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Abstract

In this research we study the formation of a multi-phase ISM and early
star formation in the universe by using the N-body hydrodynamical

simulation code Enzo. We follow the collapse and cooling of minihalos with
different metallicities. We use the star formation algorithm from Cen &
Ostriker (1992) and include the chemical network of Spaans & Meijerink

(2008); Meijerink & Spaans (2005). In our simulations we use 1283 grid cells
on the top grid with two nested subgrids, each refining by a factor of two.

The box size of the simulations is 0.25 h−1Mpc and 1h−1Mpc for cases with
and without star formation, respectively. We run simulations over a redshift

range of 70 to 5 for non-star formation case and 99 to 5 for the star
formation case and use three different cooling prescriptions for the

metallicities of 10−3, 10−2, and 10−1 Z⊙.
We have found that metallicity impacts the star formation by allowing

minihalos to cool to lower temperatures, which makes them collapse and
evolve faster than the zero metallicity case. Due to the lack of resolution in

our simulations we cannot address the fragmentation of the cloud.
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1 Introduction

The Cosmological Principle states that on average the Universe is homo-
geneous and isotropic. Although this is the case for large scales (> 100h−1

Mpc) on smaller scales the Universe contains a lot of structure. One of the im-
portant questions in cosmology is how the stars, galaxies, and clusters formed
from a homogeneous and isotropic Universe. The theory that explains the
formation of structure in the Universe is called the ’gravitational instability
theory’. According to the gravitational instability theory the Universe has
small fluctuations in the beginning and these density fluctuations are ampli-
fied under the influence of gravity. The structures that we observe today are
the result of the gravitational growth of those primordial fluctuations. The
observed fluctuations in the temperature of the cosmic microwave background
radiation (CMB), ∆T

T
< 10−5 (T = 2.725 K), support the idea of these small

density perturbations. The origin of these small perturbations are thought to
be the result of quantum fluctuations during the inflationary stage of the big
bang.

Figure 1: Gravitational instability theory

In the last two decades, cosmological simulations have become an impor-
tant tool for theoreticians to simulate the structure formation in the Universe
from the primordial fluctuations. To interpret the observations of the CMB we
need a cosmological model. The cosmological model that currently matches
the observations best is the so called Cold Dark Matter (CDM) model. Accord-
ing to the ΛCDM model the Universe consists of 73% cosmological constant
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(dark energy), 23% dark matter, and 4% baryonic matter. Primordial density
perturbations on a small scale appear to have a much higher amplitude than
those on large scales. This leads to the conclusion that small clumps are the
first to collapse and form structures and then they build up larger structures
by mergers and the accretion of matter. This process is called hierarchical
structure formation.

Figure 2: Power Spectrum

A powerful model of hierarchical structure formation is the Press-Schechter
theory (Press & Schechter 1974). The Press-Schechter formalism is used to
estimate the number of collapsed objects as a function of mass at any given
time. In this formalism it is assumed that the dense objects that we observe
today are the results of the peaks in the initial density field. This formalism
states that the number of halos per co-moving volume with masses in the range
(M, M+dM) is

n(M, z)dM =

√

2

π

ρ0

M

dν

dM
exp(−ν2

2
)dM (1)

where z is the redshift, ρ0 is the background density. In this equation ν is
defined as:

ν =
δc

D(z)σ(M)
(2)

with δc the critical overdensity, D(z) the linear growth factor and σ(M) is
the root variance of the primordial density field in spheres containing mass
M on average, which is extrapolated to z = 0 by using linear theory. In
the Press-Schechter formalism it is assumed that density peaks are perfectly
spherically symmetric, although in reality this is not the case. Sheth et al.
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(2001) generalized the Press-Schechter formalism to incorporate homogeneous
ellipsoidal density perturbations. Then equation (1) becomes

n(M, z)dM = A(1 +
1

ν ′2q
)

√

2

π

ρ0

M

dν ′

dM
exp(−ν ′2

2
)dM (3)

where ν ′ =
√

aν
Due to the lack of observations of the period in which the first stars and

galaxies formed we use cosmological simulations to investigate how the Uni-
verse evolved between the recombination and re-ionization era (Dark Ages).
Given the initial conditions, a cosmological model with a composition of the
Universe (matter, radiation), and primordial fluctuations one can compute the
further structure formation from the big bang to the present day with numer-
ical simulations.

In our research we study the collapse and evolution of minihalos (106M⊙)
under the influence of metallicity to address early star formation and their im-
pacts on the surroundings by using the adaptive mesh refinement code Enzo
(N-body + Hydrodynamics). So far, cosmological simulations which are based
on the CDM models of hierarchical structure formation predict that the first
stars have formed at redshifts z ∼ 20 − 30, in dark matter halos of mass
∼ 106M⊙ (Tegmark et al. 1997; Yoshida et al. 2003), at the end of the cosmic
dark ages. Due to a lack of observational data we do not know their physical
properties or their impact on their surroundings. Also the initial mass function
(IMF) of the first stars remains an open question.

Theoretically the physics of the first stars is rather simple compared to the
physics of present day star formation (Abel et al. 2002). We know that the
primordial gas in the early Universe was metal free and there were no magnetic
fields that could effect the formation of structure. Also, there were no dust
grains to couple the gas to radiation emitted by the protostar or winds from
other stars. The efficiency of radiative cooling is determined by the density
and the chemical composition of the gas. Therefore cooling depends mostly on
the abundances of atomic and molecular H, and HD. Neutral atomic hydrogen,
HI, is the major coolant for temperatures T ≥ 104K, and molecular hydrogen,
H2, dominates cooling in a metal free gas for 200 < T < 104 (Saslaw & Zipoy
1967; Peebles & Dicke 1968). On the other hand, heavy hydrogen, HD, be-
comes the dominant coolant for gas of metallicity, Z < 10−3 and temperatures
T < 200K (Flower et al. 2000; Omukai et al. 2005). Here the challenge is
what happens to this gas when it collapses. Does it fragment and form binary
systems or even cluster of stars, or does it form a single massive star?

The very first stars are the stars whose metallicity is so low that metal cool-
ing does not have any effect, either on the formation or the evolution of the
stars. Nowadays, in the literature, the first stars are called Pop III stars. These
stars might have formed in various environments and this might have caused
different modes of Pop III star formation. Indeed, it has become evident that
Pop III star formation might have two distinct modes: Pop III.1 and Pop III.2
stars (McKee & Tan 2008). Pop III.1 stars are the first generation of stars that
are formed from the collapse of the primordial gas into DM minihalos whereas
Pop III.2 stars are the second generation of these stars that are affected by
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the radiation of previously formed stars. Early on, Pop III.2 stars were called
Pop II.5 stars (Mackey et al. 2003; Greif & Bromm 2006; Johnson & Bromm
2006). Pop III.2 stars will be less massive than Pop III.1 stars because when
the gas is ionized by the previous generation of stars, HD cooling can become
important and this allows the gas to cool more efficiently and therefore lowers
the mass of these stars through the Jeans mass criterion as explained below.
(see Figure 3)

Figure 3: The characteristic mass of stars as a function of redshift (John-
son & Bromm 2006). Pop III.1, Pop III.2 (Pop II.5) and Pop II stars with
characterized masses of the order of 100M⊙, 10M⊙,and 1M⊙, respectively.

From observations of the nearby Universe we know that the present day
stellar mass scale is ∼ 1 M⊙. There are two important processes that define
the final mass of a star. The initial mass of the core and the accretion rate.
The accretion rate can be estimated as follows

Ṁacc ∼
c3
s

G
∝ T 3/2 (4)

Here cs is the sound speed, G is the gravitational constant, and T is the
temperature. Because the temperature of the star forming regions in the early
Universe (T ∼ 100 − 300K) is different from those we see today (T ∼ 10K),
we expect to have a different mass scale for the first stars. Also, the lack of
metals in the early Universe lets the first stars be more massive than present
day stars because of insufficient cooling. We can see this easily from the Jeans
mass criterion. The Jeans mass gives a maximum mass value for a cloud that
can be in an equilibrium

MJ = (
5kT

Gµmp
)3/2(

3

4πρ
)1/2 (5)
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If Mcloud > MJ then the cloud will collapse. It has been suggested that the
first stars have M ≥ 100M⊙ (Bromm et al. 1999; Nakamura & Umemura 2001;
Abel et al. 2000) but more recent studies show that the first stars are not neces-
sarily that massive and they can be 10M⊙ − 100M⊙ (Heger & Woosley 2008).

When the first stars form they will influence their surroundings, this is
called a feedback effect. Feedback is a back reaction of a process on itself or
on the causes that have produced it. It can be negative or positive. We can
classify the feedback effects from the first stars into three groups: mechanical,
chemical and radiative feedback.

Mechanical Feedback: Mechanical feedback affects the subsequent star for-
mation process in different ways. At the end of their life, massive first stars
can explode as supernova explosions (SNe). This feedback can be either neg-
ative or positive. SNe might blow away the gas (Bromm et al. 2003; Springel
& Hernquist 2003; Whalen et al. 2008). This has a negative effect on the star
formation. On the other hand, shocks can compress gas and increase the den-
sity so that gas cools down more efficiently and give rise to star formation.
This way it has a positive effect.

Chemical Feedback: Chemical feedback is related to the critical metallicity
of the gas which leads to a transition in the star formation history. SNe of the
first stars are crucial for understanding the metal enrichment of the ISM and
the faith of the structure and star formation. Metal enriched primordial gas
enhances cooling and is therefore believed to govern the underlying physics
of the transition from Pop III to Pop II stars, since the cooling enhancedthe
Jeans mass of protostars is lowered significantly, thus resulting in less massive
stars. Chemical feedback has recently been studied by several authors Bromm
et al. (2001); Schneider et al. (2002); Omukai et al. (2005); Clark et al. (2008);
Smith & Sigurdsson (2007). These studies have shown that metal line cooling
is important in a non-zero metallicity gas, compared to H2 and HD, for metal-
licities of the order of 10−3 (Bromm & Loeb 2003) or even 10−5−10−6 (Jappsen
et al. 2007). In the paper of Bromm et al. (2001), the critical metallicity for
the transition between Pop III and Pop II stars was reported as 10−3.5Z⊙ but
other studies have shown that this threshold is the point where metal line
cooling becomes more important than H2 cooling. There is also an important
contribution to the cooling by the collisional coupling of warm gas and cool
dust grains, provided the density exceeds 104/[Z/Z⊙] cm−3.

The epoch of the Pop II stars depends on the number of Pop III stars that
explode as pair instability supernovae (PISN), the metal ejection efficiency,
and mixing in the intergalactic medium (IGM), as well as on the initial mass
function. So it is a local process and therefore the use of a single critical metal-
licity can be misleading.

Radiative Feedback: The radiation from the first stars will influence their
surroundings by heating and ionizing the gas, leading Pop III.2 stars. Also the
radiation will photodissociate hydrogen molecules within the larger Lyman-
Werner (LW) bubbles that surround the first stars. Radiative feedback effects
can be either negative or positive according to the energy of the radiation. If
the radiation is soft UV then this will destroy H2. In the absence of H2 gas
cannot cool efficiently and collapse, so in this case the feedback has a negative
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effect. On the other hand if the radiation is in the form of X-ray photons this
feedback effect will be positive. This is because, gas phase H2 formation is
related to the abundance of free electrons and any process that temporarily
enhances their abundance, will also tend to increase the H2 fraction. So the
cloud will cool down and start collapsing. In the paper of Whalen et al. (2004),
they argue, for a given smooth density distribution, that the H II ionization
front expels gas when Pop III stars are formed in a minihalo of 106M⊙.

In the near future new telescopes, such as the James Webb Space Telescope
(JWST), the Atacama Large Millimeter/submillimeter Array (ALMA), and
the Square Kilometer Array (SKA) will open up the epoch of re-ionization for
observations. When this happens valuable information about the formation of
first stars will become available and make it possible to distinguish between
the different theories of first star formation.

This thesis is structured as follows, in section 2 we will first discuss the
dynamics of the cosmological simulation code Enzo. Section 3 will explain the
modifications we have done to the code, and give an overview of the cooling
processes and star formation criteria that are used. In section 4 we will give
the setup of our simulations. Finally in section 5 we will present our results
and in § 6 we will give the summary of this research and discuss future work.

2 The Code -Enzo-

We have used the cosmological adaptive mesh refinement code Enzo (Bryan
& Norman 1997) for our research. Enzo is a grid based code which allows you
to zoom in on the region of interest and keep the rest of the simulation at low
resolution. Therefore, it saves computational time and allows a more detailed
view of the physics. Enzo is developed and maintained by the Laboratory for
Computational Astrophysics at the University of California in San Diego. It
is written in a mixture of C++ and Fortran 77. Enzo uses the hierarchical
data format (HDF5), to write out and restart files in a platform-independent
format. It is a parallelized code using the Message Passing Interface (MPI)
which enables it to run on multiple processors. Although it has been designed
to simulate cosmological structure formation, it also allows hydrodynamical
and N-body simulations in one, two, and three dimensions.

Enzo simulates both the baryonic and non-baryonic (dark matter) matter
components of the Universe. Due to the different nature of baryonic and non-
baryonic matter this requires different numerical algorithms. Baryonic matter
is evolved using a finite volume discretization of the Euler equations of gas dy-
namics in an expanding Universe. On the other hand, dark matter is assumed
to behave as a collisionless phase fluid, obeying the Vlasov-Poisson equation
and its evolution is solved by using particle-mesh algorithms for collisionless N-
body dynamics. Baryonic matter and dark matter interact only through their
self-consistent gravitational field. The gravitational potential is computed by
solving the Poisson equation on the uniform or adaptive grid hierarchy us-
ing Fast Fourier Transform and multigrid techniques. In this section we will
discuss the main features of Enzo in detail.
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2.1 Adaptive Mesh Refinement

Enzo uses the structured adaptive mesh refinement technique (SAMR) which
was developed by Berger and Oliger (1984) for hyperbolic partial differential
equations. Later on, Berger and Collela used it for conservation laws, and
demonstrated that the method is also successful for gas dynamics in two di-
mensions. Saltzmann and Welcome (1991) extended the methodology to three
dimensions.

Figure 4: coarse and ghost grids

Adaptive mesh refinement (AMR) is a grid based method. It first puts a
coarse grid which has the same size as the simulation box. Then it scans the
whole box volume to see if there is something interesting going on. In the al-
gorithm, one can define criteria that tell Enzo to refine the grid. In Enzo, one
can set a value for the mass of a cell (either baryonic or particle) so that when-
ever a cell has a mass value bigger than the one given, Enzo will make higher
refinement to that point. Also one can tell Enzo to make higher refinement
to the cells if the Jean’s length is to be resolved, if there is a shock present,
if the cell’s cooling time is less than the cell’s width divided by the speed of
sound, or if the density of the cell (baryon) is higher than the value you set.
So whenever one or a combination of these criteria is matched Enzo puts a
second grid (called child grid) inside the coarse grid’s cell with a higher refine-
ment. Afterwards it starts scanning this child grid to look if there is a region
where the criteria are matched. If it finds cells in the child grid that match
the criteria then it will put another grid into the child grid with even better
refinement. Enzo can go on doing this as much as one wants. Refinement can
occur anywhere in the volume or at a subvolume that is defined by the user.
However, the resolution of the simulation is limited by the size of these cells.
If the physics you are interested in are occurring on smaller scales than the
size of a cell, then nothing can be resolved. In our work we use mass criteria
(for both baryonic and non-baryonic particles) for increasing the refinement.

In the end we obtain a hierarchical structure with cells inside bigger cells
as shown in Figure 5. These cells in the grids are treated as individual ob-
jects. They can contain both field variables and particle data. The code uses a
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simple dynamic load-balancing scheme to distribute the workload within each
level of the AMR hierarchy evenly across all processors. The advantage of
this is that the computational time is reduced by distributing different grids
among the processors on parallel machines. Each processor stores the entire
distributed AMR hierarchy, but not all processors contain all the grid data.
If a grid’s data is allocated to a processor then it is a real grid on that pro-
cessor and on all other processores it is a ghost grid. The values in the cells
at the boundary of the grid depend on the values of the neighboring grids.
Real grids are used to store the data grid values, and ghost grids are used to
temporarily store neighboring grid values, so that these values can be used for
updating real grids when required. The ghost grid layer is three zones deep in
order to make calculations of the hydrodynamics solver properly. These three
zone deep ghost grid layers cost a lot of computational time and cause storage
problems. Especially for the region with the highest refinement.

Figure 5: Adaptive mesh refinement structure with 5 levels of refinement

2.2 Hydrodynamics

On large scales, dark matter dominates the gravitational evolution of the
universe. However, on the scales of galaxy formation baryonic matter, which
is dissipative in nature, takes over and dominates the formation of structure.
Therefore, the hydrodynamics of the collisional particles has to be included
in the simulations. In cosmological simulations there are two common hydro-
dynamical methods: Lagrangian schemes, and Eulerian schemes. In the La-
grangian schemes, the observer moves with the fluid while in Eulerian schemes,
the observer stands still as fluid moves by. This is shown in the Figure 6.
So in Eulerian schemes fluid quantities are functions of position x and time

t while in Lagrangian schemes fluid quantities are functions of initial position
x(t0) and time t.

Enzo uses the Eulerian scheme for simulating the hydrodynamics. There
are two different formulations of Eulerian hydrodynamics in Enzo to solve the
equations of gas dynamics: The Piecewise Parabolic Method (PPM) (Colella
& Woodward 1984), and a three-dimensional implementation of the artificial
viscosity-based scheme used in the magnetohydrodynamics code ZEUS (Stone
& Norman 1992). Although ZEUS is implemented into Enzo, the preferred
scheme is the PPM method.

PPM is a higher order, more accurate version of Godunov’s method. The
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Figure 6: On the left a visualization of the Eulerian scheme, and on the right
the Lagrangian scheme.

Godunov method treats the solution of the problem as piecewise constants.
Then it solves the time evolution over [tn, tn+1] for this piecewise function
exactly. The exact solution can then be used to produce fluxes. The time
evolution is determined by the exact solution of the Riemann problem (shock
tube) at the inter-cell boundaries (Hirsch, 1990). The idea behind Godunov’s
method consists of solving analytically the Riemann problems arising at each
cell interface of a cell-wise constant finite-volume scheme as shown in Figure
7. The problem of a one-dimensional initial discontinuity with constant left
and right states is called the Riemann problem.

Figure 7: Godunov scheme

The baryonic content of the Universe can be described approximately as
an ideal gas. To follow the evolution of the gas one has to solve the equations
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of hydrodynamics:

∂ρ

∂t
+ ∇.ρu = 0 Continuity equation (6)

∂ρu

∂t
+ (∇.u)u) = −∇p − ρ∇φ Momentum conservation (7)

∂E

∂t
+ ∇.[(E + P )u] = −ρu.∇φ Energy conservation (8)

where ρ is the mass density, u is the fluid velocity, P is the thermal pressure,
E is the total energy per unit volume. Together with the equation of state (see
below) and the Poisson equation they close the hierarchy of the hydrodynamic
equations:

ǫ =
1

γ − 1

P

ρ
Equation of state (9)

When additional physics are taken into account, like adding cooling into
the simulation, cooling and heating parameters should be included to the right
hand side of the energy conservation equation as follows:

∂E

∂t
+ ∇.[(E + P )u] = −ρu.∇φ + (Γ − Λ) Energy conservation (10)

where Γ is the heating and Λ is the cooling term in erg s−1.
In the original Godunov method variables were assumed to be constant in

each cell and at each cell interface the fluxes of variables are computed by
solving the Riemann boundary problem. To be able to solve the gas dynamics
we need to find a set of intermediate states (one for each characteristic) that
connect the left and right states and that satisfy the physical conditions (e.g.
shock jump conditions).

Given the boundary conditions on the left and on the right of the cell

Figure 8: Boundary condition problem.

interface (see Figure 8) one can solve the conservation equations to obtain the
flux.

Shocks occur when the velocity of a fluid becomes comparable with or ex-
ceeds that of the sound speed in the surrounding medium. This will lead the
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medium to heat up, compress and accelerate. There are two types of shocks:
Continuous shocks (C-shock) and Jump shocks (J-shock).

The C-shocks are magnetized shocks and are weak compared to the J-shocks.
In general C-shocks occur in gas with a low degree of ionization, high density
and molecular fraction. C-shocks have velocity’s of less than ∼40 km s−1. The
shock front here is thicker than the cooling length scale. This means that once
the shock propagates into the medium it sweeps up the material and heats it
up but this material will cool back down even before the shock is completely
passed.

In the J-shock, the shock front is much thinner than the post-shock relax-
ation layer. It is a fast shock with velocities (≥ 40 km s−1) and there is a
big difference between the pressure and temperature properties of the medium
before and after the shock. Therefore this causes a big jump in the properties
of the medium. We can relate the physical quantities of the medium before
and after the shock by using the conservation laws. These are called jump
conditions and are given by:

ρ1u1 = ρ2u2 Mass conservation (11)

P1 + ρ1u
2
1 = P2 + ρ2u

2
2 Momentum conservation (12)

1

2
u2

1 +
γ

γ − 1

P1

ρ1

=
1

2
u2

2 +
γ

γ − 1

P2

ρ2

Energy conservation (13)

Enzo uses a non-linear Riemann solver for shock capturing. It conserves
energy (by using a dual energy formalism), mass flux, and momentum. In the
dual energy formalism, the thermal energy and the total energy are computed
for each time step and therefore it can estimate the entropy jump at shock
fronts and correct the temperature and pressure in hypersonic flows with a
high accuracy (O’Shea et al. 2005).

Another issue is the time step of the calculations. If one takes a time
step too small than it will result in the calculations being unfeasibly small.
On the other hand, if the time step is chosen too large than this might lead
the material flow from a grid cell x to grid cell x+2 without its effect being
calculated at the grid cell x+1 which causes instability in the simulation. To
prevent these problems one can calculate the minimum possible time step by
using the Courant number which is given by

Cr =
cs∆t

∆x
(14)

where Cr is the Courant number, ∆t is the time step, ∆x is the length of a
grid cell, and cs is the speed of sound. Here Cr should not be greater than
one. In practise the time step is usually chosen in such that Cr is 0.6.

2.3 N-body dynamics

N-body codes are algorithms that enable us to follow the motion of a large
number of masses under the influence of gravitational interaction. Enzo is a col-
lisionless N-body code. Collisionless N-body codes are used to model systems
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over much shorter time scales than the relaxation time. N-body simulations
use a finite set of particles to sample the underlying phase-space distribution
function. The system is simulated as a set of N particles moving with a velocity
υ′

i in co-moving coordinates. In cosmological N-body simulations co-moving
coordinates and periodic boundary conditions are needed and the gravity is
assumed to be the only force acting on a particle. In N-body simulations it
is assumed that the Universe is homogeneous and isotropic. With these as-
sumptions we can define the distance and location of an object in co-moving
coordinates. This allows distances, and locations, in an expanding homoge-
neous and isotropic cosmology to be related only in terms of a scale factor. This
means that in co-moving coordinates the distance and location of an object
do not change as the Universe expands. Figure 9 and 10 show the co-moving
coordinates in the Eulerian and Lagrangian scheme.

Figure 9: Co-moving coordinates in Eulerian scheme

Figure 10: Co-moving coordinates in Lagrangian scheme
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The basic theory behind N-body simulations is computing the gravitational
force at a given time on each particle. This force is determined by the relative
positions of the particles. After estimating the force that acts on every par-
ticle, the new position and momentum of each particle for some time interval
can be computed.

The major problem in determining the gravitational force on a particle is
the large number of particles that exert a force on this particle. N-body simu-
lations use Poisson solvers to compute the gravitational force on each particle.
There is a dilemma about deciding the number of particles to use in the simula-
tion: On one hand large numbers of particles are needed to be able to represent
the universe properly, on the other hand using a large particle masses leads to
a resolution problem of underlying physics.

There are several Poisson solvers such as Particle-Particle (PP), Particle-
Mesh (PM), Particle-Particle/ Particle-Mesh (P3M), Particle Multiple Mesh
(PM2), and Tree code Particle Mesh (TPM). The Poisson solver method that
is used in N-body simulations depends on the purpose of the simulation. Here
we will explain the steps that are involved in computing the gravitational force
exerted on a particle by other particles in grid based simulation codes.

The basic method of calculating the gravitational force that is exerted on
a particle by other particles is the Particle-Particle method. The gravitational
force between two particles is calculated simply by using Newton’s gravita-
tional law

Fij = −G
mimj

(xi − xj)2
(15)

Here Fij is the force that acts on particle i by particle j, mi and mj are the
masses of the particles i and j respectively, G is the universal gravitational
constant (G= 6.67300 10−11 m3 kg−1 s−2), and xi and xj are the positions of
the particles i and j respectively. In a system with N particles the total grav-
itational force that is exerted by N-1 particles on a particle is then computed
as follows

Fi = Gmj

N
∑

j=1,j 6=i

xj − xi

|xj − xi|3
(16)

and the acceleration of the particle mi is:

ai = −G
N

∑

j=1,j 6=i

mi
xj − xi

|xj − xi|3
(17)

When we integrate this over a time interval we get the equations of motion for
a particle mi

dxi

dt
= υi (18)

ai =
dυi

dt
= −∇φ (19)

This way of computing the gravitational force costs a lot of computational
time. This is because in the PP method the distance between particle i and j is
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used twice, once for the contribution of particle j to the force on particle i and
once for the force from particle i on particle j. So the number of computations
per timestep increases with N as N2. Eventhough, it is easy to implement this
method is not used much because of costing too much computational time .

Another method for computing the gravitational force is the PM method.
In the PM method the number of computations per timestep increases with N
as NlogN . Therefore in Enzo the PM method is used. In the PM method a
grid is put onto the computational box. Phase-space is divided up into a mesh
of equal sizes. Afterward it assigns each particles mass onto the grid using
a specific mass assignment scheme. The process of estimating the density
on the grid from the positions of a large number of particles that trace the
density is called mass assignment. There are several mass assignment schemes
like Nearest Grid Point (NGP), Cloud-in-Cell (CIC), and Triangular Shaped
Cloud (TSC). In the NGP assignment scheme the mass of each particle mi is
assigned to the meshpoint that is closest to the particle. NGP is also referred
to as zero-order interpolation.

In the CIC assignment scheme, the mass of each particle is weighted over the
four (in 2D) closest mesh points (mass is splitted over 2D cells, where D is the
dimension of the grid) which is called a cloud; the weighting is proportional to
the intersection of the cloud surrounding the particle and the cell (see Figure
11).

The idea of the TSC assignment scheme is the same as the CIC scheme, but
the TSC scheme differs in the size of interaction cloud. In the TSC scheme
mass is splitted over 3D cells. So the number of cells that the mass of each
particle is spread over is different in the TSC scheme.

After estimating the densities on the grid from the particle distribution the
potential is solved at the meshpoints using the Poisson equation. Forces at the
meshpoints can then be obtained by calculating the gradient of the potential.
If a particle is not located at a meshpoint then the force on that particle
can be computed either by using the force at the nearest meshpoint, or by
interpolating the force from the closest meshpoints.

The equation of motion of a particle in co-moving coordinates is written
as:

d~xi

dt
=

1

a
~υi (20)

d~vi

dt
= − ȧ

a
~υi −

1

a
(∇φ)i (21)

where the subscript in the last term in Eq. 19 means the gravitational accel-
eration is evaluated at position ~xi. One needs to solve the Poisson equation in
order to find the gravitational potential. The Poisson equation is given by;

∇2φ =
4πG

a
(ρ − ρ̄) (22)

where ρ is the local co-moving mass density of gas and particles (collisionless
fluid), and ρ̄ is its global average value. Then the Poisson equation is solved
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Figure 11: Visualization of NGP and CIC assignment scheme

in real space by a convolution of the density field with a Green function.

∇2φ =
4πG

a
(ρ − ρ̄) Poisson equation (23)

φ(x, t) =

∫

G(x − x′)ρ(x′, t)d3x′ in integral form (24)

G(x − x′) =
G

|x − x′| Green function (25)

Here G is the Green function for Newtonian geometry. In Fourier-space, the
convolution becomes a simple multiplication:

φ̂(k) = ĝ(k).ρ̂(k) (26)

However, there is a problem in Eq. 14. When the distance between two
particles i and j approaches zero, the divergence of Fij predicts unphysical
values for the mass distribution. This can be eliminated by replacing |xj − xi|
by a softening kernel S(|xj − xi|). Fundamentally, softening is a parameter to
eliminate the artificial division by zero in the simulations.

Fi =
N

∑

j=1,j 6=i

GmjSF (|xj − xi|)
xj − xi

|xj − xi|
(27)

Here, SF (r), where r = rj − ri, is the force softening kernel.
To be able to solve the Poisson equation, apart from the density value on

the mesh the boundary conditions should be known as well. In Enzo periodic
boundary conditions are used. Periodic boundary conditions mean that the
grid is imagined to be one cell of an infinite lattice. After solving the Poisson
equation, the gravitational force on the mesh is computed by finite differencing
the mesh potential.
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Figure 12: meshpoint scheme

The gravitational field on the mesh is calculated by taking the finite difference
of the potential as:

g(x1) = −
φ(xi+ 1

2

) − φ(xi− 1

2

)

∆x
(28)

Then by reversing the interpolated force field back onto the particles we can
compute the force on the particle.

2.4 Relevant scales

In order to make a clear picture of the scales we are interested in in this
research we explain the definitions of the most important scales that are used
in the simulations.

Jeans length: The Jeans length is the critical radius at which a molecular
cloud becomes gravitationally unstable and begins to collapse.

λj =

√

15kβT

4πGµρ
≈ 0.062 kpc

(

T

200 K

)
1

2 ( n

104 cm−3

)− 1

2

(29)

where kβ is the Boltzmann constant, T is the temperature of the cloud, G is
the gravitational constant, µ is the mass per particle in the cloud, ρ is the
mass density of the cloud, and λj is the radius of the cloud. At this critical
radius the pressure of the cloud and its gravity are in equilibrium.

Jeans Mass: The maximum mass of a cloud that is in an equilibrium is
given by the Jeans mass:

Mj = (
5kT

Gµmp
)3/2(

3

4πρ
)

1

2 (30)

If Mcloud > Mj then the cloud will collapse. The generalized Jeans mass to

include external pressure is Mj,p ∝ T 2ρ
−1

2 , for turbulence Mj,t ∝ ∆V 4P
−1

2 ,
and for magnetic flux support Mj ∝ B3ρ−1

Free fall time: Free fall time is the time that a cloud would take to collapse
under its gravity if there are no other forces present.

tff =

√

3π

32GnmH
≈ 0.347 Myr

( n

104 cm−3

)− 1

2

(31)
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Cooling time: This is the time for a cloud to radiate all its energy.

n
d

dt
(
3

2
kβT ) = −3kβ(T − TE)

2tT
(32)

where tT is the cooling time. The net input of energy per cubic centimeter,
per second, equals the corresponding rate of increase of thermal energy, plus
the work done by the gas, this gives the result for a monatomic gas

d

dt
(
3

2
kβT ) − kβT

dn

dt
=

∑

ζ,η

(Γζ,η − Λζ,η) = Γ − Λ (33)

Here n is the total number of free particles per cm3 in the interstellar gas, Γ is
the heating rate, and Λ is the cooling rate. For constant n, tT equals the ratio
of the excess of energy density to the net cooling rate Γ − Λ

tT =
3

2
nkβ

(T − TE)

Λ − Γ
(34)

Recombination time: Recombination occurred when the temperature of the
universe decreased below 104 K, at this point neutral hydrogen formed from
the primordial electron-proton plasma. Above this temperature Thompson
scattering from electrons in the plasma prevented photons to propagate. This
transition happened at redshift zrec = 1089. The recombination time can be
computed by

trec =
1

krecnH+

(35)

where krec is the rate coefficient for radiative recombination, and nH+ is the
number density of H+.

Sound speed: The speed with which a sound wave travels through a gas is
called sound speed and is given by

vs =

√

γP

ρ
(36)

where γ is the heat capacity ratio, P is the ambient pressure, and ρ is the
density.

3 Additional Physics

Once the gas has virialized in the potential wells of dark matter halos,
additional cooling is required for the further collapse of the gas and to form
stars. In this section we will discuss these cooling processes, and the formation
and metal enrichment of the first stars. For this we follow the cooling of
the primordial gas as explained in the papers of Spaans & Meijerink (2008);
Meijerink & Spaans (2005), and for the star formation we use the algorithm
from Cen & Ostriker (1992).
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3.1 Cooling

In the early history of the state-of-art cosmological simulation codes, the ra-
diative cooling was implemented by means of an equilibrium cooling function.
But in the presence of a shock or when photoionization becomes more impor-
tant than collisional ionization, which is the case in the intergalactic medium,
the ionization equilibrium breaks down. Therefore, Cen (1992) treated cooling
by following the non-equilibrium abundances of free electrons and all atomic,
ionic, and molecular species that are relevant to cooling. At first only the rate
equations for electrons and all ionization states of hydrogen and helium were
taken into account. Later on Haehnelt et al. (1996) added heavier elements
(metals), and more recent work include H−, H+

2 , and H2 (Haiman et al. 1996;
Abel et al. 1997; Anninos et al. 1997; Gnedin & Ostriker 1997).

The formation of a star depends on the ability of interstellar gas to cool and
form dense molecular clouds. So the chemical composition and the metallicity
of the interstellar gas is the key parameter to study. Although the primordial
gas is complex, we can simplify the chemistry according to the contributions
of the various elements to the cooling process (see Table 1).

Name Metallicity (Z) Mass (M⊙) Formation
Pop III.1 0 . 100 H2 cooling
Pop III.2 0 & 10 HD and H2 cooling
Pop II.5 . Zcrit & 10 metal line cooling
Pop II > Zcrit local IMF metal enriched star formation

Table 1: Typical metallicity, mass values and dominant cooling mechanisms of
the first stars.

The main coolants for primordial gas with temperatures T ≥ 104K are
Lyman α emission of neutral atomic hydrogen (HI 1216 Å), and helium (He
II, 304 Å). Below this temperature, which is the case in the minihalos with
temperatures Tvir . 104K, the cooling process is dominated by molecular
hydrogen (H2), where one can calculate Tvir as follows

Tvir = 1.98 × 104(
µ

0.6
)(

M

108h−1M⊙

)
2

3 (
Ω

Ωz

∆

18π2
)

1

3 (
1 + z

10
)K (37)

where µ is the mean molecular weight and ∆ is the collapse overdensity.
The importance of H2 cooling in primordial gas was first realized by Saslaw

& Zipoy (1967); Peebles & Dicke (1968). In present day molecular clouds H2

formation occurs primarily on the surface of interstellar dust grains (Gould &
Salpeter 1963; Cazaux & Tielens 2002; Cazaux & Spaans 2004). However, in
the absence of dust H2 forms via the gas phase reactions listed below:

H + H → H2 + hν (38)

The formation of H2 through the reaction above is not common because it is
necessary to have an excited electronic state of hydrogen. This happens near
the end of the re-ionization epoch (Latter & Black 1991; Rawlings et al. 1993).

H + H + H → H2 + H, (39)

H + H + H2 → H2 + H2, (40)
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This is called three-body formation. In these reactions the rate coefficients
are small therefore this pathway only becomes important at high densities
(n & 108 cm−3, Palla et al. (1983)). On the other hand the dominant reactions
that lead to the formation of H2 at low densities are as follows

H + e− → H− + hν (41)

H− + H → H2 + e− (42)

H+ + H → H+
2 + hν, (43)

H+
2 + H → H2 + H+ (44)

For these two paths of H2 formation at low densities, the formation rate is
directly proportional to the fractional ionization of the gas. The H− in the
first reaction forms much faster than H+ in the second reaction. Therefore the
first reaction is more efficient in forming H2 at low densities.

One can calculate the H2 cooling rate for given H2 abundances, density
and temperature of the gas. The first excited rotational state of H2 lies at
∼ 500K. Figure 13 shows that the cooling rate of H2 falls of exponentially
with decreasing temperatures, due to the large excitation energy of the first
accessible excited state, and is essentially negligible below 100 K. It scales with
density as ΛH2

∝ n2 at low densities, where radiative de-excitation dominates,
and as ΛH2

∝ n at high densities, where collisional de-excitation dominates and
the level populations approach their local thermodynamic equilibrium (LTE)
values.

Hydrogen deuteride, HD, is an important important coolant below 200
K in the primordial gas. The first excited rotational state of HD lies at a
temperature of ∼ 150 K. If there is enough HD, the gas can cool down to
the temperature of the cosmic microwave background (CMB) (Nakamura &
Umemura 2002; Nagakura & Omukai 2005; Vasiliev & Shchekinov 2006; John-
son & Bromm 2006; Yoshida et al. 2007). Although the primordial deuterium
abundance is small relative to hydrogen (nD

nH

= 4 × 10−5), chemical fractiona-

tion leads to an enhancement of the ratio, nHD

nH2

≈ 10−3 (Puy et al. 1993; Galli

& Palla 1998; Stancil et al. 1998).
Molecular hydrogen does not have a permanent electric dipole moment while

the HD molecule has and that makes HD a better coolant than H2. The dom-
inant reactions that lead to HD formation are listed below.

H2 + D+ → HD + H+ (45)

and
D + H2 → HD + H (46)

Here the first reaction is endothermic (absorbs energy) by 462 K. Therefore,
at low temperatures the HD cooling rate per molecule is greater than that of
H2 (Glover 2007). The efficiency of HD cooling depends on whether the gas
is ionized or not. In Pop III star formation calculations, the fractional ioniza-
tion is small and the temperature of the gas is not low enough for chemical
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Figure 13: A comparison of various parametrizations of the H2 cooling func-
tion, plotted in units of erg cm3 s−1. Rates are computed assuming that
n >> nH2

, and that the ortho-to-para ratio is 3:1. The lower set of lines
corresponds to a gas density n = 106 cm3; the upper set corresponds to n =
100 cm3. Solid line Le Bourlot et al. (1999); dashed line Galli & Palla (1998);
dotted line Lepp & Shull (1983); dash-dotted line Hollenbach & McKee (1979).

fractionation to become efficient. Therefore we can neglect the effect of HD
cooling. On the other hand, in an initially ionized gas HD will form in high
abundances (Shapiro & Kang 1987). In their work Nagakura & Omukai (2005)
found that the gas would re-collapse and form significant amounts of HD due
to the presence of free electrons, and Johnson & Bromm (2006) showed that
when primordial gas is significantly ionized the cooling from HD is sufficient
to lower the temperature to the level of the CMB and therefore this can give
rise to Pop III.2 stars (see Figure 14).

Figure 14: Effect of HD cooling on to the star formation mass.
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In the paper of McGreer & Bryan (2008) it has been discussed that the
minimum temperature which can be reached by H2 cooling occurs at a den-
sity of n ∼ 103 − 104 cm−3 while in the case of HD cooling the minimum
temperature is reached at a density of n ∼ 104 − 105 cm−3. This shift in the
density can be explained under the assumption that the gas is driven to LTE.
The gravitational energy (adiabatic compression) input per unit volume can
be estimated as

n(
GM(r)

r
)t−1

dyn ∝ n
3

2 (47)

We can estimate the cooling function approximately as

Λ =

{

n2T α n < ncr

nT α n > ncr

If we equate these two equations then we can obtain the relation between den-
sity and temperature. One can see that the temperature reaches a minimum
at the critical density, where it transitions from T∼ n−0.5 to T ∼ n0.5.

When the primordial gas is enriched by metals as a result of SNe of Pop III
stars then one has to take into account the cooling from the fine-structure lines
of metals. Many atoms have fine-structure lines. The relative motion of any
orbiting electron and a charged nucleus creates a torque on the magnetic mo-
ment associated with the intrinsic spin of the electron. Because the electrons
of H and He atoms are described by single-particle wavefunctions without any
associated orbital angular momentum (l=0), and the electric ground states of
these atoms do not have internal torque there is no fine-structure splitting in
these atoms. On the other hand, atoms like C,O, Si, Fe,... have fine-structure
lines which cause cooling in the metal enriched primordial gas.

Figure 15: Fine-structure splitting of the electronic ground states of O I and
C II.

The energy difference between the 6P1 and 6P2 levels of [O I] 63µm is 2×10−2
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eV corresponding to a temperature of 230 K. By using a number density of
oxygen relative to hydrogen of 4×10−4 and noting that the degeneracy of each
J-state is 2J+1, one can evaluate subcritical volumetric cooling rate of [O I]
as follows

ΛOI = 2 × 10−10(
nH

103cm−3
)2exp(−230K

Tg
) eV cm−3 s−1 (48)

For carbon, the energy difference between the 2P3/2 and 2P1/2 levels of [C
II] 158µm is 7.93 × 10−3eV , corresponding to a temperature of 92 K. The
subcritical volumetric cooling rate of [C II] can be computed as follows

ΛCII = 3 × 10−9(
nH

103cm−3
)2exp(−92K

Tg

) eV cm−3 s−1 (49)

Metal enriched primordial gas cools more efficiently by fine-structure lines
of [C II] (157.74 µm), [O I] (63.18 µm, 145.5 µm), [Si II] (34.8 µm), and [Fe
II] (25.99 µm, 35.35 µm) than by HD or H2 emission. The cooling rate of the
metals depends on their ionization state. These atoms will be excited to higher
levels by collisions, which will eventually de-excite through photon emission,
and carry the energy out of the region (see table 2).

Table 2: Relevant temperature and density values for coolant components
coolant density(cm−3) Temperature (K)

H & 108 > 104

H2 103 − 104 & 200
HD 104 − 106 . 200
C II 103 92
O I 105 230

All the data that are used in our calculations are taken from Hollenbach &
McKee (1989) (see Appendix A), except for Si+ (Dufton & Kingston 1994),
C+ (Sampson et al. 1994),and O+ (McLaughlin & Bell 1993).

CMB photons, for z> 10 can be an excitation source (radiative pumping)
of atomic and molecular levels. This allows the CMB temperature to act
as a thermodynamic floor, below which gas cannot cool, provided that col-
lisional de-excitation dominates the removal of population from the excited
state. Furthermore, gas-dust cooling can be impacted as well, in the sense
that dust grains will be heated to at least the CMB temperature. We also
include ion-molecule chemistry. The most important ones are CO, H2O, OH,
HCN, HNC, HCO+. These are relevant for cooling below 103 K.

3.2 Star formation

We use the star formation criteria of Cen & Ostriker (1992) to create stars
in Enzo. Whenever these criteria in a grid cell are met, Enzo converts that gas
particle into a star particle. The criteria that we use are as follows:
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• Baryonic density: This criterion checks whether the baryonic density of

a cell exceeds the mean density in the Universe by a certain factor, that

is called threshold value in Enzo, and defined by the user. The default

value in Enzo is 100.

• Jeans Mass: It is the Jeans mass criterion that checks whether the mass

density of the gas in a cell exceeds the local Jeans mass.

• Convergent flow: The gas that forms a star should be in a collapsing

region. Therefore it is required that the gas particles are part of a con-

verging flow. When the divergence of the velocity field, ∇.v, is negative,

the criterion is satisfied, and it is assumed that the gas particle is part

of a collapsing flow.

• Cooling time: The cooling time, tcool, of the gas to collapse should be less

than the dynamical time which is given by:

tdyn =

√

3π

32Gρtot
(50)

When all these criteria are met in a cell then the gas is converted into a star
particle. The star particle that has formed does not represent a single star. It
is a cluster of stars with a mass of:

m∗ = ǫ
∆t

tdyn
ρgas∆x3 (51)

where ǫ is the star formation efficiency, ∆t is the size of the time step, tdyn is
the dynamical time, and ρgas is the baryon density.

Apart from the criteria listed above there is an additional condition. In
Enzo one can define the minimum mass value of a star particle. This is a
computational issue and can be decided by the user to be used or not. By
adding this condition, small star particles are not taken into account in the
simulation, which saves computational time.

4 Simulations

In our research we perform several cosmological runs for two different sets of
initial conditions. In the first set of runs we follow the pre-collapse of minihalos
for different metallicities by using the chemical network of Spaans & Meijerink
(2008), initialized at redshift z=70, for a cosmological co-moving box size of
0.25h−1 Mpc. In the second set, we turn on the star formation flag, and use
the same chemical network but initialize the simulation at z=99 and for a cos-
mological co-moving box size of 1 h−1Mpc.

First we run a low resolution, pure N-body simulation to identify the volume
of a pre-collapsing minihalo with a mass of 106M⊙. Hence we focus on dwarf
like galaxies. Then by using the HOP analysis tool we get the coordinates of
the minihalo and use it for higher resolution runs where we zoom in on the
minihalo.
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HOP is a new Group finding algorithm for N-body simulations written by
Eisenstein & Hut (1998). It divides the set of particles into equivalence classes
such that each particle is a member of only one group. It starts by assigning
an estimate of the local density to each particle. Then it calculates the density
around each particle by using Ndens nearest neighbors. Afterward it searches
for the densest of each particle’s Nhop nearest neighbors and repeats this step-
for the densest neighbor. When a particle has no denser neighbors anymore,
the particle with the highest density is reached. All particles in a path that
leads to the same maximum density particle constitute a single group. Then
the code compiles the densest boundary pairs between each pair of groups.
Every particle is assigned to a group; since we are interested in the high den-
sity regions, we simply remove particles below a given overdensity threshold
(160).

We start with 1283 grid cells on the top grid and two nested subgrids, each
refining by a factor of 2, for an effective topgrid resolution of 5123. For the cos-
mological parameters we use the following values: ΩM = 0.279, ΩΛ = 0.7208,
ΩB = 0.0462, and Hubble constant, h=0.7, in units of 100 km s−1 Mpc−1.
The power spectrum of initial density fluctuations is given by Eisenstein & Hu
(1999), with σ8 = 0.9 and n = 1. For the runs with star formation we use
baryonic density and cooling time criteria to form stars.

The metallicities that we consider are assumed to be the result of pre-
enrichment by earlier star formation, i.e, chemical feedback. For Z¡10−3 Z⊙,
there is little contribution from metal lines to the overall cooling.

The code is ran in parallel on 16 processors of the supercomputer at the
Centre for High Performance Computing and Visualization (HPC/V), Univer-
sity of Groningen, Netherlands. Each processor has two dual-core 2.6 Ghz
Opteron processors (4 cores in total), and 4 Gigabytes of internal memory.
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4.1 Metallicity
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Figure 16: Temperature (T) vs number density (n) at redshift 13 for metallic-
ities 10−3 (red), 10−2 (green), 10−1 (blue) Z⊙.
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Figure 17: Temperature (T) vs number density (n) at redshift 10 for metallic-
ities 10−3 (red), 10−2 (green), 10−1 (blue) Z⊙.

Here we present the output of our simulations for the star formation off case
and for metallicities 10−3, 10−2, 10−1 Z⊙. Every plot shows the gas properties
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Figure 18: Temperature (T) vs number density (n) at redshift 7 for metallicities
10−3 (red), 10−2 (green), 10−1 (blue) Z⊙.
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Figure 19: Temperature (T) vs number density (n) at redshift 5 for metallicities
10−3 (red), 10−2 (green), 10−1 (blue) Z⊙.

of a minihalo. We plot the number density against the temperature for rings
in the minihalo with increasing radius at a certain redshift (z = 13,10,7,5) and
metallicity. Plots are ordered in such a way that the metallicities are combined
for a specific redshift in one figure, the metallicity increases where from top to
bottom.
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Figure 20: Density distribution of a collapsing minihalo at redshift 16 for
metallicities 10−3 (left) and 10−1 (right) Z⊙.

Figure 21: Density distribution of a collapsing minihalo at redshift 5 for metal-
licities 10−3 Z⊙ (left) and 10−1 (right) Z⊙.
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4.2 Star formation
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Figure 22: Temperature (T) vs number density (n) at redshift 7 for metallicities
10−3 (red) 10−2 (green), 10−1 (blue) Z⊙.
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Figure 23: Comparison of star formation on (top) and off (bottom) cases at
redshift 7 for a metallicity 10−3 Z⊙.

In the simulations with star formation on we produce low-mass stars for the
first time at redshift 8. Here we show the gas properties of a minihalo that
has a star in it in the same way as the previous section, but for redshift 7.
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Figure 24: Comparison of star formation on (top) and off (bottom) cases at
redshift 7 for a metallicity 10−2 Z⊙.
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Figure 25: Comparison of star formation on (top) and off (bottom) cases at
redshift 7 for a metallicity 10−1 Z⊙.

In addition, we present plots that combine star formation on and off cases for
a specific metallicity and a redshift to be able to show the multi-phase ISM
structure clearly.
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Figure 26: Density distribution of a collapsing minihalo for star formation on
case at redshift 7 for metallicities 10−3 (left) and 10−1 (right) Z⊙.

5 Results

In Figures 16 to 19 we clearly see that the minihalo with higher initial
metallicity has lower temperatures at any specific redshift. Even though this
effect is not significant between metallicities of 10−3 and 10−2 Z⊙, there is a
big difference between these metallicities and a metallicity of 10−1 Z⊙. This
leads us to think that there is a transition region between metallicities 10−3

and 10−1 Z⊙, as far as a multi-phase ISM is concerned. Because we did not
take into account any feedback effects from the first stars we cannot say for
sure when this transition occurs. This transition might cause the difference
between the distinct formation modes of early star formation, Pop III, Pop
II.5, and Pop II. To be able to determine the exact transition region we should
incorporate more detailed chemical, mechanical and radiative feedback effects
into the code.

In the case of star formation on we again see that the highest metallicity
minihalo cools to lower temperature than the metal poor cases. When we
compare star formation on and off cases for a specific redshift and metallicity
we see that the temperature is much higher in the star formation on case. We
also see that high densities are lacking in the star formation on case, due to the
formation of HII regions. This is because we are plotting the gas properties
and in the simulation with star formation algorithm, the highest density gas
particles have turned into star particles. In the star formation on case the
highest temperatures are reached at higher densities than the star formation
off case.

6 Summary & Future Work

In the last two decades, cosmological simulations have become an impor-
tant tool to understand structure formation and the evolution of the Universe.
Cosmological simulations incorporate gravity, gas dynamics, chemistry, and
radiative transfer. One of the biggest questions that remained unanswered
is how, when, and under which conditions the first structures are formed in
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the early Universe. According to the CDM model of hierarchical structure
formation, the first stars formed in dark matter halos of mass ∼ 106M⊙. In
this research we consider the pre-enrichment of minihalos, and work on the
impact of metallicity on pre-collapsing minihalos and the formation of the first
stars in the early Universe by using the Cosmological N-body Hydrodynamical
simulation code Enzo.

To be able to study the collapse of minihalos and the formation of the first
stars, it is crucial to implement cooling processes properly. For this purpose
we implement the chemical network from Spaans & Meijerink (2008) which in-
cludes the cooling processes of H2, HD, metal fine structure lines and molecules
like CO. We run simulations for metallicities, Z = 10−3, 10−2, 10−1Z⊙ for star
formation on and off cases. In our simulations we see that in the high metal-
licity case minihalos collapse and evolve faster than in the low metallicity case.

Our main goal is to understand the nature of the first stars, their feedback
effects, and the impact of metallicity on the formation and evolution of Pop
II.5 stars. To do this, in the near future we are going to modify the chemical
network of Enzo by implementing the photon dominated region (PDR, Tie-
lens & Hollenbach 1985), and X-ray dominated region (XDR, Maloney et al.
1996) codes of Spaans & Meijerink (2008) and add grain surface chemistry.
The transition region between the fully ionized and fully molecular zones is
known as the PDR. PDRs are formed by the far-ultraviolet radiation (FUV,
6.0 < E < 13.6 keV) from starbursts. Grains can absorbs relatively low-energy
light that filters through the H II regions and therefore they are the dominant
opacity source throughout the PDR. On the other hand, XDRs are formed by
hard X-ray radiation (E > 1 keV) from black hole environments (AGN). In
PDRs and XDRs, the chemical structure and thermal balance are completely
determined by the radiation field. Later on we will include mechanical (SNe)
feedback effects. Also, we need to increase the resolution (10243) of our simu-
lations to be able to resolve fragmentation. For that we need a supercomputer
that has at least 64Gb RAM in one processor.
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