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Abstract. Due to the increasing sizes of datasets (three-dimensional spectral datasets from a radio interferometer)
produced by modern astronomical observatories, feature extraction in a highly automated fashion becomes more
and more a necessity. Therefore a multi-scale approach to automated feature extraction based on the wavelet
transform and morphological operators, has been implemented. The discrete wavelet transform is performed by
the a trous algorithm. A multi-scale approach allows for object extraction independent of size and shape (adaptive
filtering). The model has been tested successfully on astronomical datasets, in both the spatial as well as in the

visibility domain.

1. Introduction

Astronomical signal is always affected by noise. This noise
can be either of two things. The first is the ‘background
noise’ that arises in the receiving telescope itself, due to
noise from objects in the field of view, and due to noise
contributions from the atmosphere. The second type of
noise is in fact spurious signal. It is very strong and some-
times also very extended which makes it easy for a com-
puter to be mistaken as true astronomical signal. To ex-
tract the true astronomical signal from measurements of
the sky and to remove the spurious signal, some informa-
tion about a radio synthesis telescope is required first.

1.1. Visibility data

A radio synthesis telescope is a system consisting of multi-
ple receivers (telescopes), which are interconnected. Such
a system is called an interferometer, which makes spec-
troscopic observations of a small part of the sky. The sig-
nals of the receivers are correlated to form Fourier trans-
formed images of the sky. So the combined interferome-
ter measurements construct an image as if it was mea-
sured by a large single aperture antenna. These data are
called the wvisibility data. They are a sequence of quasi-
monochromatic images, usually referred to as channels.
They are sampled as a function of element separation b
(also called baselines), time ¢ and frequency v. These data
are in the wisibility domain (also called the measurement
domain). The earth rotation changes the orientation of
each baseline (pair of telescopes) with time. So each b,t
pair can be translated into a unique position in the aper-
ture plane (the Fourier transform of the image plane). This

position has coordinates u,v which is why visibility data
is sometimes referred to as u,v data, as it will be referred
to throughout this paper. An example of visibility data
with Radio Frequency Interference (RFI) can be seen in
figure 1. As is the case here, interference is often a nar-
row band signal of short duration. Therefore its signature
is that it is narrow in v,t space (right panel) and broad
in b space. In figure 2 interference in the spatial domain
(also called the image domain) is visible. It is the Fourier
transform of the visibility data of figure 1, after the latter
have been regrided (i.e. transformed in u,v coordinates).
The interference is clearly visible as strong stripes, which
means that the interference was there only for a short time
(the pattern in the image can be thought of as the convo-
lution of the signal from the sky, with the PSF sampled
over only that part of the u,v plane samples during the
time the interference was present).

1.2. Image data

By Fourier transforming the visibility data, one recreates
the brightness distribution of the same small part of the
sky consisting of channels each at a slightly different wave-
length. All of these images together represent the same
part of the sky, looked at at different wavelengths. The
reason why different wavelengths are important is the fol-
lowing.

The signal to be detected in the data cube corresponds
to the signal from celestial objects. If one is looking for in-
terstellar hydrogen gas in e.g. galaxies, then the 21-cm line
emission from neutral atomic hydrogen (HI) must be de-
tected. This can be done by visually inspecting the data at
various spatial resolutions, but with the large amounts of
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Fig. 1. Gray scale image of u,v data (visibility data) in the v,b plane (left panel) and in the v,t plane (right panel). Strong

interference from a GPS satellite is visible.
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Fig. 2. Image obtained by Fourier transforming the data shown in figure 1. The left panel shows an interference free frequency
channel, the right panel shows a channel that was affected by interference.

data created by modern telescopes this is no longer possi-
ble. Fortunately, galaxies have the characteristic that they
rotate (else they would collapse). Because of the Doppler
effect (a change in frequency of emitted waves produced
by motion of an emitting source relative to an observer),
a different wavelength (or frequency) corresponds to a dif-
ferent velocity. This way the rotation of the object shifts
the hydrogen emission in frequency. This way a set of im-
ages is created. So this three-dimensional data set has two
spatial axes (right ascension and declination) and one ve-
locity axis. Such a data set is called a data cube.

So, in terms of morphology of real data, one is look-
ing for small coherent structures, sheared a bit in the fre-

quency (velocity) coordinate. This can be used to detect
the real signal.

1.3. The problem

Now the question arises, how to separate true HI signal
from system and background noise and spurious signal in
a data cube, in an automated way. Several methods have
been used in the past, some of them are still being used
today (Perley et al., 1986). These methods apply to image
data.

— Cutoff method (Rogstad & Shostak, 1971) (also re-
ferred to as hard thresholding). To exclude data points
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with no HI signal, a cutoff in intensity is applied.
Usually this cutoff is set to 2 or 3 times the standard
deviation of the background noise in the data.

This method has one serious disadvantage. When de-
termining the integrated properties of the emission at
each data point in a rotating object (the zeroth, first,
and second moments of the velocity profile, i.e. the
integrated emission, its velocity and the velocity dis-
persion), the calculated moments are subject to sys-
tematic effects depending on the cutoff value used (the
moments are biased).

— Window method (Bosma, 1978). One can also set a
cutoff in velocity, to overcome the biases introduced
by the ’cutoff’ method. This way the influence of noise
peaks outside the HI emission range is eliminated. The
size of the window (the acceptance gate) is increased
until the mean intensity of the background data points
converges.

— Interactive study. This means that each channel is

studies carefully on a graphics display.
This method works very well, but it is far too time
consuming for large databases. The size of a data cube
can vary from 128 x 128 x 32 elements (pixels) to re-
ally large sizes of 1024 x 1024 x 1024 pixels or even
larger. With the need for better and bigger telescopes
(like the LOFAR telescope (LOw Frequency ARray)
for instance where 25,000 antennas produce a data-
stream of 2 Gbit/sec each), the amounts of data each
telescope produces increases accordingly. So the need
for automated feature extraction also increases accord-
ingly.

— Fit the data. The data is fitted to a preconceived shape.

This method locates in each channel the highest point
and then fits a certain profile (i.e. Gaussian or Voight
profile) to the data around those points (van der Kruit
& Shostak, 1982).
The problem with this method is that the assumed
functional form can be incorrect. If the profile one is
looking for is very extended it becomes very hard (if
not impossible) to choose the right shape to fit.

— Hybrid method. First smoothing the data to a lower

resolution, then using the ’cutoff’ or 'window’” method
gives good results.
The problem with this method is that you have to
know a priori the scale of the signal you are looking for.
Since this is unknown, different smoothing functions
must be tested to bring out the HI in different parts
of the galaxy.

The problems that arise by these conventional ap-
proaches can be solved by multi-resolution filtering. This
is an extension of the ’hybrid’ method. We don’t know a
priori the scale of the signal we are looking for. Unspecified
astronomical patterns can occur at any scale, and in all
directions. Multi-resolution operators make it possible to
smooth the data to different resolutions and then apply fil-
tering methods to each of these smoothed cubes (or to the
differences between each next level of smoothed cubes).

In this paper a multi-scale approach to automated fea-
ture extraction for both image data as well as for visibility
data is presented. It describes a sequence of operations re-
quired for automated image analysis, and for automated
spurious signal (RFI) removal in visibility data. It incor-
porates adaptive filtering techniques applied to radio data
cubes in both the spatial as well as the visibility domain,
based on the a trous wavelet transform and morphological
filters like openings and closings.

1.4. Goal of this project

The goal of this project is to extract true astronomical
features from image data cubes and to extract spurious
signal from visibility data in a highly automated fashion.
This is done by setting the mask (or ‘flag table’) of a data
cube. This can be an arbitrary data cube with different
sorts of objects of various sizes and scales. Different kinds
of algorithms must be applied to select the significant sig-
nal in the data cube. Significant means that the value of
the pixels in the data cube at certain positions is above
a given detection limit. If a certain pixel is significant or
not, the mask of the data cube must be set accordingly.
This mask is a (binary) data cube itself, with the same
dimensions as the first. For image data, all the significant
pixels in the mask must be set to 1, so that only those
remain visible. For u,v data it is the other way around,
since in this case one wants to filter the spurious signal
(RFI). The mask of the u,v data is usually referred to as
the flag table and the masking itself is called flagging’.

Manual feature extraction is still a very good, if not the
best method but it is by far too time consuming nowadays.
So if a completely automated feature extraction method
can be created that can even come close to that then a
large step forward is made.

1.5. Approach

There are many different adaptive filters. The particular
filter used here is based on the a trous algorithm. It works
basically like this. First the data is smoothed with a cer-
tain small smoothing kernel. Then the difference is taken
between data cubes of each two successive smoothing lev-
els. These differences are called wavelet cubes. The inverse
transform is very straightforward. One simply adds all the
different wavelet cubes to the final smoothed data cube
to obtain the reconstructed data cube. Before this recon-
struction is done however, the adaptive filter is applied to
the wavelet cubes. It includes estimating the background
noise level for each wavelet cube and retain only those data
that are above a certain clip level. The other data can be
removed from the cube (effectively altering the original
data by using only certain wavelet coefficients) or a mask
can be set (thus retaining the original data).
Determining the right clipping level is not as straight-
forward as is seems. Usually it is set to a multiple of the
standard deviation (o) of the background noise, like 3o or
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50. However, as described above, the calculated moments
of the data are subject to systematic effects depending
on the cutoff value used. One does not know a priori the
cutoff value to choose. Therefore the more adaptive False
Discovery Rate (FDR) is implemented.

Second of all, estimating the background noise level
is a problem. To do so, one must calculate the standard
deviation over all pixels that are part of the background
noise. But it is not known which pixels are noise, this is
exactly what a clipping procedure tries to find. So it is
very important to have a good model of the background
noise in the data cubes. For image data, the characteris-
tics of the noise are known only to first order. The ba-
sic contributor is the thermal noise of the radio receivers.
To first approximation, this is white, Gaussian noise and
similar for each telescope combination. There are addi-
tional sources of noise however, such as instrumental de-
fects and characteristics of the distribution of emission in
the sky. Therefore it is very important to characterize the
noise properties for each observation independently. To
test if indeed the distribution function of the background
noise in image data has a Gaussian shape the Kolmogorov-
Smirnov test has been applied.

2. The Kolmogorov-Smirnov test

To test if indeed the background noise in a data cube
is Gaussian, the Kolmogorov-Smirnov one-sample test for
goodness of fit is used (i.e. Siegel (1956)). The test is con-
cerned with the degree of agreement between the sample
distribution of a set of sample values (observed scores, in
the case of a data cube these are the values of all of the pix-
els) and some specified theoretical distribution. The test
determines if the scores from the sample can reasonably
be thought to have come from a population having the
theoretical distribution. Note that the theoretical distri-
bution should not be estimated from the sample distribu-
tion, which is done here (if the hypothesized distribution
is estimated from the data, then the KS-test is not accu-
rate). If the KS-test is done after the masking is applied
however, then the result should be much more reliable.

The KS-test is implemented as follows. For each map
(channel) in the data cube a histogram is created that
shows the counts of each pixel value in a range from the
minimum to the maximum pixel value. To this histogram
(which is expected to be Gaussian) a Gaussian curve is fit-
ted (parameters: maximum counts, position of maximum,
standard deviation and offset).

Next, both the data from the sample data as well
as from the theoretical data (the fitted Gaussian curve)
is added cumulatively to create two cumulative distribu-
tions (S(x) and F(x) respectively). These distributions are
scaled to within the range of zero to one. The Kolmogorov-
Smirnov test focuses on the largest of the deviations D
(the maximum absolute difference) between the normal-
ized cumulative histogram S(x) and the uniform cumula-
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Fig. 3. Graphical representation of the Kolmogorov-Smirnov
statistic D (the maximum absolute difference between the nor-
malized cumulative histogram and the uniform cumulative dis-
tribution function).

tive distribution function F(x). So the statistic concerned
is
D = maximum|F(z) — S(z)|. (1)

The critical values of D for a sampling distribution are
tabled. For large samples the values of D can be found in
table 1. A graphical representation of the KS-test can be
seen in figure 3.

Level of significance for D = maximum |F(z) — S(z)|

0.20 | 0.15 | 0.10 | 0.05 | 0.01
wilvw Il vw il w Il v

Table 1. Critical values of D in the Kolmogorov-Smirnov one
sample test for sample size N larger than 35. Adapted from
Massey (1951).

Sample Data Cube (size: 256)
significance 0.20 0.15 0.10 0.05
D’ 0.067 0.071 0.076 0.085
Maximum D’ | 0.003

0.01
0.102

Table 2. Results of the Kolmogorov-Smirnov test applied to a
sample data cube (256 x 256 X 256). the maximum value of D
is 0.003, so the probability of occurrence of the furthest outliers
is higher than 20 percent so the assumption of a Gaussian
distribution of the background noise is justified.

In table 2 the Kolmogorov-Smirnov has been applied
to a sample data cube ofugc 5253 of dimensions 256 x 256
x 256 (of which a channel can be seen in figure 5). For
all the channels in this sample, the maximum value of D
does not become larger than 0.003, which means (as can



P. Kemper : Automated feature extraction from HI data cubes 5

be seen from table 1) that the probability of occurrence of
the furthest outliers is higher than 20 percent. In such a
case it is evident that the assumption of a Gaussian distri-
bution of the background noise is justified. The statistic
D for this same sample data cube is plotted in figure 4.
It shows that the statistic D stays close to zero until ap-
proximately bin number 100. There it goes up and down,
i.e. becomes positive and negative, for about 50 bins and
then it stabilizes again. The fact that the statistic D is
positive and negative throughout each channel proves that
the sample values deviate randomly from the theoretical
Gaussian distribution. The plot also shows that the value
of D becomes largest at channel 55, which is exactly the
channel where most of the HI signal is in the sample data
cube.
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Fig. 4. Values of the Kolmogorov-Smirnov statistic D for a
sample data cube. The histograms created from the sample
data (for each map) contain 265 bins.

3. The wavelet transform
3.1. The a trous wavelet transform

There are several ways of, in some way, enhancing an im-
age. Popular tools to use are the Fourier transform, as well
as the wavelet transform. These are versatile tools, which
can be used for image compression, object detection, large
scale structure analysis, and many other tasks. When the
wavelet transform is used for image restoration, it can be
used for multi-resolution analysis, smoothing, and back-
ground noise removal. Decomposing an image into multi-
ple resolutions provides a way of treating objects of dif-
ferent sizes separately.

The wavelet transform used here is the efficient d trous
(”with holes”) one (Holschneider & Tchamitchian, 1990).
The more widely used Mallat transform was not employed,
since it prioritizes non-isotropic structures in the data
(Starck et al., 1995). This can be used to identify RFI
in u,v data. The same can be done with the d trous algo-
rithm however, by using an uneven amount of convolutions
in each direction.

Velocity: 1425.39 km/s

Declination (J2000)
mJy/Beam

50™ 48™

52™
Right Ascension (J2000)

Fig.5. A channel of a data cube of uge 5253. This cube has
dimensions 256 x 256 x 31. The bright green, yellow and red
pixels are part of the signal that one wants to include. This
signal is at least as strong as 2 mJy/beam. The distance be-
tween pixels in the z-, y-, and z-direction is 8.0 ", 8.0 "and
16.5 km/sec respectively. The beam size is 39.53" x 33.82" so
the number of pixels/beam-width is approximately 5.

The sampled data is considered, {co(k)}. It is assumed
that the sampled data are the scalar products at pixels k
of the function f(z) with a scaling function ¢(x) which
corresponds to a low-pass filter.

(2)

The smoothed data ¢;(k) at a given resolution 4 and
at a position k is the scalar product

co(k) =< f(x), p(x — k) > .

r—k
9i

(k) = 57 < f@), 050 >, ©

where f(x) is the original image. This product is conse-
quently obtained by the convolution

ci(k) = h(D)eia (k+2771),

l

(4)

where h is a discrete low pass filter associated with the
scaling function. Now the discrete wavelet transform, for
a resolution level 7 is

wi(k) = ci—1(k) — ci(k), (5)

which has the same number of pixels as the image.

It is important to note that the distance between levels
increases by a factor 2 from one scale to the next. So the
distance between the central pixel (of k) and the adjacent
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ones is 2'~!. The coefficients h(k) derive from the scaling
function ¢(x),

1 =z
5¢(5) = leh(l)qs(m ). (6)

In practice, computing the wavelet transform associ-
ated with the choice of h goes as follows:

1. The level 7 is set to zero and the data is taken as ¢; (k).

2. i Isincremented by 1, and the data ¢;_1 (k) is discretely
convolved with the low pass filter hA. The distance be-
tween the central pixel and the adjacent ones is 2¢71.

3. The discrete wavelet transform of level i is obtained
by w;(k) = ¢i—1(k) — ci(k).

4. If 7 is less than the number of wavelet planes p that
are required, then go to step 2.

5. The wavelet transform of the data is represented by
W = {wy,wa, ..., wp, cp}.

The way to handle the boundaries is chosen to be con-
tinuity, so ¢(k + N) = ¢(N).

To recreate the original image, ¢,, in terms of the
wavelet coefficients is now given as follows. The final
smoothed image ¢, is added to all the differences w; (called
wavelet planes):

co(k) =cp+ Z w; (k). (7)
i=1

In one dimension, for the d trous algorithm, the
convolution mask (the low pass filter h) is chosen as
11—6(1,4,6,4, 1), which is associated with a B-spline scal-
ing function ¢(z) of degree 3. B3(x) is close to a Gaussian
function and the results are quasi-isotropic. Other scal-
ing functions can be used as well. The discrepancy to
a Gaussian would be even smaller with Bs(x). In that
case the wavelet can be considered as isotropic (Bijaoui
& Rue, 1995). However, since more coefficients are needed
to define Bs(x), it takes more computation time, which is
scarce. Of course the described algorithm above is easily
extended to two- or three-dimensional space.

Corresponding to the scaling function ¢(z) is the
wavelet function ¥ (x),

1 =z
5111(5) = ¢(z) — 5‘15(5)- (8)

Note that, for the a trous transform, the normaliza-
tion condition [ |¢(x)|*dz does not hold (Maisinger et al.,
2004). This means that the transform of Gaussian white
noise (which is not always the type of noise present, for
instance with natural weighting (section 6.1.3)) does not
have a constant dispersion in all wavelet domains. This
means that it is very important to recalculate the disper-
sion of each wavelet plane when setting a masking thresh-
old so it can not be estimated from the original image or
previously calculated wavelet planes.

The a trous algorithm has the very nice property that
each wavelet plane has exactly the same number of pix-
els as the original image. This is a restriction on the use
of this particular wavelet transform approach for image
compression. However, working with each wavelet plane
individually is very intuitive. An example of the a trous
algorithm in action can be seen in figures 6 and 7 which
show a channel of a data cube, three wavelet planes of that
same channel, and the residual image. It is not necessary
to compute a fourth wavelet plane, since the signal-to-
noise ratio (which increases with scale) is already suffi-
ciently high in the third plane. Also, as can be seen in
figure 7, wavelet plane w; contains more negative signal if
i, i.e. the number of iterations, becomes larger. This can
have negative side effects.

The a trous algorithm is a powerful algorithm for the
following reasons:

— The computational requirement is reasonable.

— The algorithm is easy to program.

— The transform is practically isotropic.

— Compact scaling functions can be used.

— The reconstruction algorithm is trivial.

— The transform is known at each pixel. This allows de-
tection without any error and without interpolation.

— The evolution of the transform can be followed from
one scale to the next.

— Invariance under translation is completely verified.

(Starck et al., 1995).

The next step is to remove or suppress background
noise from the individual wavelet planes as well as from
the residual image, before reconstructing the image. This
reconstruction can be done like

P

co(k) = cp+ Y a(wi(z,y), oi)wi(k), (9)

i=1

where o; is the standard deviation of the background
noise at scale i, and « is a weighting function that could
look like

(a,00) = 1 if |a| > 30;
NG =0 if |a] < 30

This technique has been characterized as hard thresh-
olding (or ’cutoff’ method, see section 1.3). It is more likely
however, that adaptive thresholding leads to better re-
sults (i.e. more power in relation to the number of false
discoveries). Therefore the false-discovery rate (FDR) is
implemented (see section 4).

(10)

3.2. Multi-resolution from the median

Other multi-resolution tools can be used, of which one is
presented here. One would prefer that a positive structure
in the image does not create negative values in the multi-
resolution space, as the a trous wavelet transform does.
In the case of the a trous algorithm, the wavelet func-
tion is a Bs spline, which takes the shape of the difference
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Fig.6. A zoomed in part of the same channel of the data cube of uge 5253 as in figure 5. Image (I) is the original data.
Images (II), (III) and (IV) are the first, second and third wavelet cubes respectively. The first wavelet cube contains the highest
frequency details, the last wavelet cube contains the lowest frequency details, i.e. the most extended signal. Image (V) shows
the final smoothed image. If the lower four images are added together, then the original image is recreated. A different color
scheme of these same four cubes can be seen in figure 7, to show where the negative signal is.
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Fig. 7. The same channel of the data cube of ugc 5253 as in figure 6. These figure have different color schemes to show the
negative signal. From left to right, from bottom to top the panels show the first, second and third wavelet cube and the final
smoothed image. The blue parts in the first, the blue and green parts in the second and the green parts in the third image
are negative signal. It is clearly visible that wavelet plane w; contains more negative signal if 4, i.e. the number of iterations,

becomes larger.

between two Gaussians G1 and G2, with the width of G2
being twice that of G1 (Starck et al., 1997). This implies
that if there is a detection, then a peak at the correspond-
ing wavelength \; and two smaller peaks at the opposite
sign symmetrically displaced from A; will be present. The
shape of the B3 spline can be seen in figure 12.

By modifying the 4 trous algorithm, the median fil-
ter can be used (Starck et al., 1995). It simply uses a
mask of a certain size, in which the median of each pixel
is evaluated. After smoothing the data in this way, the
wavelet planes are, again, simply the difference between
two adjacent scales. Next the size of the mask is increased

and the process is repeated until the desired number of
wavelet planes is calculated. The main advantages of such
an algorithm is that it can work at intermediate scales (by
increasing the size of the mask by a non-integer value) and
that there are no negative values created around positive
values. However, the big disadvantage of such an algo-
rithm is that it takes much more computation time. This
problem can be partially solved (by using decimation, see
Starck et al. (1995)), but such a transform does not replace
the wavelet transform, it can only complement it.
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4. The false-discovery rate

A recurrent statistical problem in astrophysical data anal-
ysis is to decide whether data are consistent with the pre-
dictions of some theoretical model. One can test whether
the data and model differ overall using a statistical hy-
pothesis test, such as the x? test if the data are uncorre-
lated. Such a test does not specify where or how model
and data differ. Instead, multiple hypothesis tests must
be performed, one at each wave number. One may, for in-
stance, declare a test significant if the discrepancy between
the data and model spectrum at a certain wavenumber is
greater than twice or three times the standard error of
the measurement. The higher the cutoff, the smaller the
probability of a false discovery. But this also severely re-
duces the probability of correctly detecting real deviations
(source pixels). Throughout this paper, the term ”source
pixel” is used to mean a pixel in an image that is above
some threshold and thereby assumed to be part of a true
source (an actual astronomical object like a star or galaxy
whose properties are of interest). All the other pixels in
the image are referred to as ”background pixels”. So what
is needed is an effective method for multiple testing that
improves the probability of correct detections over meth-
ods in current use (like hard thresholding) while still con-
trolling the probability of a false discovery. Therefore the
false-discovery rate method (FDR) is chosen. FDR has
three key advantages over other existing methods (Miller
et al., 2001):

— FDR has a higher probability of correctly detecting
real observations between model and data.

— It controls a scientifically relevant quantity; the aver-
age fraction of false discoveries over the total number
of discoveries.

— Only a trivial adjustment to the basic method is re-
quired to handle correlated data.

There are two types of errors that can be made when
deciding whether a test statistic is significant or not:

(I) incorrectly identifying a background pixel as source
(a false discovery).

(IT) incorrectly identifying a source pixel as back-
ground (a false rejection).

There is always a trade-off between the number of false
discoveries (type I error) and the power (1 minus the prob-
ability of type II errors).

The only parameter the FDR uses is the significance
level a. Using a = 0.05 is equivalent to using a 7”2 ¢”
threshold. A useful quantity to compute is the p-value. It
is defined as the probability, when the pixel is background,
of obtaining a test statistic that is at least as extreme as
the observed test statistic. So the p-value for pixel ¢ is the
probability that a background pixel will have intensity I°
or greater,

i * 1 1/1- Hoack > 2
- exp |—= | —22& dl
Puat /]i oV 2m P l 2 ( Oback

(11)

From this equation it is immediately apparent that it
is important to have the right model for the background
noise in the data, since the p-values depend on it (the o
and g in equation 11 are the parameters that describe the
assumed Gaussian distribution of the background noise).
A graphical representation of the important variables can
be seen in figure 9. Note that the calculation of the p-
values is only in two dimensions for a reason (In the case
of image data these dimensions are right ascension and
declination, in the visibility domain these two dimensions
are baseline and time). Namely, the background noise in a
data cube is only assumed to be constant in each separate
channel. It can vary in the velocity direction.

T'>c & pLa // \\ Area@:a
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/ \
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Fig. 9. Schematic illustration of the relationship between the
p-value p and the type I error probability o and the equivalent
relationship between the test statistic T and the critical thresh-
old ¢. The curves in both panels represent the distribution of
the test statistic, assuming that the pixel is background. In
the upper panel, the test statistic T is larger than the critical
threshold ¢, leading to identifying the pixel as source. In the
lower panel it is the other way around, leading to identifying
the pixel as background.

Most thresholding techniques are designed to control
the number of type I errors (false discoveries):

Naive multiple testing (hard thresholding).
Use the same threshold (e.g. 2 o) for every test. This
same threshold is used regardless of the number of tests.
Unfortunately, this leads to a higher than expected rate of
making type I errors, since the chance of at least one false
detection over all pixels is much larger than a. Since it’s
impossible to know the number of real sources, the level
of contamination remains unknown.

Three-sigma multiple testing.
The same technique as naive multiple testing, except for
the choice of a higher cutoff (e.g. 3 ). This adjustment
reduces the average number of false discoveries relative to
naive multiple testing. However, the probability of making
a false discovery stays typically much larger than the de-
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Fig. 8. Graphical representation of the False Discovery Rate procedure. The p-values along the y-axis are plotted against their
index. The blue line crossing the origin is for =0.40 (which is normally a very high cutoff value), and the black vertical line
shows the p-cutoff value. Al the tests (i.e. pixels) to the left of the vertical line are rejected (labeled as source pixels) with a

false-discovery rate of 0.40.

sired significance level a. Moreover, the chance of making
a type II error (a false rejection) becomes big.

The Bonferoni method.
Define any pixel who’s p-value is less than o/N = «a/N as
source pixel, where IV is the number of tests. In this case,
there is a strong constraint on the number of false discov-
eries. However, the probability of erroneously identifying
source pixels as background pixels (type II error) goes to 1
as the number of tests N becomes large. So, the Bonferoni
threshold identifies no false discoveries, at the expense of
detecting few real sources.

5. The FDR procedure
5.1. The False Discovery Rate

The above thresholding techniques are most common and
allow one to specify the number of acceptable false dis-
coveries, but they fail to control the relevant quantity:
the fraction of false discoveries over the total number of
discoveries (the False Discovery Rate). It is easier to eval-
uate the number of source pixels than it is to know the
number of background pixels a priori. Suppose that a 3¢
threshold is applied to an image of 1000 x 1000 pixels, in
which the background noise is completely Gaussian. Then
the 30 threshold ensures that 0.1% of the total number
of pizels (which is 10%) are falsely discovered. So on aver-
age, 1000 pixels are above the threshold. If there are real
sources present, this means that 1000 pixels are discov-
ered (selected). If there are many source pixels, then this
threshold may be quite adequate. But if there are only

2000 pixels measured as source pixels, then half the de-
tections are false! It is much easier to keep the number
of false discoveries, on average, over the total number of
discoveries small, since such a threshold can be specified
a priori. So, the FDR is defined as

Ntalse discoveries —

FDR =

discoveries
(12)

Ntalse discoveries

Nfalse discoveriestNtrue discoveries

The FDR controls the most relevant errors, namely the
proportion of errors among those pixels that are identified
as source. Therefore the FDR attains higher power than
the Bonferoni method.

First select a significance level « such that 0 < a <1
(if ®=0.10 then a tenth of the discoveries may be false dis-
coveries). The FDR procedure described below guarantees
that

<FDR> <a, (13)

where the expectations (in angle brackets) represent
ensemble averages over replications of the data. The pri-
mary advantage of specifying an FDR « value over choos-
ing a 3 or 5 o threshold is that the FDR threshold is
adaptive. It will assume a different value depending on the
source intensity distribution relative to the background
(Miller et al., 2001).

Let Pi,..., Py denote the p-values from the N tests
(pixels), arranged from smallest to largest. Now calculate
(14)

. ja
d= P< —
max{j J<CNN}’
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Fig.10. A channel of a data cube of uge 5253. Further info
such as Right Ascension, declination and velocity have not
been omitted, although they could have been since the idea
behind multi-resolution filtering is that signal on any scale can
be found. The cyan, bright green, yellow and red pixels are
part of the signal that one wants to include.

where the constant ¢y is defined below. Now define
all pixels with p-values less than or equal to Py as source
pixels. Graphically, this procedure corresponds to plotting
all the P; versus j/n. Then superimpose the line through
the origin with slope a;/ ¢, and find the last point at which
P; falls below the line. This can be seen in figure 8.

5.2. The Constant ¢y

If the p-values are based on statistically independent tests,
then ¢y = 1. If the tests are dependent, then

N
cCN = E it
i=1

Most radio images show some degree of correlation
between pixels but tend not to be fully correlated. This
means that the intensity of a given pixel is not influenced
by that of every other pixel in the image. Therefore an
intermediate estimate for ¢y is chosen that reflects the
level of correlation present in the image. This is related
to the synthesized beam size (or Point Spread Function
(PSF)). Now define ”partially correlated” coefficient cy =
-7, i~! where n is an integer number of pixels represent-
ing the PSF (n = PSF,,.,) (Hopkins et al., 2002).

Calculating the right number of pixels representing the
PSF goes as follows. The integral over the synthesized
beam

Ibeam = /oo /Oo 6_%(£)2_%(%)2dxdy

(15)

(16)
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Fig.11. The same channel of a data cube of ugc 5258 as in
figure 10. Only those pixels that are above the FDR threshold
in any of the wavelet planes are shown. The mask of the other
pixels is set to zero (the white pixels). The wavelet transform
is the so called @ trous wavelet transform and consists of 2
wavelet planes. The strong negative signal (above the FDR
threshold) is also taken into account. It can be seen that not
only the true source (the light from ugc 5253) but also some
other, even negative signal is shown. The gap between these
two parts is also visible at some points.

in two dimensions, so that Ipeam(z = 0,y = 0) = 1. The
average value of pixels in the image is assumed to be = 0
(which is should be). Then

PSFarea = Ipeam = V21 -0y - V27T'O'y :2770'wa- (].7)

Also we have that the FWHM (Full Width Half
Maximum) = 2.354 - ¢ so

2r - FWHM, - FWHM,
(2.354)2 - cell?

PSFyrea = (18)

where cell is the image cell size in arcsec.

Using the form for Cx described here is not a rigor-
ous result of the formal FDR proof. It is a ’compromise’
estimate that seems mathematically reasonable and gives
reliable results in practice (Hopkins et al., 2002).

5.3. Negative signal

When applying the FDR procedure to the wavelet cubes,
the question rises whether to include negative signal as
well or not. Suppose the data contains a point source,
which can be represented by a Gaussian. Then the smooth-
ing done by the wavelet transform will broaden this
Gaussian, though retaining the total power, so the peak of
the smoothed Gaussian will be lower. The wavelet plane
is the difference between these two Gaussians. This will
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Fig. 12. Graphical representation of a point source (the red, solid Gaussian), the smoothed point source (the green, dashed
Gaussian) and the difference (the wavelet plane; the blue, dash-dotted line). The difference is the shape of the effective point
spread function for the Bs spline used in the a trous wavelet transform. The filled area represents the pixels identified as source.
Including the negative signal (the 2 lower filled areas) will identify too many pixels as source pixels. In this particular case one
does not want to identify any pixels as source that are at |z| >~ 2. Note the gaps between the positive signal and the negative

signal in the wavelet plane.

be a function that looks like the original Gaussian, but
it will have two tails that are negative. A graphical rep-
resentation of the Gaussian, the smoothed Gaussian and
the difference (the wavelet plane) can be seen in figure
12. This negative signal is indeed signal in the smoothed
Gaussian. But this is not (completely) the case for the
original Gaussian. So when a filter is applied to the wavelet
plane that includes the strong negative signal (above the
FDR threshold), too much area around the true signal is
identified as source. In between the positive signal and the
negative signal in the wavelet plane, there will also be a
gap. Therefore the negative signal is not taken into ac-
count. An example of the consequences of taking negative
signal of image data into account, can be seen in figures 10
and 11. The first is a channel of a data cube of ugc 5253.
The latter is that same channel, to which a masking oper-
ation is applied (all the signal in any wavelet plane that is
above the FDR threshold («=0.05 in this particular case)
for that plane is retained).

6. Mask enhancements

Once a certain mask has been made for a given data cube,
there are several ways of enhancing it. This means that it
is assumed, that after a certain selection method has been
applied such as hard thresholding or the FDR method,
not all signal has been found. These selection methods are
not perfect. That is because they select only the strong
signal. They will look over weak, but extended emission
just above the background noise level. Weak emission that
surrounds strong emission is likely to be part of the true
emission.

Part of the solution to this problem lies in the wavelet
transform. The combination of the latter with the FDR
method can produce much better results. The FDR

method should be used to extract the strong features in
the image data at all scales. The other part of the solution
is to let complementing signal selection methods find the
described weaker signal. These are presented here.

6.1. Region selection

The signal selection method presented here is based on the
so-called morphological watersheds, which is a segmenta-
tion procedure. The latter will be explained first, to de-
scribe the concept of a watershed.

6.1.1. The watershed transform

The concept of watersheds is based on the representation
of an image in two spatial coordinates and one gray level
dimension. Now there are three different types of points
(Gonzalez & Woods, 2002):

— a) points that belong to a regional minimum;

— b) points at which a drop of water, if placed at the lo-
cation of any of those points, would fall with certainty
to a single minimum.

— ¢) points at which a drop of water, if placed at the
location of any of those points, would be equally likely
to fall to more than one such minimum.

For a particular regional minimum, the set of points
satisfying condition b) is called the watershed of that min-
imum. The set of points satisfying condition ¢) form crest
lines on the topographic surface and are called watershed
lines. The principal objective of a segmentation algorithm
based on the watershed concept is to find the watershed
lines. The concept of how to do this is simple: Suppose that
a hole is punched in each regional minimum and that the
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entire topography (the image) is flooded with water from
below by letting water rise through the holes at uniform
rate. When the rising water in two or more watersheds
is about to merge, a dam is built to prevent the merg-
ing. When the water has reached the highest mountain
top, all the dams form the watershed lines (the continu-
ous boundaries extracted by the watershed segmentation
algorithm).

6.1.2. The watershed-equivalent transform

A variant to the watershed algorithm is implemented. It
is a kind of region growing (Gonzalez & Woods, 2002),
which is part of the real watershed transform. In this case
not the regional minimums, but the regional maximums
are important. This algorithm has to work on a prede-
fined mask. So local maximums are only searched for in
regions of the image where the mask is set to one (regions
that contain emission). From these maximums, a downhill
search is performed, in 2 dimensions. It searches for all the
points with monotonically decreasing values in the image,
only taking those pixels with values above a certain clip-
ping level (threshold), for instance 0.5¢0. This is to prevent
that too many pixels are included. For all the pixels that
are found, the corresponding mask pixels are set to be in-
cluded. This way an object is formed that is very much
like a watershed, except that it starts from the top and
expands downward instead of upward. Just as with the
watershed algorithm, different watersheds do not merge
this way. An example of the result of the algorithm can
be seen in figure 13. Why the results are more pronounced
with this data cube than with the one in figure 5 is ex-
plained in section 6.1.3. A graphical representation of the
algorithm itself can be seen in figure 14.

Region growing is, in principle, a procedure that
groups pixels of subregions into larger regions based on
predefined criteria. The basic approach is to start with a
set of ’seed’ points. These regions can grow by appending
neighboring pixels to them that have similar properties as
the seed. Such an algorithm can be improved by additional
criteria. For instance, one can look at all the pixels that
have been added so far and create criteria based on their
value, average or the shape of the grown region. Note that
for the above described algorithm the region itself can in
fact also decrease depending on the value of the threshold.
This is because the seed points are taken only as the local
maximums.

The fact that watersheds do not merge is to prevent
each watershed from including noise peaks that are just
above the chosen threshold. Once the local maximums
are found, the algorithm searches for adjacent pixels with
monotonically decreasing value. If the pixel values do not
have to decrease monotonically, then the watersheds will
merge. The result can be seen in figure 15. It shows that by
far too many pixels are included, since half of the channel
has been included. The problem is that too much signal
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Fig. 14. Graphical representation of the watershed-equivalent
algorithm. First, all the peaks above some high threshold (blue
dashed line) are selected. From there, a downhill search is per-
formed to select all adjacent monotonically decreasing signal
that is above some lower threshold (red, dash-dotted line) that
can be 0.5 or 1 o for instance. This way the extended emission
(colored area) can be completely selected.

is above the threshold of 0.50 (so watersheds can merge
this way).

6.1.3. Weighting functions

It must be noted that for the data cube in the previous
example (section 6.1.2) a different weighting function has
been used than for the data cube in figure 5. When sam-
pling the u,v data, a weighted sampling function can be
written as

M
W(u,v) = Z Ry Ty D6 (u — up,v — vy,)
k=1

(Perley et al., 1986). The coefficients Ry, T and Dy
are weights assigned to the visibility points. The Ry are
weights that indicate the reliability of the k** visibility
datum. The tapers Ty are used to weight down the data
at the outer edge of the u, v coverage. Thus they suppress
small-scale side-lobes and increase the beam width. The
density weights Dy, are used to offset the high concentra-
tion of u, v tracks near the origin, and to lessen the side-
lobes caused by gaps in the coverage. In other words, the
Dy, simulate a more uniform u, v coverage if needed. They
compensate for the clumping of data in the u,v plane by
weighting by the reciprocal of the local data density. Two
kinds of weighting are commonly applied:

(19)

— natural weighting, Dy, = 1
— uniform weighting, Dy = Nsl( e

where N (k) is the number of data points within a sym-
metric region of the u, v plane. This region is centered on
the kt* data point and has a characteristic width s, which
might be the radius of a circle or the width of a square.
The data cube in figure 13 uses natural weighting. This
means that all points are treated alike, and gives the best
signal-to-noise ratio for detecting weak sources. However,
since the u,v tracks tend to spend more time per unit
area near the wu,v origin, natural weighting emphasizes
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Fig. 13. A channel of a data cube of ngc 7382. The dark green, blue and black pixels is the strong signal that the FDR method
will define as signal. The right panel shows the result of the combination of the FDR method and the watershed-equivalent
algorithm, which have been applied to all the data cubes (including the wavelet cubes and the first smoothed data cube) and
all the masks have been added. It shows that the lower light green area close to the selected (dark) area has been missed (i.e.

has not been merged with) by the watershed-equivalent algorithm.

the data from the short spacings. This tends to produce
a beam with a broad, low-level plateau which is unde-
sirable when imaging sources with both large and small
scale structures. Since the data cube in figure 13 has been
natural weighted, the watershed-equivalent algorithm is
especially useful because of the high signal-to-noise ratio
for detecting weak sources.

6.2. Morphological operators

Another way of enhancing the mask is using morphological
operators. Two of those are implemented, namely opening
and closing. In order to explain these two morphological
operators, dilation and erosion must be explained first.

6.2.1. Dilation and Erosion

Sets in mathematical morphology represent objects in an
image. In binary images (such as the mask-planes of a
data cube), the sets in question are members of the 2-D
integer space Z2, where each element of a set is a tuple
(2-D vector) whose coordinates are the (x,y) coordinates
of a black pixel in the image (Gonzalez & Woods, 2002).
Suppose we have two sets, A and B, in ZQ. B is reflected
about its origin, B, and shifted by z, (B).. Then the di-
lation of A by B is the set of all displacements z such
that (B). and A overlap by at least one element. Set B
is commonly referred to as the structuring element. Note

that when B is a symmetric set with respect to its origin,
B = B. It is obvious that dilation expands set A.

Again consider two sets, A and B, in Z2. Now the
erosion of A by B is the set of all points z such that
(B), is completely contained in A. This way the set A can
only shrink. Graphical representations of both dilation and
erosion can be found in Gonzalez & Woods (2002).

6.2.2. Opening and Closing

The opening of set A by structuring element B is the ero-
sion of A by B, followed by a dilation of the result by B. So
at first the set A shrinks a bit, and then it expands again.
This generally smooths the contour of an object. Also,
it eliminates thin protrusions and breaks narrow strips,
hence the term opening.

The closing of set A by structuring element B is the
dilation of A by B, followed by an erosion of the result by
B. This way, closing also tends to smooth sections of con-
tours. However, as opposed to opening, closing generally
fuses narrow breaks, eliminates small holes and fills gaps
in a contour.
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Fig. 15. The same channel of the same data cube as in figure 13. The watershed-equivalent algorithm has been applied. In the
left panel, the constraint that when expanding the mask only decreasing-value pixels are included, has been removed. It shows
that by far too many source pixels are included. Thus, the mask of the right image of figure 13 is used. First an opening and
a closing have been applied to get rid of the rough edges. Next another step of the watershed-equivalent algorithm has been
applied. Then, again an opening and a closing have been applied. It shows that, in comparison to figure 13, the relatively strong

source that is nearby the originally selected source, has been selected this time (right panel).

7. Implementation for the spatial domain

The implementation of all the different algorithms and the
order in which they are executed is discussed here. First,
an overview of the complete implementation is given.
Next, all the different parts of the implementation are ex-
plained in more detail, giving examples of the results and
the reasons why certain choices are made.

Note that this approach to automated feature extrac-
tion works best on extended sources. Galaxies have the
characteristic that they rotate, so they are sheared a bit in
the frequency. This does not hold for point sources how-
ever, so for these sources the three-dimensional ¢ trous
wavelet, transform is not useful.

7.1. Overview

The full implementation looks like this (only for image
domain data cubes):

The mask of the original data cube, called ¢y, is reset.
. As many wavelet transforms are done on ¢y as the user
wants wavelet cubes.

A sequence of algorithms is executed on ¢; and all
wavelet cubes. First, the FDR selection method is used
and then the watershed-equivalent procedure is exe-
cuted.

All of the masks are combined, to form the first mask.
. An opening and a closing are performed.

The new mask undergoes another step of the
watershed-equivalent algorithm.

Again an opening and a closing are performed.

All the objects that do not ”span” a certain range of
channels are removed.

The data cube and its new mask are written.

=

7.2. Explanation

1. The mask of the original data cube, called ¢g, is reset.
So the values of all the pixels in the mask are set to 1.
This means that the whole data cube becomes visible
when viewed with a viewer.

As many wavelet transforms are done on ¢y as the user
wants wavelet cubes. Because all of these cubes are
needed later, they are all stored on the hard drive.
This step creates {co, ...,¢p} and {wo, ..., wp }, where p
is the number of iterations of the wavelet transform.
The first wavelet cube, w;, contains the highest
frequency details of the original images. The last, w,
(equation 7), contains the lowest frequency details. So
the most extended features of the images are stored
in this wavelet cube. The final smoothed images ¢,
are stored in the original data cube.

An important choice to make is the number of wavelet
planes that will be created. It is common to create 3
wavelet planes for an image. The images used (astro-
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Fig. 16. A channel of a data cube of ugc 5253. The left image has been wavelet-transformed in 2 levels, in 3 dimensions. Both of
the wavelet cubes, as well as the final smoothed cube have been searched for astronomical signal with the FDR selection method.
The value for the significance level a is 0.05. Next, all of the masks have been combined, simply by adding them. The white
pixels were not selected by the FDR method. The green and red visible parts are the strongest signals, at least 2 mJy/beam.
Now some of the blue pixels must be included (so that there is a blue strip of approximately one synthesized beam around
the stronger green and red signal). Most of the dark blue pixels shouldn’t be included however, since these are negative pixels
(negative mJy/beam). The right image shows the same procedure with three wavelet planes. It can easily be seen that even
more (dark) blue pixels are now visible. This is because the strong signal of channels close to this channel has been smoothed
and thereby entered this channel. It is obvious that this way too many pixels have been falsely identified as source.

nomical images) contain a lot of information in the
low frequencies. The more iterations (convolutions)
are done, the less information the next wavelet plane
s will contain. On the other hand, the signal-to-noise
ratio increases with scale, and from the third plane
it is sufficiently high ((Starck & Murtagh, 1994)).
However, in practice it appears that when a third
wavelet plane is also calculated, too much data will
be falsely identified as source. This can be seen in
figure 16. This is because the 3 dimensional wavelet
transform will smooth and spread strong signal in one
channel into adjacent channels.

. A sequence of algorithms is executed on ¢; and all

wavelet cubes. First, the FDR selection method is used
and then the watershed-equivalent procedure is exe-
cuted.

— First, the False Discovery Rate selection method
is used to set the mask of ¢; (see section 4 and 5).
This mask is used for the original data cube co.
This is the kind of mask that is very often used
(applying a cutoff method to the smoothed data
to set the mask of the original data). Sometimes
this already gives nice results, but it always misses
out on the weak, extended sources. An example
of the result of this step can be seen in figure

17. It shows that the faint signal in the upper
left corner close to the strong signal has been
missed out. This channel will be used in the
next steps for further visual support of the expla-
nation of the different steps in the whole procedure.

When applying the FDR method, the p-values
are calculated, based upon a model for the back-
ground noise. This model is created as follows.
First an approximation of the standard deviation
o is made, by calculating the squared average
pixel value of all the pixels in each channel
separately. The latter is very important, since
the characteristics of the background noise can
vary with each different channel. This is because
the system temperature of the telescopes varies a
little with frequency. Now all the pixels with values
between -2 ¢ and +2 ¢ are put into a histogram.
This is to leave out as many true source pixels as
possible. Then a Gaussian curve is fitted to the
pixels in the histogram. This gives the best fit for
the true standard deviation. The value for the
average pixels value is set to 0. This provides a
model for the Gaussian noise.
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Fig. 17. The same channel of the data cube of ugc 5258 as shown in figure 5. The FDR method has been applied to the
smoothed data of this channel (co) to set the mask. It shows that the faint signal in the upper left corner close to the strong
signal (as can be seen in the upper left panel of figure 6) has been missed out. The right image shows the result of expanding
this mask with the watershed equivalent algorithm. More details of this step, as well as the next steps, can be seen in figure 21.

This model for the background noise can immedi- will eventually converge to the best results. It
ately be used as the theoretical distribution in the takes up a lot of computation time however, since
Kolmogorov-Smirnov one-sample test for goodness finding the p-values is computationally expensive,
of fit (section 2). It shows that for each channel in as well as sorting them is.
the tested data cubes, the Kolmogorov-Smirnov
statistic D stays so low, that the equivalent — Next, the watershed-equivalent procedure (see sec-
probability of occurrence of the furthest outliers tion 6.1.1) is executed in two dimension, which ex-
is higher than 20 percent so the assumption of a pands the mask of ¢y. Three dimensions is also pos-
Gaussian distribution of the background noise is sible, but this clearly selects too much signal if two
justified. succeeding channels are not correlated enough (the
distance in velocity between channels is too large).
There are other ways of finding the right model In other words, the data are not isotropic in three
for the background noise. One other way is by dimensions, because the pixels are more correlated
using the median to get the standard devia- in the spatial axes than in the velocity axis. This
tion. The median also looks at negative values. should be better after a Hanning smoothing of the
For pure Gaussian distribution, it holds that data in the velocity direction, since then half the
p = 0.67448970, since the result of calculating power of each channel will also be in its neighbors.
equation (11) for z = sf—g_n% = 0.6744897 is 0.5. The threshold is set to Oc. This makes sure that a
The median is less sensitive to outliers than strip of weak signal of approximately one synthe-
the average is, so using the median to find the sized beam around the stronger signal is included.
standard deviation is a more robust way than The result of this step can be seen in figure 17.

using the squared average pixel value to find an
approximation of the standard deviation. Since the

data will be fitted afterward anyway, it is doubtful The same sequence of algorithms described above,
however, if this will improve the results. It is also is also executed to set and expand the masks of all
possible to execute the FDR method twice: once the wavelet cubes. This is a very essential step in the
to give a good approximation of the background process, since the watershed-equivalent algorithm will
noise, and once to use the pixels that are not find the extended (very) weak signal around stronger
selected as signal as input for the model for the signal, in the lower frequency wavelet cubes. An
background noise. It is obvious that this method example of this can be seen in figure 18 and, which

show the first three wavelet cubes after the sequence
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Fig. 18. The same channel of the data cube of uge 5258 as shown in figure 17. The FDR method followed by the watershed
equivalent algorithm have been applied to the first, second and third wavelet cubes (upper left, upper right and lower left
images). When the masks are compared it shows that sometimes different sources show up only in one single wavelet cube. Also
it can be noted that the mask of the second wavelet cube was able to pick up the faint signal in the upper left corner close to
the strong signal (which was not picked up by the first smoothed cube (figure 17)). The third wavelet cube is shown just for
completeness. More details of this step can be seen in figure 21.

of algorithms.

it shows that sometimes different sources show up
only in one single wavelet cube. Also it can be noted
that the mask of the second wavelet cube was able to
pick up the faint signal in the upper left corner close
to the strong signal (which was not picked up by the

first smoothed cube (figure 17)). The third wavelet
cube is shown just for completeness. It can be seen
that another object is visible in this wavelet plane,
that does not show up in the first two cubes. This
is a very weak signal, but it is visible over several
channels at exactly the same position. That is why it
shows up in the third wavelet cube. This is likely to
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Fig. 19. The left panel shows the result of adding the mask of the right image in figure 17 to all the masks in figure 18. The
right panel shows the result of applying an opening and a closing to this mask. All the ”fingers” are removed. The diameter of
the structuring element is 5 pixels, which is approximately the number of pixels/beamwidth. More details of this step can be
seen in figure 21.

be RFI. If one wants to find these particular sources,
it is possible to indeed include the third wavelet cube.

All of the masks (of ¢g and all the wavelet cubes) are
combined, to form the first mask (figure 19). This is
a very rough mask, with a lot of gaps, noise peaks
(which show up mostly in w;) and long fingers(parts
of an object close to the edge of the object).

When combining these masks, a choice needs to
be made on how to do this. What is done here, is
simply adding all the masks. This means that if one
of the masks at a certain pixel is set to one, then the
resulting mask will also be a one at that pixel. There
are different ways of doing this of course. One other
way is to include a pixel in the mask if it is visible
in at least two other masks. A stronger constraint
would be that at least two ”touching” masks must
both be visible. This means that wavelet planes w;
and wit1, or w, and ¢, must both be visible. Such
criteria. alone appear not to be sufficient, so more
complicated combination rules must be made up
in order to get better results than simply adding
all masks. It might be a step forward to use some
information a priori. For instance, a point source will
be smeared when smoothing the data. This means
that it should be most prominently visible in the
highest frequency wavelet plane. So when looking
for point sources specifically, this could be a good
criterion when adding the masks. A more extended
source on the other hand, should be more prominently

visible in the lower frequency wavelet planes.

An opening and a closing are performed, to get rid of
the unwanted features described above (see figure 19).
The operations are performed as described in section
6.2, with a circular structuring element. The radius
of the structuring element is a parameter that can
be adjusted. If one wants a smoother final mask, the
radius must be chosen larger. Instead of choosing the
radius however, it would be better to set it depending
on the number of pixels per beamwidth. Suppose the
beam has a width of 40"and the distance between
two adjacent pixels in the data cube is 8", then real
astronomical signal must have a width of at least 5
pixels. So the radius of the structuring element must
be at least 2%, so that spurious signal in an image
smaller than this size will be filtered out of the mask.
In practice, a radius of approximately this size gives
nice results, as can be seen in the right panel of figure
19.

The opening and closing performed here, are done in
two dimensions (the spatial dimensions). Using three
dimensions is also possible, but this gives terrible re-
sults. On one hand, signal will be included (because of
the dilations performed) because an adjacent channel
contains significant structures. On the other hand,
some signal will be left out (especially at the borders
of structures in a particular channel) because the
cube used as structuring element does not fit in three
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dimensions. Again, as with the watershed-equivalent
algorithm, the difference in correlation in spatial
and velocity direction is too large so the data is not
isotropic enough.

The new mask undergoes another step of the
watershed-equivalent algorithm, to find sources that
are nearby the originally selected sources (by the FDR
procedure) and relatively strong.

By using the watershed-equivalent algorithm, there is
a specific kind of signal that will not be included, but
which one probably wants to include. This is signal
that was originally not included in the mask (by the
first thresholding algorithm, i.e. the FDR method). It
lies close to a stronger signal that was included. So the
first step of the watershed-equivalent algorithm will
miss out on this signal because of the criterion that
neighboring pixels must have monotonically decreasing
value. This new signal can be found by another step of
the watershed-equivalent algorithm.

Suppose we start with the resulting data cube of
figure 13. This figure shows that this specific type of
signal has not been selected. First, an opening and
a closing are performed to expand the mask ”into”
the new area, as is described in the last step. This is
necessary to find the new local maximum inside this
new area. Then the watershed-equivalent algorithm is
applied again, this time with a threshold of 0.5¢. This
threshold is necessary, because else too much signal
will be included. The value of this threshold is rather
arbitrary though, and should be chosen depending on
what one thinks should be the strength of a source at
its borders.

This step should in fact be combined with the first
step of the watershed-equivalent algorithm to speed
things up. Therefore another, more complicated region
growing algorithm must be created.

Again an opening and a closing are performed to
remove unwanted features. These features have
appeared again, because the watershed-equivalent
algorithm has been applied again. The result of this
step can be seen in figure 15. Note that this mask
included signal that was just above the level of the
background noise. By setting the threshold of the last
step higher, less signal would be selected.

All the objects that do not "span” a certain range of
channels are removed. Since it is possible to calculate
the minimal range in km/sec an astrophysical object
must span in the data cube, this method can remove
spurious signal that span less than this minimum.
In other words, the signal has to be above a certain
cutoff level in more than one consecutive channel.

First the definition of an object must be given. A
general idea for such a definition lies in the con-

nectivity property (i.e. (Starck & Bijaoui, 2000)).
Consider two structures in two successive channels,
S and S2. Each structure corresponds to a region in
each image where the signal is significant (its value
is above a given detection limit, so the mask at each
of the pixels in these structures is set to 1). Now
S1 is said to be connected to S? if the maximum
position of the structure S' (except for the third
coordinate; the channel) is contained in S2. All the
structures together that are connected (either upward
or downward) can be called an object. Structure S* is
already connected to S? if they simply overlap in veloc-
ity direction, if the channels are completely correlated.

Now that an object is defined, it is possible to look at
he maximum and minimum channel of all the pixels
that are contained in the same object. By taking
the difference, one knows the number of channels an
object ”spans” (in the channel direction). This way
it is possible to select for certain kinds of objects.
For instance, there is a physical lower limit to the
dispersion of HI gas in galaxies of about 8 km/sec
(Kamphuis (1993)). That means that if, for instance,
the velocity difference between channels is 2 km/sec,
then a physical astronomical object must span at
least 4 channels. Also, isolated structures (objects
that span only one channel) can be removed this way.

It is also possible to search for objects in the wavelet
transform space (WTS). This way objects are defined
in each channel separately. This is useful if one wants
to include structures in objects in wavelet planes only
if they are connected. However, this way it is also
possible to miss out on signal that is only prominently
visible in one certain wavelet plane (see for instance
figure 18). And that might be just the signal one is
looking for.

9. The data cube and its new mask are written. Note that
the data itself has not been changed. Only the mask
has been set. So the whole procedure is easily reversed
if necessary. The result of the complete procedure for
ngc 7332 can be seen in figure 20 and for uge 5253 it
can be seen in figure 21.

7.3. Summary

The first thing that can be said is that the a trous wavelet
transform is capable of extracting true astronomical fea-
tures at all scales in the spatial domain. This can be done
with the help of the False Discovery Rate. Because of its
adaptive nature, it correctly controls the fraction of false
discoveries over the total number of discoveries. To en-
sure that the right model for the background noise is in-
deed Gaussian white noise, the Kolmogorov-Smirnov one-
sample test for goodness of fit proved to be helpful.
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Fig. 20. Overview of a zoomed in part of the same channel of the same data cube as in figure 13. Image (I): the original data.
Image (III): Applying the watershed-equivalent algorithm without the constraint (pixel values must be higher than a certain
threshold when expanding the ask). Image (II): The watershed-equivalent algorithm applied with the constraint. Image (IV):

the final result.

Second of all, the watershed-equivalent algorithm is a
fast and easy way to improve the mask, i.e. include or
exclude certain groups of pixels based on morphological
or intrinsical properties.

Lastly, a first and simple comparison with conventional
masking methods shows that the new procedure is capable
of automatically extracting all the signal that probably is
of true astronomical origin without including background
noise peaks that are just above the threshold.

8. Filtering in the Visibility Domain

It is possible to define a mask (the flag table) for the u,v
data in the same way as it is for the image data. Note
that in this paper only the amplitude part of the visibil-
ity data is considered. Of course it is also possible (and
perhaps much more effective) to consider both amplitude
and phase u,v data, but this is the first step. Also using
the phase data can be very effective since sometimes noise
(or spurious signal) can be averaged out over time due to
its varying phase.

This brings us to the next remark, namely that only
the total intensity (Stokes parameter I) is taken into ac-
count at first. The frontend feeds of the WSRT consist
of two perpendicular probes for the detection of linearly
polarized radiation (a dipole cross) designated X and Y.
By taking a look at the difference between XX and Y'Y
of each telescope combination (Stokes parameter Q), one
should be able to spot the polarized RFI much more easily.
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Image (I): original image co. Image (II): first smoothed cube ¢;. Images (III) to (V): FDR clipping method and mask expansion
with watershed equivalent algorithm applied to first, second, and third wavelet cube (w1, w2, ws) respectively (and the data is
the wavelet data itself, not the original data). Image (VI): same procedure applied to ci. Images (VII) to (X): Combined mask
of image (II), (III) and (VI) mo, opening and closing of this mask m1, another step of the watershed equivalent algorithm mso,
and again an opening and closing of this mask ms (which is the final mask). It can be argued whether image (X) shows better
results than image (VIII), but the smoothness of the last mask can be adjusted by the size of the used structuring element for
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HI line emission (the 21 cm. line of the hydrogen spin flip)
is unpolarized. In contrast, radio interference is mostly po-
larized. The scattered light from the sun is a good example
of that.

8.1. Differences with image data

Compared with image data, there are three big differences.
First of all, when filtering in the visibility domain, the
filtering is the same for all pixels in the image data. This
means that if one pixel in a u, v data plane is excluded, this
affects all pixels in the image data plane (because it is the
Fourier transform). So if RFI can be removed at a certain
position in an u,v data plane, then the complete image
plane can be improved at once. RFI is a good example of
spurious signal.

The second big difference between filtering in visibility
space and filtering in image space is that distinguishable
objects look different. In the image domain one looks for
true astronomical signal, while in the visibility domain it
is much easier to look for RFI. This is due to the discon-
tinuous character of RFI. As can be seen in figure 1 its
signature is that it is narrow in v,t space (right panel)
and broad in b space (sometimes RFI is random in vt
space). If an image in the u, v cube is smoothed in all di-
rections but the time axis, then the signal-to-noise ratio
for all structures of short duration will be increased. So
typical RFI of short duration can be selected this way. The
same method can be applied for interference at a certain
frequency that is continuously present.

The third and most important difference is the follow-
ing. In the image domain, techniques have been applied to
separate the true astronomical signal from the noise. This
means that the signal for every pixel itself has not been
changed. However, if one blanks pixels in the visibility do-
main then the value of the pixels in the image obtained by
the Fourier transform will be affected. This means that,
if done right, flagging pixels in the visibility domain can
improve the complete resulting image.

8.1.1. Selecting a cutoff

The first step in extracting spurious signal from u, v data
is calculating some kind of threshold. For the image data,
the False Discovery Rate calculated this threshold. For the
u,v data, however, this is impossible. When considering
u, v data, it is impossible to truly select any pixel as source
pixel or as background pixel. The definition of the FDR
is ’the average fraction of false discoveries over the total
number of discoveries’. But in the case of u,v data, there
isn’t truly such thing as a false discovery. Every pixel in
the u,v data contains both noise and signal. Therefore it
is important to be very careful when selecting signal. The
second problem with FDR is that the p-values can only be
calculated with a uniform Gaussian model for the back-
ground (see equation 11). In u,v data, the background is
not uniform (see section 8.1.2). The choice made here is

therefore to calculate an average standard deviation for
every pixel in the complete data cube. The idea is then
to first select only a small part of the strong signal (in
the case of u,v data this should be RFI) by using a very
high threshold and then to define the spurious signal more
decently with the use of morphological operators.

visibility function

Amplitude
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Fig. 23. The visibility function for a certain telescope spac-
ing. For a point source, this will be a sinusoidal function. The
upper plot shows that, because of the varying amplitude, pix-
els (green, thin line) should not be tested against the same
threshold (blue, dotted line) over time. Instead, the running
mean over a short period of time (red, thick line) should be
subtracted first (lower plot).

8.1.2. Visibility functions

All the telescopes in a synthesis array are pointed towards
a phase center. Due to the varying direction of this phase
center, a correlator will give a sinusoidal output in the
case of a perfect point source. The visibility function of
two antennae is, for a point source, a sinus, with a period
that is inversely proportional to the baseline length. So
for smaller baselines, the amplitude of the interferometer
output will vary more slowly. For extended sources, the
visibility function can have a complex shape. It will be a
time-varying function that depends on the shape of the
source.

Because of this effect of varying amplitude over time,
it is not wise to select a threshold at the u, v data directly.
This can be seen in figure 23. For a certain threshold, data
at times when the visibility function peaks are more easily
selected then data at other times (in other words, the data
cubes ¢; pick up by far too much signal, see upper figure).
This can also be seen in figure 22, which shows the data
of one baseline in the first smoothed cube ¢;. When the
output is corrected for these visibilities (lower figure), only
the truly outstanding pixels will be selected.

One way to correct for the visibilities is to look at the
average value of the pixels over all frequencies and over a
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Fig. 22. The first smoothed u,v data (c1) of a very short baseline (of antennae 9 and A of the WSRT) of nge 4010. The
horizontal axis represents the different frequencies (in total 128), the vertical axis represents the time (12 hours, with 60 seconds
per sample, giving 720 time samples in total). The third dimension holds the 91 baselines. This will be the same for following
figures of u,v data planes, unless stated otherwise. The left panel shows the unmasked map. The red blob is a small cube of
really strong RFI that is visible on most baselines (at least on all the short ones, which is characteristic for RFI). The right
panel shows the masked map, meaning that all pixels below a certain threshold have been flagged as bad. (50). It can be seen
that the amplitude averaged over all frequencies varies very slowly over time for this short baseline. At those moments where it
is highest, the pixel values can easily get higher than the threshold (right panel). This should be corrected for by subtracting
the averaged amplitude (over time) before setting a threshold (this is graphically explained in figure 23).

short period of time (say ten minutes) for each baseline
individually, and then to subtract this average. Another
(and very convenient) way of doing this is to only take a
look at the wavelet planes and not the u,v data directly
(data cubes ¢, c1, ...). So only the wavelet planes (cubes
w1, w2, ...) will be used to set the mask of ¢g.

w1 | w2 | w3 102 -1
we | ws | we 112 -1
wr ws W9 -1 2 -1
-1 0-1 -1
2 2 2
-1 -1 -1

Table 3. Example of a mask that can be used to find strong
lines in a plane. The parameter R = Z?zl wiu; (where w; are
the weights of the mask (upper left figure) and u; are the values
in the plane centered on ws) is calculated for every pixel in the
plane. Next a pixel is though of as part of a line (in the case
of the upper right mask in the vertical direction; in the case
of the lower right mask in the horizontal direction) if R < T
where T is a certain threshold (Gonzalez & Woods, 2002).

8.1.3. Defining spurious signal

There are three kinds of strong ’objects’ in u,v data that
are most prominently present and that can be pointed out
as spurious signal (RFI) with high probability.

1. Rather isotropic blocks of very strong data (so promi-
nently visible in baseline, frequency and time space),
that are best visible at short baselines and that usually
last for a short period of time (like a half an hour). The
interference that arises due to scattered light from the
sun is a typical example of this kind of RFI.

2. A plane of very strong data that peaks in the frequency
axis. Again, the short baselines are most sensitive to
this kind of RFI because of their very low fringe rate.
At the beginning and end of the measurement, the
longer baselines appear shorter to the source (since it
is closer to the horizon). Everywhere in between, the
phase changes so rapidly for the longer baselines, that
the RFT is averaged out.

3. A variant of the previous kind of RFI, this time only
visible in all baselines with one certain antenna. The
shape is the same, but instead of a real plane it is
more a collection of strong lines that last for a certain
amount of time.
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Fig. 24. The same baseline plane as in figure 22. The mask has first been set by selecting all the pixels in the wavelet planes
(two) with values above a certain clipping level. From this (upper left panel) it can be seen that mostly only spurious signal
has been selected. The greenish stripe in both upper panels has been selected because of the wavelet transform: the baselines
after this baseline (the next longer baselines) have strong RFI peaks at this frequency. Upper panels: the left panel shows a few
loose points that are most likely real signal, but have also been selected. Note that the first few channels contain very high pixel
values. The right panel is the result of combing the mask (i.e. removing small groups of pixels not larger than 10 pixels) so that
only the pixels that are very likely to be RFI have been selected. Lower panels: these show a zoomed-in part of the baseline

plane.

8.2. Mask enhancements

There are several ways of improving the flag table of a u,v
data cube, just as with image data. In some case the same
algorithm can be used, but with different parameters. The
biggest difference is that the shape of the spurious signal
one is looking for is different. So some different algorithms
are needed also.

8.2.1. Selecting strong lines

In order to find strong lines in a certain frequency plane
of the u,v data, a new algorithm is needed. The algorithm
presented here makes use of the fact that strong lines are
lines, because the two adjacent rows in the plane are sig-
nificantly weaker. Thus, by looking at the slope of the lines
perpendicular to these strong lines, a sudden increase and
decrease can be noted. This is the same thing as saying
that the derivative at the line is very high. For this, a
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one dimensional Laplacian filter can be used as the two in
table 3 (on the right).

The length of the mask can also be varied. This means
that instead of only three, five or seven or even more rows
can be used. The advantage of this is that longer lines
with gaps in them will be selected completely. The disad-
vantage is that one really strong pixel can make all the
adjacent pixels above and below be selected, even though
they should not be.

8.2.2. Region growing

In a typical WSRT antennae layout, there are 9 baselines
with length 144 meters and 8 baselines with length 288
meters, and so on. This means that the sun will leave
blocks of RFI in the u,v data, as can be seen in figure
29. Due to the characteristic shape of these blocks (which
are clearly visible at all frequencies), the second wavelet
cube does not pick up enough RFI. The third wavelet
cube does so, but it also selects too much pixels of which
it is impossible to say that they are RFI. Therefore the
following algorithm is implemented.

The concept of region growing was explained in section
6.1.2. In the case of u, v data, region growing can be used
to expand the mask that is already set to remove gaps and
bridges in the mask that arise due to the use of the a trous
wavelet transform (section 5.3). The algorithm works as
follows,

— The set of seed points is chosen as the complete mask
of a previous step. This way the region itself can only
grow, it never becomes smaller (as opposed to the
watershed-equivalent algorithm in section 6.1.2).

— As long as the next neighboring pixel in the baseline
direction (both ways) has a value higher than some
chosen threshold, it will be included in the mask. This
threshold must be high, like 6 or 7 o. Expanding in
the baseline direction only (as is done in the wavelet
transform) makes this algorithm sensitive for typical
RF1I-like structures.

This algorithm will find strong signal, but only in the
neighborhood of signal that was already selected by pre-
vious masking steps.

9. Implementation for the Visibility domain

The implementation of the different algorithms and the
order in which they are executed on the u,v data is dis-
cussed here. As with the spatial data, first an overview of
the complete implementation is given. Next, all the dif-
ferent parts of the implementation are explained in more
detail, giving examples of the results and the reasons why
certain choices are made.

9.1. Overview

The full implementation looks like this (only for visibility
domain data cubes):

1. The mask of the original data cube, cg, is reset.
2. The baseline planes are ordered from smallest to
largest baseline.
3. The a trous wavelet transform is done.
4. A mask is set for all of the wavelet cubes by clipping
all values below a certain averaged clipping level.
5. The masks of the wavelet cubes are combined.
6. Real small objects are removed from the mask.
7. All the strong lines in each frequency plane (channel)
are selected.
8. The mask is expanded with a region growing algo-
rithm.
9. The mask is inverted.
10. Gaps in the mask are filled.
11. The baseline planes are reordered and the data cube
and its new mask are written.

9.2. Explanation

1. The mask of the original data cube is reset. This
means that all that is done next, is easily traceable. It
is also possible of course to add the flagging done by
this procedure to that of another, perhaps interactive
flagging procedure.

2. The baseline planes are ordered from smallest to
largest baseline. This way it is easier to detect
structures in the data cube. The length of a baseline
corresponds to the size of the structure the interfer-
ometer is sensitive to. Large, extended structures will
show up more prominently on the shorter baselines.

3. The a trous wavelet transform is done. This time it is
done only in 1 direction, not isotropic. As said before,
the signature of RFI is (mostly) that it is narrow in
v,t space and broad in b space. Therefore it is enough
to smooth the data in just the baseline direction. This
is to select as less (bad) data as possible. For the
same reason, it is usually enough to set the number of
wavelet cubes that are created to two.

If the a trous transform is done isotropically, then the
worst results arise when RFT at one single frequency is
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Fig. 25. A part of a frequency plane of ngc 4010 (baselines on horizontal axis with smallest baselines left; time on vertical axis
in minutes, every 60 seconds samples where taken). The upper left panel shows the mask that has been selected by the wavelet
transform procedure. The upper right panel shows the result of combing this last mask (in three dimensions) for groups smaller
than 10 pixels. The lower left panel shows the result of selecting strong stripes in the new mask, using a filter mask (such as
the two right masks in table 3) of 7 rows. It is clearly visible that this last procedure can create unwanted features of that same
size of 7 rows around strong, isolated pixels.

present. The data will be smoothed over the adjacent
frequency planes, so in the original data good signal
will be identified as RFI.

. A mask is set for all of the wavelet cubes by clipping
all values below a certain averaged clipping level.
This average is created as follows. First all the sigmas
(standard deviations) for all channels are calculated.
Then an average sigma is formed including all chan-
nels except the first and last 5 (these often contain
very bad data). Next an average is formed over all
channels that have sigmas below the first average (to
exclude peaks). This way one channel with real high
values cannot increase the average sigma too much.
The idea is to take a low and save threshold and to ex-
pand the RFT selection (flagged as bad) more carefully.

In contrast to the image data, strong negative signal
is also included. As is described in section 5.3, this
leads to selecting too much signal in image data, for
a three-dimensional wavelet transform. This negative
side effect is not visible for the one dimensional
transform.

. The masks of the wavelet cubes are combined. This
mask is the basis of the mask for the real data, cg.
The result so far can be seen in the left panels of
figure 24.

. Real small objects (in three dimensions) are removed
from the mask. When handling u,v data, it is very

hard (or even impossible) to classify a single pixel.
Pixels need to be classified depending on the nature
of there neighbors. Because of this, it is best not to
include single strong pixels (or real small groups of
ten or twenty pixels) in the mask. The obvious result
of this step can be seen in the right panels of figure
24.

Note that for the u,v data, no opening and closing
is performed. This is because these operations will
include too less or too much signal and the u,v data
should be treated with more care.

. All the strong lines in each frequency plane (chan-

nel) are selected. This is done with the algorithm
described in section 8.2.1. The number of rows in
the mask is chosen as seven, since this gives best
results. As described, the use of this algorithm comes
with a price. This can be seen in figure 25. More
importantly, this algorithm also selects signal of which
it is certain that it is RFI. This can be seen in figure 27.

. The mask is expanded with the region growing

algorithm described in section 8.2.2. The result
can be seen in figure 29 (lower left panel). The
combination of the & trous wavelet transform and
this algorithm is very powerful. The first can spot
extended sources at all scales, the latter fills the
gaps and creates bridges in the mask that arise due
to the creation of negative signal in the wavelet planes.
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Fig. 26. A frequency plane of nge 4010 (baselines on horizontal axis with smallest baselines left; time on vertical axis). Image
(I) shows the original frequency plane. The red pixels are so strong that they must be RFI. Also, the shape of this 'object’ is
very characteristic for RFI. The short baselines have a very low fringe rate, so that the RFI is visible. At the beginning and end
of the measurement, the longer baselines appear shorter to the source (since it is closer to the horizon). Everywhere in between,
the phase changes so rapidly for the longer baselines, that the RFI is averaged out. Image (II) shows the result of setting a
threshold for the original data, which clearly selects by far too many pixels. Image (III) shows the result of adding all masks
created by the wavelet planes. The is the basis for the new mask. Image (IV) shows the result up until the combing step of the
whole procedure.

As described in section 9.2, it is usually enough
to create only two wavelet cubes for the u,v data,
because the masking procedure applied to the third
wavelet cube includes too much real signal. The
third wavelet cube will filter more RFI though. The
difference between using this third wavelet cube and
using only two wavelet cubes and applying the region
growing algorithm can be seen in figure 30.

This figure shows that even when only two wavelet
planes are created and the region growing algorithm
is not applied, part of the true source (the rings in
the image) is also removed (upper right panel). This
is logical, since (in this case, with uncalibrated data)
the shortest few baselines show interference that last
for the complete measurement time of 12 hours for
this particular frequency. So removing even part of
this RFT in the u,v data will also remove part of the
true source in the resulting image data. In theory one
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Fig. 27. The same frequency plane of ngc 4010 as the one in figure 26. Image (I) shows the result of selecting strong stripes in
the new mask, using a filter mask (such as the two right masks in table 3) of 7 rows. It is clearly visible that this last procedure
can select some strong stripes in the frequency planes, that are clearly RFI. Image (II) shows the result of expanding the mask
with the region growing algorithm described in section 8.2.2. Next, the mask is inverted (Image (III)). There are still some
"floating’ strong pixels left in the part of the mask that has been flagged as bad. These can be removed (see section 9.2), to get
the final mask that can be seen in image (IV).

would only want to remove the RFI from the ’bad’ only extra RFI.
data and leave the pixels flagged as good. But it is
impossible to know what part of a data value is RFI 9. The created mask selected as much of the visible

and what part is signal. RFI as possible. Now the mask is inverted (all the

flags unequal to zero are set to zero and visa versa),
The most important result from this figure is the because in the end, we do not want to include RFI
following. The third wavelet cube was able to remove in the mask. The resulting mask can be seen in the
the last parts of the horizontal stripes that are visible lower left panel of figure 27.

in the image data. However, it also selects even more
true signal. The region growing algorithm removes 10. There still is some strong signal in the mask left,
that is easily identified as RFI. Therefore all the
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Fig. 28. A frequency plane of nge 4010. The left images show the original data. The right images show the result of all the
masking procedures as described in section 9.1. The lower images show only a part of all the time samples for more detail.

11.

gaps in the mask are filled. This means the following.
For every pixel in the mask, the mask values of the
surrounding eight pixels in the frequency plane are
added up. If this value is lower than 3 (so at most 2
adjacent pixels have been flagged as good), then the
mask of the centered pixel is flagged as bad. This
removes single isolated unflagged pixels from the mask
as well as stripes that are surrounded by bad pix-
els. The result of this last step can be seen in figure 27.

The baseline planes are reordered, to make up for
the second step. This is to make sure that the right
data is at the right place again. Next, the data cube
and its new mask are written. Note that the actual
data itself has not been changed. Now images can

be made from the visibilities (the u,v data), by the
Fourier transform (using all the right weights, gains,
etc.). The corresponding image of the frequency
plane in figure 26 (upper left panel) can be seen in
the upper left panel of figure 32. The corresponding
image of that same frequency plane after the flagging
has been done (lower right panel of figure 27), can
be seen in the right panel. The improvement is obvious.

The strong stripes in the unflagged image must be
due to errors in the early beginning, or in the end of
the measurement, since they are very much vertically
aligned. This can also be seen in the visibility domain,
which shows even more clearly where the RFT is
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Fig. 29. A frequency plane of uge 2953. Image (I) is the original data, which shows some clear blocks of RFI from the sun.
These blocks are characteristic for an interferometer with many redundant baselines (like the WSRT). Image (II) shows the
second wavelet cube. It has strong positive, as well as strong negative values. Due to the structure of the blocks of RFI, not
all of it will be visible in the a trous wavelet space. This can be seen in image (III) which shows the data after the clipping
procedure. Image (IV) shows that the third wavelet cube is able to pick up much more of the RFI at the cost of removing too
much good signal (which in this case is visible as dark blue pixels). Some gaps in the blocks of RFI still remain. The mask in
image (III) can be extended by the region growing algorithm in the baseline direction (as described in section 8.2.2). For a used
clipping level of 7o this results in image (IV). Almost all of the RFI that is visible with the eye has been selected and also much
less good signal is selected in comparison with the mask set for the third wavelet plane (image (IV)).



32 P. Kemper : Automated feature extraction from HI data cubes

Velocity: 1158.09 km/s (I) Velocity: 1158.09 km/s (V)
2939 (unflagged) 2939 (unflagged T
. .

69° 69°54'FT
2 0.0050 2 . 0.0050
< 2 -
o g 2 g
= 5 - o
50

g Jooooo & § @
2 B — =
: - :
) © -
) —0.0050 ) —0.0050
[ ]

AR

4109m00% 08M305 08O 07MR03

Right Ascension (J2000) Right Ascension (J2000)

Velocity: 1158.09 km/s (II) Velocity: 1158.09 km/s (VI)
ugcl939 (RW uge2939 (RQWT 3WT)

69 69°54'F
S B 5
2 = - 0.0050
S S
S e g :
— < ~ \ ©
- o o 50" § o
o £ g 00000 &
= o = §
E E £ 48 | g
2 o . ~0.0050
[} a 46'
4P09mO0S 08™30S 0A™NNS 07™MA0*
Right Ascension (J2000)
Velocity: < Velocity: 1158.09 km/s (VII)
C ugc2939 (3WT — final)
69954
2 2 0.0050
S =} o
S g X . =
5 Jo.oooo & 5 | 0 0000 A
= - 8 =
o £ £ 48/ | | =
o 0.0050 E 0.0050
A a .
46
4ho9MmO0s 08M30% 08™O0S 07™M30°
Right Ascension (J2000)
Velocity: 1158.09 km/s (IV) Velocity: 1158.09 km/s (VIII)
z (f uge2939 (2ZWT — final)
69°: 69°54'f
2 2 0.0050
< [}
S £ g z
- : .
5 m g <) 0000 &
e R~ | B
c £ c | g
ot ot i 0.0050
= a
4P09™00® 08™30% 08™00° 07™M30°
Right Ascension (J2000) Right Ascension (J2000)

Fig. 30. A zoomed in part of a spatial image of a data cube of ugc 2953 (the complete channel can be seen in figure 33). Image
(I) shows the original data. Image (II) shows the result of the complete flagging procedure as described in section 9.1 except for
the region growing step, with only 2 iterations of the wavelet transform and the same holds for Image (III) with 3 iterations.
Image (III) clearly shows less horizontal stripes than image (II). Image (IV) shows the result of the complete flagging procedure,
including the region growing step. Image (V) shows the difference of images (I) minus (II). Most of the RFI has been removed,
including part of the true source. Some horizontal stripes remain however, which can be seen in image (VI) which shows image
(IT) minus (III). This image also shows some rings which means that more of the true source has also been flagged when creating
three wavelet cubes instead of only two. Image (VII) shows the difference (III) minus (IV).Image (VIII) shows the difference
(II) minus (IV), which shows that the extra flagging done in comparison to image (II) removed practically only extra RFI, not
signal.
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Fig.31. The upper images show the same channel of the data cube of nge 4010 as in figure 26. The lower images show the
same channel of the data cube of nge 4010 as in figure 28. The left images show a standard masks. The right images show the
masks created with the new procedure.

strongest. continuum must be subtracted off the data. The way to do
this is saying that if at a certain baseline and time at any

Another example of the result of the complete proce- of the frequencies the pixel is flagged as bad, all the fre-

dure can be seen in figures 28 and 32. The first shows quencies at that point must be flagged as bad. Of course,

the u, v data before flagging (left panels) and after flag-  this means that too much true signal will be removed. A

ging. This is a clump of RFI that lasts for about a half comparison between a “standard” method and the new

an hour, and which is visible at more than sixty base- method can be seen in figure 31, where this last step has

lines. By performing the wavelet transform in just the been performed.

baseline direction (horizontally), the resulting mask is

very tight (right panels). The second figure (lower pan-

els) shows the corresponding image at that frequency.

There is one last step that could be included in the
whole procedure, namely giving the same u, v coverage to
every frequency. In some cases this is important when the
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Fig. 32. Two spatial images (channels) of a data cube of ngc 4010. The upper images correspond to the frequency channel of
figure 26. In the left images, all the flags have been set to good (so the RFI has been included). The strong stripes in the upper
left unflagged image must be due to errors in the early beginning, or in the end of the measurement since they are very much
vertically aligned. The upper right image shows the result after flagging the RFI as bad data (as in image (IV) of figure 27).
The lower images correspond to the frequency channel of figure 28. Again, the strong stripes indicate RFI of short duration.
The lower right image shows the result after flagging the RFI as bad data (corresponding to the right images of figure 28).

10. Results

If the final result for the data of ugc 5252 in figure 21
(lower right panel) is compared to the unflagged image in
figure 5 then it is clearly visible that the new procedure is
capable of selecting all the weak signal around the stronger
signal that was originally selected by the FDR method.
The watershed-equivalent algorithm plays a large role in
this, as well as the a trous wavelet transform which detects
signal at any scale. This weaker signal can be as low as
the average background noise level in each channel. The
False Discovery Rate guarantees high power in relation

to the number of false discoveries. So the combination of
these two algorithms can find the borders (of source and
background) of the true sources. This is also very well
visible in the final result for the data cube of ngc 7332, as
can be seen in figure 20.

The final result for nge 4010 as can be seen in figures
27 and 28 shows that the new procedure also works well
on u,v data. Again, the & trous wavelet transform is a
helpful tool for signal extraction, because it is good at
detecting discontinuities. In this domain a region growing
algorithm proves to be very effective too, because both
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algorithms make use of the characteristic shape of RFI.
Also see figure 29 for the final mask for the u,v data for
uge 2953.

The resulting images for ngc 4010 are created by con-
volving the u,v data (i.e. doing the Fourier transform)
with the right weights. For two of the channels the result
can be seen in figure 32. The characteristic stripes of RFI
of short duration have been removed. The final result for
three channels of uge 2953 can be seen in figure 33. Both
RFT that peaks at a single frequency as well as RFI that
spans a range of baselines (like RFI from the sun) have
been removed successfully.

Appendix A shows another overview of the resulting
images of ngc 4010. Figure A.1 shows a channel that is
hardly not affected by RFI at all. A standard flagging
procedure for u,v data (see section 9.2) removes too
much good signal, which can be seen in the middle right
panel. The new flagging method hardly flags anything
at all for this channel, as it should, which can be seen
in the lower right panel. Figure A.2 Shows a channel
that is very badly affected by RFT of short duration. The
standard flagging method creates an image in which a
two dimensional sinusoidal landscape remains. This is
also removed by the new procedure (lower left panel).
Sometimes the difference between the standard and new
flagging procedures is very minimal, as can be seen in
figure A.3. Figure A.4 shows a channel in which the
standard flagging procedure makes the RFI even more
pronounced.

The standard way of masking extended image data is
the following. First, the data is smoothed to a lower reso-
lution with a convolution by a Gaussian. The Full Width
Half Maximum (FWHM) of the Gaussian is chosen as dou-
ble the FWHM of the original data. Next, a threshold for
the smoothed data is chosen by hand that includes as much
true signal (or what appears to be true signal) as possible
without including noise peaks. This threshold is used for
the original data. When data cubes become very large,
there is not enough time to inspect each channel sepa-
rately. Therefore, one threshold can be set for the whole
data cube. For the same channel of uge 5253 as in figure 5,
the result of this step can be seen in figure 34. The upper
right panel shows that a very tight mask misses out on
the weaker extended signal that is very pronounced in the
smoothed data. The lower right panel shows that a lower
threshold easily picks up background noise peaks.

The next step is to create a zeroth moment map (a
“total HI map”). This is the first moment of the data
with respect to the velocity axis, i.e. the total intensity
as a function of position on the sky. For ugc 5253, the
comparison between creating a zeroth moment map with
the standard masking method and the new method can
be seen in figure 35. It shows that the map created with
the standard method and high threshold selects the signal
very tightly. It shows no apparent background noise peaks,
but the chance of missing out on some of the true signal is

large. The map created with the standard method and low
threshold (half of the strong threshold) selects much more
of the signal close to the strongest signal (in the center of
the galaxy), but also a lot of noise peaks. The map created
with the new method has only the good aspects. How low
the signal gets at the borders of source and background
depends on the used parameters of the new method.

11. Summary

The goal of this project was to extract true astronomical
features from image data cubes and to extract spurious
signal from visibility data in a highly automated fashion.
This goal has been achieved, which can be concluded from
the following results.

First of all, the a trous wavelet transform is very suit-
able for detecting true astronomical signal at all scales in
both the spatial and the visibility domain. For the latter
the transform makes it easy to spot discontinuities, which
is very characteristic for RFL.

Second of all, the False Discovery Rate proves to be
very useful to select source pixels for the spatial data,
because of its adaptive nature. Every channel in an image
data cube can be treated separately, to guarantee high
power in relation to the number of false discoveries. For
visibility data it proves to be suited to take a very low
average threshold, to ensure a careful approach.

Once a basic mask has been set for either spatial or
visibility data, region growing algorithms are a fast and
easy way to improve this mask, i.e. include or exclude
adjacent groups of pixels based on certain morphological
or intrinsical properties. This is the third important con-
clusion. Such an algorithm must be used carefully with
the right boundary conditions. Sometimes this is accom-
plished most easily if certain aspects of the signal one is
looking for are known a priori.

Furthermore, when setting the flags for visibility data,
the new procedure is capable of removing both the RFI
that is responsible for the characteristic strong stripes in
the resulting images, as well as the RFI that spans a range
of baselines (like the radiation from the sun).

Lastly, a first and simple comparison with conventional
masking methods of spatial data shows that the new pro-
cedure is capable of automatically selecting all the signal
that probably is of true astronomical origin without in-
cluding background noise peaks that are just above the
threshold.

12. Discussion

There are several things that can be done to improve the
results.

— Very weak signal that is just above the average noise
level in a channel, but which is also very extended,
can be spotted by the eye immediately. It is possible
to create an algorithm that searches for these kind of
‘plateaus’; see for instance Starck & Bijaoui (2000).
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Such an algorithm does not select significant pixels
based on their high value, but based on the adjacent
group of pixels. The whole group must have positive
value, and the group itself must have a minimal size.
A test can be implemented that checks if indeed the
mask that has been set for the image data, is a good
mask. For instance by applying the KS-test on the data
whose mask is set to zero before, and after the masking
procedure. The mean should be lower in this residual
(which should only contain noise) and the KS statistic
D should also be lower.

When performing the a trous wavelet transform one
can choose to use an uneven number of convolutions
in a certain direction to select a particular kind of sig-
nal. This is especially useful when searching for RFI in
the u,v data. This is a relatively unexplored area. In
this paper there has only been taken a look at doing
the wavelet transform in 1 direction, and in 2 different
directions, which gave unwanted results. Much more
combinations are possible, like XXY, XYY, XYZZ and
so forth.

The watershed equivalent algorithm can be improved
by adding additional criteria when expanding the re-
gions. For instance, when expanding, one could take
a look at the group of pixels already selected and use
new information like the average, standard deviation,
median and shape of the group.

There are many different kinds of wavelet transforms
that all have their own positive and negative proper-
ties. Some of them might not produce negative signal,
some of them might be much better at finding spe-
cific kinds of structures when compared to the d trous
wavelet transform. It must be kept in mind however,
that this specific transform was chosen for several rea-
sons (see section 3.1).

RFT is scattered radiation. Therefore it is polarized.
By taking a look at the difference between X X and
Y'Y of each telescope combination (Stokes parameter
Q), one should be able to spot the polarized RFT easily.
The scattered light from the sun produces this kind of
RFI. Characteristic for the sun is that it is suddenly
visible at sunrise which leaves its signature as a sharp
edge in the @@ data. This should be spotted easily in
the wavelet cubes. To calculate (), the data need to be
calibrated first, however. And calibration can only be
done after the RFI has been removed.

Because of the wavelet transform, data is smoothed,
sometimes in 1 direction in particular (for the u,v
data). So if one very average baseline plane is in be-
tween two baseline planes with some very strong RFI,
then part of the middle baseline plane will also be se-
lected. This could be corrected for.

The complete transform should in fact be done on com-
plex data. By incorporating the phase data the noise
can add up, where else it might not be visible. The pro-
cedure does not change for complex data, the results
might however.

— In some baseline planes features of RFI remain un-
flagged, even if these would be selected manually. This
is for instance the case in the baseline plane in fig-
ure 22. The relatively strong horizontal lines next to
the really strong lines are impossible to select just by
defining a threshold.

— The wavelet transform can also be done after some
previous flagging. So for instance data that is really
strong (100 and up) can first be flagged as bad and
from there on these pixels are treated as zero-valued.
The advantage of this approach is that really strong
RFI will not be smoothed by the wavelet transform
and then will be selected as true signal.

— The new procedure can be tested on a fake data cube
with known noise.
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Fig. 33. Three spatial images of a data cube of ugc 2953. This is uncalibrated data. The left images show the unflagged data,
the right images show the corresponding flagged data. The upper and lower images correspond to frequency planes with clear
RFTI at the end and beginning of the measurement (much like the RFI visible in figure 26). The middle images show a frequency
plane which is only affected by RFI that lasts for about an hour, but which is visible at all frequencies. The broad, dark diagonal
features are visible in all left images. This is the signature of the sun.
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of those same two levels.
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Appendix A: Results NGC 4010
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Fig. A.2. A channel of ngc 4010. Image (I): unflagged image, image (II): standard flagged image, image (III): new flagged
image, image (IV): image (II) minus (III), image (V): image (I) minus (II), image (VI): image (I) minus (III).
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Fig. A.3. A channel of ngc 4010. Image (I): unflagged image, image (II): standard flagged image, image (III): new flagged
image, image (IV): image (II) minus (III), image (V): image (I) minus (II), image (VI): image (I) minus (III).
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Fig. A.4. A channel of ngc 4010. Image (I): unflagged image, image (II): standard flagged image, image (III): new flagged
image, image (IV): image (II) minus (III), image (V): image (I) minus (II), image (VI): image (I) minus (III).



