at z = 0. Each column shows a different parameter. The
first column contains the distributions of effective radii in h−1Mpc. The other columns
show respectively the distributions of ellipticities ε, oblatenesses p and prolatenesses q.
In the six rows we distinguish between distributions of WVF runs with different Gaus-
sian smoothing radii Rf . We show these distributions at different smoothing scales to
compare the sensitivities of different void scales to DE model differences.

In figure 4.13 the same parameters are shown for the redshift space results of the
WMAP3 and SUGRA models. In this figure we only show the results at a smoothing
radius of Rf = 1.5h−1Mpc. As we discuss below, this is the most sensitive scale to
differences in the simulations. The same holds for figure 4.14 where we show the shape
parameter distributions at different timesteps in the WMAP3 model simulation.

5At least until we invent better ways to determine distances.
6The effective radius r equals the radius rsph of a sphere of the same volume as the ellipse, i.e.

V = 4
3
πrsph = 4

3
πabc = 4

3
πr.

7This is why there are no tics on the y-axis; only relative values are relevant.
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Figure 4.12: Probability density plots of the volume and shape distributions of voids
in the different model simulations at z = 0. Each column contains a different shape
parameter and each row shows the shape parameter distribution of a void population
obtained using a different smoothing radius in the WVF.
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Figure 4.13: Probability density plots of the volume and shape distributions of voids
(smoothing radius of Rf = 1.5h−1 Mpc) in the WMAP3 and SUGRA simulations and
two of their redshift space counterparts, all at z = 0.
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Figure 4.14: Probability density plots of the volume and shape distributions of voids
(smoothing radius of Rf = 1.5h−1 Mpc) in the WMAP3 simulation at several redshifts.
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Discussion

It is evident that for larger smoothing radii, the volume of detected voids rises. This
is because the small scale void boundaries will be smoothed out. We can clearly see
this effect in figure 4.12. The shape of the volume distribution perfectly matches the
predictions of Sheth and van de Weygaert (2004). The locations of the peaks are shifted
upwards, which again must be partly due to the smoothing scales and partly to the
finite resolution of an N-body simulation as compared to the ‘infinite’ resolution of the
theoretical results of Sheth and van de Weygaert (2004).

On the other hand, the effect of the smoothing radius on the shape distributions
is surprisingly small. This implies that the void shape distribution is a scale invariant
property of void populations. This is an interesting result by itself. It tells us that we can
safely ignore the larger scale void distributions and focus on the Rf = 1.5h−1 Mpc voids
only. These should contain all the information we can get out of the simulations using
void shapes, because larger scale distributions will inherently introduce larger errors due
to smaller numbers. If the shape distribution is scale invariant then the voids on the
smallest scales will always contain more exact information than the larger scales.

An alternative option we shortly looked into was to add together the information on
all scales. This did not yield any extra precision or information. This eventually led us
to focus on Rf = 1.5h−1 Mpc voids. Smoothing radii smaller than this value of 1.5h−1

Mpc are not feasible. We need some smoothing to filter out the remaining shot noise in
the void regions. At smoothing radii below 1.5h−1 Mpc these will quickly start to play
a significant role.

4.5.2 Shape versus redshift

High resolution data

Looking at figures 4.13 and 4.14 we see that again the redshift space transformation
introduces a significant amount of scatter. The differences in the panels of figure 4.13
seem larger than those in figure 4.14. According to Lee and Park (2009) we can discern
DE models by looking at the time evolution of the mean ellipticity ε̄. This should drop
as a function of redshift. If we look very carefully at the ellipticity panel of figure 4.14
we can indeed see a slight downward evolution of the ellipticity with redshift. In figure
4.15 we see that given a high resolution map of the mass distribution we can indeed
reproduce the general trend of Lee and Park (2009) (cf. figure 4.16).

Simulation WMAP3 SUGRA

Space real z-space 1 z-space 2 real z-space 1 z-space 2

ε̄ 0.45837 0.47323 0.47190 0.45447 0.46791 0.46606

Table 4.1: Mean ellipticities of real and redshift space voids. Full distributions are plotted
in figure 4.13. The “z-spaces” again represent two observers at different positions, giving
different redshift spaces.

The question remains, though, whether the amount of scatter in figure 4.13 is of
comparable size to the amount of decrease of ε̄ with time. The mean ellipticities in
this plot are given in table 4.1. The difference between DE models again seems rather
stable under the redshift space transformation, but there is some scatter in the precise
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Figure 4.15: Mean ellipticity versus redshift for the high resolution WMAP3 model.
Errorbars show the possible scatter caused by redshift distortions.

outcome of ε̄. We can expect redshift space errors in the mean ellipticity on the order of
0.002 based on these numbers. We took this error into account in the errorbars of figure
4.15. We thus find that the trend persists after taking redshift space transformation
uncertainties into account. The slope of Lee and Park (2009) is steeper, but overall the
results are consistent with our high resolution DM simulations.

Haloes

We have also tested the claims of Lee and Park (2009) and Lavaux and Wandelt (2010)
on our halo samples8, but were unable to detect the decrease in ellipticity. Rather, the
distribution of halo void ellipticities stays remarkably constant, up to at least z = 1,
and rises steeply at higher redshifts (see figure 4.17). The latter may be caused by the
decreasing number of haloes with higher redshift (and therefore poorer probing of the
full density field). Seeing as the ellipticity distributions of different models are predicted
to be the same at z = 0, which is indeed what we see, it seems that it is impossible
to discriminate different DE models on the basis of these approximated void shape
parameters.

The discrepancy between the “halo voids” and the “high-resolution DM simulation
voids” must be caused by either the halo sample itself, i.e. by the number of haloes (which
is significantly lower than the number of DM particles) or its spatial distribution, or by
the incapability of the combination of DTFE and WVF to deal with halo distributions.
We investigate the former possibility below9.

8The haloes were weighted by their mass. The DTFE algorithm incorporates these masses in its
determination of the density field. Later on we also use the unweighted halo distribution to probe only
the morphology of the distribution.

9The influence of other void finders is also being investigated. Communication is ongoing with the
people involved with other void finders like ZOBOV (Neyrinck, 2008) and the void finder by Hoyle and
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Figure 4.16: Theoretical mean ellipticities
versus redshift for several values of wa. Im-
age from Lee and Park (2009).
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Figure 4.17: Mean ellipticities versus redshift for the halo distributions of the WMAP3
and SUGRA simulations. For the plain ‘haloes’ plots the individual halo masses were
taken into account in the calculation of the density field. The ‘unweighted haloes’ plots
did not take halo masses into account and thus represent only the spatial distribution
of the haloes.
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Within the “DTFE plus WVF framework” we can compare the halo distribution to
a random subset of the full DM particle distribution with the same number of particles
as the halo set. If these “subset voids” have a shape-redshift dependence similar to that
of the halo voids then it is plausible that indeed the number of halo particles is too low.
If they still differ, then the spatial distribution of haloes (or the DTFE/WVF method)
must be to blame.

We thus took three random subsets of the high-res DM data, with at each redshift
the same number of particles as there were identified haloes in our halo datasets. We
determined the maximum, minimum and median at every redshift and plotted all of
these to also get an impression of the spread caused by low particle numbers. In figure
4.18 we can see that indeed the subset voids seem to correspond well to the halo voids,
implying that a main cause of the deviation of halo void shapes from high-resolution
void shapes is the sparsity of haloes. In the Rf = 3h−1 Mpc panels, we see a significant
difference between the two halo void ellipticity lines and the subset void ellipticity lines.
This may well indicate that also the spatial distribution of haloes plays a role.

As a final test we measured the void shape distribution in an unweighted halo density
field, i.e. in a density field where only the halo positions have been used and the halo
masses were all set to equal values. We did this test, because for the random subset
densities we also had equal particle masses, so by comparing to unweighted halo density
field voids we only compare unbiased spatial distributions of the particles. These “un-
weighted halo voids” indeed differ slightly more from the subset voids than the “weighted
halo voids” (see figure 4.17). This leads us to conclude that the spatial distribution of
haloes indeed also plays a role.

From this we can conclude that haloes10 are definitely unsuited for the purpose of
discerning DE models. We found that there are at least two reasons for this: one having
to do with the number density of the halo sample and the other being a biasing problem.

The number density of the halo distribution is too low to probe the voids in the
underlying matter density. This poses a significant problem. Our halo density is about
0.019h3Mpc−3. The SDSS DR6 luminosity function fits (Montero-Dorta and Prada,
2009) give densities of the same order of magnitude, although volume limited samples
will have even lower densities. Given these similar values, it will not be possible to
measure any signal of DE in current observations. This makes the application of our
statistics to real data useless. Significantly more data would be needed to circumvent
this problem.

The second reason for haloes being a poor probe of the underlying density field seems
to be their spatial distribution. This may be the most important finding of this thesis. It
might implicate that no matter how many haloes, or galaxies, you would observe, their
spatial distribution simply does not probe the underlying mass distribution sufficiently
well for void shape statistics to be usable for discriminating between models of DE. We
will further discuss this biasing problem in section 5.

Ellipticity versus redshift: a probe of the nature of dark energy?

The last question we wish to address, is whether different DE models differ in a ε̄ versus
redshift plot at all. Seeing as we had only z = 0 data for the high resolution simulations,

Vogeley (2002).
10Or at least those found by the SUBFIND halo finder.
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Figure 4.18: The same plots as in figure 4.17, with the addition of the mean ellipticity
versus redshift of the WMAP3 random subsets. Also, in this case, the Rf = 3.0h−1 Mpc
results are shown.
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Figure 4.19: Mean ellipticities versus redshift for the low resolution simulations of
WMAP3 and SUGRA models. Errorbars again represent redshift distortions.

we used two of our own low resolution simulations of WMAP3 and SUGRA DE models.
The result is shown in figure 4.19. This figure seems to suggest that the theoretical
results of Lee and Park (2009) and Lavaux and Wandelt (2010) may indeed be real. The
SUGRA model, which fits to wa = 0.452 (table 2.1), runs below the WMAP3 model
which has wa = 0, just like in figure 4.16. The differences are also of the same order of
magnitude.

There are some inconsistencies. For one, the SUGRA model does not start at the
same value as the WMAP3 model. Also, in figure 4.16 the lines diverge, whereas in
figure 4.19 they first run parallel and later converge.

These facts suggest that some detail may be missing from this analysis. We have
looked into two possible causes of the observed inconsistencies.

First we briefly investigated whether overdense regions in detected voids may cause
any problems. Strictly speaking we should not count these as part of the void, especially
overdense regions on the void borders. As explained by van de Weygaert and Platen
(2009, §3.2.1), only the inner parts of the void are properly described by the homogeneous
ellipsoidal model11. Yet, the WVF algorithm counts all density field cells as voids,
excepting only the border cells where voids meet. We have therefore tried discarding all
overdense void cells.

In figure 4.20 we show the result of this procedure. About 14% of the volume in
voids is eliminated in this way. The shape analysis based on these voids does indeed
yield slightly different results, e.g. the mean ellipticities are slightly higher. Still, we do
not find the strong redshift dependence found by Lee and Park (2009) and Lavaux and
Wandelt (2010). It seems then that this is not the cause of the observed inconsistencies.

Secondly, we looked into the possibility that the differences between the model el-
11Because the “role of surrounding material [will dominate], through the sweeping up of matter and

the encounter with neighbouring features.”
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Figure 4.20: Comparison of the standard WVF void distribution in our WMAP3 z = 0
box to the WVF voids minus overdense regions (as described in the text).

lipticities are not primarily caused by different w(z), but by some other cosmological
parameter. We found a very interesting dependence on the amount of clustering. As
we briefly mentioned in section 2.2.1, the different DE models have different values of
σ8. This was necessary for proper normalisation at the CMB. In figure 4.21 we see
that for both models there is a clear relation between σ8 and the mean ellipticity. In
fact, the underlying relation seems to be the same, as the lines overlap. The relation
seems independent of redshift. Both lines consist of σ8 measurements at redshifts of 0,
0.1, 0.25, 0.51, 1.0 and 2.04. Were they redshift dependent we should have been able
to distinguish e.g. the point at the middle of the SUGRA line (which corresponds to
z ≈ 0.5) from the point at the same location of the WMAP3 line (which corresponds to
z ≈ 1). This strong correlation is especially surpising when we realize that the WMAP3
and SUGRA models differ the most in every other aspect we investigated.

It seems then that the main cause of the differences between these models is in fact
σ8. Of course, in this case, the difference in DE models is the underlying cause of this
difference through D(z) in equation 2.9. Despite this fact, we have found nothing that
can distinguish the specific influence on D(z) of different DE models from other possible
influences on σ8. This means that we can not use the mean ellipticity evolution to
distinguish a ΛCDM (or other) model with a certain σ8(z) from a quintessence model
with the same σ8(z). Because several cosmological parameters enter into this dependence
through D(z) (see equation 2.7), we can conclude that the probe of ε̄ is degenerate in
w(z) and all these other parameters.

We can thus conclude that it is not at all fully evident that the relation between ε̄
and redshift can unequivocally discern between different DE models. Neither in “real”
data (haloes) nor in higher resolution simulated data can we properly reproduce the
theoretical results from Lee and Park (2009) and Lavaux and Wandelt (2010). A clear
dependence of mean ellipticity on the amount of clustering was found. This implies that
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Figure 4.21: Mean ellipticities versus σ8 for the low resolution simulations of WMAP3
and SUGRA models. The lines consist of σ8 values of the two simulations at redshifts
0, 0.1, 0.25, 0.51, 1.0 and 2.04.

the only way to measure differences between DE models is through the differences in σ8.
This makes a potential DE measurement degenerate with measurements of σ8 itself.
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CHAPTER 5

SUMMARY AND DISCUSSION

In this section we will discuss the main question of this thesis: can voids be used (in
real observations) to probe the nature of dark energy? To answer this question we have
obtained and examined several measures of void properties. How did these measures
perform as probes of dark energy? What difficulties were encountered in the transition
to redshift space and halo data (and, implicitly, voids in observed galaxy distributions)?
What does the possible degeneracy with σ8 mean for these probes? And finally, what
future possibilities are there? This with respect to these probes specifically as well as for
the idea of voids as probes of dark energy in general? These are the leading questions
that we will try to address in this chapter.

We will start by summarizing our main results on the possible probes we tested.
From this we conclude that it seems unlikely that we will be able to use these probes (in
their current form) on observations. Following that we will discuss the general problem
of the σ8 degeneracy. At the end of this section we will discuss the remaining open
questions and provide some avenues for further research.

5.1 Results from our probes

5.1.1 Summary

Early on in our analysis, our suspicions were raised that our task of probing dark energy
would not be an easy one. The analysis of the one-point pdfs suggested that redshift
space distortions would have a great impact on any signal we would have liked to probe.
From the two-point correlation functions we learned that it seemed hard to distinguish
one of our models of time dependent DE from the earlier timesteps in the WMAP3
simulation. There were no clear distinguishing features in either of these statistics. It
seemed that the viability for discerning models in real data would prove difficult. The
analysis of void statistics proved to yield ambiguous results as well.

The results of our analyses were not as clear-cut as those of related studies (Lee and
Park, 2009; Lavaux and Wandelt, 2010). We could qualitatively reproduce some of their
claims in high resolution data sets. This was contrasted with the problems that arise
when the effects of redshift distortion are included. Moreover, any measurable signal
gets obscured when the halo distribution is probed. With the latter forming a realistic
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Figure 5.1: Differences in the mean elliptic-
ity evolution between models with w = −1
and w = −0.5. Both the results from theory
(the red and blue lines) and the results from
the corresponding N-body simulations (tri-
angles and squares) are shown. Figure from
Lavaux and Wandelt (2010).
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representation of a galaxy distribution, in practice, these effects render unfeasible any
attempts at the actual use of the measurement of void shapes as probes of dark energy.

These results from simulated observations give little hope for our probes of dark en-
ergy. The practical problems of redshift distortions and the sparsity and complex biasing
of the galaxy distribution are significant. Even though most measures had some merit
in simulations of the full dark matter distribution, when dealing with galaxies in red-
shift surveys, the chances of detecting a signal of the nature of dark energy are slim to
nothing.

5.1.2 Theory: results from N-body simulations

Our project was largely based on the claims of Park and Lee (2007) and Lavaux and
Wandelt (2010). The mean ellipticity of voids as a function of redshift ε̄(z) was expected
to be a sensitive probe of the dark energy equation of state parameter w(z). We tested
this claim on several simulations of the dark matter distribution. In each simulation a
different model for dark energy was used. Five different models were thus compared:
the ΛCDM model and four models of dark energy as a time-dependent scalar field.

The results from these probes of the full dark matter distribution seemed promising at
first. Using the approximated ellipsoidal void shapes, we indeed detected the predicted
decrease with redshift of the mean ellipticity (figure 4.15). Using our 2563 particle
simulations, we could further show that there was a detectable difference in the void
shape evolution of different models of dark energy (figure 4.19).

However, there were some differences with the theoretical results of Lee and Park
(2009) and Lavaux and Wandelt (2010). Lavaux and Wandelt (2010) were able to ap-
proach the theoretical results very accurately with their simulations (see figure 5.1). In
our case the ellipticities at z = 0 differed significantly for the different models. In Lee
and Park (2009) the ellipticities at z = 0 are equal and in Lavaux and Wandelt (2010)
they differ only very little if they differ at all1. Also, the ε̄ versus z lines diverge at higher
redshifts in Lee and Park (2009) and Lavaux and Wandelt (2010). In our case they run
more or less parallel; if any divergence is present it is not significant.

1We can not really tell from the figure because of the overlapping datapoints at z = 0

74



CHAPTER 5. SUMMARY AND DISCUSSION Patrick Bos

At this point we started to suspect that these discrepancies were caused by some other
different parameter in the simulations than w(z). It turned out that ε̄ correlated very
strongly with σ8 (figure 4.21). In fact, this relation seemed independent of redshift and
DE-model. We obtain a very tight straight line from the σ8 values of several timesteps
in the two simulations that differ the most in terms of w(z), namely the WMAP3 and
SUGRA models. This implies that the differences we measured in the mean ellipticities
are only dependent on redshift because σ8 differs at different redshifts. In other words:
the mean ellipticity seems dependent on σ8 rather than on redshift.

Of course the values of σ8 differ because of the different models of dark energy. σ8

was normalized at the CMB and because of the dependence of the linear growth factor on
w(z) we gained different values of σ8. However, the model of dark energy is not the only
parameter that influences σ8. This means that the measurement of mean ellipticity does
not uniquely probe the model of dark energy. It is a measurement that is degenerate in
all the parameters that determine σ8 at different redshifts, i.e. all the parameters that
are contained in D(z), the linear growth factor. This means that the mean ellipticity
probes the linear growth factor as a function of redshift.

The other probes of the full DM particle distributions can be explained similarly.
Throughout our analyses we saw that any difference between models strongly resembled
the differences between the different timesteps of the WMAP3 simulation. There were
no clear distinguishing features in any of the tests, other than the apparent amount of
structure formation. To summarize some examples:

• In the qualitative comparison of models in figures 2.5 and 2.6 we concluded that
the main differences were in the amount of structure formation.

• From the halo data in table 3.1 we concluded the same thing.

• Both the one-point pdfs (figure 4.4) and the two-point correlation functions (figures
4.5 and 4.6) showed us no clearly distinguishable features (again, other than the
fact that the different model realizations at z = 0 are similar to higher redshift
results of the WMAP3 simulation).

• The same conclusions were reached for the (modified) void probability functions
in the upper two left panels of figures 4.7 and 4.9.

We can conclude that according to our results, mean ellipticities can probe the cos-
mological model. However, they only probe the model in its totality as represented by
σ8 through D(z). It can not distinguish between the effects of the specific parameters
on which D(z) depends, of which w(z) is only one example. It might be possible that by
combining ε̄(z) measurements with additional independent constraints we may be able
to bring down the errors on the estimated values of cosmological parameters. This may
be an interesting topic for further study. However, as we will discuss next, there are
other complications that may complicate the practical execution of these measurements.

5.1.3 Practice: results from (simulated) observations

The ultimate goal of our project was to test whether our probes can be used in real ob-
servations. This meant that we needed to account for the fact that real data use redshift
as a distance estimator. We needed to transform the positions and velocities of particles
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in our simulations to redshift space. This transformation causes distortions like the “fin-
gers of god” and the stretching out of voids in the radial direction. Different positions of
the observer will cause different distortions. This is due to the different directions of the
particle velocities. These cause the magnitudes of a particle’s velocity to be dependent
on the observer’s location. The possible range of differences in redshift space distortions
for different observers cause a systematic uncertainty in our measurements that we need
to take into account when searching for signals of dark energy.

The redshift space distortion turned out to be a significant source of uncertainty in all
our tests. Due to this, the one-point pdf was rendered useless to discriminate between
cosmological models (left panel of figure 4.4). The VPF could only be used at small
radii (bottom left panel of figure 4.7). The modified VPF, which we developed for the
purpose of overcoming this and other VPF shortcomings, had relatively little redshift
space scatter (bottom left panel of figure 4.9)2.

Another complication when dealing with real observations is the fact that we cannot
(yet) directly observe the full matter distribution. Our direct source of data is the galaxy
distribution. The complication in using galaxies to probe the dark matter distribution
is the long standing problem of biasing (Kaiser, 1987; Tegmark and Peebles, 1998);
while the galaxy distribution reflects the underlying matter distribution, the relation is
not necessarily one-to-one. This problem has been recognized to affect voids as well;
the comparison of voids defined by galaxies to voids defined by the full dark matter
distribution is not straightforward when the biasing is complex (Platen, 2009; Arbabi-
Bidgoli and Müller, 2002; Furlanetto and Piran, 2006). Furthermore, the use of a halo
sample may introduce discreteness effects. This would be due to the low number of
particles compared to a full DM particle distribution.

To assess these two effects, we investigated the halo distribution in our simulations
and implicitly assumed this to be representative of the galaxy distribution. This resulted
in the total disqualification of the VPF, significantly decreased the use of the MVPF
and fully obscured the mean ellipticity versus redshift relation.

The differences in the VPFs of different models that were present in the full DM
distributions were still present in the halo distributions, but they became immeasurably
small and thus insignificant. The redshift distortion is dominant by far over the differ-
ences between models in the VPFs. The results were not as dramatic for the MVPF,
though still it seems unlikely that it will yield measurable differences. The redshift dis-
tortion is of the same order of magnitude as the differences between MVPFs of different
models. This means that the MVPF may still be useful to exclude wildly exotic models.
Whether we will specifically need the MVPF, instead of other measures, to exclude such
a model may be doubtful.

The MVPF is close to being useful as a probe in real observations. Because of
this fact, it may prove prudent to put some final effort into trying to improve it. One
possibility that was mentioned earlier is to sample the MVPF from a density field.
This will likely remove the sawtooth pattern caused by the discreteness of the particle
distribution3. It may be that information will be lost and its use will decline further. It
may equally well be that the MVPF sensitivity to DE models peaks at the scales currently
confused by the discreteness effects. It would be easy to implement this modification

2The void shape relations were not tested in redshift space. The shape distributions are expected to
be stable under redshift space transformations (Hoyle and Vogeley, 2002).

3Note that this may also be a simulation artefact.
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and we will therefore pursue this further improvement.
The void shape distribution relations seemed to disappear completely in the halo

distributions. We found that this was partly due the number of haloes and partly to
their spatial distribution. We first tested the influence of the number density by taking
random subsamples of the full simulation with an equal amount of particles as there were
haloes in the halo sample. This gave results similar to the halo results, but with a small
yet marked deviation. This implies that also the spatial distribution of haloes may have
an impact on the shape measurements. It seems then that we have here an example of
the above mentioned complexity of biasing which is affecting void measurements. Two
separate effects thus play a role here: the sparsity of the halo sample and the intrinsic
biasing problem.

5.2 The σ8 degeneracy problem

We will shortly elaborate on the problem with σ8 we discovered. The main issue is
that the relation we found seems to have gone unnoticed in the literature thus far. Our
hypothesis in this discussion is that the relation is in fact real and we will show that
there are examples of it to be found in the literature.

We suspect that Lavaux and Wandelt (2010) and Lee and Park (2009) normalize
their value of σ8 at z = 0. This does not become fully clear from the texts, but they do
not mention otherwise. Also, if they had normalized σ8 at the CMB, like we did, their
value of σ8 for the w = −0.5 model would be far lower. It would be even smaller than
that of our SUGRA model. The SUGRA model has a lower (more negative) average
value of w than −0.5, as can be seen in figure 2.1. A higher (less negative) value of w
means a lower value of σ8 (this can be seen by combining equations 2.9, 2.7 and 1.13).

This means that their values of σ8 at the CMB must differ for the different models
of dark energy they test. If their σ8’s are equal at z = 0, then they will differ at
later redshifts through the equation of the linear extrapolation of σ8 to higher redshifts.
Lavaux and Wandelt (2010) themselves mention this equation:

σ8(z) = σ(z = 0)× D(z)
D(z = 0)

. (5.1)

They use this relation only to insert σ8(z) in the model of the redshift evolution of the
ellipticity (equation 1.32).

According to our results, this is in fact the only cause of the redshift dependence of
the ellipticity. In fact, if they have normalized σ8 at z = 0 we can now explain why
the ellipticity evolution of different models starts at the exact same ellipticity in both
Lavaux and Wandelt (2010) and Lee and Park (2009). Under our hypothesis, this is
simply because the σ8’s are equal.

The fact that their relations diverge, while ours run parallel, can also be understood.
The divergence can be explained by the differences in the growth factor for different
values of w, combined with the boundary condition of the σ8’s starting at the same
value at z = 0. The lack of divergence (starting from z = 0) in our case is then caused
by the lack of this boundary condition at z = 0. We would, however, expect a divergence
of the lines at zCMB, because that is where we have set σ8 to be equal.

Another piece of evidence that our hypothesis is correct is given by Lavaux and
Wandelt (2010). They do a small test with two different simulated realizations with the
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same cosmological parameters. They find that the two realizations differ slightly in ε̄
versus z. They note that the realizations also differ slightly in σ8, which thus confirms
our hypothesis4.

5.3 Open questions

Several open questions remain. Two of the most outstanding ones we present here. First,
we shortly elaborate on the possible influence of void finding algorithms. In addition,
we forward an interesting observation can be made regarding the extended quintessence
models.

Void finders

We argued that the main cause of the inconsistencies between our results and those
of Lee and Park (2009) and Lavaux and Wandelt (2010) is in the value of σ8. There
is, however, one further distinction between our analysis and theirs. The void finding
algorithms and even the algorithms used to determine shapes are all different ones.

Park and Lee (2007) determine void shapes by calculating an inertia tensor on the
basis of the positions of haloes in the voids. To determine which voids the haloes belong
to, they use the void finder of Hoyle and Vogeley (2002) (abbreviated by HV02) which is
also based on halo positions. The assumption of Park and Lee (2007) is that the shape
of the halo distribution properly probes the underlying void shapes. However, we have
shown that this is not the case. Rather, a significant amount of information is lost in
the transition of a full dark matter distribution to a halo distribution. Our halo results
do not at all match the results from Lee and Park (2009), whereas the full DM particle
distribution results do qualitatively agree with them.

Of course, HV02 is based on halo positions and so it will by definition not see any
decrease in information (as the extra information is not there to begin with). Indeed,
Colberg et al. (2008) show that the voids found by HV02 are very different. They seem
bounded by overdensities of haloes, not just by any overdensity. This poses the question:
why are HV02 voids still sensitive to changes in wa (or σ8), whereas WVF+DTFE voids
based on halo data are not? What do the HV02 voids probe that the WVF+DTFE halo
voids do not? To this question we have no clear answer. It seems to us that WVF+DTFE
actually probes the cosmic web in more detail than HV02 can. It should therefore contain
more information. It could be, however, that the added information actually obscures
the information we are looking for. In other words, the extra information acts as noise.

Another possibility may be that the DTFE method is not suited for sparsely probed
distributions like halo distributions. It may contain artefacts due to the coarseness of
the resulting Delaunay tessellation. These might be the cause of the noise mentioned
above.

Lavaux and Wandelt (2010) use yet another void finding algorithm (henceforth called
LW10). This one uses more information than WVF+DTFE. They include both particle
positions and velocities. Of course the result is then expected to differ from that of
WVF+DTFE, as what is probed is physically different from the WVF+DTFE voids.

4They conclude from this that the deviation from the σ8 that was used as input for the initial
conditions can be corrected for. However, to correct for this, the original value of σ8 is necessary. In
observations this value is only available through secondary measures.
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Whether these “phase-space voids” from LW10 are better probes of the cosmological
parameters remains to be seen. At least it seems that WVF is superior in identifying
the voids that we also identify by eye. Platen (2009) also showed that the void shapes
inferred from WVF align very accurately with the tidal tensor eigenvectors. This made
it especially suited for testing the claimed relations of Park and Lee (2007), as they
derived their relations from the tidal field as well. It may, however, turn out that the
inclusion of velocities is crucial in the pinning down of the cosmological model.

Whatever the case, a detailed comparison of the voids found by all these different
methods should be made (as already suggested by Colberg et al. (2008)). If we are to
properly compare the results of our analyses, the role of the different methods needs
to be understood. The current plethora of void definitions sometimes seems to obscure
important differences rather than enlighten our analyses. A proper distinction in e.g.
static/position-space and dynamical/phase-space voids should be made (where we would
actually prefer to not call the latter class voids, but rather something like ‘cosmic outflow
regions’).

Related to this discussion is an interesting remark that Park and Lee (2007) make
at the end of their paper: “We expect that our numerical result would not change
sensitively with respect to the void-finding algorithm, given the fact that the ellipticity
of a void here is defined in terms of the spatial distribution of galaxies that make up
the void but not by the boundary shape of a void.” In other words, they claim that
an essential point may be that not the voids themselves but the distribution of haloes
in the voids are sensitive to changes in the dark energy model. It may be that indeed
there is a significant difference between the two. It seems, however, that it may make
observations even harder to realize, as there are scant numbers of galaxies in voids. It
is in any case an interesting point that deserves further study. This requires a far more
detailed account of the halo distribution and also a thorough comparison of different
halo finders and halo definitions.

Extended quintessence models

A remarkable, though little emphasised fact is that the EQ models differ so slightly from
the other models of DE. Although their physical basis is radically different from the
other models - coupling through gravity versus no coupling at all except through the
Friedmann equation - they consitute only a moderate alteration of standard cosmology
compared with e.g. a SUGRA model, which all the four models differ radically from.

It seems likely that the constraints on the coupling constant from Acquaviva et al.
(2005) were too stringent to really make a difference. As our analysis shows, this will
make it hard to distinguish between ΛCDM and a universe with EQ. Whether or not
this makes the distinction irrelevant is a question we cannot answer without further
investigation into other possible probes. It may be that other probes are more sensitive
to effects from EQ. Probes from the era of matter dominance, where EQn differs the
most from EQp (Pettorino and Baccigalupi, 2008), may for example enable us to discard
at least one of the models.
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CHAPTER 6

CONCLUSIONS

We briefly summarize the main findings of this thesis.
Our main question was whether voids could be used as probes of the nature of dark

energy in real observations. We have investigated one-point pdfs, two-point correla-
tion functions, (modified) void probability functions and void shape parameters. We
concluded that neither of these probes are suitable for discerning models of DE in real
observations. The three main reasons for this are redshift distortions, the sparsity of the
halo sample (discreteness effects) and the spatial distribution of the halo sample (complex
biasing).

We also compared our high resolution results to similar results from the literature
(Lee and Park, 2009; Lavaux and Wandelt, 2010). We found a strong correlation of mean
void ellipticity with σ8. This correlation explains our results as well as those from the
literature, without the need for the claimed redshift dependence of mean void ellipticity.
We conclude that the void ellipticity evolution is a probe of σ8, not of the nature of dark
energy. Possible constraints on DE models from this probe may only be attained by
combining results with other independent probes.

We further conclude that a thorough comparison of void finding algorithms is desir-
able to be able to propely compare results from different algorithms. The same goes for
halo finders: Park and Lee (2007) suggest that a crucial detail in their void shape de-
termination is that they use haloes instead of the void itself. The extended quintessence
models may contain some interesting new information that further research may un-
cover, especially with respect to the era of matter dominance (as mentioned in section
1.2.2 and in Pettorino and Baccigalupi (2008)). Finally, there is some room for improve-
ment for the MVPF. It may be useful to try to apply the MVPF on a density field
instead of on a particle distribution.
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APPENDIX A

COFFEE AND CREAM

Apart from being the great catalyst of science we know, love and could not live without,
coffee, our daily dose of dark energy, can serve a broader purpose as a tool in science
outreach activities. The recipe is simple. Take one hot cup of coffee and pour in a decent
amount of cream. Now, just put the cup down and wait a few minutes. Soon, filaments
will start forming as in figure A.1(a) (highlighted in figure A.1(b)). Because of their
constant evolution (see figure A.1(c), which was taken only a few seconds later) we can
imagine the coffee surface to represent a fly-through of the 3D large scale structure, i.e.
it automatically loops through adjacent slices of the 3D distribution. When the cream
is stirred through properly as in figure A.1(d) we have the initial homogeneous state of
the universe.

(a) Filamentary structure. (b) Structures highlighted.

(c) More filamentary structure. (d) Homogeneous initial state.

Figure A.1: Simulations of the large scale structure of the universe in a cup of coffee
with cream.
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APPENDIX B

“CONCORDANCE” COSMOLOGY

A term first coined in an unpublished paper (Ostriker and Steinhardt, 1995), concordance
cosmology is what we call our current standard model of the universe. The following is
a list of key concepts in the understanding of this model:

• The cosmological principle

• The Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric

• The Friedmann equations

In this section we will highlight some of the steps necessary to describe this model of the
universe. A more detailed derivation, dealing in particular with the addition of scalar
fields like quintessence, can be found in van Riet (2007).

The cosmological principle states that on large enough scales (say & 8h−1 Mpc) the
universe is homogeneous and isotropic, i.e. matter and energy are distributed evenly and
in every direction we see roughly the same things. When applied to Einstein’s general
relativistic field equations, this yields a simplification of the description of (the geometry
of) the universe in the form of the FLRW metric1. In its most general form, this metric
can be written as follows:

ds2 = c2dt2 − a(t)dx2 , (B.2)

where s is the distance between two points in space-time, x is the (three-dimensional)
space coordinate and a(t) is the time dependent scale factor which describes the uniform
expansion (or contraction) of an FLRW universe.

In general relativity, we can describe the density and flux of energy and matter with
the energy-momentum tensor Tij . The geometry of space-time on the other hand is
described by the metric tensor gij . Einstein coupled these two quantities in the socalled
Einstein equation:

Gij − Λgij =
8πG
c4

Tij , (B.3)

1A metric describes the geometry of space-time in general relativity. In general we can write this as

ds2 = gij(x)dxidxj , (B.1)

where x is a four-dimensional space-time coordinate, s is the distance between two points in space-time
and gij(x) is the metric tensor. We use the Einstein summation convention for vector and tensor indices.
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where Gij is the Einstein tensor2, Λ is the cosmological constant and G and c are
Newton’s gravitational constant and the speed of light respectively.

We can combine the FLRW metric given in equation B.2 with the Einstein equation
to find the dynamical equations that govern energy and matter in a homogeneous and
isotropic universe. These dynamical equations are called the Friedmann equations and
they are the following:

(
ȧ

a

)2

=
8πG

3
ρ− kc2

a2
+

Λc2

3
=

8πG
3

ρ′ − kc2

a2
(B.4)

ä

a
= −4πG

3

(
ρ+

3p
c2

)
+

Λc2

3
= −4πG

3

(
ρ′ +

3p′

c2

)
(B.5)

ρ̇ = −3
ȧ

a

(
ρ+

p

c2

)
, (B.6)

where ρ is density in units of kg, k is the curvature parameter (which is −1, 0 or 1 for
respectively an open/hyperbolic universe, a flat/Euclidian universe or a closed/spherical
universe), describing the overall geometry of the universe, and p is a pressure. To
solve these equations one more equation is needed and that is the equation of state of
the several components of the universe. Assuming these components behave as perfect
collisionless fluids (which is a decent assumption on universal scales) we can write them
as

pi = wiρi , (B.7)

where now ρi is the energy density of a certain universal constituent, wi is the associated
equation of state parameter (which can vary in time) and pi is the pressure that is defined
by this equation.

2The Einstein tensor is made up of the metric tensor and its first and second derivatives.
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APPENDIX C

RESEARCH PLAN

Below we include the original research plan. We have deviated significantly from this,
because the high resolution data, kindly and on forehand unexpectedly provided by
Klaus Dolag, proved more than sufficient for our analyses. The time planning turned
out to be a little on the tight side, but we managed in the end.

C.1 Motivation and goals

Cosmology is currently widely held to be in a socalled state of ‘concordance’, which gives
the impression that all of the main cosmological questions are answered. Observational
limits however still leave considerable room for cosmological models other than the stan-
dard ΛCDM model with concordance parameters. Together with Rien van de Weijgaert,
Roman Juszkiewicz1 and his PhD student Wojciech Hellwing we want to set up a collab-
oration on inspecting void properties and other cosmological statistics in non-standard
cosmological models. We thus hope to find observable cosmological probes of the specific
non-standard models in question.

Rien and I will look specifically at models with non-standard descriptions of dark
energy, while Roman and Wojciech investigate models with modified gravity. The models
we will definitely try to investigate are that of w 6= −1 and quintessence (which uses a
time dependent w). Another possible model to include (when time allows) is that of a
Chaplygin gas in which dark matter and dark energy are coupled and maybe along the
way we will find other interesting models to investigate.

C.2 Methods

We will run several N-body numerical experiments of these modified cosmologies us-
ing the GADGET-2 code. We will implement the non-standard models in the code
ourselves, run these on initial conditions of a Gaussian random field propagated to a
suitable redshift using the Zel’dovich approximation and compare them to runs with
standard ΛCDM model and parameters. We hope to do several of these runs for each
parameter/model set to be able to draw statistically significant conclusions.

1Nicolaus Copernicus Astronomical Center, Warsaw, Poland
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Our main cosmological probe will be voids, which because of their large scale nature
are expected to be sensitive probes of the dark energy model, dark energy being a large
scale (both spatially and temporally) cosmological component. Void finding algorithms,
like the Watershed Void Finder by Erwin Platen, will be invaluable to this analysis.
Other possible probes include baryonic accoustic oscillations, clustering properties and
more standard cosmological statistics like the power spectrum.

One of the important aspects of the project is to be able to produce observational
probes. This means that it would be a great asset to include baryonic matter in the
simulations, otherwise our probes would be limited to indirect observational evidence
through the effects of dark matter only. GADGET-2 is capable of handling SPH sim-
ulations, which is a possible way to include this. Perhaps more importantly we need
our probes to be useful in redshift space as opposed to normal space, because this is
currently the only viable means of radial distance estimation on the cosmological scales
we are interested in.

C.3 Research plan

Here we give a somewhat more structured plan of the steps involved in the project and
the time they are expected to take. The Groot Onderzoek project is worth 60 ECTS,
equivalent to 1680 hours of work, 210 full 8 hour days, 42 full 5 day weeks. Officially
starting in September 2009 this means that we should be done at the end of June 2010,
assuming full time commitment, which is the intention (all other requirements for the
MSc Astronomy are fulfilled). However, because we have already done some 6 weeks
of preliminary work, there should be some extra breathing space. We will nevertheless
put forward a planning that covers the weeks from September 2009 up to and including
June 2010 in which the first steps have already been covered, leaving us with a slight
headstart and thus giving us some extra time during the year.
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Task Weeks

Literature study of the subject 36-38

Figuring out which exact situations we should simulate 39,40

Getting to know the N-body software 41,42

BREAK (trip to Madrid and wedding) 43

Building initial conditions 44-46

Running ΛCDM simulations with pure DM ... 47

... and with baryonic matter as well 48

Modifying the N-body software for the non-standard simulations 47,48

Running non-standard simulations with pure DM ... 49

... and with baryonic matter as well 50

Getting to know the void finding and other statistical software 50,51

BREAK (Christmas vacation) 52,53

Converting from x,y,z to x,y,redshift space 1,2

Obtaining void statistics for the simulations we have run 3-5

Obtaining other statistics 6-8

Analysis and comparison of statistics 9-11

Writing the thesis and tieing up loose ends 12-24

Preparing and giving presentation 25,26
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