Interpolation of velocity fields with Delaunay
tessellations

Liesbeth Vermaas

Supervisor: Prof. dr. M.A.M. van de Weijgaert

September 24, 2004



'het plaatje is van Escher



Contents

Introduction

1 Cosmology and Large Scale Structure
1.1 History and basics of cosmology . . . . . . .. ... .. ... ...,
1.2 Observations of large scale structure . . . . . ... ... ... ...

2 Structure formation
2.1 The primordial density field . . . . ... ... .. ... ... ....
2.2 Gravitational instability in the linear regime . . . . . . . . . .. ..
2.3 Fluctuations in the non-linear regime . . . . . . . . .. .. ... ..
2.4 Clustering models: top-down and bottom-up . ... ... ... ..
2.5 The cosmic velocity field . . . . . . ... ... ... 0oL

3 Computing techniques
3.1 N-body simulations . . . . .. ... ... ... o000,
3.2 Pixelization & reconstruction . . . . ... .. ... ... ...

4 The peculiar velocity field: comparing TSC and DTFE
4.1 Details of the N-body simulation . . .. ... ............
4.2 The used TSC and Delaunay methods . . . . ... .. ... ....
4.3 Displayingthedata . . . . . . . ... ... oL
4.4 Summary, discussion and conclusions . . . . . ... ... L.

Acknowledgements
Bibliography
Appendix A: The velocity gradient in a Delaunay cell

Appendix B: Previously done work

18
18
20
21
22
23

28
28
30

36
36
38
38
58

59

60

63

64






Introduction

The aim of this research project was to compare different interpolation methods
for the results of N-body simulations. It is known that in these simulations nor-
mally the material ’clutches’ together, in such a way that foam-like structures are
formed with walls and voids. When trying to describe the (continuous) peculiar
velocity field by interpolation of the velocities of the particles there are several
problems to deal with. Especially in the empty regions (voids), normal interpola-
tion does not work properly. When the underlying velocity field of the simulations
can be described accurately and at any point, the motions will be better under-
stood which therefore leads to a better understanding of the formation of the
large scale structure: galaxies and clusters of galaxies. Using Voronoi-tessellations
has proved to be valuable in the past with densities. In this research project a
similar procedure, the Delaunay-tessellation, is used for estimating the velocities
resulting from N-body simulations and the results are be compared to those of
TSC-interpolation. First, a short overview of cosmology and observations is given
in chapter 1 followed by the somewhat more thorough chapters about structure
formation in the universe (chapter 2) and computational techniques in this field
(chapter 3). Chapter 4 gives the details of this research project with a discussion
of the results and conclusions.



Chapter 1

Cosmology and Large Scale
Structure

Visible material in the universe at some scale is clearly not homogeneously dis-
tributed. Most obviously recognized are discrete objects like stars and galaxies,
but there are also structures like clusters of galaxies and even larger, the super-
clusters. One major question in science is (and has been in the past) that of the
history of the universe. Advancing technology allows us to get an increasingly
detailed view, providing information for the development of theories of the origin
of this universe. A widely accepted theory among most scientists is that of the Big
Bang, which states that matter originates from energy and was blown away in all
directions in a moment of ’explosion’. This chapter is divided in two sections, the
first section summarizes some basic properties of Big Bang-cosmology, the second
part gives an overview of observational studies in this field.

1.1 History and basics of cosmology

Scientists did not always believe that there was a Big Bang. The main historical
idea was that of a static universe that had always existed, in which galaxies remain
in their places. Newton already noted that all objects attract each other and
without any other force would fall together. He wondered whether some large-
scale motion could compensate this fact. Still, the universe was assumed to be
static at the time Einstein published his theory of general relativity in 1916, and his
equations were also based on this idea. He introduced his cosmological constant
(A) as an arbitrary outward force to prevent the gravitational infall of matter.
But Friedmann (in 1922) and Lemaitre (in 1927) independently found two other
solutions to the equations could that not be excluded: that of a contracting and
that of an expanding universe. Although Einstein first claimed that Friedmann
was wrong, calling the cosmological constant 'the greatest blunder in his life’; in
the next year he admitted his 'mistake’ to Friedmann in a two-sentence paper [14].



Hubble’s law

Ouly after Hubble’s discovery in 1929 that (almost) all galaxies are moving away
from us with velocities proportional to their distance from earth [17], the idea of an
expanding universe was set. This was consistent with the Cosmological Principle
formulated by Einstein before, which states that the universe is isotropic and on
large enough scale homogeneous. The outward motion of a galaxy results in a
Doppler-shift of the emitted light to the red part of the spectrum, this shift is the
redshift, z. In formula form, the redshift of a galaxy is:

At) — Xo

z= v (1.1)

A(t) is the observed wavelength, )\ is the emitted wavelength. Now Hubble’s law
can be stated as

cz = Hyr (1.2)

where c is the (constant) speed of light, 7 is the distance to the object and Hj is
the Hubble constant. At this time the estimate for Hy was 50 - 100 km s~ 'Mpc !,
recent observations can predict this value with more precision (section 1.2). How-
ever, for high velocities this is not valid and a relativistic form of the formula has
to be used.

If we go back in time, all material moves closer toghether, up to a point in time
when it was all concentrated in one single point. This point, or rather singularity,
in space-time is what is called the Big Bang. The relative size of the universe at
different times can be expressed in terms of a scale factor, a(t). In an expanding
universe, a(t) is zero at the Big Bang and increases with time. The scale factor
scales distances (or lengths) in time, such that these are constant for any set of
points that flow with the Hubble expansion. This is called the comoving distance
in comoving space. If ¥ denotes the physical location in space, its comoving coor-
dinate Z is defined as Z(t) = % The relation between the Hubble constant and
the scale factor is thus:

_a(t)
HN) =15 (1.3)
Hy= 2 (1.4)
@ li=t,

where a is the scale factor, a is the time derivative of a and ¢y is the present time.
The redshift and the scale factor can now be linked:
_ )\t _ a(t)

l1+z=—=
AO a(to)

(1.5)

Note that, similar to the Hubble law, the relation in this form is only valid for low
redshifts; when the velocity becomes larger one has to take into account relativistic
effects.



Friedmann-Robertson-Walker Universe
Assuming the Cosmological Principle (homogeneous and isotropic universe), the
expression for a line element (ds) can be expressed in spherical coordinates (r, 6,

¢)

dr?

1 — kr?

ds? = c?dt? — a?(t) + r2(d6? + sin® 6d¢?) (1.6)
this is called the Friedmann-Robertson-Walker metric, after the men who first
wrote it down. With this they introduce the curvature constant k£ (an integration
constant from the Einstein equations), kK = 0 means a flat universe: with Euclidean
geometry for the three spatial dimensions. Combining this metric with General
Relativity and the ideal fluid approximation gives these two equations, that mark
the Friedmann-Lemaitre cosmological model:

d_4 3p A
H? = é2—§7rG +k—(:2+é (1.8)
“\g) T3P 2 3 ’

H is the Hubble constant, here as a function of time, G is Newton’s gravitational
constant, A is the cosmological constant, p is the overall density of the universe
and k is the curvature constant. The size, shape and fate of the universe highly
depend on the different values for these parameters. As mentioned before, zero
curvature indicates a flat universe; the expansion rate will at some point stay the
same forever. An open universe means that the expansion will keep on growing:
k < 0 and a(t) stays positive. In a closed universe (k > 0) the expansion will
decrease to zero. Here some useful quantities to work with are p.., the critical
density of the universe, and €2, a dimensionless cosmological density parameter.
These are defined by

3H2

= — 1.9

Por = g (1.9)

0=2L, =2 (1.10)
pC”' pCT

The critical density is the density that exactly divides between the open and closed
universe. The value of ) is less than unity for an open universe, greater than
unity for a closed universe and exactly one for a flat universe. The total density
is the sum of all various contributions to the density: Q = ¥ ;. The major
contributions are matter (£2,,) and radiation (€2,). With a nonzero cosmological
constant, and a contribution of the vacuum energy to the cosmological density of

A

Qr = —
A= 3mE?

(1.11)



the universe is flat for £ = 0, which implies that €,, + Qs = 1, while radiation
is considered negligible (instead of A as a subscript, sometimes v is used, which
stands for vacuum). Nevertheless, the existence of the cosmological constant is
nontrivial and this problem has not been resolved yet (Figure 1.1)!. Hence, the
explanation for what A should be is unclear: mostly it is referred to as vacuum
energy or dark energy. For a review on the cosmological constant problem see
Carroll, Press and Turner, 1992 [9]. A constant curvature universe obeying the
cosmological principle with zero cosmological constant is called an FEinstein-de
Sitter universe (in contrast with the Friedmann-Lemaitre universe).

ExpPANnSsION OF THE UNIVERSE

4 T T T T

Dark Matter + Dark Energy
affect the expansion of the universe

Qpn Q,
3r 0.3 0.7
0.3 0.0
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Relative size of the universe
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Figure 1.1: Possible scenarios for the expansion (and possibly contraction)
of the universe: the bottom orange curve represents a closed, high density
universe which expands for several billion years, then ultimately turns around
and collapses under its own weight. The green curve represents a flat, critical
density universe in which the expansion rate continually slows down (the
curves becomes ever more horizontal). The blue curve shows an open, low
density universe whose expansion is also slowing down, but not as much
as the previous two because the pull of gravity is not as strong. The top
(red) curve shows a universe in which a large fraction of the matter is in a
form dubbed ”dark energy” which is causing the expansion of the universe
to accelerate. There is growing evidence that our universe is following the
red curve. Courtesy figure and caption: WMAP website!

"http://map.gsfc.nasa.gov/m uni/uni_101fate.html



Table 1.1: Some cosmological parameters: different values
in a Friedmann-Robertson-Walker-Lemaitre universe.

for different models

shape curvature volume density
closed k>0 finite Qo >1
flat k=0 infinite Q=1
open k<O infinite Q<1

There are more unresolved problems stemming from this standard Big Bang the-
ory, of which the most remarkable are the flatness problem and the horizon prob-
lem. The first refers to the fact that the measurements for 2y give a value very
close to unity, while this is an unstable solution: for this value the initial conditions
of the universe must have been very fine-tuned. The horizon problem concerns
the observed large scale isotropy of the cosmic microwave background radiation,
which cannot be explained in combination with the size of causally connected
regions at the moment of recombination which subtends only a few degrees on
the sky [32]. The estimated values of some important cosmological parameters in
different models are put together in Table 1.1.

Models for the early Universe

Theories trying to solve these issues involve the inflation-model which states that in
the very early universe there was a period in which a super-cooled phase transition
caused the vacuum energy density to become dominant. If this period is long
enough, the curvature term can become small and the result is a globally flat
universe. Also, as the universe could ’inflate’ from a region that was causally
connected and in thermal contact, the horizon problem is solved this way [32].
The consequence of an inflationary universe, however, is that it requires a much
larger value of g than is observed in observable matter. Thus, there is a need for
a 'missing matter’ component that we cannot see: dark matter. There are more
indications, from recent observations of motions of galaxies and galactic dynamics,
that this component exists, but there is no certainty about the material that would
make up this dark matter. The total matter density is then

Qo = QB + Qo (1.12)

with Qp for baryonic 'normal’ matter and 2, for non-baryonic dark matter.
About 80% of all matter could be non-baryonic. Two options for the nature of
dark matter are Hot Dark Matter (HDM) and Cold Dark Matter (CDM). HDM
consists of collisionless particles with a large velocity dispersion, CDM consists
of collisionless particles with very small velocity dispersion. The nature of the
dark matter highly influences the way of structure formation. Presently, observa-
tions seem to favour a cosmological model with Cold Dark Matter and a nonzero
cosmological constant (ACDM) with 2, = 0.7 and Q,, = 0.3.
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Figure 1.2: Space, time and structure from the Big Bang until now.

The commonly accepted model is the ’hot Big Bang model’, in which after the
Big Bang the universe consisted of hot, uniformly distributed gas/plasma at first,
a radiation dominated universe mainly consisting of protons, electrons and pho-
tons. This universe cooled due to expansion, making it possible for elements,
and later molecules to form, eventually becoming the matter dominated universe
we presently live in. The separation between radiation-domination and matter-
domination is called the epoch of equivalence. This is possible because matter and
radiation evolve in different ways, and the moment for their densities being equal
is at about z = 1000. Very short after this moment of matter taking over the uni-
verse, radiation and matter decoupled. This marks the epoch of recombination:
nuclei and electrons formed atoms, no longer scattering the photons. It is only
from this moment of transparancy that photons could freely escape, and therefore
it is not possible for us to look back further in time: the electron density is too
high at higher redshifts for the photons to escape scattering.



1.2 Observations of large scale structure

Observational studies show in detail what the universe looks like in our neigh-
bourhood. But the further we look, the further back in time it is since the light of
very distant galaxies reaches us only with the finite speed of light. This way we
can actually look back in time and try to find out what really happened.

1.2.1 Galaxy distribution

By just observing the sky as deep as possible, counting and mapping the galaxies
in all directions on the sky gives a two-dimensional impression of the galaxy distri-
bution. The first survey was APM (Maddox et al. 1990, 1996 [19, 20])? followed-up
by the infrared survey of 2MASS (Figure 1.3)3.

showcase

Figure 1.3: The galaxy distribution on the sky. Top: part of the sky by the
APM galaxy survey?. Courtesy: Steve Maddox, Will Sutherland, George
Efstathiou and Jon Loveday. Bottom: whole sky distribution by the infrared
2MASS survey3. Visible are many galactic clusters and superclusters, as
well as some streamers composing the large-scale structure of the nearby
universe. The blue overlay represents the very close and bright stars from
our own Milky Way galaxy.

*http://www.nottingham. ac.uk/~ppzs jm/apm/apm.html
%http://pegasus.phast.umass.edu/frame.html
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A number of deep surveys was dedicated to measuring the galaxies’ redshifts in or-
der to extend the maps into the third dimension. One-dimensional redshift surveys
are the ’pencil beam’ surveys, which go deep on a very small region of sky. Two-
and three-dimensional surveys give slices of the universe, with increasing thick-
ness. The first influential of these, the CfA2 slice, gave an impression of the local
three-dimensional universe (De Lapparent et al. 1986 [11])*. Several studies fol-
lowed using the continuously advancing equipment and more powerful telescopes.
These include the Las Campanas Redshift Survey (Shectman et al. 1996 [31])?,
and the 2dF Galaxy Redshift Survey (Colles et al. 1999 [10]). Figure 1.4 shows
a comparison of the CfA and the 2dF results.
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Figure 1.4: Galaxy redshift surveys: slice of the CfA galaxy redshift survey*
(top) and of the 2dF galaxy redshift survey® (bottom). Note the difference in
scale: CfA is limited by z ~ 0.05, while 2dF goes out to z ~ 0.25!

*http://cfa-www.harvard.edu/~huchra/zcat/
Shttp://qold.astro.utoronto.ca/~1lin/lcrs.html
6h‘l‘.tp ://www.mso.anu.edu.au/2dFGRS/
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Table 1.2: Details of the different Galaxy Redshift Surveys.

Redshift Survey # galaxies redshift
CfA ~ 2400 0.05

Las Campanas ~ 26000 0.1

2dF ~ 140000 0.25
SDSS ~ 1 million 0.2/0.5

The most recent study is the Sloan Digital Sky Survey (SDSS)?, of which Figure
1.5 shows the first results. Table 1.2 gives more details of these redshift surveys.

In all of these studies it is clearly seen that the galaxies are not distributed in
a homogeneous way at all, but are rather in clusters and filaments with (nearly)
spherical empty spaces in between (voids), it is a foam-like structure. The filaments
of these large-scale inhomogeneities can have sizes of 100 - 200 h~'Mpc, while the

voids measure about 20 - 50 h~!Mpc.

78275 Galaxies

Figure 1.5: The distribution of 10,853 galaxies in a small slice of the SDSS
main survey’, along with another 486 ”luminous red galaxies”, chosen to map
out structure to higher redshifts (only 1% of the expected final spectroscopic
data). The bubble-like network of walls, filaments, and voids is clearly visible.
Courtesy: A. Pope, JHU.

Radius of circle 60000 km s~!

182
Right Ascension a, —15° < § < 20°

"http://www.sdss.org/
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1.2.2 Cosmic Background Radiation

Although we see the galaxies being very far away, this is still local universe com-
pared to the distant Big Bang. To get a clue about the Big Bang theory, more
distant information is needed. Assuming the hot Big Bang theory (mentioned in
section 1.1), Gamow, Alpher and Hermann (1940) calculated the relative abun-
dances of hydrogen and helium that would be produced in this scenario. This
happened to be consistent with the observations, later on also the abundances of
other light elements were found to be consistent. Moreover, Alpher and Hermann
had predicted the presence of afterglow-radiation originating from the Big Bang
itself, and this indeed was (accidentally) observed by the physicists Penzias and
Wilson in 1965 [24], while the scientific explanation was given in a separate pa-
per by Dicke, Peebles, Roll and Wilkinson [13]. This ’echo’-radiation, unlike the
structure in the galaxy-redshift surveys, is homogeneous and generally flat. This
is consistent with the idea of the uniformly distributed hot gas in the radiation-
dominated universe (section 1.1). In fact, this radiation comes from photons in
a last-scattering surface, from the time at which the optical depth became just
small enough for the photons to escape (just after recombination). The radiation
is highly redshifted, having wavelengths in the order of 1 millimeter, therefore
it is called the Cosmic Microwave Background (CMB) radiation. Observations
with the COBE satellite in 1992 found the first anisotropies (temperature fluc-
tuations) of 1/1000 in the flat blackbody background of 2.725 Kelvin. Following
balloon experiments confirmed this, and very recently the results of the very sensi-
tive WMAP survey were published, which show the spectrum of fluctuations with
very high angular resolution (for a comparison of COBE and WMAP, see Figure
1.6)8.

The fluctuation pattern in the CMB is caused by a set of different physical mech-
anisms. Since the data from WMAP have a 33 times higher angular resolution
than that of COBE (and a 45 times higher sensitivity), the anisotropies detected
by both satellites have different origins.

®http://lambda.gsfc.nasa.gov/ for both COBE and WMAP
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Large scale fluctuations: COBE

The large-scale fluctuation field detected by COBE (with 7° angular resolution)
originates from the gravitational potential perturbations at last scattering. The
more dense spots have higher redshifts and therefore lower temperatures, since the
photons ’'climb out’ of deeper potential wells. This effect is somewhat lowered by
time dilation, causing the temperature to be lower at these denser spots. These
fluctuations are called Sachs- Wolfe fluctuations (Sachs & Wolfe 1967 [26]), and
are dominant for wavelengths > 1h~!Gpc.

Small scale fluctuations: WMAP

The small-scale fluctuation field as observed by WMAP show the acoustic peak
of Doppler and adiabatic effects. The Doppler effect is the dynamical effect of
the moving plasma scattering the photons, leading to a Doppler shift in frequency
and therefore to a different temperature. This effect is quickly dominated by
the adiabatic effect: the coupling of matter and radiation can cause compression
of radiation in high-density regions, giving a higher temperature at those spots.
There is a contradiction in the sense that recombination should always occur at
the same temperature and this would rule out the fluctuations, but denser spots
recombine later, therefore are less redshifted and appear hotter.

Since these effects can be fully quantitatively analyzed, the observed temperature
anisotropy field can be used to reconstruct the initial density field to some scale
quite accurately. The density fluctuations are thought to be the origin of the
formation of the structure as is observed now. The WMAP survey lead to results
like a more accurate estimate for the Hubble constant (Hy = 71 km s~'Mpc™1)
and the age of the universe (¢, = 13.7 Gyr), see also Table 1.3.

Table 1.3: Some cosmological parameters as in the best model from the first
WMAP data, these values are from table 3 in Bennett et al. (2003) [2].

parameter value units
H, 1 +4/-3 km s~'Mpc~!
to 137  + 0.02 Gyr
Qa 0.73 + 0.04
Qm 027 £ 0.04

14



Figure 1.6: Whole sky view of fluctuations. Top: map from COBE (1992)
with 7° angular resolution, on this scale dominated by the Sachs-Wolfe fluc-
tuations. Bottom: WMAP (2003) with 13’ angular resolution, on this scale
the Doppler and adiabatic effects are visible. Courtesy: NASA/WMAP Sci-
ence Team.
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1.2.3 The peculiar velocity field

According to structure formation theory, the density fluctuations as described in
the previous section grew out to the large scale structure as seen in section 1.2.1.
Therefore, fluctuations in the velocity field are directly linked to the primordial
density fluctuations. Due to these random fluctuations, the total velocity deviates
from the expansion velocity. These deviations constitute the peculiar velocity
field. The major theory is that the initial density fluctuation field grew out to
the peculiar velocity field by gravitional instability, which is described in the next
chapter. If this is true, the observed peculiar velocity field can give us an estimate
for the value of the cosmic density parameter ). There are several ways to do
this, some of which link the velocity field to the density field. The main methods
will be treated in the next chapter (section 2.5).

For the measurement of the peculiar velocity of a galaxy, we have to separate the
total velocity into the expansion component and the peculiar motion:

Vgal = ¢z = Hor + 1 - [Vpec(r) ~ Vobs] (1.13)

where v, is total measured velocity of the galaxy, f is the unit vector towards the
galaxy, vpe. is the peculiar velocity of the galaxy and v is the peculiar velocity
of the observer. To measure our own peculiar velocity v,;s, the CMB can serve
as a rest frame. COBE and WMAP found a dipole in the background radiation,
indicating a local flow with a velocity of ~ 600 km/s for our Galaxy together with
the cluster of galaxies we are part of, the Local Group. For subtraction of the
expansion velocity, there is a need for a distance indicator that is set independently
from redshift. Such distance indicators are for example the empirical Tully-Fisher
and Faber-Jackson relations, or the measurement of Doppler shifts from Supernova,
explosions. Unfortunately, those methods are not always applicable and suffer
from errors and uncertainties.

It is difficult to describe the observed density and velocity fields, only knowing
the mass and velocity at the locations of the galaxies. Therefore, techniques have
been developed to reconstruct the continuous density and velocity fields from
the observed discrete distributions. One of them is the POTENT reconstruction
method by Bertschinger & Dekel [7]. If there is a large number of galaxies in the
survey, reconstruction can be done by smoothing the data: compute the average
value using some weighting function within some volume for a set of points. Figure
1.7 is an example of a reconstructed field, with velocity vectors and overlaid density
contours. This field was derived by Gaussian smoothing from the distribution
of TRAS galaxies in the PSCz redshift survey, and shows a section along the
Supergalactic plane [8].

16



Another problem is that the mass of a galaxy has to be estimated from the amount
of light that comes from the galaxy, while there is evidence for a substantial dark
matter component. This is expressed in terms of the bias factor b,

Pgal = bP (114)

where pgq is the local measured density of the galaxy and p is the 'real’ density.
As we will see, there exist methods for estimating € that circumvent this galaxy
mass problem.
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Figure 1.7: The local peculiar velocity field from the infrared PSCz sur-
vey. This field was calculated by Gaussian smoothing with a radius R, of
6h~'Mpc. The total radius is 120h~'Mpc. From Branchini et al. 1999 [8].
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Chapter 2

Structure formation

Although the overall universe can be described as homogeneous, the observations
show that there are detailed features in all directions, ranging from stars and
galaxies to galaxy-clusters and the large scale filaments with sizes of about 100
Megaparsec (section 1.2.1). The underlying process responsible for the formation
of these structures is not yet fully understood. The existing theories are mainly
based on the existence of an original field of very small density fluctuations which
grew simply due to gravity as time passed, causing the formation of matter-lumps.
The origin of these fluctuations is an issue that is still being discussed nowadays.
The two main theories are that of quantum zero-point fluctuations during an in-
flationary area and the effect of topological defects formed in a cosmological phase
transition (chapters 10 and 11 of Peacock 1999 [21]). The characteristic scale of
the fluctuations as resulted from the WMAP data favour the inflationary universe,
with quantum fluctuations as the origin. The first section of this chapter gives a
description of the density fluctuation field, followed by the theory of fluctuation
growth in the linear regime (section 2.2) and in the non-linear regime (section
2.3). Section 2.4 explains how structures formed according to clustering models.
The last section describes the cosmic velocity field and how it can be traced back
to the original density fluctuation field. Generally, most of this chapter can be
found in chapters 15 and 16 of Peacock 1999 [21].

2.1 The primordial density field

To make things easier, the fluctuations are defined as a dimensionless density
contrast:

§(r) = % (2.1)

To study the evolution of density perturbations on different scales, the fluctuation

field can be decomposed into its spatial components. The best way to do this is
by Fourier decomposition:

18



8(x) = Iy 0(k) e kX (2.2)

k = == ¢ (2.3)

where § (k) is the amplitude of wave k. This way, small-scale waves and large-scale
waves can be distiguished.

The density can be divided in two parts: nonrelativistic matter density and ra-
diation density. These are interrelated, having two distinct perturbation modes:
adiabatic perturbations and isocurvature perturbations. For adiabatic perturba-
tions some volume elements are compressed and expanded adiabatically, so both
densities change by the same factor. The energy densities, however, have different
relations: oc T* for radiation and o T for number density, such that

_ o

5
3

(2.4)

The opposite are isocurvature perturbations, perturbing only the entropy density
and not the energy density. The total density remains homogeneous and there is
no perturbation to the spatial curvature:

PrOr = —PmOm (2.5)

In the very early stages, the isocurvature perturbations are effectively isothermal
(6r = 0) causing only significant matter density variations. But ¢, becomes nega-
tive as d,, falls. We define 4, = %((5,11 — §;), where §; is some initial value of d,,.
At late times, 6, — 0 and

—46;

0
P 3

(2.6)

The primordial fluctuation field thus is assumed to be a Gaussian, statistical noise
field. As mentioned at the start of this chapter, this is predicted by the inflationary
models where the density fluctuations are generated by quantum fluctuations in a
scalar field during the inflationary phase. But also generally this is true because
of the central limit theorem, which states that data which are influenced by many
small and unrelated random effects are approximately normally distributed [27].
This implies adiabatic initial conditions rather than isocurvature perturbations.
For statistics of primordial density perturbations, see Peacock & Heavens (1985)
[22]. A famous paper on statistics of Gaussian random fields is from Bardeen et
al. (1986), also known as BBKS [1].

Assuming these Gaussian initial conditions means that the density contrast ¢ is
a Gaussian random field, described fully by its two-point correlation function, or

19



equivalently by the power spectrum P(k), which is the Fourier transform of the
correlation function and the square of the Fourier transform of the density contrast

P(k) = (|6¢*) (2.7)

The power spectrum yields the relative contribution of the full range of fluctuations
to the density field:

dk
2
= P 2.
%= [ GeaP®) 28)
where g is the total local density fluctuation:

a0 = (3(r)?) (2.9)

(the brackets denote it is volume averaged). The correlation function of the density
field &(r), defined by

&(r) = (§(x)d(x + 1)) (2.10)
is the Fourier transform of the power spectrum:
dk —ik-r
) = €lir) = [ raPle .11

The correlation function as used for spatial matter distribution is defined as the
mean excess number of galaxy pairs at separation r, over that expected for a pure
Poisson distribution. For the power spectrum, the correlation function gives a
complete statistical description of the density field for a (random) Gaussian field.
Higher-order correlations are a measure of non-Gaussianity [32].

2.2 Gravitational instability in the linear regime

The large scale structure of the universe as far as we can see has a foam-like
shape, characterized by empty voids, separated by walls, intersecting at elongated
filaments that come together in clumps. To understand how structure formation
originated from these tiny fluctuations in density, some background information
is needed on the theory of gravitational instability. This section treats the linear
perturbation theory, which is valid for very small density fluctuations.

General equations
One necessarily has to include the force, gravitation and mass continuity in the
expanding universe,

0
B_/t) +V-(pv) =0 Continuity equation (2.12)
ov .
5t +(v-V)v+Ve=0 Euler equation (2.13)
V24 = 4nGp Poisson equation (2.14)

so that a description of the mass density field and the velocity field can be made.
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Linearized equations
Now assume the fluctuations to be small: § < 1 and use comoving coordinates

-
—

(Z(t) = ﬁ) Expanding the above equations to first order and subtracting zeroth
order solutions, the equations simplify to

06 1

o + EV -v=0 Continuity equation (2.15)
ov a 1 .
4V V=0 Euler equation (2.16)
Jt  a a

while the Poisson equation remains the same. Combining these equations gives
the second-order partial differential equation, the linearized equation for growth
of density perturbations:

0%6 24209

el + P 4G pod (2.17)

The assumption of § < 1 implies the assumption that the effect of expansion on the
comoving position of the galaxies is negligable. In the very early universe, just after
decoupling of radiation and matter at recombination (section 1.1), fluctuations are
small and this linear approximation is valid, but in later stages non-linearities will
become important and another strategy is needed.

The quasi-linear regime

When § becomes ~ 1 signs of non-linearity are visible, this is the gquasi-linear
regime. In the quasi-linear regime higher-order Eulerian theory, which is just an
extension of linear theory, is applicable. The density contrast § remains below
unity, but the mode-mode coupling between the different Fourier components of
¢ becomes important, resulting in the build-up of phase correlations. Despite the
initial Gaussian field, now non-Gaussian features become important.

2.3 Fluctuations in the non-linear regime

There are two main distinct approaches [33] when § > 1. The first approach is to
choose a few simple configurations and follow their full linear evolution, in order to
isolate the most crucial mechanisms. The two main examples are the homogeneous
ellipsoidal model and the spherical model. For a review on non-linear evolution
models see Bernardeau et al. (2002) [4].

The second approach is generally to choose a restricted cosmic period or some
specific evolution scenarios for which to approximately describe the full matter
distribution. This requires conversion of the FEulerian perturbations to a La-
grangian time derivative, which makes it possible to follow a mass element on
its path through the evolving cosmic density field. This is useful because it would
be too time-consuming to compute the highly accelerating motions on the large
timescale that is needed.
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Zel’dovich approximation

The most important example of this approach, is the Zel’dovich approzimation
(Zel’dovich, 1970 [37]). This approximation gives a solution for the Lagrangian
equations in the case of small density perturbations (62 < 1) which is based
on the Lagrangian perturbation series of trajectories of mass elements x(q, 1),
truncated at first order. The result is that the displacement of a particle from
initial (Lagrangian) comoving position ¢ to Eulerian comoving position z has a
simple linear prescription, for which only the initial gravitational potential field is
needed:

X(G;t) = G— D()V(q) (2.18)

where D(t) is the growth rate of linear density perturbations and 1(g) is a spatial
function, related to the linearly extrapolated potential ¢ by

2

Y= W¢ (2.19)

Now, the values of § can be can be calculated by linear extrapolation into the
non-linear regime. The strength of the Zel’dovich approximation is that only the
initial random field is needed for a qualitative description of nonlinear evolution
to the advanced density field.

2.4 Clustering models: top-down and bottom-up

In top-down clustering models, large scale waves collapse before the small-scale
noise and the matter condensates into clumps. This is what happens in the adi-
abatic scenario (section 2.1), where galaxies form by fragmentation and the first
structures form on a scale of M ~ 10'2 - 10'* M, (clusters, superclusters). This
is also the case in the Hot Dark Matter model (with collisionless particles having
a large range in velocity).

The hierarchical scenario in which small-scale fluctuations collapse first is the
bottom-up scenario. This is the result of the isothermal scenario, and the first
structures form with M ~ 10° - 10° M, in a hierarchical way: they cluster to ever
larger structures. This results from the Cold Dark Matter, containing collisionless
particles with a very small velocity range.

Examples of clustering models

The Zel’dovich approximation in the strong non-linear regime (§ > 1) leads to
collapsing into pancakes: the pancake model. According to this model, contraction
due to a density peak starts in one direction, leading to a higher density, resulting
in more contraction in that direction and so on. In three-dimensional space, this
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results in a flattened structure, the pancake. In the context of the foam, these
pancakes represent the walls, intersections are the filaments coming together in
clumps (clusters of galaxies) and the spaces in between are the voids (top-down).
While matter collapses, the voids simulataniously grow and tend to become more
sperical, like in the ellipsoidal model. After this pancake formation, unfortunately,
matter keeps on streaming and the pancakes dissolve. Therefore, this method is
valid up to the point where matter flows start to cross each other [33]. Extensions
are needed, like the adhesion approrimation. A full review on the Zel’dovich
approximation and its extensions is given by Shandarin and Zel’dovich (1989)
[30].

Another clustering model is the hierarchical model (bottom-up) by Peebles. In
this model structures form by the gravitational build-up of small clumps, merging
into larger ones. It is now believed that pancakes form generically in models of
hierarchical clustering, and the precise size of the pancake is determined by the
form of the primordial fluctuation spectrum. Matter in a pancake moves towards
the filaments (intersections of pancakes), and matter in filaments moves towards
clumps (at intersections of filaments). The period of coexistence of pancakes,
filaments and clumps is called the ’cellular epoch’. When most of the matter is in
clumps, gravitational instability proceeds hierarchically and neighbouring clumps
attract each other, merging to ever more massive clumps [27].

2.5 The cosmic velocity field

The velocity of a galaxy can be divided in two parts; the first is the "Hubble com-
ponent’, this is the common expansion velocity with which all galaxies move away
from each other. The further a galaxy is away, the higher this velocity or redshift’
is (section 1.1). The remaining part is the peculiar velocity, the deviation from
the expansion velocity in any direction, having a wide range in size. Assuming
the mechanism of structure formation through gravitational instability (section
2.2), we can say that the peculiar velocities of galaxies are induced by the gravi-
tational potential field, originating from the inhomogeneous matter distribution.
The exact relation between the velocity field and the matter distribution should
be settled by the growth rate of the density fluctuations.

The general linear solution for ¢ in the second order partial differential equation
(2.17) is of the form

§(Z,t) = A(Z)D1(t) + B(Z)Da(t) (2.20)

in comoving coordinates, where D; and D5 are the growth factors for the growing
mode and the decaying mode respectively. The growing mode is given by

a

Di(t) = g / a 3da (2.21)
0
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The solutions are defined by the value of the cosmological density, the larger
Qp, the faster the growth of fluctuations. Later in time, the growing mode will
dominate and we can write:

V-v=—aé D _ —aHyfé (2.22)
D,

with
1 dD; 1 dD; da _ dln Dy

= —_— = 2.23
/ HyD; di HyDy da dt dlna ( )

Only models with no cosmological constant do have analytic solutions. In the
general case there are a couple of approximations for Dy, and therefore for f.
A good approximation in linear perturbation theory is f(Q) = Q%6 by Peebles
(1980) [23], where Q denotes in fact Q. In this approximation the value of the
cosmological constant A does not heavily affect the growth of fluctuations at low
redshifts (Lahav et al. 1991 [18]).

The Poisson equation gives for the peculiar gravitational potential ¢(Z,t), that is
induced by the density perturbations d(Z,1):

V2 = “QH?a%5(Z,1) (2.24)
L, 3QH? e 1

We can write for the peculiar gravitational acceleration §(Z,t)

L g 3915{2 -z
F@ )= - - Vo= / dz’ T f|3 (2.26)
— X

The peculiar gravitational acceleration in its turn induces wvelocity perturbations,
or the peculiar velocity:

v(#, 1) = T 5z (2.27)
Q0 #
v(Z,1) = —%fr)/df’é(if’,t) ﬁ (2.28)

These formulas were set in comoving coordinates, written in proper coordinates
the formula for peculiar velocity is
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where r = a(t)Z(t).
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The velocity tensors
In the Lagrangian formulation, trajectories of individual particles or fluid elements
are followed. In models the position and velocity of a particle, or the density and
deformation of a fluid element are defined. The deformation is determined by its
differential velocity: its expansion or contraction (velocity divergence), its shear
and its rotation (vorticity):

1 Ov; 1

Eaa:j = 5951-]- + 045 + wij (2.30)

where 4,5 = 1,2,3 in three dimensions and d;; is the delta function (which is 1
for i = j, 0 elsewhere). In this formula, the velocity divergence, 6, is the first of
the three velocity tensors. The second is the symmetric shear tensor o;;, the third
part is the anti-symmetric vorticity tensor w;;. The volume averaged tensors are

defined by

1
0= - (% + %—Zy + 8;;) divergence (2.31)
1 [(0v; Ovj 1
oij = % ((9.’13; + a—gj) 34 (V-v)dij, 0ij = 0ji shear (2.32)
1 (0v; Ovj -
wij = o (Bm; - 8—:1:]) ) Wij = —Wj; vorticity (2.33)

These quantities can be used to compare models to the characteristics of the
observed peculiar velocity field.

Cosmological implications of density & velocity fields

This theory of gravitational instability and the implied cosmological parameters
therein can help us in putting constraints on those parameters. With improv-
ing observations of local density and velocity fields, attempts have been made to
measure e.g. the value of (). Extensive reviews describing these methods have
been written by Dekel (1994) [12] and Strauss & Willick in 1995 [32]. The main
methods of obtaining 2 from peculiar velocity fields are shortly described below.

Estimating 2 from the relation between § and v

We can measure the local density and peculiar velocity field, while we have the
theoretical equation 2.29 and the relations between § and and V - v. Combined
with the approximation f(Q) = Q%6 we can estimate Q. The theoretical relation
between § and V - v from gravitational instability in the linear regime (6§ < 1) is,
as above (in comoving coordinates):

f=—-— Vv (2.34)



Bernardeau (1992) made an approximation that is based on the statistical (quasi-
Gaussian) properties of the matter field [3]. This relation is roughly valid for
0 < 1, and will become inaccurate when ¢ is larger than 1 or 2. The result was
found to be very close to

2

"= 11" spom

Vvl -1 (2.35)

One way is to use the velocity of our Local Group as measured from the CMB
dipole and to assume that this velocity is induced by mass fluctuations by the
formula. When the mass density field is reconstructed from redshift surveys, the
value {2 can be calculated. Another way is to combine the reconstructed density
and velocity fields and use the linear relation between § and V -v. In the previous
chapter an example was shown of the measured density and peculiar velocity for
a field that was reconstructed from redshift survey data.

However, the galaxy bias factor b prevents us from measuring 2 directly. The
linear bias model to describe the DM-galaxy discrepancy is

gar(r) = bé(r) (2.36)

The assumption is that b is independent of scale of definition of §. Instead of
making a direct estimate for €, we can only measure the value of 8, with

f()

==

(2.37)

Estimating (2 from isotropy distortions in redshift space

Measuring distortions from isotropy in redshift space in fact gives the velocity
divergence field. Therefore, we can obtain § and V -v from a redshift survey alone.
The measured redshift of a galaxy is changed by its peculiar velocity, but only by
the component along the line-of-sight. Since this is in redshift (or comoving) space,
we do not need the distance indicators (see section 1.2.3). Using equations 2.34
and 2.35 gives 3, because the bias in the redshift surveys still prevents us from
measuring €2 when using this method.

Estimating (2 from velocity statistics

Fortunately, there are ways to get around the bias factor. Non-linear effects in the
velocity data alone can provide an estimate of €2 independent of b. One way is to
determine the deviation from Gaussianity in the probability distribution function
(PDF) of the velocity. Another way is to measure the skewness of the velocity
divergence distribution €, which is strongly dependent of € [32].
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Estimating (2 from velocities in voids

Another way is to use velocities in the voids. In these regions § is not only small,
but also has a firm limit of —1. In linear theory, which is valid because ¢ is small,
¢ is proportional to the velocity divergence 6. This implies that 8 also has a lower
limit, which depends only on the proportionality constant f(f2) (equation 2.34).
The lowest observed points thus can put a lower limit on 2, independent of bias.
However, the use of this method is susceptible to inaccuracy because reconstructed
density/velocity fields are based on values at the galaxy locations. Resolution in
low-dense regions is poor, resulting in inaccurate field values just in the voids.

27



Chapter 3

Computing techniques

Using computer models is one way to test the theory of structure formation and
the development of the universe in general. The general idea is to combine a set
of ’initial conditions’ with a set of theoretical equations and ’see what happens’.
The outcome has to be analysed and, if possible, compared to observations. This
chapter describes the N-body simulation of large scale structure and the methods
for analyzing the results.

3.1 N-body simulations

The N-body simulation is a general method of modelling structure growth in the
universe. The idea is to take a number (N) of discrete samples for which to define
the initial conditions and to evaluate the equations.

3.1.1 Initial conditions

The initial conditions to be used in the simulation are most crucial. Since the
theory states that the large structures in the present emerged from tiny fluctua-
tions in the past, any deviation or missetting of the initial fluctuation field could
lead to a totally different universe. Of course, just this fact is interesting as we
can learn what initial conditions lead to the universe that is most similar to the
real one. Therefore, the starting conditions of the simulation have to be similar to
the primordial density field, which is assumed to be of a Gaussian random nature
(see section 2.1): at large scale homogeneous with small-scale density peaks. We
use an algorithm developed by Van de Weygaert & Bertschinger [35], which elabo-
rates on the Hoffman-Ribak method for defining the initial conditions [16]. Three
types of parameters are used to specify the density and velocity at and around the
position of the peaks: the scale and position of the peak, the local density field
and the local gravitational field. For an extensive description, see Ref. [35]. After
setting up these parameters, the Zel’dovich approximation is used for determining
the positions and velocities for as far in time as possible, until § =~ 1. Then, this
field can be put into the N-body simulation for the non-linear evolution. With
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this method, a constrained field containing specified objects can be set up in such
a way that the simulation approximates the real world, e.g. the motion of the
Local Group (section 4.1).

3.1.2 Force calculation

To get the result that best approximates the natural, continuous universe, as
many particles as possible should be used. As there is a limit to the memory and
computational power of the computers, programs need to be as efficient as possible.
Several methods of force calculation have been developed to reach this. Two
important concepts are the Particle-Particle (PP) and the Particle-Mesh (PM)
methods [15]. These two and the combined PP/PM, which is used in the project,
are described below. Other methods include the tree codes and hydronamical
methods, e.g. Smoothed Particle Hydrodynamics (SPH).

Particle/Particle (PP)

In PP-calculation, for every single particle in the simulation the gravitational
forces by other particles are calculated, which result in a net force and accela-
ration for this particle. Then, for every particle the new position and velocity
can be calculated and set and the next timestep can begin. In a simulation with
many particles this becomes extremely timeconsuming, especially for advanced
timesteps.

Particle/Mesh (PM)

In the PM-method, the force is calculated to a grid (the mesh), becoming a field
quantity. The net force acting on each particle is obtained by interpolation of
the mesh-defined values. The advantage is that for each particle only one single
calculation has to be made (N calculations), instead of calculations for all particles
(N X N calculations). But this method loses much of accuracy for the short-range
forces between particles. To solve part of this problem, a combination of these
methods is developed, the Particle/Particle-Particle/Mesh or P3M-method.

Particle/Particle-Particle/Mesh (P3M)

In P3M simulations a combination of Particle/Mesh and Particle/Particle methods
is used. For each sample, the direct short-range PP forces are calculated only for
particles within a certain distance. This effect is added to the long-range mesh
calculated with the PM-method. An improvement of this code is Adaptive P3M
or AP3M. This method uses finer grids in places of high density only.

The procedure for P3M is as follows:
e start with positions and velocities of the particles

e update the timestep
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e calculate PM forces: assign values to mesh, solve for potentials, interpolate
forces, change momentum

e calculate PP forces: fill mesh, change momentum

e create equations of motion: update positions, apply boundary conditions,
update energies

e integrate to get positions and velocities of the particles

3.2 Pixelization & reconstruction

The N-body simulations work with discrete distributions, and the output is a
discrete field: for each particle, the position and velocity are given for the desired
time-step. Density and velocity fields from observations are also discrete: the
values are only known at the galaxies’ positions (Figure 1.7, section 1.2.3). This
gives a mass-averaged distribution, filtered with function Wy, (x, x¢)

_ [ dx £(x) plx) War(x, x0)

fmass(xﬂ) = fdx p(X) WM(X, Xo) (3.1)

while theoretical predictions, on the other hand, work with volume-averaged dis-
tributions

) = [ dx f(x) Wy(x,xq)
fvolume( 0) = fdx Wv(X,Xo)

(3.2)

with Wy (x,x0) as the applied weight function. To be able to compare theory with
observations or models, there is a need for the field values at places different from
the particle (or galaxy) positions. To achieve this, the discrete distibution has to
be interpolated to determine the underlying continuous field. Several interpolation
techniques are available for this.

3.2.1 Interpolation on a regular grid

The Nearest Grid Point function (NGP), a first order interpolation method,
assigns every particle to the nearest grid point of a static lattice. As a particle
moves across a boundary between two grid points, the mass density changes in a
discrete fashion. Thus, the mass density is discontinuous.

The Cloud in Cell interpolation method (CIC) is a second order method
where not only the nearest, but also the grid point on the other side (1-dimensional!)
is taken into account. The nearest grid-point gets weight (1 — dygp), the point on
the other side gets weight (d,gp), where d, g, is the distance to the nearest grid-
point (in units of cell size). The assigned mass density is continuous but the first
derivative is discontinuous.
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The Triangular Shaped Cloud method (TSC) is a third order interpolation
function. Here three points are included: the nearest grid-point and its two neigh-
bouring points. The nearest grid-point gets weight (1.75— (dz)?), the other points
get weight (0.5 - (1.5 — dz)?), where dz is the distance from the sample point to
the grid point (in units of the cell size). Here both the assigned mass density and
its first derivative are continuous but higher order derivatives are discontinuous.

Although the TSC interpolation method does a better job than NGP and CIC,
certain circumstances or settings might give some difficulties. When applied to
the output-files of N-body simulations which in late stages give a distribution that
contains very high-dense regions as well as very low-dense regions, the continuous
distribution in the low-dense regions cannot be calculated accurately. Field values
in a empty-like region like a void will artificially be zero, therefore it is not efficient
to try to zoom into this specific part of the region There is a need for a interpolation
method that can do better also in the regions of low-density. The solution is
to leave the regular-grid based functions. A good mathematical method is the
"Voronoi tessellation’ which is based on the particle positions themselves instead
of a regular grid. Its complement is the 'Delaunay tessellation’, which will be used
in this project.

3.2.2 Voronoi and Delaunay Tessellations

AR

Figure 3.1: The two-dimensional Voronoi tessellation (left) and Delaunay
Tessellation (right) of the same point distribution. The voronoi tessellation
consists of the exact intersecting lines between any two points, the two di-
mensional Delaunay tessellation makes triangles by connecting every point
with its 2 nearest neighbours. NB: in 3-dimensional space tetrahedrons are
created by connecting every point with its 3 neighbours.
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Voronoi tessellations

A Voronoi tessellation of a point distribution produces cells and vertices. Each
point of the distribution is the nucleus of a Voronoi cell. The vortices are the
joining points of the cells. The Voronoi distribution is defined by the midway
intersecting lines between two neighbouring points (nuclei), see Figure 3.1 (left).
All the points inside a Voronoi cell II; are closer to the cell’s nucleus than to any
other:

II; = {#|d(Z, ;) < d(Z,23), V j # i}, (3.3)
where £ is the position vector of nucleus j and d(Z,%) the distance between #
and .

When this is applied to the discrete fields either from observations or N-body
simulations, the galaxies or particles are the nuclei of the Voronoi tessellation.
From N-body simulations, the velocity and density (or any field value) inside a
Voronoi cell is identical to that of its nucleus thus only changing within the walls
and filaments: the skeleton structure.

The Voronoi model of large-scale structure

An application of the Voronoi tessellation has been in describing the large scale
cosmic matter distribution. The large-scale structure with voids, clusters and
superclusters is represented as a geometrical skeleton of walls, filaments and nodes:
the Voronoi foam. Physically, this is based on the observation that voids expand
faster than surrounding material, resulting in matter flowing out of the voids,
into the walls. Once in the wall, the matter tends to flow towards the denser
regions: to the filaments, and from the filaments to the nodes. The first practical
three-dimensional model was the Voronoi Kinematic model, constructed by Van
de Weygaert and Icke in 1989 [36]. Note that the Voronoi nuclei are situated in
the large-scale empty voids, therefore one can think of dynamical void evolution
as a physical basis for this model.

Delaunay tessellations

The Delaunay tessellation of a point distribution consists of tetrahedrons which
are defined by connecting every point with its 3 closest neighbouring points of the
distribution, see Figure 3.1 (right). A Delaunay nucleus is defined as the centre
of the sphere that circumscribes the cell. The Delaunay and Voronoi tessellations
are complementary in the sense that they can be derived from each other: each
Delaunay vertex is a Voronoi nucleus, and a Delaunay nucleus is the vertex of
the four Voronoi cells whose nuclei are the four points defining this Delaunay
tetrahedron.

The Delaunay Tesselation Field Estimator (DTFE)
The Delaunay Tessellation Field Estimator is the application of the Delaunay
tessellation method to the discrete outcome of N-body simulations. When the
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Delaunay tessellation of a N-body simulation particle distribution is made, the
Delaunay vertices are the particles. Therefore, the field value is known for the 4
points that define the Delaunay cell, and the gradient (which is constant within
the cell) can be calculated from those four values. Now, the field value at every
spot of the tessellated space can be derived via linear interpolation. The field can
now be displayed as if it were from a continuous distribution.

DTFE density and velocity fields

The field value f (e.g. velocity) at a particular spot r inside a three-dimensional
Delaunay cell, defined by the vertex points rg,ri,rs,r3, can be calculated by
simple linear interpolation:

f(r) = apf(ro) + a1 f(r) + azf(r2) + azf(rs) (3.4)

where f(ry) is the field value at vertex r, and «, is determined by the propor-
tional distance from the point r to the vertex r,, with Y, = 1. Also the nine
components of the velocity gradient tensor gfc’j can be determined, which are con-
stant within each cell. This results in an easy calculation of values for the velocity
divergence, shear and vorticity at any spot inside the cell. The calculation of the

velocity gradient of a Delaunay cell is described in detail in Appendix A.

Bernardeau & Van de Weygaert already described this method in 1996 [5]. In fact,
they compared the performance of the Voronoi and Delaunay methods (which both
produce volume-averaged fields) for this purpose and found the latter to do better
in reproducing analytical predictions of e.g. the velocity divergence Probability
Distribution Function. When compared to other methods, DTFE does very well
in reconstructing cosmic density and velocity fields. A very high resolution can
be reached without losing any information, because of the ability to calculate
the field values at every location in space. This superior performance is shown
for cosmic density and velocity fields from N-body simulatons by Schaap & Van
de Weygaert (2000 and 2001) [28, 29]. Bernardeau et al. (1997) and Van de
Weygaert & Bernardeau (1998) show how € can be obtained from the velocity
divergence distribution using Voronoi and Delaunay tesselations applied to N-
body simulations [6, 34]. This method is described in section 2.5.

Figure 3.2 shows the DTFE permance compared to TSC'. Figure 3.3 is an example
of DTFE reconstruction. Compare the real 2dF (south) galaxy distribution (left)
with the reconstruction (right)?.

1h‘l‘.tp ://wwu.astro.rug.nl/ wschaap/dtfe/simulation.html
*http://www.astro.rug.nl/ wschaap/dtfe/galaxydistr.html
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Figure 3.2: Comparison of TSC and Delaunay analysis of an N-body simu-
lation. From top to bottom is zoomed on a particular clump. The left panel
shows the particle distribution, the middle and right panels are the TSC and
DTFE reconstructions, respectively. This shows clearly the better resolution
of DTFE. Courtesy: Willem Schaap.

2dF redshift survey south

T T T

(data taken by the 2dF redshift consortinm)

Figure 3.3: The 2dF galaxy redshift survey (left) and DTFE reconstruction
(right). Courtesy: Willem Schaap.
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Chapter 4

The peculiar velocity field:
comparing TSC and DTFE

The aim of this project was to compare the TSC and Delaunay interpolation
methods. For this purpose I got the output data from a N-body simulation of
large scale structure and I used both methods for calculating the field values. The
data was smoothed with three different smoothing radii in order to see the effects
on different scales. Several quantities like density and velocity were plotted in
several ways to show the results.

4.1 Detalils of the N-body simulation

The simulation used was a constrained realization of the local universe, using a
ACDM cosmological model with €, = 0.3, Qs = 0.7, and Hy = 70 km/s/Mpc.
The boxsize of this simulation was 320 h~!Mpc, containing 128% particles. The
simulation was a dark matter simulation performed with a code called HYDRA,
which is a combination of AP3M and SPH (section 3.1). Forces were computed
on a 2563 TSC-grid.

In order to limit computing times, I used only a sub-box of 803h~'Mpc, with its
center coinciding with the center of the large simulation box. This volume was
still large enough to be able to see large-scale structures and compare the two
methods. Besides, the DTFE procedure can best be used on a smaller number of
particles since is not efficient enough (yet) in manipulating computing memory.
Output was given for ten timesteps with expansion factors aezp of 0.1,0.2, ... ,1.0.
Figure 4.1 shows the particle distribution in the cube for expansion factors 0.1,
0.6 and 1.0.
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Figure 4.1: Whole 80°> h~'Mpc N-body cube with particles of the used
simulation for different timesteps. From top to bottom: a.,p = 0.1, 0.6, 1.0
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4.2 The used TSC and Delaunay methods

For computing the values with the TSC-method I used the TSC algorithm of
IDL. The densities were calculated by adding up all contributions of particles,
whereas the velocities were averaged at the gridpoints. For calculation the velocity
derivatives I wrote a code that used a numerical approximation. The sub-box
contained about 32000 particles (this number was not the same for each timestep,
because particles from the large box move in and out of the small box). Therefore
the TSC-grid on which field values were calculated had to contain about this
number of cells. Otherwise, the results would be affected by undersampling or
oversampling. I computed TSC-values on a grid of 323 = 32768 points.

The used Delaunay tessellation algorithm is an extension for peculiar velocities of
the DTFE code (vdWeygaert & Schaap) by Romano-Diaz and Schaap, based on
the original code used by Bernardeau & Van de Weyageart 1996 [5]). The code is
explained in Chapter 5 of Romano-Diaz 2004 [25]. The DTFE data was computed
on a 643 grid. At these gridpoints the densities, velocities and partial velocity
derivatives were calculated. The files containing these values were povided by
Romano-Diaz.

4.3 Displaying the data

Top-hat smoothing

To study the effects on different spatial scales, the data has to be smoothed. It
would have been convenient to use a Gaussian filter for smoothing because this
can be done in Fourier space, which saves much of computing time. However,
this assumes periodic data and since the data came from a sub-box of the original
simulation cube, is was not periodic and would give a problem with the edges. For
this reason I used top-hat smoothing instead, which is a sphere of uniform weight.
The code for top-hat smoothing was written in IDL.

The "unsmoothed’ data (on the grid) had a seperation of 80/64 = 1.25 h~!Mpc for
DTFE and 80/32 = 2.5 h~*Mpc for TSC. Therefore, there’s no sense in smoothing
on scales smaller than these values. This immediately shows the shortcoming of
TSC: the smallest scale is set by the number of particles and the size of the box.
The data was smoothed with smoothing radii Rgy, of 2, 5 and 10 A~ *Mpc. The
values were calculated for the points of a 20% grid, this is because the top-hat
smoothing procedure is extremely time-consuming. The eventual grid was even
smaller: the outer points were left out because the smoothing spheres should not
get over the box-edges.
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Resulting figures

To show an overview of the time evolution on different scales, I put these plots
into one figure. In the resulting pictures the horizontal evolution is scale evolution,
from left to right the sequence is smoothed with R;,: unsmoothed, 2, 5, 10
h~'Mpc. Sometimes the 'unsmoothed’ column has been left out. This is because
it is only useful for DTFE, since for TSC this is almost the same as the data
smoothed with Ry, = 2 Mpc because of the difference in resolution. The vertical
evolution is in time, with from top to bottom the expansion factors ae.p of 0.1,
0.2, 0.3, ... , 1.0.

Contour plots & vector plots

Figures 4.3 and 4.4 show contour plots of § in the middle x-plane for TSC and
DTFE respectively. The contour levels are the same in both figures. Vertically is
the time evolution, the horizontal evolution is in scale as described above. The
velocity vector plots of the same slice are shown in Figures 4.5 (TSC) and 4.6
(DTFE). Note that the unsmoothed values could be calculated on a 64 x 64 grid for
DTFE, while for TSC this resolution gives an errornous result. The contourplots
of unsmoothed data on a 64x64 grid for both TSC and DTFE are shown below in
Figure 4.2.

Figure 4.2: Contourplots on a 64x64 grid for TSC (left) and DTFE (right),
along x-plane in the middle of the cube. TSC creates large differences
between low-dense and high-dense regions. DTFE contours show a more
smooth approximation of the density field.
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Scatterplots of DTFE vs TSC

The field values of TSC and DTFE can be directly compared by putting the
computed grid values together in a scatter plot. The result is in Figure 4.8 for the
densities § (left) and for the velocities (right), velocity divergence in Figure 4.9.
The deviation from the one-to-one relation (dashed line) is much larger for the
densities than for the velocities. On larger scales, the values of TSC and DTFE lie
closer together. On the other hand, there is no sign of time evolution. There seem
to be strange scatter-points in the DTFE values, this could be due to boundary-
effects: periodic data is assumed for DTFE, while the data used is not periodic.
Also, the performance of DTFE is known to be less accurate in very high-dense
regions.

Distributions in histogram plots

Distributions for §, v and V - v are shown in histogram-format in Figures 4.10 to
4.13. Each histogram has 25 bins specified for a specific range. Differences between
the distributions of TSC and DTFE are clearly seen for §. At late timesteps, the
unsmoothed TSC values are for a major part first bin (Figure 4.7). This is because
of the shot-noise. An evolving universe becomes less homogeneous because of the
formation of matter-clumps, leaving empty spaces in between. Large regions in
the N-body simulation thus contain few or no particles. The values of the TSC
grid-points in those regions are set to zero, so a lot of those grid-points contain no
information. When the smoothing scale is large, however, this effect is ruled out.
The DTFE method does not suffer from this effect.

In all of the figures the time evolution is seen as the distributions evolve from
Gausssian to non-Gaussian. The distributions of the velocity divergence are in
Figures 4.12 and 4.13. As mentioned before, the deviation from Gaussianity or
skewness of the distribution function of V - v can be used in estimating the value
of Q (section 2.5).
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Figure 4.9: Scatter plot of the velocity divergence, each plot shows the

DTFE values against the TSC values.
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Figure 4.10: Histogram plot TSC density (4).
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Figure 4.11: Histogram plots DTFE density (6).
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Figure 4.12: Histogram plots TSC velocity divergence.
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Figure 4.13: Histogram plots DTFE velocity divergence.




Distributions in cumulative plots

Figures 4.15 to 4.16 show the cumulative distributions. On the horizontal axis
are the values of the sample points, on the vertical axis its relative number in the
sorted array. The value on the vertical axis therefore is the chance P(f) of finding
a value lower than f. In these plots, the curves for TSC and DTFE are laid on
top of each other with their median values defined to be falling together; at the
median value, P(f)=0.5. At large scales, the TSC and DTFE distributions tend
to fall together.

Scatterplots and physical relations

To test the relation between the density and the velocity as described in section
2.5, scatterplots were made of V - v against §. Figure 4.17 shows these scatterplots
of TSC (left) and DTFE (right). For low density-values (6 < 0) I made a linear
fit, which is the line in the plots. For the whole range of §, I made a second-order
fit, shown in Figure 4.18. At early times and at very large scales, the relations
are expected to be linear-like. At smaller scales, the the points would follow the
Bernardeau (second order) relation.

At the last timestep, when aez, = 1 (and z = 0), we can approximate f(€) with
096, Now we can put in the linear relation and the quasi-linear approximation of
Bernardeau, equations 2.34 and 2.35. Figure 4.14 shows the scatterplots of V - v
against J, the lines represent both relations. For both methods, the points follow
the lines quite nicely in general. Nevertheless, DTFE does not seem to fit in these
relations better than TSC. The smoothing scale of 10 Mpc seems to be enough
for the Bernardeau relation (which is valid up to é = 2). Larger smoothing scales
would lead to a linear relation.
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Figure 4.15: Cumulative distributions of density (§). The black line is for TSC, the
blue line is for DTFE. These distributions of TSC and DTFE are laid over each other
with their median values falling together, this is what the horizontal lines indicate.
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Figure 4.16:
denotes TSC,

Cumulative of the velocity divergence. As in figure 4.15: black
blue denotes DTFE. Medians defined to be falling together,
denoted by the horizontal lines.




Figure 4.17: Scatterplots of velocity divergence against delta. The blue line
is a linear fit for 6 between —1 and 0. TSC (left) and DTFE (right).



Figure 4.18: Scatterplots of velocity divergence against delta, the line is a
second order fit. TSC (left) and DTFE (right).



statistics files

One part of the IDL program calculated statistics of the distributions. For each
quantity the mean, median, standard deviation, skewness and kurtosis were writ-
ten to a file. There are files for each timestep and for each smoothing scale,
containing the values for TSC and DTFE. Also the coefficients of the fits of the
V- v relation are written to files. This information can be used for further analysis
of the data.

4.4 Summary, discussion and conclusions

The peculiar velocity field on both small and large scales contains valuable infor-
mation for determining important parameters in cosmology, like {2. Observations
and N-body simulations give discrete distributions. In order to analyse the field
and compare with theory, the discrete distribution should be translated to the
underlying continuous field. Two examples of methods that recover the volume-
averaged field are Triangular Shaped Cloud (TSC) interpolation and the Delaunay
Tessallation Field Estimator (DTFE). Previous analyses of these methods indicate
that DTFE reconstruction gives a more accurate estimate of the density and ve-
locity fields. Especially in low-dense regions DTFE still provides information,
whereas TSC suffers from shot-noise effects.

My task was to derive and display the statistics of the velocity field, comparing
those resulting from TSC and DTFE reconstruction of a N-body simulation. For
this, I wrote an IDL program that could process the N-body, TSC and DTFE
data. This program reads the files containing, for different timesteps, information
about particles positions and velocities, the TSC density and velocity field and the
DTFE density and velocity field. The velocity gradients for TSC and DTFE were
computed. Then the data was smoothed with a top-hat filter for 3 different radii
(2, 5, and 10 h~'Mpc). The results were displayed in contour scatter plots, contour
plots, vector plots, histogram plots, cumulative plots. Statistics of the quantities
were written to files for different time-steps. These figures and statistics can be
used for qualitative and quantitative analysis of the density and velocity fields. At
first sight, the results do indicate a better performance of DTFE over TSC in the
low-dense regions, as expected. But a superior performance is not quite obvious
in the relations between density and velocity. However, TSC was used with a 'fair’
resolution of 323 gridpoints, whereas DTFE can be used with higher resolution.
Also, the process of top-hat smoothing was so time-consuming that smoothed
values were calculated only for few gridpoints. Further investigation could lead to
different results. One could think of using other N-body simulations to compare
the results. Smoothing with higher resolution or using other smoothing methods
could help. When a box with periodic data is used, smoothing can be performed
in Fourier space, which is much faster. Finally, the statistics can be analysed
further, in order to properly judge the data (unfortunately, there was no time left
for me to this).
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Appendix A: The velocity gradient in a Delaunay cell

Take a three-dimensional Delaunay cell, defined by the vertex points rg,ri, re, rs.
The velocity field as seen from Delaunay vertex ro(zo, o, 20), for n =1,2,3 is

ov ov ov
Avgp = 8—;Aa:n + B—yszn + 8—;Azn
ov ov ov
Avyn, = —2 Az, + —2L Ay, + —2L Az,
Uy P Iy + By Yn + Ep Z
v, Ov, Ov,
with
Ay = VUgn — Vg0 Az, =z, — 19
Avyn = vyn — vyo AYn = Yn — %o
A'Uzn = Uzn — V20 Azn =2Zn — 20

The nine components of the velocity gradient tensor g:; now are calculated by

gy Ovy v,

ox ox ox Avgy A'Uyl Avy
e, -1
%z;/@— % %yz_ =A A’l)mg Aﬂyg A'UZQ
g vy Avgz Avyz Av
oz 0z 0z @3 y3 3

where A™! is the inverse of the matrix

A.Tl Ayl Azl
A= A]}Q Ayg AZQ
A.T3 Ayg AZ3

See also Bernardeau & Van de Weygaert 1996 [5].
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Appendix B: Previously done work

For this research project, I first spent an amount of time studying other parts
of this subject. In chronological order: I displayed simple statistics of Voronoi
Tesselations with Super Mongo. I ran N-body simulations and wrote a program in
IDL to graphically display the resulting density and velocity fields in different parts
of the simulation cube. Eventually, I also used TSC interpolation for displaying
these fields. After this, I applied Voronoi/Delaunay tesselations on the N-body
data. I wrote a Fortran code that would combine two files, the file containing
the N-body particle data (positions and velocities) and the file containing the
data of the Delaunay tesselation (which cells contain which points). This program
calculated the velocity gradients within the Delaunay tetrahedra. Combining this
with specified locations for which to calculate the velocity would result in the
"continuous’ velocity field. However, this code already already had been finished
in the mean time. Therefore I turned to the last part, that of deriving the statistics
of the velocity field reconstructed with the TSC and DTFE methods.
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