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Abstract

The Universe is usually seen as either a hypersphere or an infinite Euclidean or hyperbolic space.
However, the Universe might fold back into itself: there are more possibilities for the topology of
the Universe that locally have one of these three metrics. In this thesis we discuss the possible
non trivial topologies for two and three dimensional Universes. All two dimensional spherical and
flat spaces are described, as well as all three dimensional flat spaces.

Previous methods to detect these topologies are described, as well as a new method using
multipole vectors. Although they are locally isotropic, most non trivial topologies have preferred
directions. The proposed method tries to detect these directions in the cosmic microwave back-
ground. Simulations for most flat orientable three dimensional manifolds are performed in order
to determine the effect of a non trivial topology on the alignment of the multipole vectors. The
alignment of the dipole and quadrupole to the principle axes, themselves and each other is mea-
sured.

The main conclusion is that size is more important then orientation. The particular dimensions
of the Universe determine the alignments of the multipole vectors, the influence of the specific
shape of the Universe is small. There appears to be a slight effect on the alignments even if the
dimensions of the Universe are slightly larger then the size of the visible universe. The method
is especially useful to check the viability of a proposed model for the topology of the Universe.
Improvements can be made by examining more spaces, taking into account all degrees of freedom
of the possible spaces and researching the effect of different positions of the observer.






“In the beginning the universe was created. This has made a lot of people very angry and been
widely regarded as a bad move.” — Douglas Adams
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Chapter 1

Introduction

In describing the Universe at its largest scales there are two intertwined issues to address. The
first one concerns with the local structure of space, its geometry. The second concerns its structure
on the largest scale, its topology. Cosmology answers the question of what geometry the Universe
has, but the only topological issue that it regularly addresses is the finiteness of the universe.

Nearly all cosmologies, except for ones with a closed hypersphere geometry, assume that space
is infinite. This need certainly not be true and physical principles do allow for a more general view.
Geometry, governed by general relativity describes the geometry of the Universe. The curvature
of the Universe is determined by its mass content. It can be positively or negatively curved, or not
curved at all. However, geometry does not prescribe anything about the global structure of space,
this is described by topology. The global curvature of space does restrict the topological shapes
the Universe can have, but there are several different topological shapes with the same geometry
that general relativity can not distinguish.

As a pioneer of cosmology Albert Einstein already argued that there might be other possibil-
ities for the topology of the Universe than the three common shapes but he acknowledged that
mathematics hasn’t evolved far enough yet to tackle the problem. Since then cosmology has be-
come one of the most active research areas of astronomy and astrophysics. Yet, until recently the
study of the topology of the Universe was never picked up.

In the past two decades our mathematical insight into the topology of our cosmos has advanced
significantly. We have learned what the consequences of such topologies are, and found ways in
which we could detect such a non trivial topology of the Universe in which we live. In this thesis
we will describe what spaces are possible and how to constrain the possible configurations. We
also describe the effect they might have on our universe and the attempts to detect these effects.
We add a previously unused method to our arsenal using the cosmic microwave background and
multipole vectors. This chapter starts with an introduction of the main principles for people
without background knowledge in the fields of cosmology and topology.

1.1 History of Cosmology

Cosmology is one of the oldest sciences, it is the science of the cosmos. It has had the interest of
even the most ancient civilizations. Some of the main questions that cosmologists ask about the
universe are “How did it start and how will it end?”, “What is its size?”, “Does it have a center and
if so, where is it?” and “How did all this structure in the Universe emerge?”. Every age of mankind
has given its own answers to these questions. Often these were more philosophical or religious
than scientific. Since Einstein’s theory of general relativity, which provides the general framework
for the gravitational force which dominates the evolution of our Universe, and in particular since
the discovery of the expansion of the Universe by Hubble in the beginning of the 20th century we
have come to develop a physical compelling view of the cosmos in which we live. New theories
and methods of experimentation might turn the 21st century into a true answer-giving era to the
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questions of cosmology.

Cosmology studies the universe on the largest scales. It is good to realize this scale has varied
over the course of history and so did the answers to these questions. A short history of cosmology
(and geometry) shows how our perspective of the universe has changed over time.

.B—Ei \n_?_‘rld'!;-_

(a) An old Icelandic represen- (b) A schematic representa-
tation. tion (Poole, 1995).

Figure 1.1: The geocentric model of the universe.

1.1.1 Ancient Cosmology

In the ancient times, the knowledge about the mythical Universe was limited. The Earth was
flat and the motions of the Sun, the Moon and the stars were works of the gods. The first
real viable models about the universe emerged after the discovery that the Earth is (nearly)
spherical. This was already known to the ancient Greeks. In the time of the Greeks many views
developed, the most influential has been written down by Ptolemy around the year 150. He posed
a geocentric model of the universe, the Earth is the center of the Universe (in Greek geo=Earth,
centron=center). Around the Earth orbit the 7 celestial bodies, namely the Sun, the Earth and
the (then 5 known) planets and the (sphere of) stars. This model stayed effective for nearly 1500
years and still has a large influence on our daily lives. The days of the week are named according
to the motions of the heavenly bodies in the geocentric model. Although several people proposed
that the Earth might not be fixed in space but moving, the geocentric model remained in general
use to the end of the Dark Ages.

In 1514 Copernicus introduced the heliocentric model. A Heliocentric model places the Sun
in the center of the universe (helios=Sun) with the planets orbiting around it. This model made
it possible to predict the motion of the planets with relative ease in comparison to the geocentric
model. The geocentric model had a sophisticated epicycle theory of planetary orbits which in fact
remained better than the circular heliocentric model. Copernicus was not the first to describe
a non geocentric view of the Universe. Philoaus (480BC-405BC) claimed a central fire, named
‘estia’ (hearth of the Universe) and Aristarchus (310BC-230BC) developed a heliocentric model
even before Ptolemy made his geocentric model. Copernicus model was the first one that received
wide acceptation.

1.1.2 Early Modern Cosmology

It must be noted that in both the geocentric and the heliocentric model, space (and time) are
rigid frameworks, on which relatively the Earth or the Sun were pinpointed as the center. The
Ttalian Galileo Galilei discovered that objects retain their speed if no force is applied to them.
This was a first step to a relativistic theory of mechanics. In 1687 Isaac Newton incorporated
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(a) An old picture of the (b) A schematic image of a
heliocentric model, by the heliocentric model of the so-
Dutch Cellarius (1708). lar system.

Figure 1.2: The heliocentric model.

Galileis principles in his book the ‘Principia’ (Philosophiae Naturalis Principia Mathematica).
This relativistic theory of mechanics removed the pinpointing of the Earth or the Sun as the
center of the Universe. Newton’s space is still a flat rigid body. In other words it represents a
frame of rest in which the motion of all the elements of the universe should be measured.

This view of a universal fixed reference frame was not questioned until Ernst Mach posed
in the Mach’s principle that space is truly relative. This means that it is not relevant, or even
impossible, to describe a position or a velocity in space, but only a position or velocity of an object
with respect to another object. It suggests that there is no center of the universe. Every point
in space is just as equal as any other point in space. It does raise the question about the size of
the universe, in the geo- and heliocentric universes the size of space is fixed by the radius of the
sphere of stars but with a truly relative space, there cannot be such a boundary. Space must be
infinitely big, or so it seemed.

(a) A (very fast) car trav- (b) The earth rotating
eling 1700km /hour westward around its axes with 1700
across the equator. km/hour at the equator.

Figure 1.3: What is moving? Does the car move over the stationary surface of the Earth

westwards or does the surface of the Earth move along the bottom of the car eastwards

(which forces the driver to step on the gas to stay stationary)? Mach’s principle says

that both statements are equivalent. When something is moving, you always have to
say with respect to what.
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1.1.3 Modern Cosmology

In 1920 there was a discussion called the Great Debate between Harlow Shapley and Heber Curtis
about whether the Universe consisted of just the Milky way or was composed of a number of
galaxies. By the discovery of Cepheids (variable stars) in the nebulae, Edwin Hubble showed
that these objects are all galaxies themselves. Hereby he proved the Universe is much larger than
previously assumed.

In 1929 Hubble presented his ground breaking paper in which he shows that there are objects
outside our own galaxy seem to move away from us. All spiral nebulae he observed moved away
with speed proportional to their distance:

V= H()D (11)

where v is the radial velocity of the nebulae, D the distance and Hy the Hubble parameter at
current time. The current value of the Hubble parameter is approximately Hy = 72+8km/s/Mpc.
The Hubble parameter is often divided by 100 as h = H/100 so h is of order unity.

This apparent motion of the galaxies is a result of the expansion of the Universe. Space expands
while the galaxies, at rest with respect to the Universe, move along our line of sight. Tracing back
this apparent motion one must conclude that at a certain point in time all galaxies in the visible
Universe should have been on top of each other. It has been determined that this happened about
13.7Gyr ago. The moment when this happened is called the Big Bang.

Expansion of the Universe

Perhaps the most visually appealing way to visualize the expansion of the Universe is to look at
the 2 dimensional surface of a balloon. Imagine that the universe is the 2 dimensional surface of
a perfectly spherical balloon, galaxies are represented by dots. If you slowly blow up the balloon,
you can see that the distance between the ‘galaxies’ grows, with no galaxy actually moving along
the balloon (as they are all fixed on the balloons surface). If there are any observers in the galaxies,
they will see the other galaxies moving away from them, the more distant ones at a faster pace.
They all can — incorrectly — conclude that all the other galaxies are moving away from them
and that they themselves are the center of the universe, or — correctly — that their universe is
expanding and that neither galaxy can claim to be the center, they are all equivalent. In this
example there of course is a center of the balloon, but that point is not part of our universe, that
is only the 2 dimensional surface of the balloon. In general there does not have to exist such a
point. In most cases it is even meaningless to talk about it.

Figure 1.4: The sphere on the left represents the (2 dimensional) universe at an early

time. The sphere on the right represents the universe at a later epoch. All galaxies

see the distance to the other galaxies increase, at a rate proportional to their distance.
Therefore observers might conclude that the galaxies are moving away from them.
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(a) Spherical (b) Flat (c) Hyperbolic
Figure 1.5: The 3 geometries.

1.2 Principles

Two important principles have emerged from the history of science to the 20th century. From
the geo- and heliocentric universe we can derive the first: that we should not see ourselves as
special in the universe. This is called the Copernican principle. From the long time it took for
the Euclidean theory to be discarded the second: that we should try to put as least as possible a
priori constraints on our theory.

1.2.1 Cosmological Principle

The first insight has resulted in what cosmologists call the cosmological principle, which is — as
the name implies — one of the most important principles of cosmology. The cosmological principle
says that the Universe is:

1. Homogeneous
2. Isotropic
3. Uniformly Expanding

In short, the Universe is the same everywhere (homogeneous) and looks the same in every direction
(isotropic). The term ‘cosmological principle’ was introduced by E. Milne in 1933.

Homogeneity

Homogeneity means that the universe looks the same everywhere and has no preferred locations.
While isotropy is reasonably straightforward to justify, homogeneity is harder to prove. However,
there is evidence that says that there isn’t any significant structure at larger then 200h~!Mpc.
This means that if you smear out all matter to scales of 200h~'Mpc the Universe will appear
homogeneous.

Evidence of homogeneity of the Universe include:

1. Redshift Surveys The spatial distribution derived from redshift surveys like SDSS and
2dF show that there are no larger structures than 100 — 200h~!Mpc (Yadav et al., 2005).
Problems with biasing, evolution and K-corrections will limit the usability of these surveys.

2. Galaxy Number Counts Counting galaxies by magnitude show that the number of galax-
ies, for z < 1, scale as
N(m) oc m®6 (1.2)

which is exactly what would be expected for a homogeneous universe.
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3. Projected Galaxy Clustering The two-point correlation function of the projected galaxy
distribution scales with depth of the galaxy sample as

1
w(f) x =w(6D). (1.3)
D
The correlation function for deeper samples have a lower amplitude (%) and a smaller angular
scale (#D) as expected.

4. Peculiar Velocities The velocity of the Local Group, inferred from the dipole in the CMB
is approximate 620km/s. Nearly all of this motion can be explained by the gravitational
force exerted by matter within a distance < 150k 'Mpc. This can be concluded from
the convergence of the dipole (of galaxy light, which correlates with gravity). For a non-
homogeneous universe the dipole would not converge. (Schmoldt et al., 1999)

Figure 1.6: This 2 dimensional universe is homogeneous, but not isotropic. You cannot
distinguish point A from point B, but direction 1 is very different from direction 2 or
any directions in between.

Isotropy

Isotropy implies that the universe looks the same in all directions and there are no preferred
directions. An isotropic universe which is not homogeneous is very unlikely, since that will place
us in the only one place in the universe where isotropy holds. As long as there are two points where
isotropy holds, the universe is homogeneous. On the very local scale the universe isn’t isotropic
at all, in some directions there appears to be much more matter then in others, but again when
one looks further then 200h~!'Mpc the evidence for isotropy is overwhelming.

Evidence of isotropy of the Universe include:

1. Cosmic Microwave Background By far the most compelling evidence is the isotropy of
the cosmic microwave background. The COBE data has a variation of % = 107° on the
scales of 10° (Wu et al., 1999; Smoot et al., 1991).

2. Radio Sources It is difficult to obtain distance information of radio sources, therefore they
are hard to use as probes for homogeneity. However, surveys have given evidence for isotropy
(Baleisis et al., 1998).

3. X-ray Background unresolved X-ray sources, probably AGNs, originate from objects with
a very high redshift and are therefore a good probe for isotropy (Tikhomirova and Stern,
2000).
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4. Projected Galaxy Distribution Galaxies are distributed isotropic.

5. y-ray Bursts Gamma ray bursts are bright enough to see across the entire Universe and
occur isotropic (Vavrek et al., 2004).

Figure 1.7: This 2 dimensional universe is homogeneous for the observer at point a (for

scales about 1/20 of the picture). However it is only isotropic for that observer, for any

other observer it is not isotropic. Evidently, it would be a great coincidence if we happen
to be at such a point.

1.2.2 Least Constraints

The possibility of a curved space instead of the Euclidean geometry, which for so long has been
dominant is an example of the rule that a priori we should put as least constraints as possible on
our theory.

On the other hand, standard cosmology only teaches the possibility of trivial topologies. This
is an artificial restriction, and therefore violates this principle. It is not based on physical evidence
or experiment, nor the outcome of verified theories like general relativity. In this thesis we abandon
this restriction and investigate the possibilities that this opens up.

However, some of the topologies we will propose for our universe will violate the classical global
cosmological principle. In section 2.4.1 we will show that the classical cosmological principle is to
constraining, and opt for a less restrictive version called the local cosmological principle.

1.3 Geometry

Geometry is the study of the local aspects of a 2 dimensional surface or 3 dimensional space.
Geometry is mainly concerned with the local properties of space, in particular with its curvature.
Up till now we have only considered a flat Euclidean geometry, but many more are possible.

The three main geometries we will discuss are spherical geometry, flat geometry and hyperbolic
geometry, visualized in figure 1.1. These 3 geometries are the only ones that are both homogeneous
and isotropic, therefore the only ones allowed by the cosmological principle.

Two important concepts in geometry, geodesics and parallelism, will be discussed before going
into geometry.

1.3.1 Geodesics

A geodesic is an extension of the term straight line — which is only well defined in Euclidean space
— to curved space. A geodesic is the locally shortest path between two points. The path length
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A A A

Spherical Flat Hyperbolic

Table 1.1: Triangles on the 3 geometries.

is a local minimum, a slight deviation of the path results in a longer path (figure 1.8). There can
be more then one geodesic connecting two points, not necessary of equal length, however the true
shortest distance is always a geodesic. In Euclidean space a geodesic is a regular straight line, in
spherical space this is a great circle (figure 1.9).

Figure 1.8: A geodesic over a very curved surface.

Figure 1.9: A spherical space. a and b are great circles, c is a small circle. b intersects a
in two antipodal points and shares a common perpendicular. c is equidistant to a and
also shares a common perpendicular with a (at every point) but is not a geodesic.
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1.3.2 Parallelism

The concept of parallelism is important in geometry. The classical high school definitions of par-
allel, based upon Euclid’s 5th postulate (section 1.3.5), are often ambiguous or even contradicting
when applied to non-Euclidean geometry.

Given a geodesic ¢ and a point a not on that line there are 3 different kind of lines that are
all identical to a parallel geodesic in Euclidean geometry (figure 1.10(a)). However, in a general
geometry they are distinct. We distinguish

e equidistant lines: lines that are everywhere separated by the same distance (figure 1.10(b)),
e geodesics that share a common perpendicular (figure 1.10(c)) and ?
e parallel geodesics: geodesics that intersect ‘at infinity’ (figure 1.10(d)).

Following this definition, a parallel geodesic can be constructed by taking an intersecting line
through point a and move the point of intersection x along line [ till the limit at infinity. There
are two main reasons this definition of parallel is favorable above the other two. Firstly, we
want parallel lines to be geodesics. In non-Euclidean geometries equidistant lines are usually no
geodesics. Secondly, if a line m is parallel to a given line ¢ at one point a on m, we want m to
be parallel to ¢ at every point on m. Geodesics sharing a common perpendicular in generally only
do so at a specific point. The angle the parallel line m makes with the perpendicular from a to ¢
is called the parallel angle ¢. In the Euclidean case the parallel angle is always %w. A geodesic is
always parallel to itself.

a a
(-] ©
r r r T
14 !
(a) The problem (b) Equidistant line

a9 ¢ Too
¢ J|L (
Ty Ty
—_———
(¢) Common perpendicular (d) Parallel geodesic

Figure 1.10: Parallel line creation in the Euclidean plane, 3 equivalent definitions.

Together with parallelism we consider 3 kinds of relation between two geodesics in the same
plane. Two geodesics can either be

e intersecting: they have one or more points in common within the plane,

ITechnically, it is enough that there exists a transversal geodesic that intersects both geodesics at the same
angle. If this angle is iw the transversal is a common perpendicular. If this angle is 0 the transversal coincides
with one of the geodesics and the geodesics are parallel.
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e parallel: they intersect ‘at infinity’, but nowhere within the plane or
e ultra parallel: they diverge in the limit of infinity

The point where parallel geodesics intersect, ‘at infinity’ is called an affine point. In general parallel
lines intersect only in one direction. Parallel lines in the Euclidean plane are the exception, they
intersect in the same affine point in both directions.

1.3.3 2 Dimensional Isotropic Geometries

There are infinitely many different geometries. Restricting ourselves by the cosmological principle
to the geometries of homogeneous 2 dimensional spaces there are spherical geometry, flat geometry
and hyperbolic geometry. Mathematically speaking, flat geometry is the limit between spherical
and hyperbolic geometry and therefore should be listed between them. However since it is the
most well known geometry it is listed first.

1. Flat Geometry

e For a given point only one line exists parallel to a given line which does not contain that
point. The flat Euclidean plane corresponds to an infinite flat surface, like a sheet of
paper of infinite extent. Interestingly, also the surface of a cylinder is flat. Any surface
that can be papered in a way that you only have to bend the paper, not stretch or cut
it, is called flat. It may be ‘bent’, but it is not ‘curved’.

e The Euclidean plane is called [E2.
2. Spherical Geometry
e For a given point no geodesics exists parallel to a given line which does not contain
that point.
o The spherical plane is called S2.

e Lines equidistant to a geodesic (a great circle) are small circles and are no geodesics
(line c in figure 1.9).

e A geodesic that shares a common perpendicular with another geodesic intersects that
geodesic in two antipodal points (line b in figure 1.9).

3. Hyperbolic Geometry

e For a given point an infinite amount of geodesics exist parallel to a given line which
does not contain that point. There are two lines that meet the given line at infinity, and
an infinite number that diverge, called ultra-parallel lines?. The hyperbolic plane is the
hardest to visualize, this is because it cannot be displayed correctly in three dimensions.
The hyperbolic plane is as infinite plane with a saddle point everywhere.

The hyperbolic plane is called H?2.

A line equidistant to a geodesic is not a geodesic itself.

A geodesic sharing a common perpendicular is called a ultra parallel line (figure 1.12(c)).

The pseudo-sphere discovered by Beltrami is an object with two dimensional hyperbolic
geometry, but it does not reflect its infiniteness and even has borders.

2Ultra parallel lines sometimes are called just parallel lines as well, by that (ambiguous) definition there are
an infinite number of parallel lines. Lines that do intersect at infinity are usually called limiting lines or critical
parallels.
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The properties of the planes are summarized in table (1.2).

These 2 dimensional geometries have 3 dimensional equivalents and our Universe, which has
3 spatial dimensions, can posses one of these. On scales smaller than the radius of curvature
most geometries look exactly like Euclidean geometry. That is why it took mankind so long to
discover the Earth was not flat. Mathematicians like Gauss and Riemann showed the world that
these geometries (and there are many) are just as real as the flat Euclidean geometry and can be
extended to three or more dimensions.

Figure 1.11: The pseudo sphere has hyperbolic geometry. It can be extended indefinitely
to the right, but cannot be continued on the left. On the left it has a discrete boundary
where its tangent is perpendicular to its axis of symmetry.

Spherical Euclidean / Flat Hyperbolic plane
Symbol S? E? H?
Intersecting Lines 00 00 00
Parallel Lines none 1 2
Ultra Parallel Lines none none o0
Size finite infinite infinite
Sum of angles <7 = >

Table 1.2: Properties of the 3 geometries.

1.3.4 Poincaré and Klein Disks

Unlike spherical geometry, hyperbolic geometry cannot be embedded isometrically in 3 dimensional
Euclidean space, therefore non isometric representations are developed. Two of the more insightful
representations of the hyperbolic plane are the Poincaré and Klein disks. Both are unit disks
which represent the entire infinite hyperbolic plane in such a way that points on the boundary
of the disk represent points infinitely far away from the origin but both with their own distance
transformation. In figure (1.12) the Poincaré and Klein model of the hyperbolic plane are shown.

Poincaré Disk

If 7/ is the radial distance on the unit Poincaré disk then the hyperbolic distance is

12

r = arccosh <1 + 2ﬁ> . (1.4)

In the Poincaré model of the hyperbolic disk
e angles are preserved,
e geodesics are circle arcs perpendicular to the boundary of the disk,
e intersecting geodesics intersect in a point on the disk,

e parallel geodesics are tangent at an affine point on the boundary,
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e ultra parallel geodesics do not intersect,
e circles are circles that do not cross the boundary and
e equidistant lines are circle arcs that intersect the boundary at any angle, they are equidistant
to the geodesic passing through those intersections.
Klein Disk

If 7/ is the radial distance on the unit Klein disk then the hyperbolic distance is

r = arccosh ( (1.5)

1
In the Klein model of the hyperbolic disk
e geodesics are straight lines,
e intersecting geodesics intersect in a point on the disk,
e parallel geodesics are intersect at an affine point on the boundary and

e ultra parallel geodesics intersect at an ultra affine point outside the disk.

Poincaré and Klein Combined

A pair of ultra parallel lines has a third geodesic as common perpendicular. The center of this
perpendicular in the Poincaré disk is the intersection point of the two ultra parallel lines in the
Klein disc. Any geodesic that intersect two other geodesics in the same ultra affine point also
shares the perpendicular and vice-versa.

If w is the radial distance of a point on the Poincaré disk, then

2u

= 1.6

S= T8 (1.6)
is the radial distance on the Klein disk. Conversely
S

W= ———: 1.7

14++v1—s2 (.7

1.3.5 History of Curved Space

Euclid was a Greek mathematician who wrote “The Elements” in the 3th century B.C in which
he formulated the rules for flat geometry. The typical situation is that of an infinitely flat 2
dimensional or 3 dimensional space.

It is considered to be one of the major works in science and most successful textbooks ever
written. It was one of the first books to go to print and it is the second most reprinted book next
to the Bible (over a thousand editions). It is said to be the most widely read and studied book
after the Bible. Up into the 20th century it was required for all students and considered a book
that all educated people had read.

The Elements are based on 5 postulates.

1. A straight line segment can be drawn by joining any two points.
2. A straight line segment can be extended indefinitely to a straight line.
3. Given a straight line segment, a circle can be drawn using the segment as radius and one

endpoint as center.
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5 2

(a) Poincaré disk (b) Klein disk (c) Combined

Figure 1.12: The left disk is the Poincaré Disk, the middle disk the Klein Disk, the
right a combination of both. Poincaré Disk Geodesic are brown (a,b,c,d), circles are
green (e), equidistant lines are red (f). 5 and € are regular points, « is an affine point.
Geodesic a is intersecting with geodesic b at point 3 which lies in the disc. Geodesic a is
parallel to geodesic ¢, it touches ¢ at affine point v. Geodesic a and d are ultra parallel,
they never intersect in or on the boundary of the disc. Equidistant line f is equidistant
to geodesic d. Klein Disk Geodesics are purple (a,b,c,d). [ is a regular point, v an
affine point and § an ultra affine point. Geodesic a intersects with d in §. Combined
Geodesic h is the common perpendicular of a and d which intersect in affine point J.
Since geodesic g also goes through 6, h is also perpendicular to g.

4. All right angles are congruent.
5. Through any given point there is only one line parallel to a given line not through that point.

The famous 5th one is called the parallel postulate and is the basis for Euclidean ‘flat’ geometry.
The definition of parallel is not unambiguous, but this form of the postulate is the most intuitive.
As stated we will call two lines parallel if they lie in the same plane but do intersect only at infinity.

For two millennia this was the only geometry considered possible at all, so it was thought the
Universe possessed it as well. There were ample attempts to prove the 5th postulate on the basis
of the other 4 mostly by reductio ad absurdum, all of which failed. In 1829, the Russian Nikolai
Ivanovich Lobachevsky published (in Russian) the first works on hyperbolic geometry (thus called
Lobachevsky geometry). In 1832, Janos Bolyai included a description of hyperbolic geometry in an
appendix in one of his father’s books. Before publishing, Bolyai contacted Carl Friedrich Gauss,
who claimed to have studied the subject more then 30 years earlier. Gauss never published his
work because he thought it too be to controversial for the mathematical society at that time.

The study of smooth geometries was generalized by Riemann in 1854 into differential or Rie-
mannian geometry. Although known for a long time in astronomy and navigation, Riemann is
often credited with the discovery of elliptic geometry, a superset of spherical geometry. Finally,
in 1868 Eugenio Beltrami proved that it is indeed impossible to proof Euclid’s 5th postulate from
the first 4 and that both Euclidean geometry and geometries that included a negation of Euclid’s
5th postulate (i.e. spherical and hyperbolic geometry) were consistent.

1.4 Modern Cosmology

In the beginning of the 20th century it was Einstein who took the revolutionary step to prove that
time and space each form an integral part of a 4-dimensional spacetime. No longer space and time
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represented rigid external frames to a physical system. Up to Einstein’s 1905 special relativity
theory, time and space had been assumed to be strictly separated. He proved otherwise.

1.4.1 General Relativity

In 1905 Einstein wrote an article called ‘Theory of the Transformation of Co-ordinates and Times
from a Stationary System to another System in Uniform Motion of Translation Relatively to the
Former’ which describes special relativity. Special relativity tells us that time as well as space is
relative — events simultaneous for one person might not be simultaneous for another — and that
we should consider space and time interwoven, a 4 dimensional entity/fabric called space-time.
In between 1905 and 1915 Einstein developed his General theory of Relativity, the theory dealing
with accelerating bodies and thus implicitly including gravity.

Einstein equation

General relativity says that matter curves the structure of space and space influences the motion
of mass. It is all encapsulated in one single central equation, the Einstein field equation (using
Einstein notation for the tensors and geometric units, which put the speed of light ¢ and the
gravitational constant G at unity)

G + Agp =811, (1.8)

In this equation G, is called the Einstein tensor and g, the metric, which together encompasses
the (localized) curvature of the Universe. T}, is called the stress-energy tensor which contains
the matter/energy content of the Universe and A is the cosmological constant. The cosmological
constant originates as a free integration parameter when the differential equations leading to
equation 1.8 are solved. The cosmological constant can be moved algebraically to the other side
of the equation where it can be seen as the vacuum contribution to the stress-energy tensor or as
dark energy. Einstein used the cosmological constant to ensure a static Universe, a universe that
does not expand.

Cosmological Consequences

The validity of General relativity has been demonstrated by many experiments. If matter curves
the universe locally, it also curves it globally. One of the key questions in modern cosmology is
whether the Universe is curved or flat. Locally this is difficult to determine, as it occurs to be
nearly flat. Cosmic microwave background experiments like Boomerang and WMAP have shown
convincingly the Universe to be nearly flat (Spergel et al., 2006).

Cosmological Constant

Traditionally, the cosmological constant, together with the (rest of the) energy momentum tensor,
determines the curvature of the Universe. However, this can be turned the other way around.
The Universe is embedded with a certain metric which manifests itself in a specific value for the
cosmological constant: This is especially the case with non-trivial topological shapes, since they
often dictate a specific geometry. The lack or excess of matter to account for the corresponding
curvature will then be compensated by the cosmological constant which automatically will acquire
the necessary strength.
In short, there are two possibilities:

e The cosmological constant (partly) defines the geometry of space, which in turn limits the
possible topologies

e the topology of space determines the geometry, which then set the cosmological constant.
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Figure 1.13: By the Weyl postulate it is always possible to define a surface in the space
time manifold of ‘equal time’. This is a surface that is everywhere perpendicular to the
time direction.

A possible scenario for the latter is the following. The Universe began as a small, closed,
quantum fluctuation with yet undetermined shape and geometry. When it expanded it collapsed
into a specific topology, with a non isotropic and homogeneous metric. If the Universe is small
enough to be entirely casually connected it will not only homogenize all energy, it will also become
homogeneous in curvature since the energy of such a space is lower then a space with a non
homogeneous metric.

Which of these two options is the case is beyond this thesis, but it is worthwhile to keep the
latter option in mind. In both cases, measuring the exact value of the cosmological constant will
be a strong indicator of possible topologies.

1.4.2 Cosmic Time: Weyl Postulate

The Weyl postulate states that, on a universal scale, the time direction space-time is everywhere
perpendicular to its spacial dimensions. In other words, for all positions on the time dimension,
measured as universal time, there exist a perpendicular 3 dimensional slice of our Universe which
is its spatial section (figure 1.13). This hypothesis is not strictly necessary for all cosmological
models, but most include it. In this thesis we accept the Weyl postulate. We will not consider the
motion of observers and for most subjects ignore time altogether.

1.4.3 Robertson-Walker Metric

The cosmological principle applied to geometry gives rise to only the three different geometries of
section (1.3), spherical, flat and hyperbolic space. They are described by the Robertson-Walker
metric:

ds* = dt* —do? (1.9)
do® = dr® + R%si (i)quﬂ (1.10)
g = T S1n R .
d®* = db? + sin? d¢? (1.11)
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where x, 0 and ¢ are spherical coordinates and R is the radius of the Universe. R is positive
for spherical space, infinite for flat space and purely imaginary for hyperbolic space. This is
different from the classical cosmological schools which often teach that R is negative for hyperbolic
spaces. This is mathematically incorrect, the hyperboloid is a sphere with imaginary radius. Also,
traditionally cosmologists use different definitions of the radial coordinate depending on curvature.
This discrepancy is unnecessary and confusing, and should be avoided. See appendix (A) for
details.

1.4.4 Evolution of the Universe

Allowing only the Robertson-Walker metric, the Einstein field equations can be simplified. In
a simply connected homogeneous isotropic universe the structure of space is given by only one
parameter, its curvature. The evolution of the Universe is determined by a homogeneous en-
ergy /momentum distribution. The evolution is described by the Friedmann equations

i 8 Ak
g = () =2mp+2- 2 1.12
(a) 37rp—|— 3 a? (1.12)
i 4 A
a _ 4 A 1.1
- 37 (P +3p) + 3 (1.13)

Geometrized units are used again. « is the dimensionless scale factor of the universe, which is
usually normalized as unity at present R = aRy. p is the energy/momentum density, p the
pressure and A the cosmological constant. k relates to the curvature of the universe as

1 spherical
k=<¢ 0 flat (1.14)
—1 hyperbolic

The cosmological constant can be seen as a pure curvature term, or can be seen as a part of the
content of the Universe and integrated into p. The pressure p relates to the density p through the
equation of state p = p(p) = wp. The contents of the Universe can than be decomposed into three
contributions, each with a different equation of state. The Universe consists of

e matter, which can be decomposed into baryonic matter and dark matter with 0 < w < 1,
e radiation, with w = % and
e dark energy, with w < —%

The cosmological constant corresponds to a dark energy with w = —1. At this moment the
Universe contains approximately 4% baryons, 23% dark matter, 73% dark energy and 5 x 1073%
radiation.

Integrating A into p it is possible to define a critical density p.. If the density of the Universe
is larger then p. the Universe will be spherical, if it is smaller it will be hyperbolic and if p = p.
the Universe will be flat. Usually this is represented with the dimensionless parameter

Q0 = 20,10+ (1.15)
Pe
k
- W + 1 (1.16)

where (2 is split up into relatively its matter, radiation and dark energy component. Thus
k= R2HZ (Q —1). (1.17)

The evolution of the Universe is determined by these three parameters of ). There are three
possibilities:

1. The Universe reaches a maximum size and collapses in the Big Crunch,
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2. the Universe expands forever since the Big Bang or

3. there was no Big Bang, in the past the Universe shrunk to a minimum size and is now

expanding again.

The limit between the 2nd and 3th option is called a loitering Universe, which does not expand
but is unstable. Einstein proposed this in 1917 before Hubble showed the Universe did expand.
Figure 1.4.4 displays the evolution for five different Universes given in table 1.3.

shape k p Q
spherical 1| >p. | >1
flat 0| =p|=

hyperbolic | -1 | <p. | <1

Name Q Qo Qi Qi
Concordance | 1.00 | 0.27 | 4.6e-5 | 0.73
Loitering 2.01 | 0.30 0 1.713
Big Bounce 2.1 | 0.30 0 1.8
Big Crunch 2.0 | 20 0 0.0
Hyperbolic 03 | 03 0 0.0

Table 1.3: 5 different models for the contents of the Universe. The corresponding evo-

lution of the scale factor is given in figure 1.4.4.

scaling factor a
w
T

T

—— Big Bounce
—— Big Crunch

—— Concordance
—— Hyperbolic

—— Loitering

Figure 1.14: 5 different models for the expansion of the Universe. The corresponding
parameters are given in table 1.3. Courtesy of Johan Hidding.

time Hy(t—1,)
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1.5 Cosmic Microwave Background

Undoubtedly the main source of information of our Universe is the Cosmic Microwave Background
radiation (CMB). We receive the CMB radiation from the surface of last scattering (SLS), the
region of space we observe at the time the Universe was 379.000 years old. It is nearly perfectly
isotropic black body radiation at a temperature of 2.725K with fluctuations of 1 in 10° (with the
exception of the dipole and foreground contamination).

Black Body Radiation

Intensity

5.3 mm Wavelength 7
57 GHz
2.725 K

Figure 1.15: The black body spectrum of the CMB. The deviations are smaller then the
width of the line.

1.5.1 Discovery and Observing of the CMB

The radiation was first predicted by Alpher et al. (1948), with a temperature of 10K. The CMB
was discovered by Penzias and Wilson in 1964, even though there had been, at hindsight, earlier
detections. Their discovery was purely serendipitous. They tried to detect radio waves bouncing
off balloon satellites but their measurements were disturbed by noise of which they could not find
the source. The signal seemed to come from all directions. Robert Dicke and his group (Dicke,
Peebles, Roll and Wilkinson) as well as Zel’dovich had deduced that if the Universe started with
a hot dense phase, it would be possible to observe radiation from this epoch. Dicke predicted a
signal of 20-40K and immediately told Penzias and Wilson he was looking for it. He had even
build an antenna to detect just this radiation.

Over time the CMB has been measured very accurately by many different experiments on
different scales and sensitivities. The COBE satellite (1989) has made the first full sky maps of the
CMB, at a resolution of 7°. Several airborne experiments like BOOMERanG (2003, Antarctica)
and MAXIMA (1999) have measured a smaller patch of the sky but up to a resolution of 10" and
a sensitivity of 20uK. The WMAP satellite (2001) has made detailed measurements of the full
sky CMB down to degree scales. In 2007 the PLANCK satellite is planned for launch which will
measure the full sky to even lower scales.
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1.5.2 Angular Power Spectrum and Spherical Harmonics

The CMB is very isotropic, the deviation around the mean of 2.725 K is less then 1 in 100.000.
The small perturbations are scale dependent, on different scales the perturbations have a different
magnitude. The measure of this distribution is the angular power spectrum.

The sky distribution of the temperature fluctuations can be decomposed into spherical har-

monics:

oo 14
ATE) 5™ 3™ 4,0 () (1.18)

T
£=0 m=—¢

Spherical harmonics can best be seen as standing waves on a spherical surface.

Figure 1.16: The cosmic microwave background as measured by WMAP, with its decom-
position in spherical harmonics. The ¢ = 0 monopole and ¢ = 1 dipole are not shown
(Verde, 2006).

With a general Gaussian field, the ay,, of equation 1.18 are completely independent. In an
isotropic real field, they are chosen from a Gaussian distribution based on ¢. Because the density
field has to be real the ay,, also have to fulfill the reality equation

aom = (—1)a}_,. (1.19)

For a Gaussian density field the ay,, for fixed ¢ are further uncorrelated and all information about
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the CMB is contained in the power spectrum (figure 1.17)
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Standard cosmology predicts for low ¢ a flat Harrison-Zel’dovich power spectrum as
Pp (k) oc k™3 (1.21)
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Figure 1.17: The power spectrum of the cosmic microwave background (WMAP Science
Team, 2006). The cold dark matter model (solid line) matches the experimental data
(diamonds) very well. The acoustic peaks are clearly visible.

1.5.3 Origin of the CMB

The structure of the CMB can be understood by examining its origin. The exact times and sizes of
events differ between the various cosmological models. Without going into model specific details
we describe in short the important events that led to the CMB.

Big Bang

The Universe came into existence as a singularity called the Big Bang. Since the Universe includes
all time and space, there is no such thing as ‘before the Big Bang’. The theory of the big bang
was first developed by Lemaitre in 1927. The term was coined sarcastically by Hoyle to parody
Lemaitre’s theory in favor of his own steady state theory which proclaims an infinite (in time)
Universe.

The Universe was full of energy, which — due to the extreme density and temperature — was
not yet condensed into matter. This energy density did not have to be homogeneous at creation.
In the short while before inflation started the Universe had time to relax within scale lengths
smaller then the horizon radius. This made the Universe within those scales very homogeneous
and isotropic.
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Inflation

Shortly after the Big Bang, approximating between ¢ = 1073%s and ¢t = 107s, the Universe
went in an exponential expansion called inflation. During inflation the quantum fluctuations in
the Universe expanded 10%° to 10'%° times. Due to the expansion being exponential the horizon
shrunk with respect to the scaling factor of the Universe. While these fluctuations, after inflation
on superhorizon scales, enter the horizon they produce the scalefree Harrison-Zel’dovich spectrum.

At the end stage of this phase the latent heat of inflation is converted into radiation, baryons,
dark matter and anti-matter. Due to CP-violation® slightly more matter was formed than anti-
matter. The following annihilation of the anti-matter created most photons of the CMB.

Radiation Dominated Era

After inflation the dynamics of the Universe was dominated by radiation. The Universe expanded
polynomial as

aot? (1.23)
The energy of radiation is given by £ = hv = h{. The wavelength X of the radiation redshifts with
expansion, A oc a~!. Therefore the energy density of the radiation drops as p, x a 3a~! = a™*.

The energy of matter, which moves non-relativistic, is given by its rest mass £ = mc? which is

not dependent on expansion. Therefore the energy density of matter drops of as p,, oc a™2.
Because radiation density drops faster than the matter density, the matter density becomes

higher than the radiation density at a certain point in time. This is called radiation-matter

equality, and happened at z = 3570, T = 9730K, t = 0.047Myr = 1.4 x 10'2s.

Matter Dominated Era

In the matter dominated era, the Universe expanded faster as
a ot (1.24)

Since the dark matter is much more abundant then the baryons, the gravitational potential is
dominated by the dark matter. For the development of the CMB the two relevant components of
the Universe are

e the (cold) dark matter, responsible for the major share of gravity and
e the photon-baryon gas, responsible for pressure.

The photons are very energetic are coupled to the less abundant electrons, they are in thermal
equilibrium. The electrons in turn are coupled to the protons and other baryons. Therefore they
act as a single gas. This has two effects:

e Because the mean free path of a photon is short the Universe is opaque and

e protons (and helium nuclei) cannot bind with the electrons: any atom formed will be imme-
diately ionized by the photons.

The dark matter interacts with the photon-baryon gas only by means of the weak interaction
and furthermore by gravity. Therefore it will not be not be hindered by the photon-baryon gas
and collapse and enhance features in the potential. However, when the photon-baryon gas falls
into a gravitational well its pressure increases. When the pressure is high enough, it becomes
stronger than the gravitational pull and the gas starts to expand again. This expansion lasts until
the pressure is low enough for the gravity to take over again and make the region contract again,
and so on. These equilibria are called acoustic waves because of their similarity to standing waves
in musical instruments.

3CP-violation is the violation of tho product of the symmetries Charge conjugation and Parity. It was discovered
in 1964 in the decays of neutral kaon by Cronin and Fitchs.
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Recombination

Due to the expansion of the Universe the photons redshift to lower energies. When the energy
of a photon becomes lower then the ionization energy of a hydrogen atom (13.6eV’), the photon
can no longer ionize hydrogen atoms. Since less and less photons are able to do so in the course
of time, more and more hydrogen nuclei combine with electrons, this is called recombination
(although the protons and electrons have never been combined before). The time of recombination
is usually defined as the moment when only half of the hydrogen atoms are still ionized, at
tree = 324000yr = 1.0 x 10'3s and redshift z = 1370.

Since the baryonic matter in the Universe is 1/4 helium this should be taken into account.
Helium has lower ionisation energy, so the time of (full) recombination is later than in a universe
with only hydrogen. Also, because the number of photons greatly outnumber the number of
electrons — 2 billion photons for each baryon — and because the thermal black body distribution
of the energies of the photons has an exponential tail towards the high energies, the average
photon energy at recombination is much less than 13.6eV. The effective average photon energy
was 0.87eV, with a temperature of T' = 3740K.

Last Scattering and Photon Decoupling

As the Universe expands, the mean free path length of the photons increase and the amount of
photon-electron interactions reduce until the photons and the baryons are not in thermal equilib-
rium anymore and cannot be considered a single gas, this is called photon decoupling. The moment
of photon decoupling is the moment when the mean free path length A is longer then the Hubble
distance ¢/H. After photon decoupling the Universe is transparent.

Once electrons have combined with protons to hydrogen atoms, Thomson scattering ceases to
be effective and there comes a moment when a photon scatters for the last time. The photons can
move freely and the photons reaching us just now form the CMB. The places where these photons
originate from form a surface, the spherical boundary of our visible Universe called the surface of
last scattering (SLS). Since not every last scattering of a photon happens at the exact same time
this is more like a last scattering region than a surface.

Since after decoupling the probability of a photon scattering of an electron drops very rapidly,
the time of last scattering and the time of recombination are roughly the same at ¢ = 379000yr =
1.2 x 10'3s and redshift z = 1100. As the Universe expands, the electromagnetic waves that travel
through it expand as well. The wavelength of the radiation at last scattering is about 5um. Due
to the expansion it is stretched to 5mm, which corresponds to a gas with a temperature of 2.7K.
This is why it is called cosmic microwave background.

Structure Formation

After decoupling the acoustic oscillations of the now only baryon gas stops and its features freeze.
In the subsequent history of the Universe these density excesses will grow. As the horizon expands
larger fluctuations enter the horizon and join this growth. Eventually stars, galaxies and ultimately
galaxy clusters and superclusters will be formed.

1.5.4 Sachs-Wolfe Effect

CMB photons originating from regions with a minimum in the gravitational potential (a ‘potential
well’) have to climb out of the minimum. This causes them to loose energy due to gravitational
redshift and time dilation. Photons from a region in a potential maximum (a ‘potential hill’) fall
into a potential well, gaining energy, thus blueshift. This is the main contribution to the visual
fluctuations in the CMB. The energy difference is

AT 1A®

=3 (1.25)
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Figure 1.18: Schematic history of the Universe. The future light cone is the light cone
for an position at ¢t = 0, objects within it are casually connected at that time. The past
light cone is our light cone for ¢ = ¢y, all events within it that can have influenced us.
The blue solid line represents the maximum radius that has been casually connected in
the past, at the moment inflation began. It is proportional to the scale factor a. The
dotted and solid blue lines are a continuation of the solid line in the past and future. Our
past lightcone is larger than the future lightcone of ¢ = 0 at the time of last scattering.
Therefore not the entire CMB could have been casually connected at ¢t = ¢,.... However,
since the entire CMB falls within the blue line, it has been casually connected in the
past, before inflation.

With a flat Harrison-Zel’dovich the Sachs-Wolfe effect results in a horizontal power spectrum
at large angular scales.

Integrated Sachs-Wolfe Effect

During their travel from the surface of last scattering to Earth the photons pass a large number
of potential wells, the accumulated effect of these wells is called the integrated Sachs- Wolfe effect
(ISW effect). In general these contributions even out.

In a Universe with a large pj the fluctuations in the gravitational potential get suppressed by
the expansion of the Universe due to dark energy. This causes the so-called late ISW effect. For
small scale fluctuations this evens out because the photon travels through many potential hills
and wells. For large scale fluctuations there are only a few hills and wells so this does not happen.
This results in the slight declining slope of the power spectrum at [ < 10. Measuring the exact
effect of the late ISW effect can provide constraints on the dark energy equation of state and its

33



time variation (Cooray et al., 2004).

1.5.5 Isotropy and low / fluctuations

Before the theory of inflation was introduced, the isotropy of the CMB posed a worrisome fine-
tuning problem. The horizon, i.e. the radius within which objects are casually connected, was
smaller in the past. A measure for the horizon size is the Hubble length

c
= —. 1.26
TH= g (1.26)
In a matter dominated Universe we can use
H?2 Qo0
— = ’ 1.27
e (1.27)

to estimate the Hubble parameter (with Q,, o = 0.3) as
H(z) =124 x 10787 (1 4 2)2. (1.28)

This gives a horizon size at last scattering as 7, = 0.22Mpc. With the use of the angular-diameter
distance d 4 it is possible to determine the angular size of the horizon at ¢4

l

50 = — (1.29)
da
 dporlto)  14000Mpe
da = = 100 13Mpc (1.30)
0.22Mpe
= — " ~1° 1.31
00 13Mpc (1.31)

where dj,or(to) is the horizon diameter at current time. So only 1 degree of the CMB was casually
connected at the time of last scattering. The fact that the CMB is isotropic anyway can be
explained with inflation in the sense that before inflation, the entire CMB was casually connected
(figure 1.18).

The horizon size at t = tgs of 1 degree is the dividing line between subhorizon acoustic
fluctuations and superhorizon fluctuations marked by Sachs-Wolfe only. Because the Universe was
only casually connected within 1 degree , density fluctuations beyond that scale could not have
exchanged information (photons or matter). Therefore they could not have evolved and still are
what they were at the end of inflation, i.e. a slight downward slope due to the late ISW effect.

Cosmic Variance

In figure (1.17) the theoretical model allows a large deviation (purple) from average (red), this is
due to cosmic variance. The densities fluctuations follow a Gaussian, i.e. random, distribution.
On small scale (high ¢) there are many realisations of these fluctuations, evening out any deviation
from the mean. For large scale fluctuations there are only a few realisations, therefore they can
fluctuate more beyond the mean. Note that most observational dots fit within the allowed variance
level, but the quadrupole does not.

1.5.6 Anisotropy and high / fluctuations

As the horizon grew, larger and large fluctuations became casually connected. These fluctuations
started oscillating as acoustic waves, with an oscillation speed proportional to their size. After
decoupling, the photon pressure drops and all oscillations stop. Oscillations that just reached a
phase of maximum amplitude at the time of decoupling have over and under dense regions and
show as peaks in the power spectrum, called acoustic peaks.

34



The oscillation giving rise to thefirst peak is at maximum compression at its potential minima.
The second peak is caused by a fluctuation at maximum rarefaction at the potential minima, thus
at maximum compression at the potential maxima, and so on for all peaks. If the oscillation would
not be driven by gravity both phases would be equivalent. However, gravity enhances the effects
of odd numbered peaks and reduces the effects of even numbered peaks. Therefore the second
peak is significantly lower than the first peak.

At higher ¢ the strength of the peaks quickly diminishes because the perturbations are washed
out due to random scatter of the photons. When the average path length a photon travels in the
gas becomes of the same order as the size of the perturbation, the perturbation gets washed away
by the photons. This is called Silk damping.

1.5.7 Non-Trivial Topologies

Although the structure of the CMB is very well understood, there are two problems with the CMB
that prompt us for the investigation of non-trivial topologies for the Universe.
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Figure 1.19: Close up of the power spectrum. A cosmological model with a large dark

energy density component and cold (slowly moving) dark matter (ACDM) fits most of

the measurements. The quadrupole moment ¢/ = 2 however does not fall within the
allowed cosmic variance deviation.

The power spectrum can be fitted very well with a ACDM cosmological model, however the
measured quadrupole is much lower then expected (figure 1.19). This might be explained as a
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data error, or as the result of a yet unknown physical effect. However it can also be explained
with a non-trivial topology, without having to alter the physics behind the cosmological model.
A non-trivial topology imposes a limit on the size of the Universe and therefore on the size of the
large scale fluctuations. This can suppress the low ¢ moments.

Axis of Evil
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Figure 1.20: A representation of the axis of evil by Schwarz et al. (2004). Green is the

dipole, blue represents the quadrupole and red the octupole, yellow are the equinoxes.

The long dashed line is the ecliptic, the short dashed line is the super galactic plane.
The vectors are related to, but not equal to, the multipole vectors.

Although the CMB is nearly isotropic, several searches for anisotropies have been performed.
A very remarkable result is that there appears to be a preferred direction of the CMB (figure 1.20),
dubbed by Land and Magueijo (2005) the ‘Axis of Evil’. Almost all Universes with a non-trivial
topology have intrinsic special directions. A preferred direction on the CMB like the axis of evil
might be correlated with one or more of these special directions inherently in the Universe.

Non-Trivial Topologies

When the a4, are independent of m, an universe with trivial topology, the power spectrum as given
in figure (1.17) contains all the information of the structure of the cosmic microwave background
radiation. In a Universe with Gaussian fluctuations but a non-trivial topology, the ay,, are not
independent anymore and need to be studied in full to infer statistical information about the
CMB.

In this thesis we investigate what possible topological shapes the Universe might have, what
the effects of a non trivial topology are and how we might detect them. In particular we examine
special directions of non-trivial topological universes in simulated CMBs by the use of multipole
vectors developed by (Copi et al., 2004) which take into account all degrees of freedom of the ag,,
and thus of the CMB.
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Chapter 2

Cosmic Topology: Concepts

2.1 Cosmology vs Topology

Cosmology deals with the largest entity we know, the Universe itself. To do so it needs to describe
the geometry as well as the topology of the Universe. In current form cosmology indeed deter-
mines physics to the largest known distances, but in essence it is a theory based upon differential
equations and therefore still a local theory. Cosmology is able to define the curvature of spacetime
at any specific place. However it does not make a firm statement on its global structure. This
concerns in particular the topology of space.

Topology deals with the global structure of objects, in particular with its shape. Topology does
not take into account any local attributes of the object. In order to describe (the largest scales
of) the universe knowledge of geometry is also crucial. As this is encapsulated in the cosmology,
we have synthesized this in the name Cosmotopology.

For further reference, many of the concepts of this chapter can be found in Lachiéze-Rey and
Luminet (1995).

2.2 Topology

Topology is most easily described as the science of shapes. If two objects can be transformed
into another by molding, but without cutting and pasting, topologists consider the two to be
equivalent. They do not care about what the shape exactly is, or what exactly the curvature of
the object is. So a ball is topologically the same as a bowl, you can push a ‘pit’ in the ball (without
going trough the bottom) and you have a bowl. You cannot mold it into, say a coffee cup with
ear, since in order to make the ear you have to punch a hole all the way through, which counts as
cutting. You can however transform a coffee cup into a donut, which is the most classic example
of topology.
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Figure 2.1: The coffee cup transforms into a donut.

2.2.1 Manifolds

All that exists in topology is the surface of these objects, not their interior or the space where
they resides in. In the previous examples the surfaces were all 2 dimensional, the surface of a
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ball is just like the surface of a coffee cup 2 dimensional. Topology, however, concerns itself with
surfaces in any dimension. A circle for example can be seen as a 1 dimensional surface, and a 3
dimensional space such as our universe can be seen as a 3 dimensional surface. These 2 or higher
dimensional surfaces are called manifolds.

Embedding

If you visualize the manifold as the surface of an object, like seeing the sphere as a real surface
of a ball it is called embedding. A 2 dimensional sphere can be embedded isometrically in a 3
dimensional flat space, i.e. without having to stretch it. Others can not. An example is the Klein
bottle (see section 3.1.1). In general an n dimensional manifold can always be embedded in a
2n + 1 dimensional flat space.

Size

Manifolds do not have to be of finite size but can also be infinite. Infinite spaces are called open
like the Euclidean plane which is a flat surface. Finite surfaces are called closed like a sphere. An
example of a semi closed manifold in which a fraction of its dimensions are closed while the others
are open, is an infinite cylinder.

2.2.2 Geometry

The local shape of a manifold is determined by its geometry. Geometries of more then 2 dimen-
sional manifolds can be very hard to describe directly, it is usually more insightful to concentrate
on their 2 dimensional cross sections. Here we will only consider 3 dimensional manifolds with
constant curvature (see section 2.4.2), they correspond to their 2 dimensional equivalents from
section (1.3.3). The 3 dimensional geometries corresponding to the spherical plane, the flat plane
and the hyperbolic plane are the spherical space S3, flat space E? and hyperbolic space H3. All
possible 1, 2 and 3 dimensional homogeneous geometries (each corresponding to a simply connected
homogeneous manifold) are listed in table (2.1).

geometries

isotropic | non-isotropic

3D || S| E3 | H3 | S2xE' | H2 xE! | SL2R | Nil | Sol
2D || S% | E? | H?
1D E!

Table 2.1: All 1,2 and 3 dimensional homogeneous geometries. The number of possible
configurations increases as the number of dimensions increases. We will only consider
isotropic spaces, although for completeness we will list also the non-isotropic ones.

2.3 Multi Connected Topologies
For a proper understanding of non-trivial topologies of the Universe some concepts of topology

and group theory need to be introduced.

2.3.1 Isometries

An isometry A is a transformation that moves every point x of a manifold to another point on the
manifold while preserving distances between points.

Az — Az) (2.1)
dist(z,y) = dist(A(z),A(y))
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Examples of isometries of the Euclidean plane (see section 3.1.1) are
e translations,

e rotations,

o reflections and

e glide reflections.

These all transform the Euclidean plane into the Euclidean plane, while the distances between all

points stay intact. Note that the center of a rotation keeps its position after applying the isometry.

In case of a reflection this is a line of points. These points are called fixed points of the isometry.
Examples of isometries of the 2-sphere are

e rotations (along an axis through two antipodal points) and

e reflections in a great circle.

2.3.2 Isometry Group

The set of isometries of a manifold is a group, called the isometry group of that manifold. See
appendix B for a short introduction of group theory. E.g. in the Euclidean plane 2 translations
yield another translation. The identity element I of the isometry group is just the O-translation, a
translation with a distance of 0. In chapter 3 we will explain that all the isometry groups of the 2
dimensional simply connected homogeneous spaces can be generated by the set of reflections. The
isometry group is not Abelian, e.g. a rotation around the x axis followed by a rotation around the
y axis is different from first a rotation around the y axis and then a rotation around the x axis.
A special subgroup of the isometry group are the Clifford transformations. With a Clifford
transformation A¢ the distance between each point x and its image is the same for all points.

dist(x, Ac(x)) = dist(y, Ac(y)) (2.3)

A translation is a Clifford isometry, but a rotation is not. In the Euclidean plane/space most
isometries are Clifford isometries, but in the spherical or hyperbolic space most are not.

2.3.3 Multi Connectedness

One way to distinguish objects in topology is by comparing their connectedness. There are two
classes of objects, simply connected and multi connected. On simply connected manifolds, a circle
can be contracted until it gets arbitrarily small to a point. On a multi connected manifold this
is not possible for all circles. There can be several classes of circles that can be isomorphically
transformed into each other, but not into circles of other classes. For example, on a torus a loop
around the ‘hole’ cannot be transformed into a loop around the ‘tube’, see figure (2.2).

We will use the terms simply connected and multi connected to distinguish between the well
known shapes of space and the ones that we are interested in and fold back into themselves.

2.3.4 Identification

A multi connected manifold can be constructed from another (often simply connected) manifold
by choosing a subgroup from the isometry group of that manifold and identifying every point on
the manifold with the points that can be reached by applying these isometries to that point. The
‘parent’ manifold is called the covering space. When the covering space is simply connected it is
called the universal covering space of the multi connected space. A manifold can have multiple
covering spaces, but only one universal covering space. The subgroup is called the holonomy group
(figure 2.3). E.g. the torus can be created by using the Euclidean plane as covering space and
choosing two non-parallel translations as the generators of the holonomy group (section 2.3.8).
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Figure 2.2: The green circle on ball A can be contracted to a point. This can be done for
all loops on the ball: the ball is simply connected. On the torus B only the green loop
can be contracted to a point, the red loop can be moved around, but not contracted,
because such circles exist we call the torus multi connected. The blue loop (which crosses
itself) cannot be contracted to a point either. Nonetheless it is of a different class then
the red loop because they cannot be continuously transformed into one another.
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Figure 2.3: Some elements from the holonomy group of the torus. Two choices for the
generators y; and 7, are shown. Every circle can be reached from every other circle by
an isometry composed of an integer, possibly negative, amount of the generators.

Physically, identifying two points means that one states that the points are the exact same
location in space. An object at a certain point also is at all the points identified with that point
since those are merely other instances of the same point. Mathematically it means you divide the
full isometry group of the manifold by the holonomy group, resulting in a new (smaller) isometry
group of the new manifold. Usually the full isometry group is denoted as M and the holonomy
group as I' with its generators as 7o, ...,7n. The multi connected manifold is called the quotient
space who’s isometry group is M = M/T". Identification is similar to compactification in string
theory. Identification by a isometry group often reduces the number of infinite dimensions of the
covering space. .

Technically, the isometries in M are different isometries than the isometries in M since they
belong to different manifolds. However, for all practical purposes the isometries in M can be seen
as the isometries in M that are periodic in the isometries in I'. If there are non trivial isometries
left in M the resulting manifold can still be further compactified by choosing a new holonomy
group as subgroup of M. The manifold corresponding to M is then called just covering space. E.g
this allows the torus to be constructed by first dividing out a group generated by one translation
— resulting in a cylinder — and then further compactify by dividing out a group generated by a
translation in another direction.
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The multi connected spaces can be classified by determining which sets of isometries can be
used as generators of a holonomy group that, when divided out of the full isometry group, result
in a physical possible space.

2.3.5 Ghost Copies

From the perspective of someone living in a multi connected universe the world looks just like the
universal covering space corresponding to the multi connected space. Nonetheless, the space is
not infinite. Mapping this universe one will notice that objects will appear multiple times. These
copies are in fact different instances of the same object: they are located at points in the universal
covering space that are identified by the holonomy group of the multi connected space. We call
these apparent copies ghost copies.

Methods of detecting our Universe is multi connected all rely explicitly or implicitly on the
existence and detectability of ghost copies of objects in our visible universe. The fact that we did
not encounter any objects twice on our maps of the Universe can mean three things:

1. the Universe is not multi connected,
2. the scale on which it is multi connected is beyond the size of our maps,
3. we do not recognize the duplicate objects.

In this thesis we investigate the latter. The CMB is the best probe for detecting such reproductions.

Fundamental Domain Universal Covering Space
I |
\ L !
|© 7& © U |
Torus embedded in 3D (not isomet- T _l
rically). B
— S |
&
Mo 14,

Figure 2.4: Three ways to visualize the torus. In the upper left is the fundamental

domain (section 2.3.6), in this case a square which contains all the contents of the

universe. The sides that have to be identified (section 2.3.4) are labeled with arrows.

On the right is the universal covering space (section 2.3.4), this is how the torus looks

like for an observer living on the torus. In this case it is the Euclidean plane. The most

useful and compact way to visualize a multi connected space is by use of the fundamental
domain.

2.3.6 Fundamental Domain

If you inflate a perfect sphere in a multi connected closed universe you will not be able to expand
it indefinitely. Since your ghost copies will inflate the same sphere, your sphere will contact theirs
and will form a face where they touch. At certain time every part of the sphere will touch another
part and it cannot expand any more. The sphere will be transformed into a polytope (a polygon in
2 dimension, a polyhedron in 3 dimensions) which tessellates the entire universal covering space.
Every point within the polygon is closer to you then to any of your ghost copies. This polygon is
called the fundamental domain (FD). This tessellation is a special case of a Voronoi Tessellation.
Every fundamental domain is a Voronoi cell and the observer forms the center of each cell.
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In spherical and hyperbolic space the polytope will have resp. spherical and hyperbolic faces.
This means that in the spherical space it is possible to have digons and dihedrons, polytopes
with only two sides. In a semi open universe, the fundamental domain is semi open as well. The
fundamental domain of a chimney space (figure 3.5(k)) is a cuboid extending indefinitely in one
dimension.

Note that the FD can be different for different observers in the same multi connected space
(see section 2.4.1). Technically, a better term for fundamental domain is Dirichlet domain. Any
polytope that contains all the contents of the Universe exactly once which tessellates the universal
covering space can be called a fundamental domain. A Dirichlet domain has to have the properties
of a Voronoi cell.
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Figure 2.5: The small black circles represent several copies of an observer in a toroidal
universe, the thinner red circles represent balloons they are inflating. When the balloon
gets large enough it touches itself (2nd image). At the points where the balloon touches
it forms faces (3th image) all the way until the whole space is filled by the balloon
(4th image). In this case the Voronoi tessellation is degenerate because there are 4 cells
adjacent to each vertex. In general there are only 3 in a 2 dimensional space.

Where the sphere touches the sphere of the neighboring ghost copy it essentially touches itself
at two different locations. Therefore it will form two congruential faces. These faces represent
identical points in space and are thus identified. There is an isometry in the holonomy group that
transform the face into its corresponding twin.

All multi connected spaces which we will discuss can be represented with a fundamental domain
with a specific set of identifications of its sides. In general all polytopes with identifications of
its sides form a space, but not all of them are suitable for our universe. A way of searching for
possible shapes of the universe is examining which shapes tessellate the universal covering space
one supposes the universe has. In the rest of this thesis multi connected spaces will often be
represented by its fundamental domain.

Besides the selection of pairs one should also distinguish the orientation of the sides which are
identified. The sides may have to be rotated or even mirrored before being identified. It is also
possible to identify a face with itself, these are unphysical (section 2.4.3). All fundamental domain
with identification set correspond to one specific space, but the opposite is not true.

2.3.7 Sizes

While discussing the topology of the Universe there are six important length scales or radii to
address (figure 2.6):

e R the curvature radius: the parameter of curvature,

e rsps the radius of the visible universe (section 1.5.3),

e 1;, the radius of the insphere or incircle of the fundamental domain,

® 7reircum the radius of the circumsphere or circumcircle of the fundamental domain,
e r_ the smallest radius of r;, among all possible observers.

e r, the largest radius of r;, among all possible observers.
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Figure 2.6: The different radii of a compact space.

If our visible universe, rspg, is smaller then r;, there will be no ghost copies of objects visible
which makes it very hard — if not impossible — to determine the topology of the Universe.
However, our results show that there might be a significant deviation from Gaussianity in the
cosmic microwave background detectable even than. Inhomogeneity arguments (section 2.4.1)
show that r;, is at least 200Gpc for us. If the visible universe is larger then r.;.cym we can see
ghost copies of every object in the universe (provided we can recognize them).

In a spherical or hyperbolic Universe the latter four topological distances directly relate to
the curvature radius R. All fundamental domains are rigid with respect to the curvature radius.
If R is measured accurately it might be possible then to exclude certain topological shapes by
observationally providing evidence for minimum values for r;,. The flat case is scaleless, R = oo,
therefore the latter four radii can take any value and it will be impossible to exclude any of the
flat non-trivial topologies by size arguments alone.

Since a priori we do not know what position in a non-trivial topology we will have, we cannot
know our fundamental domain and our value of r;, for a proposed model. Therefore spaces with
a low value of 7, are often examined since they will be most easily detected for all positions.
Non-trivial topological spaces are often sorted on size, either by r directly or by volume V (with
respect to R), which more or less is an indicator for .

All spherical manifolds have a maximum size, the size of the (hyper)sphere with radius R but no
minimum size: lens spaces (section 3.2.2) can be arbitrarily small. Therefore it is always possible
to consider spherical spaces which can be detected at any curvature R. Hyperbolic manifolds on
the other hand have a lower bound. There exists a yet undiscovered compact hyperbolic manifold
with minimum size which is shown to be greater then 0.2815 (where R = 1) (Przeworski, 2003).
The current list of smallest compact manifolds is maintained by Weeks (2002).

2.3.8 Example: Torus

The torus is the simplest shape suitable as reference for investigation of multi connected spaces.
It shows most of the features specific to a multi connected space and is illustrative for the various
pitfalls that may beset us when studying topology.
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In this work we refer to the true flat torus, with zero curvature instead of the well-known donut
shaped body. The donut shaped torus has different curvature at different points, on the ‘outside’
it has positive curvature, and on the ‘inside’ it has negative curvature. The flat torus has zero
curvature everywhere (hence the name). The problem is that it is not possible to embed the flat
2 dimensional torus (2-torus) isometrically in 3 dimensions, that is, without stretching and/or
compressing certain portions of the torus.
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Figure 2.7: Creating the torus by gluing together (‘identifying’) its sides in 2,3 and 4
dimensions. Figures in green can be made isometrically, figures in yellow (upper right
section) cannot. The most intuitive way of doing this is shown in the 3D way in the
middle. The creation of a cylinder (a-d) can be done isometrically, i.e. without having
to stretch the paper. The creation of the actual torus (d-g) cannot be done isometrically
in 3D, one has to stretch some pieces of the cylinder. These last steps can be compared
to the first steps of the 2D way. It is impossible to even make a cylinder in 2D without
stretching the paper. What can be seen in (2D-d) would not even be called a cylinder
by most people. However, it is just as much a cylinder in 2D as the torus in (3D-g) is a
torus in 3D. A true flat torus can be created in 4D without having to stretch the paper
at all! In (4D e-g) it looks like the cylinder crosses itself, that is just perspective. For
someone not trained in seeing 3D the steps (3D b-d) seems to imply intersections as well
while most people understand it does not.

The usual way to create the torus is by taking a square or rectangular piece of paper or rubber
as a substitute for space and connect the sides across. Intuitively we are limited to 3 dimensions,
this cannot be done without stretching the paper. If we remove that restriction and assume we can
use 4 or more dimensions, we can make one without stretching the paper and bend it. The process
is outlined in figure (2.7). In a similar fashion it would be possible to make a flat 3 dimensional
torus by connecting together the opposite sides of a cube when resorting to more (6) dimensions.
In general this is always possible if we allow bending in a sufficiently high dimension. Note that
our figures are usually only 2 or 3 dimensional. This is mainly for illustrative purposes, to embed
them correctly we need more dimensions.

2.4 A Priori Constraints

In principle there are infinitely many simply connected spaces to use as covering spaces both in 2
and 3 dimensional universes. Even more multi connected space can be formed from them. However,
we can impose some heavy constraints on them. With the exception of the constraint concerning
orientability all constraints are based upon an altered form of the cosmological principle, the local
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cosmological principle.

2.4.1 Local Cosmological Principle

The cosmological principle is the most important principle in cosmology, we have to take it into
account in our investigation of the shape of the Universe. Repeated from section 1.2.1 the principle
states that the Universe is:

1. Homogeneous
2. Isotropic
3. Uniformly Expanding

This constraint is too strict. In order to have suitable solutions for cosmotopology, we should
consider the less stringent local cosmological principle, the Universe is:

1. Locally Homogeneous
2. Locally Isotropic
3. Uniformly Expanding

The principle says that around every point in space one can create a sufficiently small ball in
which the universe is homogeneous and isotropic. This ball should have a minimum radius. In
other words, between any 2 points there exist an isomorphism that transforms the surroundings
of one point to the surroundings of the other. The two spheres are indistinguishable.

This sphere will have a maximum size, the size of the inscribing sphere of the fundamental
domain, of radius r;,. It may very well be that our entire visible universe is within this sphere,
implying perfect homogeneity and isotropy.

Homogeneity

Some multi connected universes are homogeneous, but many are not. The fundamental domain
of these universes is not the same for all observers.

Examples of multi connected spaces that are globally homogeneous are the tori T2 and T3. On
the other hand, spaces for which reflections and rotations are isometries which are divided out are
not homogeneous (figure 2.8).

However, in most manifolds local homogeneity does hold. If at every point on the manifold it
is possible to create a ball of non-zero size in which the manifold appear homogeneous it is locally
homogeneous (figure 2.9).

Isotropy

We restrict our universe to posses an isotropic geometry. However this does not mean the multi
connected spaces that can be formed from them have no preferred directions (figure 2.10(a)). In
fact, all multi connected spaces, with the exception of the projective plane P2 or space P3, are
globally anisotropic.

On local scales however, on scales smaller than the size of the fundamental domain, they
are isotropic (figure 2.10(b)). In a ball with a radius smaller than the inscribed sphere of the
fundamental domain there is no way to distinguish the anisotropic multi connected space from its
isotropic covering space. Therefore local isotropy holds, but global isotropy might not.
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Figure 2.8: Homogeneity in a Klein Bottle. The center shows the covering space for
the Klein bottle. The ‘R’s are imprinted in it to clarify the reflections. For both
observers, the red circle on the R and the green circle next to it, the fundamental
domain looks different. The red fundamental domain (on the left) is a square, while
the green fundamental domain is a hexagon. As can be seen in the center image, both
fundamental domains tile the covering space. Because different observers see different
fundamental domains, the space is not globally homogeneous.

Figure 2.9: Locally, that is within a sphere of a certain radius, the two observers cannot
distinguish their positions. The Klein bottle is locally homogeneous.

Local Cosmological Principle

Most multi connected spaces are not globally homogeneous and isotropic. However, this does
not contradict standard cosmology. In cosmology the cosmological principle is used only for
determining the geometry of space. Therefore there is no theoretical reason to substitute the local
cosmological principle for the classic cosmological principle. The classic cosmological principle was
only meant to address the issue of geometry, at the time of its formulation only simply connected
spaces were deemed relevant for cosmology.

What we do have to concern are the philosophical arguments behind the cosmological principle,
that there should be no special positions or directions in the universe and certainly that we are
not in such a position or aligned with such a direction. It would be very coincidental if we would
live in a special place in the universe, or that our Milky Way would be aligned exactly along (or
perpendicular to) one of the major axes of our universe. Note, however, that we cannot assume
that a special location does not exist. Therefore we will assume that special places and directions
might exist in our universe, but that we will not be in or aligned with one of them.

This being said, it is much easier to simulate special cases of the universe in which we are in
a special position. Therefore in our simulations, we will often investigate what happens when we
are special.

2.4.2 Constraints on Geometry

The local cosmological principle influences our choice of geometry in the same way as the classical
cosmological principle.
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(a) Global anisotropy (b) Local isotropy

Figure 2.10: Isotropy in a toroidal universe. Globally (a), this universe clearly isn’t equal

in different directions. In the directions perpendicular to the edges of the fundamental

domain (sides of the rectangle) the universe is smaller, also, in some directions one can

see oneself, but in some not. Locally (b), the observer is unable to distinguish any of
the directions. The torus is locally isotropic.

Homogeneity

In the context of geometry homogeneity means that we assume that the curvature of the universe
is the same everywhere. While there are local variations due to the presence of mass concentrations
on a sufficiently large scale these are supposed to even out. This excludes almost all manifolds.
In fact it is known that only a few simply connected manifolds in low dimensions with the same
curvature at every place.

In 2 dimensions there are only 3 homogeneous simply connected manifolds. In 3 dimensions
there are only 8, which were first classified by Bianchi. They are summarized in table (2.1). Any
cross section of the 3 dimensional spaces will have the curvature of one of the 2 dimensional planes,
however these cross sections do not have to be simply connected themselves (just like the cross
section of a 2-sphere is a (1 dimensional) circle which is also not simply connected).

Isotropy

In the context of geometry isotropy means that the curvature of space is the same in each direction.
Curvature can only be measured to a single number in a plane. If a space is isotropic and the
curvature of a cross section through a point has a certain value, every cross section through that
point has the same value as curvature. In case of homogeneity this also means that every cross
section of another point has that same curvature.

The 2 dimensional homogeneous simply connected spaces are all isotropic. Of the 3 dimensional
spaces only the first 3 are isotropic:

e S3 the 3-sphere
e E3 the Euclidean space and
e H? the hyperbolic plane.

The other 5 can have cross sections that are not the same, e.g. the cross section of H? x E can
be an flat Euclidean plane or negatively curved hyperbolic plane. Because our universe appears
to be isotropic we will only consider the first 3. However, we have to keep in mind that the other
5 spaces are possible in case the Universe is homogeneous but not isotropic.

2.4.3 Constraints on Topology

The local cosmological principle has a profound effect on which isometries can be chosen for the
holonomy group.
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(a) A (clockwise) rotation (on the Euclidean plane) of angle «
results in (semi-infinite) line a being identified with line a/. The
resulting (2 dimensional) flat space embedded in 3 dimensions
will look like a cone (of infinite ‘height’). At every point the
cone has flat geometry, except at point 1, there the cone has
a singular point. In a real space such a point would be very
peculiar: a 2 dimensional being traveling along the cone up to
the point would get stuck.
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(b) A reflection (on the Euclidean plane) in line 1 identifies point
a with a’. This causes the resulting space to have a line in it
which literally looks like a mirror. If the observer at point a
tries to reach line 2, it will walk into itself.

Figure 2.11: Fixed Points

Manifolds vs. Orbifolds

Some isometries transform every point to another point, like the translations in the Euclidean
space but some keep some points fixed, these are called fixed point isometries. An example of a
fixed point isometry is a reflection, all the points on the reflecting plane (in 3D) or line (in 2D)
stay at the same position. Another example is a rotation, every point rotates around a certain
center, this center point does not move at all.

If the isometries are used to identify points, these fixed point isometries identify one or several
points with themselves. This leads to strange situations, like spaces with points where you can meet
yourself (reflections, figure 2.11(b)) or where there is less space than at other points (rotations,
figure 2.11(a)). The spaces that are created by identification with such a fixed point isometry
are not called manifolds but orbifolds. Manifolds must be differential (‘smooth’), orbifolds have
singular points or lines.

Because they create orbifolds we will not include fixed point isometries as allowed isometries
for our identifications. Note that this does not mean we should disregard them: Combinations of
fixed point isometries can be fixed point free. A translation followed by a rotation is fixed point
free. Two reflections can result in a translation. In fact on the three 2 dimensional planes every
isometry can be generated by the combination of several reflections.

Fixed Affine Points
It is possible to create a semi-closed space that becomes infinitely small in the open direction. The

pseudo-sphere is an example of this. It is possible to create the pseudo sphere by identifying two
parallel lines in the hyperbolic plane. We must take care not to allow fixed affine points.
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Figure 2.12: The pseudo sphere on the Poincaré disc. The two orange lines are parallel
lines intersecting at affine point . The dashed line in between is the bisector of angle
«. The two parallel lines are identified with each other. The circles of isotropy — the
inner radius of the fundamental domain — for several points on the middle line is drawn.
Towards the left, the distance between the two parallel lines limits to 0 and so does the
radius of the circle of local isotropy. Since in this case there is no lower limit on the
radius within homogeneity isotropy holds this space is not locally isotropic.

Discrete

Our universal covering space is 3 dimensional, therefore the fundamental domain should be 3
dimensional as well. However, some isometries will reduce the number of dimensions of the fun-
damental domain. These isometries are called non-discrete.

Non discrete means that the distance between two identified points becomes infinitesimally
small after applying the isometry infinite times which has as effect that one of the dimensions
of the manifolds disappears. We illustrate the concept by a rotation on the Euclidean plane. A
rotation by an angle that fits an integer (or rational) times in the full circle (27), say n times, is
called discrete because it divides the circle into n equal segments. The resulting space would be
one of these slices with both sides identified with the other. When we connect the sides we get a
cone (figure 2.13(a)).

A rotation by a transcendent factor of 27 does not divide the plane into a finite set of slices
of a certain angle, but to infinite slices of zero angle. The resulting space is a half-infinite line (a
‘ray’), which should be identified with itself (figure 2.13(b)). This space is 1 dimensional. Two
parallel translations (which are fixed-point free) with transcendent ratio of their lengths have a
similar effect. Because we do not want to lower the amount of dimensions we have we do not
include (sets of) isometries that are not discrete.

Orientability

There are two kinds of manifolds, orientable and non-orientable. The difference between an ori-
entable manifold and a non-orientable manifold is that a non-orientable surface has only one side,
for example the Mdbius strip is a non-orientable surface (figure 2.14). If you would live on such
a surface and you would travel around it you would find yourself mirrored. There is no distinc-
tion between left and right. If it is possible to define 2 distinct orientations a manifold is called
orientable, if this is not possible the manifold is non-orientable.

Several of the possible manifolds are non-orientable, and we will have to decide whether we
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(a) When the rotation angle is exactly a fractional part of 27
(in this case 427 then each point will be identified with a finite
number of other points. In this case line 1 is identified with line
2 to 6, line 7 would be line 1 again. The (Euclidean) plane will
be divided in a finite number of slices. The resulting space would
be a 2 dimensional cone.
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(b) When the rotation angle is a transcendental part of 27 (in this
case 1) then each point will be identified with an infinite number
of points and the distance between them becomes infinitely small.
Line 1 is identified with line 2 to 9 and beyond, there will never
be a line that coincides with line 1 again. The resulting space
would be a 1 dimensional semi infinite line (infinite in only one
direction).

Figure 2.13: 2 rotations, a discrete and non-discrete one. Every line should be extended
indefinitely into the open directions.

include those as a possible model for our universe. While there might be physical reasons® to
disregard non-orientable manifolds, there does not seem to be a cosmological reason for discarding
them as possible models for our universe. Therefore we will include them in our research, however
we will not select them for our simulations.

1Until the second half of the 20th century orientability did not seem to be a problem, but then parity violation
was proved by experiment by Lee and Yang in 1957. Most of the laws of physics are based on underlying symmetries.
The most important one is the one from which the word symmetry originates, the indifference between left and
right. Nature seemed to make no difference in orientation. Every law of physics appeared to be the same if the
universe would be mirrored, this is called Parity. This however is not the case, the weak force (responsible for
beta-decay) is not symmetric. Experiments show that atoms with their spin aligned in a magnetic field do decay
in favorable directions, which indicates that the universe is not indifferent in left and right. This is what physicists
call ‘parity violation’. There are so many consequences of parity violation that the so called ‘standard model’ of
elementary particles will not hold if the universe is not orientable. For example, there are particles like neutrino’s
that are not even supposed to have a mirror image.
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Figure 2.14: The Mobius strip by Escher. The Mobius strip is not orientable. It has

only 1 side as you can see by following the ants. This would not be suitable for a real (2

dimensional) universe, since it does have an edge. Either the width of the strip should

be infinite yielding the flat infinite Mobius band, or the edge should be contracted to a
point (the edge is a circle), to create the spherical projective plane (P?).
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Chapter 3

Cosmic Topology: Surfaces in 2D
and 3D

In this chapter we will investigate all possible 2 and 3 dimensional manifolds that fulfill our local
cosmological principle and the other a priori constraints. We consider all 3 geometries:

o flat: E? and E3,
e spherical: S? and S? and
e hyperbolic: H? and H?3.

We list their corresponding isometry groups and determine what (semi-)closed manifolds can be
created from them. Although mathematics would dictate us to go spherical to flat to hyperbolic
(or the other way around) we will start with flat space because it is conceptually the easiest to
understand.

3.1 2D

3.1.1 Flat
The full isometry group of the Euclidean plane E? is called F(2). It consists of (figure 3.1):

translations,

reflections,

e rotations and

glide reflections.

A glide reflection is a translation with a reflection along a line parallel to the translation.

The isometry group of E? can be generated by using only reflections. Two non-parallel reflec-
tions become a rotation about their crossing point. Two parallel reflections become a translation.
The more you are away from the center of a rotation, the more the rotation (if small) becomes to
look like a translation. In fact, one can consider a translation as a rotation about an affine point
(i.e. a point “at infinity”, section 1.3.2). At the basis of this definition of a affine point rotations
and translations are fully equivalent. The group structure is summarized in table (3.1). The unity
element [ keeps all the points at the same place like a translation of length 0.

From this isometry group X = E(2) we will choose the holonomy group I' which will be
divided out. The resulting fundamental domain will have isometry group M = X/I'. On this
subgroup I' we have to impose the constraints of section 2.4.3, in order to let M still be a 2
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(a) A translation by a vector v. (b) A rotation around a point ¢ by angle
0.

Euchid{” Euclid ¢
ENCq < w>ENC|q

(c) A reflection is identified by a point ¢ (d) A glide reflection is identified by a
and a unit vector v. reflection and a translation along w per-
pendicular on v.

Figure 3.1: The 4 isometries of the Euclidean plane.

| T R/T Ref G-R

I T R/T Ref GR
R/T | R/T R/T GR R/T
Ref | Ref G-R R/T G-R
GR|GR R/T GR R/T

Table 3.1: The group structure of the Isometry group of the Euclidean plane. [ is the
identity, R/T is a rotation or a translation. Ref is a reflection. G— R is a glide reflection.

dimensional manifold. We do not want fixed point isometries, nor non-discrete (combinations of)
isometries. In this case this means that we disregard all rotations, which leaves us with only 1
or 2 translations, one of them possibly combined with a reflection. We are not allowed to take
the two translations/glide reflections parallel to each other, because this will either create a fixed
point subset or a subset generated by only one translation/glide reflection. Two glide reflections
do not give a manifold, it results in an orbifold with 2 singular points, since 2 glide reflections will
result in a rotation. There are only 5 possibilities, summarized in table (3.2).

3.1.2 Spherical

The isometry group of the 2-sphere is isomorph with O(3), all orthogonal 3 x 3 matrices with
the absolute value of the determinant equal to one. The isometry group is again generated by
reflections. A reflection is a transformation determined by a geodesic which in the case of spherical
geometry is a great circle. All reflections therefore reflect in a great circle and leaves the points on
that circle fixed. Just like in the Euclidean plane, 2 (non-trivial) reflections generate a rotation
(around a particular axis when embedded in E?). In spherical space a rotation fixes two (antipodal)
points.
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Klein Bottle

Euclidian Plane

Figure 3.2: All 5 2 dimensional homogeneous isotropic flat spaces. The first column

shows the fundamental domain. The second column shows a representation of the mani-

fold embedded in 3D. Only the annulus and Euclidean plane are embedded isometrically.

The third column shows an impression of how the universal covering space looks like

by M.C. Escher. The last tiling is a piece of a Penrose tiling. Penrose tilings are non-
periodic.
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Isometries Name Compact Dimensions | Orientable
2 Translations 2-torus 2 Yes
1 Translation, 1 Glide Reflection Klein Bottle 2 No
1 Translations Annulus 1 Yes
1 Glide Reflection Mobius Band 1 No
None Euclidean Plane 0 Yes

Table 3.2: Classification of the 5 2-dimensional flat spaces.

Unlike the Euclidean plane, two distinct straight lines (two great circles), will always intersect.
There is no such thing as a parallel line on the spherical plane. There are smaller circles that at
every point have the same distance to a great circle, like on Earth the circle of points with the
same latitude to the equator. However, these lines are not straight, we call these lines equidistant
lines (see section 1.3.2)

Because there are no parallel lines on the sphere, there are no translations either. Just reflec-
tions, rotations or a rotation followed by a reflection perpendicular to the rotational axis (and the
identity). All of these have fixed points, except for the special case of a rotation of %277 followed
by a reflection (equivalent to 3 reflections in 3 mutually perpendicular great circles). This results
in the only other spherical 2-manifold; the projective plane P2,

Isometries Name Compact Dimensions | Orientable
Point Reflection in 0 | Projective Plane P? 2 No
None Sphere S? 2 Yes

Table 3.3: Classification of the 2 2-dimensional spherical spaces.

3.1.3 Hyperbolic

The isometry group corresponding to the infinite hyperbolic plane (the hyperboloid) is PSL(2,R) =
SL(2,R)/Zs with SL(2,R) the Lorentz group of real 2 x 2 matrices with unit determinant. Thas
(2002) describes the full isometry group of the hyperbolic plane.

The isometry group of the hyperboloid is also generated by reflections. On the sphere we had
only 1 possibility for the combination of two reflections: a rotation. On the Euclidean plane we
had 2: a rotation or translation. The translation could be seen as a rotation about an affine point
‘at infinity’ where two parallel lines intersect. In hyperbolic geometry we can go one step further.
On the hyperboloid, ultra parallel lines are said to cross in an wltra affine point ‘beyond infinity’.

When two reflections are defined by two straight lines that intersect at a regular point, the
combined action of the two is just a regular rotation called a ‘spherical isometry’. When the two
lines intersect at an affine point the isometry is called ‘parabolic’ and when they intersect at an
ultra affine point the combined isometry is said to be ‘hyperbolic’. Spherical isometries fix the
center point of the rotation. A parabolic isometry fixes its affine point and a hyperbolic isometry
fixes 2 affine points. Since the latter two only fix affine points (at infinity), and these points are
not part of the hyperbolic plane itself, these isometries are fixed point free.

Determining what multi connected spaces can be created from this isometry group is not very
easy. In fact all 2 and 3 dimensional multi connected spaces have been discovered and cataloged
except the hyperbolic ones. The most easiest way to talk about them is by their fundamental
domain. Escher has made several pictures of tilings of the hyperbolic plane.

56



, intersecting line

== ultra parallel lines

«right hand parallel

N

left hand parallel angle of parallelism
L] A
III!'

Figure 3.3: On the hyperbolic plane there are two parallel lines to line A through point

B. The parallel lines have an angle of parallelism less then 7 with the perpendicular from

B to A. They intersect at an affine point at infinity. There are an infinite number of

ultra parallel lines that do not intersect on the plane either. They intersect at an ultra

affine point ‘beyond’ infinity. There are also an infinite amount of lines through point
B that do intersect with line A.

3.2 3D

3.2.1 Flat

All flat 3 dimensional manifolds have been known for a long time. Motivated by the study of
crystallography Novacki (1934) completed the categorisation 1934. The isometries of the Euclidean
space that are fixed point free are translations, translations followed by a rotation around the axis
of translation (screw operation), and translations followed by a reflection in a plane parallel to the
axes of translation (glide plane operation).

There are 18 different flat manifolds, one of which is simply connected and fully open (R?),
7 half open and 10 closed. These are summarized in figure (3.4). In figure (3.5) a possible
fundamental domain for each of the spaces (except the simply connected one) is shown, with
proper identifications of the sides.

3.2.2 Spherical

A spherical universe has positive curvature everywhere with S as covering space. This means
that its spatial volume is necessarily finite. However it can be infinite in time if the cosmological
constant is high enough. If the cosmological constant is low enough the universe will get to a
maximum size and then contract again till a singularity (within finite time).

The isometry group of the spherical space S* is isomorph with SO(4), all 4 dimensional (Eu-
clidean) rotations about the origin and reflections in spaces through the origin. It goes beyond
the scope of this document to classify all the finite subsets of SO(4), so we will list only a few of
them. For the full classification we refer to Gausmann et al. (2001)

Lens Spaces

Just like it is possible to peel the skin of an orange (a 2-sphere) into parts (digons), you can cut the
3-sphere into lens shaped objects (see figure 3.7). A lens is a spherical polyhedron with two sides,
a dihedron. The only way to tessellate the 2-sphere with digons is by identifying both sides, this
creates a hosohedron with fixed points (figure 3.6). In 3 dimensions the 3-sphere can be tessellated
by analogy into a hosochoron, but unlike the 2 dimensional case they can be rotated to prevent
the creation of fixed points. A lens space is denoted by L(p, q). p is the (integer) amount of lenses
that tessellate the 3-sphere, every dihedron is rotated an angle of %277 (counterclockwise when
looking from the first lens to the second). The edges of a digon are half great circles. The surfaces
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(d) (e) ()

Figure 3.4: Examples of a hyperbolic 2 dimensional manifold. The left column shows
the Fundamental domain, the middle column the manifold embedded in 3 dimensions in
a non-isometrical fashion. The third column shows the Universal Covering Space on a
Poincare disc. The dutch artist M.C. Escher has made several paintings of tessellations
of the hyperbolic plane. Shown in 3.4(c) is Circle Limit IV, which corresponds to a
universe with a hexagonal fundamental domain. However, the image does not resemble
a physical universe. The vertices are singular points. All images from the circle limit
series have this defect. A physical 2 dimensional multi connected universe is shown in
image (3.4(d)) to (3.4(f)), the two holed torus. Note that 3.4(b) shows Boy’s surface,
the red line denotes a circular cut so it is possible to see ‘inside’ the surface. The Boy’s
surface is (also) representation of the projective plane. The projective plane can be
embedded with all three geometries.
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Figure 3.5: 3 dimensional flat spaces
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Symbol Name Compact | Orientable
Directions
Er 3-torus 3 Yes
E, half turn space 3 Yes
Fs quarter turn space 3 Yes
Ey third turn space 3 Yes
E5 sixth turn space 3 Yes
Es Hantzsche-Wendt space 3 Yes
Er Klein space 3 No
Es Klein space vertical flip 3 No
Ey Klein space horizontal flip 3 No
FEio Klein space with half turn 3 No
F11 chimney space 2 Yes
Eys chimney space with half turn 2 Yes
F3 chimney space with vertical flip 2 No
FEy chimney space with horizontal flip 2 No
Eqs chimney space with half turn and flip 2 No
Fig slab space 1 Yes
Eqr slab space with flip 1 No
| Eis | Euclidean space | 0 | Yes |

Table 3.4: Classification of the 18 3-dimensional flat spaces.

of the dihedron are half great spheres. Although these surfaces appear curved in Euclidean space,
they are straight in spherical space.

Figure 3.6: A tetragonal hosohedron created from 4 digons. There are two singular
points.

Projective Space

The division of the 3-sphere into 2 dihedral lenses was first described by Dante in his “Divina
Comedia” (Peterson, 1979) in the early 14th century. He visualizes the 3-sphere as two solid
2-spheres (2-balls) glued together on the surface. This is analogous with the projection of the 2-
sphere on 2 solid circles. The two surfaces of the dihedron would be tangent to each other on their
circle of intersection, therefore the surface of the entire dihedron is indeed a 2-sphere. In the case
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Figure 3.7: The construction of a lens space (Gausmann et al., 2001).

of a true lens space the two solid 2-spheres would be the same and would require the only possible
rotation of a half circle (327) to create a manifold. This manifold is called the projective space
(P?). In contrast with the projective plane, the projective space is orientable. The projective space
(also called elliptic space) has often been called more natural or more simple then the 3-sphere
itself because the 3-sphere violates Euclid’s first postulate. Euclid’s first postulate can be read as
“two points define a line”, which is true in the Euclidean space, but not in the spherical space (or
plane). Through two antipodal points an infinite amount of lines (great circles) can be drawn, like
meridians on the Earth’s surface. In the projective space two antipodal points are identified with
each other, therefore every two points define a single line.

Regular Polyhedron

The isometry groups of the orientation-preserving symmetries of the Platonic solids are related to
tessellations of the spherical plane by (semi-)regular polyhedrons. The 3-sphere can be tessellated
by 24 octahedrons, 48 truncated cubes or 120 dodecahedrons. The opposite faces are identified
after appropriate rotation (figure 3.8, table 3.5).

A dodecahedral space is proposed by Luminet et al. (2003) because it can explain the low
quadrupole and octupole in the WMAP data from the CMB (see section 1.5.7).

Symmetry Group | Order | Fundamental Domain
Ty 24 octahedron
Oy, 48 truncated cube
Iy 120 dodecahedron

Table 3.5: The three (semi-)regular fundamental domains.

(a) Octahedron (b) Truncated Cube (c) Dodecahedron

Figure 3.8: The three (semi-)regular fundamental domains (Cyp).
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3.2.3 Hyperbolic

The hyperbolic multi connected manifolds are not yet fully classified. Unlike the spherical mani-
folds, the hyperbolic manifolds have a lower limit in volume instead of an upper limit. This lower
limit is important, because it determines what the minimum size is which our visible universe
must have (in terms of curvature radii) in order to let any effects of a possible multi connected
hyperbolic space be detectable.

In the beginning of the 20th century only a very few closed hyperbolic 3-manifolds were known,
but in the last 50 years a lot more were found. In the 1970’s Thurston showed that most closed 3-
manifolds admit a hyperbolic geometry. Unlike the flat 3-manifolds, all hyperbolic 3-manifolds are
rigid. There is only 1 degree of freedom, the curvature radius. Also, no hyperbolic 3-manifold is
globally homogeneous, the fundamental domain always depends on the position of its base point.
Every finite group can occur as the symmetry group of a closed hyperbolic 3-manifold, so the
possibilities are endless.
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Chapter 4

Cosmic Topology: Observational
Imprint

In the last decades a lot of research has been dedicated towards determining whether we live in
a multi connected universe, and if so, in what kind of multi connected universe. Here we will
describe various methods which were proposed to infer whether the Universe is multi connected.
All techniques are based on the principle that if a multi connected universe is small enough one
should see various copies of the same features. Such features might be concrete objects like
galaxies or clusters of galaxies. Arguably the best candidate for detection is offered by features
on the surface of last scattering.

We make a distinction between 2-dimensional and 3-dimensional methods. In addition, we
distinguish between statistical and concrete methods. The 2D methods only deal with the CMB
(which is a 2 dimensional surface) and the 3D methods with everything that’s closer by, distributed
in 3 dimensions. Concrete methods try to identify ghost copies of discrete sources, like another
copy of the Galaxy. Statistical methods use statistics from a large number of sources to find
evidence for a multi connected space. A review of early attempts to detect the topology of the
Universe is given by Luminet and Roukema (1999).

The new method we apply in the upcoming chapters is based on statistical analyses of the
cosmic microwave background with the use of multipole vectors.

4.1 3D Concrete methods: Ghost Hunting

In a multi connected universe every object can be seen several times if the universe is small
enough. If the radius of the visible universe is larger than the radius of the inscribed sphere of the
fundamental domain (r;,) there are several sections of space that are at least two times within
our visible range. Objects in those sections might be detectable twice. Lachiéze-Rey and Luminet
Lachiéze-Rey and Luminet (1995) describe several methods to detect the topology using ghost
images.

Since these objects can exist at various distances and directions in the sky there are certain
criteria that the objects that are studied have to meet. The objects should

e not evolve significantly over the age of the universe,
e be detectable up to very high redshift in every direction,
e emit isotropically,

e have near zero three-dimensional peculiar velocity.
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Due to these constraints it is far from trivial to find good candidates. Most objects evolve rapidly
in time or look different from different angles (e.g. quasars). This is especially true for non-
statistical methods. Examples of studies of non-statistical research include the search for our own
galaxy as a quasar, detection of copies of the Coma cluster and even multiple instances of large
scale structures on scales of 50 — 150h ! Mpc such as walls and voids.

These concrete studies have not been very successful since it is to hard to determine whether
two objects that are so far apart (in space and time) really are the same physical object. Results do
show that the injectivity radius (r;,) of our fundamental domain must be larger than 100~ Mpc
and probably even larger than 200k~ Mpc.

4.2 3D Statistical methods

The most important statistical 3 dimensional method for the detection of the topology of the
universe is Cosmic Crystallography (CC). This name is given in by the analogy with techniques
used in normal crystallography (Lehoucq et al., 1996). In a multi connected space, some isometries
translate every element of the fundamental domain by a fixed distance. These fixed distances
result in spikes in a Pair Separation Histograms (PSH). A PSH is a histogram that shows how
often certain distances between two objects occur. All the distances of sources in a catalog are
squared, normalized, binned and then plotted as a histogram. Every topology has a theoretically
expected shape of the PSH, the Expected Pair Separation Histogram Gomero et al. (2002).

We illustrate the method with the simplest case, the 3-torus. The 3-torus has 3 distinct
length scales, A1, A2 and A3 corresponding to the generators of its holonomy group. Each isometry
translates the fundamental domain along an integer number of these generators and we can express
the distance A; of the isometry ¢ in terms of \y:

A7 = ni\] + 033+ n3A (4.1)

v A1A2A3

where n; corresponds to the (integer) times the holonomy of length ); is in the isometry. V is the
volume of the fundamental domain. We can rewrite equation (4.1) to volume-normalized distance
as

A

1%&
Equation (4.3) is valid for all flat manifolds, not just the 3-torus, but needs adjustment for cur-
vature in the spherical or hyperbolic case. The frequency of the volume-normalized distances is
plotted in the histogram. Distances corresponding to integer values of the isometries (right side of
equation (4.3)) will show up as spikes. Figure (4.1) shows a PSH for a simulated toroidal universe
with equal lengths of the sides of the fundamental domains.

The equal sided 3-torus is the most promising scenario, because all generators of the holonomy
group are translations of equal length. Only isometries that translate every element of the fun-
damental domain by the same length, the Clifford translations, contribute to spikes in PSHs. All
other flat manifolds result in PSH with similar spikes, be it they will be less pronounced (Gomero
et al., 2000). The hyperbolic and spherical manifolds do not show these spikes at all (Lehoucq
et al., 1999) since none of their isometries translate every point by the same distance. A few of such
spaces are exceptional, in that they do as e.g. spherical projective space. It remains to be seen
whether cosmic crystallography will be a suitable method for the detection of the topology of our
universe. Lehoucq et al. (2000) discuss the limits of cosmic crystallography and also propose some
modifications to successfully detect hyperbolic and elliptic universes using cosmic crystallography.

=n? +n3+ni (4.3)

4.3 2D Concrete methods

When looking for ghost images, one wants to look as far as possible in order to cover a larger
part of the visible universe and thus a larger amount of fundamental domain cells. The ultimate
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Figure 4.1: Pair Separation Histogram of a simulated 3-torus universe with equal lengths.
About 45 copies of the fundamental domain exist in the universe (Lehoucq et al., 1996).

test probe is therefore the cosmic microwave background, which originates from the surface of
last scattering — the edge of the visible Universe. A multi connected universe affects the cosmic
microwave background in subtle but measurable ways.

If the radius of the surface of last scattering is larger than the inner radius of the fundamental
domain (r;,) then the surface of last scattering will intersects with itself. This means that the
temperature of certain points on the CMB are the same as the temperature of certain other points,
because physically the are the same set of points in space. The fact that all of the SLS is at the
same distance (rgrs) assures that any ghost images will be of the same age, therefore there will
be no difference in evolution unlike with 3D concrete methods. This will enlarge the possibility of
detecting them significantly.

The non-statistical circle method tries to detect these ghost images (which are circles in 3D)
directly.

Circles

The intersection of the last scattering surface is a circle. This circle can be seen from both sides,
and will therefore appear in two directions on the CMB. In principle one can scan the CMB
for such identical circles and from there reconstruct the isometries that define the fundamental
domain.
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Figure 4.2: The surface of last scattering in a 2 dimensional toroidal universe. The

observer is in the small brown circles. The surface of last scattering for two of them

is shown as the green circle. At two places the green circles intersect, at point 1 and

2. The observer at B sees a spot 1 in direction «, the observer at point A sees it in

direction . But since the both observers are the same, the observer sees point 1 in both
directions. In 3 dimensions these points will be circles.

Figure 4.3: This figure is the 3 dimensional analog of figure (4.2). Instead of two circles

of last scattering, we have here 3 spheres of last scattering. The observer (us) is in the

center of all three spheres. The CMB of the middle observer intersects the CMB of

the left observer. Therefore he will see the same circle on the CMB also in the exact
opposite direction (in this case of a toroidal universe).



Because this method is model independent, it can provide direct conclusions about the topol-
ogy of any universe. If matched circles are found, it is possible to reconstruct the topology of
space (Weeks, 1998). However, finding all possible intersection circles is computational highly de-
manding. This method is therefore mainly used to verify a certain proposed candidate manifold.
A particular example is the search for antipodal circles, i.e. identical circles exactly at opposite
positions on the CMB. These are expected to exist for manifolds made with identifications corre-
sponding to translations. Most flat models are an example of this. These however have not been
found conclusively, so more difficult manifolds might have to be proposed.

Cornish et al. (2004) have found no evidence for back-to-back matching circles within the range
of 25° —90°. However, Luminet et al. (2003) claim there are pairs of matching circles of 11° radius,
consistent with a binary dodecahedral space.

4.4 2D Statistical methods: non-Gaussian CMB signatures

The (discrete) search for circles in the CMB has been proven hard, and no conclusive evidence
can be derived from it. More promising are statistical methods.

Inflation theory suggests an statistically isotropic Gaussian random distribution of the temper-
ature of the CMB at scales larger then 1°. However, this is only true for a universe large enough.
If we live in a small multi connected universe the CMB would assume a distinctly non-Gaussian
character. The spatial distribution of temperature fluctuations of the primordial soup will still be
Gaussian but its spherical projection as the CMB will not. Since the CMB might contain several
sections of space several times, the temperature fluctuations on the CMB are non-Gaussian.

In classical cosmology the ay,, in the spherical harmonics decomposition of the CMB

0o 14
ATT(Q) = Y amY(Q) (4.4)

=0 m=—¢
are drawn from a Gaussian distribution based on ¢ with a power spectrum

14

1
Cp= — o 45
¢ 2£+17;/a‘ Gem (4.5)

with C) predicted by the adopted cosmological theory. All the information about the CMB is
then contained in the CYy, for fixed ¢ the ay,, are uncorrelated. However, if the universe is multi-
connected the ay,, will be correlated and the C; alone does not define the CMB. All statistical 2D
methods for determining the topology of the universe are based on this fact.

Studies of the WMAP data show that there might indeed be anisotropies and non Gaussianities
in the CMB (Park, 2004; Hajian and Souradeep, 2003; Hajian et al., 2005; Eriksen et al., 2004).
Possibly they can be explained with a multi connected universe (Scannapieco et al., 1999; Levin
et al., 1998; Rocha et al., 2004; Dineen et al., 2005). For a comprehensive review of statistical
methods of topological effects on the CMB see Levin (2002).

By only calculating the power spectrum, ignoring the possible m dependence of the a;,, we
can still get valuable information about the topology of the universe. Experiments show that the
C; for low [, the quadrupole and octupole moments, are smaller then expected from standard
cosmological models. This can be explained by a multi connected universe. If the universe has
a limited size in certain directions, then one does not expect large density fluctuations at larger
scales. In most universes with a fundamental domain with each primary direction about the
same size (i.e. the inscribed sphere is about the same size as the circumscribed sphere) the low [
moments get suppressed. When the sizes of the fundamental domain are not comparable however,
(like with a 3-torus with one size much smaller then the other two) it might also be that the large
I moments get suppressed (Weeks et al., 2004). Gundermann (2005) shows that a spherical binary
polyhedral space may explain the low quadrupole.
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4.5 Multipole Vectors

Recently, Copi et al. (2004) developed a new statistical method for studying the CMB using multi-
pole vectors. The method comprises the decomposition of the CMB into spherical harmonics, and
connects headless vectors, called multipole vectors, to the spherical harmonics. In a simply con-
nected universe following standard cosmology, these vectors are nearly independent and oriented
randomly. The only information a specific cosmological model adds is the size of the vectors. A
multi connected universe might have both an effect on the direction and the size of these vectors.
Figure 4.4 shows examples of multipole vectors of a simulated CMB.

4.5.1 Degrees of Freedom

The usual spherical decomposition of the CMB is given by equation 1.18. Because the coefficients
agm have to fulfill the reality condition from equation 1.19 the set of coefficients with fixed ¢
contains 2¢ + 1 degrees of freedom.

Usually the only statistic considered is Cy of the power spectrum (equation 1.20) which is only
one degree of freedom. The multipole vector decomposition takes all 2¢+ 1 degrees of freedom into
account and therefore offers more room for statistical tests. For every ¢ value there are ¢ headless
multipole vectors giving rise to 2¢ degrees of freedom. The last degree of freedom is a scalar that
can be seen as the size of the vectors. This scalar corresponds to the Cy of the power spectrum.

(a) CMB up to £ =10 (b) Dipole
(c) Quadrupole (d) Octupole

Figure 4.4: Multipole vectors for a simulated CMB.

4.5.2 Construction

The principle behind the method is that the decomposition of the CMB in spherical harmonics
can be converted into a vector decomposition

14
> armYem(e) = AL (80 ¢) (6™ -e) .. (0" ¢e). (4.6)

m=—/{
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The multipole vectors are denoted by ¢%¢, i ranging between 1 and ¢. The scalar is denoted by
AY. The é is a unit vector. In general this conversion is not possible because the product on the
right hand side will contain terms of lower ¢, but because the CMB is a real vector field it is.
For the proof of 4.6 and full conversion of the as,, we refer to Copi et al. (2004). Katz and
Weeks (2004) give a mathematically more rigorous polynomial interpretation of multipole vectors.

4.5.3 Dipole

That the decomposition in equation 4.6 is possible for the dipole can be easily seen. The dipole
directly define a vector in space, along the direction in which the dipole lies. The direction of the
dipole can be inferred from the directions corresponding to the ¢ = 1 spherical harmonics:

. L.
Yio— %, Yi41— ?E (& £19). (4.7)
For a real valued density field v':! is given by
—\/§ar1‘f1
bl — \/ﬁa‘fﬁ (4.8)
a1,0

and A! = |v].

In fact the dipole in the CMB is mostly caused by the motion of the Earth. With respect of
the surface of last scattering we travel with about 600km/s, which results in a (apparent) dipole
in the CMB which is orders of magnitude higher then the primordial dipole. Therefore we are
unable to see the primordial dipole in the CMB at all.

4.5.4 Statistics

In this thesis we will decompose simulated CMBs of multi connected spaces into multipole vectors
and their directional dependency of will be investigated.We have used the sample code from Copi
et al. (2004) for the computation of the multipole vectors. Comparing our simulated results with
physical CMB data might give an indication whether we live in a multi connected universe and
which one it might be.

The WMAP data has been decomposed into multipole vectors by Copi et al. (2004) and Copi
et al. (2005). Their findings are that the low multipole vectors (¢ = 2 and ¢ = 3) align with
each other, it even shows an alignment with the plane of the solar system, which is statistically
infeasible for standard cosmology. There appears to be a preferred direction in the CMB, which
means it is anisotropic. In a multi connected space this is to be expected. On a universal scale
the universe is not isotropic but has preferred direction, e.g. a toroidal universe has 3 major axes.
It is not unlikely that the low multipole vectors align with or perpendicular to these directions.
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Chapter 5

Cosmic Microwave Background
Simulations

In this chapter we will describe the mathematics behind our simulations. The model is a two step
process:

e Decomposition of eigenmodes of the multi connected space into toroidal (planar) eigenmodes.

e Projection of planar eigenmodes into spherical eigenmodes.

5.1 Conversion between linear eigenmodes to spherical

Research of the fluctuations in the Cosmic Microwave Background (CMB) radiation seems to be
the best way to look for signatures of the topology of our universe (see section 4.4). The COBE
and WMAP data has a high resolution, yet several attempts to detect traces of topology have been
in vain. This might be because the available CMB data still are not good enough. We may also
not have a good idea of what we are looking for and, finally, the intended effects are to small to
measure. Evidence is accumulating that there is still a lot of foreground noise in the data. More
definite conclusions may have have to wait for the PLANCK satellite to be launched.

It is useful to determine how and how much we might detect from a topological signal in the
CMB. It is useful, and arguably necessary, that we can make accurate simulations of the CMB in
a multi connected universe. Here we describe how several of the flat multi connected spaces can be
simulated by a method developed by Riazuelo et al. (2004). We limit ourselves to the orientable
flat manifolds. However this technique can be easily extended to all manifolds if the eigenmodes
are known (Lehoucq et al., 2002).

As in section 2.3.4, we denote the multi connected space M as a quotient of the universal
covering space M by the holonomy group I': M = M/T’. The (primordial) density field of the
universe can be decomposed into eigenmodes YL of the quotient space. These eigenmodes form
a subgroup of the group of eigenmodes of the covering space, therefore their eigenvalues will be
the same (—k? in the flat case). This also means that we can write any eigenmode of the multi
connected space as a superposition of a basis of eigenmodes of the simply connected space, although
the elements of this basis are in general not eigenmodes of the multi connected space itself.

The principle as outlined above will be the basis of this section. The eigenmodes of the multi
connected spaces will be calculated as a superposition of the eigenmodes of the torus. Thereafter
they will be rewritten as a superposition of the spherical eigenmodes of the universal covering space.
These can then be used directly to calculate the CMB. We will assume a static density field, i.e. a
field which has not evolved in the course of time. This may be regarded a valid assumption since
we are only concerned in the low multipoles (¢ < 50). The physical scale corresponding to these
multipoles are far larger than the horizon at the decoupling epoch and still reside in the regime
of linear growth.
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5.1.1 Linear Eigenmodes

The most natural eigenmode basis of a flat space are the planar waves:

Ti(x) = e (5.1)
which is normalized as: P
X
Te(x)TE (x)—— = §3(k — K 2
[, 0T G = 8k = K) (52)

Where x is the 3 dimensional coordinate-space parameter, usually written as x = (z,y, 2) and k
is the 3 dimensional phase-space parameter, usually written as k = (k, ky, k).

Using linear eigenmodes, any complex field (including the real primordial density field) can be
written as:

d3k .
o (x,t) = /—§¢k(t)Tk(x)ek (5.3)
(2m)3
where éx is a complex variable, which is usually a random Gaussian satisfying
(exét) = 0P (k — K') (5.4)
¢k (t) can be written as ,
Pi(t) = o (t)e. (5.5)

Since the exponential part can be absorbed into the random variable ex we can choose ¢ to be a
real function of k only. This gives rise to the reality equation

&= ey (5.6)

This relation does not hold for all multi connected spaces, it’s equivalent is shown for all spaces.
If we consider a static field, the time dependence of ¢ (t) can be scraped:
A3k .
o(x) :/—§ Tk (x)Prex (5.7)
(2m)2
In this context ¢y is a measure for the magnitude of the density fluctuations at scale k. It is
determined by the initial conditions one assumes, we leave this unspecified for the moment. For
practical applications we can substitute the integral with a summation, taking dk = 27” for some

limiting length value L, so d°k = @ V is the volume of the box (in an approximate calculation)
or of the fundamental domain (in a multi connected universe). If the resolution of the simulation
is smaller then dx = 1/V there will be a loss of information. The only artificial thing about the
summation is that an upper limit of k£ has to be chosen. In the compact case, the summation is
in fact natural, so expression (5.7) can be written as:

(2m)°* .
6(x) =~ > Tu(x)dnéx (5.8)
k

where the summation goes over all (allowed) values of k. In the compact case, the éx need to be

normalized by volume as
v

W§kk" (5.9)

(exli) =

5.1.2 Spherical Eigenmodes

In situations were we describe the sky, it is usually more appropriate to use spherical harmonics,
i.e. they are particularly useful when looking at the projection of the density field on the sky.

Viem (%) = @ (2m)2 jio (kr) Y{™ () (5.10)

™
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where the Y, are spherical harmonics and the j, are Bessel functions. The spherical eigenmodes
are normalized as:

. 22dpdQ 1
[, Ve Vim0 T =

where r is the radial component of x, » = |x| and € the angular component of x, usually written
in spherical coordinates (6, ¢). The wavenumber & in the spherical decomposition is the same as
the absolute value of the wave vector k in the linear decomposition.

—6(k — K)S00 Oy (5.11)

5.1.3 Converting Linear Eigenmodes to Spherical

Linear eigenmodes can be converted to a linear combination of spherical eigenmodes and visa versa.
For details see appendix (C.1). The projection of a linear eigenmode onto spherical eigenmodes is
given by:

Z Z (Y™ Veem (5.12)

=0 m=—/

Using this, equation (5.8) can be written in spherical waves as

2” ZZ Z (97 (1)) Ve dréi (5.13)

k (=0m=—¢

Presently we can only see the primordial density field in the surface of last scattering (SLS).
Therefore we are only interested in the field at |x| = r = rsps = o.

S J4
S 3wy ) (.14

=0 m=—4¢

Um = @#g((nm*(i%))jg(kxo)mék) (5.15)

P(Q)

5.1.4 Implementing Topology

In the next section we shall see that every eigenmode of the compact space (TE) can be written
as a linear combination of linear eigenmodes of the universal covering space (Yy):

Te=> X Tk, (5.16)

for certain real values of x,. The k are defined using a unitary matrix M as:
k, =kM" (5.17)

ko = k and because M is unitary, every k, has the same magnitude k. The x, and matrix M
will be determined in the next section, for now we will assume there exists such a decomposition.
This allows us to write the density field of the multi connected space as:

(277)3 r A
o(x) = Tzrk(x)¢kek (5.18)

= 27T ZZXer )Orex (5.19)

Using equation (5.12) and the fact that all k, share the same magnitude we can calculate the

QApm -
47TZ€ Z Z Xr (( ) Je (krxo) ¢kek) (5.20)

Qpm =
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To calculate the agy, for our CMB simulations we determine the allowed eigenmodes (values of k),
in combination with the values for the corresponding x,- and M,..

5.2 [Eigenmodes of Flat Spaces

In this section the eigenmodes for all flat closed orientable manifolds will be calculated. The spaces
are treated in the order

e 3-Torus

e Half Turn Space

Quarter Turn Space
Third Turn Space

Sixth Turn Space
e Hantzsche-Wendt Space

Every flat multi connected space can be seen as a quotient space M = E3/T', where I is the
holonomy group. In order to get a plausible physical space (see section 2.4.1 about the cosmological
principle), T" has to be discrete and fixed point free. This means that eigenmode T of the quotient
space corresponds to an eigenmode of the Euclidean space E? that is periodic in the isometries of
the holonomy group, this reduces the problem to finding these periodic eigenmodes.

The group of planar waves form a complete basis of eigenmodes of E3, therefore the subgroup
of the planar waves that is periodic in the isometries from the holonomy group is a complete
basis of the quotient space. Every discrete fixed point free isometry of E? is composed of a
rotation/reflection and/or a translation. Therefore each isometry A takes x to x’ as follows:

Arx— Mx+T (5.21)

where M is the rotation/reflection matrix and T the translation vector. These isometries take
every planar wave Y to another planar wave:

A Tk(x) s eik(MerT)
eikMxekT

e Ty pr (%) (5.22)

For the planar wave to be periodic in A the conditions M = 1 and ¢’ = 1 must be met. This
restricts the choice of isometries greatly. However there exists a subgroup of planar waves that
has lesser restrictions:

{T(k))T(kM))T(kM2)7"'7T(kM"*1)} (523)
with n the lowest integer that fulfills M"™ = 1. Under the action of the isometry, this subgroup
maps to itself. There exist an integer value of n since we assume the transformation is discrete,
usually merely the order of the matrix M. This basis fixes a specific eigenmode:

Tﬁ = aYk+a1Temr + .-+ an_1Lpn—1 (5.24)

aj+1 = eiijTCLj (525)

This element will therefore be periodic in E? by the isometry A since every term maps to another
term:

A:iaj T — G,jeiijTTij-H (x)
= aj+1Tij+1 (526)
A an,lTan_l — an,leian_lT'I'an (X)

= CLnTk
= agYk (5.27)
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If we find an eigenmode which is periodic in all isometries of the holonomy group then we
have found an eigenmode which is also an eigenmode of the quotient space. We will show that
just like all isometries of a general flat quotient space form a subgroup of the Euclidean space,
the isometries of any flat compact space other then the torus form a subgroup of the isometries
of a torus. This means that it is mathematically much easier to find all possibilities then was
previously expected.

5.2.1 Eigenmodes of the 3-Torus

The 3-Torus is the most simple case and will function as a basis for most other spaces we will
investigate. The generators of the holonomy group of 3-torus are 3 translations so M = 1, this
means that n = 1 as well and all the eigenmodes need to fulfill is:

e =1 (5.28)

for all 7. This means that k77 = n12w, kTo = no2m and kT3 = n32w. In general the three
translations span a parallelepiped:

Llw LZm L3w
Ty=| Ly |, To=| Loy |, T5=1| Ls, (5.29)
le L2z L3z

Figure 5.1: The three generators of the holonomy group of the torus span a paral-
lelepiped.

In general this parallelepiped forms a fundamental domain that is not a Dirichlet domain. All
parallelepipeds can be transformed in a hexagonal prism which is a Dirichlet domain. Since these
are easier to visualise these will be used. A cuboid is simply a hexagonal prism with one of it’s
lengths 0. For simplicity we will limit ourselves here to cuboids and regular hexagonal prisms but
the principle works for all parallelepipeds. Limiting to cuboids we have:

L, 0 0
Tn=| 0 |, =1L, | 5= 0 (5.30)
0 0 L,
this gives us allowed k values of
Ng My T
k=22 22 5.31
<Lw,Ly,Lz) . (5.31)

Equation (5.8) can be rewritten as

3 .
$(x) = 7L(2Lﬁ )L > e e (5.32)
whylz
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Since this has to be real for every x, all parts within the sum with the same k should sum up to
a real value as well:

eikxék + eiikxé,k _ efikxél*{ + ez‘kXé*_k (5.33)

bk = €y (5.34)

Note the above bears striking similarity to the classical Fast Fourier Transform (FFT). However,
the design of the FFT imposes its own conditions on the allowed wave vectors. In this case they
are the same as these imposed by the topological shape. In general they will not be compatible,

and the use of a FFT would limit the scope of the simulation to tori. In the following we will
introduce a new basis for the 3-torus not compatible with the FFT.

Hexagonal Torus

One can also choose a hexagon as base for the fundamental domain. The transformation corre-
sponding to a hexagonal torus are

L —1L —3L 0
=1 0 |,Txa= +§L T3 = —@L Ty = 0 (5.35)
0 0 0 L,

The first 3 of these combined result in the unit transformation, so we can eliminate 1 of these if
we want. Following the same line of reasoning as above we derive the allowed wave vectors k:

ni1 2711 — N2 N3
k=|—,——,—/— | 2n 5.36
( L’ 3L Lz) (5.36)
The restrictions on éx are the same.
It is not possible to use any fast Fourier transform algorithm to calculate the CMB for a
universe with a hexagonal prism as a fundamental domain because the wave vectors k are all
transcendental. A FFT needs rational equidistant wave vectors.

5.2.2 Quotients of the Torus

We will show that any of the other flat compact spaces are quotient spaces of one of the represen-
tations of the torus. We know by construction that every isometry we have is discrete and fixed
point free. This means that there exist an n which is the lowest integer that fulfills M" = 1.
By applying the action of the isometry n times on a point x, we get x + 7" where T” is just a
translation. Therefore every isometry is also periodic in that translation.

5.2.3 Half Turn Space

The half turn space is constructed by the isometries of the 3-torus and a half turn corkscrew
motion in half the length of one of the axes:

L,
AMx) = ®+]| 0 (5.37)
0
0
Ao(x) = (x)+ | L, (5.38)
0
0
As(x) = ®)+| 0 (5.39)
L,
-1 0 0 0
Ag(x) = 0 -1 0 |x+| o (5.40)
0 0 1 L./2
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We can eliminate A3 since it is the same as A4 applied twice. It would also be suitable if we used
twice the length for the z-axes, L, = 2L, we choose L. as the size of the covering torus in which
the isometry is periodic. We already know what subspace of flat eigenmodes are preserved by
the first 3 isometries, we have to find out which of these are also preserved by the 4th isometry.
We can find these by applying equations (5.24) and (5.25). The subgroup that is preserved when
starting from Yy, &, r. (k =27(ny/Ly,ny/Ly,n./L.))is

{ sty ons T koo —ky s } (5.41)

It should be noted that this subgroup is the same as the subgroup generated by T _x, —, k.-
Hence we must choose one of the half planes covered by k, and k,. We choose that either &, is
positive, or k, = 0 and k, is positive or the special case when both k, = 0 and %k, = 0.

Equation (5.24) is applied to determine the preserved element. When both &, # 0 and k., # 0
the element is

Th = YTrokho + (D" Tk ko kes (5.42)
when k. is even
Yook = 2Yoonk (5.43)

Table (5.1) lists the x, values for the half turn space.

r |0 1 | conditions
T V)i
Yr 75 NG for (nw > 0)
1 0 for (ngy =ny =0,n, = 2Z)

Table 5.1: x, values for the half turn space

In order to be sure the field will be real a different condition is needed than in case of the
torus. By accumulating all terms with the same k values and require that to be real we get

€hn bk, = ()" Chy by k. (5.44)

5.2.4 Quarter Turn Space

The quarter turn space is very similar to the half turn space, except that it is turned 4 times
before being aligned in the same way again. Therefore we add a quarter turn corkscrew motion
to the torus (we leave away the 3 torus isometries):

0 -1 0 0
Mx)=[1 0 0 |x+[ o (5.45)
0 0 1 L./4

This implies that L, = L, because the sides have to match when the fundamental domain is
turned a quarter circle. We can again remove the third isometry from the torus since it is the
same as applying A4 4 times. If we again take Ty as a element we see that the preserved subgroup
corresponding with it is

{Tkmky,kz oYty ks T mton = ky ks Yoy =k } (5.46)

Since the group is symmetric in k, and k,, the groups generated by Yy, x, k. is also generated by
the Ty, , k., therefore we should exclude the subgroups generated by Yy, 1, k. With negative k,
or ky, and take care when handling the special cases when either one of them or both are 0. The
corresponding preserved eigenmodes are

A n, -2n,, -3n,
Ty = Lhasy ke + 0T by ope + 07" iy ke + 07" Ty ek (5.47)
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r |0 1 2 3 | condition
Xr % i?;z i2;z i3;z for (nw c Z+, Ny c 7o U 0’ n, € Z)
1 0 0 0 for (ny =n,y =0,n, € 4Z)

Table 5.2: x; coefficients for the half turn space.

In the special case that n, = n, = 0 the set reduces to {Yo,0x,} and Yoo, will be preserved
when n, € 4Z. The full set of x, for the quarter turn space are given in table(5.2).

The restrictions on éx are the same as at the half turn space: When k., # 0, k, is a complex
random variable fulfilling

Ak

ekm,szCz = (_]')nzékm;ky77kz (5'48)

and when k, = 0, é; is a real variable.

5.2.5 Third Turn Space

The third turn space can be best described as a quotient of the hexagonal representation of the
torus. Together with the 4 known isometries of the hexagonal torus we also add a third turn
corkscrew motion.

L
AM(x) = )+ | 0 (5.49)
0
—%L
A(x) = (x)+ | +LL (5.50)
0
—%L
As(x) = (x)+ —@L (5.51)
0
0
Mx) = )+ 0 (5.52)
L,
-3 £ o 0
As(x) = Sl oo [+ 0 (5.53)
0 0 1 3L

As above, we can eliminate any of the first 3 isometries by linear combination of the latter 2. The
4th isometry is also a linear superposition of the 5th. This fixes the element

Tk + €%i2WTkM + e%i2WTkM2. (5.54)
Where the kM are given by
_ Iy —
kK — o (T“%L_) (5.55)
2 _

KM = 2n (TWL_> (5.56)

2 _ 9 Ng —MN1 —N1 — N2 @ )
kM T NI AR (5.57)

By the same line of reasoning as above we can calculate the x, values given in table (5.3). The
corresponding constraints on éy are

(5.58)

g5 .
&* — € 3 ﬂzen2,712—n17—77,3 when ng >Ny,
ni,m2,n3 2

3 9minA
€3 €n;—ng,ni1,—n3 when n2 S ni.
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r | o 1 2 | condition
Lion Zion
“ % % e\/g for (ny € Zt,ny € ZT U0, n, € Z)
1 0 0 for (n1 =ngo =0,n3 € 32)

Table 5.3: x; coefficients for the third turn space.

5.2.6 Sixth Turn Space

The procedure for the sixth turn space is very similar to the third turn space, except we add a
sixth turn corkscrew motion instead of a third turn:

S 0
2 2
M) = | E L o || 0 (559)
0 O 1 ng
the fixed eigenmodes is
1
7 (T + ¢ Yaear + ¢ Trenrz + ™ Lienrs + € Taepgs + ™ Tiess) (5.60)

where ( is a sixth root unit vector { = e52™. When nyp = ng = 0 this is reduced to just Yoo x, for
ks € 3Z. The x, are given in table (5.4). The corresponding k vectors are

r |0 1 2 3 4 5 | condition
o P 3 In 5
“ % % C\/g C\/ég C\/g C\/g for (ny € Zt,ns € ZT U0, n3 < ny,m, € 7Z)
1 0 0 0 0 0 for (n1 =ngo =0,n3 € 62Z)

Table 5.4: x, coeflicients for the sixth turn space.

Ing —
k = 27T( - n\l/—an, %) : (5.61)
ny—MNg Ni1+ng N3
kM! = ( I 3L L. ) (5.62)
—n1+2ng
—2n
KMP = o (% \/152 — ZB) ! (5.64)
ny+mns —ni—Mng N3
kM* = 2 n3 .
T ( ) \/—L 9 LZ> ’ (5 65)
- -2
KM? = 2 ( I ’m\/g,;nz’ ZB) (5.66)
The constrained on éy is
o* — (_1)n3én1,n277n3 when ns # 0
ni,n2,m3 { real when ng =0 (567)

5.2.7 Hantzsche-Wendt space

Just like the previous Fundamental Domains, also the Hantzsche-Wendt space can be seen as
the quotient of a Torus, although this is less clear at first sight. The three isometries of the
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Hantzsche-Wendt space are:

1 0 0 %Lz

A(x) = 0 -1 0 + | 3L, (5.68)
0 0 -1 0
-1 0 0 0

Ary(x) = 0 1 0 + %Ly (5.69)
0 0 -1 IL,
-1 0 0 iL,

As(x) = 0 -1 0 |+ 0 (5.70)
0 0 1 17,

[N

Any of these isometries applied twice result in a translation, so indeed the Hantzsche-Wendt space
is also a quotient of a torus (of size L,L,L./8). The fixed eigenmode of all 3 isometries is

Thpkyko + (D)™™ Ypy ke ke + (=)™ gy k. + (D)™™ g, k. (5.71)

when 2 of the indexes n,,n,,n. is 0 this gets simplified; if n, = n, = 0 this reduces to Ty, 0,0 +
Y _k, 0,0 and respectively for the other combinations. By symmetry arguments we should again
restrict the allowed values for n,,n,, n.. This gives us values for x, as shown in table (5.5).

r 0 1 2 3 condition
T R 5V il S Y e
or (ny,n, € Z*,n, =0)
or (ng,n, € Z*,n, = 0)
Xr | L 0 1 0 for n, = n, = 0,n, € 27+
v V3 y=ne=0n,
% 0 0 % for n, =n, =0,n, € 2Z+
% % 0 0 for ny, =ny, =0,n, € 2Z*

Table 5.5: x, coefficients for the Hantzsche-Wendt space.

80



Chapter 6

Experimental Results

The results of our simulations are given in this chapter. We have simulated the cosmic microwave
background (CMB) for each flat orientable multi connected universe. The simulated spaces are
treated in the order below

e 3-Torus

Chimney Space
Slab Space

Half Turn Space

Quarter Turn Space

Third Turn Space

e Sixth Turn Space
e Hantzsche-Wendt Space

For each space we took some dimensions with fixed size and varied the other. This way it is
possible to determine how the signal(s) we might be able to measure depend on the size of the
universe. Most of the simulations are done with us (the observers) in very special positions so
possible effects of the topology on the CMB are the highest. E.g in the case of the half turn space
we are located on the axis of rotation. For each space we generate a realization of a CMB sky
along with the corresponding multipole vectors and pairs of matching circles.

6.1 Hypothesis

In a pure Gaussian simply connected space, the multipole vectors are randomly aligned with no
preferred directions. All multi connected spaces (with the exception of the projective space) have
intrinsic special directions. E.g. in the chimney space one direction is infinite while the others are
not. The hypothesis which we pursue are:

1. The multipole vectors are dependent on special directions of the topology of the universe.
2. The multipole vectors become aligned (or anti-aligned) with each other.

The second hypothesis is directly related to the first, i.e. if all the quadrupole align with a
specific axis they will also align with themselves. Note that unlike in the real world we have a
priori knowledge of what the special directions of our Universe are. The second hypothesis is the
only hypothesis we can therefore test in reality. If however, we do have prior knowledge about
special directions in the sky — e.g. due to matching circles — we can use the results of this
research to calculate probabilities of certain topological shapes.
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6.2 Results

6.2.1 Euclidean Space

The simply connected Euclidean space was not simulated directly. The Euclidean case is the limit
of the 3-torus, chimney and slap space if we take the closed dimensions very large (i.e. several
times the distance of the surface of last scattering).

From figures (6.1(b)) and (6.1(d)) we can deduce that the dipole and quadrupoles indeed do
not align themselves to a preferred direction. Note that the quadrupoles do anti-align slightly
with each other in the Euclidean case.
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6.2.2 Torus

Torus Space, Dipole To Main Axes

~ -~ Expected Gaussian
—— Dipole to X

—— DipoletoY

—— Dipole to Z

0.8r| —— Diameter cMB
Standard Deviation X

Improduct Dipole with X,Y,Z axis

0 1 2 3 4 5
Size of Universe in X,Y,Z directions

(a) The cosmic microwave background for a cuboid uni- (b) The alignment of the dipole with the 3
verse with a baselength of 0.8rsyg. axes of the cube is not existent.

Torus Space, Quadrupoles To Dipoles

- - Expected Gaussian

TR w,w,vr-We.»ﬂli'.';wrww

Quadrupoles

5 4 3 2 1 0
Size of Universe in X,Y,Z direction

(c) The cosmic microwave background in Aitoff projection. (d) The quadrupole alignment of the cube.
The three largest pairs of matching circles are shown with
identification.

Figure 6.1: Torus

The torus is the simplest case to simulate. We simulated a perfect cuboid torus. The radius of
the surface of last scattering is set at rsps = 1.2134354 which is dimensionless and sets the scale
of our simulation. The size of the cube is varied between 5 and 0.

Figure (6.2(a)) shows the results of the simulation, 3 instances of the CMB. We (the observers)
are in the center of all three spheres and the three CMB’s are therefore identical. They fluently
disperse into another at the circles where they intersect. Repetitive features can clearly be seen.

Figures (6.1(b)) and (6.1(d)) show the alignment of the dipole and the quadrupole respectively.
The dipoles do not (cross)align themselves with any of the axis of the torus, neither with the
quadrupoles. This is expected, since the dipole alignment is averaged, and on average there is no
distinction between the 3 axes. No research is done on the actual distribution of the alignments,
i.e. it might be possible that the dipoles always align with one of the axes but not with a specific
one.
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6.2.3 Chimney Spaces

Chimney Space, Dipole To Main Axes

1.0
- - Expected Gaussian
—— Dipole to X
—— Dipoleto Y
—— Dipole to Z
0.8 —— Diameter CMB
Standard Deviation X
0.6
0.4
0.2
0 5 4 .li 2 1 0
(a) The cosmic microwave background for a chim- (b) The dipole alignment of the chimney space.
ney space with a square base of 0.8rgs. The two The dipole aligns itself with the open direction
quadrupole vectors are shown. (Y). It is interesting to see that the effect is

already visible before the fundamental domain
enters the horizon.

Chimney Space, Quadrupoles To Dipoles

- - Expected Gaussian
— D101
— D1Q2

Q1Q2
—— Diameter CMB

0.8

o
o

Quadrupoles

o
=

0.2

3 2
Size of Universe in X,Y,Z direction

(c) The cosmic microwave background in Aitoff- (d) The quadrupole alignments of the chim-
projection. ney space. It is clear that the quadrupoles will
align with each other and with the dipole.

Figure 6.2: Chimney Space

For our purposes square chimney spaces are the most simple spaces to consider. For a square
chimney space we use a cuboid as fundamental domain. Two sides are equal and will vary in
radius, the third side is large, about 10 times the radius of the surface of last scattering to emulate
an infinite direction. The finite third direction can be considered infinite for all considerations,
the Euclidean case demonstrated this. The size of the square will be varied from 0.1 to 5. The
radius of the surface of last scattering is set to rsps = 1.2134354.

Figure (6.2(a)) shows the results of the simulation. 5 instances of the CMB as seen from the
outside and the quadrupole vectors are shown. The 5 surfaces of last scattering are chosen in
such a manner that the 4 closest ghost copies of the center CMB are shown, corresponding to
two generators of the holonomy group. Where two spheres intersect matching circles can be seen.
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Note that since the lengths of the generating isometries are smaller then half the diameter of the
CMB there are more matching circles from spheres not shown. It is clear that the quadrupole
vectors do align themselves with the open direction of the space.

Figures (6.2(b)) and (6.2(d)) show the alignment of the dipole and quadrupole for the chimney
space. From (6.2(b)) it is clear that the dipole aligns with the open direction. From (6.2(d)) we
can conclude that the dipole and quadrupoles align with each other.
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6.2.4 Slab Space

(a) The cosmic microwave background for a slab
space with a ‘thickness’ of 0.8rg1g. The dipole vec-

tor is shown.

(c) The CMB in aitoff projection

Slab Space, Dipole To Main Axes

- - Expected Gaussian
—— Dipole to X
—— Dipole to Y
—— Dipoleto Z

0.8 —— Diameter CMB
Standard Deviation X

Improduct Dipole with X,Y,Z axis

3 2
Size of Universe in Y,Z directions

(b) The dipole alignment in the slab space.
The dipole drops towards the infinite Y,Z
plane. Also here the direction is visible be-
fore the short direction of the slab is smaller
then the horizon.

Slab Space, Quadrupoles To Dipoles

- - Expected Gaussian
— D101
— D1Q2

Q1Q2
0.8F | —— Diameter cMB

Quadrupoles
o
o

o
=

0.2

3
Size of Universe in Y,Z direction

(d) The quadrupole alignment in the slab
space. The quadrupoles slightly align with
each other, and slightly with the dipole.

Figure 6.3: Slab Space

The slab space is simulated analogously with the chimney space. For a slab space two directions
are set fixed at near infinity, the other varies in extent. The other parameters are the same as in
the chimney space. Figure (6.3(a)) shows the results of the simulation, 3 instances of the CMB
and the dipole vector. The dipole and quadrupole alignments in the slab space are shown in figures

(6.3(b)) and (6.3(d)).
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6.2.5 Half Turn Space

Half Turn Space, Dipole To Main Axes

- - Expected Gaussian
—— Dipole to X
—— Dipole to Y
—— Dipoleto Z

0.8 —— Diameter CMB
Standard Deviation X

Improduct Dipole with X,Y,Z axis

3 2
Size of the Universe

(b) The dipole alignment in the half turn space
with a cube fundamental domain. The turn is
in the Z-direction. The dipole aligns itself with
the rotation axis when the size of the CMB is
an integer multiple of the size of the FD.

Half Turn Space, Quadrupoles To Dipole
T T T T T

- - Expected Gaussian

—— Dipole to Quadrupole 1

—— Dipole to Quadrupole 2

—— Quadrupole 1 to Quadrupole 2
0.8 —— Diameter CMB

Quadrupoles
o
o

o
Y

0.2

0 5 4 1 0
Size of the Universe
(c) Two images of three times the cosmic microwave (d) The quadrupole alignment in the halfturn
background for a half turn space with a ‘thickness’ space. The quadrupole is unaligned with the
of 0.8rsrs. The lower image is rotated a half turn dipole.

along the axis of the three spheres. The two outer
spheres are the same as the inner spheres, but ro-
tated half a turn so the CMB’s have a fluent con-
tinuation on the borderlines. The bottom image is
shown so it can be verified that all three spheres are
actually the same: features on the outer two spheres
in the top picture can be seen in the middle sphere
in the bottom picture as well.

Figure 6.4: Half Turn Space
The half turn space is simulated with a cube fundamental domain. All sides are of equal length

and varied between 5 and 0. Figure (6.4(c)) shows an realization of the simulation. The dipole
and quadrupole alignments in the half turn space are shown in figures (6.4(b)) and (6.4(d)).
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6.2.6 Quarter Turn Space

Quarter Turn Space, Dipole To Main Axes

- - Expected Gaussian
—— Dipole to X
—— Dipole to Y
—— Dipoleto Z

0.8 —— Diameter CMB
Standard Deviation X

Improduct Dipole with X,Y,Z axis

3 2
Size of the Universe

(a) The cosmic microwave background for a quarter (b) The dipole alignment in the quarter turn
turn space with a ‘thickness’ of 0.8rg . space. Although some spikes appear to be vis-
ible it is hard to conclude alignment.

Quarter Turn Space, Quadrupoles To Dipole
T T T T T

- - Expected Gaussian
—— Dipole to Quadrupole 1

—— Dipole to Quadrupole 2

—— Quadrupole 1 to Quadrupole 2
0.8 —— Diameter CMB

Quadrupoles
o
o

o
Y

0.2

Size of the Universe

(c) The CMB in aitoff projection. Two pairs of (d) The quadrupole alignment in the quarter-
matching circles are shown. The yellow circles have turn space. No alignment is visible.

to be rotated a quarter circle as indicated by the

yellow dot and arrow to match.

Figure 6.5: Quarter Turn Space

The quarter turn space is simulated with a cube fundamental domain. All sides are of equal
length and varied between 5 and 0. Figure (6.5(a)) shows an realization of the simulation. The
dipole and quadrupole alignments in the quarter turn space are shown in figures (6.5(b)) and

(6.5(d)).
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6.2.7 Third Turn Space

Third Turn Space, Dipole To Main Axes

1.0

- - Expected Gaussian

—— Dipole to X

—— Dipoleto Y

—— Dipole to Z
0.8 —— Diameter CMB

E Standard Deviation X
‘Il ‘ Ut
0.2
0.05 4 3 2 1 0
Size of the Universe

Improduct Dipole with X,Y,Z axis

(a) The cosmic microwave background for a third (b) The dipole alignment in the third turn
turn space. space. The dipole aligns with the rotation axes
often at certain sizes, but anti-aligns at other
sizes.
Third Turn Space, Quadrupoles To Dipole
1.0 T

- - Expected Gaussian
—— Dipole to Quadrupole 1

—— Dipole to Quadrupole 2

—— Quadrupole 1 to Quadrupole 2
0.8 —— Diameter CMB

Quadrupoles
o
o

o
=

0.2

3 2
Size of the Universe

(c) The CMB in Aitoff projection. (d) The quadrupole alignment in the third turn
space. There is no alignment between the
quadrupoles and the dipole.

Figure 6.6: Third Turn Space

The third turn space is simulated with a hexagonal fundamental domain. All sides are of
equal length and varied between 5 and 0. Figure (6.6(a)) shows an realization of the simulation.
The dipole and quadrupole alignments in the third turn space are shown in figures (6.6(b)) and
(6.6(d)).
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6.2.8 Sixth Turn Space

&P

Sixth Turn Space, Dipole To Main Axes

- - Expected Gaussian

—— Dipole to X

—— Dipoleto Y

—— Dipoleto Z

— Diameter CMB
Standard Deviation X

0.8

0.6

0.4

Improduct Dipole with X,Y,Z axis

0.2
0.05 4 3 1 0
Size of the Universe
(a) The cosmic microwave background for a sixth (b) The dipole alignment in the sixth turn
turn space. space.
Sixth Turn Space, Quadrupoles To Dipole
1.0 T
- - Expected Gaussian
—— Dipole to Quadrupole 1
08 —— Dipole to Quadrupole 2
: —— Quadrupole 1 to Quadrupole 2
— Diameter CMB
2 0.6
H
g
Soa
0.2
0. < 5
Size of the Universe
(c) The CMB in Aitoff projection. (d) The quadrupole alignment in the sixth turn
space.

Figure 6.7: Sixth Turn Space

The sixth turn space is simulated with a hexagonal fundamental domain. All sides are of
equal length and varied between 5 and 0. Figure (6.7(a)) shows an realization of the simulation.
The dipole and quadrupole alignments in the sixth turn space are shown in figures (6.7(b)) and

6.7(d)).
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6.2.9 Hantzsche-Wendt Space

(a) The cosmic microwave background for a
Hantzsche-Wendt space.

(c) The CMB in Aitoff projection. One pair of
matching circles is shown. The circles intersect
themselves.

Hantzsche-Wendt Space, Dipole To Main Axes

~ - Expected Gaussian
—— Dipole to X

—— Dipoleto Y

—— Dipoleto Z

0.8F| —— Diameter CMB

Standard Deviation X

Improduct Dipole with X,Y,Z axis

0.2

Size of the Universe

(b) The dipole alignment in the Hantzsche-
Wendt space. There is no preference between
the three primary direction, which this figure
confirms.

Hantzsche-Wendt Space, Quadrupoles To Dipole
T r T . .

- - Expected Gaussian
—— Dipole to Quadrupole 1

—— Dipole to Quadrupole 2

—— Quadrupole 1 to Quadrupole 2
0.8 —— Diameter CMB

Quadrupoles

3 2
Size of the Universe

(d) The quadrupole alignment in the
Hantzsche-Wendt space.

Figure 6.8: Hantzsche-Wendt Space

The Hantzsche-Wendt space is simulated with a size varied between 5 and 0. This is the size
of the cube that has the same volume as the fundamental domain of the Hantzsche-Wendt space.
Figure (6.8(a)) shows an realization of the simulation. The dipole and quadrupole alignments in
the Hantzsche-Wendt space is shown in figures (6.8(b)) and (6.8(d)).
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6.3 Conclusions

6.3.1 Conclusions

All simulated background radiations (CMB) resemble their topologies. By applying the isometries
of the holonomy group corresponding to the topology in consideration, the CMB smoothly matches
its ghost copy at their circle of intersection. From our simulation we can conclude that

e the effect of the topology on the multipole vectors is more dependent on the size of the
fundamental domain than on its specific shape. In the semi-open spaces — the chimney and
slab space — the effect on the direction of the multipole vectors is large: in the limit the
vectors align themselves perfectly with the open directions.

e The effect of a specific shape is less pronounced. In most of the -turn cases, the dipole does
align with the direction of the turn when the size of the fundamental domain in the direction
of the rotation is a specific ratio of the size of the cosmic microwave background.

o Effects might be visible even if the scale at which the Universe is multi connected is larger
then the diameter of the visible Universe. Figure 6.3(b) of the slab space show that the
dipole aligns itself in an open direction even before the closed direction is visible.

6.3.2 Usability

The alignment of the poles with the special axes of the fundamental domain is not measurable
a priori since we do not know these special direction before hand. Only if we have a model of
a certain shape we can measure the probability that the poles align in the way they do. This is
especially difficult with the dipole, i.e. it is hard to infer the intrinsic dipole as the resulting dipole
of the Earth’s motion is so large.

Therefore we have to conclude that at this moment it is not feasible to use the multipole vector
analysis of the CMB to infer a specific topology of the Universe. Nonetheless it might be a valuable
tool to check the probability of the existing CMB for a specific proposed model for the topology
of the Universe.

6.3.3 Improvement

The simulations in this thesis are still limited in scope. Only spaces with very simple shapes are
considered. It is possible to extend the shapes of the fundamental domains to take into account
all degrees of freedom that the topologies have. E.g. a hexagonal space might be used for the
torus as well and different sizes of the main axes of the FD can be used. Early exploration of these
spaces show more statistical alignment anomalies so they might be more easily discovered using
this technique.

Also, many of these simulated spaces have the Earth at a special position. In case of the
-turn spaces the observer is placed on the axis of rotation, which would be a unlikely coincidence.
Dependance on the specific position of the observer should be investigated further.
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Appendix A

FLRW Conventions

In section (1.4.3) we used a non-standard notation of the Robertson-Walker metric (RW-metric).
This notation is more generic and mathematically more sound. The general expression of the
RW-metric used in this thesis is identical to the more commonly used ones. As the conventional
metric’s we use the one defined by Peacock in his book Cosmological Physics formula 3.12 and
3.10:

do® = R?(dr®+ Si(r)d®?) (A1)
d®* = db* + sin? d¢? (A.2)

with S}, depending on curvature

sin(r) (k=1)  Spherical
Sp(r)y=13 r (k=0) Flat (A.3)
sinh(r) (k= —1) Hyperbolic

where k is the constant of curvature.

Note that the r in the flat case is in units of present-day radius of curvature where r in the
other spaces is the comoving angular distance. The r in the flat case has unit of distance, and can
be arbitrarily large. The r in the other 2 cases is an dimensionless angle. In the spherical case it
can only reach 27. To convert from angular distance to comoving distance one has to multiply by
the absolute value of R. Using different coordinates makes it intrinsically harder to understand
the meaning of these metrics then is necessary. Peacock states: “There should of course be two
different symbols for the different comoving radii, but each is often called r in the literature, so we
have to learn to live with this ambiguity.” While it is important to keep in mind that literature
uses ambiguous definitions it is important to understand that these 3 metrics are just special cases
of a generic one. In the rest of this section we will refer to the ‘angular’ r as p, to avoid confusion.

The generic expression we propose for the metric is

2

do? = dr? + sin (%) R2d%> (A4)
We disregard the decomposition of the solid angle ®, since it does not differ between the classical
and generic definition. Using a generic solid angle also enables us to use this formula for a universe

of arbitrary dimensions. From the general definition we can easily derive the classical spherical,
flat and hyperbolic definitions.
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Appendix B

Group Theory

A group is a set of elements accompanied by an operator. The operator applied to two elements
of the group results in an element that also has to be in the group. In general, when we have a
group G and an operator ® we have

G= {917927937"-} (B].)
9a @ gb = Gn (B'2)
b ® o = gm (B.3)

Every group has to have an identity element I. When an element of G is combined with the
identity element it returns the element itself. Every element g, has an inverse element, g, ! that
combined give the identity element.

ga®I:I®ga:ga (B4)
9a® Gy =0, ®ga=1 (B.5)

If g, and g, from equations B.2 and B.3 are the same for all g, and g, we say the group is
Abelian. The set generators of a group are the elements that can generate the entire group by
repeatedly applying the operator to these elements. The generators should be independent, i.e. it
should not be possible to construct one of the generators by combining the others.

An example of a group is the group of integers Z = {...,—2,—1,0,1,2,...} with respect to the
addition operator. The identity element of the integers is I = 0 and the inverse of every element
is g; ! = —ga. A possible set of generators of the integers is —1 and 1 since every integer can be

generated by adding —1 and or 1 together a finite number of times. Besides an additive group, the
set of real numbers form a multiplicative group as well with I = 1 and g;! = gl. The notation
of a superscript —1 for the inverse element originates from the multiplicative gro&ps, in general it
should not literary be seen as a division. Both these groups are Abelian.

In general the elements of a group do not have to be numbers, they can be anything, from
functions to abstract concepts, as long as there is an operator ® and an identity element I that

obey the rules above.
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Appendix C

Simulation

C.1 Converting Linear Eigenmodes to Spherical

These two equations form the key to the conversion from linear to spherical eigenmodes:

14

S @y (@) = 2 peos( - ) (c.1)
m=—/
ellx — i(ze + 1)i%js(kx) Py (cos Oy x ) (C.2)
=0

where Oy x is the angle between k and x. By combining these equations we can rewrite (5.1) as:

Ti(x) = e (C.3)
= 33 k) o A @)Y ) (C.4)
=0 m=—¢
oo 4
= 3> () Amelka) v (@) (C.5)
=0 m=—¢

)3 S N
ox) = (2V) S (k) dmelka) Y (@) g (C.6)
k (=0m=—¢
(2m)? N 7 . m R
= RN ST () e (k) Vi () dra (C.7)
k (=0m=—¢
S J4
= Z Z (271')3sz Yém*(iﬂ) je (k) drér ) Y™ () (C.8)
=0 m=—4 4 k

C.2 Flat Eigenmodes

We derive the equations of section (5.2). For the isometries themselfs we refer to the main chapter.
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C.2.1 Half Turn Space

When k., k, are not both 0, the preserved element is:
L = Tt T,
= Y,k +e TR TR k)00 L2y
xRy Rz Ty y Rz
— Tkz,ky,kz + 6277712/2)’1‘_]%’_16%]62
= Tk?z7k7y;kz + (_1)7Lz’r7km;7ky7kz (C'g)
otherwise it is:
Tg,o,kz = T+ eileTTkM
— Yook + eOOkIO0LD Yy
= Yook + /DY 0k,
= Yook +(=1)"To,0,k.
= 2Yg0k when k, is even (C.10)

We see that TT, —k, k. 18 essentially the same element as T, hy ok

Yk = Tokekyhe + (1) Thy ey ke
= (=)™ (=)™ by by ke + Thyohy k)
= (D)™ Tk ke (C.11)

To calculate the restrictions on éx we first calculate the complex conjugate of the eigenmode.
Tk = (Tt (1) Tip)ei
= (T + (=)™ Tinr) ex
= (szky,kz + (_1)nz’rtkm,fky7kz) (%
= (Tohhy—he + (1) Thy by, k) €k
= (=™ (1) Yoy e + Thop by k) €ic
(—l)nzTgm,ky,—kzel*c (C.12)

Since the reality condition has to hold for all values of k and x — which is the (omitted) parameter
of T — we have to collect all preserved eigenmodes with terms with the same k values. In this
case this means combining with the preserved eigenmode generated by k = (k;, ky, —k.). Doing
this we get:

Chn bk, = (1) Chy by k. (C.13)

this implies that when k, = 0 the value é; is a real (random) variable. Please note that during
this derivation we made several implicit usage of (—1)~"* = (—1)"+ for n, € Z.

C.2.2 Quarter Turn Space

The quarter turn space is very similar to the half turn space. The restrictions on éy are the same
as at the half turn space:

r .
Trl ey = Yoko—ky—k. +(=1)""*Thy —k,,—k.
2n. ;2 3n. ;3
(1) Ty oy =k + (=1)7"8°"* T gy~
.3 .9 .
= Tﬁkzxfky77kz + G nz’rky77kz77kz + G nz’rkm;ky77kz + an’-rfky7kz77kz

= (‘Unzﬂfgmky,sz (C.14)
ZTE;Icy,kzézm,kz,kz = Z(—l)nzTgmky,székm,ky,—kz (C.15)
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This can only be fulfilled for all x when k, # 0, k. is a complex random variable fulfilling

ézm,kz7kz = (_]')nzékm;ky77kz (C'lﬁ)

and when k, = 0, é is a real variable.
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Appendix D

Glossary

e Acoustic Peaks (in the CMB) Largest peaks in the power spectrum. After the big bang
the (matter)densities Universe oscillated due to gravity and pressure. At decoupling the
pressure dropped and the oscillations froze in phase. Densities in a maximum or minimum
of their oscillations show as peaks in the power spectrum of the CMB.

e Affine Point The intersection point of two parallel geodesics. This point is not part of the
plane in which the geodesics lie, on the Poincaré and Klein disks it lies on the boundary of
the disk. (s.a Ultra Affine Point)

e Big Bang The singularity at the beginning of the Universe. At the time of the Big Bang
the Universe was infinitely dense and hot. ‘Before the Big Bang’ is a meaningless concept,
time began together with space with the Big Bang.

e Black Body An object that emits light with a specific radiation curve (Planck’s law) de-
pending on temperature.

e Bolyai, Janos A Transylvanian (Hungarian) mathematician (1802-1860). Published his
works of hyperbolic geometry in 1832.

e Circumcircle, Circumsphere The smallest circle/sphere enclosing a polygon/polyhedron.
(s.a. Circumscribed Circle, Inscribed Circle, Incircle)

e Circumscribed Circle, Sphere The unique circle/sphere passing through each vertex of
a polygon/polyhedron. (s.a. Circumcircle, Inscribed Circle, Incircle)

e Closed in Space A universe with no infinite dimensions. Its volume is finite.
e Closed in Time A universe that stops expanding and starts contracting into a singularity.
e CMB see Cosmic Microwave Background

e Cosmic Microwave Background, CMB The radiation from the surface of last scattering
that reaches us now. The radiation has cooled down due to expansion of the Universe to
black body radiation of 3.7K.

e Copernicus, Nicolaus a German or Polish astronomer (1473-1543) who popularized the
heliocentric model of the Universe formulated the Copernican Principle.

e Copernican Principle The idea that we should not see us as special in the Universe.
e Cosmology Study of the Universe at its largest scales.

e Clifford transformation A transformation that translates all points the same distance.
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Cosmological Principle The idea that the Universe is homogeneous and isotropic.

Covering Transformations The group of symmetries of the universal covering space.
These are the group of transformations that translates the fundamental domain to its ghost
copies. (s.a. Holonomy Group)

Dirichlet Domain A special fundamental domain, corresponding to a certain point in the
manifold, called the base point of that Dirichlet domain. The distance of every point in the
Dirichlet domain to the base point is shorter then the distance to any ghost copies of the
base point. In non globally homogeneous spaces the Dirichlet domain is different for different
base points. Construction of the Dirichlet domain is given in figure (2.5).

Einstein, Albert A German physicist (1879-1955). Einstein developed the theory of special
and general relativity.

Einstein Tensor A rank 2 tensor which describes the curvature of spacetime. Usually
written as G, .

Stress-Energy Tensor A rank 2 tensor used to describe the content of the Universe in
general relativity. Usually written as 7),,.

Euclid A Greek mathematician who lived in Alexandria around 325BC to 265BC. Euclid is
famous for his book ‘The Elements’ in which the rules for flat geometry are described.

Euclidean Geometry see Flat Geometry.

Equidistant Lines Two lines with the attribute that every point on either line has a fixed
distance to the other line. In Euclidean space a line equidistant to a geodesic is a geodesic
itself, in spherical space it is a small circle. (s.a Ultra Parallel Geodesics, Ultra Parallel
Geodesics)

Flat Geometry Geometry of a simply connected locally isotropic space where through any
given point only one geodesic does not intersect with another given geodesic. Also called
Euclidean geometry. (s.a. Spherical Geometry, Hyperbolic Geometry)

Flat Torus The truly flat torus, T? = S! x S! with 0 curvature everywhere. Possible to
embed isometrically in R*.

Fundamental Domain, FD A polyhedron in 3 dimensions or polygon in 2D, which con-
tains every point of the manifold only once and can be used to construct the manifold by
gluing together the appropriate sides with appropriate orientation. The universal covering
space can be created by assembling several (infinite if the covering space is open) pieces of
the fundamental domain together with proper identifications. Most fundamental domains
discussed in this thesis are Dirichlet Domains.

General Relativity A theory of physics in which spacetime is not a rigid manifold but where
matter curves space and space influences the motion of matter. (s.a. Special Relativity)

Gauss, Carl Friedrich A German mathematician (1777-1855) known for his many contri-
butions to a large number of scientific fields. Discovered hyperbolic geometry around 1800
but did not publish it out of fear of his reputation being tarnished by other mathematicians.

Genus The amount of holes (or better, handles) a manifold has.

Geodesics The locally shortest path between two points on a manifold. In Euclidean space
this path is usually called a straight line. On a spherical space it is a great circle.

Glide Reflection A translations with a reflection along the line parallel to the translation.
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Great Circle A circle on a spherical space that intersects two antipodal points. (s.a Small
Circle)

Great Debate A discussion in the 1920s whether the Universe consisted of our Galaxy only,
or whether it consists of several galaxies similar to our own.

Holonomy Group The holonomy group I' is a subset of the full isometry group G of the
universal covering space which account for the identifications of the fundamental domain.
The compact manifold can be represented by its group structure G/T.

Homotopy Group The group of classes of loops that can be transformed smoothly into
one another. On the sphere this group has only 1 element since all loops can be transformed
into one another.

Hyperbolic Geometry Geometry of a simply connected locally isotropic space where
through any given point infinite geodesics do not intersect with another given geodesic.
(s.a. Spherical Geometry, Flat Geometry)

Incircle, Insphere The largest circle/sphere enclosed in a polygon/polyhedron. (s.a. Cir-
cumcircle, Circumscribed Circle, Inscribed Circle)

Inflation The period shortly after the Big Bang when the Universe expanded exponentially.
Inflation caused the quantum fluctuations in the primordial density field to expand to cosmic
proportions.

Integrated Sachs-Wolfe effect The effect that the entire gravitational field between the
CMB and us has on the energy of a photon from the CMB. (s.a. Sachs-Wolfe effect)

Inscribed Circle, Sphere The unique circle/sphere tangent to every side/face of a poly-
gon/polyhedron. (s.a. Circumcircle, Circumscribed Circle, Incircle)

Isometry A transformation (usually called A) that moves every point z of a manifold (which
is usually the universal covering space) to another point on the manifold while preserving
distances between points.

Az — Ax) (D.1
dist(x,y) = dist(A(z),A(y)) (D.2)

Isometry Group The set of isometries of a manifold, usually of the universal covering
space.

Klein, Felix A German mathematician known for his work in group theory, function theory,
non-Euclidean geometry.

Klein Bottle The only closed non-orientable entirely flat 2 dimensional manifold.

Klein Disc A model of the hyperbolic plane where the infinite plane is shrunk to the flat
unit disk in such a manner that geodesics become straight lines.

Manifold An n-dimensional surface, sometimes embedded in a larger dimensional space. e.g.
The 2-dimensional surface of a torus, possibly embedded in 3 dimensions, or a 3-dimensional
surface of a hypersphere, possibly embedded in 4 or more dimensions.

Metric A rank 2 tensor (2 dimensional matrix) used for a notion of distance on a curved
space.

Lobachevsky, Nikolai Ivanovich A Russian mathematician (1792-1856). First publisher
of studies of hyperbolic geometry in 1829. Hyperbolic geometry is also called after him
Lobacheuvsky space.
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Lobachevsky Space see Hyperbolic Geometry.

Multi Connected A manifold where some closed circles cannot be contracted to a point,
e.g. the torus. (s.a. Simply Connected)

Multipole Vectors A vector decomposition of the CMB. The multipole decomposition
takes into account all degrees of freedom that the real density field of the CMB has. In an
simply connected universe the multipole vectors should be unaligned, this is not the case in
a multi connected universe.

Open in Space A manifold with all dimensions of infinite size. A manifold with some
directions finite and some infinite is called semi-open.

Open in Time A Universe that will expand forever. (s.a. Closed in Time)

Orientability A manifold that has 2 distinct orientations is orientable, a manifold with
only 1 orientation is non-orientable.

Parallel Geodesics Two geodesics that intersect in their extension to infinity. Parallel
geodesics do not exist in spherical space. (s.a Ultra Parallel Geodesics, Equidistant Lines)

Poincaré Conjecture A conjecture by Poincaré that states that if a 3 dimensional manifold
has a trivial fundamental group (i.e. a simply connected manifold) is the 3-sphere. As of
2005 it is believed to be proved by Perelman in 2002 but his work is still under review by
the mathematical community.

Poincaré Disk A model for the hyperbolic plane where the entire plane is shrunk to the
flat unit disk in such a manner that geodesics become arcs of circles perpendicular to the
disc’s boundary.

Poincaré, Henry France mathematician who developed the Poincaré disk model for the
hyperbolic plane. Famous for the Poincaré conjecture.

Ptolemy Greek/Egyptian astronomer (90-168). Proposed the geocentric model of the Uni-
verse.

Recombination The first combination of the ionized nuclei and electrons into atoms. This
happened 379.000 years after the big bang when the Universe cooled to 3000K.

Riemann, Bernhard A German mathematician (1826-1866) who made many contributions
to differential geometry.

Sachs-Wolfe effect The change of energy of a photon when it climbs out or falls into an
potential well in the density field at recombination. Photons from high density regions have
to climb out of a potential well which causes it to loose energy according to general relativity.
Photons from a low density region fall into a potential well and gains energy. (s.a. Integrated
Sachs- Wolfe effect)

Simply Connected A manifold where every closed circle can be contracted to a point, e.g.
the Euclidean plane or a sphere. (s.a. Multi Connected)

Small Circle A circle on a spherical space that does not intersect two antipodal points.
(s.a Great Circle)

Sound Speed The speed at which oscillations in the primordial soup can propagate.

Special Relativity A theory of physics which put space and time on equal footage and
threats all unaccelerated motions equivalent. Its prime axioms are the fixed velocity of light
and the principle of that all unaccelerated motions are indistinguishable. (s.a. General
Relativity)
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Spherical Geometry Geometry of a simply connected locally isotropic space where through
any given point every geodesic intersects with all other geodesics. (s.a. Flat Geometry,
Hyperbolic Geometry)

Straight Line In non-Euclidean geometries the term straight line is not well defined. There-
fore it is better to speak of geodesics.

Surface of Last Scattering The spherical surface which is the part of space where we see
recombination occurring. Its distance is approximately 13.7Glyr.

Time of Last Scattering, {55 The time of last scattering. (c.a. Surface of Last Scatter-
ing)
Torus see Flat torus or Torus of Revolution.

Torus of Revolution The (familiar) torus embedded in Euclidean 3space. Topologically
the same as the flat torus 72, but with different curvature (positive at some places, zero or
negative at others).

Universal Time The notion that at every point the time since the big bang is equal
(disregarding small local fluctuations).

Ultra Affine Point The intersection point of two wltra parallel geodesics. This point is not
part of the plane in which the geodesics lie, on the Poincaré disk it lies outside the disk. (s.a
Affine Point)

Ultra Parallel Geodesics Two geodesics that do not intersect even in their extension to
infinity. Ultra parallel geodesics do not exist in spherical or Euclidean space. (s.a Parallel
Geodesics, Equidistant Lines)

Universal Covering (Space), UC or UCS The simply connected space that can be
created by gluing several pieces of the fundamental domain together. Occupants of a multi
connected space at first glance appear to life in the universal covering space. In this thesis
all universal covering spaces are homogeneous and isotropic.

Weyl, Hermann A German mathematician (1885-1955), proposer of the Weyl’s postulate.

Weyl’s postulate A postulate that states that it is possible to see space as a 3 dimensional
manifold perpendicular to time.
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