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Motivation

In optics, the index of refraction (IoR) of transmissive elements is used to obtain the desired optical 
behaviour in systems. Two effects are observable when light encounters a transparent medium. Light 
hitting  the  medium  will  be  partly  reflected  at  the  boundary  and  the  direction  of  the  light  beam 
propagating through the medium will shift (dispersion). Dispersion is used in spectral instrumentation 
and reflection in imaging systems. 

A lot of effort is put forth by industry into determining the IoR to great accuracy. These efforts are 
however concentrated around room temperatures (293K – 350K). 

A black body at 293K (average earth temperature) emits most of its thermal energy at infra-red and 
sub-millimetre  wavelengths.  That  is  why  sensitive  optical  instruments  in  the  infra-red  and  sub-
millimetre wavelength range have to be cooled to cryogenic temperatures; to reduce the background 
radiation.  However,  at  these temperatures the IoR of  almost  no material  is well  known.  Yet it  is 
paramount  for  instrument  designers  to  have  access  to  knowledge  of  the  IoR  at  cryogenic 
temperatures.

Other effects hamper the determination of the IoR in the cryogenic temperature range. Most important 
of these is the coefficient of thermal expansion (CTE). It is equally unknown at these temperatures for 
most materials, but must be taken into account in any IoR measurement design. New stratagems 
have to be developed to deal with this problem. 

At  this  time  there  is  one  operational  test  facility  for  the  determination  of  the  IoR  at  cryogenic 
temperatures in the world, CHARMS. This instrument has been build by NASA to test the optical 
materials for the James Webb Space Telescope. Further there are several other groups in earlier 
stages of development. 

Given  the  current  projects  and  ambitions  expressed  by  the  astronomical  community,  swift  and 
accurate  determination  of  the  IoR  at  cryogenic  temperatures  is  a  must.  The  simultaneous 
development of several test facilities will, when more are operational, ensure accurate and available 
IoRs for many materials. ASTRON has decided to join in this effort.
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Chapter 2: Index of Refraction theory
The dependence of the IoR on wavelength, at a given temperature, is generally parameterized by the 
Sellmeier relation. As can been seen from Equation 2.1 this function has asymptotes. The location of 
the vertical asymptotes are determined by the wavelengths kλ . These wavelengths correspond to the 
wavelengths at which photon absorption by the material occur. The accompanying constants Bk give 
the strength of this absorption. 
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Equation 2.1 Sellmeier dispersion relation

The summation in the Sellmeier relation is by necessity truncated after a few terms. Usually this is 
after the first three terms, which is generally thought to be enough to accurately approximate the IoR 
over a specific wavelength range of interest. The kλ 's then no longer correspond to the wavelengths 
of photon absorption, but can be chosen to best fit the data.
At  infra-red and longer  wavelengths the IoR behaves very  smoothly.  The terms in  the Sellmeier 
relation  corresponding  to  the  kλ 's  at  much  shorter  wavelengths,  such  as  ultraviolet,  reach  their 
horizontal asymptotes. Their contribution to the IoR in the infra-red range can be parameterized by a 
single free constant, C1. This relation is given in Equation 2.2 and for many materials their specific 
values of the five constants can be found in [Gh98] for one or two temperatures. 
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Equation 2.2 Infra-red truncation of the Sellmeier relation

The relation of the IoR with respect to temperature is not parameterized in a function. In the literature 
a derivative is often used to indicate a IoRs dependence on temperature. This derivative, called a 
thermo-optic coefficient (TOC), is specific to a certain temperature or temperature range. The reported 
temperatures are usually around room temperature. In the case that the TOC is computed over a 
larger temperature range,  it  must  be regarded as a global  value.  The TOC, like the IoR, is also 
dependent on wavelength.

Section 2.1 Goal
Our goal in this study is to develop a method able to measure the IoR of solids within the following 
framework:

- wavelength range 300nm - 25μm
- temperature range 20K – 300K
- accuracy to at least the 5th decimal place

We wish to fill  the parameter space of wavelength and temperature as densely as possible, while 
maintaining the stated accuracy for every position.
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Chapter 3 World wide efforts
An article search on the World Wide Web has identified other research groups making efforts to 
determine the IoR at cryogenic temperatures. The most noted of these is CHARMS located at NASA. 
The other groups are in Italy, Cambridge and Japan. A description of the main method described 
below, the deviation method, will be given in the next chapter.

NASA CHARMS
CHARMS is a working refractometer which operates in the infra-red to ultraviolet wavelength range 
and down to a temperature of 15K. Most of the equipment has been build into a cryostat vacuum 
chamber. The set-up has one moving component, a mirror, while the prism remains fixed in place. 
The prism angle is also measured in-situ as part of the data acquisition procedure. Results have been 
published for several glasses with accuracies of 10-5 or better.
An interesting observation by CHARMS has been the existence of a saturation temperature. Below 
this temperature, which is material dependent, the IoR will no longer change [Le05]. This temperature 
can be as high as 65K.

Italy
We have found two groups in Italy. 
The first  group uses the ‘classic’  minimum deviation method.  Demonstrative  measurements  have 
been conducted between temperatures of 105 and 293K and wavelengths from 480 to 894 nm. The 
measurement  uncertainty  is  3.10-5.  To  maintain  good  thermal  uniformity  the  prism  has  been 
sandwiched between two aluminium plates, which are in turn fixed to three thermal contacts. Thermal 
uniformity is of  course an important  parameter of  all  measurement set-ups. This group wishes to 
convey their extra effort in maintaining it. 
Even thought  as of  yet  this  approach has a very limited parameter  range,  the authors  stress its 
simplicity [Va08].
The second group uses the  modified  minimum deviation method.  Here the  first  prism surface is 
normal to the light beam. This set-up has the advantage that the prism can be fixed into place. Of the 
set-up only the fixed prism and a movable retro-reflective mirror are placed inside a cryostat unit. 
Overall this system will be relatively cheap. The deviation angle corresponds with the mirror rotation 
angle. It will be capable of measurements between temperatures of 100K to 300K and wavelengths of 
0.4 to 1.7 micron. First light was expected for the end of 2008 [Sp08].

Japan
A  gonio-type  refractometer  has  been  customized  especially  for  these  measurements.  This 
refractometer is fitted with a double gear system, which maintains equal incident and exit angles. The 
set-up works with the minimum deviation principle. Only the prism is placed in a cryostat chamber. 
This group measures the offset from the IoR at 293K for temperatures down to 80K. The wavelength 
range reported is 365.0 to 3298 nm. Accuracies of 10-4 have been reached [Ya06].

Cambridge
Finally  a measurement  on Ohara glass  S-FTM16 has been found which was conducted  on The 
Cryogenic Refractometer built by J. Palmer and collaborators [Wo80], which is based on the modified 
minimum deviation method. The temperature range is 77K to 298K and the wavelength range is 0.6 
μm to 2.6 μm. No measurements were possible in the discussed set-up for temperatures between 
100K and  room temperature.  No further  indication  of  use  of  this  set-up  for  other  materials  was 
mentioned [Br04].

Table 3.1: Overview  of the parameter space covered by the different  groups
Temperature range Wavelength range Accuracy (10exp)

CHARMS 15-320K 400nm - 5.6 μm -5 / -6
Italy 1 105-293K 480nm - 894 nm -5
Italy 2 100-300K 400nm - 1.7 μm -5
Japan 80-293K 365nm - 3.298 μm -4
Cambridge 77-298K 600nm - 2.6 μm -5
ASTRON 20-300K 300nm - 25 μm -5
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Chapter 4: IoR measurement methods, keeping temperature constant
In this chapter we will  focus on methods which are capable of measuring the IoR over a specific 
wavelength range, while keeping the temperature constant. IoR measurements at room temperature 
follow this approach. Previous work done at ASTRON [Be07] has presented two such methods which 
are  also  capable  of  measuring  the  IoR  at  cryogenic  temperatures;  the  minimum  deviation 
refractometry method and a method based on the Fabry-Pérot interferometry principle. 

Section 4.1 Minimum deviation refractometry 
Any light beam passing through a prism will be refracted twice (Figure 4.1). The resultant deviation 
angle is dependent on the IoR. There exists a minimum deviation angle for each prism. This angle is 
dependent on the IoR and apex angle of the prism. Finding the minimum deviation angle and solving 
for the IoR has two great advantages over finding and solving the system for an arbitrary deviation 
angle.  Working with the minimum deviation angle  simplifies  the geometry  of  the system and the 
dependence on initial incident angle is lost. The tolerance on the remaining apex angle also relaxes.
We will  derive the equations  which govern the deviation angle and show the minimum deviation 
equation, Equation 4.1.[He02]
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Equation 4.1 IoR minimum deviation relation

Snell’s  law states  that  at  each boundary  between two media  the angle of  the light  beam in  the 
refractive medium is related to the incident angle, given the IoRs of both media.
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Equation 4.2 Snell's Law

Figure 4.1: schematic overview of the minimum deviation refractometry method

The derivation of Equation 4.1 goes as follows:
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θi1, θt1, θi2 and θt2 are the incoming and exiting angle for the first and second refraction. 
Snell’s law enables further determination of θt2, the final angle outside the prism, in terms of θi1 and 
θapex. 
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This gives us a final expression for the angle of deviation, Equation 4.5. To measure the IoR, three 
angles will have to be measured; θi1, θDev and θapex.
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Equation 4.5 Deviation relation

By taking the derivative  can the relation  for  the minimum deviation angle  be determined.  In  this 
process is the dependence on the initial angle lost. When solving the system in reverse, we can show 
that at the angle of minimum deviation the prism configuration has to be symmetric, i.e.  θ i1= θt2 and 
θt1= θi2.
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Section 4.2 Fabry-Pérot interferometry
Interferometry works by the fact that two or more interacting light waves will yield a resulting intensity 
pattern  based  on  the  superposition  principle.  Constructive  interference  occurs  when  the  phase 
difference is an integer number of wavelengths, while destructive interference will  occur when the 
phase difference is an odd integer number of half wavelengths. 
The etalon inside a Fabry-Pérot interferometer consists of two thin plates which reflect a part of the 
light and transmit the rest. A similar effect occurs in a single thicker plane-parallel plate (Figure 4.2). 
The set-up is similar, but the gap in the middle is now filled with material instead of air or vacuum.
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Figure 4.2: schematic overview of the Fabry-Pérot interferometry principle

A light beam enters the plate and propagates to the other boundary. There it is partially reflected back 
towards the first boundary and partially refracted out of the plate. This effect can go on an infinite 
number of times. With each interaction with a boundary the intensity of the light is divided between the 
reflected and refracted light beams. The reflection and transmission coefficients which govern this 
division differ per material. 
The light beams which exits the material, in Figure 4.2 displayed as T0 and T1, will give an interference 
pattern.  These  beams are  parallel  to  each other.  The phase difference between the  succeeding 
transmissions is determined by the optical path length difference and IoR of the etalon material [Wiki], 
[Be07].
Let’s assume an incident light beam with an intensity of unity and a certain phase. The light has a 
broad spectral range.
Then T0, the primary exiting light beam, can be parametrized as )cos(/2

0
θτ ikleT = . τ, the transmission 

coefficient, is present in quadrate since the light has been refracted through the material twice. After 
every refraction the intensity will  have gone down by  τ.  k is the angular wave number of the light 
inside the etalon and  )cos(/ θl is the path length travelled through the material. T1, the secondary 
exiting light beam is given by
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ρ is the reflection coefficient. It comes into the relation now, since the light beam has been reflected 
twice internally before exiting the material. The two extra phase terms are due to the extra π phase 
jump at each reflection and the extra path length outside the etalon which the first exiting light beam 
has travelled. From here on we will forget the phase jump, since it is always a multiple of 2π and as 
such does not alter the phase.
Every subsequent exiting light beam can be parametrized in the same manner.

δρτ iss
s eT 22=

Equation 4.8

δ represents the phase difference between two succeeding exiting beams and is rewritten in Equation 
4.9.
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The sum of all the light beams exiting the plate leads to the total transmission through the plate.  The 
square of the transmission gives the intensity, Equation 4.10. This equation has a dependence on 
wavelength  through  the  phase  difference  δ.  Maxima  in  intensity  occur  when  1)cos( =δ ,  or 
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Equation 4.10 theoretical Fabry-Pérot intensity relation

There are multiple maxima in a Fabry-Pérot interference spectrum; m can be any integer. As can be 
seen from Equation 4.11 the spacing between sequential fringe maxima is inversely related by the 
values of the IoR and the thickness of the plate.
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In the last equation '
0k  is no longer the angular wave number, but the ‘real’ wave number 

λ
1≡k . 

Section 4.3 Calculating the IoR from interference fringes
Rewriting Equation 4.11 one more time leads to Equation 4.12.
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Equation 4.12 IoR Fabry-Pérot relation

The left-hand side of this relation holds the variable we wish to know, while the right-hand side holds 
several unknowns and/or observables, most notably the fringe order m. The fringe order can, on a 
correctly sampled spectrum be assumed to change with one every fringe. The initial problem however 
is finding the absolute fringe order of one fringe from which to start counting.
Following [Bu05], [Gu03], [Ka98] and [Kapc] we have identified several different methods which may 
yield the fringe order.

Subsection 4.3.1 Solving at three points with the Steepest Descent Method
With three fringe locations km a system of equations can be devised which makes the system over 
determined. Equation 4.11 can be set for all three fringe locations (and their respective IoRs) and 
similarly also the differences between the outer points with the middle one. This gives us five relations 
and five unknowns; three IoRs, the thickness and a single fringe order. 
Following [Bu05] the Steepest Descent Method was selected to solve this system. The choice for this 
method was two-fold. The matrix that describes the system is singular; this means that most methods 
which use the inverse Jacobian of the system are not usable. Secondly, the Steepest Descent Method 
will also converge for poor initial choices. 
Tests have shown that the method will converge to roughly the correct values, but are unable to reach 
the required accuracy due to some parameters reaching the computer accuracy before that time. This 
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problem may be solved by gaining a deeper understanding of the Steepest Descent Method and its 
implementation. In our communication with Dr. Kaplan [Kapc] no mention of this method was made by 
him.

Subsection 4.3.2 Alternative single wavelength measurements
The  minimum  deviation  refractometry  method  generates  values  of  the  IoR  one  wavelength  per 
measurement.  Let  us  assume that  one or  two values of  the  IoR at  the  correct  temperature  are 
measured with it. 
If it is a single measurement, given that the thickness of the sample is known, the fringe order at that 
wavenumber can be correctly determined. If two measurements are taken, prior knowledge of the 
thickness of the sample is not even needed. This can also be calculated.

Subsection 4.3.3 reflectance/transmittance
The transmittance and reflectance parameters of Equation 4.10 are also dependent on the IoR. From 
an accurate measurement of the sample's transmittance the IoR can be roughly calculated. 
The  transmittance  including  incoherent  addition  of  multiple  reflections  can  be  parametrized  by 
Equation 4.13 [He02]. The parameter τ from Equation 4.10 equals T  and r is the reflectance at a 
single surface.
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Equation 4.13

This rough value for the IoR can then be used to constrain the fringe order of the spectrum generated 
by a very thin plate (spacing between fringe maxima large). With the fringe order constrained, the 
measured value for the IoR can be improved. This may then again be a starting point for determining 
the IoR from a thicker sample. 
The problem with this method however is that even small  errors or variability in the transmission 
measurements lead to large errors in the IoR value. This makes this method ‘tricky’ to use.

Subsection 4.3.4 different thicknesses
A transmittance value may give an initial guess for the fringe order with an uncertainty greater than 
one. A comparison of samples from different thicknesses can be used as a ‘vernier scale’ to fix the 
fringe order for both samples. Since both the fringe orders must be integers, by examining two fringes 
in each sample that are close enough together that the IoR must be negligibly different for the two 
positions, one can deduce the fringe orders for both samples. 
This can be seen from Equation 4.14. The ratio of the fringe orders on the ratios of thickness, fringe 
maximum location and IoR. If this last ratio can be assumed to be approximately one, the system can 
be solved. 
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This relation can be done for several positions in both interference spectra. This leads to an even 
better determination since we also know the absolute fringe difference between the two positions in 
each spectrum. Despite efforts to implement this method on the spectra we took, we failed to get 
accurate results. We assume that the spectra did not provide overlapping fringe maxima close enough 
together.
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Subsection 4.3.5 Taylor expansion
Equation 4.11 showed that  the spacing between subsequent  fringe maxima is dependent  on the 
thickness  and  the  IoR.  The thickness  is  of  course  not  dependent  on  wavelength.  By  expanding 
Equation 4.11 into a Taylor expansion, the fringe order m drops out (Equation 4.15). 
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A single value of the IoR has to be determined by alternative means. From that starting point the other 
results can then stepwise be calculated. The drawback of this method is that the errors are locked into 
an error chain; each calculated IoR values carriers all the errors of the previous steps. Implementation 
showed that the error propagation is too large to make this method useful.

The only viable option which remains at this time seems to be using an alternative single wavelength 
measurement. This is unfortunate, since it means we would need a second instrument to determine 
the IoR with out resorting to literature values. For a large part of the temperature range no literature 
values are even available. 
In  the future the Steepest  Descent  Method should  be revisited  if  we fail  to  find a  viable way of 
obtaining the single wavelength measurement.

Section 4.4 Error analyses
An important consideration in this design study is an impression of how stringent the constraints are 
on the  variables  that  influence  the  IoR.  For  this  reason error  analyses were conducted  for  both 
methods.

Subsection 4.4.1 Minimum deviation refractometry
All statistical errors in the angles are assumed to be random. The systematic errors are left out is this 
analysis. As was derived in Section 4.1 there are two sources of uncertainty, the minimum deviation 
angle and the apex angle. 
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This leads to an estimate of the uncertainty in the IoR of:
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Equation 4.17 Uncertainty estimate for the minimum deviation method

In order to achieve accuracies of 10-5 or higher, the errors in the angle determinations have to be as 
good or better. The terms that followed from the derivatives in Equation 4.16 are of order 1 and will 
not  constrain  the  errors  in  any  significant  way.  A  very  detailed  error  analysis  for  the  minimum 
deviation method is given in [Te90]. It states that precision measurements (accuracy 10-5) require the 
errors in the angles to be less than 0.2 arcsec and prism surface flatness of λ/20 or better.
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Table 4.1 gives an overview of all sources of potential error that are present in the minimum deviation 
method or the Fabry-Pérot  interferometry method. When a source is not present  in the minimum 
deviation method, the error is stated to be 'not relevant'.
Birefringence can be source of uncertainty for certain materials. When the structure of a material is 
anisotropic, the IoR can vary according to the polarization of the light. In such a case the IoR found is 
valid only for that orientation of the material. If the material has a well defined axis of anisotropy, two 
IoRs can be assigned to the material. This is certainly not the case for every material with significant 
birefringence.
A prism has a pyramidal error if its faces are not perpendicular to its base plane. This error will add 
refraction of the light in the vertical direction. The light beam would deviate from the plane defined by 
source, prism and detector.

Table 4.1: sources of uncertainty and their maximum values
Maximum errors permissible at relative uncertainty given

relative uncertainty 410 − 510− 610 −

apex angle [deg] 2’’ 0.2’’ 0.02’’
fringe order not relevant not relevant not relevant
Min Dev angle [deg] 2’’ 0.2’’ 0.02’’
incident angle [deg] not relevant not relevant not relevant
Intrinsic birefringence 10-4 10-5 10-6

lack of flatness [deg] 0.4’’ 0.04’’ 0.004’’
pyramidal error [deg] 2’’ 0.2’’ 0.02’’
Thickness not relevant not relevant not relevant
Resolution not relevant not relevant not relevant
temperature [K] 1 0.1 0.01

Subsection 4.4.2 Fabry-Pérot interferometry
In Equation 4.12 we see four potential sources of statistical error, thickness, fringe maxima location, 
incident angle and temperature. These errors are all expected to be random. The fringe order must 
always be known exactly. 
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Equation 4.18 Uncertainty estimate for the Fabry-Pérot method

The individual derivative terms can be rearranged to very simple relations. In Equation 4.18 we see 
that  the  first  three  terms are  all  linearly  dependent  on  the  IoR.  The fourth  derivative  we cannot 
parametrize as was explained in Chapter 2.
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Equation 4.19

The relative uncertainty estimate shows that these have a one-on-one relation for the thickness and 
fringe maxima locations. The incident angle error is multiplied by tan(θ). tan(θ) is significantly smaller 
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than 1 for small angles. The expression 
T
n
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 is again the thermo-optic coefficient. Its value is of order 

10-4 or smaller.
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Equation 4.20 Relative uncertainty estimate Fabry-Pérot method

Table 4.2 again gives an overview of all sources of potential error that are present in the minimum 
deviation method or the Fabry-Pérot interferometry method. Now when a source is not present in the 
Fabry-Pérot interferometry method, the error is stated to be 'not relevant'.
Ideally the front and back boundaries of the plane sample are perfectly parallel to each other. Any 
deviation in this parallel-ness will add to the error in the angle. 

Table 4.2: sources of uncertainty and their maximum values
Maximum errors permissible at relative uncertainty given

relative uncertainty 410 − 510− 610 −

apex angle [deg] not relevant not relevant not relevant
fringe order 0 0 0
Min Dev angle [deg] not relevant not relevant not relevant
incident angle [deg] 0.1 0.03 0.01
intrinsic birefringence 10-4 10-5 10-6

plane parallel-ness [deg] 0.1*n 0.03*n 0.01*n
pyramidal error [deg] not relevant not relevant not relevant
thickness 410 − 510− 610 −

Spectral resolution1 [cm-1] 4* 210 − 310*4 − 410*4 −

Temperature2 [K] 0.5 210*5 − 310*5 −

Section 4.5 Discussion
As we read  in  the  Chapter  3  all  groups we found are  working with  some form of  the minimum 
deviation method. This method has been well established and has been demonstrated to work also at 
cryogenic  temperatures.  But  most  of  the equipment  for  the Fabry-Pérot  interferometry  method is 
available at ASTRON. 

There are even more persuasive arguments for the interferometry method. The minimum deviation 
method  uses  discrete  wavelengths,  while  we  can  cover  a  wide  wavelength  range  in  a  single 
measurement. There are no moving parts, which is always a difficulty in a cryogenic environment. The 
error analysis also doesn’t  show any impossible constraints on the parameters which have to be 
achieved. The only problem is finding a single fringe order.

At this  stage of the feasibility  study we have decided to further investigate the development of  a 
refraction measuring device based on the Fabry-Pérot interferometry approach. In the next chapter 
we will first describe a new method we have developed. This method should provide us with the single 
alternative IoR measurements needed to constrain the fringe order.

1 Resolution is given for the minimal wavenumber in our range, i.e. 400 cm-1 (25μm).
2Given an estimate of 2*10-4 for the thermo-optical coefficient and refractive index of 2, the temperature error 
must be smaller than 1K. However because these are estimations a maximum temperature error of 0.5K is 
proposed at an accuracy of 10-4. 
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Chapter 5: IoR Measurement method, keeping wavelength constant
In Section 4.3 we discussed methods to obtain the single fringe order needed to constrain our system 
of fringe maxima obtained through Fabry-Pérot interferometry.  We concluded that the most viable 
option at this time was obtaining the IoR at a single wavelength by alternative means.
We  are  investigating  the  dependency  of  the  IoR  on  two  variables,  the  wavelength  and  the 
temperature. The Fabry-Pérot method was designed to measure the IoR behaviour over wavelength, 
while keeping the temperature constant.  The method we will  describe next  will  be the other  way 
around. We will measure the IoR behaviour over temperature, while keeping the wavelength constant. 

Section 5.1 Classic interferometry
The optical path length (OPL) is the product of the geometric length of the path that light follows 
through a system and the IoR of the medium through which it  propagates. A phase difference is 
created between two light  rays when one ray  travels  through a medium,  while  the  other  travels 
through a vacuum. This fact forms the basis for the following method. 

At  ASTRON we have a Wyko interferometer  with a beam diameter  of  6 inch and a HeNe laser 
(wavelength of λ0 = 632.816 nm). We will  measure the fringe patterns that are created by plane-
parallel samples of which half their front plane is coated to be a 100% reflective and the other half is 
left transparent. The sample’s back plane will be placed on a mirror.
Two phase  deviations, with respect to the reflective background, can now be distinguished. These 
deviations will change with temperature. 
Where the sample is a 100% reflective, the OPL will be decreased by twice the length of the sample. 
Until now we have not expressly mentioned it, but the thickness of the sample is also dependent on 
temperature.  Accurate  knowledge of  the  thickness at  all  investigated temperatures is  therefore a 
must, also for the Fabry-Pérot method.
Where the sample is transparent, the OPL will be altered due to the IoR and the length of the sample. 
The interferometer can compare these OPLs against a reference OPL. The resultant optical path 
difference (OPD) is observed through the resultant phase difference. Any multiples of 2π in the OPD 
won’t add to the phase difference and cannot be detected. 
The workings of the interferometer are further depicted in the next figure.

Figure 5.1 Schematic overview of the Wyko interferometer

As is depicted in Figure 5.1, the Wyko interferometer emits a beam of parallel light rays. This light is 
immediately split into two beams, a reference beam (depicted going to the left) and the ‘work’ beam 
(to the right). The work beam is reflected back at the mirror and samples. At the detector the two 
beams are again combined to form an interferogram; an image of the phase deviation between the 
two beams. 

We will derive the equations which govern the phase deviations and show how we can determine the 
IoR and CTE with this method.
The phase deviation for the part of the sample which is reflectively coated is linearly related to twice 
the combined lengths of the sample, d, and its coating, dc. The phase is given as a ratio to the laser 
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wavelength,  Equation  5.1.  Equation  5.2  gives  the  derivative  of  this  relation  with  respect  to 
temperature. 
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Equation 5.2 change in phase deviation over temperature

The total change in phase deviation we will observe is parametrized in Equation 5.3.
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Equation 5.3

As a last step, we assume the CTE to change only a very little over a small change in temperature. 
The integration ‘subject’  can be assumed constant  and the integral  reduces to ∆T. This leads to 
Equation 5.4.  
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Equation 5.4 

Equation 5.4 has two unknowns, the CTE and the combined term dcCTEc. Using a minimum of two 
samples, which are uniformly coated and have had their initial thickness measured, will be enough to 
find a unique solution for these unknowns. d0 is the thickness of the samples at the lower integration 
limit.
The transparent part of the sample will show a different phase deviation. The OPL of the light now 
changes because it travels through the sample instead of vacuum. We see this in Equation 5.5. The 
phase deviation can be split into two parts; -d(T) and d(T)n(T). This first part is the OPL we have to 
subtract and the second part is the OPL we have to replace it with. Equation 5.6 is the derivation of 
this relation with respect to temperature.
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Equation 5.5 phase deviation from the transparent sample
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Equation 5.6 change in phase deviation over temperature

The change in phase deviation can be found in a similar way to Equations 5.3 and 5.4. 
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Equation 5.8 has a single unknown. The CTE and subsequently the thickness d can be found from 

Equation 5.4. The only unknown is the IoR. It is present in this relation in two forms, n0 and 
dT
dn

. 

The d0 and n0 are the thickness and the IoR value as valid at the lower integration limit, and d and n at 
the higher integration limit. 
All these changes in phase deviations will give us the IoR and CTE over a complete temperature 
range and thus providing the input we need for the Fabry-Pérot method.

Section 5.2 Error analysis
The changes in phase deviations will be very small. Looking at Equations 5.4 and 5.8, we estimate 

that 
T∆

∆ φ
 will be at the most of order 10-1 and most likely much smaller. Such small values will place 

heavy constraints on our system. The following error analysis will show that the tolerances are within 
obtainable limits. This analysis focuses on the statistical errors, not on any systematic errors.

In Section 5.1 we showed that we can find a solution for the CTE by measuring the phase deviation of 
two samples of different height. By rewriting Equation 5.4 to Equation 5.10, we see how this can be 
done. Our assumption was that the coating is equal for both samples. In that case will Equation 5.9 
yield the same answer for both samples and result in Equation 5.10.
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Equation 5.11 shows the relative uncertainty for our CTE value. It is clear from this relation that the 
strictest tolerance will be on the determination of the change in phase deviation M. The error in the 
thickness is softened by its ratio to thickness. As was just stated, M will be at the most of order 10 -1 

and as such increase the relative uncertainty.
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Equation 5.11 Relative uncertainty estimate CTE

From the uncoated samples we can derive the thermal-optical coefficient
dT
dn

. The uncertainty in the 

TOC will  depend on errors  in  the other  variables from Equation  5.8.  Rewriting Equation 5.8  into 
Equation 5.12, we can derive an uncertainty estimate for our TOC value.
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Equation 5.13 gives the uncertainty in our TOC value. The expression (1+2CTE∆T) we find in each 
term is approximately 1. The nominators of each term are also all of order 1 or smaller. The main 
parameters in each term which drive the strictness of each error are the thickness and IoR. For the 
errors due to the change in phase deviation, thickness, IoR and temperature this means the effects of 

the individual errors are softened. The error due to the CTE is driven by the expression 
0
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is of order 1. 
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Equation 5.13 Uncertainty estimate TOC

Our overall  objective is  determining the IoR to an accuracy of  10-5.  To make sure we have this 
accuracy at the spectrometer, here at the interferometer we wish to obtain an accuracy of 10-6. This 
same argument also applies to the accuracy wanted for the thickness.
As can be seen from Equations 5.14 and 5.15, the relative errors in the thickness and IoR are related 
to the errors in the CTE, TOC and temperature. 
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Equation 5.15

Table 5.1 shows the maximum errors permissible to obtain the tolerances wanted in the IoR and 
thickness. For clarity are only the direct variables as found in the above uncertainty relations shown in 
Table 5.1. Tables 5.2 and 5.3 further specify the tolerances on the observables from the constraints 
imposed on the TOC and CTE respectively from the error analysis in this section.

Table 5.1 sources of uncertainty and their maximum relative errors permissible for the IoR and thickness (combined 
table)

Maximum errors permissible at relative uncertainty given
Relative uncertainty 10-4 10-5 10-6

thickness 10-4 10-5 10-6

IoR 10-4 10-5 10-6

CTE 101 100 10-1

TOC 100 10-1 10-2

Temperature3 100 10-1 10-2

The values given in Table 5.2 can be checked against Equation 5.13. There we derived the error 
relation between the mentioned parameter and the thermo-optic coefficient. Similarly, one can check 
the tolerances of Table 5.3 be against Equation 5.11.

Table 5.2 sources of uncertainty and their maximum values for TOC
Maximum errors permissible at relative uncertainty given

Relative uncertainty 100 10-1 10-2

Phase  difference  M 
(absolute error)

101 100 10-1

Phase angle 
(absolute error)

100 10-1 10-2

Temperature [K]
(absolute error)

102 101 100

Thickness  d0 [μm] 
(relative error)

101 100 10-1

Refractive  index  n0 

(much stricter above)
10-1 100 10-1

CTE
(relative error)

101 100 10-1

3 The maximum temperature error for the IoR is shown here. The temperature error for the thickness is one order 
less strict, but for obvious reasons we have given the stricter tolerance here.
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Table 5.3 sources of uncertainty and their maximum values for CTE
Maximum errors permissible at relative uncertainty given

Relative uncertainty 101 100 10-1

Phase angle
(absolute error)

10-1 10-2 10-3

Temperature [K]
(absolute error)

101 100 10-1

Thickness d0 [μm]
(relative error)

102 103 104

Section 5.3 Losing unwanted reflections 
In our analysis above we have not taken into account the effect of multiple kinds of reflection in the 
optically transparent samples. In total there are three kinds of reflections possible from the sample. 
Both the front and back planes of the sample will  reflect light. Further, plane-parallel samples will 
generate internal fringes. This is the effect we use with the Fabry-Pérot interferometry method. Here 
our interests lie solely with the reflections from the back plane.
Reflections from the front plane can be suppressed by coating the samples with an anti-reflective 
coating.  To  suppress  the  detection  of  internal  fringing  a  wedge should  be  introduced  into  every 
sample [Je91]. By introducing the wedge the internal reflections will be angled away from the detector. 
Introducing a wedge is difficult however. A wedge will also angle the wanted reflection away slightly. 
Therefore can the value of the wedge be no larger than the tolerance on the thickness. 
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Chapter 6: IoR measurements using the Fabry-Pérot interferometry method
In Chapter 4 we have derived the relation (Equation 4.10) we expect to observe in our measurements. 
In this chapter we will present measurements we have collected and compare them to the theory. 

Spectra have been taken with the Varian 7000/7000e FT-IR spectrometer which ASTRON owns. Two 
etalon samples have been made from silicon. These samples do not meet the tolerances as set out in 
Table 4.2, but are good enough to do test measurements.
The  uncertainty  in  the  thickness  in  Table  6.1  is  an  absolute  uncertainty.  The  parallelism  value 
expresses the variation in thickness as measured along the edges of each sample. 

Table 6.1 characteristics of the silicon samples
Sample thickness diameter Clear aperture Parallelism
#1 1.5mm ± 7μm 1 inch 20mm 1μm
#2 2.5mm ± 10μm 1 inch 20mm 1μm

Using these samples a few initial measurements were done at 27°C. This temperature was chosen, 
because for silicon at this temperature the Sellmeier function has been derived [Gh98]. 

Section 6.1 Measurement set-up
The  samples  were  placed  in  a  custom  designed  holder  and  positioned  within  the  internal 
measurement compartment of the spectrometer. To the holder was attached a PID controlled heating 
system with a two-wire RTD sensor.
The following hardware settings were set on the spectrometer.

Setting NIR2
- Detector DTGS
- Light source NIR source
- Beam splitter NIR-Quartz
- Aperture 1 cm-1

- Resolution 0.25 cm-1

- Wavenumber range 2800-8000 cm-1 

Setting MIR1
- Detector DTGS
- Light source Ceramic source (MIR)
- Beam splitter KBr
- Aperture 0.25 cm-1

- Resolution 0.25 cm-1

- Wavenumber range 400-6000 cm-1 

We also chose certain specific software settings in the control software of the spectrometer. In de 
‘compute’ menu before taken a spectrum, check the apodization option ‘NB medium’ with zero filling 
at 16. This will ensure a computationally higher resolution (16x) and a smooth spectrum, which is the 
Varian recommended setting for all spectra. NB stands for the Norton-Beer apodization function.
The  observed  spectra  were  read  into  MATLAB were  the  fringe  separation  was  determined  with 
truepeaks2.m. This self-written algorithm first fits a piece-wise spline with high resolution (0.001 cm-1) 
to the data points of the spectrum and then finds the location of the fringe maxima. By fitting a spline 
to the spectrum the spectral resolution is improved beyond the resolution of the spectrometer. This 
procedure will not introduce phantom fringe maxima, since the hardware resolution is high enough to 
sample between adjacent fringe maxima. 

A  set  of  comparative  IoR  values  was  computed  from  the  Sellmeier  relation  for  silicon  at  the 
appropriate wavelength range, Table 6.2 [Gh98]. A wavelength resolution of ∆λ = 10-6 μm was taken 
to overmatch the resolution of the observed spectra. The resultant IoR vector was then entered into 
the Fabry-Pérot  intensity  relation,  Equation 4.10.  With this equation a comparative spectrum was 
generated and its fringe maxima were located. 

Table 6.2 Sellmeier coefficients for silicon at 27°C and between wavelengths 1.36 μm and 11 μm
C1 B1 B2 λ1 [μm] λ2 [μm]
3.12896495 8.54278728 0.00527631 0.11337073 1500
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Section 6.2 Measurements
By comparing our observed spectra to the predictions from the Sellmeier relation the validity and 
accuracy of our measurements can be demonstrated.
A  first  indication  of  the  accuracy  of  our  measurements  can  be  made  from plotting  the  distance 
between adjacent fringe maxima in the spectrum, Figure 6.1. This figure shows the fringe separation 
we have predicted (red) and the fringe separation we observe in our spectra (blue and green). As can 
be seen, the fringe separation of our measurements follows the curve of the prediction very well. The 
measurements only show more spread. The panel on the left is from sample #1, the panel on the right 
from sample #2. The dependence of the fringe spacing value on thickness (Equation 4.11) can also 
be seen here. Sample #1, which is thinner, has larger fringe spacing than sample #2.

Figure 6.1 Predicted (red) vs. observationally determined (blue and green) 
fringe separation for both samples at 27°C.

We see an increase in spread at the higher wave numbers. We theorize that  this is due to light 
profiles of the spectrometer light source. The source can be approximated by a black body source. At 
the shorter wavelengths we enter the exponential cut-off region of the black body spectrum. Gaussian 
noise, via the background calibration, will play a greater role here. 
In the image from sample #2 we also see an increased spread at the NIR2 setting (green) at the lower 
wave number side. The source of this spread is related to the NB apodization function. At the lower 
wave number side we are also dealing with a decline of light strength, though less suddenly than on 
the higher wave number side. The random noise addition from the background again leads to small 
fluctuations in the spectrum which the apodization function transforms into false peaks. Given that the 
region affected is also covered by the MIR1 spectrum, we have not taken further action to suppress 
the noise.  
 
Section 6.3 The IoR calculated
To calculate the IoR over the entire wavelength range we arbitrarily selected a single IoR value from 
the Sellmeier relation. At a later stage when we have our own method of obtaining this value, that one 
will of course will have our preference.
As can be seen from the top panels of Figures 6.2 through 6.5 good comparison is seen between the 
IoR values we derived (blue) and the predicted outcome (green). A third line is drawn in the top 
panels. This line belongs to another set of measurements (also in [Gh98]). It is added to show the 
difference between the two available comparisons we have. That difference is at the 3rd decimal. This 
indicates that there is still an uncertainty of the measured value of this well characterized material at 
the 3rd decimal. We have chosen for a comparison with the Sellmeier coefficients above these other 
observations for several reasons. First of all, the derivation of the Sellmeier coefficients is based on 
observations, but has been augmented with further knowledge about the solid state characteristics of 
the material. Secondly, the other set is based on several unconnected, mostly older, measurements. 
The bottom panels show the deviation between the prediction and our calculation. Several  things 
draw our attention here. 
First, the overall deviation is of order 10-4, an order too large for our goal. However, we can explain it. 
One might first recall that the uncertainty in the thicknesses of the samples is an order too large. 
However, this we have corrected for by selecting a second IoR from our prediction. With the method 
described in Subsection 4.3.2, we are no longer constrained by the thickness uncertainty.
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But,  we have  only  roughly  positioned the  sample  perpendicular  to  the  light  in  the  measurement 
chamber. Also, the light beam produced by the spectrometer is convergent inside the measurement 
chamber.  This  introduces  a  set  of  angles  deviating  from perpendicular.  These  two  errors  in  the 
incident angle are an error source of the order 10-4.
The second thing to draw our attention is the shape of the deviation. Our prediction is drawn from the 
Sellmeier  relation,  which  is  a  smooth  curve.  It  cannot  parametrize  small  variations  like  our 
measurements can. The distinctive 'jump'  at  9 µm for instance is probably due to a real  intrinsic 
characteristic  of  silicon.  Unfortunately,  in  the  course  of  this  project,  we  have  not  done  further 
measurements with other materials. We feel this is a missed opportunity, which would have shed 
more light onto this matter.
Thirdly, we notice the change in shape between Figures 6.4 and 6.5, which is especially noticeable at 
the edges. As we will see below, these shapes are seen at multiple measurements. They seem to be 
connected to the individual samples and their positioning in the measurement chamber. 

Figure 6.2 Theoretical vs. Calculated IoR with their difference.  Results for 1.5mm sample and NIR2 settings

Figure 6.3 Theoretical vs. Calculated IoR with their difference.  Results for 2.5mm sample and NIR2 settings
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Figure 6.4 Theoretical vs. Calculated IoR with their difference.  Results for 1.5mm sample and MIR1 settings

Figure 6.5 Theoretical vs. Calculated IoR with their difference.  Results for 2.5mm sample and MIR1 settings

Another aspect of the quality assurance of the measurement method is the reproducibility with which 
we can repeat the measurements. Results are shown in Figure 6.6. We analyze the repeatability by 
plotting  the  deviations  for  different,  subsequent,  measurements  preformed  with  the  Varian 
spectrometer. We see that both the accuracy and the reproducibility are at 10-4. All four figures show a 
point through which all deviations are plotted. This is the point at which we have selected the IoR from 
the Sellmeier relation.
The spread in the slope of the deviations is due to the small off-sets in the locations of the fringe 
locations. This results in the assignment of the same fringe number to slightly different locations. That 
leads to slightly different vectors. This variation may be deminished by adding more scans into a 
single spectrum. Currently the spectrometer is set to add 16 scans. 
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Figure 6.6a Accuracy of the Varian spectrometer. Shown are 
several subsequent measurements of the #1 sample 

at the NIR2 setting

Figure 6.6b Accuracy of the Varian spectrometer. Shown are 
several subsequent measurements of the #2 sample 

at the NIR2 setting

Figure 6.6c Accuracy of the Varian spectrometer. Shown are 
several subsequent measurements of the #1 sample 

at the MIR1 setting Figure 6.6d Accuracy of the Varian spectrometer. Shown are 
several subsequent measurements of the #2 sample 

at the MIR1 setting
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Chapter 7: IoR measurements using the interferometer set-up
Five samples have been made from BK7 material. Our first objective is to get a good understanding of 
the system and all its sources of environmental error. BK7 was chosen, because it was available at 
ASTRON, is transparent at 632nm (unlike silicon) and is included in [Gh98].
These samples have been coated with 100% reflective coating for half their top planes. No AR coating 
was applied to the other half, nor was a wedge included at this time.

Table 7.1 characteristics of the BK7 samples

Sample Thickness Clear aperture flatness parallelism

#1 11.922mm ± 2μm 16mm < ½ fringe 2μm

#2 16.452mm ± 2μm 16mm < ½ fringe 2μm

#3 20.771mm ± 1μm 16mm < ½ fringe < 1μm

#4 24.867mm ± 1μm 16mm ± ½ fringe 1μm

#5 29.467mm ± 1μm 16mm ± ½ fringe 1μm

Section 7.1 Measurement set-up
ASTRON provides the Wyko interferometer with a 6 inch beam diameter and HeNe laser. The set-up 
is depicted in Figure 7.1. The two mirrors, the one under the samples and the top one, are both made 
from Zerodur material. This material was chosen because it has a very low CTE value.
The holder underneath is made from aluminum and has heaters placed on its underside and the tip-tilt 
mechanism has been bolted to the optical table. The wires one can see in the bottom left corner are 
connected to the PID thermal controller.

Figure 7.1 the test set-up for the interferometer measurements
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The whole system is aligned in two stages. First the overall image is found by positioning the top 
mirror. Then with the tip-tilt rotators on the holder the precision alignment was made. 
Interferograms were taken with the IntelliWave software. For some of  the following tests that are 
described this process was automated. This allowed us to take multiple measurements at set time 
intervals. 

Section 7.2 Measurements
Subsection 7.2.1 turbulence
Our first tests were designed to see to what extend our set-up suffers from turbulence. The whole 
system of holder, mirror and samples was step-wise heated to 30°C with a PID controlled heating 
system. 
The  room  temperature  is  around  21°C.  When the  set-up  was  heated  to  30°C,  the  temperature 
difference resulted in significant, visible turbulence. For the lower temperature differences, turbulence 
was not visible.
This turbulence has two main sources. First the hot air which is formed under the holder close to the 
heaters.  The hot  air  leaves this  pocket  and travels upwards along the edges of the holder.  This 
created eddies in the images along the outer edges of the samples. Second, after some time the 
mirror will have warmed, creating turbulence on the whole mirror. 
There is of course one 'simple' option to get rid of turbulence, vacuum. This option will be discussed 
further in section 8.2.

Subsection 7.2.2 thermal heating
More detailed testing was then done to investigate the thermal response of the overall system. Figure 
7.2 shows the thermal response at three points; the tops of the base mirror, the smallest sample (#1) 
and the largest sample (#5).  The two spikes visible in the left  hand side of the figure as due to 
unintentional temperature spikes in the software of the heaters. This problem was solved during the 
measurements.

Figure 7.2 Temperatures at three points on the interferometer set-up

Temperatures  were  taken  every  three  minutes.  The  heater  control  unit  was  set  to  multiple 
temperatures. See Table 7.2 for details. Temperature measurements were started on 29th December 
2008 at 08.35h and ran until the following day 14.35h.
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Table 7.2 Times and temperature settings during the test
Time Temperature
08.35   29/12/2008 (0 min) 22°C (spiked first)
11.57   29/12/2008 (202 min) 25°C (spiked first)
15.24   29/12/2008 (411 min) 28°C
09.00   30/12/2008 (1405 min) 30°C
11.38   30/12/2008 (1623 min) 22°C

Several interesting things are seen here. 
First of all, attention should be given to the offset seen between the temperature setting as given in 
Table 7.2 and the temperatures seen in Figure 7.2. At the first two sets of equilibrium data points the 
temperature as given in Figure 7.2 is higher than it should be according to the heater control, while at 
the last two it is lower. This must correspond to the way the set-up was heated. The first two times, 
due to an error, the heater first tried to heat up to over 40°C. At the times when this was corrected, the 
set-up overall temperature had reached a too high value. 
Second, the temperature difference between the three measurement points draws our attention. This 
indicates a thermal gradient. The highest temperatures are seen at the mirror and the lowest at the 
highest sample. This difference can be up to almost 3K between the mirror and the largest sample. 
Thirdly, the time it takes to stabilize to a temperature can be as high as 2 hours. The change in 
temperature is almost immediate for all sensor points, but the largest sample does take longer to 
stabilize. This is especially so when we let the system cool down to 22°C again.
This  method of  heating is  not  suitable  for  any further  measurements  we wish to  take.  For  good 
measurements no thermal gradient should be allowed. Together with our already mentioned need for 
vacuum, this leads us to other forms of heating. This will be discussed in section 8.2.

Subsection 7.2.3 interferograms
A last  concern  we had to  control  was  how to  get  our  interferograms exported  to  MATLAB.  The 
automated process with which the interferograms were made, were saved in an IntelliWave specific 
format. Luckily, afterwards it is possible to save the interferograms again in another, more standard, 
format (.jpg). This had unfortunately to be done by hand. By the time this report was written, a reader 
had just been developed to automate the exportation of the interferograms into a binary format [As09]. 
Figure 7.3 gives an example of  the interferograms as recorded.  The large circular  area which is 
slightly truncated at the bottom is the image of our reference mirror. The five smaller circles are from 
the five BK7 samples we placed on the mirror. The red numbers indicate the sample number. There is 
no particular reason for this placing.

Figure 7.3 Example of the interferograms taken with the current set-up on 29th and 30th December 2008
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A clear division in two parts is seen in each sample image. The 100% reflective coated sides have 
been marked with a green ‘x’. 
Without a wedge or anti-reflective coating on the uncoated parts of the samples, it is difficult to be 
certain whether  the fringes we see there are from the front  or the back plane or due to internal 
fringing. Careful alignment was necessary. Still, all samples show double fringe patterns. Sample #3 
shows the clearest fringing from the backplane.
Sample #1 and sample #5 have very faint fringing on their reflective sides. The fringe spacing is too 
small for the pixel resolution.

Section 7.3 Analysis of the measurements
Figure 7.3 shows many fringes. These fringes were introduced because we wanted to investigate the 
systems response to heating. Any deviations or turbulence will be better visible when more fringes are 
present in the interferogram. For the ‘real’  measurements we will  minimize the number of fringes, 
since fringing indicates an offset from a horizontal plane. Our reference mirror should be horizontal.

Given the known, some times crude, values of the CTE and IoR of BK7 and the CTE of Zerodur, we 
can make predictions about the phase shift we can expect and whether this phase shift should be 
visible  in  our  interferograms.  We will  derive  these predictions for  sample  #3,  since we are  most 
confident about the alignment there. 

Table 7.3 Representative values of CTE and IoR of BK7 and CTE of Zerodur
Value Reference

CTE BK7 86e-7 K-1 [SBK7]
CTE Zerodur 3e-6 K-1 [SZer]
IoR BK7 1.51509 [Gh98]

Equations 5.4 and 5.8 give the change in phase deviation that we should observe. In the case of our 
∆T=3K temperature shifts, we would expect a change in phase deviation φ∆  of -1.70*10-3 [2π rad] for 
the coated half and φ∆  = -6.82*10-3 [2π rad] for the transparent part.
The dynamic range of the interferometer intensity read-out is 8 bits. This corresponds to phase steps 
of approximately 5*10-3.  These phase steps are larger than the change in deviation we have just 
predicted. We will most likely not observe the change in phase deviation, but we can still investigate 
the systems response to heating. 
The change in phase deviation will  increase with larger temperature changes, thicker samples, or 
when investigating materials with higher CTE values. The best choice will be increasing the thickness. 
Increasing the temperature steps could invalidate our basic assumption from Chapter 5. Nor can we 
only investigate materials with high CTEs.

On the 29th we recorded 45 interferograms, each spaced 10 minutes apart, starting at 8.45h. During 
this time the temperature was stepwise increased as explained in Subsection 7.2.2. During the times 
that the temperature was being increased, the interferograms showed deformations in their  fringe 
patterns,  indicating  non-uniform  thermal  distributions,  and  significant  turbulence.  When  the 
temperatures had stabilized however, the interferograms no longer showed these deformations. The 
temperature stability was within the tolerance of our requirements, although their absolute value was 
of course not correct. 
As a detailed indication of the stability of the interferograms, from 5 positions (same pixel) the phase 
was plotted as a function of the subsequent interferograms (Figure 7.4).  These positions are two 
positions in the centre (mirror), on the reflective sides of samples #3 and #2, and on the uncoated side 
of sample #3. At thermal stability one expects the phase to remain constant. As is seen from the 
figure, this is certainly not the case. The two vertical bands (interferogram numbers 10 to 20 and 30 to 
40) correspond to the first two thermally stable regions as depicted in Figure 7.2.
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Figure 7.4 The phase at 5 positions in the interferograms with thermal stability

Gaussian noise might be present on these interferograms. So we have also fitted the areas around 
the five positions we chose with a two-dimensional waveform (Equation 7.1). An example of the fit is 
shown in Figure 7.5. The left panel shows the selected part of the interferogram, in this case the 
centre, and the right panel shows the resultant fit. Such a fit was made around all five positions of all 
interferograms that were recorded at thermal equilibria. 

Figure 7.5 2D waveform fit to fringes on the interferogram

( ) ( )54321 sin, cycxcccyxf +++=
Equation 7.1 2D waveform

This did not improve the stability at those points however as can be seen from Figure 7.6. 
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Figure 7.6 The phase at 5 positions in the interferograms with thermal stability after fitting

We believe that two causes might be responsible for our lack of stability; turbulence and a problem 
with the phase shifter. 
Turbulence is of course still present, even though its effects are too small to see now with the naked 
eye.  Measurements  within  a  vacuum  chamber  will  have  to  give  the  conclusive  answer  to  this 
assumption.
However, another problem was found in the control of the interferometer. Namely, it was discovered 
that the phase shifter does not return to the same phase when taking several interferograms one after 
another. 

Section 7.4 Discussion
Currently the interferometer doesn't seem capable of the stability we need for these measurements. 
Part of this problem is undoubtedly related to the effects of turbulence and the thermal gradient we 
have discussed. A large part of the problem may also have to do with the phase shifter. 
The intensity resolution of the interferometer is approximately equal  to the changes in the phase 
deviations our samples would induce. The choice of temperature steps, thickness or material may 
increase the changes in phase deviations to above the resolution threshold. 
We remain hopeful that this method will generate results in the future, but realize that much work is 
yet to be done.
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Chapter 8: Design
In  this  chapter  we will  look  at  the  preferred designs for  the  two methods  we have used  in  this 
research. The components must be chosen to meet the optical and mechanical requirements as set 
out in Chapters 4 and 5. The test measurements as described in chapters 6 and 7 have given us 
some strong indications for the do's and don’ts in the design selections.
The goal of the design is, as was stated in section 2.1, the measurement of the IoR at cryogenic 
temperatures with an accuracy of 10-5 and at wavelengths from 0.3 to 25 μm. To reach cryogenic 
temperatures the design will have to include a form of cooling. This gives further constraints on the 
design selections. 

Section 8.1 Fabry-Pérot interferometry design 
The spectrometer at ASTRON has the option to give an external beam. This in very fortunate, since it 
will allow us greater freedom in the design of the measurement set-up. Following [Be07] the design of 
Figure 8.1 is proposed. The light from the spectrometer is led through an external port, into a cryostat 
in which the sample is placed and onto the detector. 

Figure 8.1 Proposal for the design of the spectrometer set-up to measure 
the IoR with etalon samples

This  design  has  several  advantages.  First  of  all  it  frees  us  from  the  limitation  of  the  small 
measurement compartment. The use of a cryostat, with a complete thermal cycle, is a costly and 
especially  time  consuming  process.  It  is  advantageous  to  measure  multiple  samples,  either  of 
different thicknesses or of different materials, during the same cycle. Any mechanism to hold these 
samples would never fit easily into the internal measurement compartment. 
Secondly, this design also has room to include some form of beam adjustment. This will be necessary 
as the cryostat window together with aberrations in the light beam could result in angular deviations of 
the beam at the sample. 
Thirdly, we will need multiple windows as we will discuss in Subsection 8.1.3. Again, an exchange 
mechanism would not fit into the internal measurement compartment.
Lastly, all components of the spectrometer can be used in this design. Both the internal and external 
light sources and the beam splitters can be used as they normally would be and the detectors are also 
operable outside the detector compartment. 
The individual components of this design will now be discussed in further detail.

Subsection 8.1.1 Spectrometer
We have selected several hardware (Table 8.1) and software settings with which to span the whole 
spectral  range wanted. Some overlap is seen in the wavelength range, this will  ensure a smooth 
transition between the different settings.

Table 8.1 proposed spectrometer configurations (hardware)
source Beam splitter Detector Range [cm-1] Range [μm]

FIR Standard ceramic Mylar 6.25μm DTGS 600 – 100 16.7 - 100
MIR1 Standard ceramic KBr DTGS 6000 – 400 1.67 – 25
NIR2 Tungsten halogen NIR-Quartz DTGS 10000 – 2800 1 – 3.57
NIR1 Tungsten halogen NIR-Quartz Silicon 20000 – 8600 0.5 – 1.16
Vis Xenon (external) UV-Quartz Silicon 25000 - 10000 0.4 – 1
UV Xenon (external) UV-Quartz PMT 54000 - 15500 0.19 – 0.65
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Further settings on the spectrometer that need to be set in the software program are the aperture, 
resolution settings and apodization function. The aperture should be as small as possible to create a 
well  defined beam while ensuring enough light for the spectrometer  to  stay away from the noise 
levels. The maximum acceptable aperture will probably be 1 cm-1. The resolution should always be 
set to be 0.25 cm-1.  The apodization function should be set to ‘NB medium’ as was explained in 
chapter 6.

Subsection 8.1.2 Cryostat
At ASTRON no cryostat is available which is suitable for our design. A custom cryostat will have to be 
build. 
The cryostats dimensions are defined by the dimensions of our sample holder. Further constrains on 
the design come from the placement of the windows and cooling mechanism. 
Ideally  the cryostat  windows must  be kept  as small  as possible  to reduce pressure deformation. 
Preferably they are also circular in shape, again to reduce pressure related stresses. The diameter of 
the external port of the spectrometer is 63.5 mm and it is placed at 127mm height (bottom rim). The 
cryostat's window facing the spectrometer should be placed at the same height and be of the same 
size. The second window can be smaller. The entrance pupil of the detector has a diameter of only 
30mm. It should be aligned in a direct line to the first window. 
The cryostat must be able to reach and maintain a high vacuum. This is normal for most cryostats.

Subsection 8.1.3 Choice of cryostat window material
The cryostat  needs multiple windows of  different  materials to cover the whole wavelength range. 
Otherwise the cryostat  would need to be warmed up every time another  window is  needs to  be 
installed. No material exists which is transparent over the entire wavelength range. The number of 
windows needed will depend on the transmission regions of the chosen window materials. To keep a 
simple optical alignment the walls holding the windows need to be able to rotate (within a limited 
angle). 
The cryostat windows are further a prime example of optical elements in the light path which give 
undesired effects. The windows themselves will also exhibit etalon behaviour. 
Each window will have a minimum thickness needed to sustain the pressure difference. The thickness 
of the window will lead to a secondary fringe pattern (Equation 4.10). If the window shows strong 
fringing, it can throw doubt on the source of the observed spectrum. This doubt can however be lifted 
if the reflection coefficient of the window is low. A low reflection coefficient results in a small height 
difference between a fringe top and bottom in the transmission spectrum. That way any fringing from 
the cryostat windows will be overpowered in the final spectrum by the fringing of the sample. A low 
reflectivity can be achieved by coating the windows with a broad spectrum anti-reflection coating.

Figure 8.2 Transmission spectra of two cryostat window materials
Green: fused silica window, Blue: ZnSe window with AR coating

An example of the above argument is shown in Figure 8.2. The green spectrum belongs to a fused 
silica window which is often used as a cryostat window material. Besides the loss of transmission 
above  2.8  μm,  the  height  difference,  indicator  of  strong  fringing,  is  much  larger  than  the 
accompanying results from the ZnSe window. We were unable to obtain accurate results with the 
fused silica windows. The ZnSe window however was coated with an anti-reflective coating.  The 
spectrum shown here was truncated for scaling purposes, but the window is usable from 2 to 22 μm. 
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As can be seen in Figure 8.3, the inclusion of the ZnSe cryostat windows has deformed the deviation 
a little. This is clear from comparison between Figure 6.4 and 8.3. Both are results are derived from 
the 1.5mm sample at the MIR1 setting. This deformation primarily occurs at wavelengths below 5μm. 
Comparative analysis between the two spectra has found that  the locations of the fringe maxima 
slowly drift apart, most notably at the lower wavelengths. This effect is due to the different angle under 
which the etalon sample is illuminated when the ZnSe window is included. In Equation 4.11 we saw 
that the locations of the fringe maxima is inversely related to cos(θ). The light inside the measurement 
chamber is inherently convergent. When it hits the window, it will get refracted and light will hit our 
sample under another angle. This effect is most notable at the lower wavelengths, because the drift 
propagates away from the location where we restrained the IoR (around 7μm), and because the fringe 
locations are closer together at the lower wavelengths. 
This proves again our need to include some form of beam adjustment in the design.

Another window material will have to be found for the lower wavelength measurements. 

Figure 8.3 Theoretical vs. calculated IoR with their difference. 
Results for 1.5mm sample (with ZnSe window) and MIR1 settings

Subsection 8.1.4 Detector casing and connections
A special  compartment  will  have to be built  for the detectors.  They cannot  be placed inside the 
cryostat,  since  they  are  designed  to  operate  at  room  temperature.  The  dimensions  of  the 
compartment are not critical. The only critical issue is the possibility to flush the compartment with dry 
air and a good alignment with the spectrometer.
To  reduce  the  risk  and  disadvantages  of  atmospheric  influences  (i.e.  water  vapour  and  carbon 
dioxide),  the  spaces  between  the  cryostat  and  spectrometer  and  detector  must  be  continuously 
flushed with dry air. A simple, air tight cylinder connecting the different components will suffice. The 
cylinder  between  spectrometer  and  cryostat  can  be  flushed  with  the  dry  air  environment  of  the 
spectrometer. The cylinder between cryostat and detector and the detector compartment would need 
an inlet for the dry air flow.

Subsection 8.1.5 Sample holder
The most practical design of the sample holder would be circular, with some electron-magnetic way of 
changing the position. We will follow the design of the sample exchange mechanism idea for the MIDI 
instrument4. The change mechanism must be accurate enough to position the samples directly in the 

4 More information on MIDI: http://www.eso.org/projects/vlti/instru/midi/index.html 
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light path and maintain a zero-offset in angle from perpendicular  alignment.  The MIDI design will 
ensure these requirements.
The holder  must  be  placed in  the  cryostat  such that  a  single  sample  is  in  the  light  path  of  the 
spectrometer to detector. 

Subsection 8.1.6 Thermal control
To bring the temperature down to 15K, cooling with liquid nitrogen is not sufficient. This will bring the 
temperature down to 77K. To bring the temperature down even further other techniques will have to 
be employed. Liquid helium would bring the temperature down to 4K, but it is not readily available at 
ASTRON. Otherwise a close-cycle cooler or pulsed-tube cooler could be used.
The centre of the sample holder can serve as the main thermal contact for the cooling mechanism. 
This will ensure uniform cooling of all samples.
For the temperature control we can use 4 wire high resistance RTDs and an HPVee program written 
in-house. The temperature sensors themselves also need to be within their operating range. A wide 
selection of RTD sensors is available which operate specifically at cryogenic temperatures and with 
the accuracy needed for our measurements. Installing several different types will ensure the entire 
temperature range will be measured correctly. 
It is not possible to measure the temperature at the sample which is in the light path, since that would 
block the light. To have a good constraint on the temperature, a dummy sample could be placed in the 
sample holder to which sensors could be attached. This dummy variable should be some bad thermal 
conductor; then it will always be the last position to reach thermal equilibrium.

Table  8.2  summarizes  the  proposed  dimensions  of  the  individual  components  in  de  Fabry-Pérot 
interferometry design.

Table 8.2 Dimensions of the Fabry-Pérot interferometry design

component Size / diameter Remarks 

External  beam port 63.5mm

Cylinder spec-cryo 63.5mm 

Cryostat windows 1 >63.5mm Plane parallel, AR coated

Cryostat Depends on size sample holder

Sample holder aperture 1 inch

Cryostat window 2 30mm Plane parallel, AR coated

Cylinder cryo-det 30mm Dry air inlet

Detector casing 20cmx20cmx20cm

Section 8.2 Imaging interferometer design
The  Wyko  interferometer  will  form  the  heart  of  the  Imaging  interferometer  design.  Our  initial 
measurements suffered from flaws in the interferometer which prevented us from obtaining accurate 
results. Still, the basic design can be maintained.
The basic set-up of the samples will remain as first described in Chapter 7 and depicted in Figure 8.4. 
The light from the interferometer is first deflected by a movable mirror angled to the set-up on the 
cryostat floor. This set-up consists of a reference mirror on which the samples are placed. The tip-tilt 
mechanism on which the reference mirror  rests will  need to be bolted down to minimize thermal 
deformation. 
This design has several key advantages. Keeping the samples horizontal makes it easy to change or 
reposition samples. The number of samples is only limited by their sizes relative to the beam surface 
(~(6 inch)2), and not to the number of positions in any vertical construction. By placing the samples 
horizontally,  gravity  will  keep the samples in place without  an elaborate mechanical  construction, 
introducing no stresses on the samples and cutting costs. We have shown in Subsection 7.2.2 that 
gravity is enough to ensure thermal contact. 
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Figure 8.4 Schematic proposal for the design of the interferometer set-up
to measure the IoR with samples of different height

Subsection 8.2.1 Interferometer
The interferometer can be operated in its general mode. The interferometer must be set to a light 
intensity which is as high as possible while avoiding overexposure. The zoom and focus should be set 
as to optimize the image. After the settings have been set, they should not be changed again. This 
would only increase the difficulty of the comparative analysis later.

Subsection 8.2.2 Cryostat 
The samples,  mirrors  and tip-tilt  mechanism will  need to be incorporated into  a  cryostat.  This  is 
needed to reach the cryogenic temperatures, but also has the secondary advantage of eliminating the 
turbulence resulting from the heating and cooling process. This cryostat must be placed as closely as 
possible to the interferometer to minimize any secondary turbulence effects. 
A  cryostat  exists  at  ASTRON  which  was  in  part  designed  specially  for  cryogenic  interferometer 
measurements. Its window has a diameter of 150mm (~6 inch). The cooling mechanism is located on 
the far wall. Our samples should be placed there. 

Subsection 8.2.3 Mirrors
The reference mirror must be kept as flat as possible. Otherwise it becomes impossible to accurate 
determine any changes in fringe deviations. When flatness is ensured, the reference mirror material 
should be selected to heat or cool uniformly. The angled mirror should be kept thin and with a low 
CTE,  so  any  thermal  expansion  or  contraction  will  be  minimal.  Otherwise  the  positions  on  the 
interferometer will shift.
The diameter of the two mirrors is linked; the angled mirror must always be larger than the reference 
mirror. The largest meaningful  diameter of the reference mirror is 6 inch, the interferometer beam 
diameter. The diameters of the current mirrors are 150mm for the angled mirror and 83.5mm for the 
reference mirror.
The mirrors must be flat, minimally λ/10.

Subsection 8.2.4 Tip-tilt mechanism
The  tip-tilt  mechanism  currently  used  in  the  set-up  has  a  usable  diameter  of  83.5mm.  It  was 
purchased at ThorLabs. It was not produced for use at cryogenic temperatures and its applicability will 
have to be investigated. If a larger reference mirror is wanted, this mechanism will be useless in any 
case.
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Subsection 8.2.5 Thermal control 
When  changing  the  temperature,  care  must  be  taken  to  get  uniformly  heated/cooled  samples. 
Zerodur,  the  mirror  material,  has  a  low thermal  conductivity.  This  means that  heating  is  a  slow 
process and that thermal losses really have to be minimized. In vacuum thermal losses can only occur 
through radiation. The temperature stability and uniformity have to be assured. A ‘heat pocket’ can be 
maintained by including heat shields in the cryostat. 
For the temperature control we can again use 4 wire high resistance RTDs and an HPVee program 
written in-house. 

Table 8.3 shows the proposed dimensions of the individual components in de imaging interferometer 
design.

Table 8.3 Dimensions of the imaging interferometer  design

component Size / diameter Remarks 

Cryostat window 150mm available

Cryostat ASTRON's 'cryobox'

samples 18.4mm Coated 100% Refl / AR

Angled mirror >150mm Flatness λ/10 or better

Reference mirror  150mm (current 83.5mm) Flatness λ/10 or better

Section 8.3 Measurement Procedure and Software
Our  measurements  consist  of  two  parts;  the  measurements  with  the  interferometer  and  the 
measurements  with  the  spectrometer.  Ultimately  the  goal  is  to  fill  the  IoR  parameters  space  of 
wavelength and temperature. 
In principle measurements can be done in parallel for the interferometer and spectrometer, but the 
final results of the spectrometer measurements are dependent upon the results of the interferometer. 
For the interferometer and spectrometer measurements, the control software in both cases has the 
possibility to automate the measurements. 

A software package written in MATLAB has been developed to analyze the measurements. Together 
with documentation is this package available at ASTRON. The final programs to analyze the imaging 
interferometer measurements are still missing. The (completed) basic components of the package are 
the following. 
Once the Fabry-Pérot  spectra  have been collected with the control  software,  the spectra  can be 
exported in a .csv format. Code has been written to import the spectrum, determine the fringe maxima 
and calculate the IoR vector. 
Similarly has some code been written for the interferograms. These can be exported as .jpg files. 
Code has been written to fit the fringes, however this will  most likely need further work once our 
measurements get better.
Finally, some code exists which can give an estimate of the uncertainty. This is based on the input 
values and the theorized error analysis as derived in Chapter 4 and 5.
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Conclusions and Outlook
Given  the  current  projects  and  ambitions  expressed  by  the  astronomical  community,  swift  and 
accurate determination of the IoR at cryogenic temperatures is a must. 
Our goal in this study was to develop a refraction measuring device able to measure the IoR of solids 
within the following framework:

- wavelength range 300nm - 25μm
- temperature range 20K – 300K
- accuracy to at least the 5th decimal place

We have presented two methods capable of measuring the IoR at cryogenic temperatures; minimum 
deviation refractometry and the Fabry-Pérot interferometry method. We have further investigated the 
development of a refraction measuring device based on this second method. Our main arguments 
were the ability to cover a wide wavelength range in a single measurement and the availability of the 
equipment.  However,  one  alternative  single  wavelength  measurement  of  the  IoR  is  needed  to 
constrain the fringe order. 
A  new  interferometer  set-up  has  been  proposed  which  could  give  this  single  wavelength 
measurement and the coefficient of thermal expansion of the material as well. The method is based 
on the optical path lengths dependence on IoR between light travelling through a medium and light 
travelling through vacuum.
We have  presented  initial  measurements  at  27°C  made  using  the  Fabry-Pérot  method.  These 
methods  showed  a  deviation  of  order  10-4 when  compared  with  literature  values  and  also  a 
reproducibility of order 10-4. We discussed that a better constraint on the angle under which light hits 
the samples will increase the accuracy. The reproducibility will most likely increase by adding more 
scans together into a single spectrum. 
Initial  measurements were also done with the interferometer set-up between 22°C and 30°C. The 
intensity resolution of the interferometer is approximately equal to the change in the phase deviations 
our samples would induce.  Choosing larger temperature  steps,  thicker  samples  or materials  with 
larger CTE will  bring the changes above our resolution threshold. Of these choices manufacturing 
thicker samples holds our preference.
Hardware designs were discussed for both methods. These designs incorporated the lessons we has 
learned from the initial measurements. They also included the thermal control needed to span the 
entire temperature range as set down in our goals. 

We conclude that the Fabry-Pérot method is a viable method with which to measure the IoR, also at 
cryogenic temperatures. Its downside is the need to constrain the fringe order. 
Further  research  on the  interferometer  set-up  will  have show whether  this  method is  capable  of 
delivering this constraint. 

Further work will have to be done before this refraction measuring device is operational. Our outlook 
on future work can be divided into the following tasks.

- Building the designed set-up of the Fabry-Pérot interferometry method
- Testing the Fabry-Pérot design over the complete wavelength and temperature ranges
- Detailed investigation into the Steepest Descent Method as a means of constraining the 

fringe order
- Further  investigation into the interferometer  set-up and especially  the workings of  the 

interferometer itself

The first three tasks of the future work could be assigned to personnel already working at ASTRON. 
For the final design of the Fabry-Pérot set-up a mechanical designer is needed to draw up detailed 
designs. The assembly and testing of the set-up can be done by an engineer. Further investigation 
into the interferometer is currently already under way by a system engineer.
For the investigation into the Steepest Descent Method someone will have to be found with extensive 
knowledge of mathematics and programming experience.
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