
Appendix A
With a little bit of algebra

Someone told me that
each equation I included in the book would halve the sales.

Stephen William Hawking1

As long as algebra is taught in school,
there will be prayer in school.

Cokie Roberts2

This text is part of the volume Pioneer of Galactic astronomy: A biography of Ja-
cobus C. Kapteyn by Pieter C. van der Kruit, published in the series Springer Bi-
ographies.In contrast to appendix A in the published book, this version does not shy
away from mathematical details and equations.

This appendix aims at providing some additional background and understanding,
but reading is not necessary for the reader not interested in such details. Fort further
details and more background see [2].

A.1 Vibrating flat membrances

To give an idea of what Kapteyn’s study of vibrating flat membrances in his PhD
thesis entailed, I give here a short summary.

The questions addressed are related to the manner in which a membrane can
vibrate, depending on shape and support. In those days it was not really necessary to
add much original work to the thesis and Kapteyn’s is for a large part indeed a survey

1 From: A Brief History of Time [1].
2 Cokie Roberts, née Mary Martha Corinne Morrison Claiborne Boggs (1943–2019), American
journalist and author.
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2 A With a little bit of algebra

of the literature. But he does use observations that had been obtained by others to
compare theory to observations. He starts out by writing down the equations that
govern the vibrations.

Take an infinitessimally small element of the membrane with size ∂x by ∂y. Then

Fdy
∂ 2w
∂x2 dx+Fdx

∂ 2w
∂y2 dy = ρdxdy

∂ 2w
∂ t2 . (A.1)

On the left-hand side we have the total force, on the right mass times acceleration,
both in the vertical direction. So it really is Newton’s law. First look at the part
on the right. There ρ is the mass-surface-density (in for example grams per square
centimeter) and that is then multiplied by the surface of the element; this yields its
mass. Furthermore, ∂ 2w/∂ t2 is the acceleration in the (vertical) w direction. After
all, if w is the position, then the first derivative ∂w/∂ t is the change in w per unit of
time t and thus the vertical speed; the second derivative ∂ 2w/∂ t2 is then the change
in the speed per unit of time and thus the acceleration.

On the left hand side there are two very similar terms. It is the total force in
the vertical direction, where one term comes from the x direction and the other y.
Each term includes the force acting on the membrane exerted by stretching it in the
corresponding direction. F is the stretching force per unit length in both the x- and
the y-directions. These are then multiplied by the size of the element in the relevant
direction; the force in the x direction on the element is then Fdy and that in turn is
multiplied by a factor that takes into account the projection of that force onto the w
direction (in fact, the difference between the sines of the projection angles on the
w-direction at both ends of the element). Together the left side then is the force in
the w direction as a result of the stretching of the membrane.

Add to this the boundary conditions, namely that the displacement of the mem-
brane at the edges has to be zero and that all w as well as dw/dt are equal to zero at
the starting time t = 0. Kapteyn then reqrote the equations as

∂ 2w
∂ t2 = c2

(
∂ 2w
∂x2 +

∂ 2w
∂y2

)
with c2 =

F
ρ
. (A.2)

In this form it was first derived by Poisson.
The solution can be written in terms of waves, which are sine and cosine func-

tions with time as a variable. For a rectangular membrane with sides a and b, for
example, Kapteyn found a sum of sines and cosines as a solutions to the equation,
which together comprise all the ways in which the membrane can possibly vibrate:

w =
∞

∑
i=0

∞

∑
j=0

(Ai j cosγt +Bi j sinγt)sin iπ
x
a

sin jπ
y
b
. (A.3)

The constants Ai j and Bi j can be determined by applying the boundary conditions.
Each term i j then represents an oscillation with a frequency
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Fig. A.1 Linear nodes and
pointlike nodes for a vibrating
square membrane according
to the PhD thesis of Kapteyn.
Top-left: wavelength twice the
lengths of sides; then there is
no node (except the edges of
course). Next we see some ex-
amples of ‘overtones’, where
the wavelengths in each di-
rection are equal to the length
of the sides, two-thirds of this
or half. Kapteyn Astronom-
ical Institute, University of
Groningen.

N(i, j) = γ/2π =
c
2

√
i2

a2 +
j2

b2 .

Fig. A.1 shows some of Kapteyn’s results in terms of nodes. These are either point-
like or straight lines.

Kapteyn compared his results with observations. These were performed by oth-
ers and consisted of covering a membrane with powder and then making it vibrate
by striking it with a violin bow. The powder then collects in the nodes. Kapteyn
concluded that the pointlike nodes must exist (apparently a new result), but they
could not be seen in observations. He proposed that this was probably due to small
imperfections in the thickness and elasticity that membranes in reality have.

A.2 Distances and luminosities

The distance of a star not too far from the Sun can be measured directly using the
so-called annual parallax. In fig. A.2 we see how the annual motion of the Earth
around the Sun is reflected in an elliptical orbit of the star on the sky. The semi-
major axis of that ellips (which is equal to the angle p at the top of the triangle)
then is a measure for the distance of the star. The radius of the Earth’s orbit (the
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Fig. A.2 The annual circular motion of the Earth E around the Sun S on the sky in a projected
elliptical motion by a star, of which the size of the ellipse (2p) depends on the distance to the star.
The angles p are the parallax. Figure by the author.

Astronomical Unit) is 1.4960× 1011 meters. When that angle p, the parallax, is 1
arcsecond, the distance of the star is 3.0857×1016 meters. This is one parsec. It is
equal to 3.26 lightyears (one lightyear is the distance traveled by light in vacuum
during one year).

The apparent magnitude of a star is a measure of its brightness in the sky; the con-
cept originates from Antiquity, when the brightest stars were assigned magnitude
zero and the faintest that the human eye could see, magnitude six. This system was
already used in the star catalog of Hipparchus of Nicaea in the second century BC.
The British astronomer Norman Robert Pogson redefined it in 1856 by proposing a
scale where 5 magnitudes were exactly a factor of 100, so that one magnitude corre-
sponds to a factor of 5

√
100 =2.512. The difference in magnitude of two stars, which

have a flux of F1 and F2 in energy per surface area per solid angle (for example,
Joules per m2 per steradian), is then

m1−m2 =−2.5log10

(
F1

F2

)
. (A.4)

The absolute magnitude (designated with capital M) is defined as the magnitude a
star would have at a distance op 10 parsec. If the distance is r or the parallax p, then

M = m+5(1+ log10 p) = m+5(1− log10 r). (A.5)

This definition goes back to Kapteyn.

A.3 Sines functions of higher orders

It is well known that the sine and cosine of an angle x (in radians) can be expanded
as an infinite series:
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sinx =
∞

∑
n−0

(−1)nx2n+1

(2n+1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ ....

cosx =
∞

∑
n−0

(−1)nx2n

(2n)!
= 1− x2

2!
+

x4

4!
− x6

6!
+ ....

The brothers Jacobus and Willem Kapteyn made a study of a set of generalized
series of these that are designated by ‘higher-order-sines’:

ϕµ(x) =
∞

∑
n=0

xkn+µ

(kn+µ)!
=

xµ

µ!
+

xµ+k

(µ + k)!
+ .... (A.6)

ψµ(x) =
∞

∑
n=0

(−1)nxkn+µ

(kn+µ)!
=

xµ

µ!
− xµ+k

(µ + k)!
+ .... (A.7)

They published an extensive paper on this in 1886, that had been preceded by an-
other one on the special case k = 4.

A.4 Kepler’s equation

Planets, asteroids and comets move around the Sun in elliptical orbits according
to the laws of Kepler. These laws are a direct result of the solutions to the equa-
tions Isaac Newton defined in his theory of gravity in the so-called Two-body
Problem. I will treat this schematically. For more details see the notes on the
two-body problem accompanying my lecture course on Dynamics of Galaxies at
www.astro.rug.nl/∼vdkruit/jea3/homepage/two-body.pdf.3

Take two masses m1 and m2 with position vectors r1 and r2. Then there are two
fundamental equations:

m1r̈1 =−Gm1m2
r1− r2

r3 , (A.8)

m2r̈2 =−Gm1m2
r2− r1

r3 . (A.9)

Here r̈ denotes the second derivative with respect to time d2r/dt2. Now go to a
co-moving coordinate system, in which the center of gravity is the origin:

m1r1 +m2r2 = 0.

Then
r̈1 =−G

m2r1−m2r2

r3 =−GM
r1

r3 .

3 The two-body problem can be solved analytically. This is not true for the three-body problem,
where numerical integration is necessary in the general case. There is a ‘restricted three-body
problem’ for circular orbits of two components around each other, and a third body of negligible
mass. See www.astro.rug.nl/∼vdkruit/jea3/homepage/three-body.pdf.
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r̈2 =−G
m1r2−m1r1

r3 =−GM
r2

r3 .

So for r = r1− r2 (the vector between the two bodies)

r̈ =−GM
r
r3

We have three differential equations of the second order, so we will have in principle
6 constants of integration. Multiply with r. Then

r× r̈ =−GM
r× r

r3 = 0

Integrate this equation with respect to time. This gives

r× ṙ = constant = h. (A.10)

So angular momentum is conserved, which is Kepler’s second law.
Some more vector manipulations give

h2

GMr
= 1+

P
GM
· r

r
= 1+

P
GM
· r̂

Designate the angle between r̂ and P by ν (the so-called true anomaly), so that
P · r̂ = Pcosν . Then

h2

GMr
= 1+

P
GM

cosν (A.11)

This is called the equation of motion. Note that this is the general equation for a
conic section in polar coordinates for the case that one of the foci is located at the
origin, which is

r =
q

1+ ecosν
.

From this we see that the excentricity e is

e =
P

GM

For the case of an ellipse we have

h2

GM
= q = a(1− e2)

So the motion of one of the bodies is in an ellipse with the other body in one of the
foci. This is Kepler’s first law. The geometry is illustrated in Fig. A.3. The position
in an orbit follows from the value of the true anomaly ν from

r =
a(1− e2)

1+ ecosν
(A.12)
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Fig. A.3 The orbit of a planet,
asteroid or comet (P) is an
ellipse with the Sun (S) in one
of the foci. The true anomaly
is ν and the construction
shows the definition of the
excentric anomaly E. For
more explanation see the text.
Figure by the author.

Now define the excentric anomaly E as

r = a(1− ecosE)

Differentiate
ṙ = ae

dE
dt

sinE

and substitute this

dt =

√
a3

GM
(1− ecosE)dE.

Integrate over the full orbit

∫ T

0
dt =

∫ 2π

0

√
a3

GM
(1− ecosE)dE.

So

T = 2π

√
a3

GM
.

This is Kepler’s third or harmonic law, which can also be written as

T 2

a3 =
4π2

G(m1 +m2)
. (A.13)

Suppose you want to find the position of a planet in the orbit at a certain time. Then

you need to know the angle ν , the ‘true anomaly’. The object moves faster in its
orbit when it is closer to the Sun, so ν does not change uniformly with time. Kepler
suggested the method to solve for ν as shown in Fig. A.3, where the angle E has
been defined. This angle is called ‘eccentric anomaly’. If you know E, ν is easy to
find (and vice versa!) with:
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1− e
1+ e

tan
(

ν

2

)
= tan

(
E
2

)
,

where e is the eccentricity of the orbit (0 for a circle, 1 for a line). But E also does
not increase uniformly with time. Therefore, Kepler defined an imaginary mean
anomaly, M, which does run uniformly with time, but cannot be constructed in the
figure. If the period is P and T◦ the time of the last perihelion passage (passing the
point closest to the Sun), then M is by definition:

M =
2π

P
(t−T◦).

If you know the time t, M is easy to calculate. But then you have to find E and for
that you have to use Kepler’s equation, which connects M and E:

M = E− esinE. (A.14)

If you know E, it’s easy to calculate M by substitution, but that is not what you
want. In practice you want to do the opposite and that is much more difficult. The
difference between M and E, both of which go through 360◦ in the period P, is small
when the eccentricity is small, but with asteroids, e is sometimes quite different from
0, and with a comet, the orbit is usually very much elongated and e is sometimes
close to 1. E and M can sometimes be very different in parts of the orbit.

There are two general ways of tackling this problem. The first is by iteration,
i.e. repeatedly calculating a better approximation until the result is sufficiently ac-
curate. An example: write the equation as E = M+esinE and take E = M as a first
approximation. Substitute that in the equation and then a better approximation is
found as E ′ = M+esinM. Substitute that again and then E ′′ = M+esinE ′ is a still
better approximation, and so on, until there is no significant improvement. If e is
significantly different from 1, this may take a long time.

The second method is by series expansion. An example of this is the solution
proposed by Joseph-Louis Lagrange:

E = M+
∞

∑
n=0

anen, with

an =
1

2n−1n!

n/2

∑
k=0

(−1)k
(

n
k

)
(n−2k)n−1 sin[(n−2k)M] and

(
n
k

)
=

n!
k!(n− k)!

=
n(n−1)(n−2)....(n− k+1)

k!
.

Calculate the terms until the improvement in the sum is no longer significant. For
an asteroid in a fairly eccentric orbit, that may take some time.

The solution proposed by Kapteyn falls into the second category.
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Fig. A.4 Hertzsprung-Russell diagram of stars. On the horizontal axis the color index (B−V )
(bottom) and at the top both spectral type and surface temperature in Kelvin. The vertical axis has
on the right the absolute magnitude and on the left the luminosity expressed in that of the Sun.
The lines and Roman numerals indicate luminosity classes. See also the text. From An Atlas of the
Universe [3], with permission.

A.5 Stellar evolution

The fundamental diagram in astrophysics is named after the Danish astronomer Ej-
nar Hertzsprung and American Henri Norris Russell (see Fig. A.4). It is a diagram
that relates the temperature at the surface of stars to the luminosity. The vertical axis
is the luminosity, but for that also the absolute magnitude can be used. On the hor-
izontal axis we have the temperature at the surface of the star, but one can also use
for this the color index, for example the difference between the magnitudes of the
star in a blue (B) and a visual (V ) band. If the star is relatively bright in blue, then
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the star is relatively hot on the surface. But the spectral type can also be used for
this, because the absorption lines in the spectrum of the star are created by atoms or
ions in the outer parts, which absorb light at specific wavelengths; which atoms or
ions are present and which lines are prominent, is strongly influenced by the temper-
ature and also other physical conditions. Spectral types are indicated by the letters
OBAFGKM and a decimal subdivision within that. By definition, the color index
(B−V ) is zero for an A0 star. O-stars are relatively blue; along the sequence from
top-left to bottom-right, the color becomes increasingly redder, while the tempera-
ture at the surface of the star decreases. In O-stars, the lines of ionized helium are
strongest, in B-stars those of neutral helium, in A-stars those of hydrogen, while in
F-stars, G-stars and K-star lines of ionized calcium and metals gradually become
stronger. In M-stars, lines of molecules (e.g., titanium oxide) are strong.

The radiation of a star is so-called black-body radiation; every body of a tem-
perature T emits an amount of radiation, which depends on the temperature T . Ac-
cording to Stefan-Boltzmann’s law, the energy integrated over all wavelengths per
surface unit per second is equal to σT 4 (with the constant σ also named after Josef
Stefan and Ludwig Eduard Boltzmann ). Now, since the area of a sphere with radius
R is equal to 4πR2, it follows that for the luminosity L of a star we have

L = 4πσR2T 4. (A.15)

Most stars lie along the Main Sequence from the top left to the bottom right.
After being formed from a cloud of gas cloud, contraction and release of potential
energy will make the inside of a star hotter, and as the density increases more energy
is added than can be radiated away. At ten million degrees, nuclear reactions start,
converting hydrogen into helium. The stars at the top are bright, heavy, and hot and
for them this period is shortest, the M-stars are faint, light and cool and they live
longer than the present age of the Universe. If L is the luminosity, T the surface
temperature, M the mass, and τ the time on the Main Sequence, then the following
applies in reasonable approximation

L ∝ T 6 L ∝ M3
τ ∝ M−2.

The derivation in very general terms is as follows (see also my Lecture Course
Introductory Astronomy [2].

Take a column with a cross section ds in a star at distance r from the center
and take the mass in the star within r equal to M(r). A small element dr along the
column than has a volume dr ds. On this element the gravitational force downward
is (with ρ the density en G the gravitational constant)

P− = ρ
GM(r)

r2 ds dr.

This will have to be compensated by the difference on pressure over the element

P+ = P ds− (P+dP) ds =−dP
dr

dr ds.
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So for hydrostatic equilibrium we have

− 1
ρ

dP
dr

=
GM(r)

r2 . (A.16)

Now look at radiation and assume a radiation flux H. The energy absorbed in that
element then is

E− = κHρ ds dr,

with κ the absorption coefficient per unit mass. And since each photon has a mo-
mentum hν/c (h is the Planck constant, ν the frequency and c speed of light), so the
absorbed momentum is

P− =
κ

c
Hρ ds dr.

For equilibrium this should be equal to the difference in radiation pressure Prad over
the element:

−dPrad ds =−dr
dPrad

dr
ds =

κ

c
Hρ dr ds.

With the radiation pressure Prad =
1
3 aT 4 with a = 4σ/c this becomes

H =− c
κρ

dPrad

dr
=−4

3
ac
κρ

T 3 dT
dr

,

and the energy that flows through the sphere with radius r becomes

Lr = 4πr2H =−4πr2 4ac
3

T 3

κρ

dT
dr

. (A.17)

This is the radiative transfer.
Finally we have a equation of state for which we can take the ideal gas law

P = nkT =
k
µ

ρT. (A.18)

Hydrostatic equilibrium, radiative transfer and equation of state together give the
fundamental equations for stellar structure. The properties of matter (composition,
ionization, etc.) are all included in the κ . For a full analysis also the energy produc-
tion needs to be considered.

In a dimenensional analysis we can derive the basic proprotionalities in the rela-
tions of stars. This means that we write, e.g. for the temperature which is T (0) in
the center and T (R) at the surface with T (R)<< T (0):

T̄ ≈ T (0)+T (R)
2

;
¯dT

dr
≈ T (R)−T (0)

R
=
−2T̄ +2T (R)

R
≈−2T̄

R
,

and
ρ̄ =

3
4π

M
R3 .
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So hydrodynamic equilibrium becomes

2P̄
ρ̄R
≈

GM( 1
2 R)

( 1
2 R)2

=
GM
2R

.

We then can find

P̄≈ GM
4R

ρ̄ ; P̄≈ k
µ

ρ̄T̄ ; T̄ =
µ

k
GM
4R

This is not bad, since for the Sun we then get T̄ = 6×106K. Now ignoring propor-
tionality constants we get

L ∝ R2 T̄ 3

ρ̄

T̄
R

∝
RT̄ 4

ρ̄
∝ R

(
M
R

)4 R3

M
∝ M3. (A.19)

This is the mass-luminosity relation, which has been found empirically to be about
the same as this.

If we assume Tsurface ∝ T̄ , we find

Tsurface ∝ T̄ ∝
M
R

∝
L1/3

R
,

and with the relation just found this gives

L ∝ T 6
surface, (A.20)

which is the Main Sequence.
Assume that the total energy a star can produce is proportional to its mass (say

each star uses over its lifetime a similar fraction, about 10%) as fuel. Then the
lifetime on the Main Sequence

τ ∝
M
L

∝ M−2. (A.21)

The derivation of these formulae comes from my Lecture Course Introductory
Astronomy [2].

Eventually all hydrogen in the central parts of a star will be used up, so that the
core, which now consists entirely of helium, will be extinguished. Initially ‘hydro-
gen burning’ continues for a while in a shell around the core and the star becomes
brighter. A star like the Sun then moves up along the sub- and the giant branches
(along numbers IV and III in Fig. A.4). The temperature T at the surface drops and
the star becomes redder, but according to the formula above, the radius R will then
increase. Because energy is no longer produced there, the core contracts, but then
gets hotter. When it becomes hot enough, helium burning will start there, convert-
ing it into carbon and oxygen. A star like the Sun is then on the ‘clump’ halfway
along the line marked with III. Then the star expels its outer layers and forms a
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so-called planetary nebula. The star then cools down to a white dwarf on the line at
the bottom of the figure. The matter becomes very compact, but at a certain moment
the contraction stops because Fermi’s exclusion principle and Heisenberg’s uncer-
tainty relationship together forbid that the electrons come even closer together. The
uncertainty relationship says that the position and velocity of an electron (or other
elementary particle) cannot be measured infinitely accurately at the same time. Then
two different electrons can in principle not get so close together and have the same
speed so accurately that they would be indistinguishable. The Fermi principle pro-
hibits this and so matter cannot become more compact than when all particles can
just be distinguished in position and speed. This is called degeneration pressure.
This is explained in my Lecture Course Introductory Astronomy [2].

In a more massive star than the Sun, the pressure in the core becomes so great
that the center continues to contract; the star then becomes so hot that even heav-
ier chemical elements are formed. But in the long run this process also stops and
the central parts contract even further. The gravitational contraction force then is so
great that the degeneration pressure can no longer compensate for it; then the elec-
trons are, as it were, merged into the protons and form neutrons. This process is so
fast that an enormous pressure wave propagates through the star, blowing itself up
like a supernova. More chemical elements are formed and this material is thrown
out into space. The remaining central parts are then a neutron star, which is in equi-
librium under the influence of the degeneration pressure of the neutrons, or, if the
intial star mass is even large and the contraction forces too strong, a black hole.

A.6 The ‘star ratio’

This concept was used by Edward Pickering in 1903 to obtain information about the
distribution of stars in space. Assume that all stars have the same intrinsic luminosity
and are uniformly distributed in space. Take a certain distance from the Sun, then
all stars at that distance have the same apparent brightness or magnitude, say m.
Stars of a magnitude weaker, i.e. m+ 1, in the sky are according to the definition
of the magnitude scale a factor 5

√
100 = 2.512 fainter and have to be therefore a

factor
√

2.512 further away. The stars between apparent magnitude m and m+1 fill
a shell. Now take stars that are another magnitude fainterer, so m+ 2. They are a
factor of 2.512 fainter than the stars of magnitude m+1 and are a factor of

√
2.512

further away. The shell between m+1 and m+2 is a factor 2.512 larger than the one
between m and m+1 and the thickness is a factor

√
2.512 larger. So the volume of

the shell is a factor 2.512×
√

2.512 = 2.5123/2 larger and so is the number of stars
in it.

This means that the number of stars between magnitude m+1 and m+2 should
be the same factor 2.5123/2 = 3.981 times larger than the number between m and
m + 1. And this holds for every value of m. This ratio, the factor of 3.981, was
called the ‘star ratio’ by Pickering and served as a reference value. In practice, he
did not use the factor 3.981 itself, but actually its logarithm, which is exactly 0.6.
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Fig. A.5 On the left a log-normal probability distributions. On the right the same distribution but
plotted on a logarithmic horizontal scale. After [4].

In reality on the sky, this ratio is smaller than this theoretical value; this may be due
to changes in the density of the stars with changing distances or to the distribution
of their intrinsic luminosity, but also to absorption of starlight by dust in interstellar
space.

A.7 Skew probability distributions

An example of a skew probability distribution that Kapteyn studied, is the so-called
‘log-normal’ distribution. The well-known Gaussian probability distribution is

P(x) =
1

σ
√

2π
exp

{
− 1

2σ2 [x−M]2
}
. (A.22)

The property M is the central value and σ is called the dispersion. The log-normal
probability distributions then is

P′(x) =
1

xσ
√

2π
exp

{
− 1

2σ2 [ln(x)−M]2
}
. (A.23)

An example of a log-normal distribution has been drawn on the left in Fig. A.5.
This is for the values M = 100 and σ = 2. To the right the same distribution on a
logarithmic (base 10) scale on the x axis, so that it becomes the normal Gaussian dis-
tribution (then the parameters become M = 4.61 and σ = 0.693). The color changes
with integer values of σ (34.1% of the total from the median up to 1σ , 13.6% from
1σ up to 2σ , etc.).

In normal distribution, the mode (the maximum or most common value), the
median (half larger and half smaller) and the regular average have the same value
(in the figure 102 or 100). At the log-normal, the average is eM + 1

2 σ2 = 127.8, but
the mode is at eM−σ2

= 62.2 and the median at eM = 100.
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Kapteyn went on to study a general family of skewed distributions characterized
by

PJCK(x) =
1

F ′(x)σ
√

2π
exp

{
− 1

2σ2 [F(x)−M]2
}
, (A.24)

where F ′(x) is the first derivative dF(x)/dx of a function F(x). Kapteyn chose the
function F ′(x) = (x+κ)q. The special case κ = 0, q = −1, which he used exten-
sively, is the log-normal distribution, which can be seen when you note that F = lnx,
F ′ = 1/x.

An excellent general discussion of the theory of log-normal dsitributions has
been given by Eckhard Limpert and collaborators [4]. An extensive, technical dis-
cussion of Kapteyn’s work in the field of statistics has been published an article by
Ida H. Stamhuis and Eugene Seneta [5].

The degree of correlation (linear regression) between two parameters among n ob-
jects (e.g. mass and luminosity of n stars), xi and yi (i = 1 to n), is often described
with the ‘Pearson product moment correlation-coefficient’, which makes use of the
second moments of the distribution. These are

Mxx =
n

∑
i=1

(xi− x̄)2 ; Myy =
n

∑
i=1

(yi− ȳ)2 ; Mxy =
n

∑
i=1

(xi− x̄)(yi− ȳ).

Here x̄ and ȳ are the mean values of x and y. The definition of the correlation-
coefficient then is

r =
Mxy√

MxxMyy
=

1
n−1

n

∑
i=1

(
xi− x̄

σx

)(
xi− ȳ

σy

)
, (A.25)

where

x̄ =
1
n

n

∑
i=1

xi ; σx =

√
1

n−1

n

∑
i=1

(xi− x̄)2

and

ȳ =
1
n

n

∑
i=1

yi ; σy =

√
1

n−1

n

∑
i=1

(yi− ȳ)2.

The absolute value |r| then varies from 0 in the case of absence of any correlation
to 1 in case of complete correlation.

A.8 The fundamental laws of statistical astronomy

Here I use the notation used in the thesis of Kapteyn’s student Willem Schouten,
written in 1918 [6].
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D(r), density (number of stars per unit volume) of stars at distance r.
hm, the apparent birghtness (in energy per unit of time per unit of area) of a star of
magnitude m; hm = 1 for m = 0.
i, luminosity, corresponding to absolute magnitude M.
N(hm)dhm, observed number of stars of magnitude m, that is between hm and hm +
dhm.
Π(hm), the average parallax of stars of magnitude m.
ϕ(i)di, percentage of stars between i and i = di.

Using i = hmr2 and di = r2dhm, the functions D(r) and ϕ(i)di then follow from
a non-trivial, simultaneous inversion of two integrals:

N(hm) = 4π

∫
∞

0
D(r)ϕ(hmr2)r4dr, (A.26)

N(hm)Π(hm) = 4π

∫
∞

0
D(r)ϕ(hmr2)r3dr. (A.27)
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