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Zel'dovich & pope John Paul

Zel'dovich & Andrei Sacharov




PHYSICS OF

SHocK WAVES AND
HIGH-TEMPERATURE
HYDRODYNAMIC
PHENOMENA

Yu. P. Raizer

Ediced by Wallace D Hayes and
Aiamld F Probsteis i

Zeldovich & Raizer
standard book on shock waves ...




Phase-Space Evolution:

Zeldovich & Deformation
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h Approximation
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Zel’dovich Approximation

¥ =G+ D(1)ii()

i(q) =-V(q)

D)=z b (d)
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Zel’dovich Approximation

ZLeldovich Approximation
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Zel’dovich Approximation

% =G+ D(0)ii(q) d, =2
oq
i(§) =-VO(G) 4 L

p, (1)
1-D(0)4(3))(1- D)4, (§))(1- D) 44())

p(é,t)=(

structure of the cosmic web determined by the ﬁ'] A A
spatial field of eigenvalues 27723773




| & S Zeldovich Formalism:
|
i I
| } Density
| ’ Evolution
= j K
X I t —
| v |
|
i | :
- , x
X I E _
| /
| i
| [
Density Profile through'pancake, at moment of formation and shortly thereafter (multistream)
I _ oD
X(g,t)=g-DOVP(q) = dy==——" Ao s
4:99 ;

)= p.(1)
(1-D()4(7))(1- D)2, (§))(1- D)4 ()

p(q.t




Eulerian coordinate

B -4 08
’ \
/ B -4 086
x
B -4 04
/
B 4 02

! : | | | | S L 0
-041 0 0.1 01 1 10
N A 7 8 .
s o density
velocity
-0 -
1 1 1 1
0 02 04 0.6 08 1

4 .
Lagrangian coordinate

Zeldovich Formalism:

Singularities

%(g,1) =4 —DOVO(G)

2
N J - RO
' 0q,0q;

p. (1)

DA Ay A

)= oA

1= D)2 (@)(1-D04 (9))




Eulerian coordinate

08 -

06 -

04 -

02

velocity ~

4 .
Lagrangian coordinate

10

-4 08

-4 086

-4 04

4 02

0

density

Caustic Formation:

Folds & Cusps

Lagrangian space: A,contours

p(g,t) =
i
D), =1

Eulerian space: folds & cusps




Zel’dovich Morphology

- p. (1)
(1-D®)A4(§))(1-D(1)A4,(3))(1- D() A,(4))

ﬂ"l’ﬂ“29/13 ﬂ'1>ﬂ“2>ﬂ“3

p(q.t

Structure of the cosmic web determined by the
spatial field of eigenvalues:

Sequence of formation stages:

A - collapse along first axis:
formation of walls/sheets/pancakes

A2 - collapse along 2 axes:
formation of elongated filaments

A3 -  possibly — if A3>0 — collapse along all
three axes, into a fully collapsed clump/node

Job Feldbrugge 2018




Zel’dovich Cosc Web

It is no exaggeration to
state that Zeldovich (1970)
predicted the existence

of the Cosmic Web !

Sequence of formation stages:

A1 - collapse along first axis:
formation of walls/sheets/pancakes

A2 - collapse along 2 axes:
formation of elongated filaments

A3 -  possibly — if A3>0 — collapse along
all three axes,
into a fully collapsed clump/node

|
|
|

" Job Feldbrugge 2018



Zeldovich Dynamics

- p. (1)
(1-D®)A4(§))(1-D(1)A4,(3))(1- D() A,(4))

ﬂ"l’ﬂ“29/13 ﬂ'1>ﬂ“2>ﬂ“3

p(q.t

By rewriting the Euler equation (in comoving coordinates), we may easily understand
dynamical nature of the Zeldovich approximation:

ov a | ~ 1 -
+—v+—|Vv-V)y=—-V
ot a a( ) a ?

Define velocity u, —~ dx V
wrt linear growth factor D(t): U= — .

4D aD




Zeldovich Dynamics

Following some algebraic manipulations, one arrives at the equivalent Euler equation for the
normalized velocity u:

S—Z+(ﬁﬁ)ﬁ

v LR R
21°D a D

With velocity potential ¢,:

and effective potential V:

and scaled = 2¢
gravitational potential ©: 3Qa2DH2




Effective & Scaled Potentials

For the Zeldovich approximation we may easily see that the effective potential V=0:

3Q
V=—"0on—(g,+0)=0
21D
For the Zeldovich approximation: The velocity potential ¢, we may infer from the velocity

corresponding to the Zeldovich approximation:

¥ =G -D(OVY(G)

with:
N7 ——C . % wH ., .- _
3Da’H*Q i=Vg =—=—"—"—1(Q)VY¥Y(q)=-V¥(q)
so that the scaled ab ab
gravitational potential 6: from which we see that
_ 2 _yys .
vyt ¢, =—¥(4)

Hence, for the Zeldovich approximation: ¢ +0=0 = V=0




Zel'dovich ++:

Adhesion Formalism




Zeldovich-Adhesion

We saw that dynamically, the Zeldovich approximation corresponds to a force-free propagation,
as evidenced by the Euler equation for the normalized velocity u:

ﬁ+(ﬁ-€)ﬁ=—§r/=o
oD

The force-free nature of the Zeldovich approximation leads to the ballistic motion,
which once a mass element enters a multi-stream nonlinear region ignores the dominant

self-gravitational terms, ie. the evolving gravitational potential of high-density structures
(such as walls, filaments and clumps).

The adhesion approximation augments this with a (really) artificial term — a non-gravitational
term — in terms of a viscosity term (as we know from the Navier-Stokes equation):

S—Z+(ﬁﬁ)ﬁ=vv2ﬁ




Zeldovich-Adhesion

The force-free nature of the Zeldovich approximation leads to the ballistic motion,

which once a mass element enters a multi-stream nonlinear region ignores the dominant
self-gravitational terms, ie. the evolving gravitational potential of high-density structures
(such as walls, filaments and clumps).

The adhesion approximation augments this with a (really) artificial term — a non-gravitational
term — in terms of a viscosity term (as we know from the Navier-Stokes equation):

S—Z+(ﬁﬁ)ﬁ=vvzﬁ

This equation, the Navier-Stokes equation for a pressureless medium, goes by the name of

Burger’s Equation

after the famous hydrodynamicist. It is one of the few equations that can be fully solved
analytically.

The viscosity term here is fully artificial, tries to emulate “selfgravity”, and has nothing to
do with the physical viscosity we know from hydrodynamics. Basically, it functions as a
friction term.

In its cosmological context, you only want to invoke it close to the emerging multistream
regions, so that you take the asymptotic “inviscid” limit, v — ()




Adhesion Approximation

Burger’s Equation

o+ (u-V)u=vViu




Adhesion Approximation

Hidding 2012




Velocity & Gravity
Potential

i(q) = V(q)




Burger’s Equation: Hopf Solution




Burger’s Equation: Hopf Solution

1




Hidding 2012/2014

Convex Hull
quadratically lifted potential field

Delaunay tessellation
generated by maxima potential field




Eulerian — Lagrangian
Voronoi - Delaunay




Eulerian — Lagrangian
Voronoi - Delaunay




Multiscale Structure




Hierarachical Evolution

The adhesion formalism
is ideal for following the
hierarchical buildup of the
cosmic web:

» Mathematically:

as a result of the evolving
parabolic curvature of the
(velocity) potential, more
features get embedded in
singular valleys enclosed
between potential and
convex hull.

 Physically:
- Clearly visible is the

merging of small filaments
into ever larger arteries.

- at the same time, we see
the continuous merging of
small voids into larger voids,
the evolving soapsud of
void hierarchy.
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Hidding 2012/2014

the morphology of the weblike network is
highly sensitive to the underlying cosmology
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Zel'dovich ++:

Caustics & Catastrophes




Skeleton (3D) Cosmic Web:













Zel’dovich Formlism:

Streaming & Caustics

yb L L { F o ;-— ‘ .kl‘ |
" - ] - g SN,
- \’ J y > R _,v' ’!r P ""!-ﬂ-
¥ a :’KI Pialk . .‘“‘ d i
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lllustration of the formation of caustics due to

streaming paths of light through deforming medium




Zel’dovich Approximation

X=q+D@)u(q)

i(q) =-V(q)




Caustic Conditions:

A, folds

A1) ={q € L|l+ 1,(q) = 0}

A ={qeL|l+,un.(q)=O for some t}

Feldbrugge, vdW et al. 2017a



Feldbrugge, vdW et al. 2017

Lagrangian

Eulerian

Emergence of A, cusps around A, folds

singularities

)= p, (1)
(1-D0)4 (§))(1- D)4, (§))(1- DA (§))

p(q,t

Catastrophe Theory:

Lagrangian catastrophe/caustic classification V. Arnold
(also see Zeeman, Thom)

D=1

A: A\

D=2

A: A

D: A, A,
D=3

A: A

D: A, A,

E: Ay Ay A




Caustic Conditions:
A, cusps

Folding A, manifold into more complex configurations:

For j #i, there is a nonzero tangential vector Tsuch that caustic condition

a;,=v.(q,)T=0 VEd

J

TG | v@ = @ LiG=Vu(q) = u,G)=iVu=0

40 ={geLlge 4(t) A 1+p,,(q)=0}

A= {q eL‘q e A4,(t) A 1+u,,(q)=0  forsome t}

Feldbrugge, vdW et al. 2017a




Skeleton (3D) Cosmic Web:

eldbrugge, vdW et al. 2017b



Zel’dovich
Deformation Field

% =G +D(t)ii(G) PR

y _aqj

i(§) = V() <

structure of the cosmic web determined by the ﬂ, Z
spatial field of eigenvalues ﬂ’] RAYRRAL




Singularities & Catastrophes:
Deformation Field
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Caustic Classes

Lagrangian

Eulerian

Emergence of A, cusps around A, folds (3D)

Feldbrugge, vdW et al. 2017

As 4,

¥

D=1
A,: folds
A;: cusps
D=2
A,: folds
A;: cusps

A,: swallowtail

D,: umbilics

Catastrophe Theory:

Lagrangian catastrophe/caustic classification V. Arnold

(also see Zeeman, Thom)

D=3

A,: folds

A;: cusps

A,: swallowtail
A;: butterfly

D,: umbilics




Leaders of Catastrophe

E. Zeeman R. Thom V.l. Arnol’d

Arnold V.I. (and others):
Caustic classification on basis of Normal Forms:

F(q) =9+ g, + ug,’

D600

Arnold V.I., 1986,
Catastrophe Theory, Springer

Arnold V.l., Shandarin S.F., Zeldovich Ya.B., 1982
The Large Scale Structure of the Universe |. General
Properties. One and Two-dimensional models
Geophys. Astrophys. Fluid Dynamics, 20, 1-2

Arnold V.1., 1986,

Evolution of singularities of potential flows in
collisionless-free media and the metamorphosis
of caustics in three-dimensional space




Hidding, Shandarin, vdW 2014

Lagrangian

Eulerian

Formation of a A, swallowtail (2D)

D=1
A,: folds
A;: cusps
D=2
A,: folds
A;: cusps

A,: swallowtail

D,: umbilics

Catastrophe Theory:

Lagrangian catastrophe/caustic classification V. Arnold
(also see Zeeman, Thom)

D=3

A,: folds

A;: cusps

A,: swallowtail
A;: butterfly

D,: umbilics




Skeleton (3D) Cosmlc Web:

Feldbrugge, vdW et al. 2018
blue: A,




Caustic Skeleton & Cosmic Web
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Skeleton (3D) Cosmic Web:

catastrophic connections

Singularity  Singularity Feature in the Feature in the
class name 2D cosmic web 3D cosmic web
fold collapsed region collapsed region
cusp filament wall or membrane
swallowtail cluster or knot  filament
butterfly not stable cluster or knot

hyperbolic/elliptic  cluster or knot  filament
parabolic not stable cluster or knot

Feldbrugge, vdW et al. 2017b



Skeleton (2D) Cosmic Web:

catastrophic connections

Lagrangian Eulerian
(Zeldowch deformation fld.) (Zeld0V1ch density fld.)

Jf»»"

‘*",,i%‘ Bﬁ&

= NS -Nmtri

Feldbrugge, vdW et al. 2016

2D Zeldovich density field (log density)

A3 - cusp - red sheets - filaments
A4 - swallowtail - blue lines - nodes




Skeleton (3D) Cosmic Web:

Filament formation:

not necessary to collapse along 2 directions !
Wall/Membrane formation:
A, (swallowtail) filaments (blue):

- collapse along 1 direction

A, (cusp) membranes (red): - at edges & intersections A; sheets
- collapse along 1 direction
D, umbilic filaments (yellow)

- collapse along 2 directions

- higher density filamentary extensions nodes

Feldbrugge, vdW et al. 2018




the Spherical Model




Spherical Model

The spherical model (Gunn & Gott 1972) describes the evolution of a
spherical mass distribution. It forms THE reference point for all further
evaluations of structure formation.

e Because of Birkhoff’s theorem we may see the evolution of each
individual mass shell as due only to the integrated mass distribution within
its radius.

e As long as two mass shells are not crossing - e.g. due to the faster infall
of an outer shell into an overdensity -- the motion of a shell - with radius
r -- is simply that of an individual spherical shell attracted by a point mass
M(r), with M(r) the integrated mass within radius r.

e Perhaps not surprisingly, the equations of motion for the mass shells are
the same as that of Friedmann-Robertson-Walker universes for an
equivalent density parameter B(r).

e These equations of motion for each mass shell can be solved analytically for any

decently behaving mass profile (i.e. the mass profile should be sufficiently
centrally concentrated to prevent shell crossing).

e The spherical model is equally valid for overdensities as well as for
underdensities.




Spherical Model

Contraction/Expansion of a shell with initial (Lagrangian) radius r; is described by a
scale factor R(t,r;), such that the radius r(t,r;) at time t is given by:




Spherical Model

The motion is fully determined by the average mass density A(r,t) within a radiusr,

A(r,t) = i; i y* dy 1+ A = Q1+ A, ri)]
T Jo pu(t)

2
3 r ( _ _ v B
= 3 / 3y, 1)y dy, = (H,,,-_r.i b
T Jo

and by the the peculiar velocity v, ; of the shell. For this we usually take the peculiar
velocity predicted by linear theory for the growing mode.

H?1

Upee,i = 3 F(Q)A(r;, t) ,

o = “%f(ﬂi)ﬁ(?‘nti)-

It is convenient to describe the density perturbation with respect to a EdS Universe, in

terms of A, and the velocity perturbation with respect to the Hubble expansion in terms
of parameter ¢ .



Spherical Model

The solutions for the scale factor of overdense/underdense shells can be written in the

same parameterized form, by means of shell angle 0, as we know from the solutions for
FRW universes,

1 e B o ; _
2 To— D2 (cosh®, — 1) A <o,

W T T — o _ :
2 (A, = a)) (1 —cos©,) s s

with time dependence specified by

i 1+ Ani 22 = 8
5 (o &c?j—):;f? (sinh®, — O;) A TRy
t((_)?') = 4
il 1+ .ﬁm

(©, —sin©,) NG 5

L# (A —0y)®



Spherical Model

The corresponding peculiar velocity of the shell

Uee(Pst) = O, T) — Hy(t)r(l);

can be inferred from

el ) = Hu(0r(0) {280 — 1

9(Oy)
with
(8inh O (sinh® — O©)

5 open,

(cosh® — 1)

g(@) = « % critical
sin® (O — 31112(-)) closed
(1 — cos ©)




Expansion Shell Radius Shell Expansion Factor
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Spherical Void Evolution
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Spherical Model

Having determined the evolution of the radius and velocity of each spherical shell of
the density perturbation, we may then proceed to derive the corresponding evolution
of the density profile of the shell. Here we limit ourselves to the integrated density

profile A(r,t),

1+ Ai(r) al(t)’
3 3

1+ A(r,t) =

whose solution can be specified in terms of a density function f(0),

1+ A(r,t) = £(6,)/f(Ou).



Spherical Model

whose solution can be specified in terms of a density function f(0),

( (sinh® — ©)? —
(cosh® —1)° PR
f(®©) = <2/9 critical
(Oh—igm @)2 closed
L (1 — cos ©)° A

At maximum expansion of an overdense shell, ©=1r, defining the turnaround radius of
the matter concentration, we thus find that the integrated overdensity of the shell is

1 + A(r, ta) = (3m/4)° ‘~56‘




Spherical Model

In the “imaginary” situation in which the overdensity would have continued to evolve
linearly, it would have reached an overdensity dictated by the linear growth factor D(t)
for the corresponding background Universe. For the situation of an Einstein-de Sitter
Universe, with

2/3
D  (t/tg)?
a mass ovcrdcnsitg reaches its turnaround at a linear ovcrdcnsitg

Ajin(21a) = 610 = (3/5)(3m/4)*/® ~ 1.062.

The consequences of this finding are truely wonderful: the cosmologist may resort to
the primordial density field, search for the peaks in this Gaussian field, and assuming
they are spherical (which they are not at all), and identify the ones that reach
turnaround at some redshift z. Even more useful is the equivalent case for final
collapse.



Spherical Model

Collapse, ie. A=~, happens when the density fluctuation would have reached a linear
overdensity of

/3 (3723 -
&Iin(gt:) = 0¢ = 5 ? ~ 1.686.

The fact that this is a universal value, valid for any (spherical) density peak, makes it
into one of the most crucial numbers in the theory of structure formation. We may
thus find the collapse redshifts z_,, for any primordial density peak,

D(Etznll) &Iin,{] = Oc .




the Ellipsoidal Model




Homogcncous E_“ipsoids
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Homogcncous E"ipsoids
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Homogcncous E_"iPsoids




Homogcncous Ellipsoids
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Homogcncous E_“ipsoids
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Homogcncous Ellipsoids




Homogcncous E_“ipsoids




Homogcncous E_“ipsoids
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Homogcncous E_“ipsoids

R?'n,-:f'e:.(t-i) — Rm(ti ) 5-??;:?1.

d 2ern:ﬁ;
dt?

2
. - ell _ b m(ext)
= —27 G [ﬂ?m,ﬁ + (§ — mim) P Rmﬁ; — I—mm )Rw'n,ﬁ;

- ell _ b (ext)
G [ﬂ?m,(} T (_ _ ﬂ?m,) P } Rm, _ I;-};,-;-”, ’JRm




Homogcncous E_“ipsoids
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Homogcncous E"ipsoids
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Homogcncous E_"iPsoids
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HOMOGENEOUS ELLIPSOID DYNAMICS

. with Linear External Tides
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