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In the last assignment we revised basics of FRW cosmology. In this problem set we will derive equations
governing Newtonian perturbation theory. To solve this set of problems, knowledge about the governing
equations of fluid dynamics is required. For those who didn’t follow the course on astrophysical hydrody-
namics few optional problems are added in the end.

1 Perturbed fluid equations:

Consider a fluid of mass density ρ, pressure P and velocity u in the non-relativistic regime. Let’s denote the
position vector of a fluid element by r and time by t. The basic equations of motion are:

∂tρ+ ∇r · (ρu) = 0 (1)

(∂t + u ·∇r)u = −∇rP

ρ
−∇rΦ (2)

∇2
r = 4πGρ (3)

The equations are named as continuity, Euler and Poisson equations respectively. The physical coordinates
r and the comoving coordinates x are related via the following equation:

r(t) = a(t)x

1. Derive the following relationships of space and time derivatives between at fixed r and at fixed x:

∇r = a−1∇x (4)( ∂
∂t

)
r

=
( ∂
∂t

)
x
−H0x ·∇x (5)

2. For the case of small perturbations around the homogeneous background values (denoted by an overbar)
we can decompose a physical quantity η as:

η(t, r) = η̄(t) + δη(t, r) (6)

We now introduce a new term called fractional density perturbation or density contrast :

δ =
δρ

ρ̄
(7)

Show that in zeroth order in perturbations the continuity equation gives us:

∂ρ̄

∂t
+ 3H0ρ̄ = 0 (8)
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3. Show that at first order in fluctuations we get,

δ̇ = −1

a
∇ · v (9)

where v = aẋ is the proper velocity.

4. By following the similar steps show that Euler’s equation leads to the following equation:

v̇ +H0v = − 1

aρ̄
∇δP − 1

a
∇δΦ (10)

5. Show that Poisson equation becomes,
∇2δΦ = 4πG (11)

6. Derive Jeans equation:

δ̈ + 2H0δ̇ −
c2s
a2

∇2δ = 4πGρ̄δ (12)

Give a physical explanation of different terms appearing in the equation above.

2 Matter, radiation and Λ dominated universes:

1. During the matter dominated era Eq.(12) becomes:

δ̈m + 2H0δ̇m − 4πGρ̄mδm = 0 (13)

Show that the above equation takes the following form:

δ̈m +
4

3t
δ̇m −

2

3t2
δm = 0 (14)

give proper reasoning why the other term containing cs has been dropped.

2. Use a power law function as a trial solution δm ∝ tp and show that δm has two solutions:

δm ∝ t−1 ∝ a−3/2

∝ t2/3 ∝ a (15)

Explain the results physically.
[Hint: For matter dominated solution a ∝ t2/3, 4πGρ̄m = 3

2H
2
0 ]

3. Show that during the radiation and Λ dominated era Eq.(12) takes the following forms respectively:

δ̈m +
1

t
δ̇m − 4πGρ̄mδm = 0 (16)

δ̈m + 2H0δ̇m = 0 (17)

[Hint: For Λ dominated universe assume H2 = constant� 4πGρ̄m ]

4. Show that in the radiation dominated case δm has two solutions:

δm ∝ constant

∝ ln t ∝ ln a (18)

[Hint: Assume δ̈m � 4πGρ̄mδm (why??)]

5. Similarly solve for the Λ dominated case and show that it has the following solutions:

δm ∝ constant

∝ e−2H0t ∝ a−2 (19)
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Fluid dynamics

1. Convective operator and convective derivative:
For a vector field the A convective operator is defined as (A ·∇). In fluid dynamics we often use the
Lagrangian description, where we follow the fluid elements when describing macroscopic properties of
the fluid. Instead of talking e.g. about a density ρEuler(x, t) at a fixed position x, we consider the
density ρLagrangian(x(t), t) of a specific fluid element that moves in the flow.

When we want to take the time derivative of a macroscopic property of a fluid element, like the density,
we need to use the Lagrangian derivative:

D

Dt
=

∂

∂t
+ u ·∇ (20)

where u is the flow velocity.

(a) Apply chain rule of partial derivative and derive the result. Interpret in the context of convection
of a property of the fluid, e.g. temperature.

2. Momentum conservation: Euler equation
The Euler equation describes the rate of change of the momentum of a fluid with time. Remember that
the time derivative of the momentum has units of force. For an inviscid (frictionless) fluid of volume
V the Euler equation has three components:

• External volume forces f (force per unit mass, i.e. units of acceleration) affect every fluid volume
element dV in the volume V . By multiplying with the density and integrating over the whole
volume we get the momentum rate of change due to volume forces:

ˆ
V

ρfdV . (21)

• The pressure of the fluid also contributes to the rate of change of momentum of the fluid, because
pressure is force per unit area and hence momentum transfer per unit time through a unit area
element. This adds a term to the Euler equation that goes like

−
ˆ
S

pndS . (22)

• Finally, there is momentum of fluid elements moving into and out of the volume V , i.e. the
momentum flux:

−
ˆ
S

(ρu)u · ndS . (23)

Together these form the Euler equation:

d

dt

ˆ
V

ρudV =

ˆ
V

ρfdV −
ˆ
S

pndS −
ˆ
S

(ρu)u · ndS . (24)

(a) Derive the following form of the Euler equation:

ρ
Du

Dt
= −∇p+ ρf . (25)

3. Hydrostatics:
This question gives some examples of static fluids (no velocities). In that case, Euler’s equation becomes

∇P = ρg , (26)

where P is the pressure of the fluid and ρg the force acting on the fluid.
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(a) Consider a very large, very massive fluid such that self-gravity becomes important (any idea what
we are talking about here?). The Poisson equation – familiar from mechanics, stellar dynamics
and/or stellar evolution courses – relates the gravitational potential φ to the density ρ

∇2φ(r) = 4πGNρ(r) , (27)

where GN is Newton’s constant. What is g in this scenario? Use the assumption of spherical
symmetry to find (one of) the equations of stellar structure

1

r2
d

dr

(
r2

ρ

dP

dr

)
= −4πGNρ . (28)

N.B. It’s not only in stars that this equation is used. Another example are clusters of galaxies.
Then ρ is the total matter density: baryonic (stellar, gas) and dark.

Comments: In order to solve this, we need a relation between P and ρ, called the equation of
state. Often this is a polytropic relation

P ∝ ρ1+1/n , (29)

where n is called the polytropic index. Low mass white dwarf stars are well approximated as
n = 1.5 polytropes, red giants with n = 3, the giant planets Jupiter and Saturn with n = 1 and
the small planets with a constant density (no relation between P and ρ).
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