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Part I.

In this exercise we learn how to deal with the comoving coordinate transform.
After completing it, you will be able to derive the Newtonian ’dust’ comoving
equations from basic equations.

a. In general, suppose we have some function f(x, t) and we move with
some velocity with respect to the coordinate system of x, say x = g(y, t). Give
an expression for ∂tf |y.

Now we define

r ≡ ax v ≡ aẋ φ ≡ Φ +
1

2
aäx2

∂tρ+ ∇r · (ρu) = 0 Continuity

∂tu + (u ·∇r)u = −∇rΦ Euler

∇2
r Φ = 4πGρ Poisson

b. For a function f(r, t), write down ∂tf |r in terms of ∂tf |x.

d. Rewrite the Continuity equation in comoving coordinates and in terms
of the density perturbation δ ≡ ρ/ρu − 1.

c. Rewrite the Euler equation in comoving coordinates.

e. The potential φu = −aäx2/2 reflects the background dynamics of
the Universe of some density ρu. Compute ∇2

r φu; combining with the Poisson
equation, do you recognise the result?

f. Assume that we can split the dynamics of LSS from the background Uni-
verse (this is not trivial!). Rewrite the Poisson equation in comoving coordinates
and in terms of the density and potential perturbations.
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Part II: Cosmology and the Linear Density Growth Factor.

The equation for linear structure formation is

D̈ + 2HḊ =
3

2
Ω0H

2
0a
−3D.

We will learn how to compute the growing mode solution for a universe with
matter, curvature and a cosmological constant. The Friedman equation for such
a universe can be written as

H2 = H2
0

[
Ωma

−3 + (1− Ωc)a
−2 + ΩΛ

]
,

where H = H(t) is the Hubble parameter, and Ωi are values at t = t0.

a. Write an expression for Ḧ + 2HḢ (try differentiating the Friedman
equation). Does this result seem familiar?

b. Using both equations, work your way to

d

dt

[
a2H2 d

dt

(
D

H

)]
= 0

This is solved by integrating

D+ ∝ H
∫

dt

a2H2

Most of the time the result will be shown as a function of redshift z + 1 = 1/a.
This is normalised to the Einstein-de Sitter Universe in the limit a→ 0, where
D+ = a.

c. Show that

D+(z) =
5

2
ΩmH

2
0H(z)

∫ ∞
z

dz′
1 + z′

H3(z′)
.

d. Solve it for the cases of an Einstein-de Sitter, free expanding, and a de
Sitter universe (Λ-only).



LSS2011 Comoving coordinates & Growing mode 3/5

Part III Coupled Growth of a Matter-Radiation medium.

Up to this point, we have limited the study of linearly evolving density
fluctuations to media of a single nature (either matter or radiation). Here we
are considering the case of a fluidum of matter and radiation. In other words,
we look at the evolution of perturbations in the early universe.

To keep it simple, you are allowed to ignore the pressure force of the radi-
ation. However, not the contribution of pressure to the inertia of the matter-
radiation fluidum.

a. Show that the linearized form of the continuity equation for matter and
radiation are:

∂δm
∂t

+
1

a
∇x · v = 0

(1)

∂δrad
∂t

+
4

3

1

a
∇x · v = 0

b. While the Euler equation for both radiation and matter remains the same

(discarding, unjustifiably, the pressure force),

∂v

∂t
+
ȧ

a
v = −1

a
∇φ

the Poisson equation establishes the coupling between the radiation and matter
component. Show that for the Poisson equation in comoving coordinates,

∇2
xφ = 4πGa2 [ρm,u δm + 2 ρrad,u δrad] . (2)

c. Show that the combination of the continuity equation, Euler equation and

Poisson equation for both matter and radiation, leads to the following system
of two coupled second order differential equations,

∂2δm
∂t2

+ 2
ȧ

a

∂δm
∂t

= 4πGa2 [ρm,u δm + 2 ρrad,u δrad]

∂2δrad
∂t2

+ 2
ȧ

a

∂δrad
∂t

= 4πGa2

[
4

3
ρm,u δm +

8

3
ρrad,u δrad

]
. (3)

d. Subsequently, show that this can be condensed in an insightful linear matrix
equation,

L

 δm

δrad

 = 4πG

 ρm,u 2ρrad,u

4
3ρm,u

8
3ρrad,u

  δm

δrad

 (4)
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in which the linear operator L is defined by

L ≡ ∂2

∂t2
+ 2

ȧ

a

∂

∂t
. (5)

e. Given the expression above, reason under which circumstances the pertur-

bations in radiation and matter are full coupled. What does this imply for the
corresponding perturbation in the entropy density,

δS
S

=
3

4
δrad − δm. (6)
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Part IV Perturbation Growth of potential, gravitational accelera-
tion and velocity.

We are going to look into the growth, in tersm of cosmic expansion factor
a(t), of the perturbations in the gravitational potential, gravitational acceler-
ation and velocity. In other words, the growth of φ, peculiar gravity g and
peculiar velocity v.

a. Given the linear factor of growth of density perturbations, D(t), what
is the growth factor Dφ of the potential perturbation φ ? (You need to infer
this quantitatively using the equations for structure growth). b. In addition,

infer the linear growth factor Dg for gravity perturbations. c. Given that we

know that the velocity perturbations v are directl proportional to the peculiar
gravity g, via the relation

v =
2 f

3HΩ
g, (7)

with f(Ω) the Peebles factor,

f ≡ a

D

dD

da
=

d logD

d log a
∝ Ωγ (8)

show that the linear velocity perturbation growth factor is given by

Dv(t) = aDHf(Ωm) (9)

d. Infer that in an Einstein-de Sitter Universe the peculiar velocity increases

as
v(t) ∝ a1/2 (10)

e. On the other hand, show that in a low-Omega universe the peculiar velocity

decreases in time as
v(t) ∝ a−0.6 (11)

To infer this, you should use the asymptotic results that for a→∞, Ω(t) ∝ Ω0/a
and H ∝ 1/a.

f. Finally, show that in a perfectly smooth Universe, ie. one with no
potential perturbations and φ = 0, that

v(t) ∝ 1/a(t) . (12)

To reach the last result, infer from the Euler equation that for a particle moving
in a smooth universe,

dav

dt
= 0. (13)


