



1



| Statistica<br>P                                                            | I Cosmological<br>Principle                                                                   |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Cosmological Principl                                                      | e:                                                                                            |
| Universe is I                                                              | sotropic and Homogeneous                                                                      |
| Homogeneous & Isotropic Ra                                                 | andom Field $\psi(\vec{x})$ :                                                                 |
| Homogenous                                                                 | $p[\psi(\vec{x} + \vec{a})] = p[\psi(\vec{x})]$                                               |
| Isotropic                                                                  | $p[\psi(\vec{x} - \vec{y})] = p[\psi( \vec{x} - \vec{y} )]$                                   |
| Within Universe <u>one</u> particula<br><u>Observations</u> : only spatial | r <u>realization</u> $\psi(\vec{x})$ :<br>distribution in that one particular $\psi(\vec{x})$ |









































# Angular Correlation Function



#### Galaxy sky distribution:

- Galaxies clustered, a projected expression of the true 3-D clustering
- Probability to find a galaxy near another galaxy higher than average (Poisson) probability
- Quantitatively expressed by
   2-pt correlation function w(θ):

$$dP(\theta) = \overline{n}^2 \{1 + w(\theta)\} d\Omega_1 d\Omega_2$$

Excess probability of finding 2 gal's at angular distance  $\boldsymbol{\theta}$ 



















I2h GB

2.04

z0h

0.12

S.M

0.14



18

12/01/2015























































3-point correlation functions  
3-point correlation function  

$$dP(\vec{x_1}, \vec{x_2}, \vec{x_3}) = \vec{n}^3 [1 + \xi^{(3)}] dV_1 dV_2 dV_3$$

$$[1 + \xi^{(3)}] = \left\langle \prod_i (1 + \delta_i) \right\rangle$$

$$[1 + \xi^{(3)}] = 1 + \xi(r_{12}) + \xi(r_{13}) + \xi(r_{23}) + \zeta(\vec{r_1}, \vec{r_2}, \vec{r_3})$$











| Power Spectrum - Correlation Function |                                                                                    |  |
|---------------------------------------|------------------------------------------------------------------------------------|--|
|                                       | $P(k) = \int d^3 r \xi(\vec{r}) e^{i\vec{k}\cdot\vec{r}}$                          |  |
|                                       | $\xi(\vec{r}) = \int \frac{d^3k}{(2\pi)^3} P(k) e^{-i\vec{k}\cdot\vec{r}}$         |  |
| Isotropy:                             | $\xi(r) = 4\pi \int_{0}^{\infty} \frac{k^2 dk}{(2\pi)^3} P(k) \frac{\sin(kr)}{kr}$ |  |
| Delta-power                           | $\Delta^2(k) = \frac{1}{2\pi^2} P(k)k^2$                                           |  |





- Direct estimator
- Pixelization and maximum likelihood
- Karhunen-Loèwe (signal-to-noise) transform
- Quadratic compression
- Bayesian
- Multiresolution decomposition

Tegmark, Hamilton, Strauss, Vogeley, and Szalay, (1998), Measuring the galaxy power spectrum with future redshift surveys, ApJ, **499**, 555







































#### The usefulness of Euler

The mean value of  $\chi$  can be calculated analytically for Gaussian random fields (test of GRF hypothesis?)

In 3D the mean level is characterised by g>0 (a sponge)

In 2D the mean level has  $\chi=0$ .

There is no 2D equivalent of a sponge!



Topology

## of the

### **Primordial Gaussian Field**

















51













54



| Structure Topology                                                               |  |
|----------------------------------------------------------------------------------|--|
| Complete quantitative characterization of homology in terms of     Betti Numbers |  |
|                                                                                  |  |
| density superlevel set:                                                          |  |
| - # independent components                                                       |  |
|                                                                                  |  |









#### **Gaussian Random Fields: Betti Numbers**



- overlap between  $\beta_0$  and  $\beta_2$  at  $\nu=0$ , domain punctured by clumps with cavities # clumps/islands reaches maximum at  $\nu = \sqrt{3}$ , # cavities/voids at  $\nu = -\sqrt{3}$



























12/01/2015





















