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Zel’dovich Approximation
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Zeldovich Formalism:

Density 
Evolution
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Density Profile through pancake, at moment of formation and shortly thereafter (multistream)



Zeldovich Formalism:

Singularities

velocity
density

Lagrangian coordinate

E
ul

er
ia

n
co

or
di

na
te

t1

t2

t3

( ) ( )
( )( ) ( )( ) ( )( )

2

1 2 3

1 2 3

( , ) ( ) ( ) : , ,

,
1 ( ) 1 ( ) 1 ( )

ij
i j

u

x q t q D t q d
q q

t
q t

D t q D t q D t q

λ λ λ

ρ
ρ

λ λ λ

∂ Φ
= − ∇Φ ⇒ =

∂ ∂

=
− − −



   



  



Lagrangian space:   A2 contours Eulerian space:   folds & cusps

Caustic Formation:

Folds & Cusps

velocity
density

Lagrangian coordinate

E
ul

er
ia

n
co

or
di

na
te

t1

t2

t3

( , )

( ) 1i

q t

D t

ρ

λ

= ∞

⇑
=





Zel’dovich Morphology
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Structure of the cosmic web determined by the 
spatial field of eigenvalues: 
Sequence of formation stages:

λ1 - collapse along first axis:
formation of walls/sheets/pancakes

λ2 - collapse along 2 axes:
formation of elongated filaments

λ3 - possibly – if λ3>0 – collapse along all 
three axes, into a fully collapsed clump/node

Job Feldbrugge 2018



Zel’dovich Cosmic Web
It is no exaggeration to
state that Zeldovich (1970)
predicted the existence
of the Cosmic Web ! 

Sequence of formation stages:

λ1 - collapse along first axis:
formation of walls/sheets/pancakes

λ2 - collapse along 2 axes:
formation of elongated filaments

λ3 - possibly – if λ3>0 – collapse along 
all three axes, 
into a fully collapsed clump/node

Job Feldbrugge 2018



Zeldovich Dynamics
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By rewriting the Euler equation (in comoving coordinates), we may easily understand
dynamical nature of the Zeldovich approximation:  

Define velocity u,
wrt linear growth factor D(t):
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With velocity potential ϕv: 

and effective potential V:

and scaled
gravitational potential θ:

Zeldovich Dynamics
Following some algebraic manipulations, one arrives at the equivalent Euler equation for the
normalized velocity u:  
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For the Zeldovich approximation: 

with:

so that the scaled
gravitational potential θ:

Effective & Scaled Potentials
For the Zeldovich approximation we may easily see that the effective potential V=0:  
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The velocity potential ϕv we may infer from the velocity 
corresponding to the Zeldovich approximation:

from which we see that 
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Zeldovich-Adhesion
We saw that dynamically, the Zeldovich approximation corresponds to a force-free propagation, 
as evidenced by the Euler equation for the normalized velocity u:  
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The force-free nature of the Zeldovich approximation leads to the ballistic motion, 
which once a mass element enters a multi-stream nonlinear region ignores the dominant 
self-gravitational terms, ie. the evolving gravitational potential of high-density structures
(such as walls, filaments and clumps). 

The adhesion approximation augments this with a (really) artificial term – a non-gravitational
term – in terms of a viscosity term (as we know from the Navier-Stokes equation):
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Zeldovich-Adhesion
The force-free  nature of the Zeldovich approximation leads to the ballistic motion, 
which once a mass element enters a multi-stream nonlinear region ignores the dominant 
self-gravitational terms, ie. the evolving gravitational potential of high-density structures
(such as walls, filaments and clumps). 

The adhesion approximation augments this with a (really) artificial term – a non-gravitational
term – in terms of a viscosity term (as we know from the Navier-Stokes equation):

This equation, the Navier-Stokes equation for a pressureless medium, goes by the name of 

Burger’s Equation
after the famous hydrodynamicist. It is one of the few equations that can be fully solved
analytically. 

The viscosity term here is fully artificial, tries to emulate “selfgravity”, and has nothing to 
do with the physical viscosity we know from hydrodynamics. Basically, it functions as a 
friction term. 

In its cosmological context, you only want to invoke it close to the emerging multistream
regions, so that you take the asymptotic “inviscid” limit,  
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Adhesion Approximation

Burger’’s Equation



Adhesion Approximation

Hidding 2012

Gurbatov, Saichev & Shandarin 1987



Velocity & Gravity 
Potential
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Burger’s Equation: Hopf Solution
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Burger’s Equation: Hopf Solution



Convex Hull
quadratically lifted potential field

Delaunay tessellation
generated by maxima potential field

Hidding 2012/2014



sEulerian – Lagrangian
Voronoi - Delaunay



Eulerian – Lagrangian
Voronoi - Delaunay



Multiscale Structure 



Hierarachical Evolution
The adhesion formalism
is ideal for following the
hierarchical buildup of the
cosmic web:

• Mathematically:
as a result of the evolving
parabolic curvature of the
(velocity) potential, more    
features get embedded in    
singular valleys enclosed
between potential and
convex hull.

•  Physically:
- Clearly visible is the

merging of small filaments
into ever larger arteries.

- at the same time, we see
the continuous merging of 
small voids into larger voids, 
the evolving soapsud of 
void hierarchy. 



Cosmological Sensitivity

the morphology of the weblike network is 
highly sensitive to the underlying cosmology

P(k)k-2.0P(k)k-1.5 Hidding 2012/2014





Skeleton (3D) Cosmic Web:
A4 spine - swallowtails

Feldbrugge, vdW et al. 2017b










Zel’dovich Formlism:
Streaming & Caustics

Hidding 2013

Illustration of the formation of caustics due to 

streaming paths of light through deforming medium



Zel’dovich Approximation
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Caustic Conditions:
A2 folds

Feldbrugge, vdW et al. 2017a
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Catastrophe Theory:                                             
Lagrangian catastrophe/caustic classification V. Arnold                 

(also see Zeeman, Thom)    

D=2

A:    λ1

D:    λ1,  λ2

D=1

A:    λ1

D=3

A:    λ1

D:    λ1,  λ2

E:    λ1,  λ2,  λ3

Emergence of A3 cusps around A2 folds

Feldbrugge, vdW et al. 2017
Lagrangian 

Eulerian

singularities
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Caustic Conditions:
A3  cusps

Feldbrugge, vdW et al. 2017a
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i manifold into more complex configurations:
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Skeleton (3D) Cosmic Web:
A3 surfaces - cusps

Feldbrugge, vdW et al. 2017b



Zel’dovich 
Deformation Field
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spatial field of eigenvalues 



Singularities & Catastrophes:
Deformation Field

Hidding, Shandarin & vdW 2014

Zeldovich 
deformation eigenvalue
landscape
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Catastrophe Theory:                                             
Lagrangian catastrophe/caustic classification V. Arnold                 

(also see Zeeman, Thom)    

D=2

A2:   folds
A3:   cusps
A4:    swallowtail

D4:    umbilics

D=1

A2:   folds
A3:   cusps

D=3

A2:   folds
A3:   cusps
A4:   swallowtail
A5:  butterfly

D4:    umbilics
D5

E5

Emergence of A3 cusps around A2 folds  (3D)

Feldbrugge, vdW et al. 2017Lagrangian 

Eulerian

Caustic Classes



E. Zeeman              R. Thom            V.I. Arnol’d

Arnold V.I.,  1986, 
Catastrophe Theory, Springer

Arnold V.I., Shandarin S.F., Zeldovich Ya.B., 1982
The Large Scale Structure of the Universe I. General 
Properties. One and Two-dimensional models
Geophys. Astrophys. Fluid Dynamics, 20, 1-2

Arnold V.I., 1986, 
Evolution of singularities of potential flows in 
collisionless-free media and the metamorphosis 
of caustics in three-dimensional space

Leaders of Catastrophe

Arnold V.I.   (and others):
Caustic classification on basis of Normal Forms:

5 3 2
1 1 1 1( )F q q q qλ µ= + +



Catastrophe Theory:                                             
Lagrangian catastrophe/caustic classification V. Arnold                 

(also see Zeeman, Thom)    

D=2

A2:   folds
A3:   cusps
A4:    swallowtail

D4:    umbilics

D=1

A2:   folds
A3:   cusps

D=3

A2:   folds
A3:   cusps
A4:   swallowtail
A5:  butterfly

D4:   umbilics
D5

E5

Formation of a A4 swallowtail  (2D)

Hidding, Shandarin, vdW 2014

Lagrangian 

Eulerian



Skeleton (3D) Cosmic Web:
A4 lines - swallowtails

Feldbrugge, vdW et al. 2018
blue:   A4





Skeleton (3D) Cosmic Web:
catastrophic connections

Feldbrugge, vdW et al. 2017b



Skeleton (2D) Cosmic Web:
catastrophic connections

Feldbrugge, vdW et al. 2016
2D Zeldovich density field  (log density)

A3   - cusp               - red sheets      - filaments
A4   - swallowtail   - blue lines        - nodes

Lagrangian
(Zeldovich deformation fld.) 

Eulerian
(Zeldovich density fld.) 



Skeleton (3D) Cosmic Web:

Feldbrugge, vdW et al. 2018

Filament formation:
not necessary to collapse along 2 directions !

A4  (swallowtail) filaments  (blue):   
- collapse along 1 direction
- at edges & intersections A3 sheets

D4 umbilic filaments   (yellow)
- collapse along 2 directions
- higher density filamentary extensions nodes

Wall/Membrane formation:

A2  (cusp) membranes (red):   
- collapse along 1 direction





The spherical model (Gunn & Gott 1972) describes the evolution of a 
spherical mass distribution. It forms THE reference point for all further 
evaluations of structure formation.  

● Because of Birkhoff’s theorem we may see the evolution of each 
individual mass shell as due only to the integrated mass distribution within

its radius.

● As long as two mass shells are not crossing – e.g. due to the faster infall
of an outer shell into an overdensity -- the motion of a shell – with radius 
r -- is simply that of an individual spherical shell attracted by a point mass 
M(r), with M(r) the integrated mass within radius r.

● Perhaps not surprisingly, the equations of motion for the mass shells are 
the same as that of Friedmann-Robertson-Walker universes for an 
equivalent density parameter (r).  

● These equations of motion for each mass shell can be solved analytically for any 
decently behaving mass profile  (i.e. the mass profile should be sufficiently 
centrally concentrated to prevent shell crossing).

● The spherical model is equally valid for overdensities as well as for
underdensities.

Spherical  Model



Contraction/Expansion of a shell with initial (Lagrangian) radius ri is described by a 
scale factor R(t,ri), such that the radius r(t,ri) at time t is given by:

Spherical  Model



The motion is fully determined by the average mass density ∆(r,t) within a radius r,

and by the the peculiar velocity vpec,i of the shell. For this we usually take the peculiar 
velocity predicted by linear theory for the growing mode. 

It is convenient to describe the density perturbation with respect to a EdS Universe,  in 
terms of  ∆i and the velocity perturbation with respect to the Hubble expansion in terms 
of parameter αi .

Spherical  Model



The solutions for the scale factor of overdense/underdense shells can be written in the 
same parameterized form, by means of shell angle Θ, as we know from the solutions for 
FRW universes, 

with time dependence specified by 

Spherical  Model



The corresponding peculiar velocity of the shell  

can be inferred from 

with 

Spherical  Model







Spherical  Void Evolution 



Having determined the evolution of the radius and velocity of each spherical shell of 
the density perturbation, we may then proceed to derive the corresponding evolution 
of the density profile of the shell. Here we limit ourselves to the integrated density 
profile ∆(r,t),

whose solution can be specified in terms of a density function f(θ), 

Spherical  Model



whose solution can be specified in terms of a density function f(θ), 

At maximum expansion of an overdense shell, Θ=π, defining the turnaround radius of 
the matter concentration, we thus find that the integrated overdensity of the shell is

~ 5.6

Spherical  Model



In the “imaginary” situation in which the overdensity would have continued to evolve 
linearly, it would have reached an overdensity dictated by the linear growth factor D(t) 
for the corresponding background Universe. For the situation of an Einstein-de Sitter 
Universe, with  

a mass overdensity reaches its turnaround at a linear overdensity

The consequences of this finding are truely wonderful: the cosmologist may resort to 
the primordial density field, search for the peaks in this Gaussian field, and assuming 
they are spherical (which they are not at all), and identify the ones that reach 
turnaround at some redshift z. Even more useful is the equivalent case for final 
collapse.

Spherical  Model



Collapse, ie. ∆=∞, happens when the density fluctuation would have reached a linear 
overdensity of 

The fact that this is a universal value, valid for any (spherical) density peak, makes it 
into one of the most crucial numbers in the theory of structure formation. We may 
thus find the collapse redshifts zcoll for any primordial density peak, 

Spherical  Model





Homogeneous  Ellipsoids



Homogeneous  Ellipsoids



Homogeneous  Ellipsoids



Homogeneous  Ellipsoids



Homogeneous  Ellipsoids



Homogeneous  Ellipsoids



Homogeneous  Ellipsoids
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Homogeneous  Ellipsoids
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Homogeneous  Ellipsoids



Homogeneous  Ellipsoids



Homogeneous  Ellipsoids
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