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Abstract

What may well be the most extraordinary and mysterious surviving artifact from
the ancient Greek world, is the ‘mechanical computer’ now known as the An-
tikythera Mechanism. This amazing 2,000 year-old clockwork device is dated to
approximately 150 — 100 BC., and was presumably used to calculate complex as-
tronomical time-reckonings.

In 1901, the device was salvaged from the remains of a Roman merchant ship, in
the Eastern Mediterranean. It was a stunning discovery. Up to that time, scholars
were completely ignorant of the fact that antiquity had produced such intricate
gearing mechanisms. By now, we know that the technological sophistication of the
device is an order of magnitude more complicated than any surviving instrument
from the following fourteen centuries.

Research indicated, that the Antikythera Mechanism was able to present the
time, with respect to several astronomical and social cycles. It also displayed the
time of year, as well as the positions of the mean Sun and the Moon, through
exceptional series of gear trains.

In this master thesis, we investigate the research question whether it was pos-
sible that the mechanism reproduces the motions of the five known planets of
antiquity: Mercury, Venus, Mars, Jupiter and Saturn. And if so, how such a
design would be fulfilled.

There are significant arguments advocating the existence of the representation
of the planets. Nevertheless, there is no solid evidence, found in the artifact.

During our research, we find that there is sufficient ground to assume, that a
planetary extension for the Antikythera Mechanism could have existed.

After investigating the history of Greek astronomy, we investigate the epicycle
theories held by in the Hellenistic era, as well as the modern reconstructions of the
Antikythera Mechanism. From this, we are able to extrapolate a schematic gearing
design for each of the planets and the True Sun within the planetary extension of
the mechanism, along with a qualitative and statistical justification for our method
of design.
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CHAPTER 1

Introduction

1.1 The computer of the classical world

What may well be the most extraordinary and mysterious surviving artifact from
the ancient Greek world, is the ‘mechanical computer’ now known as the An-
tikythera Mechanism. This amazing 2,000 year-old clockwork device, which was
presumably used to calculate complex astronomical time-reckonings, has been a
tantalizing puzzle for scholars and scientists over more than one century.

The device was recovered in the Greek Mediterranean in 1901 as a single cor-
roded bronze lump, during the salving of the shipwreck from a Roman cargo ship
which had sunken around 80 — 50 BC. (Price, 1974). A first glimpse of its true
complexity was displayed several months after the recovery, when it split apart
due to its exposure to the dry Greek air. Some thirty gear wheels were revealed.

It was a stunning discovery. Up to that time, scholars were completely ignorant
of the fact that antiquity had produced intricate gearing mechanisms, long before
anything comparable.

Being the extraordinary item that it is in the scientific world, the research
the Antikythera Mechanism gained followed an intriguing path. Over the early
twentieth century, the found fragments of the mechanism certainly did not seem to
have been given the prominence one would expect. Over the last couple of decades,
however, the device had been subject to the extensive research it deserves. By now
it has been established that it is an order of magnitude more complicated than
any surviving mechanism from the following millennium. Perhaps as perplexing is
the fact that it is without any precursor (Seabrook, 2007).

The first well documented western device, that shows some resemblance to the
Antikythera Mechanism, is an astronomical clock made in the early fourteenth
century. It was made in England by Richard of Wallingford, the Abbot of St. Al-
bans (North, 2005). This clock was called the Albion — The ‘All-by-One.” Another
early well-known planetarium and clockwork was made mid-fourteenth century by
the Italian Giovanni de’ Dondi, of Padua. This clock is known as the Astrarium
(Baillie et al., 1974). Still, these two giant achievements were constructed fourteen
century after the Antikythera Mechanism (Singer et al., 1957b).

All that remains of the device today, are eighty-two fragments of flaking bronze,
forming the accommodation for the thirty gear wheels (Freeth et al., 2006). While
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Figure 1.1: A collage of photographs and radio-graphic images from the surviving fragments.
The image illustrates the fascinating complexity of the device. It provides a view of the inner
regions of the mechanism, uncovering a multitude of different gears, axes and additional features.
Also, parts of the dials from the outer plates of the mechanism can be noticed. A picture of the
largest surviving fragment is shown in the bottom right corner, as it is displayed in the National
Archaeological Museum of Athens.
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trying to decode the mechanism’s inscriptions and functions, researchers from a
wide variety of different scientific disciplines managed to relate the gear train ratios
to astronomical cycles of the Sun and the Moon. The overall architecture of the
device was published in 1974, in a pioneering study by Price (1974). However
detailed and meticulous the study was, the functions of nearly all of its dials have
been radically reassessed since then.

Figure 1.1 shows a collage of photographs and radio-graphic images from the
surviving fragments. The image illustrates the fascinating complexity of the device.
It provides a view of the inner regions of the mechanism, revealing a multitude of
different gears, axes and additional parts. Also, parts of the dials from the outer
plates of the mechanism are superimposed. A picture of the largest surviving
fragment can be seen in the bottom right corner of Figure 1.1, as it is displayed in
the National Archaeological Museum of Athens.

The Antikythera Mechanism is presumed to have been made around 150 — 100
BC. (Freeth et al., 2008). Most of the reconstructions of the device consist of a
wooden case, with a size of about 33 ¢m x 18 em x 10 ¢m, where the last quantity
is the most uncertain one. It has an input on one side, which was probably used
to turn by hand, and drive the rest of the gears via a crown gear. On its front and
back faces are a number of output dials. Figure 1.2 shows a reconstruction of the
mechanism, without its wooden case, but clearly illustrating the locations of the
engraved front and back dials.

The front dials consist of two large concentric displays, a Zodiac dial with the

Figure 1.2: Schematic showing the overall architecture of the Antikythera Mechanism in a
2006 model (Freeth et al., 2006). The front and back faces are shown left and right, respectively.
A revised model, presented in 2008, shows some small-scale differences on the back dials of the
Mechanism (right); in the function of the upper subsidiary dial and the geometry of the main
lower dial (Freeth et al., 2008).
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Greek names of the Zodiac, and a calendar dial, marked with the names of the
Egyptian calendar in Greek. A date pointer shows the date in the Egyptian year.
This pointer also served as a representation of the mean position of the Sun in the
tropical year. Whether there also was a pointer that displayed the true variable
speed of the Sun is still under debate (Wright, 2002a). Furthermore, the front face
contains a pointer that shows the position of the Moon on the Zodiac, and also
displays the phase of the Moon (see Figure 1.2).

The back face is even more extraordinary than the front. Two large spiraled
dials display time relative to astronomical cycles, well known in ancient times.
Within these dials are at least two small subsidiary dials. These dials provide in
additional information with respect to the large spiraled dials. They also relate
abstruse astronomical determinations of time with the calendar of civic society.

Freeth et al. (2008) disclosed the surprising finding that the subsidiary dial
in the top spiral-dial represents the Olympiad cycle. It shows the timing of the
Olympic Games in ancient Greece, which were called the Panhellenic Games in
that time. There is a close link between astronomical time-reckonings and the
start of the Olympic Games, since the games started on the Full Moon closest to
the summer solstice. This link between the technical astronomical calendars and
the everyday calendars that regulated ancient Greek society, yet again emphasizes,
what an ingenious and exceptional apparatus the Antikythera Mechanism is.

1.2 1In search of lost planets

Even though numerous ancient secrets of the Antikythera Mechanism have been
deciphered, there are still many questions and riddles surrounding the mechanism.
Who made it? What was it for? What other information did it enclose? And
just as fascinating are the implications for our view of the civilization in which it
originated, and the speculations on why nothing more advanced succeeded it for
such a long period of time.

The research described in this thesis aims to investigate, whether it was possible
that the mechanism reproduces the positions of the five known planets. And how
such a design would be arranged. One could say we are attempting to redesign
the planetary extension for the Antikythera Mechanism, to present the planets of
the classical world: Mercury, Venus, Mars, Jupiter and Saturn. Or, as the Greek
knew them: Hermes, Aphrodité, Ares, Zeus and Kronos, respectively.

While there is not one direct indication, for any planet related gearing in the
Antikythera Mechanism, we wish to forward the hypothesis that it in fact did
contain such machinery. There are various strong arguments, why one would
expect the planets to be part of the Antikythera Mechanism. The following, are
amongst the main arguments used to advocate this stance:

e The references of Cicero

Marcus Tullius Cicero (106 — 43 BC) seems to describe the a device much
like the Antikythera Mechanism itself on multiple occasions. Cicero was a
Roman statesman, lawyer, political theorist, philosopher, and Roman con-
stitutionalist. He is widely considered one of Rome’s greatest orators and
prose stylists. In two of his writings, references to mechanisms likely related
to the Antikythera Mechanism can be suspected.

In 79 BC., Cicero went to Rhodes to study under the leading scientist
and Stoic philosopher, Posidonius. There, Cicero saw a mechanism, which
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came to be known as Posidonius’ Orrery (Keyes, 1928). This mechanism was
able to represent the motions of the celestial bodies: “...the orrery [...] re-
produces the same motions of the sun, the moon and the five planets that
take place in the heavens every day and night.” As he continuous in his On
the Republic. On the Laws (Book I, Section XIV), it seems unambiguously
clear that this mechanism contained planetary gearing for the five
planets.

Secondly, Cicero writes in his book Tusculan Disputations (Book I, Sec-
tion XXV), about Archimedes. The latter possesses a globe on which
the movements of moon, sun and five wandering stars can be repro-
duced: “For when Archimedes fastened on a globe the movements of moon,
sun and five wandering stars, he, just like Plato’s God who built the world in
the “Timaeus”, made one revolution of the sphere control several movements
utterly unlike in slowness and speed. Now if in this world of ours phenom-
ena cannot take place without the act of God, neither could Archimedes have
reproduced the same movements upon a globe without divine genius” (King,
1927). Could it be, that this is also a reference to the Antikythera Mecha-
nism?

e A plausible relation with Archimedes

Archimedes of Syracuse lived from around 287 — 212 BC., and was one of the
greatest inventors, engineers, mathematicians, astronomers and physicists of
the Hellenistic era. The main reason for our interest lies in the fact that he
is supposed to have invented a planetarium (King, 1927), and to have writ-
ten a lost book on astronomical mechanisms (Hultsch, 1878; Dijksterhuis,
1987). In their article, Freeth et al. (2008) reported that the inscriptions
and months on the outer faces of the Antikythera Mechanism are,
unexpectedly, of Corinthian origin. The Corinthian colonies of north-
western Greece or Syracuse in Sicily are leading contenders. Due to the fact
that the mechanism is made around 150-100 BC., it is not too far-fetched to
suggest a heritage going back to Archimedes.

e The inscriptions on the instrument
The fragmentary inscriptions located on the surviving fragments of the An-
tikythera Mechanism, tell of the planets. For instance, one of the inscrip-
tion reads “..7n¢ appdiTy( ...,” which is translated by “..of Venus...”
(Freeth et al., 2006; Wright, 2007). Why would the planets be mentioned on
the outer plates of the Antikythera Mechanism, if they are not an integral
part of the device?

e The irregular features of Fragment A

The large wheel in the largest surviving fragment of the Antikythera Mech-
anism contains many irregular features, like holes, pins and nuts. According
to Wright (2002a, 2007), these features, as well as the actual large size of this
wheel, are circumstantial evidence for epicyclic gearing. This sophisticated
method of constructing gear trains is able to reproduce the motions of
the known planets, according to the epicycle theories held by in the
Hellenistic era.

e The sophisticated nature of its gearing
The sophisticated nature by which the gear trains of the Antikythera Mech-



Niels Bos — The Planetary Extension for the Antikythera Mechanism

anism are designed, does indicate the advanced level of technological sophis-
tication used in the device. Most notably, the pin-and-slot mechanism, that
reproduces the epicycle motion of the Moon. Having devised one epicyclic
movement the designer could not have overlooked the possibility of repeating
it as many times as he wished. Therefore, it would almost be illogical
if the planets would not be part of the original design. The ele-
gant sophistication of what survives of the Antikythera Mechanism, and the
facility with which an extended reconstruction of it as a planetarium may
be devised and made to work, suggests that it is plausible that has been a
complete planetarium.

The clues described above, expound the fact that there is sound reason to believe in
the existence of a planetary extension for the Antikythera Mechanism in classical
times.

1.3 Outline of this thesis

In order to get an unambiguous result in our attempt to redesign the movement of
the planets, one needs to speculate about the hypothetical extended architecture
of the mechanism. To do this properly, one needs to know more than just the blue
prints of the reconstructed devices; one needs to know whether its appropriate
considering the known fragments of the mechanism, the technological knowledge
of the ancient Greek with respect to gears and gear trains, and the cosmological
ideas of that time in ancient Greece.

Therefore, the path towards our goal follows an extensive and thorough road.
We start with a retrospect of the excavation and discovery of the fragments of the
Antikythera Mechanism in Chapter 2. We discuss the place it took in the scholarly
world following its first investigations, during most of the twentieth century. In
order to fully appreciate and understand the first reconstructions, we are forced
to re-inquire the scientific — and with that especially astronomical — occupations
of the classical Greek world.

In Chapter 3, we discus the early astronomical investigations and the relevant
philosophical setting, that led towards the scientific revolution of the Hellenistic
era. In particular, the origin of the relation between the celestial bodies and their
mathematical description. Chapter 4 bestows the astronomical time-reckonings
known in ancient Greece, of which numerous are represented in contemporary re-
constructions of the Antikythera Mechanism and several are of central importance
in developing the planetary extension. The knowledge handled in these two Chap-
ters is crucial in understanding the role of the Antikythera Mechanism in antiquity,
and with that grasping the state of technological progress in its era.

In consideration of this last aspect, Chapter 5 forms an integral part of our
research. We set forth the different epicycle theories that developed in the Hel-
lenistic era, and show self-made simulations in order to illustrate their internal
differences. Comparing these models with the reconstruction of the Antikythera
Mechanism places boundary conditions, as well as guidelines, as to which epicycle
model could be implemented in the planetary extension of the device.

In Chapter 6, we return to the present day research and investigations of the
Antikythera Mechanism. We display the different reconstructions of the device
made in last couple of decades, and focus on the extraordinary features that have
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been ascertained and deciphered over that time. This is our last step in construct-
ing a frame of mind, wherein the design of the planetary extension is imperative
to fit.

The blueprint of our extended architecture for the movement of the planets
will be composed in Chapter 7. After examining the necessary orbital periods,
different, gears and possible gear trains, we aim to construct a plausible model for
the planetary extension.

Chapter 8 provides a discussion of our work, as well as the accompanying
conclusions. It also touches on the different aspects of future work, with respect
to this subject, before this thesis concludes in Appendix A.1, containing several
expositions of photographs and X-ray images from the surviving Fragments of the
Antikythera Mechanism.



Discovery and investigation
of Item 15087

2.1 The Antikythera Youth

Shortly before Easter of 1900, a party of Greek sponge-fishers from the island of
Syme near Rhodes in the Dodecanese, left their normal fishing grounds in the
Tunisian waters of North Africa and began to sail East, through the channels
between Kythera and Crete, towards home (Price, 1974). These channels are
amongst the chief shipping routes between the Eastern and the Western Mediter-
ranean. Driven off course they sought shelter near Port Potamo on the almost
uninhabited, rocky and barren island of Antikythera. This island in the West-
ern Aegean lies just midway between the two larger islands, splitting the channel
between and because of its sandbars, shoals and sudden currents, an infamous
dangerous graveyard for shipping, in ancient and modern times (in Figure 2.1 a
map of the region is presented).

After the storm, they decided to explore the island’s shore and the shallow rock
shelf below them in the hope of finding sponges in the unfamiliar territory. Elias
Stadiatis, one of the divers in the party, put on a weighted suit and an airtight
helmet that was connected by an air hose to a compressor on the boat, and went
into the water. Going to a depth of approximately 45 meters, he found to his own
amazement, that a great ship lay wrecked on the bottom. A ship with a length of
some 50 meters. The real excitement, however, was not so much in the ship itself,
but in the treasure that was plainly visible: a pile of bronze and marble statues
and other objects made almost unrecognizable through marine deposits.

Stadiatis returned with a piece of one of the bronze statues; a larger-than-life
right arm. After that, the party returned to Syme in order to plan a successful
trip to the sea bed. Half a year later the sponge-fishers returned as an official
Greek recovering mission, with a ship provided by the Greek navy and a official
archaeologist to supervise the salvation.

During several runs, taken over the period of nine months, they managed to
salvage a wide collection of artifacts. After-wards, these items were taken to the
National Archaeological Museum of Athens to be cleaned and reassembled. It was
the world’s first large-scale underwater archaeological excavation.
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They managed to recover a fine bronze head of the philosopher, two bronze
statuettes, the remains of a group of five or six bronze draped male figures and the
famous Antikythera Youth; a bronze statue of a nude god or hero, also known as
the Antikythera Ephebe (Myers, 2006; Fraser, 1928). Although bronze sculptures
were common in ancient Greece, only a few have survived. The bronze was often
sold as scrap or melted down, to be recast as weaponry. In fact, most of the
bronzes known from ancient Greece nowadays have been recovered from shipwrecks
(Weinberg et al., 1965).

Unlike the bronze pieces, the marble objects did not survive the 2,000 years
under sea that well. Being leprous, blackened and more corroded than the bronzes,
they also seem to be less valuable artistically; they all appear to be copies of
originals, made for the export trade, early in the first century BC. Other artifacts
included bronze fittings for wooden furniture, coins, pottery, an oil lamp and
several unidentified artifacts, among which item 15087 a shoebox-size lump of
bronze with what appeared to be a wooden exterior. But the real discovery of this
interesting item would still be a small year away.

Evidence derived from the coins, amphorae (a type of ceramic vases with two
handles and a long neck narrower than the body), and other items from the cargo
eventually allowed researchers to fix a reasonable date for the shipwreck to 85-60
BC. (Edmunds and Morgan, 2000). This was a time when the glorious civilization
of ancient Greece was on the wane, following the Roman conquest of the Greek
cities in the First Mithradatic War.

Some scholars have speculated that the ship was carrying part of the loot of
the Roman General Lucius Cornelius Sulla Feliz, or simply Sulla, from Athens in
86 BC., and might have been on its way to Italy. A reference by the Greek writer,
Lucian, to one of Sulla’s ships sinking in the Antikythera region gave rise to this
theory (Price, 1974).

The ship itself was built from much older timbre, dating somewhere around
200 £ 45 BC. (Price, 1974).

Coins from Pergamon, a Hellenistic city in what is now Turkey (Figure 2.1),
indicated that the ship had made port nearby Antikythera. The style of the
amphorae strongly suggested that the ship had called at the island of Rhodes,

*“Rhodes

Figure 2.1: Collage of maps of the Eastern Mediterranean. Presented are the location of the
shipwreck (top left; according to Price, 1974), the island Antikythera, and the most famous and
influential places and regions in classical Greece. The map recounts the great spread of the
civilization that now embodies the ancient Greek.
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Figure 2.2: Bronze relics from the Antikythera shipwreck. Sub-figure a shows the fine bronze
head of the philosopher, sub-figures b shows a pair of bronze feet and sub-figure d shows a right
hand and arm, and a left hand; both set of limbs are part of the remains of a group of five
or six draped male figures. Sub-figure ¢ shows the well-known Antikythera Youth, also known
as the Antikythera Ephebe (Myers, 2006; Fraser, 1928). All items are exhibited at the National
Archaeological Museum in Athens.

10
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which was known for its wealth and industry at that time. Given the reputed
corruption of officials in the provinces of the Roman Empire, it is possible that the
ship’s cargo had been plundered from Greek temples and villas, during the First
Mithradatic War, and was on its way to adorn the houses of aristocrats in Rome.
In fact, it was very well possible that the sheer weight of the cargo contributed to
the ship’s destruction (Weinberg et al., 1965).

2.2 Item 15087

The fragments of the mechanism with which we are concerned, were not remarked
upon until nearly eight months after the excavations had been terminated. Where
most of the salvaged items were accounted in several dozen newspaper and journal
accounts of the flow of minor and major objects from Antikythera to the National
Archaeological Museum, there was no report of the existence of these pieces of cor-
roded bronze with their interesting and clear traces of gear wheels and inscriptions;
indexed as item 15087.

The first account was published on Friday, May 23, 1902, in the Athens news-
paper To Asty (No. 4141), six days after the discovery of the inscriptions by a
Greek archaeologist named Spuridon Spais (Price, 1974). He found them among
the bronze pieces which were kept in a caged enclosure to be examined after the
restoration of the large bronze statues found in the Antikythera shipwreck.

Stais noticed that the wooden exterior was split open, probably as a result of
exposure to air, and that the artifact inside had fallen into several pieces. Looking
closely, Stais saw some inscriptions in ancient Greek, about two millimeters high,
engraved on what looked like a bronze dial. This caused considerable excitement,
though its true nature was not understood. Following research revealed precisely
cut triangular gear teeth of different sizes. The apparatus looked like some sort
of mechanical clock, but this seemed impossible, since scientifically precise gearing
wasn’t believed to have been widely used until the fourteenth century — fourteen
hundred years after the ship went down.

After the discovery of the fragments, item 15087 soon became known as the
Antikythera Mechanism; the name by which it is still known today. Its first analysis
followed two main approaches (Seabrook, 2007). The archaeologists of the National
Archaeological Museum, led by J.S. Svoronos, thought that the device must have
been some kind of astrolabe. This is an Hellenistic astronomical device, which was
widely known in Islamic world by the eighth century and in Europe by the twelfth
century. They were used to tell the time, and could also determine the latitude
with reference to the position of the stars. Muslim sailors often used them, in
addition, to calculate prayer times and find the direction to Mecca. Figure 2.3
shows an example of an astrolabe made by M. b. Abi Bakr, Isfahan around 1221
AD. The construction follows the design of al-Biruni from c. 1000 AD.

Other researchers, led by the German philologist Albert Rehm, thought the
Mechanism appeared much to complex to be an astrolabe. Rehm suggested that
it possibly might have been the legendary sphere of Archimedes, which Cicero had
described in the first century BC. as a kind of “mechanical planetarium”, capable
of reproducing the motions of the Sun, the Moon and the five known planets —
Mercury, Venus, Mars, Jupiter and Saturn.

Others even thought that the device must have come from a much later ship-
wreck; acknowledging the artifact’s complexity. This later shipwreck could have

11
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Figure 2.3: Astrolabe con-
taining geared calendar work.
This instrument was made by
M.b.  Abi Bakr, Isfahan in
1221/2 AD. The gearing fol-
lows the design follows the gear-
ing reported by al-Biruni c.
1000 AD. Even though it con-
tains features similar to the An-
tikythera Mechanism, the tech-
nology used to make it, and also
the manner to use it, is quite
dissimilar.

settled on top of the ancient ship, even though the Mechanism had plainly been
crushed under the weight of the other cargo of the ancient ship. In the end, it was
the astrolabe theory that was most popular until the nineteen-fifties, even though,
the technology of these eastern devices is quite dissimilar to the technology of the
Antikythera Mechanism, or the western clocks which originated in the fourteenth
century.

2.3 Ancient technology

Throughout modern history, scholars have been traditionally reluctant to credit
the ancients with technological skill. This has not been different with respect to
the early research on the Antikythera Mechanism. Even though there were many
known examples of advanced technological mechanisms in ancient times (Price,
1964), scholars tended to focus on the time of Copernicus and Galileo as the time
where science and technology began (Price, 1974; Keyser and Irby-Massie, 2002).
The great Greek inventor, scientist, engineer, mathematician and astronomer,
Archimedes of Syracuse — already mentioned because of his famous planetarium
— is known for many ingenious inventions. One of these inventions was a terrible
clawed device, made up out of large hooks; designed and used for lifting fully
loaded enemy warships out of sea and smashing them down on the water. Philon
of Byzantium invented a spring driven catapult. Heron of Alexandria formulated
the basic principles of steam power, he made a mechanical slot machine, a water-
powered organ and automatic driven doors (James and Thorpe, 1988). But, he
is perhaps best remembered for his mechanical simulations of men and animals,
called automatons. These devices were cleverly engineered to sing, blow trumpets
and dance, among others. And still, even though his book called “Pneumatica”
survives til present times, some scholars have dismissed his descriptions as fantasy.
They pointed to the lack of textual evidence and the fact that none of these
amazing mechanisms had been found (Drachmann, 1963; Seabrook, 2007).
However, is the lack of these mechanisms a real surprise? Keyser and Irby-
Massie (2002) observes that the texts that do survive, tend to be the more popular
texts. The actual mechanisms probably broke down, were sold as scrap or were
recycled. After time the know-how faded, and with the following dissolution of
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the Roman Empire, the technological knowledge possessed by the ancient Greeks
disappeared from the West completely.

The more fundamental underlying question should thus be: if the Greeks did
posses this greater technological sophistication than we think they did, why did
they not apply it to making more useful things? Why did we not find any evidence
for the existence of time and work saving machines? According to Keyser and
Irby-Massie (2002), the Greeks had little incentive to invent labor-saving devices,
because they owned slaves. In the case of weaponry, the claws of Archimedes are an
exception with respect to the cultural resistance to high-tech war machines, since
both the Greeks and the Romans valued individual bravery in war more highly.

Another reason for the lack of evidence of ancient technology is mentioned by
Marchant (2006), who states that it all depends on what one sees as ’useful.” The
Greeks were not interested in accurate time keeping. It was enough to tell the
hour of the day, which the water-driven clocks of the time could already do fairly
well. They did value knowledge, power and prestige, which explains the various
mechanisms driven by hot air or water. But instead of developing, for instance,
a steam engine, the devices were used to illustrate philosophical principles. The
machines were intended to offer a deeper understanding of cosmic order, and their
best technology was used for demonstrating the laws of physics.

A third, and last, reason why we find so little evidence for any grand techno-
logical sophistication, might lie in the fact that there metallurgy skills were not
suitable yet (Singer et al., 1957a). Greco-Roman metallurgy was a continuation of
that of the ancient Near East, and was essentially a phase of the Iron Age wherein
copper and bronze were only being slowly displaced by the newcomers; iron and
steel. Greeks and Romans added but two fundamentally important discoveries to
the knowledge of earlier smiths. First of all, they introduced the production of
mercury and its applications to the extraction of gold. Secondly, they discovered
the manufacture of the copper-zinc alloy, brass.

Metallurgy remained essentially a charcoal-smelting technique, with all limi-
tations thus implied. Coal is scarce in the Mediterranean region, and its use in
metallurgy was first attempted in western and central Europe, by native smiths,
in their forges and smelting-furnaces. In the Mediterranean, deforestation had be-
come serious by classical times, so that the prices of timbre and charcoal were rising
steadily and ominously. In this still agricultural world, the mines and smelting-
sites were very uncommon; there were no true industrial areas in ancient Greece.

So, without any easy access to the necessities for metalworking. And without
strong iron and steel, there was no obvious practical application for Greek tech-
nology. Therefore, it is easy to believe it never existed at all, and there was no
substantial reason for scholars to dismiss the traditional reluctance towards ancient
technological skills.

However, in 1958 a new wind began to blow.

2.4 Derek de Solla Price

In 1958, Derek de Solla Price, a fellow at the institute for Advanced Study in
Princeton, went to Athens to examine the Antikythera Mechanism. He was born
in Britain and trained as a physicist, but switched fields and became the Avalon
Professor of the History of Science at Yale. He is often credited as the father of
scientometrics; the science of measuring and analyzing science itself. The study
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of the Mechanism, which incorporates elements of archeology, astronomy, mathe-
matics, philology, classical history and mechanical engineering was ideally suited
for a polymath like Price, and it consumed the rest of his life.

Price contrived the idea that the mechanism was some kind of “ancient com-
puter,” which could be used to calculate important celestial events in the near
or distant future, such as the next full moon, for instance. He was the first who
realized that the large encrypted circular bronze plate of one of the fragments was
a large dial with calendrical markings indicating months, days and the signs of the
Zodiac.

Price postulated the idea that there

must have been pointers, to represent  “Nothing like this instrument 1is
the Sun and the Moon and possibly preserved elsewhere. Nothing com-
the five planets. These pointers would parable to it is known from any an-
move around the dial, indicating the cient scientific text or literary allu-
position of the heavenly bodies at dif- gjon. On the contrary, from all that
ferent times. we know of science and technol-

In order to prove his theorems, gy in the Hellenistic age we should

Price went to base his ideas on the fun- have felt that SUC’Z a device could
damental properties of gearing. Gears ot erist.”

transmit motion through rotational

motion, and by realizing mathematical — Price (1959)
relationships between toothed gears.
Price assumed that the largest gear in
the artifact, clearly visible in Fragment A, was tied to the movement of the Sun.
If the motion of the Moon was related to the large gear, then the ratio of gears in
the gear train must have been designed to match the ancient Greeks’ idea about
the motion of the Moon. By counting the number of teeth in each gear, one could
calculate the gear ratios, and by comparing these ratios to astronomical cycles,
the true representation of the gears can be figured out.

However, only a small fraction of the gears are visible from the outside of the
fragments, and even parts are visible of those outer gears. Therefore, Price and the
Greek radiographer C. Karakalos were permitted to make the first X-ray images
of the mechanism in 1971. These observations showed — entire or partial — most of
the thirty gears inside the fragments. These images, combined with his method for
estimating the total number of teeth from partial gear tooth counts, enabled Price
to develop a schematic drawing of a hypothetical reconstruction of the internal
workings of the mechanism. After several introductory and expounding articles
(Price, 1955, 1956, 1959), Price published the major part of his research in a
seventy-page article entitled “Gears from the Greeks,” in 1974 (Price, 1974). This
was a monumental step forward in understanding the Antikythera Mechanism. He
writes in his 1959 article published in the Scientific American: “Nothing like this
instrument is preserved elsewhere. Nothing comparable to it is known from any
ancient scientific text or literary allusion. On the contrary, from all that we know
of science and technology in the Hellenistic age we should have felt that such a
device could not exist.”

Price’s work, though widely reviewed in scholarly journals, did not change the
way in which the scientific community viewed the ancient Greek (Charette, 2006).
Scholars and historians where still reluctant to rewrite the history of technology
to include Price’s work — a work that was not on text, like the sound writings of
Homer, Sophocles or Horace.
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An additional reason could be that Price’s work was published at the height of
the popularity of “Chariots of the Gods;” a 1968 book by the Swiss writer Erich
von Déaniken, which stated that highly intelligent aliens had seeded the earth with
technology (von Déniken, 1970). With this, Price got associated with U.F.O’s,
crop circles, the Piri Reis Map and a vast variety of pseudo scientific theories.
Up until present times, the Antikythera Mechanism is a prominent subject in the
works of Von Déaniken and his congeners (von Daniken, 2000). For these reasons it
is easily remarked, and not even uninstructive, that the Antikythera Mechanism
dropped and sank twice, once in the sea, and once in scholarship!

A striking story, associated with this scholarly reluctance, was written down
by the exceptional physicist Richard Feynman in 1980 (Feynman and Leighton,
1988). During his visit to the National Archaeological Museum in Athens, he saw
the Antikythera Mechanism for the first time. He described it as “one thing so
entirely strange and different that it is nearly impossible.” When he asked the
curator to know more about item 15087, he responded: “Of all the things in the
museum, why does he pick out that particular item, what is so special about it?”

2.5 Present day research

Although his fundamental insights about the device were sound, his work on the
Antikythera Mechanism was unfinished when Derek de Solla Price died of a heart
attack, in 1983.

Fortunately, his work was picked up by several scientists in the late 90’s of
the twentieth century. The British clockmaker Michael Wright published, along
with a number of associates, several articles in which accomplished great advances
in deciphering the Antikythera Mechanism and managed to improve the primary
model of Price.

Simultaneously, a number of astronomers, archaeologists, computer engineers
and physicists, from mainly Britain, Greece and the United States, who had all
published about the mechanism, collaborated to form the Antikythera Mechanism
Research Project (AMRP). They aim to use the most up to date computer-based
imaging techniques to reconstruct a more precise model, and managed thus far to
publish several ground breaking articles about the topic (Freeth et al., 2006, 2008).

2.6 Historical implications

Even if the Antikythera fragments had been no more than a few small bronze
wheels and gears of uncertain function, they would constitute an historical relic of
enormous interest and importance for the history of technology and our knowledge
of ancient technological knowledge.

In a 2006 Nature article, Francois Charette writes the following: “During ren-
ovation work in a northern Italian plazzo, an enigmatic artifact comes to light,
dated to the late fifteenth century. After intensive analysis, it is identified as a
complex steam engine — constructed 200 years before French inventor Denis Pa-
pin’s pioneering experiments, and 300 years before the Industrial Revolution. Our
view of the technical achievements of the Renaissance is completely changed. The
reverberations are felt far beyond just scholarly circles” (Charette, 2006).
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Of course, this did not happen. However, the find of the Antikythera Mecha-
nism, and the continuing discoveries that are made around the device, are forcing a
comparable rethink of the technology of classical antiquity. Or, like Price claimed
that the Mechanism “requires us to completely rethink our attitudes toward ancient
Greek technology” (Price, 1974).
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CHAPTER 3

The rise of Greek physical
conception

3.1 Astronomy at the dawn of the Greek era

In order to fully appreciate what an exceptional accomplishment it was for the
Greek engineers of the Hellenistic era, to construct the Antikythera Mechanism,
it is essential to investigate the early Greek scientific enterprises. In this Chapter,
we will discuss the early astronomical investigations and the relevant philosophical
setting, that led towards the scientific revolution of the Hellenistic era.

Homer and Hesiod

The oldest surviving works of Greek literature are the Iliad and Odyssey of Homer,
which were put into writing from probably around the end of the eighth century
BC. Ouly a little younger is Hesiod’s Works and days, which dates from around
650 BC. During this time, the Greeks were just emerging from their dark age.
Literacy had been gained, then lost in the convulsion of the twelfth century BC.,
then regained at this dawn of the Classical Greek.

Historians turn to Homer and Hesiod for insight into the Greek societies around
700 BC., as well as Greek’s economic life, their social organization, and their
religious practices of that time. Likewise, these works can be used to inquire of
Homer and Hesiod just what the Greeks knew of astronomy.

In the Iliad, a few stars and constellations are mentioned by name: the Pleiades,
the Hyades, Orion and the Bear; which in later time became known as Ursa Ma-
jor. Homer also mentions the Dog Star, Arcturus and the constellation Bodtes.
Apparently, it was known that different stars are conspicuous at different times of
year.

For the early Greeks, astronomy was a practical matter, a means to fix the
times for performing agricultural operations or religious rites, at a period when
they had no adequate calendar. This is apparent from the poem Works and days,
where can be read: “When the Pleiades, daughters of Atlas, rise, begin reaping,
and when they set, begin ploughing.” That is to say, the rising of the star-group
of the Pleiades just before dawn, which was about the middle of May at Heriod’s
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time and location, is the signal for the start of harvesting. Likewise, the cosmical
setting of the Pleiades, at the end of October in Greece, warns that is time for the
autumn sowing and ploughing (Walker, 1996).

This agricultural calendar relied primarily on the rising and setting of popular
stars, like Sirius and Arcturus, or groups of stars, like Orion, the Pleiades and the
Hyades. There thus was some sort of precursory knowledge of the Zodiac, or at
least the movement it follows along the night sky (see Figure 3.2). Secondly, they
relied on the summer and winter solstices, which the Greek called turnings, from
the word tropai. At these times, the Sun reached its northernmost or southernmost
point on the horizon, and turned to move in the opposite direction.

Most of the knowledge of the celestial bodies was thus being used for practical
requirements: being used to tell the time of the year, to know when to sow, to
predict the coming of the seasons (Evans, 1998). But furthermore, they were
already used to navigate. In the Iliad, Homer mentions that Ursa Major “turn
about in a fized place,” and “is mever plunged in the wash of the ocean.” Even
Odysseus keeps the Bear on his left, in order to sail to the east.*

Early Babylonian astronomy

In Babylonian astronomy of about 700 BC., many features can be recognized
that seem similar to the Greek astronomy of that time. However, in many ways
Babylonian astronomy was further advanced.
Babylonian astronomical documents, like
the MUL.APIN clay tablet! (Walker, 1996), or
the so-called Circular Astrolabe (Evans, 1998),
contain evidence of two complementary pro-
cesses; one in which theories, capable of rep-
resenting and predicting observations, were
created; the other involved the use of those
theories to predict phenomena (North, 1994).
These phenomena are of course what is usually
encountered in surviving tablets, and the first
process has to be reconstructed from it. It re-
quired a set of skills, to create theories which
represented and predicted observations, which
could be exercised by people well drilled in rou-
tine procedures, but they need have had little
understanding of these procedures.
It was from this tradition of looking at the _
sky, and recording every noteworthy observa- F1gqre 3.L: The astronomical com-
’ pendium MUL.APIN. The tablet, only
tion, that the Greek inherited a vast quantity g4 cm high, is a masterpiece of minia-
of centuries of observations out of the Southern ture cuneiform writing. About 500 BC.
regions of Mesopotamia.
In the case of ancient Greek cultures and civilizations, they could observe very
accurately very large portions of their own night sky once the art of processing large

IThe MUL.APIN is a compendium, in the form of an extraordinary clay tablet, that deals
with many diverse aspects of Babylonian astronomy. The text lists the names of 66 stars and
constellations and gives a number of indications, such as rising, setting and culmination dates,
that help to map out the basic structure of the Babylonian star map. The tablet dates back to
about 500 BC., and is only 8.4 ¢m high.
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sets of observational had been learned from their eastern sources, but this happened
at a relatively late date. The most significant influence took effect only in the
second century BC., and the man deserving most of the credit for this change was
Hipparchus. By then, however, the Greeks had developed a geometrical method of
their own, that was to assume an extraordinary importance in subsequent history.
They modelled the heavens on a sphere, with stars, planets and circles on it, and
they learned to explain the simple daily and annual movements in terms of the
rotation of the celestial sphere.

3.2 Early astronomy in classical Greece

In the fourth century BC., it was Aristotle who established a tradition of collecting
together the opinions of previous thinkers and subjecting them to criticism, as
vigorously as if they were still alive. Some of his collected material goes back to the
sixth century BC., but like other collectors he was largely dependant on unreliable
intermediaries. This is particularly true of the four earliest philosophical thinkers
of note: Thales, Anaximander, Anaximenes and Pythagoras.

Thales

Thales (c. 624 — ¢. 546 BC) was born in the city of Miletus. This was an
ancient Greek Ionian city on the western coast of Asia Minor, near the mouth of
the Maeander River. Aristotle considers him to be the founder of Ionian natural
philosophy. Stories were told by Aristotle of his intense practicality; for example,
he used his astronomical knowledge to predict an oversupply in the olive crop. He
then got a monopoly on the presses, and made a fortune. On the other hand, he
was presented as a visionary, so engrossed in a study of the heavens that he fell
down a well, unable to see what was in front of him — according to Plato.

Thales is supposed to have predicted an eclipse of the Sun that took place
during a battle between the Lydians and the Persians, and that is now usually set
at May 28, 585 BC. This is a much debated story, but can almost certainly be
disregarded except as a symbol of myth-making at the time of Aristotle.

A pupil of Aristotle, Eudemus of Rhodes, was assigned with astronomy and
mathematics, and tells the story that Thales brought his astronomical knowledge
to Greece, after a visit to Egypt. Others have argued that Thales got his knowledge
from the Babylonians.

Anaximander & Anaximenes

Anaximander and Anaximenes argued cosmological views that, as North (1994)
put it, are almost as similar as their names. The second was possibly the pupil of
the first, around the time of the fall of Sardis (546 BC). Like Thales, both came
from the Miletus, the southernmost of the great Ionian cities of Asia Minor — at
the western extreme of modern Turkey.

Anaximander (c. 610 —c. 546 BC) belonged to the Milesian school and learned
the teachings of his master Thales. He succeeded him and became the second mas-
ter of that school where he counted — besides Anaximenes — Pythagoras amongst
his pupils. Anaximenes of Miletus (c. 585 — c. 525 BC) was from the latter half
of the sixth century, a younger contemporary of Anaximander, whose pupil and
friend he is said to have been.
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North Pole of
North Pole of the Equator

the Ecliptic

Figure 3.2: The stars, as seen as
on a globe, from the outside. The
sphere of stars, rotates about the
poles of the ecliptic for west to east.
Shown are the celestial equator and
the ecliptic, as well as their poles,
and the effects of precession; the
open symbols show the position of
the stars 2,000 years ago, the solid
South Pole of symbols are the present day posi-

E:utsh potu of the Ecliptie tions. The point indicated by T is
giEquaser the definition of the vernal equinox.

Anaximander is set to have made a map of the inhabited world. The infinite
universe, he said, was to be the source of an infinity of worlds, of which ours was
but one. These others worlds separated off and gathered their parts together by
their rotatory motions. This analogy with vortex motion has perhaps more to
do with the observations of cooking vessels than of slings. But even though the
origin of his line of thought was probably very different, not entirely dissimilar
theories were being advanced in Newton’s seventeenth century; masses of fire and
air were supposedly sent outwards and became the stars. The Earth was some
sort of floating circular disc, and the Sun and the Moon were ring-shaped bodies,
surrounded by air.

Strange though these ideas now seem, we catch glimpses of a type of scientific
reasoning that is by no means trivial.

When Anaximenes elaborates on Anaximander’s ideas, and argues that air is
the primeval infinite substance, from which bodies are produced by condensation
and rarefaction, he produces logical arguments based on everyday experiments.
Again he introduces rotatory motion as the key to understanding how the heavenly
bodies may be formed out of air and water.

These attempts at creating a physics of creation are characteristic in much
of classical Greek thought, and show a significant difference, in their engagement
towards science and astronomy, with respect to the Babylonians. Where the Baby-
lonians were exceptional bookkeepers of the heavenly occurrences and phenomena
related with those, they were, as far as we now, never truly occupied with the
questions why things happened. The early Greek philosophers — who were just as
much astronomers and cosmologist — were exceptionally important for the later
history of cosmological thought (Dreyer, 1953).
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Pythagoras

Pythagoras of Samos was born between 580 and 572 BC., and died between 500
and 490 BC. He was an Ionian Greek mathematician and founder of the religious
movement called Pythagoreanism. He is often revered as a great mathematician,
mystic and scientist; however some have questioned the scope of his contributions
to mathematics and natural philosophy. Herodotus referred to him as “the most
able philosopher among the Greeks.”

Despite his large religious following, nothing Pythagoras wrote has come down
to present times, still it seems that he took the ideas of Anaximander and Anaximenes
one step further. He claimed that all things were numbers. Pythagoras seems to
have been convinced that everything, from opinions, opportunities, injustices or
the most distant stars is rooted in arithmetic, and has a corresponding place in
the structure if the Universe as a whole. Whether or not this mystical belief can
be defended, there has been scarcely any period in history since that time when it
has not had important repercussions on scientific thought.

Aristotle tells of a geometrical model of the Universe, proposed by the Pythagore-
ans, involving a central fire around which the celestial bodies move in circles. This
central fire was not the Sun, although the Earth was certainly of the character of a
planet to it. To account for Lunar eclipses, the Pythagoreans postulated a counter
Earth (North, 1994).

It was about the this time also, that the Zodiac was introduced into Greece from
Babylonian sources. Almost simultaneously, the recording of the solstices, which
had long been under observation, was being given greater attention, in order to
improve either the civil calendar or the calendrical scheme into which astronomical
observations were fitted.

Simultaneously, models were made that tried to explain the motion of the Sun,
Moon and planets around the Zodiac. Figures 3.2 illustrate the motion of the
celestial objects.

Slowly but surely a characteristically physical style of Greek thinking was be-
ginning to develop, and was soon to begin to yield important results.

3.3 The celestial spheres

Greek astronomy in the fifth century BC., like that of the Near East, was inter-
twined with the study of meteorological phenomena like the clouds, winds, thunder
and lightning, shooting stars and the rainbow. This component remained, with
an astrological underpinning, until modern times. But, far more important in the
long term, were the seeds of the geometrical methods that early Greek procedures
contained (North, 1994).

The discovery that the Earth is a sphere, was traditionally assigned to Par-
menides of Elea , in 515 BC; he is also said to have discovered that the Moon is
illuminated by the Sun. A generation later, Empedocles and Anaxagoras seem to
have given a correct qualitative account of the reason for Solar eclipses, namely
the obscuration of the Sun’s face by the intervening Moon.

Astronomy was spread very thinly through the period leading to the first great
age of mathematical advance; the fourth century, which began with the remarkable
planetary scheme of Eudoxus, and ended with the first extant treatises of spherical
astronomy, those by Autolycus and Euclid. Small but important developments
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North Pole of
the Ecliptic

North Pole of
the Equa{or

Figure 3.3: Alternate view of the
celestial equator, the equator and
precession. The Earth’s axis rotates
about the poles of the ecliptic from
east to west. Consequently, the ver-
nal equinox Y also moves to the west.

North
Ecliptic

Pole G
J

K

H South Figure 3.4: Tllustration of the ecliptic co-
Ecliptic ordinates. The celestial longitude of a heav-
Pole enly object is represented by A. The celestial

latitude of an object is represented by S.

were taking place however.

The change that took place in Babylon, from the listing of stars by reference
to the Zodiacal constellations to a system of elliptical longitudes, had occurred
around 500 BC. Reckonings as we do now, from a zero-point where the ecliptic

22



The rise of Greek physical conception

and the equator meet, did not come for another six centuries. Figure 3.3 illustrates
the vernal equinox, celestial equator and the ecliptic, which Ptolemy introduced
in the western world for his definition of the tropical year. Figure 3.4 represents
the accompanying manner for measuring angles in longitude A and latitude 5.

In stead of defining a vernal equinox, the Babylonians had reckoned from the
zero-points of each Zodiacal sign, measuring in each from 0 to 30 degrees. Still,
the Greeks of the fifth century BC., had nothing comparable.

Eudoxus

The discovery of the sphericity of the Earth, and of the advantages of describing the
heavens as spherical, captured the imagination of the time of Plato and Aristotle,
in the fourth century BC. One man in particular was captured by this concepts;
Eudoxus of Cnidus.

Eudoxus (c. 400 — c. 347 BC) was born in Cnidus, an ancient Spartan city
on a peninsula at the south-west corner of Asia Minor. On a first visit to Athens,
he studied with Plato, who was approximately thirty years older. He later visited
Egypt, to study with the priests at Heliopolis, before he returned to Asia Minor.
Back home, he founded a school at Cyzicus, rivalling Plato’s Academy in Athens.
Through him, and his many students, the influence of the school was considerable,
though, his work was not fully appreciated throughout history. His planetary
theory, however, attracted much attention from the beginning (North, 1994).

No writings of Eudoxus have survived, but his system can be pieced together
from the writing of Aristotle and Simplicius — the latter was a Platonist, born in the
early sixth century AD., and he who wrote influential commentaries on Aristotle’s
work, but he was no mathematician. Eudoxus’ system is built up from concentric

P
Q_)niay

18.6 years

Figure 3.5: Eudoxus’ model for
the motion of the Moon. Sphere 1
produces the daily motion. Sphere
produces the motion of the nodes of
the Moon’s orbit, and explains why
eclipses do not occur always in the
same Zodiac sign; it is a representa-
tion of the draconic period (see Sec-
tion 4.1). Sphere 3 produces the
monthly motion around the path in-
clined 5° to the ecliptic. A similar
model was applied to the motion of
the Sun (Evans, 1998).
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spheres, centred on the Earth. It was the theoretical Universe of a mathematician,
where all the spheres lie inside one another, but their different sizes are ignored
(Walker, 1996).

To describe the Sun, one needed at least two spheres, one for the rapid daily
rotation, the other for the Sun’s annual motion in a contrary direction. The second
sphere then needed to be pivoted around the poles of the ecliptic circle. The Moon
could have been roughly described along the same lines. Still, Eudoxus added a
third sphere, for both the Sun and the Moon. To what account he did this, is still
debated. Figure 3.5 illustrates the model for the Moon, constructed by the spheres
of Eudoxus.

It was in his explanations of the direct and retrograde motions of the planet,
that Eudoxus’ pivoted spheres came into their own. In the fourth century BC., it
was well known that the planets did not wander through the sky with a constant
velocity, or even in a constant longitudinal direction. The superior planets — Mars,
Jupiter and Saturn — were known to follow retrograde paths across the night sky.

Retrograde motion is motion in the opposite direction. In the case of celestial
bodies, such motion may be real, defined by the inherent rotation or orbit of the
body, or apparent, as seen in the skies from Earth. In a heliocentric model it
is easy to explain why this phenomena is observed from the Earth. Figure 3.6
illustrates the apparent location of a superior planet, and why it seems to move
backwards, when the Earth catches up with it. Figure 3.7 displays a composite
image, made with observations of the motions of the planets over seventeen years.
It clearly shows the apparent loops in the orbits of all the five planets.

Eudoxus was able to show in his model, how a point on the spheres could
describe a figure-of-eight; a hippopede. In approximating the qualitative motion
of the planets in this way. With this, their seemingly erratic motions had been
reduced to a physical law.

Eudoxus provided with the makings of a powerful geometrical model for the
planetary motions, exhibiting the motions with a total of twenty-six spheres. And
even though, the model suffers from severe limitations, since it is a purely quali-
tative theory and the spheres are unable to accommodate the real motions of the
planets. It is the first geometrical model trying to explain the motions of the celes-
tial objects. Eudoxus produced a very remarkable planetary theory, based entirely
on spherical motions. In terms of its predictive power, this theory cannot beat
comparison with the Babylonian arithmetical schemes, but it was in many ways

Figure 3.6: Illustration of the ap-
parent retrograde motion of the su-
perior planets across the night sky.
Shown are five different times of the
year, and the according locations of
the Earth and the superior planet.
The arrows and projections indicate
how these planetary motions trans-
late into the apparent loops as seen
on Earth.

Planet
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Figure 3.7: A composite image, made out of observations of the motions of Mercury, Venus,
Mars, Jupiter and Saturn over seventeen years. It clearly shows the apparent loops in their orbits.

more important. First of all, it showed the later world the great power of geomet-
rical methods. Secondly, by an accident of history — its adoption by Aristotle —
it was for two thousand years instrumental in shaping philosophical views on the
general form of the Universe.

3.4 The Greek philosophy of spheres

While we are mainly interested in the birth of Greek astronomy, and therefore
focus on the early astronomical proceedings, it is very important to acknowledge
the influence of two of the most influential philosophers of ancient Greece, with
respect to this subject.

Plato and the motion of the planets

Plato (c. 427 — c. 348 BC) was born in Athens. He is generally considered,
together with his mentor, Socrates, and his student, Aristotle, to have laid the
foundations of Western philosophy

It is often said, that is was Plato, who explained how the observed motions
of the planets may be explained, in order of uniform and orderly motions of the
heavens. While the views of this great philosopher are of much interest, his in-
fluence on mathematics and astronomy is easily exaggerated. His contribution
mainly stemmed from his concern that, both astronomy and mathematics, were
part of the education of the ruling class and the ordinary citizens. Though, as a
propagandist, his influence is still a force to be reckoned with.

In his book the Timaeus, Plato describes the creation of the Universe by the
Demiurge out of the four basic elements. He also describes a relatively simple
model for planetary motion, made with hoops. This shows clearly that he already
has a real model for the motion of the heavenly objects (North, 1994). However,
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for his most complex representation of the motions of the heavens. We have to
turn to one of his earlier books. In the tenth book, of one of his finest works,
the Republic, Plato introduces a myth, told with much use of poetic imagery by
Socrates. It is the story of Er; a man killed in battle, whose soul visits the land
of the dead, to return after his miraculous revival. Socrates tells how Er’s soul
went to a certain magic place, where he saw the mechanism of the entire planetary
system; with nested bowls and hoops — of whorls, turning around a spindle of steel,
and each carrying a planet. This rested in turn on the knees of Necessity, the daily
rotation as well as the planetary motions being thus taken care of. The whorls
were turned by the daughters of Necessity; the Fates, and on each spindle, a Siren
sang a single note, so that together they made a harmonious sound.

Even though, there is no mention of a counter earth, an equator or of the Zodiac,
the myth of Er suggests very strongly that physical models of the Earth were being
made, and not merely described. To describe such a Universe as Er’s, one would
surely have introduced complete spherical shells, and whatever the whorls were,
they would have been open-topped, to allow one to see into the workings of the
COSMOS.

Aristotelian cosmology

Aristotle was by far, the most influential ancient philosopher of the sciences. He
was born in Stagira in 385 BC., and died in 322 BC. on the island Euboea. His
family was a privileged one; his grandfather had served as a personal physician
to the grandfather of Alexander the Great, and Alexander was in turn a pupil of
Aristotle. He studied under Plato in Athens, until the latter’s death in 348 BC.,
and after moving to Mycia, Lesbos and Macedonia, he returned to Athens where
he founded his own school of philosophy, the Lyceum. His very extensive writings
are highly systematic and coherent, and cover a large part of human knowledge
(Lindberg, 1992).

The most important single source for Aristotle’s cosmology, his De caelo ("On
the heavens’), was an early treatise, and does not contain all of what in his work
was most influential. It does not, for instance, have the theory of the Unmowved
Mower, for which we must consult his physics. This entity, at the outermost part
of the Universe, was taken to be the source of all movement of the spheres within
it.

As mentioned, Aristotle writes in a semi-historical way, collecting together
the opinions of previous thinkers and subjecting them to serious criticism. The
longest chapter in De caelo concerns the celestial sphere and the spherical Earth
at its centre. He mentions the theories of the Pythagoreans, and of an unnamed
school, according to which the Earth rotates at the centre of the Universe. He
dismisses that idea, as well as the idea of an orbital motion of the Earth. Both of
these we now of course accept. Aristotle sees to have been persuaded by Eudoxus’
theory that, if accepted, they would imply that the stars are subject to ’deviations
and turnings’, and that we experience those. Eudoxus had unwittingly scored a
hit for the fixed-Earth doctrine. If alive, he might have pointed out that if the
stars are at great distances, the argument fails.

Aristotle offers various arguments for the spherical nature of Earth and the
Universe (Lindberg, 1992; North, 1994). The Universe he conceives is to be built
layer over layer over a spherical Earth. Only circular motion is capable of endless
repetition without a reversal of direction, and rotatory motion is prior to linear
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because what is eternal, or at least could have always existed, is prior, or poten-
tially prior, to what is not. Circular motions are for Aristotle a distinguishing
characteristic of perfection, and therefore, the heavens acquire a special place in
any discussion of perfection. In fact, the heavens are so special, that according to
Aristotle, they are not made up out of the four elements found on Earth: earth,
air, fire and water; they are made out of a fifth element, or essence, called the
quintessence — also known as the ether.

For the technicalities of Aristotle’s planetary system we must turn to his Meta-
physics. There he seems to be accepting the theory of Callipus, who proposed a
modified theory of Eudoxus’, where thirty-three spheres describe the motions of
heaven. However, he notices that if all the spheres put together, are to account for
what we see, then for each of the planetary bodies, there must be other ’unrolling’
spheres to counteract the effects of the spheres above them, that do not belong to
the planet in question.

Aristotle’s is thus a mechanical view of the Universe, of spherical shells with
various functions, only some carrying planets. Motions were no longer being pos-
tulated as though they were items in a geometry book, nor were they justified in
terms of Platonic intelligences, but rather in terms of physics of motion, a physics
of cause and effect. With one exception; the first sphere of all, the first heaven,
transmits its circular movement to all lower spheres. But what moves this sphere?
There are many theological interpretations of this prime mover, whose activity is
the highest form of something divine (Keyser and Irby-Massie, 2002). Still, no
unambiguous can not be given to this question.

It is important to recognize that both Plato and Aristotle, had a major impact
in introducing a philosophy of perfect spherical motions. One which is held on to
through vast periods of history, till long after their time.

27



CHAPTER 4

Astronomical periods known
in ancient Greece

4.1 Lunar cycles

It was about the time of Pythagoras, in the fifth century BC., that the Zodiac
was introduced into Greece from Babylonian sources. Almost simultaneously, the
recording of the solstices, which had long been under observation, was being given
greater attention, in order to improve either the civil calendar or the calendrical
scheme into which astronomical observations were fitted.

During this period, also the motion of the Moon was studied, and various Lunar
cycles were distinguished (Neugebauer, 1975a,b,c; North, 1994; Evans, 1998).

Synodic month

The time it takes for a Moon to make one revolution around the Earth, with
respect to the Sun became known as the synodic month, roughly 29.5306 days.
With a Full Moon, the Sun, Earth, and Moon are on one line, with the Earth in
the middle. With a New Moon, the Sun, Moon and Earth are on one line, with
the Moon in the middle. This period is responsible for, and describes, the waxing
and waning of the Moon. The image at the top left of Figure 4.1 illustrates the
Synodic period.

Sidereal month

A sidereal period, is the time it takes a celestial body, to reach the same place in
the sky with respect to the background stars. A sidereal month is therefore defined
as the time it takes for the Moon to reach the same place in the sky with respect
to the celestial sphere; a period of 27.3217 days.

Tropical month

The mean time required for the Moon to travel from one equinoctial point, all the
way around the Zodiac, and return to the same point is called a tropical month. It
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Iclipstic P lance

Figure 4.1: Series of panels, illustrating the different astronomical Lunar periods. The image
top left, illustrates the succeeding positions of the Sun, Earth and Moon in one synodic period.
The second panel, top right, illustrates the different positions of the Sun, Earth and Moon in one
sidereal, as well as one tropical period. The panel at the bottom left illustrates the tilted Lunar
plane and the ecliptic, thus representing the draconic month. Finally, the fourth panel at the
bottom right, illustrates the positions of the Lunar apsides, which are necessary to appreciate
the anomalistic month.

is about 27.3216 days, slightly shorter than the sidereal period because the vernal
point precesses.

The image at the top right of Figure 4.1 illustrates both the sidereal and the
tropical month.

Draconic month

The plane of the Moon’s orbit is slightly tilted with respect to the plane of the
orbit of the Sun, which is known as the ecliptic. Therefore, the Moon can wander
approximately 5 degrees away from the Sun’s path. The line of intersection between
the plane of the Moon’s orbit and the ecliptic defines two points on the celestial
sphere: the ascending node, which is the location where the Moon’s path crosses
the ecliptic as the Moon moves into the northern hemisphere, and the descending
node, which is the location where the Moon’s path crosses the ecliptic as the Moon
moves into the southern hemisphere.

The time it takes for the Moon to make one revolution around the Earth, from
ascending node to ascending node, is known as the draconic month or the nodical
month, and its duration is about 27.2122 days.

In turn, the plane of the orbit of the Moon rotates also around the Earth. It
takes the plane about 18.6 years to make one sidereal revolution around the Earth.

The image at the bottom left of Figure 4.1 illustrates the draconic month.

Anomalistic month

The ancient Greeks already noticed the varying angular sizes of the full Moon.
The angular sizes are smallest or largest when the Moon is at one of the extremes
of the ellipse. These two extremes — or apsides — of the ellipse are called the perigee
and the apogee (see Figure 5.6). The point of closest approach is called the perigee;

29



Niels Bos — The Planetary Extension for the Antikythera Mechanism

: Figure 4.2: The difference in angu-
C : lar size of the Moon near perigee and
Perlgee apogee (Greco, 2005)

this is the point where the Moon has its largest velocity. The point of farthest
excursion is called the apogee; and the is the point where the Moon has its smallest
velocity.

Now, the time it takes for the Moon to travel from its perigee all the way
around its orbit and return to its perigee is called the anomalistic month, and
takes a period of 27.5546 days.

The anomalistic month is illustrated in the bottom right image of Figure 4.1.

Because of the tidal effect of the sun, the orbit of the Moon precesses, and thus,
its apsides are not kept at a constant orientation with respect to the stars. The
result is that the perigee and apogee make one revolution of a cycle in just under
nine years.

The phenomena of varying angular Full Moon sizes, is described by the Full
Moon Cycle; this is the period it takes for the Full Moon to go from the largest
angular size and shrink, until it eventually starts growing again and the same
maximum diameter is achieved.

The angular size of the Moon depends on how close the Moon is to the Earth
in its elliptical orbit. It is the same period the Sun takes — as seen from the Earth
— to complete an orbit relative to the Moon’s perigee. Likewise, it can be seen as
the beat period of the synodic and the anomalistic month (Freeth et al., 2008).

Most of these periods were also known by the Babylonians. And since they
describe such rudimentary processes, there is no known discoverer. They are,
however, extremely important in describing different astronomical phenomena. For
example, it is the synodic month that describes the different shapes of the Moon,
and it is the draconic month, that is used to predict eclipses; if the ecliptic and
the plane of the Moon were not tilted, there would be an eclipse every month, at
Full Moon. Because the Moon wanders around its 5 degree flight, this is not the
case. This means that there can only be an eclipse when the Moon is sufficiently
close to its node. This results in a Solar eclipse, when the Moon is at a node, and
it is a New Moon, and it results in a Lunar eclipse when the Moon is at a node
and it is a Full Moon.
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4.2 Calendar cycles

The Metonic Cycle

Scientific astronomy in Greece began in the fifth century BC., when on the hill
of the Pnyx, in Athens, the summer solstice of 432 BC. was observed by the
astronomers Meton and Euctemon. This is the oldest known Greek observation
(North, 1994; Evans, 1998). Whether or not it is correct to speak of a school
of astronomy founded by the two Athenians, both seem to have collaborated in
proposing a regular calendar cycle of nineteen years; the so-called Metonic Cycle:

19 Tropical Years = 235 Synodic Months = 6,940 days.

The same cycle was discovered earlier by the Babylonians. Whether Meton’s result
represents a borrowing from Babylonian or an independent discovery, is unknown.
However, Euctemon is known to have devised a parapegma, of star calendar, which
listed chronologically the appearances and disappearances of the most prominent
stars in the course of a year. The Babylonians seem to have used another para-
pegma then the Athenians. These parapegma were needed to calculate the lengths
of the months.

According to the Greek astronomer and mathematician Geminus, out of the
235 months, 110 were ‘hollow’ months of 29 days, and 125 were ’full’ months
of 30 days. To account for these differences, the astronomers in both Greece and
Babylon made rules of intercalation; the insertion of extra days. The parapegmata
were used to calibrate the Metonic cycle with the civil calendars.

The Callippic Cycle

A century after Meton and Euctemon, Callippus of Cnidus, a student of Eudoxus,
improved the Metonic Cycle by taking four periods, which sum up to 76 years,
and removing 1 day:

76 Topical Years = 940 Synodic Months = 27,759 days.

The Callippic Cycle was used yet later by Hipparchus and Ptolemy in another
modified and improved form:

304 Topical Years = 3,760 Synodic Months = 111,035 days.

It is clear however, that Hipparchus’ refinement was never practically employed.
The simpler cycles of 19 and 76 years were for most purpose enough, and the Cal-
lippic Cycle eventually became enshrined in the Easter Computus of the Christian
Church, where it remains in use to this day.

4.3 Eclipse predicting cycles

The Saros Cycle

Because the position of the perigee of the Lunar orbit is not constant, and because
of the regression of the its nodes (see Section 4.1), the circumstances of eclipses
do not repeat from one year to the next. But we can form a longer period after
which the circumstances do more or less repeat.
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Suppose, a Lunar eclipse occurs on a certain day. Then, after a whole number
of synodic months nave elapsed, and after a whole number of draconic months
have elapsed, and after a whole number of anomalistic months have occurred, the
circumstances will be perfect once again; the Moon will be full again, it will have
returned to the same node, and it will again be at the same distance from the
perigee as before.

This Lunar cycle is known as the Saros cycle, and occurs after the following
number of Lunar months:

223 synodic = 242 draconic = 239 anomalistic months,

which in turn is roughly equal to 6,585 1/3 days, or 18.029 years.
Although the 18-year eclipse cycle is already attested in Babylonian material,
the name Saros is of modern, probably seventeenth century origin (Evans, 1998).

The Exeligmos

Since the Saros cycle is contains 6,585 1/3 days, we can form a period three times
longer, which will contain a whole number of days. Such a period was called the
Exeligmos by the Greek:

669 synodic = 726 draconic = 717 anomalistic months,

which in turn is roughly equal to 19,756 days, or 54.087 years.
After one Exeligmos, not only the same circumstances of the Lunar eclipse
reoccur, it even takes place at about the same time of day.
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CHAPTER 5

Epicycle theories of the
Hellenistic era

In order to construct sound hypotheses about the possibility, or presence of any
geared planets inside the Antikythera Mechanism, it is important to know which
theories they are most likely to apply to. Therefore, this chapter forms an integral
part of the research described in this thesis. It deals with the theories of deferents
and epicycles, of which the first arose in around the third century BC.

When Alexander the Great died in Babylon in 323 BC., his vast empire was
divided into a number of independent realms. These regions were ruled by the
senior officers of the late Alexander. The last of these smaller remains came under
the sway of Rome in 31 BC. By that time, the other parts had already become
provinces of the Roman empire (Kenny, 1998).

The intermediate centuries, in which Greek civilization flourished throughout
all the lands around the Eastern Mediterranean, became known as the Hellenistic
era.

In this period, Greek colonists came into contact with widely different systems
of thought. In Bactria, at the far eastern end of the former Empire of Alexander,
Greek philosophy encountered the religion of Buddha. In Persia Greeks encoun-
tered the already ancient religion of Zarathustra. And in Palestine, they met the
Jews.

The largest realm was that of the Macedonian general Ptolemy I Soter, and his
descendants, in modern day Egypt and Libya. Here, the new city of Alexandria
was built, whose citizens were drawn from every part of the Greek world. The
founded a magnificent and well-catalogued library, which became the envy of the
world.

A series of brilliant mathematicians and scientists in Alexandria competed with,
and in time surpassed, the scholars in the Academy and the Lyceum who, in
Athens, carried on the work of their founders Plato and Aristotle. It was a flour-
ishing time, in which a true intellectual revolution triggered the birth of a wide
variety of different aspects of science. Among which, the further exploration of
mathematical models, able to describe the motions of heaven.
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5.1 The early deferent-and-epicycle system

It is in the early days of the Hellenistic age, that the first true mathematical
descriptions for the planetary motions arise. Though they are of uncertain origin,
most studies point to one man.

The Epicycles of Apollonius

Apollonius of Perge (c. 262 — c. 190 BC) grew up in an ancient Greek city in
southern Asia Minor, where he lived in the second half of the third century BC.
This was at the start of the Hellenistic era. It is debated whether he studied long
with the pupils of Euclid, but he was certainly one of the greatest of Greek math-
ematicians in antiquity, to be compared perhaps only to Archimedes (Osborne,
1983; North, 1994). He did for the geometry of conic sections what Euclid had
done for elementary geometry. Those methods proved to be enormously important
for astronomy, especially in the later century of Kepler, Newton and Halley — who
all studied Apollonius’ text closely.

Even though, Apollonius is known for measuring the distance between the
Earth and the Moon, and he is said to have made tables of the Sun and the
Moon, he is best known in an astronomical context for his theorem on planetary
motions. According to Ptolemy (c. 140 AD.), Apollonius found a relationship
between the velocity of a planet moving on an epicycle round the deferent cycle,
and the ’irregular’ direction and retrograde motions of the planet (Neugebauer,
1959).

In the period between Callippus (c. 330 BC) and Apollonius two models arose;
the eccentric and the epicyclic model. These models represented a major deviation
from the divine and perfect spherical model of Aristotle, and are required to fit the
models to the observations. In the eccentric model, the planet — or other celestial
body —is supposed to rotate with a steady eastward motion on the circumference of
a circle placed eccentrically to the Earth. In the epicyclic model, the body rotates
uniformly about the centre of a small circle called the epicycle, which in turn
rotates eastwards about a larger circle, centered on the Earth, called the deferent.
It is obvious that both models will produce a variation in the distance of the
body, and it easy to show that both will also, under suitable assumptions — which
include the rotation of the eccentric around the Earth — yield retrograde motion
of the planets. The two models are in fact fully equivalent in the mathematical
sense (Hanson, 1960; Walker, 1996). In fact, it was Apollonius who proved this in
classical times (Neugebauer, 1959). It can be shown in a relative simple scheme
(see Figure 5.3).

As stated, little is known about the genesis of these two models; it is imaginable
that the astronomers noticed that a displacement of the spheres of Aristotle re-
sulted in a better model, and perhaps it was the Aristotelian philosophy of perfect
spherical motions, that nourished the epicycle theory (Pedersen, 1974). Neverthe-
less, this first epicycle theory became known as Apollonius’ model (Evans, 1998).

Apollonius’ deferent-and-epicycle model is illustrated in figure 5.1. The figure
lies in the plane of the ecliptic, and is observed from the ecliptic north pole. The
deferent circle is centered on the Earth O. Along this circle, point K moves
eastward at constant speed. A second sphere; the epicycle, is centered on the
moving point K. The celestial body — planet, Sun or Moon — moves on point P,
also at a constant speed.
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Epicycle

direction

Figure 5.1: Apollonius’ epicycle-
and-deferent model. The Earth is lo-
cated at O, the celestial object moves
Deferent around its epicycle at P, the direc-
tion of the vernal equinox (see Figure
3.3) is marked by YT (Evans, 1998).

The motion of K around the deferent is designed to represent the mean motion
of the celestial object around the ecliptic, K must therefore complete one revolution
in one tropical period. The angular distance between K and the vernal equinox
Y, is called the mean longitude, denoted by A. Thus, A increases by 360° in one
tropical period.

The motion of P around the epicycle is designed to reproduce the retrograde
motion. The location of P on the epicycle is defined by the epicyclic anomaly, p,
which increases by 360° in one synodic period.

Figure 5.2 shows a more detailed representation of the deferent-and-epicycle
model, including most of the terminology and notation used in Apollonius’ model.
The point 7 of the epicycle, which is nearest the Earth, is called the perigee of the
epicycle. The point a, farthest from the Earth, is called the apogee of the epicycle.
The object’s actual longitude at any moment is denoted by A. A retrograde motion
can seem to appear, depending on the orbital velocities of A and v, when the object
is at 7, for then the motion of P on the epicycle is westward in opposite direction
with respect to the motion of K on the deferent; the object then appears to be
backing up. Figure 5.4 illustrates the apparent motion of P on its epicycle, and
on its deferent, while it travels through the heavens.

When the two motions are put together, the resulting motion shows a series
of loops in the case of the superior planets. Between each retrograde loop and
the next, the object makes a complete trip around the ecliptic, plus a bit more,
which is the resultant of the motion of both the Earth and the celestial object in
question.

The Sun

The epicyclic model of Apollonius’ describes one of the first theories that accounts
for the existence of the Solar anomaly. The Sun, ®, moves on an epicycle, while
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Figure 5.2:  Terminology and
notation used in  Apollonius’
deferent-and-epicycle model.

Points labeled in the Figure:
O is the Earth

K is the centre of the epicycle
7 is the perigee of the epicycle
a is the apogee of the epicycle
P is the celestial object

T is the vernal equinox

Angles of circles:

X is the mean longitude

w is the epicyclic anomaly

A is the longitude of the object

(Evans, 1998)
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Figure 5.3: Relation between the mean Sun and the true Sun in one tropical year, as well as an
illustration of the fact that the eccentric model is mathematically identical to the epicycle model.
The blue dot represents the Earth, the yellow dot represents the Sun, the back dot represents
the centre of the eccentric sphere, and the red dot represents the centre of the Solar epicycle.
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the centre K of that epicycle follows the deferent, around the Earth. In the case
of the Sun, the location K is usually referred to as the mean Sun, ®, and the
actual position of the Sun on the epicycle is referred to as the true Sun. Figure 5.3
illustrates the Sun on its revolution through one tropical year, with the location
of both the mean Sun, red dot, and the true Sun, yellow dot.

Both the revolution of the mean Sun, ®, around the Earth, O, as the revolution
of the Sun, ®, around its epicycle are completed in one year. Thus, the angles of
the longitude of the mean Sun, Ag and the Solar anomaly e are always equal.

It is unclear whether Apollonius used his model to represent the motions of the
Moon. According to Ptolemy, it was Hipparchus who made two models, predicting
the Moon’s orbit around the Earth (Pedersen, 1974). However, these two models
were analogous to the eccentric and the epicycle model, and it is argued by both
Neugebauer (1959, 1983) and Pedersen (1974), that it could very well have been
Apollonius who already modelled the motion of the Moon.

The Moon

Looking at the epicycle model of the Moon, we see a model that is quite similar to
that of the Sun. The Moon rotates on an epicycle at the rate of the anomalistic
month. In turn, the epicycle moves on the deferent at the rate of the sidereal
month (Pedersen, 1974; Freeth et al., 2006).

Inferior planets

The inferior planets Mercury and Venus have the same tropical period as the
Sun. The move alternately ahead and behind the Sun, but they always remain its
close companions. This relation translates in the fact that the direction from the
Earth to the mean Sun always coincides with the direction from the Earth to the
epicycle’s center:

Inferior planet: A, = Ag. (5.1)

In Figure 5.5, this relation is illustrated; O, K and ® all lie in one line. The relation
also explains why an inferior planet has limited elongations from the mean Sun.

A A,

Figure 5.4: Tllustration of the re-
sulting epicycle motion for a supe-
rior planet, as described by the mod-
els of Apollonius, and as seen from
the Earth E. The planet moves from
point X, anticlockwise to line Al,
then clockwise back to line A2, be-

E fore following its way anticlockwise
to line Al.
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Superior planets

The superior planets Mars, Jupiter and Saturn, move retrograde when the Earth
moves between the planet and the Sun. The speed at which they rotate on their
deferent is the same as the orbital times in the present heliocentric model, so, for
instance, Mars takes 1.88 years to make one evolution on its deferent. Furthermore,
the speed at which they circle on their epicycle is 1 year; equal to the speed at
which the Sun rotates the Earth.

Figure 5.6 represents the motion of a superior planet, along with the mean Sun,
®, around the Earth. The fact, that the period of one revolution of both the Sun
as well as point P takes 1 year, around respectively the Earth and the epicycle, is
realized by the fact that the lines from K to P, and from the Earth to the Sun
always remain parallel. Thus K P is parallel to Obar®:

KP || 06. (5.2)

From Figure 5.6, we can deduce a relation between the planet’s mean longitude,
Ap, and epicyclic anomaly, y,, and the longitude of the mean Sun, Ag. First, note
that the three angles with vertex at O satisfy the relation A, + KO® = Ag. But
since O® is parallel to K P, angle KO® has to be equal to p,, so we can write:

Superior planet: Xy + pp, = Ao. (5.3)

In words: the planet’s mean longitude plus its epicyclic anomaly equals the lon-
gitude of the mean Sun. This equation reflects the period relation for a superior
planet: number of tropical cycles elapsed + number of synodic cycles elapsed =
number of years elapsed.

Successes and failures of the model

Apollonius’ model provides a simple explanation of retrograde motion that is con-
sistent with the principle of Aristotelian physics, that celestial bodies must move
on circles at uniform speed.

There are other successes: according to the model, Mars is closest to the Earth
during retrograde motion (Evans, 1998). This is in agreement with the observed

Figure 5.5: Relation between the
mean Sun and an inferior planet:
Ap = Ao (Evans, 1998).
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Deferepy

Figure 5.6: Relation between the
mean Sun _and a superior planet:
Ap + tp = Ap (Evans, 1998).

brightness of Mars during retrograde motion. Apollonius’ model thus represents
an improvement over the concentric spheres of Eudoxus (see Section 3.3).

However, the model is still not capable of predicting the real motions of the
planets accurately. The model simply has no numerical predictive power.

5.2 Hipparchus and the intermediate models

Hipparchus of Nicaea (c. 190 — ¢. 120 BC) is known for his major contributions
to ancient and even present astronomy. The discovery of the precession of the
equinoxes (see Figures 3.2 and 3.3) is generally attributed to Hipparchus, though
the difference between the sidereal and tropical year (see Section 4.1) was already
known to Aristarchus of Samos.

According to Ptolemy’s brief summary in the Almagest, Hipparchus made no-
table contributions to to the theories of the Sun and the Moon. However, he did
not give a theory of the planets, but only rearranged the observations in a way
that it showed the inconsistencies of the model, with respect to the hypotheses
of the mathematicians (Evans, 1998). He saw, for instance, that the modelled
retrograde motions of Mars were not similar to the observed motions. The models
of his predecessors described retrograde motions that were identical in shape and
duration, Hipparchus noticed that these retrograde motions varied with almost
every OCcurrences.

According to Ptolemy, one of Hipparchus’ main contributions was a demon-
stration that the zero-eccentricity of Apollonius’ model was inconsistent with the
motions of the planets. Still, Hipparchus’ predecessors could hardly have been
unaware of this fact.

While Eudoxus and Apollonius saw their job as merely giving a physically
plausible, geometrical explanation of retrograde motion, Hipparchus insisted on
a planetary theory that could also explain the Zodiacal inequalities. And so,
in the period between Apollonius and Ptolemy, Greek astronomers investigated
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planetary theories that modelled the motions of the celestial bodies with both
moving eccentric deferents, and epicycles.

Hipparchus improved Apollonius’ model by determination of the Lunar eccen-
tricity and apogee position from three Lunar eclipses. From the angles formed in
the three positions with the Earth and with the theoretical centre of the eccentric
deferent, Hipparchus calculated the radius of the deferent, as well as the direction
of the centre of the deferent (Walker, 1996).

With this observation, Hipparchus must also have noticed the libration of the
Moon, and with that, severe indications that the Moon is spherical (Neugebauer,
1975a).

5.3 The Ptolemaic models

The astronomer, mathematician, astrologer and geographer Ptolemy was born
around 100 AD., and died about seventy years later. His name Ptolemaeus showed
that he was an Egyptian descended from Greek, or at least had Hellenized ances-
tors. His first name Claudius, shows that he held Roman citizenship. Beyond these
simple facts, virtually nothing is known about a personal sort.

Ptolemy’s extensive writings suggest that he was engaged in assembling an
encyclopedia of applied mathematics. Of works on mechanics, only the titles are
known. Much of his Optics and Planetary Hypotheses can be pieced together from
Greek of Arabic versions. Some minor works on projection, called Analemma and
Planisphere, as well as the monumental Geography survive in Greek, as does his
great treatise on astronomy, in which we are interested, the Almagest (Toomer,
1998).

The title of this, his finest work, is itself an interesting indicator of cultural
movements. It began in Greek, entitled as Mathematike Syntaxis; which can be
translated as Mathematical Compilation or Mathematical Treatise, and soon be-
came The Greatest Compilation. When the Arabs translated it in the ninth cen-
tury, only the word greatest was kept, but this is an approximation to the Greek
word megiste, so that it now became al-majiste. From there to the latin Almagesti
or Almagestum, in the twelfth century, and thence to our Almagest, were small
steps.

This work in thirteen books begins with a short statement of reasons for holding
to a largely Aristotelian philosophy — but one that shows the influence of the Stoics,
too. However, soon he turns to careful discussion of the theories of his predecessors
— amongst which the works Hipparchus — and his own well-studied scientific and
philosophical ideas (Pedersen, 1974; Evans, 1998).

Ptolemy’s theory of longitudes

Figure 5.7 illustrates the planetary model according to Ptolemy for Venus, Mars,
Jupiter and Saturn. Much like the theories proposed by Hipparchus and later
astronomers, the deferent circle is not centered on the Earth O. Therefore the
deferent is equal to the eccentric, which is centered on C.

The line through O and C cuts the eccentric at the apogee of the eccentric A,
and at the perigee of the eccentric w. The line through A and = is therefore called
the line of apsides. The angle marked with A is the longitude the apogee of the
eccentric. This longitude is different for every planet.
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The real difference with previous theories, and that what was perhaps the most
important personal contribution to planetary theory by Ptolemy, is the fact that
K, the centre of the epicycle does not move with a uniform motion around O, or
C, but around a third point F; the centre of uniform motion known as the equant
point. That is, an observer located at E, would see K travel through the sky with
a uniform motion; so with equal angles at equal times.

In Ptolemaic astronomy, CE = CO, so the that the equant and the Earth are
equidistant with respect to the centre of the circle C. If R is the radius of the
deferent, the ratio CO/R, which is thus equal to CE/R, is called the eccentricity,
denoted by e.

Ptolemy’s introduction of the equant point into planetary theory means that
the point K must physically speed up and slow down. Just like an elliptic orbit,
K travels slowly at the apogee, and most rapidly at the perigee. Needles to
say, this is bending the rules of Aristotle’s physics, where uniform speeds and
concentric spheres are at the foundation of his astronomic philosophy (see Section
3.3). However, the rules governing the variation in speed is very simple, since the
angular motion appears uniform from FE.

Line OZ is parallel to the line EX. The point X rotates around O and FE
in the same period as Z, though at a uniform velocity. Therefore, the line EX
is called the zero-degree reference line for angles measured at the equant. This
signifies that the mean longitude X increases at a uniform rate.

The planet P moves uniformly on the epicycle in the same way as K does on
the eccentric, counterclockwise when viewed from the north pole of the ecliptic.
The position of the planet on the epicycle is specified by angle f, referred to as
the mean epicyclic anomaly. Since P moves with a uniform speed on its epicycle,
this means that p increases uniformly.

As Evans (1998) expresses, often, one reads complaints by popular writers on
the history of astronomy that the theory of Ptolemy was complicated, unnatural or
arbitrary. However, the planets are as simple as the planets allow. The deferent,
with its eternal revolution from west to east, produces the steady progress in
longitude associated with a planet’s tropical revolution. The epicycle accounts
for the second inequality, which is manifested most spectacular in the planet’s
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K Figure 5.7: Ptolemaic model of

planetary theory of longitudes. The

Earth is at O, and the centre of the

" n deferent is at C. The point around

which the epicycle centre K moves,

P is located at the equant point FE.
(Evans, 1998).
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retrograde motion. But the planet also has a Zodiacal inequality, i.e. that it does
not move through the Zodiac at a uniform speed. The combination of equant
and off-centre deferent is Ptolemy’s manner for dealing with this inequality. It is
important to understand how these features are forced on the model by the planets
themselves.

The Sun and the Moon

In Ptolemy’s theories, there is very little difference in describing the Sun’s mo-
tion, compared to the model of Apollonius. It also contains a deferent without
eccentricity — thus centered on the earth, on which the mean Sun ® rotates, while
forming the centre of the epicycle whereon the true Sun ® follows its uniform mo-
tion eastwards. However, the theory of the Moon did undergo some adjustments
(Pedersen, 1974).

It was Hipparchus who measured the parameters of the Moon more precisely,
and made the first alterations. Ptolemy took this one step further, and placed the
Moon on a rotating deferent. Figure 5.8 shows a series of simulations concerning
two revolutions of the Moon around the Earth, according to Ptolemy’s model with
rotating deferent and epicycle. The series starts with the conditions for a Solar
eclipse. The red line represents the crossing of the Lunar orbital plane with the
ecliptic. The true Moon (green dot) and the true Sun (yellow dot) are on one line
with the Earth (blue dot). The purple dot represents the mean Sun, the red dot
the centre of the deferent and the cyan dot the mean Moon.

The small frame at the left bottom of each sub-figure shows the Moon as a
white dot, where seen from the Earth. The yellow dot of the Sun drifts through
this frame when it is at the same approximate position in the sky. The bottom
right frame of each sub-figure shows the different corresponding faces of the Moon;
thus related to the positions of the Sun and the Moon.

Concerning the planets

In Section 5.1, we examined the connection between the Sun and the inferior and
superior planets for Apollonius’ model. In the case of an inferior planet, the centre
of the epicycle lies on the line of sight from the Earth to the mean Sun. In the
case of a superior planet, the line of the planet to the centre of its epicycle remains
parallel to the line of sight from the Earth to the Sun.

Actually, the relationship for inferior planets only holds if the planet’s orbit
has no eccentricity. This would mean for Ptolemy’s model that the equant and the
centre of the deferent coincide with the Earth. Since this is not always the case,
it is necessary to restate the relations more precisely.

Figure 5.9 illustrates the connection between the mean Sun and the inferior
planet Venus. The mean Sun @ travels at uniform speed around a circle centered
on the Earth O. The planet P travels on an epicycle whose centre K travels on an
eccentric deferent, which his centered on C, and the equant is located at E. Now,
in Ptolemy’s theory of longitudes EK remains parallel to O®:

EK || 0. (5.4)

In other words: the line between K and the centre of its uniform motion, remains
parallel to O®, which in that sense is similar to Apollonius’ model, where the the
line of sight between K and its centre of motion is only shifted onto O®.
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Figure 5.8: Series of panels displaying two revolutions of the Moon, according to Ptolemy’s
model with rotating deferent and epicycle; starting with the conditions for a Solar eclipse. The
blue dot represents the Earth, the purple dot the mean Sun, the yellow dot the true Sun, the
red dot the centre of the deferent, the cyan dot the mean Moon and the green dot the true
Moon. The red line represents the crossing of the Lunar orbit with the ecliptic. With respect
to this Lunar plane, the frame at the left bottom of each sub-figure shows the Moon as well as
the Sun as seen from the Earth. The bottom right frame of each sub-figure shows the different
corresponding faces of the Moon.
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Figure 5.9: Relation between
Venus and the mean Sun, according
to Ptolemy. FEK is parallel to O®
(Evans, 1998).

Figure 5.10: Relation between su-
perior planets and the mean Sun, ac-
cording to Ptolemy. K P is parallel to
OO (Evans, 1998).

It must be noted that Ptolemy introduced a model of Mercury, containing two
perigees in one revolution. This model, unfortunately, is based on several erroneous
measurements (Pedersen, 1974).

Figure 5.10 illustrates the connection between the mean Sun and a superior
planet. The radius of the epicycle remains parallel to the line of sight from the
Earth to the mean Sun, like in Apollonius’ model K P remains parallel to O®:

KP || 0G. (5.5)

Ptolemy himself states in the Almagest, that it will still be the case that when
the planet is in opposition to the mean Sun, K P will point directly at the Earth.
However, since £ and C do not in general coincide, the centre of the retrograde
arc will not correspond exactly to the mean Sun position.

The peculiar role of the mean Sun in the ancient planetary theory provided a
clue that the Sun deserved a more important role in their world picture. However,
it was not until many centuries later that anyone saw the consequences clearly. It
is true that several astronomers proposed a heliocentric cosmology, but both on
observational — there was no observed parallax of the stars — and philosophical
grounds, this idea was dismissed, time after time.
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5.4 Successors of Ptolemy

According to one school of thought in the history of astronomy, minor imper-
fections in the original Ptolemaic system were discovered through observations
accumulated over time. More levels of epicycles (circles within circles) were added
to the models, to match more accurately the observed planetary motions. The
multiplication of epicycles is believed to have led to a nearly unworkable system
by the sixteenth century. Copernicus created his heliocentric system in order to
simplify the Ptolemaic astronomy of his day, and he succeeded in drastically reduc-
ing the number of ‘circles,” a term which included both epicycles and (eccentric)
deferents (Stimson, 1917).

Nevertheless, Ptolemy’s epicycle model was able to represent the orbits of the
planets very accurately. Barbour (2001) describes in his book, how Ptolemy’s
model represents a first order approach of an the ellipse described by the first two
laws of Johannes Kepler. An ellipse is equal to a circle in first order. The Earth
and the equant are the two foci of the ellipse, and the uniform motion about the
equant, is Kepler’s second law to first order. That is, the Ptolemaic system was,
in many respects, closer to our modern descriptions of the heavens than was the
Copernican, which eliminated the equant and off-centre equant.

This, as well as their insights into the peculiar role of the True Sun mentioned
in the previous section, promotes the point of view that the Ancient Greek were
not ignorant, and saw some of the faults in their models. They just held on to it,
since it was most consistent with their philosophy and world view.

45



CHAPTER 6

Description of the
Antikythera Mechanism

6.1 Initial axioms

At the time, when Derek de Solla Price started his 20-year odyssey of research
on the Antikythera Mechanism, only the seven largest fragments of the device
were known — Fragments A to G (see Figure 6.1). Somewhere between 1902 and
the time when Price began, the smaller parts had been lost in the stores of the
National Archaeological Museum of Athens. Price (1974) already speculates about
the fact that there must have been more pieces, since old photographs show that
fragment C covered more of the lower portion of the main drive wheel on the front
of fragment A. In fact, much more such cover can be seen on the photographs,
which were taken before cleaning.

A similar fate as the missing pieces, affected the know how about the remaining
fragments; it was no longer apparent how the fragments were related. So Price
had to start with a puzzle, trying to figure out in which way the fragments were
joined in ancient times.

As stated in chapter 2, the first published account of the discovery of the
mechanism appeared in the Athens newspaper To Asty, on May 23, 1902. The
announcement, written by Svoronos, said that the object had been examined, and
that it was identified as some sort of an astrolabe, which was contained in a box. It
also claimed that the device had been epigraphically dated, through the mirrored
lines of inscription that are still visible on Fragment B, to a period extending from
about the second century BC. to the first or second century AD. On the same day,
Svoronos published a second article in another Athens newspaper, the Neon Asty
(No. 163), in which he claimed that the object was an astrolabe with spherical
projections on a set of rings.

A couple of days later, Konstantin Rados confirmed the inscription in Neon
Asty (No. 165), but noted the great difficulty in reading them. He also had the
opinion that the mechanism looked as if it contained a spring, and suggested,
since the excavated statues appeared to be much earlier in date, that the device
perhaps came from a second and later ship. A few years later, in 1907, the great
classical philologist Albert Rehm entered the arena, postulating his theory about
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Figure 6.1: The fragments of the Antikythera Mechanism. The large pieces in the top half are
known, from left to right, as Fragments A to G. The pieces in the lower half are known as pieces
1 to 75, these pieces are likely to belong to the Mechanism, however, according to Freeth et al.
(2006) this is not definite.

the planetarium of Archimedes. With this, the debate about the origin of the
Antikythera Mechanism started. Even though this debate did not present any
actual new major investigations of the fragments, they provided a way in for Price,
as well as an extensive written account of the ideas that arose before his entry.

Price started to work on the Antikythera Mechanism in 1951, and published
his first article on the Mechanism four years later (Price, 1955). Even though there
followed several more, in which he describes his new insights (Price, 1956, 1959),
obtained through new photographs or fruitful collaboration with other scientists,
the real breakthrough presented itself not until 1971.

In that year, Price was alerted by a new publication to the possibility of using
gamma-radiography to see through the corrosion and the accretion of the frag-
ments.

6.2 The Fragments

In Figure 6.1, all the surviving fragments of the Antikythera Mechanism are shown,
as published in Freeth et al. (2006). The 7 large pieces in the top half of the Figure
are known as Fragments A to G — from left to right. The 75 mostly smaller pieces,
in the lower half of the Figure, are referred to as pieces 1 to 75.

Figures 6.2 and 6.3 show the front and back faces, respectively, of the largest
surviving fragment, being approximately 16 cm wide, and 17 ¢m high. One of its
main features is the large gear wheel on the front face, but it also directly manifests
the complexity of the device; a vast diversity of gears, holes and pegs, on both
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the front and the back, characterize the ancient complexity of this extraordinary
mechanism immediately.

The large gear wheel is now known as the Sun-wheel. It has 224 teeth, and
figures as the main drive for the “mechanical computer”, in most reconstructions
made by now.

The front and back of Fragment B are shown in Figure 6.4. Sub-figure a shows
the external face, which is covered in a layer of inscriptions in mirror writing,
similar to that on Fragment A. These writings were originally a cast of text on the
inner face of the back door. Sub-figure b shows the internal face, which contains
the back of several scale rings, held together with a bridging piece. In sub-figure b
the remains of a gear and its belonging axis can also be seen (Freeth et al., 2008).

Figure 6.2: Front face of the largest surviving part; Fragment A. One of its main features is
the large gear wheel on the front face, but it also directly manifests the complexity of the device;
a vast diversity of gears, holes and pegs characterize the ancient complexity of this extraordinary
mechanism immediately. The large gear wheel is now known as the Sun-wheel. It has 224 teeth,
and figures as the main drive for the mechanical computer, in most reconstructions made by now.
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Price (1974) supposed that the inscribed sheet which made the mirror image
impressions on both Fragments A and B, was originally much more extensive.

Along lower left-hand corner of the front (Figure 6.2) and the right-hand margin
of the back (Fragment 6.3) of Fragment A, there occur small pieces of a brownish
rock-like substance adhering to what seems to be the remains of some sort of
channel. Though the mechanical details are difficult to see, Price (1974) takes this
to be the traces of what once were the wooden side walls of the casting of the
instrument. He also refers to Rehm, who mentions a wooden casing, so possibly it
was more visible at the time of the discovery, or there existed other fragments of
it before his examinations.

The front of Fragment C is shown in Figure 6.5. It displays clear features of a
part of dial work at the front, as well as explicit parts of non-mirrored inscriptions,

Figure 6.3: Back face of the largest surviving part; Fragment A. Several different gears can
be seen, as well as remains of the case of the mechanism. Main features are the large 223 teeth
wheel, and the inscriptions of mirror writing in the right bottom corner.
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presumably from the outside of the mechanism.

Fragments D and E are shown in Figure 6.6. Fragment D — left — contains the
only gear of thirty surviving gears in the device that is not explained in the model
developed by the Antikythera Mechanism Research Project (Freeth et al., 2008,
AMRP). Fragment E — right — contains evidence for the Saros eclipse prediction
dial as well as inscriptions that refer to the organization of the Metonic calendar.

By the time of Price’s analysis and reconstruction, only the largest surviving
parts of the Mechanism were known — Fragments A-G in Figure 6.1. During

Figure 6.4: Fragment B.
Sub-figure a shows the exter-
nal face, which is covered in a
layer of inscriptions in mirror
writing. These writings were
originally a cast of text on the
inner face of the black door.
Sub-figure b shows the internal
face, which contains the back
of several scale rings, held to-
gether with a bridging piece.
In sub-figure b the remains of a
gear and its belonging axis can
also be seen.
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Figure 6.5: Front
side of Fragment C.
This part features a
clear part of the dial
work, as well as clear
inscriptions from the
outside of the case
which surrounded the
mechanism.

Figure 6.6: Fragments D and E. Fragment D - left — contains the only gear of thirty surviving
gears in the device that is not explained in the model developed by the Antikythera Mechanism
Research Project (AMRP Freeth et al., 2008). Fragment E — right — contains evidence for the
Saros eclipse prediction dial as well as inscriptions that refer to the organization of the Metonic
calendar.
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extensive searches in the stores of the National Archaeological Museum of Athens,
at the beginning of the third millennium, more parts were found. In their paper,
Freeth et al. (2006) give an overview of these new finds, which are presented as
pieces 1 to 75 in Figure 6.1.

Appendix A.1 consists of an additional series of photographs, showing the three
largest Fragments as they are displayed in the National Archaeological Museum.
Different side views of the pieces further illustrate the complexity of these surviving
elements.

6.3 Price’s model

The first gamma and X-ray radio-graphs

When in 1971, through the cooperation with Dr. Ch. Karakalos, and after a
painstaking work of preparation, analysis, long exposures and delicate positioning,
the first gamma and X-ray radio-graphs were taken, it was immediately evident
that much of the gearing was preserved within the fragments. It was Karakalos,
who made the first all important counts of gear teeth, a delicate task, tedious
and subject to maddening errors and repetitions before consistent results can be
obtained. So even though the images were remarkably clear and full of detail, there
was much discussion about the actual tooth counts, and the information about the
how the gears were meshed was also uncertain. Overall, the evidence was quite
incomplete. Nevertheless, much of the form and structure of the gears and the
gear trains could be elucidated.

Bit by bit, Karakalos and Price were able to analyze the crucial cases where
meshing between certain wheels was doubtful. They examined very carefully the
structure of the gears and the gearing of the lower back dial and established their
connections with little doubt and to such accuracy, that for the first time the
gear ratios could be determined, and associated with well-known astronomical and
calendrical parameters.

Joining the main Fragments

Figure 6.7 shows a schematic diagram describing how the four main fragments
A-D join together in the Antikythera Mechanism. It shows how the four main
parts — fragments A-D — were joined to form a single mass. Figure 6.7 illustrates
how fragment C covers the lower left corner of the front of the main fragment A,
fragment B covers the top right of the back of Fragment A, and fragment D fits
between B and A annular rings of the dial plate of B. According to Price, it was
the wooden member, represented by the hatched part indicated with the x, whose
shrinking may have provoked the splitting apart of the original mechanism.

With the detailed radiography images that provided the evidence for the struc-
ture of gears, and with that the gear trains, Price was able to proof that the
Antikythera Mechanism is the first known calculator, with the first known scien-
tific scale. Furthermore, he was able to explore the scientific qualities of the gears.
The gears are made of bronze sheet about 2 mm thick, and metallurgy analysis
indicated a low tin composition, with about 95% copper. This indicated that the
gears must have been fairly soft and bendy.

Price found the evidence of thirty gears. In order to make his model work, he
had to infer two to make his model work. On the gears he did find, he found tooth
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counts ranging from 15 to 225 teeth.

The first reconstruction

With much of the secrets of the inner Fragments unraveled, and the reconstruction
shown in Figure 6.7, Price managed to make a first design of the Antikythera
Mechanism. Figure 6.8 shows the front and back face dial plates and the casing
of the Antikythera Mechanism. The initial design of the dials is made up out
of three concentric displays; one on the front, two on the back. The front dials
consist of two large concentric displays, a Zodiac dial with the Greek names of the
Zodiac, and a calendar dial, marked with the names of the Egyptian calendar in
Greek. Two pointers are present on the display, one represents the position of the
Sun, this pointer turns — naturally — once per year. The second pointer gives the
average Moon position in the Zodiac, using the Metonic ratio of 254/19 (Zeeman,
1996).

The heart of Price’s model is the differential gear. Because such a gear is
unknown in Western technology for another 1,600 years, it is an extraordinary
conception. The differential has two inputs: the Sun input, which turns at the
rate of the Sun through the Zodiac, and the Moon input, which turns at the rate
of the Moon through the Zodiac, but in the opposite direction. The output of the
differential is the average of this two inputs, and this is used to turn the pointers
of the lower dial of the back.

Inside both of the back displays is a small subsidiary dials; one in the upper
and one in the lower dial. The pointers on the lower back dials display the age of
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Figure 6.7: Schematic diagram showing how the four main fragments A-D join together in the
Mechanism. The back of the mechanism is presented at the left, the front at the right (top). The
wooden member whose shrinking may have provoked the splitting apart of the original mass is
shown at x (Price, 1974).
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Figure 6.8: First reconstruction of the front and back face dial plates and casing by Price
(1974). The initial design of the dial plates is made up out of three concentric displays; one on
the front, two on the back. Inside the back displays are two small subsidiary dials; one in the
upper and one in the lower dial.

the Moon, referred to as the Synodic Moon, and the Lunar year, on the large and
the subsidiary dial, respectively. These pointers are driven by the differential gear.
The pointer of the upper large dial represents a four year period. The function
of the pointer of the subsidiary dial inside the upper dial is not known in Price’s
model, as well as the function two gears, used to drive the relevant pointer.

The designed case is astonishingly small, considering the amount of gears and
inscriptions the Mechanism contains — only about 13 e¢m high, 17 ¢em wide and
9 ¢m thick.

In Figure 6.9, two different views are shown of a beautiful physical reconstruc-
tion of Price’s model of the Antikythera Mechanism, made by the Yorkshire-based
orrery maker, John Gleave.

Despite its central importance to the history of technology, and as stated in
Section 2.4, the volume of literature has been very small and much of the classic
research has remained unchallenged for more than a quarter of a century after the
works of Price. With the acceptance of the Australian scholar Alan Bromley, who
criticized some of Price’s findings and challenged whether his model was correct
(Bromley, 1990a,b), the subject received hardly any attention.

Over the last decade however, there has been a wave of renewed interest in the
Antikythera Mechanism, independently inspired by the British clockmaker Michael
Wright and the British astronomer Mike Edmunds. And even though there have
been several drastic changes to Price’s model, it is important to acknowledge the
pioneering nature of his work. As Bromley wrote: “These criticisms do not belit-
tle work which was a monumental step forward in understanding the Antikythera
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Figure 6.9: Two different views of Price’s model of the Antikythera Mechanism, reconstructed
by John Gleave. Sub-figure a shows the front of the Mechanism, sub-figures b shows the back.

Mechanism and a excellent piece of deductive scholarship. It is of the nature of all
science that, as Newton suggested, each person can see further into the mysteries
of nature only by standing on the shoulders of giants that came before. I could not
have done what I have done without standing on Price’s achievements” (Bromley,
1990a).

6.4 Contemporary models

(Bromley, 1986, 1990a,b) was one of the first to remark that Price’s model did
contain several difficulties. Price could find no function for the upper back sub-
sidiary dial, and the pointer for the four year period had no real astronomical
significance. Even though four year periods occur in many calendars, there was
no clue or reason for the purpose of it in the Mechanism. Furthermore, there were
some gears for which Price could find no purpose, this was especially peculiar in
the case of a large gear with approximately 222 teeth, right in the centre of the
mechanism.

A further difficulty was recognized by Christopher Zeeman, then of Warwick
University, who demonstrated that one specific gear train — that of the Metonic
cycle, used in the front Moon display — works as a step up ratio of 12 : 1; so one
gear has to rotate 12 times, before another gear has rotated once. This would be
highly impracticable with the triangular gear teeth that the Mechanism uses. In
fact, Bromley showed that the Mechanism needed to be well balanced to work at
all, and that it was quite impossible to make practical use of the model as proposed
by Price.

Price, it seems, was a little to quick to adopt tooth numbers and arrangements
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Figure 6.10: X-ray micro-focus computed tomography (CT) image of Fragment A. Clearly
visible are all the inner gears, as well as many of the axes and irregular features. Even more than
the outside of the fragment, this image illustrates the enormous complexity of the extraordinary
Antikythera Mechanism.

that satisfied his preconceived idea of the nature and function of the Mechanism.

Wright’s improvements

Bromley teamed up with the British clockmaker Michael Wright, to make further
advances in deciphering the Antikythera Mechanism with the use of digitized X-
rays and tomography. By that time, Wright was one of the curators of mechanical
engineering at the Science Museum in London. During the eighties, Wright had
been involved in the discovery of a simple elementary geared device dated to the
sixth century AD., now known as the London Byzantine Sundial-Calendar de-
scribed by Field and Wright (1985); Wright (1990) . This mechanism led Wright
to the existence of the Antikythera Mechanism.
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Together, Bromley and Wright achieved better imaging of the Mechanism and
obtained some remarkable insights into its functions. Unfortunately, Bromley died
in 1999, but this did not stop Wright on his investigations of the Antikythera
Mechanism.

Whereas Price worked mainly on an academic level, approaching the Mecha-
nism from the perspective of mathematical and astronomical theory, Wright drew
on his vast practical knowledge of arbors, crown wheels, and others mechanical
techniques used in gear-train design. This, combined with the better digitized
images of the Mechanism resulted in a new model, which is described in a series
of papers (Wright, 2003, 2004, 2005a,b,c, 2006).

The Antikythera Mechanism Research Project (AMRP)

Simultaneously with Wright’s undertaking, a group of scientists under supervision
of the British astronomer Mike Edmunds teamed up in present day Athens to
form the Antikythera Mechanism Research Project! (AMRP). They also used the
newest observational techniques to investigate the Mechanism. First of all, they
took three-dimensional X-ray micro-focus computed tomography (CT) images.

Figure 6.10 shows a CT image of Fragments A. Clearly visible are the many
smaller gears contained within the artifact. Appendixes A.2 and A.3 contain two
series of panels, illustrating this technique. The first shows X-ray images of a
rotating Fragment A. The second contains the images of different slices through
Fragment A.

This X-ray technique was crucial in making the text just beneath the current
surfaces legible. The AMRP also used a polynomial texture mapping (PTM)
technique, developed by Hewlett-Packard Inc. (Brooks, 2001), to make digital
optimized images in order to reveal faint surface details. And in the third place,
they used conventional digitized high-quality film photography.

The brand-new model of 2008

In Freeth et al. (2008), most of the work of Wright and the AMRP has resulted into
a newly improved model, in which all the gears and dials have a distinct purpose.
Figure 6.11 shows the latest schematic gearing diagram, according to Freeth et al.
(2008). It underwent some fundamental changes since the 70’s. Parts of this model
are hypothetical, since the Fragments do not build up into the entire device and
several gears are thus missing. However, by deciphering the inscriptions on the
Fragments, indications have been found to what both the large and the subsidiary
dials display. Figure 6.13 shows a table in which all the gears of the present model
are described.

Appendix A.4 shows an alternative view on the schematic gearing of the re-
construction of the Antikythera Mechanism, as proposed by Freeth et al. (2006).
Within the series of panels displayed, the build up of the model is shown as well
as several views from different angles.

The National Archaeological Museum of Athens became one of the institutions
affiliated with the AMRP. This allowed members of the AMRP to search the stores
of the Museum and find the 75 smaller pieces, displayed in Figure 6.1. Because

LA detailed overview of the work that has been done on the Antikythera Mechanism, both
present and in the past, can be seen on the website of the AMRP: http://www.antikythera-
mechanism.gr .
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Figure 6.11: Side view of the schematic gearing diagram (not to scale) of the Antikythera
Mechanism model by Freeth et al. (2008). Features that are outlines or featured in red are
hypothetical. Gears are lettered with their axis, and numbered with increasing distance to the
front dial. The two or three digit number on the gear is its actual or assumed tooth count. The

pin-and-slot mechanism is located on gears k1 and k2.

der to complete the model.
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Antikythera Mechanism model
by (Freeth et al., 2008). This
diagram shows the complexity
of the gearing. Gears in black
are visible in the X-ray evidence,
gears in red are conjectured in or-



Description of the Antikythera Mechanism

| | Name Axis Tooth count Rotation Info
1 al a - - input
2 b0 b - O moon phase
3 bl b 224 O Sun pointer
4 b2 b 64 O
5 b3 b 32 O moon pointer
6 cl c 38 O
7 c2 c 48 O
8 dl d 24 O
9 d2 d 127 O prime
10 el e 32 @)
11 e2 e 32 @)
12 e3 e 223 O prime
13 ed e 188 O
14 eb e 50 O
15 €6 e 50 O
16 f1 f 53 O prime
17 f2 f 30 O
18 gl g 54 O
19 g2 g 20 O
20 hl h 60 O
21 h2 h 15 O
22 il i 60 O
23 k1 k 50 O pin gear
24 k2 k 50 O slot gear
25 1 l 38 O
26 12 l 53 O prime
27 ml m 96 O
28 m2 m 15 O
29 ol ] 60 O
30 m3 m 27 O hypothetical
31 nl n 53 O hypothetical, prime
32 n2 n 15 @) hypothetical
33 n3 n 57 O hypothetical
34 pl P 60 O hypothetical
35 p2 P 12 O hypothetical
36 ql q 60 ©) hypothetical

Figure 6.13: Table of observed (1 to 29) and hypothetical (30 to 36) gears in the Antikythera
Mechanism, according to Freeth et al. (2008). Given are the name of the gear, the axis of the
gear and the tooth count for every gear. The column entitled rotation shows an icon indicating
the direction of rotation, as seen when looking through the front of the Mechanism. The last
column gives supplementary information.

of this discovery and the new imaging techniques, the AMRP managed to have
an enhanced look at the gears inside the Fragments (Freeth et al., 2006), and
speculate about corrections to Price’s model, much like Wright did. They were
able to read and decipher much more of the inscriptions on the Mechanism, which
gave away many secrets of the original use and purpose of the device.

The pin-and-slot mechanism

The first concepts of the new gearing were proposed by Wright (2004), made
possible because of refined imaging and improved tooth counts. In this model,
Price’s differential gear had been replaced by a scheme in which we find an even
more extraordinary design; a pin-and-slot device. The AMRP publishes the same
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Figure 6.14: Tllustration of the gearing in the 2008 Antikythera Mechanism model Freeth et al.
(2008). Sub-figure a shows the front face of the Mechanism. The elegant design of the half
silvered Moon-phase device is seen right at the center, along with the Moon pointer. Sub-figure
b shows the back of the Mechanism. The four gears of the pin-and-slot mechanism are clearly
visible left at the center, as well as the different gear trains leading to the upper and lower back
dials.

discovery in Freeth et al. (2006).

The discovery of this technical tour de force was yet another sensational reve-
lation as well as an astounding realization of the theories of Apollonius and Hip-
parchus (see Section 5.1 and 5.2) in the gearing of the Mechanism. They had
developed a theory to explain that it was the eccentric orbit of the Moon that
caused the irregularities of the its motion across the sky (Neugebauer, 1983). This
non-uniform motion is technically obtained by placing two gears above each other,
with axis that are slightly displaced with respect to each other (see Sub-figure b
in Figure 6.14).

By placing a pin on one gear, and a slot on the other, the gears can pull each
other along. The displacement of the axis then translates into the non-uniform
motion. Because of this pin-and-slot mechanism, the Moon pointer of the front
plate of the Antikythera Mechanism, no longer has a uniform motion when it goes
around the dial. In Figure 6.15, an edited slice of a CT scan is shown, on which the
remnants of the pin-and-slot mechanism are enhanced. The accompanying panels
illustrate the functioning of the pin-and-slot mechanism (Freeth et al., 2006).

Concerning the outer faces

The front dials of the present model now consist of two large concentric displays, a
Zodiac dial with the Greek names of the Zodiac, and a calendar dial, marked with
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Figure 6.15: The pin-and-slot mechanism. Sub-figure a shows an edited slice of a CT scan on
which the remnants of the pin-and-slot mechanism are enhanced; gears e5 and e6 turn on the
same axis, while the axis of gears k1 and k2 are displaced with respect to each other. Through the
pin of gear k1 and the slot in gear k2, they are able to pull each other along with a non-uniform
speed. Sub-figures b to e show four simulations, illustrating the functioning of the pin-and-slot
mechanism.

the names of the Egyptian calendar in Greek. This calendar consisted of twelve
months of thirty days, and five additional days (called epagmenas), which sum up
to the 365 days of one year. Because the Egyptian calendar lacked the quarter
day of the Solar year, it moved relative to the seasons. This was accommodated
on the Mechanism with a movable calendar scale. The scale can be moved by one
day every four years, facilitated by a pin on the underside of the scale that engages
with a sequence of 365 holes under the calendar scale.

On the calendar scale, a date pointer shows the date in the Egyptian calendar.
It is still uncertain whether this pointer also indicated the mean position of Sun
(Freeth et al., 2006), or whether there was a separate pointer that displayed the
variable speed of the Sun, according to the Solar theory of Apollonius (Wright,
2002a).

Furthermore, the front face contains the pointer that shows the position of
the Moon on the Zodiac, that moves with a non-uniform speed, because of the
pin-and-slot mechanism.

At the centre of the dial is another ingenious mechanism, which uses a small
half-silvered ball to display the phases of the Moon (see Figure 6.14; Wright, 2006).

Through thorough research and recounting, it was Wright who found solid
indications that the large dials on the back face were not concentric, but spiral of
nature (Wright, 2005a). Within the present model, the large upper back dial is a
19-year (or 235 synodic months) calendar, based on the Metonic cycle (see Section
4.2), arranged as a five-turn spiral (see Figure 6.19). The large lower back dial is a
Saros cycle eclipse-prediction dial (see Figure 6.20), arranged as a four-turn spiral
of 223 Lunar months, with glyphs indicating eclipse predictions (see Section 4.3).

In both the case of the upper and the lower dial, there is an ingenious reason
why the dial is a spiral. The scales of the five-turn Metonic Dial are covered in
inscriptions over two or three lines, bounded by scale divisions that define each
month of the 235-month scale. Freeth et al. (2008) identify these inscriptions as

61



Niels Bos — The Planetary Extension for the Antikythera Mechanism

Figure 6.16: Four panels, illustrating observed inscriptions and the reconstructed model. A
computer tomography (CT) slice of Fragment B generated from X-ray data (Sub-figure a), shows
part of the 235-month Metonic dial. The reconstructed text (Sub-figure b) is 1.7 millimeters high.
Text in red was traced from the CT and revealed the names of the months on the dial for the first
time, the text in blue was reconstructed. Sub-figure ¢ shows another CT slice through fragment
B, on which the Olympiad dial can be seen. Its four sectors display the four-year cycle of the
Panhellenic games. A reconstruction of this is shown in the panel of Sub-figure d. Again, the
text in red is observed, the text in blue is reconstructed (Freeth et al., 2008; Minkel, 2008).

the months and year starts of the Metonic Calendar. Since the Metonic spiral
needs 235 cells, to place its 235 months, the dial is curled up into one spiral, which
indicates that the pointer will go around five times in one Metonic cycle.

In terms of months, the Saros cycle is equal to 223 synodic months, 242 draconic
months and 239 anomalistic months. The Full Moon Cycle is the cycle of changes
in diameter of the full Moon, which depends on how close the Moon is to the Earth
in its elliptic orbit (see Appendices 4.1 and 4.3). This is the same period the Sun
takes — as seen from the Earth — to complete an orbit relative to the Moon’s perigee.
It can be seen as the beat period of the synodic and the anomalistic months. Now,
the Saros cycle implies that there are 239 — 223 = 16 Full Moon Cycles per Saros
cycle. This means, with respect to the four-turn spiral, that each quarter turn of
the Saros Dial is a Full Moon Cycle, and the angle of the Saros pointer within the
Dial indicates the phase of the cycle. Since the diameter of the Moon mediates
both the length and the type of eclipse — for example, when the Moon’s apparent
diameter is small, a Solar eclipse may be annular rather than total — this four-turn
spiral provides additional information about the type of eclipses.

Inside both the upper and lower spiral dials, one finds subsidiary dials. Within
the Metonic dial in Figure 6.19 are two subsidiary dials shown, as identified by
Freeth et al. (2008). The right one represents the Olympiad dial; a staggering
discovery which indicates that the Mechanism was additionally used to link the
technical calendars, used by astronomers, to everyday calendars that regulated
ancient Greek society.
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Figure 6.17: A computer-generated recon-
struction illustrating the back dials of the An-
tikythera mechanism. The upper spiral dial
is a 19-year, 235-month Metonic calendar for
fitting lunar months into solar years. The
right subsidiary dial follows the four-year cycle
of Panhellenic games, including the Olympic
games and the Nemean games. The left sub-
sidiary dial is the hypothetical Callippic dial.
The lower spiral dial is an 18-year Saros cal-
endar for predicting solar and lunar eclipses.
Inside this Saros dial, is a smaller dial repre-
senting the Exeligmos (Minkel, 2008).

Figure 6.18: Three plates of the reconstruction of the Antikythera Mechanism, illustrating the
details of the back face. The left panel illustrates details of the Metonic cycle and the Olympiad
dial (inner right). The markings on the calendar, which are inscribed between divisions on the
dial, indicate the names of the months and the start of each year. The middle panel contains the
Olympiad dial showing the four-year cycle of Panhellenic games. The right panel illustrates a
close-up view of the mechanism’s lower back dial, which predicted eclipses based on the 18-year,
223-month Saros calendar. Glyphs inscribed on the dial indicate eclipse times, and the smaller,
inner dial shows the Exeligmos. This adds a necessary correction to the predicted eclipse times
for successive turns around the main dial (Freeth et al., 2008; Minkel, 2008)

The Olympic Games marked the beginning of a four year time-span called an
Olympiad. This was a calendar system shared by all the Greek cities, bringing
some uniformity to the chronology of the Hellenistic world. The Games began on
the full Moon closest to the summer solstice which indicated that calculating the
timing required expertise in astronomy. In ancient Greece, the Olympic Games
were the most prestigious of four sets of games, called the Panhellenic Games.
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Figure 6.19: Representation of the upper back dials of the Antikythera Mechanism. The
large spiral shaped dial represents the 19-year, 235 month Metonic cycle (see Section 4.2). The
inscriptions display the name of the month in the 235 months within the Metonic cycle. The
red text is traced from evidence, the blue text is reconstructed (Freeth et al., 2008). Within the
spiral dial are the two subsidiary dial; one for the Panhellenic Games (right) and one for the
Callippic cycle (left).

In the first year of the subsidiary dial are the Isthmian games in Corinth and
the Olympic games in Olympia. Year two contains the Nemean games in Nemea
and the Naian games in Dodona. The third year hosts the Isthmian games in
Corinth and the Pithian games in Delphi, and in year four are the Nemean games
again and a yet undeciphered game (Freeth et al., 2008). First recorded in 776 BC.,
the ancient Olympic Games were extinguished by the Christian Roman emperor
Theodosius I in around 394 AD.

The left subsidiary dial in Figure 6.19, is the hypothetical Callippic dial. In
several models after Price’s, but prior to the present one, the Olympiad dial was
thought to be a Callippic Dial (Wright, 2005a), representing the 76-year Callippic
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Figure 6.20: Representation of the lower back dials. The large dial represents the 18-year Saros
cycle (see Section 4.3). The glyphs indicate eclipse predictions. The red glyphs are traced from
evidence and the blue glyphs are reconstructed (Freeth et al., 2008). Within the Saros dial is a
smaller subsidiary dial, representing the Exeligmos.

Cycle (see Section 4.2). This was considered plausible for a number of reasons,
indicated by the inscriptions found on the Fragments and by the arrangement
and purpose of the other pointers. Freeth et al. (2008) therefore favour a second
subsidiary dial inside the Metonic Dial, placed symmetrically to the Olympiad
Dial so it can be driven by the mirror image of the gearing originally purposed for
this dial.

The subsidiary dial inside the lower spiral dial, shown in Figure 6.20, represents
the Exeligmos Dial. This is an improvement on the Saros cycle, and can be used
to predict at what time of the day an eclipse is going to occur (see Section 4.3
Freeth et al., 2008).
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CHAPTER 7

Redesigning the planetary
extension

Concerning the research described in the previous chapters, there are solid argu-
ments to assume that the Antikythera Mechanism also contained the representa-
tion for the motions of the planets. The five arguments put forward in Chapter 1
of this thesis, are of crucial importance in this respect.

For this model, we employ the planetary theories developed by Apollonius of
Perge. This model is not exact, but it predates the Antikythera Model, and lends
itself to a mechanical representation. Furthermore, this epicycle model was further
adjusted by Hipparchus, who was also responsible for the epicyclic modelling of
the Lunar orbit entailed in the pin-and-slot mechanism. And even though, the
indications are circumstantial, the identification of Rhodes as a likely source for the
mechanism (Price, 1974), puts it, figuratively speaking, almost into Hipparchus’
lap: Hipparchus lived — and died in approximately 120 BC. — on the island Rhodes.

Since we have to relate multiple quantities to the Sun and each of the different
planets in a comprehensive manner, we will do so by placing a corresponding
symbol to the quantity as sub-script. For each of the celestial objects, the following
symbol is used:

Sun = @
Mercury = §
Venus = @
Mars = &
Jupiter = %
Saturn = h

7.1 The Lunar gears in the Antikythera Mecha-
nism

To be able to appreciate the working of the device, we take a look at the presented
Lunar model in the Antikythera Mechanism. Zeeman (1996) describes the model
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for the mean motion of the Moon clearly: in one revolution of the Sun around the
Earth, the Moon has to make 13.3687 revolutions, or 13.3687 sidereal Lunar cycles.
Thus, the gear ratio should be 1:13.3687; which is defined the ratio of revolutions
for the Moon.

Following the gear train in the Antikythera Mechanism — which needs a slight
adjustment for the model of Freeth et al. (2008) — we get the following relation:

v o B2 2 2 el
mean oon gear ratto = o1 dl o2 3

64 46 127 32
= — X — X —— X —
38 24 32 32
254
19
13.3684 ,

where the gears are given, according to the definition presented in the table of
Figure 6.13. The gears denoted in the fractions, are the gears that tumble into
each other (see Figure 7.1), the cross sign x, indicates that the motion is carried
over through an axis (see Figure 7.2).

In order to quantify the accuracy of this outcome, we introduce the following
expression:

- = . (7.1)

Here, « is the accuracy, v is the observed ratio of revolutions, and ¥ is the ratio
of revolutions, as obtained by the gears in the gear train (Raimond, 1934).

When we use Equation 7.1 with the ratios of revolution acquired for the Moon,
we get the following accuracy:

13.3684 — 13.3687 —1
=-22x10°= —— .
13.3687 X 10" = 5% 108

In words: when the pointer of the Sun has traveled around the display, for more
than 44 thousand degrees — or more than 44,562/360 ~ 124 years — the Moon will
not be off for more than 1 degree on the dial.

to .
p*y.«““*'\;, Figure 7.1: Top and side view illustrations

of inter-meshing gears. Shown are two gears
that tumble into each other. If the yellow gear
has n1 teeth, and the second blue gear has na
teeth, then the gear ratio is given by ni/na.

H”E-H“"’- When the yellow gear makes one revolution,
the blue one makes ni/n2 revolutions.
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Figure 7.2: Shown are a top view and a side
view of two gears that rotate on the same axis.
In this way, the motion of on gear can be car-
ried over to another gear, with the condition

) ~ that both gears make one revolution in the
||“- hed same time, with the same speed. This man-
[ TTTTTT I ner of transferring motion is indicated by the

A ‘ Symbol X.
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Figure 7.3: Top and side view illustrations of

top NRAPA pin-and-slot gearing. In this arrangement, the
motion is not carried over with uniform veloc-

3 ity. The pin on the blue gear, pulls the yellow

=3 .
side 3 g gear along. Because the axes are displaced,
_|I % e this results in a non-uniform motion. The over-
; all orbital period does not change. This man-
il “""“_ 71’1’4 ner of transferring motion is found in the An-
RRRRRRRRRNNL ] o POV tikythera Mechanism (see Section 6.4), and is

indicated by the symbol X.

The models by Freeth et al. (2006, 2008) contain the pin-and-slot mechanism
(see Figure 7.3) for the Moon, placed inside the gear train of the Lunar motion.
This does not, however, affect the period of one sidereal month. When we do
incorporate this mechanism into the gear train, and follow the actual model, we
get the following train:

Moon gear ratio =%xﬁxﬁx@ X @xg

387247 32 " 50 50 327

where the X indicates that the motion is not carried over through an normal axis,
but by means of a off-centre pin-and-slot mechanism. Still, as can easily be seen,
the additional multiplications of two times 50/50 cancel out in the sidereal orbital
time. One must only be careful, in the case of the calculated error the amount of
1 degree is not longer constant, so this becomes a mean error, and the accuracy
becomes a mean accuracy.

7.2 Determining necessary orbital periods

In order to look for appropriate gears and corresponding gear trains, used to propel
the dials of each planet, we audition a similar path as with the Lunar dial. First,
we determine the gear trains for the mean motions of the planets — which in the
deferent-and-epicycle model is the motion of the centre of the epicycle along the
deferent — thereafter, we incorporate the motions of the epicycles, in order to fit
the corresponding dial motion to the planetary theory of Hipparchus.

Inferior planets

As we have seen in Equation 5.1 of Section 5.1, the direction from the Earth to
the mean Sun always coincides with the direction from the Earth to the epicycle’s
centre on the deferent. Figure 5.5 illustrates this relation. The orbital time of one
revolution for both Mercury and Venus is thus 1 tropical year.

The orbital time for one revolution of the planet on its epicycle is equal to
its synodic period. As described in Section 4.1, a synodic month is the period in
which the Moon makes one trip around the Earth, and returns to the same place
in the sky, with respect to the Sun. So, this is the period from one Full Moon to
the next. For a planet, this definition is also applicable, with the only exception
that a planet, off coarse, makes a trip around the Sun instead of around the Earth.

The synodic period of a planet is fairly straightforward to calculate. Let p
be the sidereal period for the planet around the Sun in Julian years. Then, the
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synodic period is given by (Freeth, 2002a):
t=—— (7.2)

For Venus, p, = 0.615187 yr (de Pater and Lissauer, 2004). Equation 7.2 then
indicates that it synodic period is s, = 1.59864 yr. A similar exercise shows that
Mercury, which has a sidereal period of p, = 0.240844 yr, has a synodic period of
py = 0.317253 yr.

Now that we know the synodic periods of the inferior planets, we can also
calculate the number of synodic revolutions they make in one year, through the

simple relation:
1
p=tt=1-- 7.3
» (7.3)
where the latter is the solution obtained through the substitution of Equation 7.2.
From Equation 7.3 we find for Mercury that p, = 3.15206 yr~!, and for Venus

that p, = 0.625533 yr—1.

Superior planets

A superior planet moves around its deferent in a pace equal to its sidereal period.
Thus, Mars goes round in p, = 1.88071 yr, Jupiter in p, = 11.8565 yr and Saturn
in p, = 29.4235 yr (de Pater and Lissauer, 2004).

In one year, Mars proceeds through 1/p = 0.531714 part of its sidereal orbit.
The sidereal ratio of revolutions for Mars is therefore given by: v, = 0.531714yr—1!,

which describes the general expression:
v = pil. (7.4)

The sidereal ratios of revolution for the other four planets can be found in a
similar way: Mercury v, = 4.15206 yr~!, Venus v, = 1.62553 yr—!, Jupiter v, =
0.0843418 yr~!, and Saturn v, = 0.0339864 yr~! (de Pater and Lissauer, 2004).

The orbital time for one revolution on the epicycle, is presented in the same
manner as with the inferior planets; it also takes one synodic period to complete
the circle. With Equation 7.2, and the sidereal periods of above, the synodic
periods can be calculated: the synodic period of Mars is p, = 2.13544 yr, that of
Jupiter is p, = 1.09211 yr and that of Saturn is p, = 1.03518 yr.

With the use of Equation 7.3, we can now also obtain the synodic ratios of
revolution for the superior planets: we find for Mars that p, = 0.468286 yr~!, for
Jupiter that p, = 0.915658 yr—! and for Saturn that u, = 0.966013 yr—1.

7.3 Composing planetary gear trains

Factorizing orbital periods

The next step, is to find a ratio of two integers, that is equal to the found ratios
of revolution. In the case of the Moon, this was the ratio of 254 over 19. For the
planets, we make use of the fact that — if we define the two integers we are looking
for as I; and I, — the relationship should be:

I
ratio = —- . (7.5)
I
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This Equation is suitable for both the synodic period g and the sidereal period v.

In the case of the latter, it can easily be rewritten as I -v = I;. If we then use
a simple computer program, in which an array P is defined containing all integers
between 1 and 10,000, there is an easy way to find values for I; and I>. Note that
the integers I; and Iy can be seen as the number of sidereal periods that have
passed, when the planet and the Earth, which are thus represented by I; and I
respectively, have reached the same relative position in the sky.

We check for every value of P, whether its product with v obeys the boundary
condition that its outcome is an integer. Since the product will almost never be
exactly zero, we introduce a margin of 1/100, wherein the product must be an
integer; so, for instance, if P; - v = 367.992, it will be seen as a possible solution,
if P;-v = 367.989, it will not be seen as a possible solution.

After this step, we take all solutions and evaluate their accuracy v, as defined in
Equation 7.1. This provides us with a manner of sorting the solutions according to
their accuracy, and thus eventually with the most accurate estimate of integers Iy
and I». For instance, in the case of Mars these values are I; = 5231 and I, = 9838,
in the case of Mercury these values are I; = 34624 and I, = 8339.

However, these are not the optimal results for our search of I; and I,. Looking
at the results for Mars, one may notice that the integer 5231 is a prime number. It
is straightforward to see that a gear wheel of 5231 teeth is somewhat of a problem,
to say the least. There are ways of dealing with gear ratios and large primes,
because they can be approximated by other ratios. Hayes (2000) describes how to
accomplish this. However, a simpler way is to factorize the inferred integers into
their smallest parts. For Mars we find that Iy = 5231, and I, = 2 -4919. For
Mercury that I; = 26541, and I, = 31 - 269; also these leave much to be desired.

Thus, our next step is to factorize every found solution, and check what size
the largest factor is (Raimond, 1934). As a boundary condition, we pose that
there the largest factor may not be larger that the largest tooth count found in
the Antikythera Mechanism, which is 224.

Inferior planets

Figure 7.4 shows two plots concerning the synodic periods of the inferior planets,
where the accuracy « is plotted against the largest factor, for each possible so-
lution of Equation 7.5, when I» < 10.000. The green area indicates an accuracy
a > 108, the blue area indicates the values of the found gears in the Antikythera
Mechanism, thus 20 < factor < 224. The plots demonstrate that there are multi-
ple possibilities in gearing the desirable gear ratios. The factorized synodic orbital
ratios, corresponding to the points with an accuracy a > 10% and a largest factor
smaller than 224, are listed in the table of Figure 7.5. Figure 7.8 shows a histogram
displaying the number of possibilities.

We immediately see that the synodic orbit for Mercury is only described by
one set of factors, namely vy, = 3-13-59 / 2- 5-73. For Venus, there are already
ten different possible set of factors.

Superior planets

Figure 7.6 shows a series of plots concerning the sidereal and synodic periods of
the superior planets. The same methods and boundary conditions as in Figure
7.4 are applied. And as with the found possible factors for the inferior planets,
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Figure 7.4: The accuracy a plotted against the largest factor, for each possible solution of
Equation 7.5, when Iz < 10.000. The green area indicates an accuracy a > 109, the blue area
indicates the values of the found gears in the Antikythera Mechanism, thus 20 < factor < 224.

| [ Factors Accuracy o ( x10°) |
Mercury || Synodic period: 1 3-13:59 /2-5-73 1.73
Venus Synodic period: 1 41-193 / 2-52.11.23 24.8
2 2.37-97/3%.52.17 4.26
3 2.3%.5-19 / 59139 4.16
4 23.23.47 /52.7-79 3.72
5 24.3.113 / 13-23-29 2.66
6 32.5-179 / 79 -163 2.27
7 22.7.11-29 /109 -139 1.65
8 3%4.47 / 2-17-179 1.60
9 19-131 / 23173 1.45
10 47102 / 71109 1.03

Figure 7.5: Factorized synodic orbital ratios for the inferior planets, arranged according to
their accuracy.

the factors able to describe the sidereal and synodic orbital periods, that obey the
boundary conditions of a > 108 and a factor not larger than 224, are listed in the
table shown in Figure 7.7. Figure 7.8 shows a histogram displaying the different
number of possibilities for these orbital periods.

The different plots, as well as the table show that there are various possibilities
to factorize the different ratios. Only in the two cases for the sidereal periods of
Jupiter and Saturn, the possibilities are few.

7.4 Disadvantages of the pin-and-slot mechanism

The next step in creating the planetary extension for the Antikythera Mechanism,
is relating the factors found in the previous section, to actual tooth counts, and
with that, to gears and gear trains. But before we do that for all the planets,
it is instructive to have a closer look at the pin-and-slot device present in the
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Figure 7.6: The accuracy a plotted against the largest factor, for each possible solution of
Equation 7.5, when I < 10.000. The green area indicates an accuracy a > 109, the blue area
indicates the values of the found gears in the Antikythera Mechanism, thus 20 < factor < 224.
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Antikythera Mechanism. The elegant solution, as used in the Antikythera Mech-
anism, also has its disadvantages.

In order to explain these disadvantages, we have to return to the Lunar model.
In the model of the Moon of Hipparchus and Apollonius, as described in Sections
5.1, the Moon rotates round its deferent in the time of one sidereal period. Freeth
et al. (2006) state that the period it takes the Moon to make one revolution on its

[ Factors Accuracy o (( x10°) |

Mars Sidereal period: 1 2-197 /3-13-19 4.82
2 3%3.7.11/2-5-17-23 2.26

3 31-149 / 7-17-73 2.00

4 52.13%2 / 2.29-137 1.90

5 17179 / 59 - 97 1.54

6 25.3.31/29-193 1.43

Synodic period: 1 5.11-109 / 2-37-173 96.1
2 41-197 /35.72.11 14.6

3 2.5.72.19 / 32.472 5.02

4 22.13-139 / 32.5.78 3.08

5 22.29.59 / 5-37-79 2.31

6 24.11-31 /61-191 2.07

7 2.31-83/3%.11-37 1.81

8 22.32.113 / 7117173 1.76

9 622 /2-.29-137 1.67

10 3-5-11-43 /109-139 1.62

11 3%.23/5.7-11-31 1.37

12 23.5.67 / 59-97 1.35

Jupiter Sidereal period: 1 2:5-23/ 33.101 9.40
2 3-151 /131-41 1.09

Synodic period: 1 2.3.5-132 / 72.113 16.0
2 25.5.61/3-11-17-19 8.16

3  22.5.7.67/22-13-197 3.10

4 7-13-89/5-29-61 2.84

5 2.52.109 /26-3.31 2.54

6 2-17-167 / 3'13-53 1.75

7 5-113 / 22.23-79 1.62

8 25.3.89/7-31-43 1.21

9 29-73 /23172 1.14

Saturn || Sidereal period: 1 5.-17 / 41-61 2.83
Synodic period: 1 24.151 / 41-61 80.3
2 72.163 / 22-3-13-53 26.6

3 2-3-11-59 /29-139 5.19

4 41-113 / 22 -11-109 4.06

5 3.13-43/2%.7.31 3.99

6 22.17-79 / 67 -83 3.51

7 47.127 / 37 -167 2.88

8 26.5.31/32.7-163 1.51

9 7-7-11%2 ) 25.137 1.19

10 23-19-23/2-7-11-47 1.11

11 3-31-103 / 22.37-67 1.03

Figure 7.7: Factorized synodic and sidereal orbital ratios for the superior planets, arranged
according to their respective accuracy.
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m sidereal

mm synodic
12 =
8 —
g —‘
0 L Figure 7.8: Diagram
47@ %O /%9 ./?O ‘%, providing the number
%, % ¥ ’/é.f (’@ of factorization possi-
¢ bilities.

epicycle is equal to one anomalistic month. This fits the model of Hipparchus.

The duration of one sidereal month is 27.3217 days, and that of an anomalistic
month is 27.5546 days (see Section 4.1). Nevertheless, the entire Lunar pin-and-
slot mechanism in the Antikythera Mechanism is made up out of four 50-teeth
gears. Implicitly, it equates both periods.

Since the periods of motion on the deferent and on the epicycle are not identical
with any one of the periods used to represent the planets, we have to use more gears
than the four additional ones of the Lunar pin-and-slot mechanism for the planets.
The hypothetical pin-and-slot mechanism for Mercury illustrates this point.

Mercury’s hypothetical pin-and-slot mechanism

Mercury moves on its deferent with the same speed as the Sun. One of the first
approaches could very well be to connect it to the 224-teeth Sun Wheel, which
obviously already rotates at the right speed. If we then look at the one possibility
of factors for the ratio of Mercury v, =3-13-59 / 2. 5-73, we can calculate that
our first set of gears must have sizes of 78, 59, 20, and 73 teeth.

Th tooth counts of 78 and 20 are obtained by 3 - 13 and 2 - 5 respectively, and
which we then multiplied by an additional factor 2, since a gear of 10 teeth would
probably be inconveniently small.

The gear train we are considering is propelled by the large Sun Wheel. When
we look at the gears as normal fractions, it is obvious to see that when we multiply
the entire train, we also have to balance for this factor. Therefore, we need a
second 224-teeth gear wheel by which we can divide, and so balance our ratio.

With the gears found, we can compose our first gear train:

24 78 50
20 T 737 224 °

The final gear in this train, rotates with the same speed at which Mercury moves
on its epicycle. The pin of the pin-and-slot mechanism should be placed on this
gear (see Figure 7.3). Then, an identical gear train — though in reversed order —
is needed to carry the motion back to the main axis of the Sun Wheel. The first
gear of this train would then contain the slot of the pin-and-slot device.

The total gear train would then be parametrized by:

78 89 . 224 73 20

Mercury epicycle gear train =

2
M, in == x —5 X 7o X oo -
ercury gear train 20 X 73 X 294 X 59 X 78 X 294
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Redesigning the planetary extension

This sort of gear train-design, would imply that the number of gears used for the
total planetary extension would be far too great. The model of Mercury is one
that needs relatively few gears, since its deferent is equal to the Mean Sun, and
the synodic period can be obtained by only four gears. Still, the total gear train
already requires eleven gears. This means that the total number of additional
gears for all the planets would be more than 55.

Even without considering the fact that this total gear train would contain three
additional 224-teeth gears, this design would be far too large to be useful. In a
small device, especially as old and extraordinary like the Antikythera Mechanism,
one would expect a more subtle and elegant design.

7.5 The bar design

In their articles, (Freeth, 2002b,a) and Wright (2002a,b, 2003, 2005b) propose
another method for constructing the non-uniform epicycle gear trains. These ideas
are part based on the small holes, pins and irregularities found on the surface of the
Sun Wheel. Figure 7.9 shows the centre of Fragment A, along with its particular
holes and pins.

Price (1974) already noted that the Sun Wheel could have had other parts
attached to it. However, he did not manage to find an appropriate use for this.

Figure 7.9: Outtake of Fragment A, illustrating the mounting possibilities present on the Sun
Wheel. According to Wright (2002a), the square pipe at the centre, and the nuts and pins on
the surrounding parts, could be interpreted as the remains of epicyclic gearing on top of the Sun
Wheel.
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Wright (2002a) takes this idea a step further, by proposing that the square pipe
at the centre of the large Sun Wheel seen in Figure 7.9, and the nuts and pins on
the surrounding parts, could be interpreted as the remains of epicyclic gearing on
top of the Sun Wheel.

Concerning epicyclic gearing

Proposing a method of epicyclic gearing is a logical, as well as a bold one. Espe-
cially, since the name epicyclic gearing is a literal descendant from the first western
clocks (Baillie et al., 1974; North, 2005) in which a gear system, that consists of
one or more outer gears, revolves about a central gear (Lynwander, 1983). Figure
7.10 illustrates these basic principles. Another term used in present day gearing
practices to indicate epicyclic gearing, is planetary gearing. The small outer gears
that are part of the gear train, are referred to as planet gears, and the gear around
which everything rotates, is referred to as the Sun gear. Needles to say, there is
an overwhelming resemblance between the motion we want to represent, and the
method we could use.

The manner by which we introduce epicyclic gearing, is by using the Sun wheel
as a plateau whereon other gears are mounted. Similar to Wright (2002a), we thus
introduce the idea that the small holes, pins and nuts on the Sun Wheel, clearly
visible in Figure 7.9, may well be the remains of epicyclic gearing.

Figure 7.10 illustrates the basic principles of epicyclic gearing, as we aim to use
it. The large gear serves as a plateau on which smaller gears rotate. By doing so,
the large gear will be the drive for the motion of the centre of the epicycle on the
deferent. The small gears on top represent the motion of the planet on its epicycle.

In most cases of epicyclic gearing, one of the basic components is held station-
ary. In our case, it is the first gear of the epicycle gear that will be at rest with
respect to the Mechanism. The large gear which serves as the base for the epicycle
gear train will rotate, and thus pull the epicycle gear train round the first station-
ary gear. In Figure 7.10, the red gear will thus be fixed, while the blue gear pulls
the yellow epicycle gear round its stationary central gear. Therefore, the yellow

Figure 7.10: Top and side view illustrations
of basic epicyclic gearing. The large gear serves
. as a plateau on which smaller gears rotate.
side Hereby, the motion of the centre of the epicy-
‘ (IILHN) H”"lH- cle could be represented by the large base gear,
MRARERRRRRRRRRRRR RN and the motion of the planet on its epicycle

could be represented by the small gear.
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gear is forced to rotate due to the inter-meshing gear teeth.

In the case of the inferior planets, the gear trains representing the epicycle
motions are placed on the Sun Wheel. This is possible since the inferior planets
share the same deferent; that of the Mean Sun. This hypothesis offers a direct
explanation for the irregular features found on the Sun Wheel in Figure 7.9. For
each of the three superior planets, other gears must provide the deferent motion.

Figure 7.18 illustrates this modular design, where the Sun Wheel propels three
gear trains, which each drive another large 224-teeth base, intended to carry the
three epicycle gear trains for the superior planets.

The pin distance

The final step of this setup, is to carry the motion of the epicycle gear trains
back to the appropriate pointer on the outer dials. This is done by a bar that
is connected to the central axis of the Sun Wheel, at one side. The other end of
the bar is connected to a pin, attached to the last gear of the epicyclic gear train.
Figure 7.11 illustrates this arrangement. Both by the motion of the deferent gear,
as well as the epicycle gears, this bar design will result in pointers that represent
the planets, along with their retrograde motions. The different pointers and bars
will be connected through a series of concentric axes, centered on the axis b, as
referred to in Figures 6.11 and 6.13.

The pin must be placed on the gear at the right distance from its axis, in order
to describe the appropriate retrograde motion on the outer dials. To calculate this
distance, let v be the distance of the planet from the Sun, in astronomical units;
one astronomical unit is defined as the average distance of the Earth from the Sun,
1 AU = 149,597 x 10° m (de Pater and Lissauer, 2004). Let § be the distance of
the pin from the axis of the gear on which is rotates. And let x be the distance
between the central axis and the axis around which the pin revolves. Then, for
an inferior planet, the distance we are looking for can be calculated by (Freeth,
2002a):

Inferior planet: 6 =~ - x . (7.6)

For a superior planet the relation is somewhat different (Freeth, 2002a):
. e X
Superior planet: § = o (7.7

Figure 7.11 illustrates the pin distance in epicyclic gearing. Shown are the same
gears as in Figure 7.10, only outlined. The lines § and x represent the physical
distances between the central axis and the axis of the final gear in the epicycle
gear train, and the displacement of the pin on the last gear, respectively. Also
indicated is their mutual relation with respect to the indication of the pointer.

In most cases, Equation 7.6 implies that the distance ¢ is larger than the size
of the gear. Therefore, the pin is placed on a circular dish, attached to the same
axis as the last gear. This has the additional benefit that it provides us with a
manner for putting the pin at a certain height, making it possible for the bars to
be placed well above the gears and gear trains. This is clearly illustrated in the
schematic gearing diagrams of the epicycle gear trains for the planets, for instance
Figure 7.12.
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Figure 7.11: Tllustration explaining the pin
distance in epicyclic gearing. Shown are the
same gears as in Figure 7.10, only outlined.
The lines é and x represent the physical dis-
tances between the central axis and the axis of

the final gear in the epicycle gear train, and
side X194 : o i on ’
_ |

A .
WAAAAAAAN

the displacement of the pin on the last gear,
_ respectively. Also indicated is their mutual
[ _ 1 relation with respect to the indication of the
pointer.

7.6 Design of the planetary extension for the in-
ferior planets

Now that we have the main ingredients for composing the planetary extension for
the Antikythera Mechanism, the next step is to convert the ratio factors found in
Section 7.3, along with the method of epicyclic gearing into a rational design. As
shortly mentioned in the previous Section, the inferior planets will be mounted on
top of the Sun Wheel. This solution will not do for the superior planets, since
their epicycles travel on deferents with distinct velocities.

To manage with the three different deferents of the superior planets, we mount
their large central gear wheels on separate modules. As mentioned in the previous
Section, and illustrated in Figure 7.19, these modules will be placed between the
Sun Wheel and the front dial. These three central gears will form the foundation
for the epicycle gear trains of the three superior planets. However, before we
outline the details of the modular extension, we will discuss the schematic design
of the extensions of the Sun Wheel; the schematic design of the inferior planets.

Concerning the introduction of the bar

The use of a bar is not present in the contemporary reconstructions of the An-
tikythera Mechanism, therefore, a justification of this introduction is in place.

We feel confident to introduce this feature, since bars were used to transpose
motion in many devices of antiquity. Singer et al. (1957a) describes several mecha-
nisms, like water wheels and basic agricultural devices, in which a bar is connected
to a pin on a wheel and a central axis. Also, many of the automatons made by
Heron of Alexandria used this sort of transmission (Price, 1964). This leads us to
believe, that such a manner of carrying motion would be known and available to
the makers of the Antikythera Mechanism.
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7.6.1 Selecting the appropriate factorizations

The table presented in Figure 7.5, provides in the factors that account for the
synodic orbital ratios most accurately. Due to the introduction of two boundary
conditions — an accuracy a > 108, and no larger factor than 224 — this list is
fairly short. In the case of Mercury, there is even only one set of factors left:
vy =3-13-59 /2. 5-73. In the case of Venus, there are still ten possibilities.
This is a positive fact, since it provides us with a certain scope in designing the
gear trains. However, one may notice that the largest factor in eight of the ten
possibilities is larger than 100. This may turn out to be a problem.

In our case of epicyclic gearing, the gear train resulting in the epicycle motion
will be placed entirely on top of the deferent gear. This means that when we
mount the inferior planets on top of the Sun Wheel, it becomes a problem when
the epicycle gear train contains gears with the same shape and quality as the Sun
Wheel. The design could easily present a ponderous mechanism, which simply will
not fit inside the present reconstructions of the Antikythera Mechanism. Therefore,
we introduce a third boundary condition, by posing that the gears that are part
of the epicycle gear train, may not be larger than half the Sun Wheel. By making
the simple assumption that the tooth count is proportional to the physical size
of the gear, this means that the gears may not contain more than 112 teeth.
This new boundary condition leaves us with two possibilities for Venus: v, =
2-37-97/3%-5%-17and v, 4 = 23-23-47 / 52-7-79.

7.6.2 Mercury

With the factors v, found for Mercury, we can compose our first epicycle gear
train:

" el rain — DA Ma2 M2
ercury epicycie gear train = Mal bl Ml

32 78 59
= X — X — .
73 20 32
Here we introduce a starting gear of 32 teeth, around which both the gear trains
of Mercury and Venus are propelled.

Figure 7.12 shows the side view of the schematic gearing for the epicycle gear
train for Mercury. Shown are the gears, their tooth counts, and their relative po-
sition. It is important to recognize that that this illustrated gear train is mounted
on top of the rotating 224-teeth Sun Wheel. The 32-teeth starting gear will be
stationary on an arbor, forcing the subsequent gears to rotate while they are being
pulled round it.

The illustrated schematics of Figure 7.12 end in the circular dish on which a
pin revolves. This pin is meant to lead the bar, which in turn is fixed to the axis
of the Mercury pointer. The distance é at which the pin has to be displaced from
the centre on the circular dish can be calculated with the use of Equation 7.6. The
distance of Mercury from the Sun is v, = 0.387099 AU (de Pater and Lissauer,
2004). This means that the displacement distance for Mercury is given by:

5, = 0.387099 - x .

In most designs, this distance § is larger than the physical size of the last gear
of the epicycle gear train. Therefore, the pin will be placed on a circular dish, at
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a certain height. The circular dish will thus most likely be larger than the final
32-teeth gear of Figure 7.12

Figures 7.16 and 7.17 show the top view of a series of gearing diagrams, illus-
trating the build up of each of the separate layers of gears for the True Sun and
the inferior planets, as mounted on the Sun Wheel. This series also contains the
circular dish carrying the pin, the bar connected to the pin and the central axis
and the relevant pointer.

| bar in
<+ P
Mb2 59
Ma2 78 QRRRRR R RAR LI HITARRRR L]
b4 32 Hrpm Mel 32
H“”l' Mb1 20 Mercury
*— arbor Mal 73

Figure 7.12: Side view of the schematic gearing diagram of the Mercury epicycle gear train,
which is mounted on top of the rotating 224-teeth Sun Wheel. Shown are the gears, their tooth
counts, and their relative position. The train begins with a fixed 32-teeth gear, and ends with a
circular dish on which a pin is mounted. This pin pulls the bar along, which in turn leads the
Mercury pointer around the dial.

7.6.3 Venus

Out of the two possible factorized synodic epicycle gear ratios found for Venus —
V,2 and v, 4 — we take the most accurate for our construction of the planetary
extension. This set of factors can be converted into the following epicycle gear
train:

b4 Va2 Vb2 V2
Val “ Vbl ~ Vel * Vdl
32 37 30 75
==X —X—=X — .
51 20 97 32
Like with Mercury’s gear train, this epicycle gear train starts with the same 32-
teeth gear that is fixed on an arbor.

Figure 7.13 illustrates a side view of the schematic gearing diagram for the
epicycle gear train of Venus. Shown are the gears, their tooth counts and their
relative position. This epicycle gear train is mounted on top of the Sun Wheel,
along with the epicycle gear train of Mercury.

The distance § at which the pin of the Venus epicycle gear train has to be
displaced from the centre of its circular dish will be calculated with Equation
7.6. According to (de Pater and Lissauer, 2004), v, = 0.723332 AU. Thus, the
displacement distance for Venus is given by:

Venus epicycle gear train =

5, =0.723332 - x, .

Like in the model for Mercury, this distance d, will be larger than the actual size
of the final 32-teeth gear as seen in Figure 7.13. The pin will therefore be placed
on a circular dish.

A series of panels displaying the top view of the epicycle gear train for Venus
is shown in Figures 7.16 and 7.17. The series illustrates the build up for each layer
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of gears, as mounted on the Sun Wheel. This series also contains the true Sun and
Mercury, as well as all the circular dishes, pins, bars and relevant pointers.

<+ bar pin
2
Vb2 30 Vel 97
Va2 37 L P oy
b4 32 [ vdl 32
HIIIIIJ-IIIIIII Vot 20 [[FFTTTTEE IIII_HIIIII‘F- Venus
®_ arbor Val 51 Ve2 75

Figure 7.13: Side view of the schematic gearing diagram of the Venus epicycle gear train, which
is mounted on top of the rotating 224-teeth Sun Wheel. Shown are the gears, their tooth counts,
and their relative position. The train begins with a fixed 32-teeth gear, and ends with a circular
dish on which a pin is mounted. This pin pulls the bar along, which in turn leads the Venus
pointer around the dial.

7.6.4 The True Sun

One of the major benefits of modelling the planetary extension in this way, is
that the incorporation of the model of the True Sun becomes almost trivial. As
seen in Figure 5.3, the relation between the Mean Sun and the True Sun is quite
rudimentary. The Sun rotates on its epicycle, while the centre of that rotates on
a deferent; similar to the models of the planets. The reason why this model is so
easy to combine, is due to the fact that the Sun cycles both his deferent and his
epicycle in the period of one tropical year. The periods are equal.

The easiest way of representing the motion of the Sun, with the use of the
same 32-teeth central gear as used in the models of Mercury and Venus, is by
placing a similar 32-teeth gear right next to it. In that way, the periods would
remain equal, and the gear train would be represented in the following way:
Solar epicycle gear train = 50/50.

However, this construction is complicated to fulfil, since it would be the third
separate gear train that is propelled by the same 32-teeth gear. It would prove dif-
ficult to assign the space to place this gear. Secondly, the distance of displacement
& will become to inaccurate in this design. In order to construe this last remark,
let us first look at the distance of displacement for the Solar pin.

The distance of displacement for the Sun is calculated in a slightly different
way, as for the planets. With the planets we are using the distance of the planet
towards the Sun; «. Since the projected eccentricity of the Sun is in fact — as we
know now — a result of the eccentricity of the Earth, we are looking for the distance
of the centre of the eccentric of the Earth’s orbit. This is distinctly different from
the philosophy of the ancient Greek. Therefore, we rely on the values found in
classical times. According to Evans (1998), Ptolemy describes in his Almagest
how Hipparchus found a Solar eccentricity of 0.0334, in units where the radius of
the deferent is unity!. This value can be seen as an analogue to the planetary

! Hipparchus found the value for a Solar eccentricity of 0.0334 by measuring the exact lengths
of the seasons, which are not equal. By comparing these periods to the circle of the Zodiac,
Hipparchus was able to deduct the eccentricity, as well as the direction of the centre of the
eccentricity on the celestial sphere (Pedersen, 1974; Evans, 1998).
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distance v used in Equation 7.6. Therefore, the distance of displacement for the

Sun must be:
0o =0.0334- xo -

This underlines, that it is not optimal to place the central axis and the axis on
which the circular dish for the Solar pin is mounted, very close together. In order
to construct a more accurate g, it is preferable to make x g large. This will yield
a more precise deflection from the Sun pointer.

So, because we require the necessary space, and aim to assemble an accurate
Sun pointer, we arrange an extended gear train for the representation of the Sun.
This does, however, not imply that we need more gear in total. We can use the
second 73-teeth gear in the epicycle gear train for Mercury. By designing it that
way, the distance x can be increased sufficiently, and there is enough space to place
the gear, circular dish, pin and bar.

The resulting gear train can then be parametrized by the following expression:

T . b4 Mal
rue Sun epicycle gear train = Val X Tal
32 T3
73752
It is easily seen that the total ratio of this Solar epicycle gear train is equal to 1.
The input period of the Mean Sun is thus equal to the output period, that of the
True Sun.

Figure 7.14 shows the side view of the schematic gearing for the epicycle gear
train for the Sun, as mounted on top of the Sun Wheel. Shown are the gears,
their tooth counts and their relative position. With the first two gears, it develops
identical as the schematic diagram for the epicycle gear train of Mercury. The
third and final gear propels a circular dish, on which the pin is mounted. This pin
pulls the bar along, which in turn is the lead for the Sun pointer.

<+ bar pin Figure 7.14: Side view of the schematic

3 gearing diagram of the Solar epicycle gear
train, as mounted on top of the rotating
224-teeth Sun Wheel. This design develops

b4 32 Mal 73 Hal 32 identical to the Mercury epicycle gear train
‘ --— 1 (see Figure 7.12), to end with a circular
il "' — dish on which a pin is mounted, which pulls
«— arbor True Sun the bar along. This leads the Sun pointer

around the dial.

7.6.5 Arranging epicycle gear trains on the Sun Wheel

The table in Figure 7.15 lists all the gears that are introduced by the models
for the inferior planets and the Sun. This shows that a total of 14 additional
gears are needed to describe the planetary extension of the inferior planets for the
Antikythera Mechanism.

The overall picture of the gear trains representing the inferior planets and the
True Sun is represented as a top view in Figures 7.16 and 7.17. These two Figures
enclose a series of 6 Sub-figures, in which the different layers of gears, dishes and
bars are illustrated, as they are mounted on top of the Sun Wheel of Fragment A.
The same color coding is maintained as in Figures 7.12, 7.13 and 7.14.
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| | Name Axis Tooth count Rotation Info |
3 bl b 224 O Sun Wheel
37 b4 b 32 @) fized by arbor
38 Mal Ma 73 O
39 Ma2 Ma 78 O
40 Mcl Mec 20 O
41 Mc2 Mc 59 O
42 Mdl Md 32 O Mercury
43 Val Va 51 O
44 Va2 Va 37 O
45 Vbl Vb 20 O
46 Vb2 Vb 30 O
47 Vel Ve 97 O
48 Ve2 Ve 75 O
49 Vdl vd 32 @) Venus
50 Hal Ha 32 ®) True Sun

Figure 7.15: Table of observed (3) and hypothetical (37 to 50) gears in the planetary extension
of the inferior planets for the Antikythera Mechanism. Given are the name of the gear, the axis of
the gear and the tooth count for every gear. The newly introduced axes are denoted by capitals.
The column entitled rotation shows an icon indicating the direction of rotation, as seen when
looking through the front of the Mechanism. With this must be noted that 32-teeth gear 37 is
fixed on an arbor, though, relative to the large Sun Wheel it rotates counterclockwise. The last
column gives supplementary information.

Shown in Sub-figure a of Figure 7.16, is the 32-teeth gear that is fixed on an
arbor. Even though, this gear is stationary, the table lists its rotation as being
counterclockwise. We have done so, because it is more insightful to consider the
large base wheel as the stationary element, when examining the epicycle gear train.
In the actual setting, the gears of the epicycle gear train rotate, while this entire
gear train revolves around the central axis. By considering the large base wheel
as the stationary part, one can follow the gears of the epicycle gear train, without
their superimposed motion. However, when the base gear is regarded stationary,
the otherwise stationary gear has to rotate in the opposite direction. Therefore,
we consider the central 32-teeth gear as rotating counterclockwise.

Sub-figures b through d illustrate the three layers of gears as proposed in
Figures 7.12, 7.13 and 7.14. Starting with the bottom layer in Sub-figure b, and
ending with the third layer of gears in Sub-figure d. In Sub-figures e, the diagram
is extended with the circular dishes and their mounted pins.

The final image is shown in Figure 7.17, where Sub-figure f illustrates the bars
and pointers for the True Sun, Mercury and Venus.

7.7 Design of the planetary extension for the su-
perior planets

Figure 7.17 illustrates the total epicyclic gearing model for the Sun and the inferior
planets. Still, this is only the first of four planetary extension modules we find back
in our hypothetical clockwork. Each of the three superior planets requires an extra
separate platform construction of epicyclic gearing. It includes a large base gear,
that reproduces the motion of the epicycle on its deferent. In turn, the epicycle
gear train, representing the motion of the planet on its epicycle, is mounted on
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84

Figure 7.16: Top view of a series
of schematic gearing diagrams — not
to scale — of Fragment A and the in-
ferior planets. Shown are the differ-
ent layers of gears mounted on top of
Fragment A, developing through sub-
figures a to f, of which the latter is
displayed in Figure 7.17. Sub-figure
a starts with the fixed 32-teeth gear
that propels all epicycle gear trains,
mounted on the Sun Wheel, as pro-
posed by Wright (2002a). Sub-figures
b to d illustrate the three layers of gear
as proposed in Figures 7.12, 7.13 and
7.14. Sub-figure e contains the circular
dishes on which the pins are mounted.
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Figure 7.17: Top view of the schematic gearing diagram — not to scale — of Fragment A and
the inferior planets. Shown are the different layers of gears mounted on top of Fragment A, as
proposed in Figures 7.12, 7.13 and 7.14. This last image illustrates the bars and pointers of the
True Sun, Mercury and Venus. Continuation of Figure 7.16.

top of this large base gear.

The base gears of the superior planets rotate with a period equal to their
sidereal period. This motion is propelled by the Sun Wheel, through a series of
gear trains that wrap around the modules, in the vacancies at the upper or lower
side. Figure 7.18 illustrates this construction.

The gears that propel the three base gears for the superior planets are driven
by the Sun Wheel. This implies that each gear train, driving the base gears, starts
with a 224-teeth gear. This provides us with a reason to design the three base
gears also as 224-teeth wheels, because in that way, the two large gears will cancel
each other out when composing the gear trains. Subsequently, this supplies us
with the largest possible base gears, which is beneficial since they are intended to
act as a plateau for the epicycle gear trains. They therefore require the physical
space on which the gears have to be mounted.
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Saturn Wheel

AN

Jupiter Wheel

AN

Mars Wheel

AN

Figure 7.18: Inclined
view of the planetary mod-
ules, as they are propelled
by the Sun Wheel and
subsequent sidereal orbital
gearing. From the bottom
up, the large green gears
are the Sun Wheel, fol-
lowed by the base gears for
each of the three superior
planet epicycle gear trains.
The gear trains in front are
responsible for propelling
the large gears in the rele-
vant sidereal orbital times.
Used is the same design
and color coding as in Fig-
ure 7.19.

Sun Wheel /

7.7.1 Propelling the superior planet modules

The table of Figure 7.7 provides us with the factorized sidereal orbital ratios for
the superior planets, given the fact that the accuracy a > 108, and none of the
factors are larger than 224. Amongst the various possibilities we will illustrate the
most plausible one.

For Mars, this results in six separate possibilities. However, most of these pos-
sibilities contain factors much larger than 100. And since we are working towards
an elegant design, able to fit within the margins of the Antikythera Mechanism,
we use the second solution; v, 5 =3%-7-11 / 2-5-17- 23.

Out of this ratio v, » and the condition that the gear train starts and ends with
a 224-teeth gear, we can compose the following sidereal n for the module of Mars:

Mars sidereal gear train = o x £92 5 CP2, Cel
ars siaerear gear iramn — Cal Obl Cel b5

224 33 63 ¢,

T 6 85 g, “22a

where ¢, is defined as a gear with an arbitrary number of teeth. This gear is
necessary since the base gear has to rotate in the appropriate direction.

There are two possible factorized sidereal orbital ratios for Jupiter (see Figure
7.7). The first and most accurate possibility also accounts for the smallest factors;
vy1 =2-5-23 / 3%-101. With this, we compose the sidereal gear train for the
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second module of Jupiter:

M Cd2 Ce2 Cfi

Cdl * Cel 1% 16

:%xﬂxﬁx%.
52 101 4, 224

Jupiter sidereal gear train =

As with the sidereal gear train for Mars, ¢, is defined as a gear with an arbitrary
number of teeth. Note that the number of teeth on this gear may also differ from
¢.. The reason for introducing this gear is the same however; to make the base
gear rotate in the appropriate direction.

The choice for a factorization of the sidereal gear ratio of Saturn is a trivial
one, since there is only one option; v, = 5-17 / 41-61. The resulting sidereal gear

Saturn

Ch2 17 Cil arbitrary b7 224
I
Ch1 123 Cg2 15
i
. Cfl arbitrary b6 224
Tupiter Ce2 23 W /
UARRAL LT
Cel 101 Cd2 20
SRR R R R LR E R AL
Cel arbitrar Mars
Cb2 63 L./ Y
(L I
Cbl 85 Ca2 33
b5 224
STRRRRRR AR A RLERLLEL R L
Sun and inferior planets
bl 224
Cal 46 Cdl 54 Cgl 61
HIIIIIIIITI- HIIIIIIIIII,I- RPN RRRR AL

Figure 7.19: Side view of the schematic gearing diagram for the sidereal gear trains which
propel the superior planetary modules. In the lower section, the Sun Wheel is shown. On this
gear, the epicycles of the inferior planets and the Sun are mounted. In the three sections above
the Sun Wheel, the large Mars, Jupiter and Saturn Wheels are presented. These three wheels
are the cores of their subsequent superior planet modules. At the foreground, three gear trains
are shown. These are responsible for the rotating the 224-teeth superior planet wheels in their
different sidereal periods.
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| | Name Axis Tooth count Rotation Info |

3 bl b 224 O Sun Wheel
51 Cal Ca 46 O

52 Ca2 Ca 33 O

53 Cbl Cb 85 O

54 Cbhl Cb 63 O

55 Ccl Cc - O ¢s - arbitrary
56 b5 b 224 @) Mars Wheel
57 Cdl Cd 54 O

58 Cdl Cd 20 O

59 Cel Ce 101 O

60 Cel Ce 23 O

61 Cf1 Cf - O ¢ - arbitrary
62 b6 b 224 O Jupiter Wheel
63 Cgl Cg 61 O

64 Cgl Cg 15 O

65 Chl Ch 123 O

66 Ch2 Ch 17 O

67 Cil Ci - @) ¢n - arbitrary
68 b7 b 224 O Saturn Wheel

Figure 7.20: Table of observed (3) and hypothetical (51 to 68) gears in the planetary extension
of the superior planet modules for the Antikythera Mechanism. Given are the name of the gear,
the axis of the gear and the tooth count for every gear. The newly introduced axes are denoted
by capitals. The column entitled rotation shows an icon indicating the direction of rotation, as
seen when looking through the front of the Mechanism. The last column gives supplementary
information.

train for the module of Saturn is the following:

Saturn sidereal gear train = b4 X Cg2 X Ch2 X %
g T Cgl “Chl X Cit " W7

BTN LI LN

61 ~ 123 ¢, 224

where ¢, is defined similar, and because of the same reason, as for the two other
superior planets. Still, ¢, # P, # bn.

Some of the gears in this arrangement for Saturn are quite small, however,
further multiplications will cause the large gears to become too large. In fact, we
may justify this on the ground that there are gears with less than 15 teeth in the
reconstruction of the Antikythera Mechanism by Freeth et al. (2008).

A side view of the schematic gearing diagram of superior planet modules and
their propelling gear trains is shown in Figure 7.19. At the bottom, the module of
the Sun Wheel is shown. This is also the location where the epicycle gear trains
for the True Sun and the inferior planets are located. In the foreground, the three
sidereal gear trains are shown which lead to the first, second and third module,
ones for Mars, Jupiter and Saturn.

The table of Figure 7.20 lists all the gears of superior planet modules for the
Antikythera Mechanism. Along with their gear names, axis and tooth counts.
This table shows also that a total of 18 gears are needed to propel the separate
modules.
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7.7.2 Mars

Now that we have our deferents in motion, the last step is to compose the epicycle
gear trains for each of the superior planets. As we have seen in Section 7.2,
the superior planets make one revolution on their epicycle in one synodic period,
similar to the inferior planets. For Mars, the table of Figure 7.7 provides us with
twelve different possibilities in which the synodic orbit can be factorized. We use
the seventh one, v,7 =2-31-83 / 3%-11- 37, since this set of factors allows us
to construct a gear train with only three additional axes, and no gears larger than
111 teeth:
U vl train = b8 Ra2 Rb2
ars epicycle gear train = 5 X Tl X Tl
32 62 83

= — X — X — .
111 99 32

Like the epicycle gear trains for the inferior planets, the gear trains for the superior
planets commence with a stationary 32-teeth gear, fixed on an arbor. This entire
epicycle gear train is mounted on top of the rotating 224-teeth Mars Wheel.

Figure 7.21 illustrates a side view of the schematic gearing diagram of the Mars
epicycle gear train. Shown are the gears, their tooth counts, and their relative
position. The gear train ends in a 32-teeth gear that propels the circular dish. As
with the inferior planets, this dish contains a pin that pulls along a bar, which in
turn leads the pointer for Mars.

The distance at which this pin has to be displaced from the centre of the
dish, is given by Equation 7.7. From de Pater and Lissauer (2004), we know that
v, = 1.52369 AU. Therefore, the distance of displacement is given by:

5, =1.52369"1 .y, .

With this, the second module, and the first of a superior planet is accomplished.

< bar pin
2
Rb2 83
Ra2 62 MR
b8 32 L EEE Rel 32
H|||lll-?||||||l||||||||||||||| ; Rb1 99
«_ arbor ; Ral 111 Mars

Figure 7.21: Side view of the schematic gearing diagram of the Mars epicycle gear train, which
is mounted on top of the rotating 224-teeth Mars Wheel. Shown are the gears, their tooth counts,
and their relative position. The train begins with a fixed 32-teeth gear, and ends with a circular
dish on which a pin is mounted. This pin pulls the bar along, which in turn leads the Mars
pointer around the dial.

7.7.3 Jupiter

Figure 7.7 gives nine different possibilities for a factorization of the synodic orbital
ratio of Jupiter. Due to the fact that there is no possibility for a design with three
axes and gears with less than 100 teeth, we compose a gear train with four axes
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and make use of the second possibility: v, 2 = 25.5.61 /3-11-17-19. With these
4 2, we arrange the following epicycle gear train:
Jupiter epicycle gear train = b_9 X @ X & X E
Jal — Jbl  Jel  Jdl
32 61 32 20
= — X —=X—=X— .
32 33 38 34

Figure 7.22 illustrates a side view of the schematic gearing diagram, with the
gears, their tooth counts, and their relative position, of the Jupiter epicycle gear
train.

The initial 32-teeth gear is the stationary gear. And like the previous epicycle
gear trains, the arrangement ends with a gear propelling a circular dish. On this
dish, a pin is mounted that pulls a bar along, which in turn leads the Jupiter
pointer.

Equation 7.7 gives the relation by which the displacement of the pin from
the centre of the dish can be calculated. The distance of Jupiter from the Sun
is v» = 5.20276 AU (de Pater and Lissauer, 2004). Therefore, the distance of
displacement must be:

6, = 5.20276 1 - x.

which in turn, provides us with the necessary data by which the third superior
planet module can be put together.

< bar pin
3
Ja2 61 Ib1 33 Je2 20 Id1 34
5932 | [IINNNIE e RRLLL RS
1Ty Ul MR Jupiter
«—_ arbor Jal 32 Jb2 32 Jel 38

Figure 7.22: Side view of the schematic gearing diagram of the Jupiter epicycle gear train,
which is mounted on top of the rotating 224-teeth Jupiter Wheel. Shown are the gears, their
tooth counts, and their relative position. The train begins with a fixed 32-teeth gear, and ends
with a circular dish on which a pin is mounted. This pin pulls the bar along, which in turn leads
the Jupiter pointer around the dial.

7.7.4 Saturn

For the realization of the last module for the superior planet Saturn, the table of
Figure 7.7 provides us with eleven different possibilities by which we can factorize
the synodic orbital ratio of Jupiter. We use the fifth option; v, » = 3-13-43 / 23.
7 - 31, since this contains the smallest factors. Out of these factors, the following
gear trains can be composed:

b0 Sa2 | Sp2
Sal  Sbl  Scl
32 43 39
— X — X — .
56 31 32
Figure 7.23 illustrates a side view of the schematic gearing diagram for the
epicycle gear train of Saturn, as mounted on top of the rotating 224-teeth Saturn

Saturn epicycle gear train =
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Wheel, along with its gears, tooth counts and relative position. Like the models of
the True Sun and the other four planets, the primary 32-teeth gear is the stationary
component. And similarly, the gear train ends in a propelled circular dish. On top
of this dish, the pin is mounted that pulls the bar along, which in turn leads the
Saturn pointer.

The distance at which this pin must be displaced from the centre of the dish,
can be calculated with the use of Equation 7.7. Where the distance of Saturn from
the Sun is given by 7, = 9.54282 AU (de Pater and Lissauer, 2004). The distance
of displacement can then be indicated as following;:

8, =9.542827 1.y, .

This result is the last of the total number of schematic gearing diagrams, needed
to describe the planetary extension for the Antikythera Mechanism. In the table
of Figure 7.24, all gears are listed which are part of the gear trains of the epicycle
gear trains for the superior planets.

For the epicycle gear trains, a total number of 19 gears must be introduced.
Adding this to the total number of gears needed for the design of the True Sun,
the inferior planets, and the drive for the superior planet modules, we introduce a
total number of 52 gears for the planetary extension.

< pin
T
bar
Sbh2 39
Sa2 43 11001 E R Sel 32
b10 32 I 11111 EN
11111} Sbi 31 Saturn
x*_ arbor Sal 5()

Figure 7.23: Side view of the schematic gearing diagram for the epicycle gear train of Saturn,
as mounted on top of the rotating 224-teeth Saturn Wheel. Shown are the gears, their tooth
counts, and their relative position. The train begins with a fixed 32-teeth gear, and ends with a
circular dish on which a pin is mounted. This pin pulls the bar along, which in turn leads the
Saturn pointer around the dial.

7.8 Alternate designs of the planetary extension

The schematic gearing diagrams shown in the previous two Sections, are designed
using the factorized ratios of the tables in Figures 7.5 and 7.7 that seemed most
plausible to use. The arguments we used to make our choice however, were mostly
based on the fact that we wanted to use small gears or a minimal number of axes.

There is no such occurrence, that the one option would give a better result
as the other. There is the difference in accuracy, though all of the presented
factorizations have an accuracy o > 10%, which means that even the least accurate
options would only be off 1 degree in 2777 years. Thus, other designs, as given in
Section 7.3, are well possible.

One deviation worth investigating, is that of minimizing the total number of
gears. As summarized in the previous section, we would need a total of 52 gears
to realize our designs. This is a relative small number, if one supports the point
of view that it reproduces the motions of the Sun and all the planets on their
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| | Name Axis Tooth count Rotation Info |
69 b8 b 32 O fized by arbor
70 Ral Ra 111 O
71 Ra?2 Ra 62 O
72 Rb1 Rb 99 O
73 Rb2 Rb 83 O
74 Rcl Rc 32 O Mars
75 b9 b 32 (@) fized by arbor
76 Jal Ja 32 @]
7 Jal Ja 61 O
78 Jbl Jb 33 @]
79 Jbl Jb 32 O
80 Jel Je 38 O
81 Jcl Jc 20 O
82 Jd1 Jd 34 @) Jupiter
83 b10 b 32 @) fized by arbor
84 Sal Sa 56 O
85 Sa2 Sa 43 O
86 Sbl Sb 31 O
87 Sb2 Sb 39 O
88 Scl Sc 32 O Saturn

Figure 7.24: Table of hypothetical gears in the planetary extension of the superior planet
modules for the Antikythera Mechanism. Given are the name of the gear, the axis of the gear
and the tooth count for every gear. The newly introduced axes are denoted by capitals. The
column entitled rotation shows an icon indicating the direction of rotation, as seen when looking
through the front of the Mechanism. With this must be noted that 32-teeth gears 69, 75 and 83
are fixed on an arbor, though, relative to the large Sun Wheel it rotates counterclockwise. The
last column gives supplementary information.

deferents and epicycles. However, the total number of gears in the contemporary
model of the Antikythera Mechanism by Freeth et al. (2008), contains only 36
gears. Compared to that, the additional 52 gears would be substantial.

Optimising the modular gear trains

The planetary extension we designed, contains several gears which could be dis-
posed of. These are gears that have been added in order to extend the symmetry
and aesthetics of the design, and to prevent large peculiarities.

The latter occurs at the arrangement of the sidereal gear trains, propelling
the large base gears on which the epicycle gear trains for the superior planet are
mounted. As one can see in Figures 7.19 and 7.18, there are three gears introduced
to invert the direction of rotation; gears C'c1, C'f1 and Cil (see the table of Figure
7.15). We have chosen for this configuration, since it requires small gears which
are relatively easy to incorporate. We have situated them at the end of each gear
train on our design, while they could also be put at the beginning, or between any
inter-meshing set of gears in the train. However, it involves in total three gears,
doing identical work.

Another solution would be to substitute the three gears, by one placed at the
beginning of the three sidereal gear trains; between the Sun Wheel and the second
gear of each train. This gear would have to propel three gear trains at once, thus
it would have to be a large gear. The size — and with that the number of teeth
— becomes important, since the three inter-meshing gears need the physical space
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to rotate beside is. Because of this, it could easily become a problem to carry the
rotation back to the three base wheels of Mars, Jupiter and Saturn. After all, the
remaining, and relative small gears would all need to fold back towards the central
gears. Another argument against this solution, is the space available inside the
Antikythera Mechanism; it would also be a challenge to fit relatively large gears
besides the 224-teeth Sun Wheel. In all, it would make a difference of two gears.

Optimising the epicycle gear trains

The greatest progress in minimizing the total number of gears, can be made in
optimizing the epicycle gear trains. On the basis of symmetry and aesthetic con-
siderations of the design, we started each epicycle gear train with an identical fixed
32-teeth gear: namely b4, b5, b6 and b7.

When we choose to abandon this architectural preference, it would make a
difference of nine gears. In each epicycle gear train two 32-teeth gears would
cancel out. However, the epicycle gear trains of Mercury and Venus commence
with the same gear, which means that only three 32-teeth gears will drop out. For
the superior planets, it will differ six gears. Making it nine in total.

The resulting gear trains can be parametrized by the following expressions:

M el train = b4 9 Ma?2
ercury epicycle gear train = ol < b

78 59

R x R ,

20 73

b1l Va2 Vb2

Val Vbl Vel

Venus epicycle gear train =

75 8T 30
T 207 517 97
Mars epicycle gear train = b—8 X @
preyee 9 ~ Ral * Rb1
62 83
= —— X —,
111 99

b Ja2 02
Jal Jbl  Jel
61 32 20

— X —= X —,
38 33 34

b10  Sa2

~ Sal * b1
39 43

= — X — .
56 31

Jupiter epicycle gear train =

Saturn epicycle gear train

Since the epicycle gear train for Mercury will change, the model for the True
Sun is affected to. Within the model represented in Figure 7.14, the True Sun
epicycle gear train starts with the same two gears as the Mercury epicycle gear
train. In order to account for this, the new gear train of the True Sun is parametrized
by:

True § icycl trai b Mal
TUEe SdUun epicycie ge = —
p y g ar irain Ma]_ Ha]_

78 20

20 78"
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— bar _ pin
b4 78 Hal 78
‘||||||||||"|E|l_|||!- RRRRRRRRRNNNEL | True Sun
*_ arbor " Mal 20

Figure 7.25: Side view of the optimized gearing schematic diagram of the True Sun epicycle
gear train, starting with same two gears as the optimized model for Mercury, and ending in a
75-teeth gear. Further properties are equal to Figure 7.13.

< bar i pin
Ma2 59 Mb1 73
b4 78 JUREERRLRR AT )
‘|||||||||||||E||_||| m Mercury

*_ arbor " Mal 20

Figure 7.26: Side view of the optimized gearing schematic diagram of the Mercury epicycle
gear train, starting with a 78-teeth fixed gear instead of a 32-teeth gear. Further properties are
equal to Figure 7.12.

<4+ bar pin
2 ]
bll 75 Val 20 Vb230 Vel 97
UUILRER L) LY UUMERRRRRRRRRR PR
’ . Venus
*— arbor Va2 37 " Vbl 51

Figure 7.27: Side view of the optimized gearing schematic diagram of the Venus epicycle gear
train, starting with a 83-teeth fixed gear instead of a 32-teeth gear. Further properties are equal
to Figure 7.13.

making it still possible for the True Sun epicycle gear train, to begin with the same
two gears as the model for Mercury.

Figures 7.26 through 7.30 illustrate the gearing schematics, when we choose
to abandon the condition that the epicycle gear trains are required to commence
with identical fixed gears. It shows the arrangements for the epicycle gear trains,
using nine gears less.

On the numerous possibilities

Considering the changes proposed in this Section, it is possible to construct the
planetary extension with only 40 gears, instead of the 52 gears stated previously.
But even then, there are ways to further minimize the number of gears; the epicycle
gear trains for Venus and Jupiter occupy three axes, instead of two. By using larger
gears, with more than 112 teeth, we could compose epicycle gear trains containing
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~t bar pin
Ra2 83 Rb1 99
b8 62 JUMRRRRRR R IR RL R
Ay
«— arbor “Ral 11 Mars

Figure 7.28: Side view of the optimized gearing schematic diagram of the Mars epicycle gear
train, starting with a 62-teeth fixed gear instead of a 32-teeth gear. Further properties are equal
to Figure 7.21.

‘ [ bar pin
2
Ja2 32 Tbl 33
b9 61 ILRERE
Hl||||||||||’|_ n \||||||_ Jupiter
*— arbor D Jal3s  Jb2 20 Tel 34

Figure 7.29: Side view of the optimized gearing schematic diagram of the Jupiter epicycle gear
train, starting with a 61-teeth fixed gear instead of a 32-teeth gear. Further properties are equal
to Figure 7.22.

«—t pin
Z
bar
Sa2 43 Sbl 31
b1039 (IITITTE
HlIIIIIF-IIIIIIIIII Saturn
®_ arbor “sal 56

Figure 7.30: Side view of the optimized gearing schematic diagram of the Saturn epicycle gear
train, starting with a 39-teeth fixed gear instead of a 32-teeth gear. Further properties are equal
to Figure 7.23.

four gears also for these two planets. With that the total number of gears would
be brought back to 36.

However, this truly undermines the design of the overall model. It is disputable
which model is to be preferred, and of minor importance in this context. The
important conclusion is the fact that it is possible to create a planetary extension
for the Antikythera Mechanism, with approximately the same number of gears as
used in the contemporary reconstructions of the ancient device. Thus making it
possible, to turn the Antikythera Mechanism into a full-fledged planetarium with
roughly twice the number of gears used in the present model.
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CHAPTER 8

Conclusions & discussion

The Antikythera Mechanism is of crucial importance for the history of science and
technology. It tells us of a revolution in human thought in ancient Greece, and
is the earliest known example of a machine for making calculations. It is, by far,
the earliest known machine predicting the future. The device presents us with the
evidence for a technological sophistication in antiquity, which the modern world —
till a couple of decades ago — never deemed possible.

8.1 Conclusions of the results

In Chapter 1, we formulate the central research question of this study, which
inquires whether it is possible for the Antikythera Mechanism to reproduce the
motions of the five planets, known by the ancient Greek. And if so, how such a
design may have been arranged.

By now, we can confirm with a fair amount of certainty, that the planets could
have been part of the Antikythera Mechanism. That is, we can confirm that it is
possible that the device contained the planetary gear trains, propelling the relevant
pointers for the planets.

Since we do not know in what shape the device was, when the Roman Merchant
ship perished more than two millennia ago, we can never say whether it was a
full pledged planetarium at that time. Nonetheless, various indications imply
that planetaria did exist, and the Antikythera Mechanism is the best candidate
available.

After describing extensive background research concerning the discovery and
research of the fragments of the Antikythera Mechanism, and the astronomical
and technological skills of the ancient Greek in Chapters 2, 3 and 4, we examined
and computed simulations of different epicycle models held by in the Hellenistic
era. We compared these models with the found fragments and the reconstructed
models, and deducted a coherent model for the planets.

In Chapter 7, we describe our design for the planetary extension of the Mech-
anism. We present the different possibilities by which the planetary motions can
be reproduced, and offer two series schematic diagrams in which we elaborate on
different lines of architectural reasoning.
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It forms the principal ground on which we conclude that there are several con-
figurations in which the planets can be incorporated in the extended Antikythera
Mechanism.

8.2 Discussion of the results

Relying on schematics

The models for our schematic gearing diagrams are far from definite. For instance,
we assume a linear relation between the size of the gears and their tooth counts.
As can be seen in Freeth et al. (2006), the gears found in the surviving fragments
roughly agree to this relation. However, a deviation of this relation could very well
be necessary when a physical model is to be constructed.

It takes the competence of a real craftsman, to recreate the planetary extension.
We can not elaborate too deeply about the various properties of the gears; for
instance their thickness, or their metallic alloy. We have not said anything about
the shape of the gear teeth. As Bromley (1990b) notices, plain triangular gear
teeth will probably be responsible for very rough action, and could even lock the
entire gear train. He therefore proposes a model with rounded teeth.

Nonetheless, we are quite confident that this model works. There are a few
working reconstructions of the Antikythera Mechanism, made by Wright (2002a)
and the Dutch craftsman Tatjana van Vark!. Both do contain the planets and are
based on the same modular construction.

We, as supposed to the manufacturers of the other planetary extensions for the
Antikythera Mechanism, provide with the statistics and schematic diagrams out
of which the design is assembled; leaving the construction of the actual device for
future work.

For our design, we have tried to use only techniques and mechanisms that were
recognized in the actual Antikythera Mechanism. Still, we were forced to introduce
two techniques, since the alternatives seemed less favourable. The subjects of
interest are the modular construction, as well as the use of the pin and bar, in
leading the pointers across the outer dials. The alternative was a design using
the same pin-and-slot mechanism as observed in the representation of the Lunar
pointer. As described in Section 7.4, a design using this method would result in
a architecture of multiple long gear trains, clearly less elegant and feasible as the
modular solution. This led u to choose for the latter.

We also had to introduce the use of a bar. This was necessary in order to
carry the motion of the last epicycle gear back to the central axis. Even though,
the use of such a bar is not present in the contemporary reconstructions of the
Antikythera Mechanism, we feel confident to introduce this feature, since bars
were used to transpose motion in many devices of antiquity. Singer et al. (1957a)
describes several mechanisms, like water wheels and basic agricultural devices, in
which a bar is connected to a pin on a wheel and a central axis. Also, many of the
automatons made by Heron of Alexandria used this sort of transmission (Price,
1964). This leads us to believe, that such a manner of carrying motion would be
known and available to the makers of the Antikythera Mechanism.

Lhttp://www.tatjavanvark.nl/antikythera/
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Did the planets exist in the Antikythera Mechanism?

Up till now, we have discussed our method of reproducing the motions of the
planets. A more underlying question is whether the planets were actually part of
the device. We already discussed our stance that they could have fitted inside the
mechanism. Still, we do not know the actual purpose and aspiration for which the
Antikythera Mechanism was made. So, what was it for? Edmunds et al. (2006)
provides in a listing of six possibilities:

1. Tt was a device for performing calendrical calculations.

2. It was a device for performing calendrical and astronomical calculations.

3. It was a tellurium?.
4. Tt was a planetarium, displaying the relation of the Earth, Sun, Moon and
planets.

5. It was a navigational instrument.
6. It was a device for performing astrological calculations.

The fifth of these can probably be dismissed right away. It is true that the arti-
fact was found in a shipwreck, so were many other high status artifacts like the
sculptures and amphorae. Furthermore, there is no obvious way in which the
mechanism could have performed a navigational function.

The last option is harder to dismiss. One would expect more astrological ref-
erences in the inscriptions, but as Swerdlow (1998) notes, most astronomers in
ancient times, up until the nineteenth century, were also astrologers.

There is no definite answer, picking one of the six possible uses for the An-
tikythera Mechanism. However, we can say, that if the device had a purpose
which included the motions of the planets, these could be incorporated in a rela-
tively clear and obvious way.

8.3 Future work

Involving the turner’s lathe

When philosophising about the continuation of this research, the obvious next step
requires a further transformation of the schematic gearing diagrams, to the physical
model. This could be with the realization of a concrete extended Antikythera
Mechanism; containing the actual pointers for the five planets and the True Sun.
Another option could be a 3D computer model, where one could virtually see all
the working features.

The Dark Matter of ancient technological sophistication

The former British prime-minister and historian, Sir Winston Churchill, once said:
“History with its flickering lamp stumbles along the trail of the past, trying to
reconstruct its scenes, to revive its echoes, and kindle with pale gleams the passion

2A tellurium is a device for representing the relation of the Earth, Moon and Sun. This can
be used for display or educational purposes.
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of former days” (Edmunds et al., 2006). These words reflect our own reaction
to the unique Antikythera Mechanism. Past attempts to understand its purpose
are by now quite well documented, yet its profound significance is still not widely
recognized among astronomers, classicists and historians of ideas and technology.

In many ways, the discovery of a mechanism like the Antikythera Mechanism,
and the recognition of its profound implications on our thoughts of ancient techni-
cal sophistication, is kindred to the present-day search for dark matter in astron-
omy. It is similar, since both disciplines are unable to see the actual entity they
want to examine. Both areas are condemned to investigate secondary phenomena,
in order to deduce features inherent to their subject of interest.

The Mechanism constitutes an important indication for a level of technological
knowledge, that has been undreamed-of in modern assumptions about the ancient
Greek and Greco-Roman world. It must be seen as a crucial fingerprint, exposing
a level of sophistication that had been invisible throughout the other windows on
the ancient times.

It is in this respect, that the Mechanism is a physical artifact of almost tangible
power, more complicated than any known device for a thousand years after its
construction, forcing us to confront its implications for the development of human
thought and technology.

Tt would be tremendously important, if a second Antikythera Mechanism would
be dug up somewhere. If that device uncovered complementary knowledge about
the device and its time. After all, almost everyone who has studied the mechanism
agrees it could not be a one-off.

It has been observed that on close examination of the mechanism there is no
evidence of any mistakes. All the mechanical features have a purpose. There are
no extra holes, or bits of metalwork to suggest that the manufacturer modified his
design as he built the mechanism. This leads to the conclusion that he must have
built a number of predecessors. It would have taken practice, perhaps over several
generations, to achieve this level of expertise (Marchant, 2006).

The evolution of technology

Research on the Antikythera Mechanism can have exceptional implications for
our understanding of the advancements in technology. It is still a popular notion
among scientists thinking about the history of their disciplines, that technologi-
cal development is a simple progression; that there is a linear dependence in the
evolution of technology. But as Marchant (2006) notes, history is full of surprises.

Technological knowledge can get lost, and there is no linear progression by
which knowledge evolves. Maybe, some late descendant of the Antikythera Mech-
anism influenced the makers of the now called London Byzantine Sundial-Calendar
described by Field and Wright (1985), or even the makers of the medieval Euro-
pean and Arab astrolabes. Even more speculative is the idea that descendants of
the Antikythera Mechanism were taken to Byzantium. Only to be returned from
the eastern to the western world, for instance during the crusades of the turbu-
lent thirteenth century. Would this not explain the sudden birth of western clocks
resembling the Antikythera Mechanism?

Nevertheless, it is even more obvious that much of the mind-boggling techno-
logical sophistication available in some parts of the Hellenistic and Greco-Roman
world was simply not transmitted further, after the collapse of the Roman empire.
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By examining the Antikythera Mechanism, we can recover pieces of the path of
technological advancement. We can shed a light on some of the dark and forgotten
realms of history. Realms so phenomenal and intriguing, like no one could have
ever imagined.
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APPENDIX A

Images and illustrations

A.1 The Fragments

Fragment A

This Section contains a large series of photographs, made of the three largest
surviving fragments of the Antikythera Mechanism: Fragments A, B and C. The
pictures were taken in the National Archaeological Museum of Athens, by Rien
van de Weijgaert in September 2002.

Figure A.1: Photograph showing Fragments A, B and C, as displayed in the National Archae-
ological Museum of Athens.
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Figure A.2: Front and side view of Fragment A. The side view clearly shows the irregular
attachment where the drive gear and lever were attached. These were used to drive the other
gears of the mechanism.
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Figure A.3: Front and inclined top
views of Fragment A, illustrating the
various details of the artifact.

103



Niels Bos — The Planetary Extension for the Antikythera Mechanism

Figure A.4: Inclined side views of front and back of Fragment A. The images clearly illustrate
the minuscule teeth belonging to the gears.
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Fragment B

Figure A.5: Two front views of Fragment B, illustrating the partial gear and dial.
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Fragment C

Figure A.6: Front and side
view of Fragment C, illustrat-

= ing the partial dial and in-
¢ ~_ scriptions.




Images and illustrations

A.2 Rotating Fragment A

X-ray micro-focus computed tomography (CT) imaging

Figure A.7: Series of panels display-
ing an X-ray observation of a rotat-
ing Fragment A. The series starts with
a front view of Fragment A, and fol-
lows one revolution around the arti-
fact. The images are attained from a
movie provided by the AMRP, in which
they expand on their research.
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A.3 Slicing Fragment A

X-ray micro-focus computed tomography (CT) imaging

Figure A.8: Series of panels display-
ing X-ray slices of Fragment A. The
first panel illustrates an X-ray slice of
the front of the largest surviving ar-
tifact. Following the series, we slice
through the Fragment, until we reach
the back in the last panels. This series
superbly illustrates the different layers
of gears contained within the piece.
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A.4 Alternative view of gearing scheme

This section shows an alternative view on the schematic gearing of the reconstruc-
tion of the Antikythera Mechanism, as proposed by Freeth et al. (2006). The
series starts with the large Sun Wheel, in red, which propels the gear train for
the Metonic cycle. In the second panel the gear train for the Callippic cycle has
entered, and the gear train for the Moon pointer is beginning to form. Through
panels two till six, this gear train is introduced. In panels six till eight, the re-
maining gear trains for the Saros cycle and the Exeligmos are formed.

In the final three images, the gearing diagram slightly rotates. Thus providing
with an alternative survey of the schematic.

s

Figure A.9: Series of panels, dis-
playing an alternative view on the
schematic gearing of the reconstruction
of the Antikythera Mechanism, as pro-
posed by Freeth et al. (2006).
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