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Abstract

SimpleX is a new numerical tool to study transport processes in general and radiation transport
during the reionization epoch in particular. It is the first method to utilize an unstructured grid. The
method hinges on the possiblity to set up the grid in such a way that the lengths of the edges in the
grid sample the mean free path of the medium. This direct relation between the physics and the grid
is theoretically sound, but not yet verified in practice. In this report many details are studied that
arise when using unstructered grids. We find some unexpected properties of the grid and confirm the
correctness of other properties. The most unexpected result is that photons can travel on average per
timestep over larger distances than the mean edge length. The speed even depends on the number of
points N used in the grid. Such details need to be understood in order to perform detailed numerical
calculations. Another requirement is the addition of a lot of physics that is not yet implemented. This
is not a trivial task, because it has to be checked how the physics works on an unstructured grid. Some
ideas about how to proceed to include a self consistent solution for the temperature are presented.

1 Introduction

Throughout history mankind has been trying to fig-
ure out the mechanisms that shaped the environ-
ment we live in. Many different civilizations have
come up with even more explanations for the im-
mense diversity of life on Earth and the splendours
of the sky above. Some of these were based on
scientific knowledge of the particular civilization,
some were based on folklore and meant as enter-
tainment or as behavioural and social lessons for
youngsters. Some of these ’models’ have intriguing
similarities with modern day experimentally ver-
ified models, like for example the so-called idols

(eidola) that Roman philosopher Lucretius writes
about in his de Rerum Nature (About the nature of
things)[16]. They were originally introduced by the
Greek philosopher Epicurus. He described eidola as
particles that stream from all objects and that have
the same shape and colour as the object they come
from. When eidola hit our eye, they show us the
shape and colour of their originating object, very

similar to the concept of photons. Many of such his-
torical insights can be found, but never have they
been accepted as superior to other ideas because
the available technology didn’t admit experimental
verification. The situation has changed dramati-
cally during the twentieth century. Now we can
actually see individual neutrons and protons and
even quarks[2]. For astronomy in particular tech-
nological advances led to new telescopes and satel-
lites going above Earth’s atmosphere, giving hu-
manity for the first time ever an impression of the
enormous physical distances that separate us from
the objects in the sky and discovering a plethora
of new types of objects and unknown physics by
looking at colours of light that are inaccessible to
the human eye. This surge of new technology has
also brought us the most recent explanation of the
Universe: Concordance Cosmology.

The ’Concordance Cosmology’ (CC) model com-
bines five concepts into a single framework. The
first is the Big Bang, a highly (infinitely) energetic
singular event that gave birth to the Universe. The
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second is inflation, a period right after the Big Bang
during which the Universe expands by an enor-
mous factor ∼ 1060, thereby flattening the local
curvature in the Universe and blowing up Gaus-
sian quantum fluctuations to astronomically scaled
primordial density fluctuations. These would even-
tually collapse to form structures in the Universe.
The third ingredient is the Cosmological Principle,
which states that the Universe is globally homoge-
neous and isotropic. It is often overlooked that the
WMAP data is not sufficient to proof the Cosmo-
logical Principle: WMAP only shows that space is
locally isotropic and homogeneous. If the Universe
has some non-trivial topology it is very well possi-
ble that the Universe looks locally isotropic while
being globally anisotropic[14].

These three components set the global structure
of the Universe which is actually not very well
known. There are three interrelated questions that
need to be answered to find out[9]: what is the
spatial curvature, is space open or closed and what
is the topology? The curvature can be negative,
flat or positive. A positively curved space is auto-
matically also closed, containing a finite amount of
matter. Flat and negatively curved spaces can be
open, containing an infinite amount of matter but
can also have closed spatial sections if they have
some nontrivial topology. This possibility is usually
ignored, but there are some hints that it is wrong
to do so. For example Roukema et al[29] found
some clues in the WMAP first year data release
that we live in a dodecahedral Universe. It is not
clear whether this signal is still present in WMAP3.
The simple reason for not understanding the global
structure, is the lack of a theory that predicts it.
We do have General Relativity, the fourth compo-
nent of CC, but since that is a differential theory, it
only describes the geometry which is a local thing.
Since most geometries can be supported by many
topologies[14] this is not enough. The purpose of
General Relativity within the framework of CC is
to predict the way that structure forms. And it
does an extremely well job at this, together with
the fifth component of CC: the long list of numbers
that go into the models that tell for example how
much matter there is and its nature (ΛCDM) and
the power spectrum of the initial density perturba-
tions.

Despite the lack of a precise understanding of
the global structure of the Universe, we can make

some definite predictions about its behaviour given
the fact that we exist and that we observe an ex-
panding Universe of an enormous scale. The former
means that gravity at some point has been able to
locally overcome the global expansion caused by
the Big Bang. The latter means that no physical
mechanism has kicked in yet to overcome the explo-
sive driving force of the Big Bang and, assuming
no energy is leaking into our Universe somehow,
that the temperature must have dropped. These
simple facts are enough to do some astonishing cal-
culations. The behaviour of the temperature for
example allows a detailed calculation of nucleisyn-
thesis which accurately predicts the observed val-
ues. Knowing that the temperature must have been
dropping ever since the Big Bang, it is also in-
escapably that at some point matter becomes neu-
tral, creating a surface of last scatter where pho-
tons have scattered of the last remaining electrons:
the CMB. Remembering that gravity at some point
must have overcome the global expansion we also
know that first stars must have formed. The details
of all this will depend on the precise properties of
the Universe and in particular the timing of the oc-
currence of these processes will depend on the input
parameters. However at some time in history the
Universe must have become ionized again by the
radiation coming from the first stars (well: unless
the input parameters were such that gravity had
overcome the global expansion before last scatter,
which would have led to a very different Universe).
This is the process of reionization.

The epoch of reionization saw two major changes
in the Universe. The first is the formation of stars.
These led to the formation of all kinds of new
atoms (basically: all atoms heavier than Lithium)
and eventually to life. The second effect is the
slow, patchy ionization of the hydrogen in the
Universe. Since the formation of the first stars
is of such great importance for understanding
the formation of the structure that is observed
today, quite some attention as been paid to it. So
far only theoretically though, because telescopes
aren’t able to see these stars. In the (near) future
this hopefully will change dramatically, as three
consortia are building radio telescopes that should
be able to detect the disappearing 21 cm signal
from neutral hydrogen as it is ionized:
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LOFAR[15]:
build by ASTRON[4] and the ’Rekencentrum’ of
the University of Groningen[27], in the Netherlands

MWA[20]:
build by MIT[18] and the CSIRO Australia Tele-
scope National Facility (ATNF)[5] in Australia

21CMA[1]:
build by the National Astronomical Observatories,
Chinese Academy of Sciences (NAOC)[21] in
Xinjiang, West China

The foresight that sometime soon observational
data will be available for the reionization epoch
has given rise to a large number of new numeri-
cal packages being developed to simulate this tran-
sition. Recently a comparison project was under-
taken to compare 11 codes that calculate the radia-
tive transfer of the radiation during the reionization
epoch[13]. It showed that the general behaviour of
the codes is quite comparable, but in detail they
can give quite different results because they use dif-
ferent assumptions and simplifications for the gen-
eral, seven dimensional radiative transfer problem.
Despite the differences, all codes except one had in
common that they use regular grids to solve their
equations on. The exception is the topic of this
research: SimpleX, developed by Ritzerveld[28].

Instead of fixing the grid that is used to solve
the equations of radiative transfer (RT), SimpleX is
the first code that uses an unstructured grid which
automatically adapts to the density field without
introducting difficult technical problems. In sec-
tion 2 we’ll introduce transport theory in general,
of which the radiative transfer equation is a partic-
ular example. In the following section we’ll explain
how SimpleX deals with transport. In section 4 the
input physics for SimpleX is considered. After that
we take a look at some details of SimpleX by ap-
plying very simple test cases in order to get a solid
understanding of the behaviour of SimpleX. In sec-
tion 7 we proceed by applying SimpleX to simple
reionization cases and we give a first go at imple-
menting temperature dependences in SimpleX. We
wrap up with discussion and conclusions.

2 Transport theory and radia-
tive transfer

In this section we’ll sketch the context for SimpleX.
In the end of course it is supposed to solve the
equations of radiative transfer, but these are a spe-
cial case of the much more general class of transfer
problems. We need to go back to this more general
level to understand how SimpleX works.

But before doing this let’s consider the equation
we eventually wish to solve, the equation of radia-
tive transfer:

dIν(~r, ~Ω, t)

d~r
= −αν(~r, t)Iν(~r, ~Ω, t) + jν(~r, ~Ω, t) (1)

It relates the change in the radiative intensity Iν

to the absorption coefficient αν and emission coef-
ficient jν of the material that the radiation inter-
acts with. Even though at first sight (1) looks like
a rather simple first order differential equation, it
has some properties that make it notoriously diffi-
cult to solve. The first difficulty is that it is a seven
dimensional problem: the intensity can depend on
place, direction and frequency and all these may
depend on time. For particular emission processes
the emission coefficient jν depends on the intensity
Iν , making (1) a highly non-linear integrodifferen-
tial equation. On top of that it is a highly non-local
problem, because the photons that ’carry’ the in-
tensity can in principle travel to arbitrarily large
distances before interacting.

In practice one therefore needs to make simplify-
ing assumptions in order to be able to deal analyt-
ically with (1). Different assumptions are used for
different specific problems. Some of the common
assumptions like homogeneity and isotropy aim at
reducing the dimensionality of the problem. Very
often also the time dependency is neglected by con-
sidering only steady state solutions. But even then
there are only very few cases that admit an an-
alytical solution. In order to obtain solutions in
more challenging situations numerical methods are
needed.

Numerical methods aimed at solving the radia-
tive transfer equation can be subdivided into two
classes. Methods of the first class explicitly try
to solve a set of differential equations that is de-
rived from (1) after some simplifying assumptions.
The differential equations and medium properties
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are discretized and solved for using finite differ-
ence techniques. A second class of methods utilizes
stochastic methods to solve (1). Methods in this
class are called Monte Carlo methods and SimpleX
falls in this category. In the following we’ll take a
closer look at the very general transport theory of
which radiation transfer is a specific case to explain
how Monte Carlo methods can be used to solve the
problem of radiative transfer.

2.1 Transport theory[28]

Transport theory is the mathematical framework
that describes the movement of particles through
some medium. The basic description can be ap-
plied in many fields, since it doesn’t depend on the
type of particles or medium under consideration.
That information has to be put in through a source
function and collision term. Different forms of these
lead to very different applications of transport the-
ory. The general transport equation is readily de-
rived from the even more general kinetic theory.

Kinetic theory aims at analyzing the collective
behaviour of a large number of particles. At the
basis are the Hamiltonian equations of motion for
every particle i:

d~vi

dt
=

1

mi

~F (~xi (t) , t)

d~xi

dt
= ~vi (t)

(2)

Here ~xi and ~vi with i = 1, . . . , N are the position
and velocity of each particle and ~F is the force ex-
erted on the particle, all at time t. Note that in
general the force can depend on all other particles
as well. If the initial positions and momenta of all
particles are known we can in principle solve (2)
to find the position ΓN (t) of the system in the 6N
dimensional phase space at all times t:

ΓN (t) = (~x1 (t) , ~v1 (t) , . . . , ~xN (t) , ~vN (t)) (3)

Considering that in general N is of the order of
Avogadro’s number (N ∼ 1023) it is immediately
clear that in practice it is impossible to do this.
Therefore the machinery of statistical mechanics is
used to derive equations for macroscopic observ-
ables based on the microscopic details. This is a

process of ’coarse graining’ by contracting and av-
eraging parts of phase space. This is definitely not
a trivial thing to do. For example the set (2) is
symmetric in time t, leading to the conservation of
energy through Noether’s theorem. On the other
hand we know that macroscopic systems evolve to-
wards maximum entropy, breaking this symmetry.
A lot of research is still going on regarding the best
way to deal with this type of problems, which we’ll
not go into. Instead we proceed by introducing the
concept of an ensemble, as developed by Gibs. In-
stead of considering a single N -particle system and
taking averages we can also consider an ensemble
of systems. Each member of the ensemble has the
same macroscopic properties, but an unspecified
phase space distribution. Macroscopic variables in
an ensemble are obtained by averaging over the en-
semble distribution function ρ(ΓN , t). This ensem-
ble space distribution function is used to obtain
a single-particle phase space distribution function
f(~x,~v, t) by contraction:

f (~x,~v, t) ≡
∫

dΓN−1ρ (ΓN , t) (4)

This distribution is used in the general transport
equation by equating the full derivative of f(~x,~v, t)
to the change in density due to collisions and
sources:

Df

Dt
=

∂f

∂t
+

∂f

∂~x
·∂~x

∂t
+

∂f

∂~v
·∂~v

∂t
=

(

∂f

∂t

)

coll

+s (~x,~v, t)

(5)
Combining this equation with (2) gives the general
transport equation:

∂f

∂t
+~v · ∂f

∂~x
+

~F

m
· ∂f

∂~v
=

(

∂f

∂t

)

coll

+ s (~x,~v, t) (6)

To proceed from here, the collision and source term
need to be specified. This is where all the physics
of the particular application comes in. In the case
of radiative transfer we deal with photons that are
transported through some medium and Iν = hνcf .
Subsituting this expression for Iν will result in
(1)[8].

2.2 The mean free path

When interactions are localized the transport equa-
tion can be solved in terms of the mean free path
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λ. For a homogeneous background it is given by:

λ−1 (~x,~v) = n (~x) σ (~v) (7)

with n(~x) the number density of the background
medium and σ(~v) the total microscopic cross sec-
tion for all relevant physical processes. The mean
free path is the average distance a particle trav-
els between interactions. Using the concept of the
mean free path the transport process can be viewed
as a continuous loop over the two-step process as
in figure 1. It is this realization that is at the basis
of the stochastic approach that we’ll discuss next.

repeat for each iteration i while experiment is
running:

1. travel a distance si such that 〈si〉 = λ

2. interact with the background

Figure 1: Using the concept of the free mean path, we
can model the transport process as a continuous loop
over a ’drift’ step (step 1) and an interaction step (step
2). The average distance travelled between interactions
in step 1 is the mean free path λ.

2.3 Monte Carlo methods

Instead of solving the general transport equation we
can also try to explicitly model the transport pro-
cess, thereby solving the transport problem without
ever using the transport equation. Linear transport
problems can be modelled analogous to a random
walk, like depicted in figure 2. The extra complica-
tion is that the stepsize is not constant and inter-
actions have to be put in. Let’s see how to do that.

Consider a particle that is just sent in some di-
rection from some position ~x. We assume that the
number density n of the background medium is lo-
cally constant and consider for simplicity only one
type of interaction with cross section σ. Then the
probability dp that the particle interacts after a
distance ds is:

dp = − 1

Λ
pds (8)

where Λ is normalization constant. Solving this
equation and normalizing such that

∫∞

0
p(s)ds = 1

gives:

p(s) =
e−s/Λ

Λ
(9)

Figure 2: An example of a random walk in the plane
for thousand steps. The walk started at the triangle and
ended at the square. Every next point is determined
by taking a step of fixed length in a randomly chosen
direction.

This is the probability distribution for the path
length that the particle traverses before it inter-
acts. It’s moments are not difficult to find:

〈sn〉 = n!Λn (10)

In particular, we see that the expectation value for
the travelled distance 〈s〉 = Λ. This means that Λ
is just the mean free path as defined in (7):

Λ = λ = (nσ)
−1

(11)

So by sampling distribution (9) we find distances si

that satisfy the condition in step 1 of figure 1. The
sampling process for this particular distribution can
be done in a straightforward way by invoking con-
servation of probability:

|ξdξ| = |p (s) ds| ⇒ ξ = P (s) ≡
s
∫

0

p(t)dt (12)

Here ξ is the uniform distribution over [0, 1] and
P (s) is the cumulative distribution of (9). This
method is also referred to as the direct inversion
method[25] but it is really just a conservation law.
Realizing that the distribution (1− ξ) is also a uni-
form distribution, the solution to (12) is:

s = −λ log ξ (13)
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Given a uniformly distributed random number ξi

which can be obtained from a random number gen-
erator, (13) gives the distance si the particle travels
before it interacts. So we move the particle to ~x+~si

where ~s is a vector of length si in the direction the
particle was send to. We are now at step 2 in fig-
ure 1. At the new position we let the interaction
terms act on the particle. For example consider
the transport of photons through a homogeneous
medium with an absorption cross section σa and
a scattering cross section σs. The probability pa

that absorption takes places is pa = σa/(σa + σs)
and similar for scattering ps = σs/(σa + σs). Since
pa + ps = 1, we can get another uniformly dis-
tributed number ξj from another or the same ran-
dom number generator and say that absorption has
taken place if 0 ≤ ξj ≤ pa. If pa ≤ ξj ≤ 1 we call it
a scattering event. In the former case the photon is
removed from the experiment and in the latter case
the photon is re-emitted in some direction Ω. This
would normally happen isotropically, but nothing
permits us from doing this according to some dis-
tribution g(Ω). After performing the interactions
we’re back in step 1 and we get the next distance
si+1 to travel.

The simplicity of the concept in figure 1 makes
Monte Carlo methods very powerful tools to study
transport phenomena. With the ever increasing
availability of computing power many runs of the
experiment can be performed without any addi-
tional effort, making it very easy to run experi-
ments with different initial conditions or interac-
tion terms. There are however also some important
caveats. The first possible caveat that cannot be
stressed enough is the importance of a good random
number generator. If subsequent random numbers
are related somehow this will show up in the results.
Also typically the experiment needs to be repeated
many times in order to get some statistics on the
possible outcomes. All random numbers that are
generated in the process must be unique. So the
randomness of separate random numbers must be
extremely good, but also the cycle of the number
generator must be large enough. Another problem
occurs in the limit where the interaction cross sec-
tion is small, ie σ → 0. In this limit the mean
free path λ → ∞, and it becomes impossible to
separate the interaction and drift steps. The last
complication is the statistical nature of the method.
This will introduce inherent statistical noise in the

calculated averages. As the number of runs N is
increased, the noise goes as N−1/2. With the fast
increase in available computer power it shouldn’t
be problematic though to repeat the process often
enough to get to the required noise levels.

Now that we have seen how Monte Carlo meth-
ods in general can be used to solve transport prob-
lems, let’s see how these principles are applied in
SimpleX.

3 Transport in the SimpleX

way

SimpleX is a package that aims at numerically solv-
ing the equation of Radiative Transfer (1) during
the recombination epoch using a Monte Carlo ap-
proach. The used method is more general however
and can in principle be applied to any transport
problem as explained in the previous section. All
that needs to be changed is the physics that goes
in. In this section we describe how SimpleX deals
with the general transport problem. At this stage
we could still replace any explicit reference to den-
sity distributions and photons with any other back-
ground medium or transported particle. In section
4 the specialization towards radiation transfer will
be made.

3.1 Point Distributions

Any numerical method needs some grid to perform
its calculations on. The one aspect that makes
SimpleX stand out from the crowd is the use of
an unstructured grid. This means that the cells
of the grid have different shapes, unlike the stan-
dard Cartesian grids that consist only of squares
(R2) or cubes (R3). Methods based on fixed grids
have difficulties studying symmetries inherent in
the problem because of the symmetry of the grid it-
self. On top of that they introduce spurious invari-
ants (Ritzerveld[28] and references therein). An-
other problem is that fixed grids undersample re-
gions with high variability and oversample regions
of low variability. Undersampling means that de-
tails in the actual solution are missed and over-
sampling leads to unnecessary computational over-
head. Adaptive refinement techniques have been
adopted to deal with this problem, but these are
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(a) A realization of the Poisson point pro-
cess (14) with 5000 points.

(b) A realization of a singular Soneira-
Peebles point process for (L, η, λ, Nb) =
(8, 3, 1.5, 200)), resulting in 6761 points.

Figure 3: Examples of the two point processes that we’ll use in our research.

difficult to implement and the problems with sym-
metries remain. The unstructured grids used in
SimpleX fully adapt to the density field such that
both overdense regions have higher resolution and
underdense regions have lower resolution without
any computational effort. Even more: calculations
performed on the grid are independent on the res-
olution of the grid.

Unlike Cartesian grids, that must be given be-
fore performing a numerical experiment, unstruc-
tured grids are constructed from the properties of
the medium under consideration using point pro-
cesses to discretize the underlying medium. The
resolution is adapted by using more/less points in
dense/thin regions. In the current section we focus
on the point processes. In section 3.2 the resulting
grids are discussed.

In practice SimpleX will receive densityfields
from hydrocodes, like GADGET[10] and solve the
radiative transfer (RT) problem for these fields (al-
though work is also going on to try to combine
hydrodynamics and SimpleX into a single frame-
work). The most important and critical aspect of
SimpleX is the transformation of a given density-
field to the point distribution that is used as basis
for the grid. If the density field is homogeneous and
isotropic we can use a Poisson point process for this,

since a Poisson process has the same properties.
For a given volume S ⊂ Rd and N(A) the number
of points in a non-empty subset A, the Poisson pro-
cess defines the probability that the subset A has
precisely x points as:

Pr (N(A) = x) =
np |A| e−np|A|x

x!
N = 0, 1, 2, . . .

(14)
where np is the global, constant point intensity. In
figure 3(a) a possible realization of this process is
shown. Clearly this will not do for an inhomoge-
neous densityfield. In that case we would like to put
more points in overdense areas and less points in
underdense areas. This can be done by convolving
a Poisson point distribution Φ with some well cho-
sen function f(x) of the density distribution n(~x)
to get a new point distribution np (~x)[28]:

np (~x) = Φ ∗ f (n (~x)) (15)

The trick is to choose f(x) such that the result-
ing point distribution is a good representation of
the underlying density field. In section 3.2 we’ll
describe how a direct coupling between the result-
ing grid and the physical system can be made by
choosing this function cleverly.
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3.1.1 Soneira-Peebles point distributions

In order to simulate inhomogeneous density fields
for simple test cases we’ll use the Soneira-Peebles
(SP) model[31]. This is a simple three parame-
ter model that was used by Soneira and Peebles to
reproduce the clustering statistics of the observed
angular galaxy distribution. In figure 3(b) a possi-
ble realization is shown. Creating a SP point dis-
tribution is done by recursively adding circles in-
side other circles. The process starts with a single
’level zero’ circle of given radius R. Then a number
of η ’level-1’ circles is created with the centers at
randomly chosen positions within the level-0 circle.
These circles have radius R/λ where λ is a constant
λ > 1. Inside each of these circles η level-2 circles
are created with a radius that has shrunk by an-
other factor λ, ie R2 = R/λ2. In general we place η
level-l circles inside each level-(l−1) circle with ra-
dius Rl = R/λl. If L such levels are created, points
are placed at the centers of all level-L circles and
that is the distribution, which has ηL points. The
start of this process is shown in figure 4. The pro-
cess results in a family of models parametrized by
three parameters: L, the number of levels, η, the
number of circles to draw in each level and λ, the
shrinkage factor. The three parameters give much
freedom to vary. There are however also a number
of degeneracies between them. Suppose we have a
distribution with N = ηL points. By simultane-
ously increasing η and decreasing L we can create
distributions with the same N (although in practice
it is impossible to get precisely the same N , since
η and L must be integer numbers). For a fixed
N changing η affects the dynamic range in spatial
scales. For a low value of η more levels of circles
are needed leading necessarily to smaller circles and
therefore a higher dynamic range. A low value of
η will also result in a low fillingfactor. For fixed
η and L changing the λ parameter works precisely
the other way around. By choosing a larger value of
λ the circles at each level will be smaller, confining
points into smaller regions, thereby boosting the
dynamic range and reducing the fillingfactor. The
effect of λ is stronger though and acts independent
of the choice of N .

Some extentions can be made to this model.
Firstly it is possible to create a series of SP point
distributions and stack them on top of each other.
Such a point distribution is called an extended SP
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R

R/λ
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R/λ3

l=0
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l=2
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l=2

l=3

l=3

l=3

l=3

l=3
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Figure 4: The SP receipe to create a point distribu-
tion. Start with a level-0 circle of radius R. Inside
the circle choose centers for η level-1 circles with radius
R1 = R/λ. Repeat this process: create η level-l circles
of radius R/λl inside each level-(l − 1) circle until the
level l = L is reached. That level contains ηL circles
and the centers of these circles form the distribution.
These become the SPS point distribution. The figure
shows the possible result at l = 3 for a model with η = 2
and λ ∼ 1.5.

point distribution (SPE). To distinguish this type
of distribution from a single distribution, the latter
is usually referred to as a singular SP point distri-
bution (SPS). Another extention is the addition of
a small Poissonian background. A very inhomoge-
neous SPS distribution will result in empty regions
in the simulation box making it impossible to set
up a grid there. Adding a small number Nb of Pois-
sonian distributed points solves this problem. This
is the type of distribution that will be used in the
rest of this work. An example with L = 8, η = 3,
λ = 1.5 and Nb = 200 is shown in figure 3(b).
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(a) The Voronoi diagram corre-
sponding to the Poisson point distri-
bution in figure 5(b).

(b) A Poisson point distribution
with 500 points. It is the basis for
the Voronoi diagram in figure 5(a)
and its dual, the Delaunay tessella-
tion in figure 5(c).

(c) The Delaunay tessellation corre-
sponding to the Poisson distribution
in figure 5(b).

Figure 5: Comparison of the Delaunay tessellation and its dual, the Voronoi tessellation based on a Poisson
point distribution.

3.2 The unstructured grid: the De-
launay tessellation

The process of building unstructured grids from a
stochastic point process occurs in many very differ-
ent places in physics and mathematics. In all these
areas the same method has been reinvented over
and over again: the Voronoi diagram and its dual,
the Delaunay tessellation (because of the reinven-
tions the method goes by many different names,
see eg Van de Weygaert[32]). It is the most nat-
ural way of dividing up a spatial domain and it
has the additional nice property that it conserves
rotational and translational symmetries. Very de-
tailed properties can be found in Okabe et al[22].
In astronomy the Voronoi diagram and Delaunay
tessellation have been used in many applications:
the modelling of galaxies by van de Weygaert[33],
the reconstruction of continuous density fields from
N-body simulations by Schaap (Delaunay Tessella-
tion Field Estimator, DTFE[30]), the detection of
voids in numerical simulations by Platen et al (the
Watershed Void Finder, WVF[24]) and the detec-
tion of different morphological elements in N-body
simulations by Aragon-Calvo et al (the Multiscale
Morphology Filter[3]).

A tessellation in general is a collection of equally

shaped polytopes that fit together without overlaps
or gaps to cover a given domain. So the Carte-
sian grid can be seen as a tessellation consisting
of squares (R2) or cubes (R3). Suppose now that
we have our distribution of N points pi, i∈ [1, N ]
with coordinates ~xi in Rd. The polytopes, or cells

Vi, that make up the Voronoi diagram are those
regions of space that are closer to pi than to any
other point pj :

V (pi) = {~x | |~x − ~xi| ≤ |~x − ~xj | , 1∈ [1, N ], j 6= i}
(16)

Here norms are just the Cartesian length of the vec-
tor. Note that the collection of all Voronoi cells is
not strictly a tessellation because the cells have dif-
ferent shapes. Therefore usually the term Voronoi
diagram is used. An example of a Voronoi diagram
based on a Poisson point process in R2 is shown in
figure 5(a). A Voronoi diagram is a planar graph,
meaning that it can be drawn without intersecting
edges. The consequence of this is that a dual graph
must also exist. The dual graph is obtained by
connecting all neighbouring cells of the Voronoi di-
agram with an edge. The result is the Delaunay tes-
sellation, which is indeed a tessellation because the
resulting polytopes are the d-dimensional analogue
of triangles. The Delaunay tessellation is the un-
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structured grid SimpleX is based on. The grid con-
sists of triangles in R2 and tetrahedrons in R3. The
grid can be determined for any dimension d however
and will then consist of the d-dimensional analogue
of triangles. Such a generalized d-dimensional tri-
angle is called a simplex, hence the name of the
method.

3.2.1 Creating a periodic distribution

For the grid to be of any use it is very important
to have a special layer of points at each boundary
of the box that is not used for calculations, but is
only there to assure that the grid behaves nicely
near the edges. The problem is illustrated in fig-
ure 6(a). This figure shows the Delaunay tessella-
tion for a Poisson point distribution with 200 points
without boundary points. The results is that along
the boundaries there will be very long edges, al-
most parallel to the edge of the box. If we were to
transfer particles coming somewhere from the cen-
ter of the box along these lines they would suddenly
make almost a 90◦ turn and move further along the
edges of the box. This is clearly not what we want.
Another issue is that all analytical results about
Delaunay tessellations are based on an ’infinite’, or
periodic distribution. So in order to compare re-
sults with theory, we need to make sure that the
points that we use for the actual simulation look
like a subset of such an ’infinite’ set.

SimpleX gives two ways to do this. The first
method doesn’t require additional points and thus
computer memory. The procedure is to flag any
points inside a predefined buffersize along the edges
of the box as a ’buffer point’. All particles that
end up in one of these bufferpoints are assumed
to have flown out of the simulation box and are
removed from the experiment. The downside of this
method is that the number of gridpoints used for
the experiment is reduced. The idea is illustrated
in figure 6(b). All points that are within a 10% size
buffer of the simulation box are flagged as boundary
point. They don’t take part in the experiment and
basically work as a kind of /dev/null. The effective
simulation box is reduced to the smaller indicated
box. A second method adds points in a given buffer
size around the simulation box. These points are
the periodic continuation of the points inside the
simulation box. So if the buffer size is 10%, then the
points that are placed ’right’ of the simulation box,

are precisely the points that fall into the ’left’ 10%
of the simulation box. This process is illustrated in
figure 6(c). The original points in the box in figure
6(a) are now inside the black box and the red points
are periodically added. The advantage is that if N
points are requested to be used, N points is what
you get. The downside is that we need to store a
lot more points in memory, limiting the number of
points we can use.

3.3 Transport on the Delaunay grid

Delaunay tessellations based on Poisson point pro-
cesses have been studied extensively and many
properties are known[22], but only very few things
allow analytical evaluation. One particular prop-
erty that will prove to be extremely useful is the
expectation value of the moments of the edgelength
L in the Delaunay tessellation[22]:

〈

Lk
〉

= ζ (k, d) n−k/d
p (17)

Here ζ(k, d) is a geometrical constant that depends
on the moment k and the dimension d. We can
compare this relation with the expectation values
〈

sk
〉

for the distance s a particle travels between

interactions. In section 2.3 we found
〈

sk
〉

∝ λk . If
we compare this with (17) it follows that if the point
distribution would scale with nd

p, the expectation
value for the edgelengths L scales in the same way
as the expectation value for the physical distance
s. In other words: if we choose the function f(x)
defined in (15) to behave as f(x) ∝ xd, such that:

np (~x) = Φ ∗ nd (~x) (18)

then all moments of the distribution of the lengths
of the edges in the Delaunay tessellation are pro-
portional with the moments of the distribution of
the physical distance s:

〈

Lk
〉

(~x) = c (k) λk (~x) (19)

Here c (k) is a constant of proportionality that de-
pends on k but besides that is a global constant.
In particular we have that the average edgelength
of the Delaunay tessellation equals the mean free
path multiplied by a global constant:

〈L〉 (~x) = c1λ (~x) (20)

The consequence is that the edges of a Delaunay
tessellation created from a Poisson point process
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(a) A Poisson Delaunay tessella-
tion without boundary points.

(b) The same Poisson Delaunay
tessellation as in figure 6(a) af-
ter including a 10% buffer with
boundary points.

(c) Again the same Poisson De-
launay tessellation as in figure 6(a)
with a 10% periodic buffer added.

Figure 6: A Poisson Delaunay tessellation without boundary points gives rise to unwanted transport of particles
parallel to the edges of the simulation box. This situation is illustrated in figure 6(a). In figure 6(b) this is resolved
by flagging all points within a predefined buffer as boundary point. This buffer is plotted in red. Points in this
boundary do not take part in the transport process, they remove any particle that enters from the simulation.
The number of points used in the simulation is reduced to the points within the black box. Another method is
to periodically add points at the boundary, in order to retain the number of simulation particles. This method
is illustrated in figure 6(c). The red points are the periodically added points. Now the original simulation box is
conserved inside the black box.

satisfying (18) will accurately sample the mean free
path λ travelled by a particle (9).

With this in mind, let’s take a new look at 1.
Performing a Monte Carlo simulation was said to
be a two-step process. The first step was to get
a sample of the distribution (9) for s and move
the particle over that distance. The second was
to apply the physics connected with the particular
problem under consideration. Now that we have
a grid with edges that are such that they sample
the mean free path the first step becomes trivial.
All we have to do for step 1 is to move particles
from a given vertex in the grid to the neighbouring
vertex in order to satisfy the condition 〈s〉 = λ and
all that’s left to do is to include the physics. At
this stage any physical process can still be put in.
For SimpleX the physics consists of the transport
of photons that interact with hydrogen. We will
describe how this is included in the next section.

4 The physics

In this section we consider how the SimpleX way
of transporting entities in a background medium is
specialized to deal with photons traveling through
a background density field. The current version
of SimpleX deals with hydrogen only and is not
able to solve for temperature. Instead it assumes
a temperature of 200 K for neutral hydrogen and
104 K for ionized hydrogen. Further it deals with a
single frequency, for which the ionization threshold
of 13.6 eV/h is used. We can take into account a
general source spectrum Sν by weighing physical
quantities with the normalized source spectrum:

S̃ν ≡ Sν
∫

R
Sνdν

(21)

SimpleX allows the usage of a Blackbody source -
Sν = Bν(Ts) - for which the normalized Blackbody
“distribution” looks like:

B̃ν (Ts) =
15

π4

(

h

kTs

)4
ν3

ehν/kTs − 1
(22)
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with Ts the (effective) temperature of the source in
Kelvin.

4.1 Ionization cross section

The full blown expression for the ionization cross
section of hydrogen is given by[11]:

σν(HI) = A0

(ν0

ν

)4 e4−4 arctan ε/ε

1 − e−2π/ε
cm2 ν ≥ ν0

(23)
with:

A0 = 6.30 · 10−18 cm2

ε =

√

ν

ν0
− 1 ν0 = 3.29 · 1015 Hz

and with ν0 the ionization threshold hν0 =
13.6 eV . In practice we’ll use the Kramers
approximation[11]:

σKramers
ν (HI) = A0

(ν0

ν

)3

cm2 ν ≥ ν0 (24)

Both in (23) and (24) the cross section is zero for
ν < ν0. They are plotted in figure 7. The cross
section peaks to A0 at ν0 and then falls off ap-
proximately like ν−3. This approximation under-
estimates the cross section at the most 25% around
1016 Hz. It is not a very tight fit, but it is a reason-
able tradeoff against the computational difficulties
we would experience when using (23). We have to
be careful however when we want to deal with much
higher energies. Around 1017 Hz both relations are
equal and for even higher frequencies the Kramers
approximation overestimates the cross section. The
ratio grows with a factor 10 every two decades in
frequency (ie, at ν ≈ 1019 Hz the approximation
overestimates the full expression by a factor ≈10).

We’ll use the Kramers approximation to calcu-
late the average ionization cross section:

σ̄ (Ts) =

∞
∫

ν0

B̃ν (Ts) σKramers
ν dν (25)

The resulting integral is evaluated in appendix B.2,
equation (85):

σ̄ (Ts) =
15A0

π4

(

hν0

kTs

)3

ln

(

1

1 − e−hν0/kTs

)

cm2

(26)
The average ionization cross section is plotted in
figure 8.

Figure 7: The hydrogen cross section. The full expres-
sion (23) is the solid line. The cross section peaks at the
ionization threshold ν = 3.29 ·1015 Hz and then falls of
approximately like ν−3. The Kramers approximation
(dashed line, eq (24)) follows this general behaviour.
The ratio of the full expression and the approximation
is also given. The approximation underestimates the
cross section at the most 25% around 1016 Hz.

Figure 8: The hydrogen cross section as function of
source temperature Ts, after averaging over frequency,
weighed with a normalized Blackbody.

4.1.1 Ionization rate

Using the average hydrogen cross section, the op-
tical depth encountered when moving from a point
pi in the tessellation to its neighbour pj , is[28]:

∆τ = nHIσ̄ (Ts) ∆L (27)
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with nHI the number density of neutral hydro-
gen and ∆L the physical distance traveled. For
a monochromatic flux of frequency 13.6 eV/h the
average cross section in this relation should be re-
placed by A0. The equation of radiative transfer
(1) now tells us what happens with the photons
that move along the edge between the neighbours.
Rewriting (1) in terms of optical depth gives:

dIν

dτν
= −Iν + Sν (28)

where we left out all the explicit dependencies on
~r, ~Ω and t, Sν = jν/αν is the sourcefunction and
dτν = α |d~r|. When considering radiation transport
from pi to pj we are trying to solve (28) along a
line for which Sν = 0, since radiation can only be
created in gridpoints. Then the solution to (28) is:

Iν (τν) = I0,νe−τν (29)

where I0,ν is the radiation that is send by pi in the
direction of pj . The radiation absorped underway
is then:

Iabsorped
ν (τν) = I0,ν

(

1 − e−τν
)

(30)

This result is used to calculate the number of pho-
tons that is absorped by neutral hydrogen. Given
that Nphotons is the number of photons that is send
from pi[28]:

Nused
photons = fν0

Nphotons

(

1 − e−∆τ
)

(31)

where fν0
is the fraction of ionizing photons. In

practice the multiplication with this factor is per-
formed at the source such that only ionizing pho-
tons are distributed over the grid. For a monochro-
matic flux at threshold frequency we have fν0

=1.
For a Blackbody source it becomes:

fν0
=

∞
∫

ν0

Bν (Ts) dν

∞
∫

0

Bν (Ts) dν

=

∞
∫

ν0

B̃ν (Ts) dν (32)

We can evaluate this fraction numerically by using
(92) from appendix B:

fν0
=

15

π4
I

(

3,
hν0

kT

)

(33)

The actual number of newly ionized atoms is cal-
culated from (31) as:

∆NHII =

{

Nused
photons Nused

photons ≤ NHI

NHI Nused
photons > NHI

(34)

An important question is whether it is allowed
to go directly from (29) to (30) in the described
manner. Transporting a number of photons Nν is
not the same as transporting energy Iν since:

Nν =
Iν

hν
(35)

This relation suggests that we should use a cross
section weighted with the normalized form of
Bν (Ts) /hν to calculate the correct optical depth.
We will come back to this issue in section 7.1.

4.2 Recombination

A full blown expression for the case B recombina-
tion coefficient is given by[7]:

αB = 8.40 ·10−11T−1/2T−0.2
3

(

1 + T 0.7
6

)−1
cm3 s−1

(36)
where now T is the temperature of the gas and Ti is
a shortcut for 10−iT . The coefficient is plotted in
figure 9 as the solid black line. From the figure we
see that the recombination rate has two limits. For
temperatures T . 105 K it behaves as a powerlaw
with a rather shallow exponent and for tempera-
tures T & 105 K it behaves as a powerlaw with a
sharp exponent (for T →∞ we have Ti ∝ T and ap-
proximately αHII ∝ T (−0.5)+(−0.2)+(−0.7) = T−1.4).
Around 105 K we’re in a transition region. Since
one expects temperatures around 104 K for an ion-
ized hydrogen gas, in SimpleX (36) is approximated
by a single powerlaw:

αB = 3.22·10−13T−0.73
4 cm3 s−1 T . 105 K (37)

The constant was chosen such that (36) and (37)
coincide at 104 K. This approximation is plotted
as the dashed black line in figure 9. Note that the
constants in (37) are slightly different than in the
original version of SimpleX[28] (dotted black line
in figure 9) to accomodate a better fit.
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Figure 9: The recombination rate in black and the
cooling in blue. The black solid line is expression (36)
from [7]. Since temperatures around 104 K may be ex-
pected for an ionized hydrogen gas, in SimpleX the full
expression is approximated by a single powerlaw (37),
valid for T . 105 K and chosen such that (36) and (37)
coincide at T = 104 K. The dashed black line shows
this approximation. The constants in this approxima-
tion are slightly different from the original version of
SimpleX, which is plotted as the dotted black line. The
blue solid line shows the recombination cooling rate
(63). The region T . 105 K can be approximated by a
single powerlaw like the recombination rate, resulting
in (64) which is plotted as the dashed blue line.

4.2.1 Recombination rate

Using the recombination coefficient the recombina-
tion rate is usually written as:

∂nHI

∂t
= αBn2

HII = αBx2n2 (38)

In SimpleX however we deal explicitly with the
number of atoms, so we have to write for the num-
ber of recombined atoms Nrec:

Nrec = αBNHIIxn (39)

The change in the number of neutral hydrogen
atoms is now determined from:

∆NHI =

{

Nrec Nrec ≤ NHII

NHII Nrec > NHII
(40)

5 The details of SimpleX

In the two previous sections 3 and 4 we described
globally how SimpleX works. In this section we

take a look at the details and perform very sim-
ple test cases to see whether SimpleX behaves as
expected.

5.1 QHull

The most striking difference between SimpleX and
other radiative transfer codes is the underlying grid
used to solve the radiative transfer problem. All
traditional methods use Cartesian grids, whereas
SimpleX utilizes an unstructured grid. This grid is
the Delaunay tessellation corresponding to stochas-
tically obtained points. These represent the den-
sity distribution in the simulation box in such a
way that the lengths of the edges of the tessellation
sample the mean free path λ a photon travels be-
tween interactions. But how to efficiently calculate
the tessellation from the point distribution? Sup-
pose we have N points pi, i∈ [1, N ] in d-dimensional
space as input. In principle it is not very difficult to
let the computer calculate the corresponding tessel-
lation, but straightforward algorithms will typically
have very bad time complexity. Consider for exam-
ple the very simple algorithm in figure 10. This is
a conceptually very simple approach that is easy to
implement, but it has a time complexity of O

(

N2
)

because for every point we need to check all other
points. We can speed up the algorithm slightly by
making sure that we don’t look for an edge pj →pi

if we have already found pi → pj , but even then it
is a O

(

N2
)

algorithm, which is a huge problem for
cosmological simulations where billions of particles
are needed. Another important problem is that the
algorithm has problems calculating distances be-
tween points that are very close together because
of roundoff errors. This can potentially destroy the
tessellation completely.

SimpleX uses the package QHull[26] to calculate
the tessellation. This software is numerically rela-
tively stable and runs in the theoretically best ob-
tainable time complexity which is O (N log N)[34]
in R2 and R3. It makes use of a remarkable relation
between the convex hull of a set of points and the
Delaunay tessellation discovered by Brown[6]. The
convex hull of a set of points is the outer bound-
ary such that all points are enclosed. An example
in R2 is shown in figure 11. The QHull algorithm
works as follows:

1. Start with points ~xi
d =

(

x1
d, x

2
d, . . . , x

d
d

)

in Rd
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For each point i ∈ [1, N ]:

1. calculate the distances between i and all
other points j ∈ [1, N ]/{i}

2. select the d points {j1, j2, . . . , jd} with
smallest distance to i

the set of points {i, j1, . . . , jd} forms a Delau-
nay simplex; store this simplex

Figure 10: A straightforward algorithm to calculate
the Delaunay tessellation of a point distribution consist-
ing of N points in d-dimensional space. This algorithm
is easy to implement, but has O

`

N2
´

time complex-
ity which becomes problematic even for not too high
values of N . It will also suffer strongly from roundoff
errors when calculating distances between points that
are very close together.

2. Lift these points to a paraboloid in Rd+1 where

~xi
d+1 =

(

x1
d, x

2
d, . . . , x

d
d,
∑d

i=1

(

xi
d

)2
)

. So we

lift the points above the hyperplane Rd in
Rd+1 where the height equals the square of the
distance each point is away from the origin

3. Compute the convex hull of the obtained
paraboloid in Rd+1

4. Project the downward facing faces of the con-
vex hull. Brown[6] proved that this is the De-
launay tessellation we are looking for.

For R3 QHull determines both the Delaunay tes-
sellation and the Voronoi diagram. For R2 QHull
only calculates the Delaunay tessellation. We have
to derive the Voronoi diagram from that ourselves.
This problem is equivalent to finding the centers
of the circumscribing circle for each Delaunay tri-
angle (for details, see eg Okabe et al[22]). There
are many ways to do this. SimpleX originally used
a method based on the slope of the edge between
points of the triangle. The problem with this is that
the slope can evaluate to zero for some situations.
Another method is given by Van de Weygaert[33].
We use a variation of that method that requires less
algebraic calculations. The method is explained in
appendix A.

In sections 5.1.1, 5.1.2 and 5.1.3 we perform a
few simple tests on tessellations in a box [0, 1]d cal-
culated by QHull in order to check its embedding in
SimpleX and to find the limits of its applicability.

Figure 11: The convex hull of a set of points in R2.
The convex hull of a set of N points pi, i∈ [1, N ] in Rd

is the outer boundary of the set consisting of (d−1) di-
mensional hypersurfaces, such that all points fall inside
the boundary.

5.1.1 Number of edges in vertex

There are not many properties of a general Delau-
nay tessellation that can be calculated analytically.
But when we restrict ourself to a Poisson Delau-
nay tessellation, ie a tessellation based on a Poisson
point process, there are a few. One known prop-
erty in R2 and R3 is the expectation value E(E)
for the number of edges E that intersect in a ver-
tex (gridpoint). These edges correspond precisely
to the number of d− 1 hypersurfaces that make up
the d dimensional Voronoi cell. They are[22]:

E(E)R2 = 6

E(E)R3 =
48π2

35
+ 2 ≈ 15.535

(41)

Despite the fact that the number of vertices E must
be an integer number, the expectation value is only
an integer for R2. The way to test this predic-
tion is to set up many tessellations, count the num-
ber of edges and create histograms of the distribu-
tion p(E) of E. We create 100 tessellations from a
Poisson point process with N =104. For each tes-
sellation we calculate a normalized histogram and
then the average distribution. The resulting mean
histograms are plotted in figures 12(a) and 12(b)
for d = 2 and d = 3 respectively. The errorbars
indicate the unbiased sample standard deviation.
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(a) p(E) for Poisson point distribution
with 104 points in R2

� � ��� ��� ��� �� ��� ���
�

�
� ���

�
� ���

�
� ���

�
� ���

�
� ���

�
� ���

�
� ���

�
� ���

� !
"

(b) p(E) for Poisson point distribution
with 104 points in R3
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(c) p(E) for point distribution SPS1 in R2
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(d) p(E) for point distribution SPS2 in R2
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(e) p(E) for point distribution SPS1 in R3
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(f) p(E) for point distribution SPS2 in R3

Figure 12: The distributions p(E) of the number of edges E arriving at a vertex in a Poisson Delaunay
tessellation with N = 104 and realizations of SPS1 and SPS2. For each case 100 realizations were averaged. The
errorbars indicate the unbiased sample standard deviation. The expectation values are (42) for the Poisson cases
and (43) and (44) for the SPS cases.
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Given this distribution we can numerically calcu-
late the expectation values for E:

E(E)2D = 6.000± 0.052

E(E)3D = 15.54± 0.15

(42)

These results agree very well with the analytical
results. We have also repeated the experiment for
N = 5 · 103. Since the statistical noise should go
∝N−1/2 we expect the errorbars to increase by a
factor

√
2 for this case and this is indeed observed.

We can do the same test for SPS point distribu-
tions. In particular the case for d = 2 is very inter-
esting because the expectation value for E should
be independent on the point distribution. In other
dimensions this is not generally true. We have
tested this for two SPS distributions. The first
- SPS1 - has (L, η, λ, Nb) = (2, 13, 1.8, 200) giv-
ing N = 8392. This is an extremely inhomoge-
neous distribution with only a few very dense spots.
The second - SPS2 - is more homogeneous with
(L, η, λ, Nb) = (5, 6, 1.2, 200) giving N = 15825.
Examples of such distributions are shown in figure
13. In figures 12(c) and 12(d) we plot the resulting
distributions in R2. The expectation values are:

E(E)SPS1,R2 = 6.000± 0.058

E(E)SPS2,R2 = 6.000± 0.039

(43)

As expected the expectation value doesn’t
change, but if we look at figures 12(c) and 12(d) it is
clear that the shape of the distribution can change.
For the inhomogeneous SPS1 distribution the max-
imum of the distribution has shifted to E = 5 and
the tail extends to much larger values of E. The
SPS2 realization results in a distribution that is
hardly distinguishable from the Poisson result in
figure 12(a). Despite the deviating shape of p(E)
for SPS1, the uncertainties in (43) behave ∝ N−1/2

as they should.
To be complete we investigated the same SPS

point distributions for d = 3 as well. The resulting
distributions are shown in figure 12(e) and 12(f)
and the expectation values are:

E(E)SPS1,R3 = 14.87± 0.17

E(E)SPS2,R3 = 15.46± 0.12

(44)

(a) An example of a SPS1 distribution with
(L, η, λ,Nb) = (2, 13, 1.8, 200) giving N = 8392.

(b) An example of a SPS2 distribution with
(L, η, λ,Nb) = (5, 6, 1.2, 200) giving N = 15825.

Figure 13: Examples of the very inhomogeneous SPS1
distributions (figure 13(a)) and more Poisson-like SPS2
distributions (figure 13(b)).

Qualitatively the results in R3 are very comparable
to R2. For SPS1 the distribution shifts towards
lower E and has a much longer tail. This time
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however also the expectation value changes to lower
E. The more homogeneous SPS2 distribution is
virtually indistinguishable from the Poisson case,
even though the expectation value seems to deviate
more than expected when assuming it is constant.
The uncertainties are again ∝N−1/2.

5.1.2 Edge length distribution

One of the critical properties of the Delaunay tes-
sellation is the distribution of the length L of the
edges, because these lengths are supposed to sam-
ple the mean free path λ. In practice when consid-
ering the transport of photons along a given edge
from point pj to point pi not the actual length of
that edge is used, but the average length of all
edges connected to pi. Because the edges them-
selves should sample the mean free path, a good
estimate of the mean free path itself ought to be
obtained by explicitly taking the average. We can
test this easily for a Poisson point distribution. Be-
cause of the homogeneity of the Poisson point dis-
tribution we can calculate the global average edge-
length 〈L〉 and take this as the ’true’ mean free
path and then compare the results in all vertices
with this global average.

We start by considering the edgelength distribu-
tion p(L) for a Poisson point distribution with 104

points. We create 100 realizations and calculate
the corresponding Delaunay tessellation. Then we
calculate the lengths L of each edge and the aver-
ages L̄ of the lengths connected to each vertex pi.
For each realization the resulting distribution p(L)
is calculated by a binning process and finally the
mean of these distributions is determined. Errors
in the mean are estimated by the unbiased sample
standard deviation. Also the cumulative distribu-
tion P (L) is determined:

P (L) =

L
∫

0

p(L)dL (45)

The results for R2 are presented in figures 14(a)
and 14(b). In figures 14(c) and 14(d) are the re-
sults for R3. The distribution of the edgelength
L is plotted as a solid line with square datapoints
and the distribution of the mean length L̄ is plot-
ted as a dashed line with diamond datapoints in
all figures. For the cumulative distributions the er-
rors are about the size of the datapoints and the

errorbars are therefore left out. The lengths in all
figures are normalized with respect to the global
average edgelength 〈L〉 ≈ λ. We see that both in
R2 and R3 the distribution of the averages L̄ has
a much narrower peak around λ indicating that in-
deed the method of local averaging gives a better
estimate for λ then all individual edgelengths L.
Another nice property is that the distribution of L̄
is more symmetric. If we compare between dimen-
sions we see that the distributions for R3 are much
narrower than for R2. This is actually no surprise
because this is known from the analytical distribu-
tions for L (which we didn’t plot because it is very
hard to do that, see eg Ritzerveld, equations (3.17)
and (3.20)[28]). Next we calculate the expectation
values of these distributions:

E (L)R2 = (0.9619± 0.0064) 〈L〉
E
(

L̄
)

R2
= (0.9331± 0.0091) 〈L〉 (46)

E (L)R3 = (0.9752± 0.0041) 〈L〉
E
(

L̄
)

R3
= (0.9508± 0.0094) 〈L〉 (47)

So even though from the figures the distributions of
the mean seem to be closer to λ, the actual expec-
tation value for the means are further away from
λ. From the uncertainty it seems to be a very well
determined offset though. SimpleX doesn’t have a
correction for this offset and we will add this soon.
An important check before applying this correction
is to look for possible dependencies of the expec-
tation values on N . Therefore we repeated the
full process for N ∈ {5e2, 1e3, 5e3}. The result-
ing expectation values are shown in figures 14(e)
and 14(f). Even though we don’t have many data-
points it seems fair to say that there is no depen-
dency on N , both for the distributions of L and L̄
in R2 and R3. Finally we can compare the results
with analytical results. For R2 and R3 the expec-
tation value of the moments k of the edgelength L
is known[19]:

E(Lk)R2 =
2k+1 (k + 1) (k + 3) Γ

(

k+1
2

)

3 (k + 2)π(k+1)/2Nk/2
(48)

E(Lk)R3 =

35

32

(k+8) (k+6)

(k+7) (k+5) (k+3)
Γ

(

3+
k

3

)(

6

πN

)k/3

(49)

Note especially the brackets in the π(k+1)/2 term
for E(Lk) in R2. The brackets are missing both in
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(a) Edgelength distribution p(L) for Poisson
point distribution with 104 points in R2.

(b) Cumulative edgelength distribution P (L)
for Poisson point distribution with 104 points
in R2.

(c) Edgelength distribution for Poisson point
distribution with 104 points in R3.

(d) Cumulative edgelength distribution for
Poisson point distribution with 104 points in
R3.

(e) Expectation value in R2 (f) Expectation value in R3

Figure 14: Figures 14(a), 14(b), 14(c) and 14(d) show the edgelength distributions p(L) in the Delaunay
tessellation based on a Poisson point distribution. The datapoint in each bin is the average over 100 different
realizations. The errorbars represent the unbiased sample standard deviation in each bin. For the cumulative
distributions the errorbars are not plotted, because they are comparable in size to the datapoints. In all figures
the solid line with square datapoints shows the distribution of the edgelength L and the dotted line with the
diamond datapoints shows the distribution of the local average edge length L̄. In all figures the lengths are
normalized with respect to the global average edgelength 〈L〉 ≈ λ. In figures 14(e) and 14(f) the expectation
values for L and L̄ are plotted for R2 and R3 respectively. Again the solid line with square points corresponds
to edgelengths and the dashed line with diamond points to the local means.
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equation (3.18) of Ritzerveld[28] and in Ch 5.11 of
Okabe et al[22]. Setting k = 1:

E(L)R2 =
32

9π
n−1/2 ≈ 1.132N−1/2

E(L)R3 =
1715

2304

(

3

4π

)1/3

Γ (1/3)N−1/3

≈ 1.237N−1/3

(50)

In figure 15 we plotted 〈L〉 for R2 in black with
square datapoints and in red with diamond data-
points for R3. The solid lines are the theoretical
curves given by (50). The datapoints are the av-
erages over the 100 realizations. The uncertain-
ties in the points are about the same size as the
points themselves. For R2 the datapoints fall right
on top of the theoretical curve. For R3 there is
a clear offset however. We also plotted the theo-
retical curve multiplied with the reciprocal of the
offsets in (46) and (47) (dotted lines). After this
correction the datapoints for R3 fall right onto the
theoretical curve, but the datapoints in R2 are now
all offset. It is not clear at this time why the situ-
ation is different in R3 and R2 and more attention
is needed.

5.1.3 Angular distribution

Another property of Poisson Delaunay tessellation
that is analytically known is the distribution p (θ)
of the angle θ between adjacent edges in R2. It is
given by[12]:

p (θ) =
4 sin θ

3π
(sin θ + (π − θ) cos θ) (51)

We calculated for 100 tessellations based on 104

Poissonian distributed points the angles between
each set of adjacent edges. For each tessellation the
distribution was calculated and then the average
per bin was determined. The result is depicted in
figure 16(a). The errorbars represent the unbiased
sample standard deviation in each bin. The solid
line is the analytical result (51). The general shape
of the distribution is very well reproduced, but the
peak is shifted slightly to lower values of θ. This is
also very clearly visible in the cumulative distribu-
tion in figure 16(b) where the points are again the
data and the solid line is the numerically obtained

Figure 15: The mean of the global averages of the
edgelength for 100 Poisson Delaunay tessellations for
R2 (square black points) and R3 (diamond red points).
The errors in the datapoints are about the size of the
points. The overplotted solid lines are the theoretical
expectation values for the edgelength given by (50). In
R2 the data perfectly matches this expectation value,
but for R3 there is an offset. If we apply the offsets
found in (46) and (47) we get the dotted lines. Now
the data in R3 matches perfectly, but in R2 there is an
offset. It is unclear what causes this difference.

cumulative distribution for (51). The cause for the
shift to smaller angles is not yet clear.

It is also interesting to see what we get for our
SPS distributions SPS1 and SPS2 which we in-
troduced in section 5.1.1. The results for SPS1
are plotted in figures 16(c) and 16(d) with square
points with a dotted line. The results for SPS2
are plotted as diamond points and the solid lines
are again the theoretical curve for a Poisson Delau-
nay tessellation, equation (51). As before the SPS2
results are very similar to the results for a Pois-
son point distribution, even the offset to smaller
angles is also present for SPS2. The results for
SPS1 however are completely different. The maxi-
mum probability for a SPS1 Delaunay tessellation
occurs for a very small angle and then p(θ) drops
off approximately linearly. So in comparison with a
Poisson Delaunay tessellation we have much more
very small angles, but also much more large angles
in a SPS1 Delaunay tessellation. The latter must
be true because in section 5.1.1 we saw that in R2

the number of edges emanating from a given vertex
is independent of the point distribution. Since the
sum of all angles surrounding a given vertex must
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(a) The distribution p(θ) of the angle θ between adja-
cent edges. The errorbars indicate the unbiased sample
standard deviation.

(b) The cumulative distribution P (θ) of the angle θ

between adjacent edges. The errorbars are too small
to picture.

(c) The distribution p(θ) for SPS1 (square points, dot-
ted line) and SPS2 (diamond points) realizations. The
theoretical curve (51) for Poisson Delaunay tessella-
tion is plotted as a solid line. The errorbars are the
unbiased sample standard deviation.

(d) The cumulative distribution P (θ) for SPS1 (square
points, dotted line) and SPS2 (diamond points) real-
izations. The solid line is the numerically obtained
cumulative distribution for the theoretical distribution
(51). The errorbars are not plotted because they are
about the size of the datapoints.

Figure 16: The distribution of the angle θ between adjacent edges in Poisson Delaunay tessellations (figures
16(a) and 16(b)) and SPS tessellations (figures 16(c) and 16(d)). The datapoints are the average in each bin over
100 realizations of each the tessellation. The solid line in all figures is the theoretical result (51). The Poisson
data match the general shape of the theoretic distributions very well, but are slightly offset to smaller angles.
It is not clear what causes this. Figures 16(c) and 16(d) show the results for SPS1 and SPS2 realizations, as
defined in section 5.1.1. The SPS1 results are plotted as square points with a dotted line. The SPS2 results are
the diamond points. The solid line in both figures is the theoretical results for a Poisson Delaunay tessellation.
The SPS1 type of distribution is very inhomogeneous and results in many very small angles. In section 5.1.1 we
showed that the number of edges emanating from a vertex is independent of the underlying point distribution
and therefore there are also many large angles to make the sum 2π. The SPS2 distribution looks again very
much like a Poisson distribution, including the offset to smaller angles.
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always be 2π it follows automatically that small
angles must be compensated for by large angles.

5.1.4 Limits of QHull

Throughout most of the last sections we have used
around 104 points. For the Poisson distributions
exactly this number and for the SPS1 and SPS2
realizations a number close to that (SPS1 has N =
213+200=8392 and SPS2 has N =56+200=15825
points). The reason is that for these type of num-
bers, in particular for R2 we can be quite safe that
the resulting tessellation is correct. If we keep in-
creasing N QHull will start to complain at some
point that the points in the distribution are too
close to each other. If we increase N even a bit
further, than QHull fails and SimpleX crashes with
a segmentation fault. The actual number N tot that
we can use as input depends on the settings of the
buffers we discussed in section 3.2.1. What counts
is of course the total number of points that goes
into QHull. For an input of 104 Poisson points and
a periodic buffer of 10% we have N tot ≈ 1.44 · 104

and for a buffer of 50% even N tot ≈ 4 · 104 points.
The number of points actually used in the simula-
tion is N sim ≡ N for this case. For a non periodic
buffer we have N tot ≡ N , but N sim ≈ 0.64·104 for a
10% buffer and N tot = 0 for a 50% buffer. We have
tested QHull for Poisson distributions with differ-
ent values of N tot to see where numerical prob-
lems occur. In R2 the maximum allowed number
of points is N tot

R2 ≈ 5 · 105 corresponding to a mini-
mal edgelength of about Lmin≈1.4 · 10−3. For R3

we went to N tot ≈ 5 · 106 and at that point the
computer ran out of memory. If we take the max-
imum possible value in R2 as an indication of the
smallest allowed distance between two points, we
can estimate that for R3 QHull should do well up

to N tot
R3 ≈

(

N tot
R2

)3/2≈3.5 · 108.

5.2 Impulse conservation

So far we have looked solely at properties of the
tessellation. An important consequence of the ap-
plication of the Delaunay tessellation as grid is that
photons can take only discrete, precalculated paths
through the medium. So let’s consider a photon
packet that is coming from points pj and is moving
towards point pi, like in figure 18.

I

II

III
PSfrag replacements

pi pj

Figure 18: Photon packets that perform random walks
over the Delaunay grid meet junctions all the time. Ide-
ally photons that are not absorbed should travel further
down the dashed line. This is not possible because of
the discretization of the possible paths a photon packet
can take. This is a side effect of using tessellations as
grid. In SimpleX photon packets that arrive at a junc-
tion are split into d equally sized packets and are send
along the ’straightest’ edges, the edges that are closest
to the dashed line. This C-method will send photon
packets along edges I and II. Another method is the
E-method (Enclosing). In this method the edges are
chosen such that they enclose the dashed line, which
is the original direction. For that scenario SimpleX
would choose edges II and III. At this point it is not
clear which method should be used.

Some photons of the packet will be absorbed
(according to equation (31)). The remaining pho-
tons need be send further down the grid. Ideally
we would like to send the remaining photons just
straight on along the dashed line. But because the
grid consists of a discrete number of edges such a
path will generally not be there. So we have to
choose an edge, let’s say we pick the edge with the
smallest deflection, edge II. Independent of the re-
sulting deflection, the result is that we artificially
introduce impulse in a direction perpendicular to
the original direction. Given the fact that the angle
between any two adjacent edges has an upper limit
of 180◦ (in R2) this effect can be rather dramatic.
For this reason SimpleX splits the photon package
in two and sends the packets along the ’straighest’
edges. In Rd these are the d edges that deviate the
least from the original direction. In figure 18 Sim-
pleX would pick edges I and II. We will refer to this
method as the C-method (’Closest’ method). It is
clear that this method doesn’t reduce the impulse
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(a) The distribution of ∆px,out for the C-method. (b) The distribution of ∆py,out for the C-method.

(c) The distribution of ∆px,out for the E-method. (d) The distribution of ∆py,out for the E-method.

Figure 17: The distribution of the total outgoing momentum in units of the incoming momentum. For each
junction in a Poisson Delaunay tessellation the x-axis is placed along the incoming edge and the total outgoing
momentum is determined along the x-axis and the y-axis. The standard method of choosing two edges in SimpleX
is the C-method, where in Rd the d edges are chosen that are closest to the original direction. The results for
this method are shown in figure 17(a) and 17(b). Another possibility is to enforce that the original direction is
’enclosed’ in the new directions, the E-method. The results for this case are shown in figure 17(c) and 17(d).
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in the perpendicular direction(s) to zero locally,
but the hope is that on average it does. We will
investigate this by calculating the total change in
momentum that would occur at each junction in a
Poisson Delaunay tessellation with 104 points. For
each junction we place the x-axis along the incom-
ing edge and calculate the total momentum that
goes out in units of the incoming impulse px,in (so
actually we are just calculating the sum of two cos-
inus and two sinus terms). Again we do this for 100
realizations and average the distributions obtained
for each realization. The resulting distributions for
the total outgoing impulse in the x-direction px,out

and y-direction py,out are presented in figures 17(a)
and 17(b). Ideally one would like to see spikes at
∆px,out =1 and ∆py,out = 0. This is clearly not the
case. The distribution of ∆py,out does look very
symmetric though. Let’s calculate the expectation
values for these distributions:

EC (∆px,out) = 0.7655± 0.0033

EC (∆py,out) = −0.0205± 0.0013

(52)

These values are plotted as the dashed lines in fig-
ures 17(a) and 17(b). The results show that the ar-
tificially introduced impulses perpendicular to the
incoming direction do not average out. More im-
portant however is what happens if we also take
into account the full orientation of the edges in the
simulation box. That is what we’ll do in section
5.3.

But before doing that it is interesting to see what
happens if we make a small change in the method.
The idea is inspired by the notion that the situa-
tion sketched in figure 18 where photons are send
in the same y-direction happens about once out of
every 7 times. To be precise: the frequency of oc-
currence is (13.92± 0.12)% for a Poisson Delau-
nay tessellation with 104 points (the value doesn’t
depend on N though). In those cases a massive
amount of impuls can be introduced. We can en-
force that the edges are chosen such that they ’en-
close’ the original direction. When this Enclosing,
or E-method is applied, edges II and III would be
selected. In figures 17(c) and 17(d) we plotted the
resulting distributions for the impulses. The dis-
tribution for px,out looks very similar, except that
the expectation value has shifted to a slightly lower
value. The distribution for py,out on the other hand

has changed dramatically. The central value is still
about the same, but the distribution has widened
and now has a cut-off. So for the E-method it can
be guaranteed that particles will never deflect more
than 90◦. More attention is needed to decide which
of the methods should be used in SimpleX. We close
this section with the expectation values for the E-
method:

EE (∆px,out) = 0.7153± 0.0031

EE (∆py,out) = −0.0204± 0.0010

(53)

5.3 Random walks

In the last section we saw that the distribution of
∆py,out is quite symmetric, when averaged over the
full tessellation. However in practice photon pack-
ets execute a random walk along the grid and meet
only a limited number of junctions. It remains to
be seen whether the distribution stays as symmet-
ric as before when following a photon packet along
the grid. So let’s test this. Choose the x-axis along
the original direction of the photon packet. If the
symmetry holds, the following following expression
can be derived for the distance travelled after n
steps of the random walk process[28]:

∆x =
n
∑

i=1

ηi → η

1 − η
(54)

and
∆y = 0 (55)

where:

η =

π
∫

−π

f (θ) cos θdθ (56)

with f(θ) the distribution function of the deflection
angle θ which has to be symmetric to get these re-
suls. In figures 19(a) and 19(b) we plotted the re-
sulting average values of ∆x and ∆y after walks
of different length n on a Poisson Delaunay tes-
sellation with 104 points. The results are for the
E-method. The results for the C-method are glob-
ally the same. We first consider ∆y. The expected
zero line is plotted in red. The averages are quite
nicely centered around ∆y = 0, but the scatter,
even for n . 1500 is already σ∆y ≈ 50 as indi-
cated by the single errorbar. The same problem
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(a) ∆x after random walks of n steps in a Poisson
Delaunay tessellation using method E. The red line is
the theoretically expected result (54) with η = 0.795.
On average the data fits the theoretical curve quite
well, but the scatter is very large.

(b) ∆y after random walks of n steps in a Poisson
Delaunay tessellation using method E. The red line is
the theoretically expected zero line (55). On average
the results seem to comply, but the scatter is very
large.

(c) Zoom in for method E to the smallest values of
n. The theoretical curve is overplotted in red for
η=0.795. The dotted lines are the theoretical curves
for η ± 0.005.

(d) Zoom in for method C to the smallest values
of n. The theoretical curve is overplotted in red for
η=0.825. The dotted lines are the theoretical curves
for η ± 0.005.

Figure 19: The displacement with respect to an initial direction along the x-direction is an important factor for
a transport routine. Figures 19(a) and 19(b) show the total displacement along the original direction ∆x and the
perpendicular direction ∆y after random walks of different length n on a Poisson Delaunay tessellation with 104

points. The depicted results are for the E-method, but they are globally indistinguishable from the C-method.
Only when we zoom in to very small n can we see differences. In figures 19(c) and 19(d) we show the results after
zooming in for respectively the E-method and the C-method. The theoretical curve (54) is overplotted in red.
The vertical position of the bend and the plateau in the theoretical curve depends very sensitively on the value
of η. This allows a rather precise determination of that value. For these figure we have η =0.795 for method E
and η=0.825 for method C with for both numbers ση ≈0.005.
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occurs for ∆x. The red line depicts the theoretical
curve for η=0.795 and the data follows that curve
quite well. But also here the scatter is on the or-
der of σ∆x ≈ 50. So in general equations (54) and
(55) should not be used to give estimates on ∆x
and ∆y. Their distributions are much too wide to
get reliable estimates from theory and photons will
scatter away much further than anticipated from
the equations. Let’s finally take a very close look
at ∆x. If we zoom in to the region n . 250 we
can see the ’turn’ in the distribution of ∆x. This
turn is quite sensitive to the value of η. In figures
19(c) and 19(d) the details in this region are shown
for respectively the E-method and C-method. The
red curves are again the theoretical curve (54). For
the E-method we have ηE = 0.795 and for the C-
method we have ηC = 0.825 to obtain these fig-
ures. An estimate of the uncertainty of this values
is ση ≈ 0.005. The curves for η ± ση are also in-
cluded as dotted red lines. From the figures we can
make quite a strong case for the statement ηC > ηE

and since ∆x is a strictly increasing function of η
also (∆x)C > (∆x)E. So the effect of trying to
enforce impulse conservation, ∆py = 0, seems to
be that photons also travel less far in the original
direction. Apparently photons are more often sent
in extreme directions away from the original direc-
tion for case E. This is not a surprise, because the
difference between case E and C occurs when two
edges are close to the incoming direction, but both
in the same y-direction. A third edge that is in the
other y-direction must by definition have a larger
deflection angle than the closest two edges, other-
wise the third angle would have been selected as
one of the edges with the smallest deflection. So
choosing between method E and C is balancing be-
tween conserving impulse perpendicular to the orig-
inal direction (case E) and conserving more impulse
parallel to the original direction (case C). This is
really just a another way of saying that the expec-
tation value for ∆px is smaller in case E, which we
already observed in section 5.2.

6 A very simple test case with
a surprise: photon diffusion

over the grid

In this section we consider an extremely simple test
for SimpleX. We generate a Poisson Delaunay tes-
sellation and place a source at the center. The
photons from this source are send along the grid
without any obstruction. In each step all photons
that arrive at a site are collected and isotropically
send away where isotropically means that an equal
amount of photons is send to each neighbour. It
can be viewed as a diffusion process or a situation
with 100% scattering. In figure 20 a few steps of
this process in R2 are illustrated. A white color is
high intensity and a dark, nearly black color is low
intensity. Where the intensity is precisely zero the
color is blue. This allows to see the difference be-
tween “no photons at all” and “just a few photons”
much better. Qualitatively the results are precisely
as expected. We see an expanding spherical wave-
front that will in principle go on expanding forever,
since there is no absorption. When we consider the
speed at which the wavefront is moving there is a
surprise however.

The wavefront is moving outwards because
points that are precisely on the wavefront send pho-
tons in all directions and thus also to points just
outside the wavefront. Since all points on the wave-
front do this, the wavefront moves outwards. On
average we expect the wavefront to move out a dis-
tance 〈L〉 during each iteration and likely even a
bit slower because the edges in general won’t be di-
rected radially away from the central source. In fig-
ure 20 precisely the opposite happens. We measure
the expansion speed by calculating for each itera-
tion the location of the wavefront and calculating
the slope of the resulting graph. The location of the
wavefront is taken as the mean of the largest radius
with radiation and the smallest radius without ra-
diation. If the wavefront indeed moves away from
the center with a speed of approximately a distance
〈L〉 per iteration, the slope of the graph should be
≈1. In figure 21(a) the result is presented for a se-
ries of 50 realizations of the experiment. The solid
line is a linear fit to the data of the form:

r(n) = a + bn (57)

with n the number of iterations and r(n) the radius
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(a) step 0 (b) step 5

(c) step 17 (d) step 29

(e) step 58 (f) step 99

Figure 20: The process of simple photon diffusion over a Poisson Delaunay grid with 5000 points. In every step
photons are collected locally and redistributed over all their neighbours. The photon source is a single Delaunay
cell as close as possible to the center. The colorscheme is such that white has the highest values and black the
smallest. Blue however is the zero-level. This level was introduced because the colorscheme in SimpleX is very
insensitive to small changes in the low, black values, which made it impossible to see progress after a few steps
into the process.
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(a) The radius of the wavefront created by a
central source in a Poisson Delaunay grid in
R2 with 5000 points. The radius is normalized
with respect to the global mean edge length 〈L〉
. The radius at each timestep is obtained as the
mean of the smallest radius without radiation
and the largest radius with radiation. In this
figure average of 50 different runs is plotted.
The solid line is a linear fit to the data. The
bottom plotwindow shows the residues of the
data with respect to the fitted line. The slope
of the linear fit was expected to be b ≈ 1, but
b = 1.1636 ± 0.0082 which is clearly >1.

(b) The slope of linear fits to the displacement
of the outer radius of the expanding wavefront
for different N in R2. Expected was to find
that this slope is a constant, ≈ 1 independent
on N . Clearly this is not the case. The dotted
line shows a linear fit to these data. The fitted
slope is 0.0394±0.0036 and the offset is 1.022±
0.018.

(c) The radius of the wavefront created by
a central source in Poisson Delaunay grid in
R3 with 105 points. The radius is normalized
with respect to the global mean edge length
〈L〉. The experiment is the same as for figure
21(a) except for the dimension. The number of
points was chosen such that 〈L〉 is about the
same. The datapoints are again averages over
50 runs and the solid line is a linear fit. The
slope of this line is b = 1.4256 ± 0.0022.

(d) The slope of linear fits to the displacement
of the outer radius of the expanding wavefront
for different N in R3. Just as was the case in
R3 also in this case the slope depends on the
choice of N . The dotted line is a linear fit to
the data with slope 0.0617±0.0078 and offset
1.115±0.036.

Figure 21: When photons are send over the grid we expect the wavefront to move on average a distance 〈L〉 in
each timestep. Surprisingly this is not what happens. Photons move away from the central source faster, both
in R2 and R3. Figures 21(a) and 21(b) show results for R2. Figures 21(c) and 21(d) show results for R3.
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of the wavefront in units of the global average edge-
length. The results for the data in figure 21(a) are
a = −0.13 ± 0.14 and b = 1.1636± 0.0082. So the
offset is more or less in agreement with a ≈ 0, but
the slope is very definitely not 1. In order to find
out what causes this we repeated the experiment
for other values of N . For each N 50 realizations
of a Poisson Delaunay tessellation were calculated
and photons were send over the grid from a central
source. The resulting slopes b are plotted in figure
21(b) versus 10log N . The figure shows clearly that
the resulting slopes are not only >1 for all N con-
sidered, the slopes are also dependent on the choice
of N . The latter is really problematic, because it
means that the outcome of simulations depends on
the choice of N . Another question we can ask is
whether we have the same problem in R3. So we
repeated the simulation again for many values of
N , but now in R3. In figure 21(c) we plot the re-
sult for 50 runs with N = 105 points. This result
is comparable to the result in R2 with N = 5000
in the sense that the average edge length is about
equal. The resulting slope here is even larger than
in R2, namely b = 1.4256 ± 0.0022. If we again
extent the calculations to different N we get the
results in figure 21(d). Also in R3 we see that the
values found for b are dependent on N . The de-
pendency is even stronger than in R2. The cause
of these effects is still a complete mystery.

7 The cosmological radiative
transfer project

The promise of many observational data coming up
for the epoch of reionization has ignited the devel-
opment of a large number of numerical codes that
aim at simulating this epoch. Some time ago many
of these codes, including SimpleX, were compared
in the Cosmological Radiative Transfer Codes Com-

parison Project[13]. The authors of the different
codes were asked to solve a given set of cases and
the results were compared. In this section we’ll
investigate the effect of the small change in the
recombination coefficient (section 4.2). We’ll also
take a look at ways to incorporate temperature in
SimpleX. We’ll investigate these topics in terms of
the case 0 of the comparison project that compared
basic physics.

7.1 Case 0: basic physics

The solution of the radiative transfer equation de-
pends strongly on the state of the gas, which is
controlled by its temperature and degree of ioniza-
tion. These in turn are controlled by the specific
values for ionization rates, recombination rates and
the corresponding cooling and heating rates that go
into the code. This case is designed specifically to
check this input and the robustness of the method.

A single optically thin zone of 1 pc3 with only
hydrogen with a homogeneous density of 1 cm−3 is
considered. The gas starts out completely neutral
at a temperature Ti = 100 K at time t = 0. Then
a flux of F = 1012 photons cm−2 s−1 is switched
on that illuminates one face of the box homoge-
neously and heats and ionizes the gas. It has a
105 K blackbody spectrum and is on for 0.5 Myr.
After this the source is switched off and the gas is
followed for another 5 Myr while it is cooling and
recombining.

To work out this case for SimpleX we have to use
a bit of trickery. In the fixed grid methods one can
just set all opacities to zero in order obtain a fully
optically thin zone. However, in SimpleX we need
to sample the mean free path, which goes to infin-
ity for τ → 0. Therefore we set up a simulation
without using a grid. We define two variables that
keep track of the total number of neutral and ion-
ized hydrogen atoms and let our rate equations act
on them. In this setup we also have to find another
way to deal with ionization, because the procedure
described in section (4.1.1) doesn’t work here. We
take the limit τ →0 in (31):

Nused
photons ≈ fν0

Nphotons∆τ = fν0
FAσ̄ (Ts) nHIL

with L=1 pc the size of the box, A = L2, the area
of the face where the box is illuminated. Now we
use that ALnHI = NHI since AL is the volume of
the box and find:

Nused
photons = σ̄ (Ts) fν0

FNHI (58)

This is basically a first order approximation of (31)
and should be equivalent with[7]:

∂NHII

∂t
= NHI

∞
∫

ν0

πσν
Bν (Ts)

hν
dν (59)
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We try to verify the equivalence of (58) and (59)
by rewriting the integral in the latter:

∞
∫

ν0

πσν
Bν (Ts)

hν
dν

=

∞
∫

ν0

πσν
Bν(Ts)

hν dν

∞
∫

ν0

π Bν(Ts)
hν dν

∞
∫

ν0

π Bν(Ts)
hν dν

∞
∫

0

π Bν(Ts)
hν dν

∞
∫

0

π
Bν (Ts)

hν
dν

The last term in this equation is precisely the total
flux F in photons s−1. The first and second term
look a lot like σ̄ (Ts) and fν0

respectively except for
the fact that apparently we need to use Bν/ (hν)
as weighing function instead of just Bν . This is
a result of the fact that we’re using a photon flux
as input, instead of an energy flux. We define the
following new quantities:

σ̄p (Ts) ≡
∞
∫

ν0

σKramers
ν

[

Bν (Ts)

hν

]

norm

dν (60)

fp
ν0

≡
∞
∫

ν0

[

Bν (Ts)

hν

]

norm

dν (61)

where the superscript p indicates that these are
quantities that are averaged with respect to the
normalized Blackbody in photons s−1, unlike the
quantities defined in (26) and (32). With these def-
inition we can rewrite (59) as:

∂NHII

∂t
= σ̄pfp

ν0
FNHI (62)

This is precisely the same expression as (58), except
that the cross section and fraction fν0

are weighed
in a different way. We feel that it is preferable to
make the replacement σ̄ → σ̄p and fν0

→ fp
ν0

in
all equations where these quantities have appeared
so far, eg (27), (31) and (58). We’re in the process
of executing this replacement and investigating the
magnitude of its effect. For the rest of the report
we’ll be using the original, energy weighted forms.

For the recombination rate we can use (40).

7.1.1 Cooling rate

Photons that are send out during recombination
and that escape result in cooling. The resulting

cooling rate in erg cm−3 s−1 is given by[7]:

ΛHII (T ) = 8.70·10−27T 1/2T−0.2
3

(

1 + T 0.7
6

)−1
nenHII

(63)
This relation is plotted as the solid blue line in fig-
ure 9. We see that also here the region T . 105 K
can reasonably well be approximated by a single
powerlaw. The powerlaw again is chosen to coin-
cide with the full expression (63) at T = 104 K:

ΛHII (T ) = 3.33 · 10−27T 0.26
4 nenHII erg cm−3 s−1

(64)
This approximation is plotted as the dashed blue
line in figure 9.

7.1.2 Heating rate

Electrons that are knocked out of an hydrogen atom
by a photon with energy γνh will carry along an en-
ergy hγν−hν0 in the form of kinetic energy, thereby
heating the gas. For a monochromatic flux of ion-
izing photons we have always hγν = hν0 so such a
flux can’t heat the gas. Any non trivial source spec-
trum however will give rise to photons that have
energies >hν0 and therefore will result in heating.

Because we only know the total number of ioniz-
ing photons it is hard to write down an expression
for the resulting heating. Another difficulty is that
photons resulting from recombination have a dif-
ferent spectrum than photons resulting from the
source. But for this experiment it is a reasonable
approximation to say that all recombined photons
go out. Then we can calculate the expectation en-
ergy for a single photon from the normalized Black-
body distribution (22):

〈hν〉 =
15

π4

(

h

kTs

)4 ∞
∫

ν0

(hν) ν3dν

ehν/kTs − 1

=
15

π4
I

(

4,
hν0

kTs

)

kTs

Such that we can say to a first approximation:

ΓHI (Ts) = Nused
photons

[

15

π4
I

(

4,
hν0

kTs

)

kTs − hν0

]

(65)

where Nused
photons comes from (58) and I

(

4, hν0

kTs

)

is

given by (93) in appendix B.
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7.2 Case 0: results sofar

Sofar trials to use the cooling and heating rela-
tions (64) and (65) to solve for the temperature
have been unsuccessful. The problem is that the
expression for the heating gives a number that is
much too large and completely destabilizes the pro-
cedure. This remains work for the near future.

The effect of changing the recombination coef-
ficient can be clearly seen in figure 22. It shows
the resulting neutral fraction for the case 0 test of
the input physics. At the beginning of the exper-
iment the source is switched on and the hydrogen
is ionized until a balance is reached between ion-
ization and recombination. The solid line is the
result for the original value of the recombination
coefficient, the dotted line is the result for the new
value. Since the new recombination coefficient is
slightly higher, the neutral fraction comes out also
a bit higher. The difference can be understood pre-
cisely from analytical calculations. In steady state
we have[28]:

10log (1 − x) =10 log

(

αB (Tg)

F σ̄ (Ts)

)

(66)

Using the old value of αB with Tg = 104 K the
result becomes 10log (1 − x) = −6.56. With the
new value it is 10log (1 − x) = −6.45. These values
match precisely with figure 22. The issue during
the Comparison Project was that all other meth-
ods had a value around 10log (1 − x) = −7. The
expectation was that this must have something to
do with the fixed temperature in SimpleX. Hope-
fully this claim can be tested soon. Another possi-
bility is that the difference was not actually in the
temperature, but in the definition of the frequency
averaged ionization cross section. We already noted
that it may be better to replace σ̄ given by (26) with
σ̄p given by (60). This could just as well bridge the
gap between SimpleX and other radiative transfer
codes.

After 5 Myr the source is switched off and the
gas can cool and recombine. For this epoch the
results are practically indistinguishable.

8 Discussion

SimpleX is the first method that tries to use Delau-
nay tessellation as a grid for performing radiation

Figure 22: The resulting neutral fraction in time for
the case 0 test of the Radiative Transfer Comparison
Project. The solid line shows the results for the original
version of SimpleX. The dotted line shows the results
after the small change in the recombination coefficient
(37).

transport. The logical consequence of this is that
many properties and details of radiation transport
have to be reinvented for applicability on such a
grid. The general functioning of SimpleX is by now
rather well understood and the results of the Com-
parison Project[13] have also shown that SimpleX
does rather well between other codes. During the
Comparison Project SimpleX never even got the
chance to really show it’s strength: the time com-
plexity does not scale with the number of sources.
This means that we could in principle put a source
of photons in every site in the grid and all cal-
culations would still be the same. This extreme
property is very useful for studying the reionization
epoch where many stars may have formed in small,
dense regions of space. However in order to be able
to do really precise numerical experiments there are
still a lot of issues that need to be resolved, some
of which we found in this work.

An important and critical element of SimpleX
is it’s availability to sample the mean free path of
the transported particles. We have shown in sec-
tion 5.1.2 that SimpleX does quite well for a ho-
mogeneous distribution but it remains interesting
to see what happens for inhomogeneous distribu-
tions. Indications are that SimpleX works quite
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well also then, but quantitative analysis has yet to
be executed. The best test would be to let Sim-
pleX sample a given density field, set up the Delau-
nay tessellation and make a comparison of the local
mean free path in the original distribution and the
edgelengths in the grid. This conceptually simple
test has not been performed yet but has very high
priority since it tests really the fundamental basis
for the correctness of the method. If in practice it
appears that it is not possible to make the sam-
pling work such that (18) is fulfilled, the method
looses it’s fundament. If the sampling criteria can
be confirmed on the other hand, SimpleX poten-
tially can become a very powerful tool for studying
a range of transport processes. It does need a major
rewrite before that though. Because SimpleX was
developed pretty much on an ad-hoc basis in the
sense that pieces were added when needed, the to-
tal package is not very well structured. This makes
working with SimpleX rather tricky at times. If
SimpleX is going to be an important player in nu-
merical cosmology it will need a rather extensive
rewrite to become a more mature package. The
advantage of the pioneering work sofar is that by
now it is pretty clear how a package like SimpleX
should be structured such that new parts can be
added easily and such that parts that shouldn’t
need to communicate indeed don’t communicate.
Another interesting development is the work cur-
rently underway to embed a dynamical code for
determining the tessellation into SimpleX. This al-
lows SimpleX to work in a changing background.
When using QHull or a similar code the tessella-
tion would have to be fully recalculated when the
background medium changes. The dynamical tes-
sellation code is available to detect where points
have shifted and updates the tessellation accord-
ingly. This should make it possible to eventually
couple SimpleX directly to for example hydrocodes,
or even let SimpleX itself solve the hydrodynamical
equations in parallel with radiative transfer.

But before getting carried away, we need to re-
mind ourself of the issues that still need resolving
even in the current state of affairs. There are still
many issues not yet very well understood. Consider
for example the small ofset in the angular distribu-
tion function (51) in section 5.1.3. This may be
caused by QHull, it may be caused by a wrong
use of QHull in SimpleX or yet another problem.
Changing this distribution does change the trans-

port of photons though, because it will effect for ex-
ample ∆x and ∆y as studied in section 5.3. These
again will effect the way in which photons are dis-
tributed over the grid and will therefore also af-
fect the reionization fronts we eventually want to
study during the reionization epoch. But maybe
even more important is to understand the effect
noticed in section 6 that photons seem to be able
to move on average over a longer distance than the
average edgelength. And even more importantly:
why is this effect dependent on N? This is certainly
very unexpected for a Poisson Delaunay tessellation
because these are highly symmetric and scalefree.
An original version of the experiment had multi-
ple sites at the center as source. The suggestion
at that point was that photons could travel faster
away from the center for high values of N simply
because on average there would be more sources
and thus more edges leaving the center. In the
current setup where there is precisely one vertex
assigned as source this effect should not occur but
the results haven’t changed at all. This issue is part
of the very basic understanding of the method and
definitely needs to be resolved.

Besides details that are not yet fully understood
SimpleX also lacks a lot of physics. It would be nice
to be able to add other particles besides hydrogen
to the simulation, like hydrogen and/or lithium.
This is however not a trivial thing to do in SimpleX,
since the mean free paths of such particles can be
widely different from the mean free path for hydro-
gen. One could setup a tessellation for each particle
that is added to the simulation, but that would re-
sult in an enormous increase of computermemory
requirements. The same is true for the frequency.
The reduction of the cross section to a single fre-
quency cross section is rather coarse and should
be improved upon. A first step towards this goal
may be the utilization of a three photon model[23]
where three frequency bins are created for frequen-
cies hν < hν0, hν = hν0 and hν > hν0. But again
here is also the complication of computermemory,
because at a different frequency the distribution of
the mean free path changes for every particle. So
we need yet another series of tessellations. Coupled
with frequency is the temperature. The tempera-
ture in the simulation can be determined by cal-
culating the cooling and heating. If there are only
photons of frequency hν0 no heating can occur, be-
cause they have no excess energy that can be used



33

to heat the gas. So we have to use some non-trivial
source spectrum, but then is the question how to
tell of a photon package what its spectrum is? If it’s
coming from the source the spectrum is known, but
the photons could also come from recombinations in
a neighbouring site. What is the spectrum of these
photons? We could of course apply the on-the-spot-
approximation but this would be a waste because
SimpleX should be able to explicitly deal with re-
combination photons on the same level as source
photons. (remember: all sites can be sources with-
out adding additional overhead) If we could track
the frequency of the photons it would also become
possible to get a decent expression for the heating
which would make it possible to also solve self con-
sistently for the temperature within SimpleX.

Another possible addition is the physics involved
in ionizations by very hard X-ray photons that may
have been produced by the first stars that formed
during the reionization epoch. The electron that
is kicked out can give rise to secondary and even
tertiary ionizations. It would be very interesting to
be able to follow such processes. But also this will
be a rather elaborate extention, because the space
of mean free paths looks very different for electrons
as for photons. So also here would we need a seper-
ate tessellation. Clearly there is more than enough
room for improvements and additions.

9 Conclusions

SimpleX is a numerical method that aims to solve
the equation of radiative transfer through a Monte
Carlo approach. It is special in its application of an
unstructered grid. The grid is generated from the
background medium through which transport must
take place instead of predetermined as for standard
Cartesian grids. This in principle allows the grid
to adapt to the density field in such a way that the
edgelengths of the tessellation sample the mean free
path of the particles. This principle can be used
for any transport problem, but SimpleX is adapted
for radiative transfer and study of the reionization
epoch in particular.

It is known that SimpleX generally works very
well[28] but there are still many details that are
not very well understood or tested. One of the
tests that has not yet been performed is the com-
parison of the local mean free path in a given den-

sity distribution with the edgelength distribution
of the grid. By sampling the densityfield correctly
the moments of both distributions should be pro-
portional to each other. This test is fundamental
for the method, since it the method depends com-
pletely on this proportionality and needs to be done
soon.

There are still many pieces of physics that ought
to be added to SimpleX. Some first thoughts about
how to incorporate a selfconsistent solution for the
temperature were presented, but no succesful so-
lution was obtained sofar. Other features that are
important to fully model the reionization epoch are
the frequency dependence, other atoms besides hy-
drogen like helium and lithium and ultra high en-
ergetic photons which give rise to secondary and
possibly tertiary ionizations.

SimpleX has the promise of becoming a very
powerful method that is capable of dealing with
all these issues in a very simple and straightfor-
ward fashion, but much work is still needed to get
there.
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A Determining the center of
the circumscribing circle of

a triangle

An important ingredient in determining Voronoi
simplices is calculating the center of the circum-
scribing circle of a given triangle {~x0, ~x1, ~x2}. The
method in SimpleX uses the slope of the points ~x1

and ~x2 with respect to ~x0 to find the center. At
some point a division by the slope is needed, which
is problematic if a point happens to lay parallel to
one of the Cartesian axes. The method by Van
de Weygaert[33] (VW) does not suffer from this
problem, but requires the evaluation of a series of
outer products. Here we develop a variation of that
method that requires much less algebraic calcula-
tions. Another benefit is that it works for any di-
mension d of space.

We begin the method by translating the triangle
to the origin. Any of the ~xi, i = 0, 1, 2 can be used
for this. We choose ~x0, so ~x 7→ ~x − ~x0. This trans-
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lation is a general technique that could be used in
any any method, because in all methods there will
be many subtractions of whichever vector is used as
basisvector in the calculations. All these subtrac-
tions during the calculation are now removed and
replaced by precisely two subtractions and one ad-
dition (to inverse the translation for the calculated
circumcenter). We now have the triangle {~0, ~r1, ~r2}
with ~ri = ~xi − ~x0, i = 1, 2 for which we calculate
the circumcenter ~rc. In figure 23 the situation is il-
lustrated. Note that in this figure we also rescaled
the triangle but that is just to compress the size
of the figure and is not part of the method. After
calculating the circumcenter ~rc of this triangle the
circumcenter of the original triangle can be found
by inverting the translation: ~xc = ~rc + ~x0.

PSfrag replacements

~0

~r1

~r2

~n

~y

~x0

~x1

~x2

r

Figure 23: The layout of a triangle after translating
to the origin.

The defining property of ~rc is that it has equal
distances from all points of the triangle:

|~rc| = |~rc − ~r1| = |~rc − ~r2| ≡ r (67)

This means for example that ~rc must lay on the line
that perpendicularly bisects ~r1. We parametrize
the points on this line as follows:

~y = ~nt +
1

2
~r1 t ∈ R (68)

where ~n is a vector that is perpendicular to ~r1 and
t is a scaling factor. By choosing the correct value

of t we find ~rc:

~rc = ~y (t∗) = ~nt∗ +
1

2
~r1 (69)

So far we followed the method by VW. There the
vector ~n is calculated from a series of outerproducts
and the value of t∗ is calculated from the geometry.
This is were our method will deviate.

Since we know that ~n must lay in the plane that
is spanned by ~r1 and ~r2, we can write:

~n = a~r1 + b~r2 (70)

This is just saying that ~n must be a linear combi-
nation of ~r1 and ~r2. The condition on ~n is that it
must be perpendicular to ~r1:

~r1 · ~n = 0 (71)

⇒ a

b
= −~r1 · ~r2

|~r1|2
(72)

Additional constraints can be used to fix a and b.
For example if we want ~n to be normalized, we have
the additional constraint:

|~n|2 = 1 = a2 |~r1|2 + b2 |~r2|2 + 2ab (~r1 · ~r2)

⇒ a = − ~r1 · ~r2

|~r1|
√

|~r1|2 |~r2|2 − (~r1 · ~r2)
2

b =
|~r1|

√

|~r1|2 |~r2|2 − (~r1 · ~r2)
2

(73)

For our method the length of ~n is not important.
Changing the length of ~n will just shift around the
value of t∗ in (69). So we choose the coefficients
such that we minimize the amount of required cal-
culations:

a = − (~r1 · ~r2)

b = |~r1|2

(74)

Note that by definition of ~n and ~y we have:

∣

∣

∣
~y −~0

∣

∣

∣

2

= |y|2 = |~y − ~r1|2 (75)

To find t∗ we have to solve (67):

|~rc − ~r2|2 = |~y (t∗) − ~r2|2 = |~y (t∗)|2 (76)
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The (unique) solution to this equation is:

t∗ =
1

2

|~r2|2 − ~r1 · ~r2

~n · ~r2
(77)

If we substitute (74) this becomes:

t∗ =
1

2

|~r2|2 − ~r1 · ~r2

|~r1|2 |~r2|2 − (~r1 · ~r2)
2 (78)

The denominator of this expression looks familiar
from (73) and in fact, if we make the combination
t∗~n we need in (69) the resulting expression is pre-
cisely the same for either choice of a and b. So
normalizing ~n is not only numerically expensive be-
cause of the squareroot, it is also unnecessary, since
we’re ultimately calculating (78) anyhow.

We still have to check one thing: what happens
if the denominator in (78) is zero? It is easily veri-
fied that this happens precisely when ~x1 and ~x2 are
aligned, ie when ~r2 = α~r1 for some α ∈ R. In this
case we don’t have a triangle to begin with and no
Voronoi vertex exists.

Let’s talk practice now. In order to find the cir-
cumcenter ~xc of a given triangle {~x0, ~x1, ~x2}, we
take the following steps:

1. translate to origin: ~ri = ~xi − ~x0, i = 1, 2

2. calculate |~r1|2, |~r2|2 and ~r1 · ~r2

3. check: |~r1|2 |~r2|2 − ~r1 · ~r2 6= 0

4. calculate ~rc:

~rc =

(

1

2
− t∗ (~r1 · ~r2)

)

~r1 + |~r1|2 t∗~r2 (79)

with t∗ given by (78).

5. set ~xc = ~rc + ~x0

The resulting method works for any dimension
and requires only very few algebraic calculations,
since we only need to find |~r1|2, |~r2|2 and ~r1 · ~r2

once, which can be done very easily.

B ’Blackbody-type’ integrals

When dealing with integrals over the Planck curve
the following type integral appears often for integer
n:

In (x0) ≡
∫ ∞

x0

xndx

ex − 1
(80)

B.1 x0 = 0

The situation x0 = 0 is needed when we need the
normalized version of (80). We’ll focus on this type
of integral first. Rewrite (80) as:

In (0) =

∫

R

xne−xdx

1 − e−x
(81)

Note that 0<e−x <1 ∀x>0, such that (1 − e−x)
−1

can be written as a convergent powerseries:

In (0) =

∫

R

xn
∞
∑

k=0

e−kxdx (82)

Since each separate term in the integral converges
absolutely, the summation and integral sign can be
switched. After substituting u = kx we get:

In (0) =

∞
∑

k=1

1

kn+1

∫

R

une−udu (83)

This is the product of the Riemann zeta function
ζ(n+1) and the Gamma function Γ(n+1), so finally:

In (0) =

∫

R

xndx

ex − 1
= ζ (n+1)Γ (n+1)

= n!ζ (n+1) (84)

where in the last step we used that for integer n
the equality Γ(n+1) = n! holds. Note that this
formula is only valid for integers n > 0, since the
zeta function ζ(s) only converges for s>1. In table
1 we list the results for n ∈ [1, 5].

n ζ(n+1) Γ(n+1) In(0)

1 π2

3 1 π2

3 ≈3.29
2 ≈1.20 2 2.40

3 π4

90 6 π4

15 ≈6.49
4 ≈1.04 24 24.9

5 π6

945 120 120π6

945 ≈122

Table 1: The value of integral In (0) as given in (80)
for n = 1, . . . , 5.

B.2 x0 6= 0

In the previous section we found that we can’t cal-
culate I0(0) because the zeta function diverges for
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n=0. For the general case x0 6= 0 however we can
write down a primitive explicitly:

I0 (x0) =

∫ ∞

x0

dx

ex − 1

= ln
(

1 − e−x
)∣

∣

∞

x0

⇒

I0 (x0) = − ln
(

1 − e−x0

)

(85)

In order to evaluate (80) when x0 6= 0 for n > 0 we
have to revert to numerical techniques. A method
that is very easy to implement can be developed
by going back to (82) but now with x0 6= 0. Then
again the separate terms in the sum are absolutely
convergent, so we may write:

In (x0) =

∞
∑

k=1

∞
∫

x0

xne−kxdx n > 0 (86)

Let’s focus on the integral at the right hand side.
We perform integration by parts:

∞
∫

x0

xne−kxdx =
x0e

−kx0

k
+

n

k

∞
∫

x0

xn−1e−kxdx

Continuing we can reduce the power of x by one in
every partial integration, obtaining:

∞
∫

x0

xne−kxdx = e−kx0

n
∑

j=0

n!

j!

xj
0

kn+1−j
n > 0 (87)

Now that we have this relation we can also verify
it by induction on n. First test n = 1:

∞
∫

x0

xne−kxdx = e−kx0

(

x0

k
+

1

k2

)

e−kx0

1
∑

j=0

1!

j!

xj
0

k2−j
= e−kx0

(

1

k2
+

x0

k

)

Now assume that (87) is correct for some n and see
what happens for n + 1:

∞
∫

x0

xn+1e−kxdx =
xn+1

0 e−kx0

k
+

n + 1

k

∞
∫

x0

xne−kxdx

=
xn+1

0 e−kx0

k
+

n + 1

k
e−kx0

n
∑

j=0

n!

j!

xj
0

kn+1−j

=
xn+1

0 e−kx0

k
+ e−kx0

n
∑

j=0

(n + 1)!

j!

xj
0

kn+2−j

The first term in this last expression is obtained
precisely when substituting j = n+1 in the sum,
which finishes the proof of (87) by induction on n.

Substituting (87) back into (86) then gives:

I (n, x0) =

∞
∑

k=1

n
∑

j=0

e−kx0

kn+1

n!

j!
(x0k)

j
(88)

We seperate out the polynomial of degree n in this
sum:

Pn (x) ≡
n
∑

j=0

n!

j!
xj (89)

For values x0 ≥ 1 the sum with respect to k con-
verges quit rapidly. In general kmax, the last term
needed to get to a given accuracy ε will depend on
n and ε. So finally we can write for the numerical
approximation of (80):

In (x0) ≈
kmax(n,ε)
∑

k=1

e−kx0

kn+1
Pn (kx0) (90)

For values x0 & 1 this series converges very rapidly.
For small values of x0 the number of required terms
grows quickly. More about this in section B.2.1.

P2 (x) = 2 + 2x + x2 (91)

P3 (x) = 6 + 6x + 3x2 + x3 (92)

P4 (x) = 24 + 24x + 12x2 + 4x3 + x4 (93)

B.2.1 Obtaining kmax(n, ε)[17]

In order to use (90) we still need to know where to
cut off the summation, given a required accuracy
ε. The errorterm E(n, ε) consists of the sum of the
remaining terms:

E(n, ε) =

∞
∑

k=kmax+1

e−kx0

kn+1
Pn (kx0) (94)

Define p=n+1−j and substitute (89):

E(n, ε) =

n
∑

j=0

n!

j!
xj

0

∞
∑

kmax+1

e−kx0

kp
(95)

There are two ways to proceed from here. The
first method uses a recurrence relation for the term
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in the second sum, the second method uses the
Schwarz inequality for this sum.
Using recurrence:
Define A(k) ≡ e−kx0/kp. Then for k≥kmax >0, p>
0:

A (k + 1)

A(k)
= e−x0

(

1

1 + k−1

)p

< e−x0

Repeating this process for A(k + l) for general in-
teger l > 1 results in:

A (k + l) < e−lx0A (k)

Putting this into (95) gives:

E(n, ε) <

n
∑

j=0

n!

j!
xj

0

e−(kmax+1)x0

(kmax + 1)p

∞
∑

l=0

e−lx0 (96)

Since e−x0 < 1 for x0 > 0 the sum over l converges
to (1− e−x0)

−1
:

E(n, ε) <
e−(kmax+1)x0

(kmax+1)
n+1

Pn [(kmax+1)x0]

1 − e−x0

(97)

So the error made by cutting off the summa-
tion in (90) at kmax(n, ε) is bounded by the next
term in the summation, multiplied with a factor
(1 − e−x0)

−1
.

Using Schwarz inequality:
The Schwarz inequality states:

(

∑

i

aibi

)2

≤
∑

i

a2
i

∑

i

b2
i (98)

Consider again the sum over k in (95). Using
Schwarzs inequality:

(

∞
∑

kmax+1

e−kx0

kp

)2

≤
∞
∑

kmax+1

e−2kx0

∞
∑

kmax+1

1

k2p

(99)
The first term reduces to a powerseries with argu-
ment e−2x0 <1:

∞
∑

kmax+1

e−2kx0 =
e−2(kmax+1)x0

1 − e−2x0

For the second term write g(x) = x−2p, then:

g(k)≥g(x)≥g(k + 1) ⇔ k≤x≤k + 1

Since g(x) is a strictly decreasing function we can
also integrate from x=k→x=k+1:

g(k)≥
k+1
∫

k

g(x)dx ≥ g(k + 1)

Summing from k = kmax + 1 then gives:

∞
∑

k=kmax+1

g (k) ≥
∞
∫

kmax+1

g (x) dx ≥
∞
∑

k=kmax+1

g (k+1)

The last term can be rewritten as:
∞
∑

k=kmax+1

g (k+1) =

[

∞
∑

k=kmax+1

g (k)

]

− g (kmax+1)

Performing the integral in the middle:
∞
∫

kmax+1

g (x) dx =
(kmax + 1)

1−2p

2p− 1

Combining these results gives the upperlimit we
want:

∞
∑

kmax+1

1

k2p
≤ (kmax + 1)

−2p

[

kmax + 1

2p − 1
+ 1

]

(100)
Put all results into (99) and take the squareroot:

∞
∑

kmax+1

e−kx0

kp
≤ e−(kmax+1)x0

√
1−e−2x0 (kmax+1)

p

[

kmax+1

2p − 1
+ 1

]1/2

(101)
Substituting this into (95) then gives a second error
estimate for the approximation (90):

E (n, ε)≤ e−(kmax+1)x0

(kmax+1)
n+1

P
(kmax+1)
n (x0)√

1 − e−2x0

(102)

The general form of this result is very similar
to (97), except that now the overall prefactor is
(

1 − e−2x0

)−1/2
and the resulting polynomial has

other coefficients than before:

P k
n (x0) ≡

n
∑

j=0

n!

j!
(kx)

j

[

k

2
(

n + 1
2 − j

) + 1

]1/2

(103)
So when to use (97) and when to use (102)? Gen-

erally (102) will result in smaller values for kmax for
small values of x0 and (97) for large values of x0.
Another consideration is the computational work
of evaluating (102). The particular choice should
be adapted to the application.
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decahedral topology in the WMAP first year sky
map. A&A, 423:821–831, September 2004.

[30] W. Schaap. DTFE: The Delaunay Tessellation
Field Estimator. PhD thesis, Kapteyn Astronom-
ical Institute of the University of Groningen, the
Netherlands, 2007.

[31] R. M. Soneira and P. J. E. Peebles. A com-
puter model universe - Simulation of the nature
of the galaxy distribution in the Lick catalog. AJ,
83:845–849, July 1978.

[32] R. van de Weygaert. Voids and the geometry of
Large Scale Structure. PhD thesis, Sterrewacht
Leiden of the University of Leiden, the Nether-
lands, 1991.

[33] R. van de Weygaert. Fragmenting the Universe.
3: The constructions and statistics of 3-D Voronoi
tessellations. A&A, 283:361–406, March 1994.

[34] A. C.-C. Yao. A lower bound to finding convex
hulls. J. ACM, 28:780–787, 1981.


